
Modular Reasoning for Actor Specification

Diagrams

Scott F. Smith
The Johns Hopkins University

Carolyn L. Talcott
Stanford University

February 17, 1999

for FMOODS ’99

Reasoning About Open Systems Project

�Collaboration with Agha, Mason, Smith, Talcott

�Rigorous reasoning for open distributed systems

�General multi-language framework

�General with respect to data

�Proof principles

�Applicability to real examples

This talk: a new graphical language for high-level specifica-
tion

1

Language Design Goals

A language for specifying message-passing behavior that is

�Expressive

� Intuitively understandable by non-experts

�With a rigorous underlying semantics

Choice is a graphical format for ease of communication

2

Our approach

UML sequence diagram style with

�Significantly greater expressivity

�Usefulness across a wider portion of the design cycle
(not just in initial design phases)

�Rigorous underpinnings

�Algebra of composition, restriction

�Elements of programming logic added

3

A peek at an example

This simple cell holds a single value, which responds to ���
and ���messages.

Cell(a) =
(

a set(value)@c

∇

∇

c ack

∇

∇

[0..∞

a get@c

∇

∇

c reply(value)

∇

∇

new(value)

(

[

4

Outline of the talk

1. Actor communication basics

2. Diagram syntax

3. Examples

4. Actor Theory framework

5. Operational semantics of diagrams

6. Example proofs of properties: function composer

7. Conclusions and Future Work

5

Actor Communication Basics

�Actors each have a unique name, �

�Actors may dynamically create other actors

�Actors only communicate by passing messages, ���
– �is destination,

�
is data

�Acquaintance function, ��	
��
– the actor names communicated in a message

�

�Messages are sent asynchronously

�All messages must eventually arrive (fair delivery)

6

Open Systems Modeling

�System is open, interacting with (arbitrary) environment

�External actors ��are interacting outsiders

�Receptionists ���are locals interacting with outsiders

�Sets and �evolve over time

7

Interaction Path Model

���
����
is an input action

—data arriving from environment; ���

����
����
is an output action

—data sent to environment; ��

�An actor system “run” is a sequence of ������actions

�Each such sequence is an interaction path

�Actor systems modelled by their set of interaction paths

—The model is a trace-style model but is semantically clean,
unlike CSP traces.

8

Diagram Syntax

9

DD

D
D

D
. .

. .
D

D
D

. .
. .

((

D

S
eq

u
en

ce
P

arallel
C

h
o

ice
F

o
rk

S
k

ip 10

a
 M

∇∇

a
 M

∇∇

a
 M

∇∇

D[

[
0..∞

D{

{

S
en

d
R

eceiv
e

S
en

d
-R

eceiv
e

L
o

o
p

E
O

D
S

co
p
e

11

n
e
w

x
f
r
e
s
h

x
φ

 ?

φ
 !

x :
=

ψ
D

X

X

N
ew

F
resh

C
o

n
strain

A
ssert

A
ssig

n
R

ec. V
ar.

R
ecu

rsio
n

12

Ancestry of Features

Feature Source

asynchrous messaging actors

parallal and choice process algebra

constrain and assert Dijkstra program logic

cross-edge messaging UML sequence diagrams

arbitrary math. universe (programming logics)

state and assignment (programming langauges)

13

General points about the language

�Stateful; shared variables across threads possible

�Mathematical domain of discourse is not fixed but can be
taken to be set theory

�A grammatical notation also exists (see paper)

�Some diagrams not realizable as actor programs

�Can encode standard constructs: if-then; while-do; syn-
chronous messaging

14

Function Composer—Components

A distributed method for computing ���for composable func-
tions

�
and �. Components are F and FC

�F computes a function
�

�FC composes two functions
�

and �

∇

∇

F(a,f) =

a compute(x)@xc

∇

∇

[0..∞

[

xc reply(f (x))

{

{

∇

∇

FC(a,af,ag) =

a compute(x)@xc

∇

∇

[0..∞

[

xc reply(z)

{

{

fresh(xf)

af compute(x)@xf

∇

∇

fresh(xg)

ag compute(y)@xg

∇

∇

xf reply(y)

∇

∇

xg reply(z)

∇

∇

15

Function Composer—System

C(a,af,ag) =

a compute(x)@xc

∇

∇

[0..∞

[

xc reply(z)

