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Abstract

In this paper we introduce a variable typed logic of effects inspired by the variable type
systems of Feferman for purely functional languages. VILoE (Variable Typed Logic of Effects) is
introduced in two stages. The first stage is the first-order theory of individuals built on assertions of
equality (operational equivalence & la Plotkin), and contextual assertions. The second stage extends
the logic to include classes and class membership. The logic we present provides an expressive
language for defining and studying properties of programs including program equivalences, in a
uniform framework. The logic combines the features and benefits of equational calculi as well as
program and specification logics. In addition to the usual first-order formula constructions, we
add contextual assertions. Contextual assertions generalize Hoare’s triples in that they can be
nested, used as assumptions, and their free variables may be quantified. They are similar in spirit
to program modalities in dynamic logic. We use the logic to establish the validity of the Meyer
Sieber examples in an operational setting. The theory allows for the construction of inductively
defined sets and derivation of the corresponding induction principles. We hope that classes may
serve as a starting point for studying semantic notions of type. Naive attempts to represent ML
types as classes fail in sense that ML inference rules are not valid.
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1. Introduction

It is well known that the addition of (unrestricted) references or other mutable data to
a functional programming language complicates matters. Adding operations for manipu-
lating references to the simply typed lambda calculus causes the failure of most of the nice
mathematical properties. For example strong normalization fails because it is possible to
construct a fixed-point combinator for any functional type. We give two versions of such
a combinator, the first is written in the simply typed lambda calculus with ML reference
primitives. The second is an untyped version written in the language we study in the sequel.
These combinators are essentially identical to the one suggested by Landin (Landin, 1964).

Version 1:  Suppose that in the type environment I" we can establish ' > g: 0 — 7.
Then the desired functional is

Y=AF:(c—>7)—> (0 —>7).letz:=refginz:=)z:0.(F(l2)(z));!z

and ' > Y:o0 — 7. Note that in the typed case we need an arbitrary element, g, of 0 — 7
to be able to allocate a reference cell. A complication that does not arise in the untyped
case:

Version 2:  Suppose mk(v) allocates a cell with contents v, get(z) gets the current
contents of the cell z, and set(z,v) sets the contents of the cell z to be v. Then the desired
functional is

Y = Af.let{z := mk(nil)}seq(set(z, Az.f(get(z),z)), get(2))

In addition, references are problematic for polymorphic type systems (Damas, 1985;
Tofte, 1988; Tofte, 1990; Leroy and Wies, 1990). Even when references are only allowed
to contain numbers they are troublesome from a denotational point of view as illustrated
by the absence of fully abstract models. For example, in (Meyer and Sieber, 1988) they
give a series of seven examples of programs that are operationally equivalent (according to
the intended semantics of block-structured Algol-like programs) but which are not given
equivalent denotations in traditional denotational semantics. They propose various modifi-
cations to the denotational semantics which solve some of these discrepancies, but not all.
In (O’Hearn and Tennent, 1992; O’Hearn and Tennent, 1993b) a denotational semantics
that overcomes some of these problems is presented. However variations on the seventh
example remain problematic. Since numerous proof systems for Algol are sound for the
denotational models in question, (Halpern et al., 1984; Halpern et al., 1983; Sieber, 1985;
Olderog, 1984; Manna and Waldinger, 1981; O’'Hearn and Tennent, 1992; O’Hearn and
Tennent, 1993b), these equivalences, if expressible, must be independent of these systems.
More recently (O’Hearn and Tennent, 1993a) gives a denotational model that handles the
Meyer-Sieber examples and their variations correctly. This model uses a categorical notion
called relational parametricity to capture locality. Full abstraction for this model remains
an open problem.

In recent years various systems for reasoning about properties of programs written
in general programming languages have been proposed, most notably Hoare’s logic (Apt,
1981), Dynamic logic (Harel, 1984), Reynolds Specification Logic (Reynolds, 1982), Moggi’s
metalanguage for computational monads (Moggi, 1991), and Pitt’s Evaluation Logic (Pitts,
1990). All are program logics of the ezogenous kind, i.e. programs appear in formulas.
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Hoare’s logic is quite weak in the sense that it cannot express termination of programs, nor
their equivalence. Dynamic logic can express termination but not equivalence, while the
opposite is true for Specification logic. Hoare and Dynamic logic also suffer from the fact
that they assign to bound variables, making variable instantiation problematic. Evaluation
logic extends Moggi’s metalanguage for computational monads to a full constructive pred-
icate logic which permits formulation of statements about evaluation of computations to
values, and constitutes a framework for expressing reasoning principles. It is inspired by
categorical descriptions both of computation processes and of logical tools. Also VtloE is an
exogenous logic, but while we try to axiomatize the properties of one canonical semantics
for a very rich but specific language, trying to capture the reasoning principles peculiar to
it, both Moggi’s and Pitt’s system are more in the LCF tradition and originate from recent
advances in constructive Domain Theory. These systems are general systems which reduce
reasoning about programs to reasoning about mathematical structures for programming
semantics, which are not necessarily fully-abstract with respect to a canonical semantics.
These systems are justified by completeness results over classes of categorical interpreta-
tions. On the other hand our system concentrates on precisely one semantics, the natural
operational one, and take the operational equivalence induced by that semantics as the
primitive predicate. We seek simplicity of reasoning and expressivity of descriptions and
justify our system on the basis of its power in deriving properties of one canonical semantics
rather than on its general applicability. Finally we use classical logic, the systems of Moggi
and Pitts are based on constructive and categorical Logic. Similarly, as Tennett points out,
Reynolds has given examples showing that, Specification Logic must be intuitionistic, i.e.
the classical law for double negation forces models of variables and assignment to be trivial.

1.1. Overview

In this paper we introduce a variable typed logic of effects inspired by the variable
type systems of Feferman. These systems are two sorted theories of operations and classes
initially developed for the formalization of constructive mathematics (Feferman, 1975; Fe-
ferman, 1979) and later applied to the study of purely functional languages (Feferman,
1985; Feferman, 1990). A similar extension incorporating non-local control effects was in-
troduced in (Talcott, 1993). VTLoE (Variable Type Logic of Effects) is introduced in two
stages. The first stage is the first-order theory of individuals built on assertions of equality
(operational equivalence), and contextual assertions. The second stage extends the logic to
include classes and class membership.

The logic we present provides an expressive language for defining constraints and for
studying properties and program equivalences, in a uniform framework. Our atomic formu-
las express the (operational or observational) equivalence of programs & la Plotkin (Plotkin,
1975). Neither Hoare’s logic nor Dynamic logic incorporate this ability, or make use of such
equivalences (e.g. by replacing one piece of program text by another without altering the
overall meaning). The logic combines the features and benefits of equational calculi and
program and specification logics. The theory allows for the construction of inductively de-
fined sets and derivation of the corresponding induction principles. Classes can be used to
express, inter alia, the non-expansiveness of terms (Tofte, 1990). Other effects can also be
represented within the system. These include read/write effects (Lucassen, 1987; Lucassen
and Gifford, 1988; Jouvelot and Gifford, 1991) and various forms of interference (Reynolds,
1978; Reynolds, 1982).



The paper is divided into three parts.

(I) The first part describes the syntax and operational semantics of our language, and
establishes the basic results concerning the corresponding notion of operational equiv-
alence. We also discuss some of the subtleties that arise due to the presence of mutable
data. Most of the results in this part are from (Mason and Talcott, 1991a).

(IT) In part two we describe the first order aspects of our logic of effects, and provide
examples of their use. These examples include proofs within VTLoE of the validity of
the examples of Meyer and Sieber.

(III) In the third part we enlarge our logic to allow for the manipulation of classes. We
give an extended example of the use of VTLoE in specifying and verifying a program.

Part 1T is independent of part 111, while much of part III is orthogonal to part II.

Earlier versions of part IT of this paper appeared as (Mason and Talcott, 1992b). Earlier
versions of part III of this paper appeared as (Honsell et al., 1993).

1.1.1. Part1l

In our language atoms, references and lambda abstractions are all first class values and
as such are storable. This has several consequences. Firstly, mutation and variable binding
are separate and so we avoid the problems that typically arise (e.g. in Hoare’s and dynamic
logic) from the conflation of program variables and logical variables. Secondly, the equality
and sharing of references (aliasing) is easily expressed and reasoned about. Thirdly, the
combination of mutable references and lambda abstractions allows us to study object based
programming within our framework.

The terms of our language are simply the terms of the call-by-value lambda calculus
extended by the reference primitives mk, set, get. We also include a collection of operations
and basic constants or atoms A, (such as the Lisp booleans t and nil as well as the natural
numbers N). We can think of this language as an untyped dialect of ML.

The semantics of expressions is a call-by-value evaluation relation given by a reduction
relation on syntactic entities. These syntactic entities represent the state of an abstract ma-
chine. A state has three components: the current instruction, the current continuation, and
the current state of memory. Their syntactic counterparts are redezes, reduction contexzts,
and memory contexts respectively.

We define the operational equivalence relation and study its general properties. Our
definition extends the equivalence relations defined in (Morris, 1968) and (Plotkin, 1975).
In general it is very difficult to establish the operational equivalence of expressions. Thus it
is desirable to have a simpler characterization of operational equivalence, one that limits the
class of contexts (or observations) that must be considered. In (Mason and Talcott, 1991a)
we used this approach to establish a useful characterization of operational equivalence. This
characterization reduces the number of contexts that need to be considered. The class of
contexts that need to be considered correspond naturally to states of an abstract machine.

In the presence of effects several notions split into spectrums of variations. For example,
in the presence of effects there are several degrees of definedness. The weakest notion is
that of computational definedness. An expression is computationally defined, if (for any
assignment of free variables) it returns a value. A stronger notion is that of an an expression
evaluating to a value, without altering (but possibly enlarging) memory. An even stronger
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notion of definedness is that of an an expression evaluating to a value, without altering
or enlarging memory. The strongest notion of definedness is that of evaluating to a value
independently of the memory. The following terms exemplify these degrees:

mk(z) seq(mk(x), 1) get(x) 1.

None of these notions are equivalent in the sense that terms of one kind are not in general
operationally equivalent to terms of the other kind. These notions are formalizable in our
theory of classes, see §5.4. Such distinctions mean that care must be taken in generalizing
notions such as extensionality, n-conversion and fixed-point operators.

1.1.2. Part II

The first order fragment of VTLoE is a minor generalization of classical first order
logic. The atomic formulas of our language assert the operational equivalence of expressions.
These expressions are just terms in our call-by-value lambda calculus. In addition to the
usual first-order formula constructions, we add conteztual assertions: if ® is a formula and
U is a univalent context, then U[®] is a formula. The formula, U[®], expresses the fact
that the assertion ® holds at the point in the program text, U, when and if the hole requires
evaluation. Univalent contexts are the largest natural class of contexts (expressions with a
unique hole) whose symbolic evaluation is unproblematic. Contextual assertions generalize
Hoare’s triples in that they can be nested, used as assumptions, and their free variables may
be quantified. They are similar in spirit to program modalities in dynamic and evaluation
logic. Using contextual assertions we can express the axioms concerning the effects of mk
and set simply and elegantly. This improves the complete system (for quantifier/recursion
free expressions) presented in (Mason and Talcott, 1992a) where the corresponding rules
had complicated side-conditions.

The logic is a partial term logic with variables ranging over values. The characteri-
zation of operational equivalence allows for a natural notion of satisfaction of first order
formulas relative to a memory state and assignment of values to variables. Our style of
operational semantics naturally provides for the symbolic evaluation of contexts, which is
the key to defining the semantics of contextual assertions. The underlying logic is classical.
Consequently we concentrate on the properties of contextual assertions and their uses.

1.1.3. Part III

Using methods of (Feferman, 1975; Feferman, 1990) and (Talcott, 1993), we extend our
theory to include a general theory of classifications (classes for short). We extend the syntax
to include class terms (either class variables, class constants, or comprehension terms). We
extend the set of formulas to include class membership and quantification over classes. Class
variables range over sets of values closed under operational equivalence.

With the introduction of classes, principles such as structural induction, as well as
principles accounting for the effects of an expression can easily be expressed. We show that
by using classes one can specify and verify properties of non-trivial programs.

Just as in the case of definedness, in the presence of effects there are many possible
notions of function space according to how the effects of a computation are accounted
for. One example is the class of memory functions Xi,..., X, =Y with arguments in
X1,...,X, and result in Y allowing for the possible modification of memory in the process.
This can be refined by making the possible effects explicit in the spirit of (Lucassen, 1987;
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Lucassen and Gifford, 1988; Jouvelot and Gifford, 1991). At the other end of the spectrum
there is the function space that corresponds to those operations that return appropriate
values without even enlarging memory, let alone altering existing memory.

It was hoped that classes would serve as a starting point for studying semantic notions
of type. (Feferman, 1990) proposes an explanation of ML types in the variable type frame-
work. This gives a natural semantics to ML type expressions, but there are problems with
polymorphism, even in the purely functional case. For example the fixed point operator
can be typed in ML as (VX,Y)([X — Y] = [X = Y] = [X — Y]) but this is false in
the variable type framework as there are types (classes) not closed under limits of chains.
The situation becomes more problematic when references are added. Naive attempts to
represent ML types as classes fails in sense that ML inference rules are not valid. Its seems
that the essential feature of ML type system, in addition to the inference rules, is the preser-
vation of types during the execution of well-typed programs. Our analysis indicates that
ML types are therefore more syntactic than semantic.

