Modular Reasoning for Actor Specification
Diagrams

Scott F. Smith
The Johns Hopkins University

Carolyn L. Talcott
Stanford University

February 17, 1999

for FMOODS '99

Language Design Goals
A language for specifying message-passing behavior that is
e Expressive
e Intuitively understandable by non-experts
e With a rigorous underlying semantics

Choice is a graphical format for ease of communication

Reasoning About Open Systems Project

Collaboration with Agha, Mason, Smith, Talcott

Rigorous reasoning for open distributed systems

General multi-language framework

General with respect to data

Proof principles

Applicability to real examples

This talk: a new graphical language for high-level specifica-
tion

Our approach

UML sequence diagram style with

o Significantly greater expressivity

e Usefulness across a wider portion of the design cycle
(not just in initial design phases)

e Rigorous underpinnings

e Algebra of composition, restriction

e Elements of programming logic added

A peek at an example

This simple cell holds a single value, which responds to set
and get messages.

Cell(a) =
new(value)
0..00
a< set(value)@c_ ad get@c
c<ack c<reply(value) o

g

Actor Communication Basics
e Actors each have a unique name, [a]

e Actors may dynamically create other actors

e Actors only communicate by passing messages,
— a is destination, M is data

e Acquaintance function, | acq(M)

— the actor names communicated in a message M
e Messages are sent asynchronously

e All messages must eventually arrive (fair delivery)

Outline of the talk

Actor communication basics

Diagram syntax

Examples

. Actor Theory framework

Operational semantics of diagrams

Example proofs of properties: function composer

. Conclusions and Future Work

Open Systems Modeling

System is open, interacting with (arbitrary) environment

External actors a € x are interacting outsiders

Receptionists a € p are locals interacting with outsiders

Sets x and p evolve over time

Interaction Path Model

e in(a < M) is an input action
—data arriving from environment; a € p

e out(a < M) is an output action
—data sent to environment; a € x

Diagram Syntax
e An actor system “run” is a sequence of in/out actions

e Each such sequence is an interaction path

Actor systems modelled by their set of interaction paths

—The model is a trace-style model but is semantically clean,
unlike CSP traces.

8 9
%) %)
: :
=) © —g a
(¢} Q
= A
) <
© 2
>/ z <
% o e,
= =
& \ : / =
w)
%)
g o
X o A
@ * b <
= o .
e. A N = /
(@} . [¢)
(D .
w)
e []
Q w)
2 L J.O

104
a
adoog
—t—
a
o *

10 11

doys
aod
PAN

o]
zZ 5
< =
=
.
e o
@ %)
= =8
=
Q
S
R=d
2
= -~
o
£.
=
2 -
%2} -
[¢]
=
=
> .
72}
2] Il
&
= <
g E
=t w)
5
Z.
e}
=
z
o >
<
o
.

General points about the language

Stateful; shared variables across threads possible

Mathematical domain of discourse is not fixed but can be
taken to be set theory

A grammatical notation also exists (see paper)

Some diagrams not realizable as actor programs

Can encode standard constructs: if-then; while-do; syn-

chronous messaging

12

14

Ancestry of Features

Feature Source

asynchrous messaging | actors

parallal and choice process algebra
constrain and assert Dijkstra program logic

cross-edge messaging
arbitrary math. universe

state and assignment

UML se

guence diagrams

(programming logics)

(programming langauges)

13

Function Composer—Components

A distributed method for computing go f for composable func-

tions f and g. Components are F and FC

e F computes a function f

e FC composes two functions f and g

F(af) =

17

—
—
a< compute(x)@xc

xc< reply(f(x))

bt
—

|\

FC(a,afag) =

p-
—
a< compute()@xc

fre

xc< reply(z)