∇

∇

{

{

fresh(xf)

af compute(x)@xf

∇

∇

fresh(xg)

ag compute(y)@xg

∇

∇

xf reply(y)

∇

∇

xg reply(z)

∇

∇

[0..∞

[
{

{

[0..∞

[
{

{

af compute(x)@xc

∇

∇

xc reply(f (x))

∇

∇

xc reply(g (x))

∇

∇

ag compute(x)@xc

∇

∇

16

Refined Function Composer

XC(a,af,ag) =

a compute(x)@xc

∇

∇

[0..∞

[

xc reply(g(f ((x)))

∇

∇

{

{

fresh(xf)

af compute(x)@xf

∇

∇

fresh(xg)

ag compute(f (x))@xg
∇

∇

xf reply(f (x))

∇

∇

xg reply(g(f ((x)))

∇

∇

[0..∞

[
{

{

[0..∞

[
{

{

Cross-edges assert sends and receives match up 1-1

17

Relating Specification Diagrams

Need useful notions of how implementation ��satisfies spec-
ification ��.

First Notion: full and faithful satisfaction of a specification.

Definition 1 (strong satisfaction):
������ ��� ������iff ������!!� ������!!

where

�a top-level specification diagram includes an interface,
notated

�����

� �����!! is interaction path semantics of
�����

18

Strong Satisfaction and the Function
Composer

High-level specification for computing ���
is F

�"����
Theorem 2:

�
C

�"�"�"�#"�$��%/0 ����

XC

�"�"�"�#"�$��%/0 ����

F

�"�����%

/0

Proof will be sketched later in talk.

19

Asserting Properties of Specifications
Diagrammatically

�Safety and liveness properties can be asserted directly
in the specification diagram language.

�The ability to express assertions diagrammatically means
there is less need to learn a specialized logic in which
assertions are written.

�More practical possibility of getting engineers to use.

Three techniques for asserting properties now covered

20

Running Example: Ticker

A Ticker is a monotonically increasing counter

0..ω

Ticker(a) =

a time@x

∇

∇

[0..∞
new(count ∈ Nat)

[

[

[

count := count + 1

x reply(count)

∇

∇

{

{

�Finite Inner loop 0 &&&'guarantees progress of �()*+.

�A top-level ticker:
�
Ticker

,��%
/0 .

21

Assertions I - Loose Satisfaction

Loose satisfaction is a standard notion of satisfaction:������ �������� iff
 ������!!- ������!!.

“Diagram �.
has property /D” is expressed as��.��� �������

Consider for instance the LiveTicker

��

LiveTicker(a) =

a time@c

∇

∇

[0..∞

[

new(count)

c reply(count)

∇

∇

{

{

Assert:
�
Ticker

,��%
/0

���
LiveTicker

,��%
/0

– all ��0�messages sent to the Ticker will receive a reply

22

Assertions II - Environment-Based Assertions

Specify an environment which fails when desired property
fails.

LiveTickerEnvt(a) =

a time@c

∇

∇

[0..∞
fresh(c)

[

c reply(count)

∇

∇

{

{

(

(

assert(false)

Assert: ���
Ticker

,��LiveTickerEnvt

,��/0

/0

(Validity �������means no 1���2�fail.)

23

Assertions III - Safety Checks

Decorate a specification with assertions which must hold.

0..ω

SafeTicker(a) =

a time@c

∇

∇

[0..∞
new(count ∈ Nat, prevcount = 0)

[

[

[

count := count + 1

c reply(count)

∇

∇

{

{

prevcount ≤ count !
prevcount := count

Assert: ���
SafeTicker

���%/0 .

24

caller
ex

ch
an

g
e

receiv
er

lift receiv
er

d
ial to

n
e

d
ial d

ig
it

ro
u
te

p
h
o
n
e rin

g
s

rin
g
in

g
 p

h
o
n
e

an
sw

er p
h
o
n
e

sto
p
 p

h
o
n
e

sto
p
 rin

g
in

g

. . .

(*
 caller c *

)
(*

 ex
ch

an
g
e e *

)
(*

 receiv
er r *

)

e lift-receiv
er

d
ial-to

n
e

d
ial-d

ig
it

p
h
o
n
e-rin

g
s

rin
g
in

g
-p

h
o
n
e

an
sw

er-p
h
o
n
e

sto
p
-p

h
o
n
e

sto
p
-rin

g
in

g

∇∇

ro
u
te

e

∇∇

e

∇∇

r

∇∇∇∇∇∇

r

∇∇∇∇∇∇

c

∇∇∇∇∇∇

c

∇∇∇∇∇∇

c

∇∇∇∇∇∇
e

∇∇

. . .