1.2. Notation

We conclude the introduction with a summary of notation. Let X,Y,Y),Y; be sets.
We specify meta-variable conventions in the form: let « range over X, which should be read
as: the meta-variable x and decorated variants such as z’, xg, ..., range over the set X.
We use the usual notation for set membership and function application. Y™ is the set of
sequences of elements of Y of length n. Y* is the set of finite sequences of elements of Y.
7 = [y1,---,Yn] is the sequence of length n with ith element y;. P, (Y) is the set of finite
subsets of Y. Yy — Y} is the set of finite maps from Y to Y;. [Yo — Y3] is the set of total
functions f with domain Yj and range contained in Y;. We write Dom(f) for the domain
of a function and Rng(f) for its range. For any function f, f{y := y'} is the function f’
such that Dom(f’) = Dom(f) U {y}, f'(y) =¥/, and f'(z) = f(z) for z # y,z € Dom(f).
N={0,1,2,...} is the natural numbers and i, j,n,ng, ... range over N.



Part I: Semantic Foundation

2. The Syntax and Semantics of Terms

The syntax of the terms of our language is a simple extension of that of the lambda
calculus to include basic constants (atoms) and primitive operations. The semantics is given
operationally in terms of a single step reduction relation. We shall be somewhat terse in
this section. For a more leisurely treatment see (Mason and Talcott, 1991a).

2.1. Syntax of Terms

We fix a countably infinite set of variables, X, a countable set of atoms, A, and a family
of operation symbols F = {F,, | n € N} (F, is a set of n-ary operation symbols) with X, A,
F, for n € N. All these sets are assumed to be pairwise disjoint. We assume A contains
two distinct elements playing the role of booleans, t for true and nil for false. From the
given sets we define expressions, value expressions, contexts, and value substitutions.

Definition (L VP S E):  The set of A-abstractions, L, the set of value expressions, V,
the set of immutable pairs, P, the set of value substitutions, S, and the set of expressions,
E, are defined, mutually recursively, as the least sets satisfying the following equations:

L=XXE
V=X+A+L+P
P = pr(V,V)
S=X-5V

E=V +app(EE) +F, (E")

We let a range over A, z,y, z range over X, v range over V, p range over L, o range over S,
and e range over [E&. Note that the structured data, P, are taken to be values. A is a binding
operator and free and bound variables of expressions are defined as usual. Two expressions
are considered equal if they are the same up to renaming of bound variables. FV(e) is the
set of free variables of e. e!*=¢} is the result of substituting e’ for z in e taking care not
to trap free variables of e’. For any syntactic domain Y and set of variables X we let Yy
be the elements of Y with free variables in X. A closed expression is an expression with no
free variables. Thus Ey is the set of all closed expressions. We write {z; := v; | i < n} for
the substitution o with domain {z; | i < n} such that o(z;) = v; for i < n. e is the result
of simultaneous substitution of free occurrences of x € Dom(c) in e by o(z), again taking
care not to trap variables.
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The operations, I, are partitioned into memory operations and operations that are
independent of memory.! A memory operation may modify memory, and its result may
depend on state of memory when it is executed. The memory operations are:

{get,mk} CF; {set} CT,.

The remaining operations neither affect the memory, nor are affected by the memory. In
this paper we explicitly include operations for dealing with immutable pairs, a branching
operation, and assorted predicates.

{atom, cell, fst, snd, ispr, isnat,+1,-1} C {eq,pr} CF, {br} C Fs

In addition there are operations on numbers which we shall not enumerate explicitly. As
usual we use the syntactic sugar let, if, seq (a sequencing construct akin to progn, begin
or ;) to make programs more readable. We also will sometimes write eg(e;) instead of
app(eg, €1). For example,

eo(e;) abbreviates app(eo,eq)

let{z :=ep}e; abbreviates app(Az.e1,e)

seq(eg,e1) abbreviates app(app(Az.Az.z,ep),€1)

if(ep, e1,e2) abbreviates app(br(ey, Az.e1,Az.e3),nil) for z fresh

Definition (C):  Contexts are expressions with holes. We use e to denote a hole. The
set of contexts, C, is defined by

C={o} + X + A + AX.C + app(C,C) + F, (C*)

We let C range over C. CJe] denotes the result of replacing any hole in C' by e. Free
variables of e may become bound in this process, we let Traps(C) be those variables which
may be trapped.

Definition (Traps):

0 if C€XUAU{e}
) Traps(Cp) U{z} it C=Xz.Cy
Traps(C) = \ Traps(Cy) U Traps(Ch) if C = app(Co, C1)

Traps(Cy) U...U Traps(C,) if C =9¥(Cy,...,C,) and ¥ € F,

I In our work operations come in three flavors: algebraic operations which act on atomic data, and whose
properties are given by algebraic equations; structural operations which act uniformly on specific kinds of
data (other than atomic) such as pairs, records, finite sets; and computational operations which provide
access to computation state, these include memory operations, and control operations. Algebraic and
structural operations are contezt free — their action/meaning is independent of computation state, whereas
the meaning of computation primitives is affected by and can affect computation state.



2.2. Semantics of Terms

The operational semantics of expressions is given by a reduction relation V5 on a syn-
tactic representation of the state of an abstract machine, referred to as computation descrip-
tions. A state has three components: the current instruction, the current continuation, and
the current state of memory. Their syntactic counterparts are redezes, reduction contexts,
and memory contexts respectively. Redexes describe the primitive computation steps. A
primitive step is either a Byawe-reduction or the application of a primitive operation to a
sequence of value expressions.

Definition (E,): The set of redexes, E,, is defined as

E, = app(V, V) + [ (F. (V") = P)
n€EN

Reduction contexts identify the subexpression of an expression that is to be evaluated next,
they correspond to the standard reduction strategy (left-first, call-by-value) of (Plotkin,
1975) and were first introduced in (Felleisen and Friedman, 1986).

Definition (R):  The set of reduction contexts, R, is the subset of C defined by

R= {.} + app(R, E) + app(V’ R) + U IFrn-l-n-i-l (VmaRa ]En)
n,meN

We let R range over R. An expression is either a value expression or decomposes uniquely
into a redex placed in a reduction context.

Lemma (Decomposition): If e € E then either e € V or e can be written uniquely as
R[e'] where R is a reduction context and e’ € E,.

Definition (M):  The set of memory contexts, M| is the set of contexts I' of the form
let{z; :=mk(nil)}...let{z, := mk(nil)}seq(set(z1,v1),-..,set(zn, Us),®)

where z; # z; when ¢ # j. We include the possibility that n = 0, in which case I' = o. We
let I" range over M.

We have divided the memory context into allocation, followed by assignment to allow for
the construction of cycles. Thus, any state of memory is constructible by such an expression.
We can view memory contexts as finite maps from variables to value expressions. Hence
we define the domain of I’ (as above) to be Dom(I") = {z1,...,2,}, and I'(z;) = v for
1 <4 < n. Two memory contexts are considered the same if they are the same when
viewed as functions. Viewing memory contexts and finite maps, we define the modification
of memory contexts, I'{z := mk(v)}, and the union of two memory contexts, (I'o UT';), in
the obvious way. I'? is the result of applying ¢ to each value in the range of I'.

Definition (D):  The set of computations descriptions (briefly descriptions), D, is defined
to be the set M x [E. Thus a description is a pair with first component a memory context
and second component an arbitrary expression. We do not require that the free variables of
the expression be contained in the domain of the memory context. This allows us to define
reductions uniformly in parameters that are not touched by the reduction step, and hence
to provide a form of symbolic evaluation. We let I'; e range over ID. A closed description
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is a description of the form T';e where e € Epomr). Value descriptions are descriptions
whose expression component is a value expression, i.e. a description of the form I';wv.

([5e)7 =T%e”

Definition (-3):  The reduction relation > is the reflexive transitive closure of ~. The
clauses are:

(Bealue) T Rlapp(Az.e,v)] = T; Re="}]

T; R[t] ifveA
I Rnil] if v e LUPUDom(T")

{r
{I‘R[t ifveP
{5

(atom) I';R[atom(v)]+—>
(ispr) T3 Rlispr(v)] = { Dl Rni1] if v € AULUDom(T)

T'; R[t] if v € Dom(T")

(cell) [; R[cell(w)] — [;Rnil] ifve LUPUA

r R[‘t if vg = vy, vo, vy € Dom(F) U A,
(eq) T; Rleq(vo, v1)] = {F R[nil] if the above fails, and FV(vg, v;) C Dom(T').
(fst) [; R[fst(pr(vi, v2))] — I'; R[w]
(snd) [; R[snd(pr(v1, v2))] — I'; R[vs]
]

(br) T'; R[br(vo, v1, v2)] — { ; g%z;]

(mk) [; Rmk(v)] — I'{z := mk(v)}; R[z] if z ¢ Dom(I") U FV(R[v])
(get) I'; Rget(z)] — T'; R[v] if z € Dom(T") and T'(2) =
(set) I'; R[set(z,v)] — I'{z := mk(v) }; R[nil] if z € Dom(T")

[ —

if o € (A — {nil}) UL UP U Dom(I)
if v =nil

Note that in the atom and cell rules if one of the arguments is a variable not in the domain
of the memory context then the primitive reduction step is not determined. This is also the
case in the eq, br, get, and set rules.

Definition (| $): A closed description, [';e is defined (written | T'; e) if it evaluates to a
value description.

HTse) & (300" (e = T 0)
For closed expressions e, we write | e to mean | (;e and eg § e; to mean that | eq iff | e;.

Some simple consequences of the computation rules are that reduction is functional
modulo alpha conversion, memory contexts may be pulled out of reduction contexts, and
computation is uniform in free variables, unreferenced memory and reduction contexts.

Lemma (cr):

(i)  Toleo] =T'1leq] if T;e — Dije; for i < 2

(ii)  R[['[e]] = T; Re] if FV(R) N Dom(T') = 0.

(iii) Tyer—T'e = (T;e)7 — (IV;€')° if Dom(I'"") N Dom(o) = 0.

(iv) TjemsTIMje = (ToUD);e— (ToULY);€ if Dom(I"") N Dom(T) = 0.

(v) T;R[e] »TI';R[e] = T;R'[e] = I'; R'[€] if (Dom(I") NFV(R')) C Dom(T)
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In (cr.i) = is the usual notion of alpha equivalence. It makes explicit the fact that arbitrary
choice in cell allocation is the same phenomenon as arbitrary choice of names of bound
variables.

2.2.1. A Little History

The fact that one can present a syntactic reduction system for this, and related, im-
perative A-calculi was discovered independently by three people in 1986-1987: Carolyn
Talcott (Mason and Talcott, 1991a), Matthias Felleisen and Robert Hieb (Felleisen and
Hieb, 1992). As well as being conceptually elegant, it has also provided the necessary tools
for several key results and proofs. It provided the basis for an elegant revision of (Felleisen,
1987; Felleisen and Friedman, 1989) that was later published in (Felleisen and Hieb, 1992).
Other notable successful uses of the technique is the type soundness proof, via subject re-
duction, of the imperative ML type system (Felleisen and Wright, 1991). The analysis of
parameter passing in Algol (Crank and Felleisen, 1991; Weeks and Felleisen, 1993). The
analysis of reduction calculi for Scheme-like languages (Sabry and Felleisen, 1993; Fields
and Sabry, 1993). In 1987 Ian Mason realized that it provided the ideal notion of a normal
form and symbolic evaluation needed in the completeness result presented in (Mason and
Talcott, 1992a).

The approach Felleisen et al take is a reduction system on expressions of the form I'[e],
while we adopt a slightly more complex reduction system on pairs of the form I';e. There
is a technical reason for this: notice that letting

eg ::= if(and(cell(z), eq(get(x),0)), z,mk(0))
er = mk(0)

we have, for any closing I', that I'[eg] and I'[e;] have a common reduct. They (e, and eq)
are not operationally equivalent. The key distinction between I'; e and I'[e] is that renaming
of variables in Dom(I") is allowed in I'[e] but not in I'; e. This distinction, though somewhat
technical, is important for the statement and proof of a number of results.

2.3. Operational Equivalence of Terms

In this section we define the operational equivalence relation and study its general
properties. Operational? equivalence formalizes the notion of equivalence as black-boxes.
Treating programs as black boxes requires only observing what effects and values they pro-
duce, and not how they produce them. Our definition extends the extensional equivalence
relations defined by (Morris, 1968) and (Plotkin, 1975) to computation over memory struc-
tures. As shown by (Abramsky, 1990; Abramsky, 1991; Bloom, 1990; Egidi et al., 1992;
Howe, 1989; Mason, 1986b; Mason and Talcott, 1991a; Jim and Meyer, 1991; Milner, 1977;
Ong, 1988; Pitts and Stark, 1993; Smith, 1992; Talcott, 1985) operational equivalence and
approximation can be characterized in various ways.

Definition (22): Two expressions are operationally equivalent, written ey = ey, if for
any closing context C, Cleg] is defined iff Cle;] is defined.

eo=e; & (VC €C| Clen], Cler] € By)(Cleo] T Cleal)

2 we use the term operational rather than observational because the latter suggests a class of equivalence

relations (depending on the type of observations being made), whereas the former suggests the intrinsic
computational nature of the relation.
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2.3.1. Caveats

The operational equivalence is not trivial since the inclusion of branching implies that
t and nil are not equivalent. By definition operational equivalence is a congruence relation
on expressions:

Congruence: ey =e; = (VO € C)(Cleg] = Cleq])

However it is not necessarily the case that substitution instances of equivalent expressions
are equivalent even if the instantiating expressions always returns a value. As a counter-
example we have if(cell(z),eq(z,z),t) = t but if(cell(mk(t)),eq(mk(t),mk(t)),t) =
nil. The reason underlying this is that in the case of programs with effects, returning a
value is not an appropriate characterization of definedness. In particular returning a value is
not the same as being operationally equivalent to a value. This is in contrast to the purely
functional case and is due to the presence of effects. For example, each of the following
expressions always returns a value

mk(x) if(cell(x),set(z,y),z) if(cell(x), get(z),x)

but none is equivalent to a value, i.e. for no value expression v do we have e = v for any
of the above three expressions. The first has an allocation effect. The second has a write
effect. The third has a read effect. Similarly an expression of the form I'[Az.e] is in general
not operationally equivalent to a value.