.
0..00
—

sh(xf)
af <compute()@xf

< <reply()
sh(xg)

ag< compute(y)@xg
——

xg<reply(z)
| ~——

fd
b

|-
(-

15

Function Composer—System Refined Function Composer

XC(a,af,ag) =

Cla,af,ag) =
—
0..00
a< compute(x)@xc
—T—
fresh(xf) r__lo..oo
a< compute(x)@xc af <compute(x)@xf
fresh(xf) Xf<dreply(f(x))
af Acompute(y)@xf —l e
xf<reply(y) i fresh(xg) "))@A—J r__10,,l>c
P—t— ag< compute(f(x X,
fresh(xg) af <comput e(x) @xc, £ . . £
i xg<dreply(g(f((x))
xcareply(f()) xc< reply(g(f (D))
bt o) bd
ag< compute(y)@xg e |-——-|0"‘>Q bt —
xg<areply(z) ag< compute(x)@xc —
24 reply(a) e areply(g ()
bt (S)
h\ .
Cross-edges assert sends and receives match up 1-1
16 17

Relating Specification Diagrams

Need useful notions of how implementation D; satisfies spec-

ification Dg. . ‘ .
Strong Satisfaction and the Function
First Notion: full and faithful satisfaction of a specification. Composer

Definition 1 (strong satisfaction):
High-level specification for computing g o f is F(a,g o f)

(Dn% H (Dg)k iff
Theorem 2:
[Dn&l = [(Ds)¥]
(C(a, f,9,0f, ag9))g H
(XC(a, f,9,af ag))g H
where (F(a,9 f))§
e a top-level specification diagram includes an interface, Proof will be sketched later in talk.

notated (D)}

e [(D)¥] is interaction path semantics of (D)%

18 19

Asserting Properties of Specifications
Diagrammatically

e Safety and liveness properties can be asserted directly
in the specification diagram language.

e The ability to express assertions diagrammatically means
there is less need to learn a specialized logic in which
assertions are written.

e More practical possibility of getting engineers to use.

Three techniques for asserting properties now covered

20

Assertions | - Loose Satisfaction

Loose satisfaction is a standard notion of satisfaction:
(D% E (Ds)y iff [(DDX] C [(Ds)¥]-

“Diagram D’ has property Pp” is expressed as
(D% E (D)}
Consider for instance the LiveTicker(a)

LiveTicker(a) =

0..00

, T
a< time@c o

new(count)

_ c<reply(count)
) |-
b

Assert: (Ticker(a))g = (LiveTicker(a))g

— all time messages sent to the Ticker will receive a reply
22

Running Example: Ticker

A Ticker is a monotonically increasing counter

Ticker(a) =
new(count € Nat)
0..00
r——10
e
a< time@x _
_ x<reply(count)
bt

count := count + 1
J|

s

e Finite Inner loop 0. .. w guarantees progress of count.

e A top-level ticker: (Ticker(a))g.

21

Assertions Il - Environment-Based Assertions

Specify an environment which fails when desired property
fails.

LiveTickerEnvt(a) = ,—L

fresh(c)
0..00
—

a<time@c

K-S _c<reply(count)

assert (false)

Assert: = (Ticker(a) | LiveTickerEnvt(a))g

(Validity |= (D)% means no assert fail.)
23

Assertions |l - Safety Checks

Decorate a specification with assertions which must hold.

SafeTicker(a) =
new(count € Nat, prevcount = 0)

0..00
| o |

) =
a< time@c _

>

0.0

_ c<reply(count)

prevcount < count !
prevcount := count

=

count := count + 1
hed

e o

Assert: = (SafeTicker(a))g-

24

Actor Theories
A general semantic framework for actor systems
e abstracts from notational details

e enriches the basic actor computation model to express
— synchronization between two or more actors