P
h

o
n

eR
o

u
te(c,e,r) =

25

Actor Theories

A general semantic framework for actor systems

�abstracts from notational details

�enriches the basic actor computation model to express

– synchronization between two or more actors

– constraints on the environment

Actor theories can be used for

�semantics for programming and specification languages

�direct specification of actor system components

� relating actor system descriptions in different notations

26

Actor theory – Structure

An actor theory extends communication basics with

�States 3 local state – acquaintances, script, &&&

�Reaction Rules 4 : 30 5
678

5
9 31

– rule label 4

– source and target states 30"31

– received/consumed messages :;

– sent/generated messages :<

�States and rules must obey the Actor Theory Laws

– locality

– parametricity in names

27

Actor theory configurations and transitions

�Configurations =��3":���

–

�"�the interface of =

– 3the internal state

– :the pool of pending messages

�Transitions = >
?778=.

– internal computation:
+4�4
#@":;"�@�

– input to a receptionists:
+4���
����

– output to an external actor:
+4����
����

�Computations – infinite sequences of transitions

28

Interaction Semantics

The interaction semantics of a configuration,
 =!!

, is the set of
interaction paths associated to the admissible computations
of =

�each interaction path consists of an interface and a se-
quence of inputs and outputs

� the interaction path associated to a computation, �ABCA
D�,
has

– the same interface as the inital configuration

– i/o sequence the subsequence of i/o labels of the com-
putation

� =!!�E�ABCA
D� D�
A

=�F

29

Specification Diagram semantics

�States which are diagrams (slightly enriched)

�Rules which traverse diagrams

– interleaving parallel threads

– unfolding recursive diagrams

– updating state

– sending and receiving messages

– checking constraints

�Admissibility annotations – receives are mandatory

30

Actor theory toolkit

�Message restriction – a global disabling

�State restriction – focus attention

�Sum and Product operations

�Big-Step Transformation

– groups sequences of internal transitions

– reduces interleavings

�Message internalization

�Specialization – combines state and message restriction,
internalization, and big step.

31

The Function composer example - I

Recall the composition of the function composer and two func-
tion computers:

C

�"�"���

FC

�"�#"�$��F

�#"���F

�$"���

∇

∇

F(a,f) =

a compute(x)@xc

∇

∇

[0..∞

[

xc reply(f (x))

{

{

∇

∇

FC(a,af,ag) =

a compute(x)@xc

∇

∇

[0..∞

[

xc reply(z)

{

{

fresh(xf)

af compute(x)@xf

∇

∇

fresh(xg)

ag compute(y)@xg

∇

∇

xf reply(y)

∇

∇

xg reply(z)

∇

∇

Theorem:
�
C

�"�"�"�#"�$��%/0 ��� �

F

�"�����%

/0

32

The Function composer example - II

C-Bigsteps(a,af,ag) =

a compute(x)@xc

∇

∇

[0..∞

[

xc reply(z)
∇

∇

fresh(xf)

af compute(x)@xf

∇

∇

fresh(xg)

ag compute(y)@xg

∇

∇

xf reply(y)

∇

∇

xg reply(z)

∇

∇

[0..∞

[

[0..∞

[

af compute(x)@xc
∇

∇

xc reply(f (x))

∇

∇

xc reply(g (x))

∇

∇

ag compute(x)@xc

∇

∇

33

The Function composer example - III

XC-bigsteps(a,af,ag) =

a compute(x)@xc

∇

∇

[0..∞

[

xc reply(g(f ((x)))

∇

∇

fresh(xf)

af compute(x)@xf

∇

∇

fresh(xg)

ag compute(f (x))@xg

∇

∇

xf reply(f (x))

∇

∇

xg reply(g(f ((x)))

∇

∇

[0..∞

[[0..∞

[

34

The Function composer example - IV

∇

∇

CC(a,f,g) =

a compute(x)@xc

∇

∇

[0..∞

[

xc reply(g(f (x)))

35

Future work

�Test on ever larger examples

�Rigorously develop graphical version of transformations

�Formalize how diagrams assert properties

�Add real-time constraints

�A more realistic version with an implemented diagram
layout tool

36