Lemma (ex): Let e be let{z := mk(0)}Az.z. Then e is not operationally equivalent to
a value.

Proof (ex): This proof also serves to demonstrate the methods used in reasoning op-
erationally. The principles we use will be justified shortly. Suppose to the contrary that
let{z := mk(0)}Az.z = v for some v € V. Then by considering the context

eq(app(e,1),app(e, 1))

we have

/\
[V}

q(app(let{z := mk(0) }Az.z,1), app(let{z := mk(0) } A\z.2,1))

1%

eq(let{z := mk(0) }app(Az.z,1),let{z := mk(0) }app(Az.z, 1))
eq(let{z := mk(0)}z,let{z := mk(0)}z)
(mk(0), mk(0)) = nil

Consequently by (congruence) eq(app(v,1),app(v,1)) = nil. But by considering the
context

R

R

eqim

let{y := e}eq(app(y,1),app(y,1))
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we have
let{y := e}eq(app(y,1),app(y,1))
~ let{z := mk(0)}1let{y := Az.z}eq(app(y, 1), app(y, 1)) by evaluation
>~ let{z := mk(0)}1let{y := Az.z}eq(z, 2) by evaluation
= 1et{z = ( )}eq(z z) by Bvalue

= let{z := mk(0)}t by evaluation

= by garbage collection

On the other hand

let{y := v}eq(app(y,1),app(y,1))
= eq(app(v,1),app(v,1)) by Baiue

= njl by above

This is a contradiction. Mex

This distinction means that care must be taken in generalizing notions such as 7-
conversion and fixed-point operators.

The 7 rule for the pure lambda calculus has the form e & Az.e(z) if z is not free in e.
In an applied calculus where there are objects that are not functions we need the additional
restriction that e must denote a function. In the presence of memory objects, if we interpret
e denotes a function as e = I'[Az.eg] for some memory context I', then the restricted n rule
is not valid. If we interpret e denotes a function as e & Az.eg, then the restricted n rule is
valid.

Lemma (—7n): In general Az.(I'[Az.e])z is not operationally equivalent to I'[Az.e].

Proof (—-n): As a counter-example we have
let{z :=mk(0)}e; Az.let{y := get(z)}seq(set(z,x),y).

O
2.3.2. Closed Instantiations and Uses

In general it is very difficult to establish the operational equivalence of expressions.
Thus it is desirable to have a simpler characterization of 22, one that limits the class of
contexts (or observations) that must be considered. In the simple world of the call-by-value
lambda calculus it can be shown that two terms are operationally equivalent iff all closed
instantiations are operationally equivalent. If we define a closed use of an expression to be
the placement of the expression in a closed reduction context, then all closed instantiations
of two expressions are operationally equivalent iff all uses of all closed uses are equidefined.
In symbols:

0= e (VoeS|ef,ef €Ey)lef =ef)
& (Yo eS| ef,ef €Ey)(VR € Ry)(R[e§] T R[ef])
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In a world with state the notion of a closed instantiation must be suitably generalized.
It is no longer appropriate to instantiate the free variables of an expression merely by
closed values. For this reason we redefine a closed instantiation of an expression e to be
a memory context, I', together with a value substitution, o, such that I'[e?] is closed.
However the analogous characterization of operational equivalence is false. There exist two
non-operationally equivalent expressions whose closed instantiations (even in the generalized
sense) are all operationally equivalent. Two examples of this phenomenon are:

seq(set(z, \z.z),\xz.z) and seq(set(z,\z.z), \z.app(get(z),z))

mk(get(z)) and seq(mk(get(z)),z)
The key observation is that arbitrary contexts may create memory that is shared by expres-
sions and their uses. Thus we can obtain a characterization of operational equivalence by
considering closed instantiations of uses. A wuse of an expression e is the placement of e into
a reduction context, not necessarily closed. We then have the result that two expressions

are operationally equivalent just if all closed instantiations of all uses are equidefined. This
latter property is called (ciu) equivalence and is a weak form of extensionality. 3

Theorem (ciu): ey =Ze; < (VI,0,R)(FV(T[R[e?]]) =0 = (T[R[ef]] I T[R[e]]]))

A proof of (ciu) appears in (Mason and Talcott, 1991a), below we give a simpler proof.
Using this theorem we can easily establish, for example, the validity of the let-rules of the
lambda-c calculus (Moggi, 1989) (see also (Talcott, 1993) where these laws are established
for a language with control abstractions).

Corollary (let.):

(i) app(Az.e,v) = el®="} = let{z = v}e
(ii) Rle] & let{z := e}R[z]
(i) R[let{z := ep}er1] = let{x := ey} R[e1]

where in (ii) and (iii) we require z not free in R.

Another nice property that is easily established using (ciu) is that reduction preserves
operational equivalence:

Lemma (eval): Tjew—I7;e' = T'le] 2 IV[e].

This property is the basis of the calculi found in (Felleisen and Hieb, 1992).
2.3.3. The Proof of the (ciu) Theorem
Defining

co = e1 & (VI,0, R)EV(TIR]) =0 = (LTIR[ES] « LIIRIT)),

the (ciu) theorem may be restated as

~Cclu

Theorem (ciu): ey Xe; & ey 2 ey.

3 Notice that in the absence of memory a closed instantiation of a use of an expression is the same as closed
use of a closed instantiation since R[e]” = R?[e?]. This equivalence fails in the world with memories.
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We give a proof that synthesizes ideas from proofs in (Smith, 1992; Mason and Talcott,
1991a; Howe, 1989). We first give an informal overview of the proof. The (=) direction
is not difficult, since 22°™ has a smaller collection of contexts to distinguish expressions
than & has. (<) is the difficult direction. This proof uses the observation that it suffices
to show =" is a congruence, ey = e; = C[eg] = Cle1], because =" is stronger
than equitermination. To show congruence, we prove lemmas that establish congruence for
single-constructors: operators F, app, and Az may be placed around the e;’s and preserve
¢ The first lemma (Op ciu) proves this property for F and app, and (Lambda ciu)
proves the lambda case. C is then constructed by induction on its size, proving (ciu).

Lemma (Op ciu): ey =% ¢ = (&4, e0,8) = §(€q,e€1,8) for any § € FU {app},
Cu, B

Proof (Op-ciu): Pick arbitrary 6, I, R, o such that I'[R[(d(e,, e;,€5))?]] € Eg for j < 2.
Since § does not bind, o may be factored in, so it suffices to show

+T; R[6(eg, €5, €5))] = LT R[0(e7, €7, €))]

(the converse is symmetric). Proceed by induction on the length of the computation of the

assumption. Since e, and e, are arbitrary we drop the o and assume FV(e,) C Dom(I")
and FV(e,) C Dom(T").

Assume the conclusion is true for all ', &,, &, with shorter computations. Proceed by
cases on whether all elements &, are values. Suppose so (or if €, is empty): then, define
Ry = R[d(e4,9,€))], and the conclusion follows directly by assumption. Suppose not. Then
there is some e, ; such that e,; € V and e, € V for £ < i. This means we have reduction

context Ry = R[6(€4,0,---1€a,i—1,®, €a,it1,---1€an,€Y,€p)], and by (cr.v),
. g
Fa R[(s(ea,Oa c++9€ai—15€a,49Ca,itly- -3 €Cam, ej ) eb)] =
/ ! o .
[ R[6(€a,0,- -+ €a,i—1,€q 45 Cayitly- - Cams €55 )], J <2

so by induction hypothesis the conclusion is direct. Oop—ciu
Lemma (Lambda ciu): ey = ¢; = Az.eg = \z.ey.

Proof (lambda ciu):  Given arbitrary T', o, R such that T'[R[(Az.€;)?]] € Ey, show
JT[R[Az.€]]] = JT[R[Az.€]]];

the converse is symmetric. Note we may assume z ¢ Dom(o), z ¢ FV(Rng(c)), and bring
the substitutions inside the \’s. Generalize this statement to

*l/(Fa e){z::Am.eg} = i(r’ e){z::x\m.ei’},
where z ¢ Dom(T"), z € FV(Rng(c)). The original goal follows by letting e = R[z]. Proceed
by induction on the length of the computation of the assumption. Consider whether I'; e is

uniform in z, i.e. whether

Fie Ie
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for some e’. If it is uniform, then by (cr.iii),
(F;e){zzz/\x.ei”} s (Fl;e/){zzzx\m.ef}’ i <2,
and the result follows directly by induction hypothesis.

Consider then the case where the description I';e is stuck, i.e. does not reduce. Since
LI e)tz=22-e5} the description does not get stuck when a A-value is substituted for z. By
inspection of the rules, replacing z with a A-value causes a stuck computation to become
un-stuck in only one case, the case where e = R[app(z,v)] for some v. Consider this case.
By inspection of the (app) rule, we have the following uniformity property:

['; Rlapp(Az.e’,v)] — T R[e'{x::v}],
for all expressions e’. Therefore, by (cr.iii) and picking e’ to be e§ and €7,
(T; Rlapp(Az.ef,v)]) (=267} oy (T; Ref (=) tmmdeel} - < g,
It thus suffices to show
i(F;R[eg{a“:'v}]){z::/\m.ef}.
By the induction hypothesis,
i(P;R[eg{w==v}]){z:=xm.e;}.

Qciu

Then by assumption eg =" e1, eg above can be replaced by e; (take the substitution in
the definition of =" to be o{z := v}), giving what was desired. Thambda—ciu

We may now prove (ciu), eg 2 e; & ey = e;.
Proof (ciu):
(=) Pick C such that C[e;] = T'; R[e?]; one such C is
C =Tapp(...app(Az1,...,Az,.R[e],v1)...,v,)],

where Dom(o) = {z1,...z,} and o(z;) = v; for i < n.

(<) Show (VO)(Cleo] = Cley]), the congruence of =, From this the result is direct
by picking I' = ), R = e, Dom(o) = (. Proceed by induction on the size of C. For the base
case, (' = e or C = v for v € A; for the former the result follows by assumption, and for

the latter by reflexivity. Inductively assume true for contexts smaller than C'. We break C
into two cases, C = Az.Cy, and C = 6(Cy, ..., C,) for § € {app} UF.

(C = Az.Cy) By induction hypothesis Cy[eo] ovciu Cole], so )\x.(Co[eo]) o ciu Az.(Cyler])
by (Lambda ciu). And since hole filling captures, (Az.Cp)[eg] = (Az.Ch)[e1].

(C =6(Cy,...,C,)) By induction hypothesis, C;[eo] = Cjley], for i < n. Then, by
(Op ciu),

3(Coleol, Cileo] - - Cnleol)
ciu d(Coler], Cileo] - -- Culeo))
ciu d(Coler], Cile1] .- - Cyleo))

IR

1%

R

% §(Coler], Cile] ... Culer]).
Oeiu
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Part II:  The First-Order Theory of Individuals

3. The Syntax and Semantics of the First-Order Theory

In addition to being a useful tool for establishing laws of operational equivalence, (ciu)
can be used to define a satisfaction relation between memory contexts and equivalence
assertions. In an obvious analogy with the usual first-order Tarskian definition of satisfaction
this can be extended to define a satisfaction relation I' = ®[o].

3.1. Syntax of Formulas

The atomic formulas of our language assert the operational equivalence of two ex-
pressions. In addition to the usual first-order formula constructions we add contezrtual
assertions: if ® is a formula and U is a certain type of context, then U[®] is a formula.
This form of formula expresses the fact that the assertion ® holds at the point in the pro-
gram text marked by the hole in U, if execution of the program reaches that point. The
contexts allowed in contextual assertions are called univalent contexts, (U-contexts). They
are the largest natural class of contexts whose symbolic evaluation is unproblematic. The
key restriction is that we forbid the hole to appear in the scope of a (non-let) lambda, thus
preventing the proliferation of holes. The class of U-contexts, U, is defined as follows.

Definition (U):
U= {o} +1et{X:= E}U + i£(E, U, U) + app(U, E) + app(E, U) + Fptn+1 (E™, U, E")

The well-formed formulas, W, of (the first order part of) our logic are defined as follows:

Definition (W):
W=(E=E)+ (W = W) + (U[W]) + (VX)(W)

Negation is definable, —=® is just ® = False, where False is any unsatisfiable asser-
tion, such as t & nil. Similarly conjunction, A, and disjunction, V and the bicondi-
tional, <, are all definable in the usual manner. Given a particular U, for example
let{z := mk(v)}e, we will often abuse notation and write let{z := mk(v)}[®] rather than
(let{z := mk(v)}e)[®]. Thus we can express the computational definedness of expressions
by the following assertion: —seq(e, [False]) rather than —(seq(e,e)[False]). We let |l e

abbreviate —(seq(e, ®)[False]) and 1} e abbreviate its negation.

Note that the context U will in general bind free variables in ®. A simple example is
the axiom which expresses the effects of mk:

(Vy)(Let{z := mk(v)}[~(z 2 y) A cell(z) =t A get(z) = v])
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3.2. Evaluation of Contextual Assertions

In order to define the semantics of contextual assertions, we must extend computation
to univalent contexts. The idea here is quite simple, to compute with contexts we need
to keep track of the (,.iu.-conversions that have taken place with the hole in the scope
of the A\. To indicate that the substitution ¢ is in force at the hole in U we write U[o].