— constraints on the environment

Actor theories can be used for

e semantics for programming and specification languages

e direct specification of actor system components

e relating actor system descriptions in different notations

26

19[[8d

suoyd doys
suoyd Sursuur
norx
JSIp [eIp
QU0) [eIp
EEYNEREYE

| a3ueyoxa

Sursuw doys
quoyd Jomsue
sgutr ouoyd

RETNGREN

(2 112 4)
(«£°2°9)moygauoyq

WS1p-[eIp > 2
QUO)-[BIp > D
JOATRIRI-YI] B> 2

quoyd-dois > o

suoyd-3uisur > >

(5 2 oSueyoxa)

Sursun-dojs > 4
ssuL-ouoyd > 4

quoyd-1omsue > 2

(s 4 JOATODDI)

Actor theory — Structure
An actor theory extends communication basics with

e States o local state — acquaintances, script, ...

e Reaction Rules [:o0g9 -5 oq

Hs

rule label [

source and target states o, o1

received/consumed messages u,

sent/generated messages ug

e States and rules must obey the Actor Theory Laws
— locality

— parametricity in names

25

27

Actor theory configurations and transitions Interaction Semantics

e Configurations K = (o, ">§ The interaction semantics of a configuration, [K], is the set of
interaction paths associated to the admissible computations
— (p, x) the interface of K of K

— o the internal state
e each interaction path consists of an interface and a se-

— u the pool of pending messages guence of inputs and outputs
e Transitions K - K e the interaction path associated to a computation, ¢p2ip(7),
has

— internal computation: tl = I(fA, pr, cA)

— the same interface as the inital configuration
— input to a receptionists: t/ = in(a < M)

— i/lo sequence the subsequence of i/o labels of the com-
— output to an external actor: ¢t/ = out(a <1 M) putation

e Computations — infinite sequences of transitions o [K] = {cp2ip(w) | m e A(K)}

28 29

Actor theory toolkit
Specification Diagram semantics
e Message restriction — a global disabling
e States which are diagrams (slightly enriched)

e State restriction — focus attention

e Rules which traverse diagrams
e Sum and Product operations

interleaving parallel threads

unfolding recursive diagrams e Big-Step Transformation

updating state — groups sequences of internal transitions

— reduces interleavings

sending and receiving messages

checking constraints . o
e Message internalization

* Admissibility annotations — receives are mandatory e Specialization — combines state and message restriction,
internalization, and big step.

30 31

The Function composer example - | The Function composer example - Il

Recall the composition of the function composer and two func-
tion computers:

C(a, f,9) = (FC(a, af , ag) | F(af, f) | F(ag, g))

C-Bigsteps(a,af.ag) =

FC(a,af,ag) =
a< compute(x)@xc

——

F(af) = r__‘o__oo fresh(xf)
| af <compute@xf ——0
a< compute()@xc
f put @.
dj Acomputelx XC,
—_ fresh(xf) []
r__lo"‘” af <compute(x)@xf xcareply(f())
- :
a< compute(x)@xc w f<reply(y) bt
xc< reply(f(x)) fresh(xg) fresh(xg)
ag< compute(y)@xg
bt T ag< compute(y)@xg 0..00
xg<reply(z) =
—r xc< reply(z)
xg <reply(z) ag< compute(x)@xc
o [.
— ~esreplv@ | xe reply(g ()
.~
s
—_l et

|
Theorem: \/

(Cla, f,g,af,ag9))p H (Fla,g0 f))§

32 33

The Function composer example - Ill

XC-bigsteps(a,af,ag) =
The Function composer example - IV

CC(afg) =
a< compute(x)@xc 0.0
I mmE
fresh(xf) .
af <compute®)@xf 0..00
T
f<areply(f()) L
0.2 a< comput e(x)@xc
fresh(xg) — i >
ag< compute(f (x)) @xg| _xc<reply(g(f(x)))
. xg<reply(g(f((x))
xc< reply(@(f () o |-
(] F

34 35

Future work

Test on ever larger examples

Rigorously develop graphical version of transformations

Formalize how diagrams assert properties

Add real-time constraints

A more realistic version with an implemented diagram

layout tool

36