Computation is then written as I'; U[o] +> I'/; U'[0’] and is defined as follows:

Definition (T; U[o] +> T'; U'[¢']): Let U € U be such that Traps(U) = {z1,...z,},
FeM, oe€S, (Dom(I') UDom(o)) N Traps(U) = 0 and let z be a fresh variable. We write

T; Ulo] & T U'[0']

to mean,

4

T; (Ulapp(...app(z,1),...,2,)])7 = I'; (U'[app(....app(z, 1), ..., n)])°

and Dom(¢’) = Dom(o) U (Traps(U) — Traps(U’)). Note that o and o’ will agree on the
domain of . To avoid problems with shadowing of trapped variables, such as let{z :=
eo}let{z := e }e, before carrying out the reduction I'; (U[app(...app(z,1),...,Zn)])" we
assume the shaddowed trapped variables of U are renamed to something fresh, and the
part of the accumulated substitution corresponding to these variables is carried out, leaving
only original traps in the domain of ¢’. This is just one way of doing the bookkeeping for
the symbolic evaluation. This kind of hygiene can also be taken care of automatically by
introducing schematic variables with associated substitutions (c.f. (Talcott, 1991)). This
symbolic or parametric reduction of contexts is explored in more detail in (Agha et al.,
1993).

The following two lemmas are key in developing methods for reasoning about contextual
assertions, and illustrate the basic ideas in reasoning about computation with contextual
assertions.

Lemma (u-red): Let I, o, U be such that Dom(c) N Traps(U) = 0, and T'; U[nil]? is
closed. If T'; U[o] +> To; Up[oo] (with Dom (o) = Dom(s) U (Traps(U) — Traps(Up))) and
if Traps(U;) N (Dom(o) U Traps(U)) = 0, then T'; (U[U1])[o] = To; (Us[U1])[o0]

Proof : By induction on the length of the computation. We consider cases according to
the construction of U.

If U = e, then we are done, since the reduction is length 0.

If U = let{z := e}U’, then T;e° > I';v and I; U[o] &> TIV; U'[0'] > To; Us[oo]
where o/ = o{z := v}. Also, T;(U[U1))[o] +> T'; U'[U1][0'], and by induction hypoth-
esis T'; U'[U1][0'] ¥ To; (Uo[U1]) [o0]

The other cases are similar.

Ou—red
Lemma (u-red-cmps): Let U = Uy[U], with Traps(Up) N Traps(U;) = 0, and let o be

such that Dom(o) N Traps(U) = @. Then T; U[o] +> T'y; R[o1] iff there are Ry, R1,T, 09
such that R = Ro[R] and
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(0) T; Uso] ¥ To; Ro[oo]
(1) To; Ur[oo] = T'1; Ry[o1]
Proof: The backward implication follows from (cr). For the forward implication, assume

T; (Uo[U1])[o] ¥ T'1; R[o1]. We find the required Ry, R1,T, 00 by induction on the length
of the computation, considering cases on the structure of Uj.

If Uy = e, then take Ry =e, ' =1, 0g =0, and R; = R.

If Uy = let{z := e} U}, then U = let{z := e} U’ where U’ = Uj[U]. Also, T;e? +> I';v
for some I'; v, and letting o’ = o{z := v}:

(a) T;U[o] =T U'[0'] > Ty; Ro1]; and

(b) T; Uolo] + I'; Uglo']-

By the induction hypothesis we can find Ry, Ry,Tg, 0¢ such that R = Ry[R;]
(0) T Uglo'] = To; Roloo]

(1) To; Uroo] = T'y; Ri[o1]

By (b) we are done.

The remaining cases are similar.

Iju—red—cmps

3.3. Semantics of Formulas

The Tarskian definition of satisfaction I' = ®[o] is given by a simple induction on the
structure of ®.

Definition (I |5 @[o]):  (VI',0,®, ¢;) such that FV(®7) UFV(e?) C Dom(I") for j < 2
we define satisfaction:

I'k=(eo = e)[o] iff (VR € Rpom(r))(F[R[eg]] T T[R[eT]])

D (8 = @[] i (T fo]) implies (I k= @4[o])

I U[®][o] iff (VI',R,o")((T; Uo] = T';R[0’]) implies I’ = ®[0'])

I'E= (Vz)®[o] iff (Vo € Vpomm)) (T | @[o{z :=v}])

We say that a formula is valid, written = @, if ' = ®[o] for I', o such that FV(®7) C
Dom(T"). Following the usual convention we will often write ® as an assertion that ® is
valid, omitting the = sign. Note that the underlying logic is completely classical.

Lemma (valid): | (eg & e;) iff the meta-statement (e = e;) is true.

Proof (valid): The atomic case asserts that all uses of the expressions (relative to I’
and o) are equidefined. This definition is motivated by the fact that if

(VI o) (T | eg = e1]0]) (ie. Eeo Zer)
then

(YT, 0) (VR € Rpom (r)) (F[R[eg]] T T[R[e7]]).
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By the (ciu) theorem this amounts to
(VC)(C[G()] i 0[61]) (i.e. eg = 61)

UOvalid

Moreover with this definition we have that the natural reading of the hypothetical
assertion
(R) ep e = R[eo] = R[el]
is valid (i.e. true for all I’ and o). Also note that if I' = (eg = eq)[o], then I'[e§] = I'[e]],
but not conversely.

Although evaluation is a relation for contextual assertions, as it is for ordinary ex-
pressions, the following lemmas shows that the difference in the results can essentially be
ignored.

Lemma (unique-ev): Let U € U be such that Traps(U) = {z1,...z,}, ' € M,
o €S, Dom(o) N Traps(U) = 0. If T; U[o] ¥ To; Ro[oo] and T; U[o] +> T'1; Ri[o1], then
[y = ®[og] © TI'y = @[oq] for any formula closed by I';; 0.

Proof :  This is because the only difference between I'g; Ry[oo] and I'y; Ri[oq] is in
the choice names for cells in Dom(I';) — Dom(I"). In particular, Dom(c;) = Dom(o) U
{z1,...z,}. O

Contextual assertions do interact nicely with evaluation.

Lemma (eval):

If Fo; U0|[O'0]] li) Fl; Ul[[dl]], then FO )= Uo[[q)]][O'()] iff Fl |= U1|[q>]][0'1]

Proof (eval): If I'g; Uy[oo] ¥ I'y; Uyoi], then To; Ugoo] = Th; R[op] iff T'y; Uro1] =
I'}; R'[o}] where T'y; R[og] and T'); R'[o}] differ only in choice of names for newly allocated
cells. An the equivalence follows from (unique-ev). eyal

3.4. Modalities

The contextual assertions allow various modalities to be defined. Two examples are
0% (read true in all expansions of the current memory) and [® (read true in all reachable
memories). The expected meanings of O and [0 are given by the semantic satisfaction clauses

(nec) T EO®[0] & (VI' 2T)(I' | ®l0])
(snec) T E@®[o] & (VI' | Dom(I') € Dom(I"))(I" |= ®[0])

Taxonomically the O modality lies in the S4.2 realm, although it possesses some non-
standard properties. For example

Eo =0¢ for ® an atomic or negated atomic formula

To define O we introduce three procedures. len computes the length of a list. alloc is a
procedure which takes a number n, allocates n new cells and returns them in a list. assign
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is a procedure that takes a list of cells, and a list of values of the same length, and stores
the values in corresponding cells. We assume +1/-1 are unary arithmetic operations that
add/subtract one from a number.

Definition (len, alloc, assign):

len = Y(AN.Az.if(ispr(z),+1(I(snd(z))),0)
alloc = Y(Aa.Az.if(eq(z,0),nil, pr(mk(nil),a(-1(z)))))
assign = Y(Aa. Az, y.if(eq(z,nil),nil, seq(set(fst(xz), £st(y)), a(snd(z), snd(y)))))

Using these procedures we can create U-contexts that yield arbitrary extensions of memory.

Definition (O0): O® abbreviates:

(Vz)(isnat(z) 2t = let{z := alloc(z)}
[(Vy)(len(y) = = = seq(assign(z,y), [2]))])

assuming z,y do not occur free in ®.

Lemma (nec): The semantic and syntactic definitions of O are equivalent:

T Eodle] & (VI' 2 D) | ®o))

Proof (nec): For the forward implication assume I' = O®[o] (according to the abbre-
viation) and I' C I'V. Let IV = I'{z; := o | 1 < i < n} where [z1,...,2,] are not in
the domain of T', and let v = pr(vy,...,pr(v,,nil)...). Let o9 = o{z := n}, and let
05 = 0o{y := v}. Then there are I'y,v;, 01 such that T;let{z := alloc(z)}[oo] +> T'1;[o1]
and I'y;seq(assign(z,y), [o1] = I’;[o2]. By hypothesis I |= ®[o3], and by the free vari-
able assumption I |= ®[o].

For the backward implication assume (VI D I')(I' |= ®[o]). Let 09 = o{z := n} and
assume that n € N. We must show that

I = let{z := alloc(z)}[Vy.len(y) =X = = seq(assign(z,y),[®])][o0]-

Let [2z1,.-.,2,]) be fresh, 01 = 09{z := pr(z1,...,pr(2n,nil)...)}, and let I'; = I'{z :=
mk(nil) | 1 < ¢ < n}, then we must show that

Iy = (Vy)(len(y) = z = seq(assign(z,), [®]))[o1]-

~

Let 09 = o1{y := v} and assume that I'; = len(y) = z[oz]. Then we must show that
') & seq(assign(z,y), [®])[02]. By construction, I';; seq(assign(z,y), [02]) > I; o[02],
and since IV D T we are done. Opec

[ essentially expresses validity, and is easily defined using U-contexts as follows.

Definition (): [® abbreviates:

(Vf,z)seq(app(f, z), [P]) where f,2 not free in ®
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Lemma (snec): The semantic and syntactic definitions of [ are equivalent:

' E@%[0] & (VI' | Dom(I') € Dom(I"))(I" |= @[0])

Proof (snec): For the forward implication assume I' = @ ®[o] and Dom(I") C Dom(I").
Let e be such that I'; e” +> I';nil. For example

e =let{z:= mk(nil)}zeDom(F/)_Dom(p)seq(set(z,F'(z))zeDom(p),nil).

Then, taking f = Ad.e and £ = nil where d is fresh, we have [V |= ®[o] by definition of .

For the backward implication assume
(VI" | Dom(I") € Dom(I'))(I" |= ®[0])

and let o/ = o{f := vy,z := v,} for arbitrary vy, v, with free variables in Dom(I"). If
I';seq(app(f,z),e)[0'] = I'; e[o'] then Dom(T") € Dom(I") and by the backward assump-
tion, and the requirement that f,z are not free in ®, I'' = ®[o’]. Hence I' =0 ®[0].

Dsnec

To define the satisfaction clause for V, a decision must be made as to the domain of
quantification. We chose the set of values existing in the memory. Another possible choice
would have been the set of values existing in all possible extensions of the memory. This
defines a strong quantifier ¥, with the following satisfaction clause:

I E (Mz)®[o] iff (VIV 2 T)(Vo € Vi )(I' | ®[o{z := v}])

Note that strong quantification neatly decomposes into OV. We will examine it in more
detail shortly (§3.10). It was first studied in (Mason, 1986a).

3.5. Caveats
3.5.1. The Invisible Set Problem

We would like the following property to hold:

(mem.eq) If z € Dom(T'), v € Vpom(r), I' = (get(z) = v)[0], and I = I'{z := mk(v)},
then
= ®o] iff IV ®o].

This property fails as can be seen by the following counterexample.

v, = M. Az.x v = Ad.let{y := mk(Az.z) } \z.app(get(y), z)

I'=1let{z:=uv,}e I =1let{z:=v}e

U = let{z := app(get(z),nil)} o S = Uz & Az.1]
Then T = ®[0], but I’ & ®[f]. To see that I” fails to satisfy ® note that I'; U[#] = T'y; e[o1]
where 01 = {z := Az.app(get(y),z)}, and I'y = I'"{y := mk(Az.z)}. Taking R = let{z :=

e}seq(set(y, Az.app(nil,nil)), app(x,nil)) it is easy to see that I'; & (z = Az.z)[o1] The
problem is that the definition of satisfaction for contextual assertions allows the private store
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created by the application of v; to be accessed by an observing reduction context. The use
of the contextual assertion is critical to the construction of the counterexample. As the
following lemma shows, the property (mem.eq) does hold when ® contains no contextual
assertions.

Theorem (mem.eq.no-ca): If z € Dom(I'), v € Vpomr), I' | (2 =2 v)[0], and I =

I'{z :=mk(v)}, and ® contains no contextual assertions, then

[ dlo] iff I’ do).

Proof :  Assume z € Dom(T'), v € Vpomry, I' | (2 2 0)[0], and I = I'{z := mk(v)}
then we have the following

(1) T;elT;e for e € Epom(n).
To see this note that

['; e ] I'; seq(set(z, 2), €) by computation

1 T;seq(set(z,v),e) by hypothesis

ITe by computation
Assume further that ® contains no contextual assertions. We argue by induction on the
structure of ®. There are three cases.
Case:  Suppose that @ is ey & e;. Let R € Rpom(r)- Then by the above observation,
[ R[ef] T TV; R[ef]. O

In particular IV = z = v, hence by symmetry we need only consider the forward

implication. Thus we assume

() T 9[q]
and consider the remaining two cases for the construction of ®.

Case: Suppose @ is &5 = P;. Then

'l ®plo]= T = Qo] IH
= I' = ®4[0] (%)
= I E ®4[0] IH
O
Case:  Suppose that @ is (Vz)®q. Let vg € Vpom(r). Then

I'E Qofo{z:=w}] (%
I = ®plo{z := v }] H
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3.5.2. Visible Garbage

The weak quantifier allows us to express details concerning the current state of memory.
For example that there are no cells in memory, and that there is exactly one cell in memory:

R

Qcell © (VZ)(cell(x)
Q1 cel & (Fz)(cell(w)

nil)

IR

t) A (Vz,y)(cell(z) =t A cell(y) 2t = =z X y)

The ability to express such facts about the state of memory provide counterexamples to the
validity of the following schema

eo Ze; = (let{z :=eo}[P] & let{z := e }[P])

because the formula, ®, can detect the production of garbage.

3.5.3. Extensionality
We now investigate what form of extensionality is true. The naive version is false:

Lemma (non-ext):
= (= O(vz)(app(po, z) = app(p1,7))) = Az.app(po, ) = Az.app(p1,T))

Proof : A counterexample is:

po :=: Az.if(get(y),0,1)
p1:=:Az.0
[':=:let{y := mk(t)}e
o= {y=y)
Then clearly we have that I' = 0O(Vx)(app(po, z) = app(p1,2))[o] but not I |= pg = p1[o].0
We can modify the naive version slightly to obtain a valid principle:

Lemma (ext): Suppose that p; € L and FV(p;) C z for i < 2. Then
= 0(vz) (V) (app(po, #) = app(p1,7)) = Az.app(po, ) = Az.app(p1, 7))

3.6. Contextual Assertion Principles

The theorem (ca) provides three principles for reasoning about contextual assertions:
a general principle for introducing contextual assertions (akin to the rule of necessitation
in modal logic); a principle for propagating contextual assertions through equations; and a
principle for composing contexts (or collapsing nested contextual assertions).

Theorem (ca):

(1) = ® implies = U[P]

(ll) U[[eo = 61]] = U[eo] = U[el]
(i) Uo[Ch[®]] & (Uo[U1])[2]
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It is in general false that

® = U[P]
holds, a simple counterexample being

get(z) 22 = let{zr := mk(3)}[get(z) = 2]
The converse of (ca.ii) is false, as can be seen by the following:

let{z := mk(0)}1let{y := mk(0)}[z] = let{z := mk(0)}1let{y := mk(0)}[y]
but

let{z := mk(0)}let{y := mk(0)}[~(z = y)]

Note that (ca.iii) is false (or nonsensical) for general contexts; a simple counterexample is
when Cy = app(e,v), C; = Az.e and ® =t = nil.
Proof (i): Assume = ®. We want to show that I' = U[®][o] for any closing I'; 0. For
this purpose, assume I'; U[o] > I'/; R[¢0']. Then I'" |= ®[¢’] by the assumption that = ®,
and we are done by definition of |= for contextual assertions. [J;
Proof (ii): We must show that I' = Uleo = e1] = Uleo] = Uleq][o] for any closing
0. Assume (1): T = Uleo = e1][o]. We must show that I'; R[U[eo]?] 3 T'; R[U[e1]’]
for any R with free variables in Dom(I"). If I'; R[U[eo]?] |, then we can find I''; R’ and o’
such that T; U[o] ©> T"; R'[0"] and T; R[U[e;]°] $ T'; R[R'[e;]° ] for j < 2. By (1) we have
' |= eg = e1[0'] hence T"; R[R'[e0]” ] 3 T'; R[R[e1]°'] and (by the semantics of =) we are
done.
Proof (iii):  For the forward implication, assume I' = Uy[U;[®]][c] and show I' |=
(Us[U1])[®][o]. For this purpose, assume I'; (Up[Uy])[o] = Ty1; R[o1]. By (u-red-cmps)
there are Ry, Ry, 00,Tg such that R = Ry[R1], T; Up[o] v To; Rooo, and Ty; Ui[oo]
I'y; Ryoq. Thus, by the forward assumption, I'g = Ui [®][0¢] and I'y = ®[04].

For the backward implication, assume I' = (Up[U1])[®][o] and show I |= Up[U1[®]][o]-
For this purpose, assume I'; Uy[o] v To; Ro[oo] and show T'y = U;[®][00). For this pur-
pose, assume Ig; U [oo] = I'1; Rio1. By (u-red-cmps) I'; (Up[Ui])[o] = T'1; (Ro[R1])[o1]
and by the backward assumption I'y = ®[o1]. Dhus

Contextual assertions also interact nicely with the propositional connectives, if we take
proper account of assertions that are true for the trivial reason that during execution, the
point in the program text marked by the context hole is never reached.

Lemma (con.prop):

(triv) U[False] = U[®]

(not) U[-®] & (U[False] vV -U[?])
(imp) U[®y = @1] & (U[®0] = U[®41])
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Proof (triv):  Assume T; U[False][o]. If I'; U[o] +> T’; R[0'], then IV = False[o]
which is a contradiction. Hence U[®] is vacuously true. Ogpiv

Proof (not): For the forward implication assume I' = U[-®][o]. If " = U[False]|o],
then we are done by (triv). So, assume I' = =(U[False])[o]. Thus T; U[o] < I'; R[¢’]
for some I''; R and ¢’. By the forward assumption, I'' = =®[0’]. Hence I |z = U[®][o].

For the backward implication, assume I' |= (U[False] V —~U[®])[o]. If T; U[o] =
I'; R[o'] then I = =®[0’]. Hence I' = U[-®][o].
Unot

Proof (imp):  For the forward implication assume I' = U[®g = P4][0], and T'
U®o][o]. If T; U[o] +> T'; R[o"] then by the forward assumption, IV = &, = ®[0’] and
" = ®g[o']. Hence I = ®4[0’] and T' = ®4[o].

For the backward implication, assume ' | (U[®y] = U[®;])[o] and T; U[o] >
I'; R[o']. If I |= ®p[o’] then by the backward assumption IV |= ®4[0’]. Hence IV |= (g =
q)l)[O',] and T’ IZ U[[(I)() = @1]][0’] Oimp
Corollary (con.prop): Asfor =, contextual assertions commute with V, A, and <.

The corollary follows directly from the theorem (con.prop), if we take V, A, and < to
be abbreviations.

The case of the quantifier is a little less simple.

Lemma (con.V):
() U[Vz®] = VzU[P] where x not free in U

The converse to (V) is easily shown to be false by considering U to be let{y := mk(t)}e
and ® to be ~(z = y).
Proof (V): Assume I' = U[Vz®][o] and let v € Vpomr). We must show that T' |=
U[®][0] where o' = o{z := v}. For this, assume T; U[o’] > T'y; R[o"]. Since z is not free
in U, I'; U[o] > T'y; R[o1] where o) = o1{z := v}. By hypothesis, I'; = (Vz®)[o;] and
since Vpom(ry € Vbom(r,) ['1 = @[01]. Oy

The rule (ca.i) can be replaced by an implication using the modality 1. This, together

with (con.prop.imp) gives us a principle for replacing a formula by an equivalent one
inside a contextual assertion.

Lemma (sca): Let Traps(U) C {z1,...,z,}. Then

(i)  B((Vzi...7,)®) = D(U[P])
(i) B((Vzr...2,) (@0 = @1)) = (QAV][e]) = H(U[®1]))

Zn)(
(i) B((Vzr...2,) (@0 & €1)) = @U[P0]) & B(U[]))

Proof (i): AssumeI' =E((Vzy...2,)®)[0], and T; U[o] > I'; R[o U ¢'] where
Dom(T") © Dom(I"), Dom(¢’) = Traps(U) and Rng(o’) € Vpom(rv)- Thus by the initial
assumption IV = ®[o Uo']. O
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Proof (ii): Assume I' E Q((Vz1...2,)(®9 = P41))[o] and T' = E(U[Po])[o]. Let
Dom(I'”") D Dom(T") and I'; U[o] > I'; R[o U ¢’] as in the proof of (i). We must show
I'" |= ®1[0 U o’']. By the second assumption IV |= ®y[o U ¢’]. and by the first assumption
I'"E (P9 = @4)[cUd']. Oi

Proof (iii): similar to (ii) O
Some simple, but by no means exhaustive facts concerning divergence are:

Lemma (f):

(i) freo = (frer & ep Ze)
(ii) fte = f Ule] e closed
(iii) 1 Y(Ay.-Az.app(y,z))(nil)

Proof (i): Assume I' = fteg[o]. For the forward implication assume I" = {}e;[o]. Then
-({ T R[ef]) for j < 2 and hence I |= (ep = e;)[0]. For the backward implication assume
I'|= (e0 = e1)[o]- Thus ;e $ T ef, and by the initial assumption I' = {}eq[o]. 0

Proof (ii):  Assume e closed, and T’ |= f}e[]. Then —=({T; R[e]) for any R (by (cr)).
hence —~({ I'; Ule]). Oy

Proof (iii): Let e = Y(A\y.\z.app(y,z))(nil). Then e +> e non-trivially, hence —(] T e)
for any I'. Oy

3.7. Axioms for Proofs

We established in §2 the validity of the let-rules of the lambda-c calculus (Moggi, 1989)
as valid equations concerning operational equivalence. Thus they are also valid formulas of
the logic:

Lemma (let. axioms):

(i) app(Az.e,v) = el®=v} = let{r := v}e
(ii) Rle] = let{z := e}R[z] z not free in R

(i) R[let{z := ep}e1] = let{z := ey} R|e1] z not free in R

Lemma (implies axioms):

(i) U] A BNV ...2,) (9 = @) = U[D"]
(ii) Uleo =2 e1] = U[R[eo] = R[e1]]
(implies.i, implies.ii) are important laws for manipulating contexts under assumptions.

(implies.i) follows from (sca) and usual logical reasoning, (implies.ii) is direct from the
definitions.

Here are some basic principles for the atomic portion of the language used in the
examples in Section 6.
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Lemma (atomic axioms):

i) z =y A atom(z) 2t & eq(z,y) =t

i) (-z=y) A atom(z) =t & eq(zr,y) =nil

iv)  —(y=nil) = if(y,eo,e1)

o~

(

(

(iii)  if(nil,eg,e1) Z ey
( €0
(

v)  (atom(zp) 2t A atom(z) 2 nil) & —(zg = z1)

3.8. Memory Operation Principles

This logic extends and improves the complete first order system presented in (Mason
and Talcott, 1989; Mason and Talcott, 1992a). There certain reasoning principles were
established as basic, and from these all others, suitably restricted, could be derived using
simple equational reasoning. The system presented there had several defects. In particular
the rules concerning the effects of mk and set had complicated side-conditions. Using
contextual assertions we can express them simply and elegantly. Their justification is also
unproblematic.

The contextual assertions and axioms involving mk, set and get are as follows:

3.8.1. mk axioms

The assertion, (mk.i), describes the allocation effect of a call to mk. While (mk.ii)
expresses what is unaffected by a call to mk. The assertion, (mk.iii), expresses the totality
of mk. The mk delay axiom, (mk.iv), asserts that the time of allocation has no discernable
effect on the resulting cell. In a world with control effects evaluation of ey must be free of
them for this principle to be valid (Felleisen, 1993).

Lemma (mk axioms):

(i)  let{z :=mk(v)}[-(z Xy) A cell(z) Xt A get(r) X v] z fresh
(ii) y=get(z) = let{zr :=mk(v)}[y = get(z)]
(i) Ymk(z)
(iv) let{y :=eo}let{z :=mk(v)}e; = let{z := mk(v)}let{y :=eo}e;

z & FV(e), y € FV(v)

3.8.2. set axioms

The first three contextual assertions regarding set are analogous to those of mk. They
describe what is returned and what is altered, what is not altered as well as when the
operation is defined. The remaining three principles involve the commuting, cancellation,
absorption of calls to set. For example the set absorption principle, (set.vi), expresses
that under certain simple conditions allocation followed by assignment may be replaced by
a suitably altered allocation.
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Lemma (set axioms):

i) cell(z) = let{z :=set(z,y)}[get(z) 2y A z = nil])

i) (y=get(z) A ~(w=z2)) = let{zr :=set(w,v)}[y = get(z)]

iii) cell(z) = |set(z,z)

v)  seq(set(z,yo), set(r,y1)) = set(z,y1)

~—

(
(
(
(iv)  —(zo = z2) = seq(set(zo,z1),set(z2,3)) = seq(set(z2,z3), set(xg,z1))
(
(

vi) let{z :=mk(z)}seq(set(z,w),e) = let{z := mk(w)}e z not free in w

3.8.3. get axioms

The contextual assertions regarding get follow the above pattern. They describe what
is altered and returned, what is not altered as well as when the operation is defined. The
fact that calls to get do not alter memory can be generalized to the following lemma. It
states that expressible observations are not affected by the execution of get.

Lemma (get axioms):

() let{z:= get(y)}[o = get(y)]
(i) y=get(s) = let{z:= get(w)}[y = get(2)]
(i) cella) & (Iy)(get(x) =)

Lemma (non-effects (get)):
® = let{z := get(y)}[P] z € FV(®)

3.9. Soundness of Memory Principles

We demonstrate the soundness of the above memory principles (mk) and (set).

Proof (soundness): The soundness of these principles provides some simple examples
of operational reasoning, we do a representative selection.

(mk.i)  The soundness of (mk.i) is easily established, choose I" and o (with € Dom(T")).
Now
[;1let{z := mk(v7)}[o] — I'{z := mk(v7)}; [o]

Thus it suffices to show that
Iz == mk(v”)} = ¥o]
U= (=(zx=y) A cell(z) Xt A get(z) X v)
So choose any R € Rpom(ry, let IV = I'{z := mk(v7)}, and observe that by (cr)
I'[R[cell(z)]] = I'; R[cell(z)] — I; R[t]
and

IV[R[t]] > T'; R[t].
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Thus IV |= (cell(z) = t)[o]. Similarly IV |= (get(z) = v)[o]. Now let R = eq(e,y). Then

I'[R[z]] ¥ T’; R[z] +> T';nil
and
L'[R[y]] = T’ Ry = T'; %

Thus IV = (z 2 y = t = nil)[o]. Since it is not the case that IV |= False (mk.iii) is also
valid Dy ;

(mk.iv)  We use (ciu), let e and ep¢ be the obvious expressions and choose I', R, and
o that close the expressions eys and ens. Without loss of generality we may assume that
z & Dom(I"). We consider two cases depending on whether or not I';ef diverges. Suppose

that I';ed > I'; vy, and o’ = o{y := v}. Note that v = v’ and so by (cr)
T; Ref,] = T'; R[(let{z := mk(v)}e;)” ]
= T'{z := v"}; R[ef |
T; Rlefe] = T{z == v7}; R[(let{y := eo}er)?]
= T'{z = v"}; R[e] ]
and so are equidefined. The case when I'; ef diverges is similar. Dk iv

(set.vi) To verify (set.vi) let ep,s and e, be the obvious expressions and choose I', R,
and o that close them, and assume z ¢ (Dom(I') UFV(R)). Then by (cr.ii) and (cr.iii)

[; Rlefs] — I'{z := mk(z7)}; R[(seq(set(z,w),e))’]
W T{z := mk(w”)}; R[e’]
I Rleg,s] = T'{z := mk(w?) }; R[e”]

Hence the two expressions are equidefined. Oget.vi Osoundness

3.10. The Strong Quantifier Fragment

In this subsection we examine the properties of the logic obtained by choosing the
strong version of the V quantifier. Recall that the satisfaction clause for ¥ was given by:

I'E (Mz)®lo] if (VIV 2 TI) (Vv € Vi )(IV | @[o{z := v}])

Also recall that it V; neatly decomposes into O0V. We define the strong quantifier fragment
as follows:

Definition (W;):

W, = (E=E) + (W, = W;) + (Ul[WS]]) + (VsX)(Wy)
One reason given for preferring weak over strong V was the desire for classical behavior.

L.e. properties such as Vz.® < @ if z ¢ FV(®). It turns out that this holds for ¥ in the
following sense, writting {(®) for -0—(®P) as usual in modal logic.



30
Theorem (strong):

(m)  =(@ = 0(®)
) E©@) = 9)

Proof (strong): By induction on the complexity of ®.

Case: ® is ey & e; then we are done by previous results for atomic and negated atomic
formulae.

Case: ®is &g = ;.

For (n) assume that I' = @[o], I' D I, and IV |= ®[o]. We show I = ®4[o]. Since
I &= ®p[o] and TV D T we infer that I' = & Pg[o]. Thus by IH(p) we conclude that
I | ®[o]. Thus by hypothesis I' = ®4[0], and by IH(n) I’ = ®4[0].0,

For (p) assume IV DI, IV = ®[o] and I = ®¢[o]. Then by this latter assumption and
IH(n) we infer IV |= ®[o]. Thus IV = ®4[0], and by IH(p) I' = ®4[0].0p

Case: @ is U[®g]. Assume IV DI' with [V =T UT;.
For (n) assume I' = ®[o] and I'; U[o] > T'y; R[oo). Then by (cr) T; Uo] > To; R[oy]
with F6 = PO U Pl. Thus FO ‘= @0[0’0] and by IH(I’I) P6 |= QO[UO]-Dn

For (p), assume I" | ®[o] and T; U[o] > To;R[og] (without loss of generality
Dom(I') N Dom(I'y) = Dom(I")). Then I'; U[o] Vs Tp U Dy; Roy], and I'g UT'; |= ®p[oo)-
By IH(p) T'o = ®o[o0] Op
Case: @ is (Vsz)Po.

For (n) we use the definition of ¥, and the fact that OV,2® is equivalent to Vsz®.00,

For (p), assume I'" D T, I |= ®[o]. To show I |= ®[o], let 'y 2 T" and let v € Vpom(ry)-
Without loss of generality we may assume Dom(I'')NDom(I'g) = Dom(I") Thus we can form
I'y =ToUI” D I and by IH(n) 'y = ®o[o{z := v}]. Hence by IH(p) Iy = ®o[o{z := v}|.0p

O

In the strong fragment get and mk both enjoy the property that expressible observations
are not effected by their execution. We have already stated the property for get, here we
state and prove it in the case of mk. It is false in the weak quantifier version.

Lemma (non-effects (mk)):

b, = let{zr :=mk(y)}[P;] b, e W,z € FV(D,)

Proof (mk): Let &, be built from atomic equivalences via implication, contextual as-
sertions, and V;. We proceed by induction on the construction of @;,.

If &, is eg = e; then we are done by the property that execution is not effected by
unreachable memory, (cr).

If &, is &y = &, then we are done by the induction hypothesis and (con.prop.imp).

If @ is (Vsz)®o then I' |= ®,[o] iff I = ®p[o{z :=v}] forall IV DT and v € Vpom (),
and I’ = let{z := mk(y)}®;[o] iff [ = $g[o{z := v}] for all ['* D I'{z := o(y)} and all
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v € Vpom(r+). The forward implication is easy, since any I'* extending I can also serve
as an I extending I'. For the reverse implication, choose I'" extending I". Without loss of
generality we may assume z ¢ Dom(I") then by induction hypothesis we are done.

If ®, is U[®o] then I; U[o] > T'; R[o’], with z & Dom(I"), just if T;let{z :=

mk(y)} Uo] ¥ T'*; R[o'], with T* = I"{z := o(y)}. By the induction hypothesis we are
done. Ok

4. The Meyer-Sieber Examples

In this section we present the Meyer-Sieber examples in the original Algol-like version,
give the representation in our language, and prove the desired equivalences, interpreting
equivalence as operational equivalence.

In the Algol-like notation P, () refer to parameterless procedures declared outside the
scope of the block in which they appear, and | is some procedure that always diverges.
In our language calls to externally declared procedures, P, are represented as applications
of free (function) variables, p, to a dummy argument, say nil. Declarations of a local
variable z in a block, beginnew z;... end, is represented by let{z := mk(t)}e where e
represents the block body. The contents operation of (Meyer and Sieber, 1988) is get(z),
the assignment operation, = := v, is set(z,v), and equality on program variables is eq.

4.1. Example 1
The following block is equivalent to P.
begin new z; Pend

The intuitive justification for this is simple. The static scope of local variables in Algol
entails that z must be inaccessible to the procedure P. Consequently allocating and then
deallocating z if and when P returns has no discernable effect on the call to P. In our
language the example and the equivalence translates to:

Definition (ex;):

ex; = let{z := mk(t)}app(p,nil)

Theorem (1): ex; = app(p,nil)

This equivalence is an instance of a more general garbage collection principle isolated in
the system (Mason and Talcott, 1992a). This principle allows for the elimination of garbage
— cells no longer accessible from the program text.

Garbage collection rule (g.c).

E=Dole] e provided Dom(T'o) NFV(e) =0

Proof (g.c): The soundness of (g.c) is justified using (ciu) and (cr). Choose any I, o,
and R which close the expressions ['g[e] and e. Without loss of generality we may assume
that Dom(Iy) NFV(R) = 0 = Dom(I'y) N Dom(T"). So by (cr.ii) (with R = e)

[R[e”]] = [; R[e”] and T[R[Co[e]”]] = I; R[Co[e]”]
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But also by (cr.iii) and (cr.ii) we have that R[T'o[e]°] > I'§; R[e?], so by (cr.iv) we have
that

T[R[To[e]”]] = (T UTE); Rle”]

and the result now follows easily by (cr.iv) Og.c

Proof (1): by (g.c) 01

4.2. Example 2

The following block is equivalent to L.
beginnew z; z := 0; P; if contents(z) = Othen L fi end

Since P has no control effects, it either diverges or returns. If it does return, then the static
scoping implies that the contents  will be unchanged. Thus z will contain 0 and the block
as a whole will diverge. The translation of the programs and equivalences are:

Definition (exz):

exg = let{z := mk(t)}seq(set(z,0),app(p,nil), if(eq(get(z),0), ex ,nil))
ex, = app(Y(\y.Az.app(y, 7)), nil)

where Y is a suitable fixed-point combinator.
Theorem (2): exs Zex)

Proof (2): Two principles concerning mk and set are relevant for this example: (mk.iv)
and (set.vi). We can apply these principles to obtain:

exs = let{zr:=mk(0)}seq(app(p,nil),if(eq(get(x),0),ex,,nil))

by (set.vi)

> seq(app(p,nil), let{z := mk(0)}if(eq(get(z),0), ex ,nil))
by (mk.iv) and the definition of seq

= seq(app(p,nil), if(eq(get(mk(0)),0),ex, ,nil))
by (ca.i), (ca.ii) and (let..ii)

= seq(app( ,nil), if(eq(0,0),ex ,nil))

by (ca) and properties of get ((mk.i) & (ca.ii))

= seq(app(p,nil),ex )
by (ca) and properties of if

ex

by (11.), (1-ii), and (f).iii)

O2
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4.3. Example 3

The third example has a similar theme to example 2. Here two blocks are equivalent
because the order of allocation is irrelevant, as is the order of assignment, provided that the
assignment is to distinct locations. In our system this is justified using the set permutation
principle, (set.iv), and principle (mk.i) together with the contextual assertion principles,

(ca).

The following two blocks are equivalent.

beginnew z; newy; z:=0; y :=0; Q(z,y) end

beginnew z; newy; z:=0; y:=0; Q(y,z) end

This example and equivalence translates to:

Definition (ex3):

ex3 = let{z := mk(t)}let{y := mk(t)}seq(set(z,0),set(y,0),app(app(q, z),y))
exs o = let{zr := mk(t)}1let{y := mk(t)}seq(set(z,0),set(y,0), app(app(q; y), z))

Theorem (3): ex3; X exso

This proof is yet again a simple derivation using the set permutation principle, (set.iv),
and principle (mk.i) together with the contextual assertion principles, (ca).

Proof (3):

exs1 = let{y := mk(t)}let{z := mk(t)}seq(set(y,0), set(z,0), app(app(q; y), z))
by a
= let{z := mk(t)}let{y := mk(t)}seq(set(y,0),set(z,0),app(app(q,y), ))
by (mk.iv)

by (set.iv), (ca.i) and (mk.i)

Os

4.4. Example 4

The fourth example is again of a similar flavor. In this example a cell is allocated and
assigned prior to the execution of a procedure declaration and a procedure call. It is
inaccessible to both these pieces of program text, and so remains unchanged by them. This
is justified by using (mk.iv), (set.vi) and fyaue-conversion and then proceeds as in the
proof of (2).
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The following block is equivalent to L.

begin
new r; new y;
procedure Twice;
beginy := 2 x contents(y) end;
z:=0; y:=0;
Q(Twice);
if contents(z) = Othen | fiend

The translation and the equivalence are:

Definition (exy):

exy = let{zr := mk(t)}let{y := mk(t)}
let{Twice := A\d.set(y, *(2,get(y)))}
seq(set(z,0), set(y,0),app(q, Twice), if(eq(get(x),0),ex ,nil))

Here and elsewhere d will be used to denote a dummy (fresh) variable.
Theorem (4): exy Zex)

This equivalence is established by precisely the same reasoning as the previous example,
although the manipulations differ slightly.

Proof (4): By (mk.iv) and (set.vi) we have

exq = let{y := mk(t)}
let{Twice := Ad.set(y, *(2,get(y)))}

seq(set(y,0),

app(q, Twice),
let{z := mk(0)}if(eq(get(z),0),ex ,nil))

Now by Byalue-conversion and the same reasoning as in the proof of (2) this simplifies to

exy & let{y := mk(0)}seq(app(q, Ad.set(y, *(2,get(y)))),ex.)

So by (ff) we may conclude that exs = ex) [y

4.5. Example 5

The fifth example exhibits some novel aspects. Here a cell is allocated and used by the
declared procedure Adds as local store. The procedure is then passed to a previously
declared procedure, which as a result has no access to the cell z (other than indirectly via
procedure calls to Addsy). Consequently the contents on the cell z can only be modified by
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Adds, and hence must satisfy any invariant that such calls preserve. The following block is
equivalent to L.

begin
new z;
procedure Adds;
beginz := contents(z) + 2 end;
z:=0;
Q(Adds);
if contents(z) mod2 = Othen L fiend

Definition (exs):

exs = let{zr := mk(t)}
let{ps := Ad.set(z, +(get(z),2))}
seq(set(z,0),app(q, p5), if(eq(mod(get(z),2),0), ex1,nil))

Theorem (5): ex; Zex)
Let p5 be Ad.set(z,+(get(z),2)). The key to the proof of (5) is the invariance lemma:
let{x := mk(u)}ps preserves the invariant ®5 where ®5 is the formula eq(mod(u,2),0) = t.

Lemma (5.1):

&5 = let{zr :=mk(u)}seq(app(q, p5), let{u = get(z)}[P5])

Lambda abstractions with local store, such as ps, are objects in the sense of (Mason
and Talcott, 1991b). In that paper several principles for establishing operational equiva-
lence were presented and used. The invariance theorem (inv) is typical of these principles.
It provides a general method for establishing invariant properties. The statement of the
theorem relies on an important notion, that of a function (with local store) depending only
on the first-order part of its argument. We say that two values have the same first-order
part (written x =g, y) if they are both functions, both cells, both pairs with with the same
first-order components, or are the same atom.

Definition (z =¢ y): = =g y abbreviates foeq(z,y) = t, where foeq is the function
defined as follows.

isfun = Az.and(not(atom(z),not(ispr(z)),not(cell(x))))
foeq = Y(Af.Az,y.if(isfun(x)
isfun(y)
if(cell(x),
ce11(y),
if(ispr(z),
and(ispr(y), foeq(fst(z),fst(y)), foeq(snd(z), snd(y))),
if(atom(z),and(atom(y), eq(z,v)),

nil)))))

7
7
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Functions with local store that depend only on the first-order part of their argument can
not apply any functions accessible from their argument, hence if they always return atoms
as values they cannot leak access to their local store.

Theorem (fo):  Assume (Vz,z')(z = ' = let{z := mk(u)}[app(p,z) = app(p,z’)]
is valid and F{z := mk(u)};app(p, v) v I'{z := mk(u')}; v/, for some v € V. Let T;v as
(F v)? where F v have each lambda abstraction occurrence replaced by a fresh variable,
and o maps t these variables to the correspondmg lambda abstractions. Then we can find
I['; 0" and a @ such that T'; v’ = (I7; )7, v/ = ¢/, and T'{z := mk(u)}; app(p, ¥) > T'{z :=
mk(u’ )} v uniformly in the domain of o.

Proof (fo): If not then by inspection of the reduction rules, we see that

A~

T'{z := mk(u)}; app(p, D) +» T'{z := mk(u/)}; R[app(p, 7)]

for some variable p in Dom(c). If p comes from ¥ then we can replace p by a diverging
lambda abstraction p; and get a contradiction. If p comes from I then % must contain a
cell through which p is accessed. Thus we can replace o by o/ = o{p := p }, and again get
a contradiction. [

If & is a property of atoms (i.e. all quantifiers are restricted to range over A), then
the following three conditions guarantee that ® is preserved by the object I';p (i.e. any
use of I'; p preserves ® viewed as a property of the contents of I'): (0) & implies that its
free variable is an atom; (1) I'; p depends only on the first-order part of its argument; and
(2) any application of p in the context I' is equivalent to updating the contents of I' and
returning some atom. This is made precise in the following theorem, where for simplicity
we counsider single cell local store.

Theorem (inv): If ® is a property of atoms with at most u free, p has at most z free
and
(0) @ = atom(u)
1) (V4,9 (Y =0y = let{z :=mk(u)}[app(p,y) = app(p,y')])
(2) @ = (Vy)(Tv,w)let{z := mk(u)}[T¥s A ¥3]
Uy = app(p,y) = seq(set(z,v), w)
U3 = atom(w) A ®{u:=v}

are valid, then
(3) @ = let{z := mk(u)}seq(el”=r} 1et{u := get(z)}[®])

is valid for e € E not containing z free.

Proof (inv):  Assume T’ |: Plo], a = a(u). We want to show that for I';& such that
Dom(T') C Dom(T) and frees I'[¢] C {p} and T'{z := mk(a)}; & with p = p steps to I'{z :=
mk(v')};w’ then I'"{z := mk(v')} = ®[{u := v'}]. This is by computation induction. The
only interesting case is where € has the form ﬁ[app(p, y)]- Using (fo) and (1,2) this steps
uniformly to T'{z := mk(b)}; R[w] for some b such that I"{z := mk(b)} = ® A atom(w)[{u :=
b}] Oinv
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Proof (5.1): By (inv) we need only establish (0,1,2) taking ® to be &5 and p to be ps.
(0) is trivial. (1) follows from the fact that ps makes no use of its argument. In particular
by Byalue-conversion app(ps,y) = set(z, +(get(x),2)). To establish (2), assume ®5 and let
y be arbitrary. Let w = nil and v = u + 2. Then clearly

let{z := mk(u)}[¥s A ¥5]
U4 = app(ps, y) = seq(set(z,v), w)

U5 = atom(w) A ®5{u :=v}

Us.1
Proof (5): We reason as follows. Let U be the context

let{z := mk(u)}seq(app(q, p5), Let{u := get(z)}e).
Then

&5 = U[Ps5] by (5.1)
and
U[®s = if(eq(mod(get(z),2),0),ex,,nil) = ex |
by if rules and (ca.i)
®5 = U[if(eq(mod(get(x),2),0),ex,,nil) = ex |
by (con.prop)
exs = let{z := mk(0)}seq(app(q, ps), ex1)

Taking u = 0 and using (ca.ii), now by (f}) we are done.

Os

4.6. Example 6

The following block is equivalent to L.

begin
new r;
procedure AlmostAddy(z);
beginifz =z
thenz :=1

elsez := contents(z) + 2 end fi;

end;
z:=0;
Q(AlmostAdds);

if contents(zr) mod2 = Othen L fi

end
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Definition (exg):

exg = let{zr := mk(t)}
let{ps := Az.if(eq(z, 2), set(z,1), set(z, +(get(z)

2))}

seq(set(z,0),app(q, ps), i (eq(mod(get (2),2),0), ex,mil))

Theorem (6): exg = ex,

Proof (6): The proof is the same as the proof of (5) once we establish the invariance
lemma (6.1). Og

Let ps be Az.if(eq(z,2),set(z,1),set(z, +(get(z),2))) then let{z := mk(u)}ps pre-
serves the invariant ®g = ®s5.

Lemma (6.1):
35 = Let{z := mk(u)}seq(app(g, ps), Let{u = got(z)}[Bo])

Proof (6.1): By (inv) we need only establish (0,1,2) taking ® to be ®4 and p to be ps.
(0) is trivial. To establish (1) and (2) note that
~(y =) = app(ps,y) = set(z, +(get(z),2))
by properties of if
let{z := mk(u)}[~(y = z)] by (mk.i)

Now (1) follows from (ca.i) and (con.prop), and (2) follows by the same reasoning as in
(5.1). Os.1

4.7. Example 7

The following two blocks are equivalent.

begin new z;
procedure Addq;
begin z := contents(z) + 1 end;
Q(Add,)
end
begin new z;
procedure Adds;
begin z := contents(z) + 2 end;
Q(Add,)

end

where (@ is a procedure declared outside the scope of this block.
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Definition (ex7):

ex? = let{z := mk(0)}1let{p := Ad.set(z, +(get(x),n))}seq(app(q, p),nil)

Theorem (7): ex! & ex?

The proof of (7) is based on the fact that ex? = seq(app(g, Ad.nil),nil) for any n € N.
This follows from the equivalence

(f) Adnil = let{z := mk(0)}Ad.set(z, +(get(z),n))

for any number n using let rules. Equivalences such as t, are established by using (ab-
stract). This rule allows one to establish equivalence of functions with local store by
showing that the functions depend only on the first-order part of their arguments (1) and
finding an invariant property of atoms (0) relating the contents of the local stores and such
that applications (calls) of the functions preserve the invariant, and return the same atomic
value, (2). This is made precise in the following theorem, where for simplicity we consider
single cell local store.

Theorem (abstract): If ® is a property of atoms with at most ug,u, free, p; has at
most x free for j < 2, and

(0) @ = atom(u;)
©) Ay =wy = let{z := mk(u;)}app(p;,y) = app(p;,y')])
j<2
2) @ = (Vy)(Fvj, w)(2{u; = v;}j<2 A
atom(w) A
Nj<2 let{z := mk(u;)}[app(p;,y) = seq(set(z,v;), w)])
are valid, then
3)

& = let{z :=mk(ug)}po = let{z := mk(u1)}p1

is valid.

Proof (abstract): Assume I' = ®[o] then we want to show (assuming (0,1,2)) that
[; R[let{z :=mk(ug)}po]d iff T;R[let{z :=mk(u1)}pi]l

for any R € Rr. We show by computation induction that
(T{z := mk(uo) }; 2)P=rod | iff (T{z := mk(uy)};8)iP=r1} |

~

for any I'[e] with at most p free, p distinct from z. As usual the only interesting case is
when € has the form R[app(p,v)]. Then as in the invariance lemma we have

D i mk(u;)}: Rlapp(py, )] v o := nk(v;)}; Rlw]
uniformly in p for some vy, v satisfying ® and some atom w. Oapstract

Proof (1): By (abstract) it is sufficient to establish (0,1,2) taking ® to be isnat(ug) &
t, po to be Ad.set(z,+(get(z),n)), and p; to be Ad.nil. (0) is trivial and (1) follows since
neither function depends on its argument. To establish (2) take vg = ug + n, v1 = uy,
w = nil. DJ[
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Part III: Classes

5. Adding Classes to the Language

Using methods of (Feferman, 1975; Feferman, 1990) and (Talcott, 1993), we extend our
theory to include a general theory of classifications (classes for short). With the introduction
of classes, principles such as structural induction, as well as principles accounting for the
effects of an expression can easily be expressed.

Classes serve as a starting point for studying semantic notions of type. As will be seen
direct representation of type inference systems can be problematic, and additional notions
maybe required to provide a formal semantics. Even here classes are likely to play an
important role.

5.1. Syntax of Classes

We extend the syntax to include class terms. Class terms are either class variables, X¢,
class constants, A°, or comprehension terms, {z | ®}.

Definition (K): The set K of class terms is defined by
K=X"UAU{X|W}

We extend the set W of formulas to include class membership and quantification over class
variables. We should point out that K and W form a mutual recursive definition. The
definition of expressions remains unchanged.

Definition (W):
W=E=E) UEeK) UW = W) u VX)W U (VX)W U U[W]

We let A,B,C,...X,Y,Z range over X° and K range over K. We will use identifiers
beginning with an upper case letter in This font (for example Val) for class constants.

5.2. Semantics of Classes

To give semantics to the extended language, we extend the satisfaction relation as
follows. Firstly we let Kpom(ry, the set of class values over T', be the set of subsets of
Vbom(r) closed under =~ 4 We extend value substitutions to map class variables to class
values. This is used to define [K]7, the value of a class term, K, relative to the given

memory context, I', and the closing value substitution o. In principle, the class term

4 Another possible choice for the set of class values is the set of definable sets, i.e. the set of class code
extensions (cf. (Feferman, 1979; Talcott, 1993)).
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evaluation is relative to a valuation for class constants, but since all of our class constants
are introduced by definitional extension, this can be ignored.®

Definition ([K]Z):
X = o(X)
{z [ @17 = {v € Vpom(r) | T | ®[o{z := v}]}

We then extend the satisfaction relation to formulas involving class terms and quanti-
fiers.

Definition (I' = ®[o]): The new clauses in the inductive definition of satisfaction are:
F'Ee€Ko] & (FvE Vpomm) (T3¢ > Ti0 A v e [K]F)
' (VX)@[o] < (VC € Kpomn)) ([ = [o{X := C}])

It is important to note that if I' = e € KJ[o], then e evaluates (in the appropriate state)

to a value without altering memory, the so-called non-expansive expressions (Tofte, 1988;
Tofte, 1990). ¢

5.3. Simple Examples
We define (extensional) equality and subset relations on classes in the usual manner.

K()gKl == (V.’II)(.TEK() =>.’E€K1)
Ko=K, & KgCKi N Ki CKy

As a consequence of the semantics of classifications the following are valid.

Lemma (class):

(neq) —(eg = ex A let{z:=e}[z € K] = let{z := e;}[z € K])
(def) e€eK = e

(allE)  (VX)?[X] = P[K] where ® contains no contextual assertions
(ca) (Vz)(z € {z | 2} & @)

Note also that the usual form of (allE) is false:

~((vX)9[X] = P[K])

5 Some class constants are absolute (have meaning independent of memory), but most have meaning that
varies with memory (even when they are closed). Thus the semantics of classes should be parameterized
by a constant interpretation mapping constants to functions that map a memory to a set of values existing
in that memory. As class constants only occur in our language as definitional extensions, this issue has
been swept under the rug in the definition of [K]{.

6 This is the only form of non-expansiveness allowed in Tofte’s type system, but in general non-expansive
means without allocation effect, but possibly with read/write effects.
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A counterexample will be given below after some additional notation has been introduced.

We introduce the following class constants. () is the empty class. Val is the class of all
values. Nil is the class containing the single element nil. Bool is the class containing two
elements: t and nil. Nat is the class containing the natural numbers n € N. Cell is the
class of memory cells.

0={z|z 2z}

Val = {z | z = z}

Nil = {z | 2 nil}

Bool = {t,nil} ={z |z =t V z = nil}
Cell = {z | cell(z) =t}

Nat = {z | isnat(z) =t}

Note that the interpretation of () and Nil is independent of memory contexts, while [Val|r =
Vpom(ry and [Cellr = Dom(I'). A class operator is a class term with a distinguished class
variable. We write T[X] making the variable explicit and T[K] for the result of replacing
the distinguished variable X by K (with suitable renaming of bound variables to avoid
capture). We can refine the class of cells to reflect the class of their contents.

Cell[Z] = {z | cell(z) =t A get(z) € Z}

Thus Cell = Cell[Val].

Definition (— % %):  There are a number of function spaces in our world. The three
simplest are total, partial and memory.

Xi,.., X, =Y ={f | (Vo1 € X3,...,2, € X,,) By € Y)app(f,z1,...,7,) = y}
X1, X Y ={f | (Vo1 € X1,...,2, € X,,)(Vy) (app(f, z1,...,20) Ry = y€Y)}

X1, ., X, BY ={f | (Vz1 € X4,...,2, € X,,)(Let{y := app(f,z1,...,2,)}y € Y])}
Now we can characterize the functionality of operations such as mk,and get, as follows.

(mk) (VX)(mk € X 5 Cell[z])
(get) (VX)(get € Cell[X] — X)
(set) set € Cell, Val 55 Nil

However (as we shall see later) a more detailed statement concerning sets functional-
ity /effects is false:

(set) —(VX)(z € X Ay € Cell = let{z:=set(y,z)}[z € Nil A y € Cell[X]])

We can elaborate the notion of memory functionality by making explicit effects such as the
class of the arguments after application of the function.
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We may give the promised counter example for classical (allE). Let K = {z | D1 _cell )
and ® = (Vz € X)(let{z := mk(z)}[z € Cell[X]]). Note that ® is the body of the mk
functionality formula. Now (VX)® holds, but ®[K] fails for any memory with singleton
domain.

Class membership expresses a very restricted form of non-expansiveness, allowing nei-
ther expansion of memory domain nor change in contents of existing cells. Let ®_expand(€)
stand for the formula

(VX)(X = Cell = seq(e, [X = Cell]).

Then ®_expand(€) says that execution of e does non expand the memory, although it might
modify contents of existing cells.

5.4. Caveats

To illustrate some of the subtleties regarding class membership, and notions of expan-

siveness, consider the following expressions:

eo = Az.mk(nil)

e; = let{z := mk(nil)}Az.z

ez = seq(if(cell(y),set(y,nil),nil), Az.mk(nil))

es = seq(if(cell(y),set(y,nil),nil), let{z := mk(nil)}Az.2)
Then each of these expressions evaluates to a memory function mapping arbitrary values
to cells containing nil. But they differ in the effects they have. eg is a value (and as
such neither expands nor modifies memory). e; is not a value (as has been demonstrated
in §2.3.1) and is expansive (its evaluation enlarges the domain of memory) but does not
modify existing memory. e; may modify existing memory, but does not expand it. es is
expansive, and it may modify existing memory. These observations can be expressed in
the theory as follows. Let T be Val £ Cell[Nil], and ®_.it.[Cell](e) be as defined below.
Then

eg €T A eg € Val

ej€Val for 1<;5<3

let{z:=eo}fz €T] for 0<;5<3

D _yrite[Cell](e;) for 0<5<1

¢—|expand(ej) for .7 € {0’2}

Another example of functionality can be found in the recent work of Cardelli and
Nelson. There they use a particular notion of of function space in the formal specification
of the semantics of Modula 3. This space is the set

X, 0,55V, 9,
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of all non-expansive procedures with argument type X and result type Y which satisfy
pre-condition ®, and post-condition ®; and which can only modify cells in the set S. In
our framework we cannot express that an expression e only modifies cells in a certain class,
we can only express that the expression only modify cells in the set S up to operational
equivalence. Modulo this point, this function space can be represented as

{7 | (vz € X)(®o(2) =
let{y := f(2)}[y €Y A @1 (y)]) A
@ expand (aPP(f, 7)) A
D write[S](app(f, x))}

where

O_ite[S](e) & (3X1)(X1 = Cell[Val] A
(Vz € X)(Vz € Val)(Vy € (X; — 9))
(get(y) = z = let{w:= f(z)}[get(y) = z]))}
5.5. Classes vs Types

5.5.1. The Functional Case

(Feferman, 1990) proposes an explanation of ML types in the variable type framework.
This gives a natural semantics to ML type expressions, but there are problems with poly-
morphism, even in the purely functional case. The collection of classes is much too rich
to be considered a type system. One problem that arises is that fixed-point combinators
can not be uniformly typed over all classes. This problem arises even in the absence of
memory (Smith, 1988; Talcott, 1993).

Theorem (FixTypeFails): Let Y, by any fixed-point combinator (such that f(Y,(f)) =
Y,(f)). Then it is not the case that

fe(C—=C) =Y, (f)eC

for all function classes C (C C A = B for some classes A, B).

Proof (FixTypeFails): Define the P to be the class of strictly partial maps from Nat
to Nat:

P = {g € Nat > Nat | (3n € Nat)(—={ g(n))}
Let

f =Ap.An.if(eq(n,0),n,p(n — 1))
Then we can prove

1) feP—-P
(2)  Y,(f) € Nat — Nat

(1) follows by simple properties of if, eq and arithmetic (2) follows by induction on Nat
using the fixed point property of Y. Consequently, —(Y,(f) € P) O
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5.5.2. The Imperative Case

The situation becomes more problematic when references are added, even in the simply
typed (or monomorphic) case. Naive attempts to represent ML types as classes fails in
sense that ML inference rules are not valid. The essential feature of the ML type system,
in addition to the inference rules, is the preservation of types during the execution of well-
typed programs,. not just of the text being executed, but also of the contents of any cell
in memory. This requirement is a strong form of subject reduction. One that does not
seem to be expressible using classes (quantifying over types, whatever they may be, seems
problematic). Our analysis indicates that ML types are therefore more syntactic than
semantic.

In the following we illustrate the problems that arise in trying to encode the monomor-
phic type system with higher-order functions and references (cf. (Tofte, 1988; Tofte, 1990;
Leroy and Wies, 1990; Felleisen and Wright, 1991)). In this system types are built from
base types, Nat and Nil, using function space and reference constructions.

T =N+ {nil} + (T > T) + ref(T)

The typing judgement in this system is of the form
{z;:m|i<n}Fe:r

and the constants, for each 7 € T, have the following type

mk, : T > ref(7)

:ref(7) Ar

get,
A N [
set, : ref(r) 575 {nil}
which will be encoded by the corresponding n-ized operations

Arz.mk(z) Azr.get(z) Azy.set(z,y)

To encode this system requires a class term 7 corresponding to the type expression
7, and a formula ®.(e,7) encoding the the typing judgement e : 7. Using these we can
represent the judgement

{z;:m|i<n}Fe:r
by the formula

/\ . (z;, 1) = D.(e, 1)

To simplify matters we shall assume that base types are represented by their corresponding
class constants, in other words N = Nat and {nil} = Nil. We also require that belonging
to a class via ®. implies membership in that class:

®.(e,7) = let{z:=e}[z € 7].
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That this encoding is faithful amounts to requiring several conditions. These include:
(la) @.(z,7) = P.(mk(z),ref(7))
(1b)  @.(z,ref(r)) = .(get(z),T)
(Ic) (®@.(z,ref(r)) A @.(y,7)) = P.(set(z,y), Nil)
(
(

) Nicn @.(20,7) = (Bi(2,72) = B.(e, ) = P.(Av-e, 7o > 1))

3) Aicn @:(@i,7) = (@:(e,7a7) A .(ea; 7)) = (R:(apple, eq), )
The principle of type faithfulness (Abadi et al., 1991)

€ =€p = ((/\ CD:(mi,E) = ®.(eq,7)) = (/\ q’:(xiaﬂ) = @.(ep,7)))
i<n i<n

is also a desirable property. Note that in our framework this implies that a subterm of a
typable term need not be typable. This can be regarded as an advantage of a semantic
approach to types over the syntactic approach.

The simplest encoding would be to take

ref (r) = Cell[r] 7, Ap = a1y ®.e,1) = let{z:=e}[z € 1]

However this encoding is not sound. One source of trouble is that in (3) the evaluation of
e, may invalidate the the assumptions that A, ®.(z;,7;). A counterexample to this is the
following;:

y € Cell[Nat] = let{z := set(y,t)}[z € Nil]
y € Cell[Nat] = let{z := \w.get(y)}[z € Nil — Nat]

But the resulting conclusion
y € Cell[Nat] = let{z := app(A\w.get(y),set(y,t))}[z € Nat]

is clearly false.

To ensure that this phenomenon is ruled out, one would like ®. to have the following
property: if e is typed, and its evaluation alters the contents of a cell, then any type that
cell had before evaluation it has after evaluation. Similarly for values of functional type.
We can express this as the following schema:

(V2)(/\ @:(2i, 1) = (B:(e,7) A @:(2,1)) = Let{w := e}[®:(w,T) A @:(2,2))]))
<n
Since this property is not true for general classes the existence of such a ®. seems doubtful.

To see that classes are too rich to be preserved by evaluation, consider the following
class:

A = {z € Cell | (3n € Nat)(get"(z) 2 nil)}
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where get”(z) is the nth iterate of get, definable by simple recursion. Now observe that
ze€Celld] = z€ A
Consequently

z € Cell[A] = let{z := set(z,z)}[z € Nil]
z € Cell[A] = My.xz € Nil = Cell[A]

But also note that

(Vz € Cell[A])(1let{z := app(\y.z,set(z,z))}[z € Cell[A]])

These issues are currently under scrutiny.

6. Using Classes

In this section we give an extended example of the use of VILoE in specifying and
verifying a program.

6.1. Class Fixed Points and Induction

The definitions and results in this subsection are taken from (Talcott, 1993) where
more details, proofs, and examples can be found. Here we focus on minimum fixed points.
A similar development can be carried our for maximum fixed points. For any formula ®[X]
we can form the intersection of all classes X satisfying ®[X].

(2X] = {z | (VX)(2[X] = v € X)}

If ®[X] is preserved by intersection over non-empty sets of classes and is satisfiable, then
(Nx ®[X] is the least class satisfying ®[X]. This notion is not formalizable in our theory
in full generality. However there is an important special case which can be formalized.
Namely, formulas representing closure conditions.

We say a class operator T is monotone if X C Y implies T[X] C T[Y]. Let T[X] be
a monotone operator on classes. Then the formula T[X] C X is preserved by intersection
over non-empty sets of classes and is satisfied by Val. Hence [y (T'[X] C X) is the smallest
class X satisfying T[X] C X and by monotonicity the smallest fixed point of T'[X]. This is
formalized by the following definitions and theorems (where we assume T is a class operator
with distinguished variable X).

Definition (min):

T" = (T[X] C X)

Theorem (min): If T[X] is a monotone operator on classes, then
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(min.fix) T =T[T"]
(min) TY]CY = T"CY

Using the least fixed-point construction we define N, the class of natural numbers, and
A*, the class of sequences from A. N is the least class containing 0 and closed under +1.

Definition (Nat):

Th[X] = {0} U{z | (Fy € X)(= = +1(y))}
N = Ty"

From this definition we have the usual induction principle for N. For any formula ®[z] to
show that z € N = ®[z] we need only show that ®[0] and ®[z] = P[+1(z)].

We define the operator Z* which constructs from any class Z the finite sequences from
Z by forming the least class containing nil and closed under pairing with elements from Z

Definition (Fseq):

T.[Z][X] = {nil} U {z | (3z € Z,y € X)(z = pr(z,y))}
Z* = T.[Z]"

We have the fixed point and induction principles for finite sequences.

Theorem (Fseq):

(fix) z€A" & (z=nilV (Jze€ Z,y € X)(z = pr(z,y)))
& r=nil V (ispr(z) =2t A fst(z) € A A snd(z) € A™)
(ind) nile€ X A (Vz)(ispr(z) 2t A fst(z) € AAsnd(z) e X = z€X) = A*CX

6.2. Representing S-expressions

We represent binary cells as unary cells containing pairs and define S-expression oper-
ations in terms of pairing and unary-cell operations.

Definition (S-expression operations): A cons cell is a (unary) cell containing a pair.

cons = Az, y.mk(pr(z,y))

cons? = Az.and(cell(z), ispr(get(z)))

car = Az.fst(get(z))

cdr = Az.snd(get(z))

Cons[X,Y] = {z | cons?(z) 2t A car(z) € X A cdr(z) € Y}
setcar = Az,y.set(z,pr(y, cdr(z)))

setcdr = Az,y.set(z,pr(car(z),y))

The operations cons, cons?, car, cdr have the expected functionality. However assigning
functionality to the modifiers setcar, setcdr is problematic.
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Lemma (S-expression functionality):
cons € (X,Y 5 Cons[X,Y))
car € (Cons[X,Y] 5 X)
but
(VXY Z)(Vz € X)(Vw € Cons[Z,Y])
let{z := setcar(w,z)}[z € Nil A w € Cons[X, Y]]

Proof : To see the problem for setcar let X,Y,Z be the class of well-founded S-
expressions over N. If z,w are the same cons cell, then after assignment there is a cycle
starting from w and hence the class of w has changed. O

The usual (first-order) laws for S-expression operations hold (Mason and Talcott, 1991a;
Mason and Talcott, 1992a). We use z = [z,,z4] to abbreviate the formula cons?(z) =
t A car(z) =Xz, A car(z) = zq4.

Lemma (cons axioms):
(1) let{z := cons(z,,zq) }[~(z Zy) A & = [z, 24]] z fresh
(ii) 2z =[za,24] = let{z := cons(zq,zq)}[2 = [2a, 2d]]
(iii) | cons(z,y)
(iv)  let{y:= ep}let{z := cons(z,,z4)}e1 = let{z := cons(z,,z4)}let{y :=ep}es
© ¢ FV(eo), y & FV(a) UFV (zy)
(v) cons?(z) = (Jza, 24)(z = [2a, 2d])
(vi)  coms?(z) £t A cons?(y) ®nil = —(z Zy)
(vil) atom(z) = —(cons?(x))
The assertion, (cons.i), describes the allocation effect of a call to cons. While (cons.ii)
expresses what is unaffected by a call to cons The assertion, (cons.iii), expresses the to-

tality of cons. The cons delay axiom, (cons.i), asserts that the time of allocation has no
discernable effect on the resulting cons cell.

Lemma (setcar axioms):
i) cons?(z) = let{x := setcar(z,y)}[car(z) 2y A z = nil])

ii) (y 2 car(z) A =(w = z)) = let{z := setcar(w,v)}[y = car(z)]

(
(
(i) y=cdr(z) = let{z := setcar(w,v)}[y = cdr(z)]
(iv) cons?(z) = | setcar(z,z)
(v) —(z 2 y) = seq(setcar(z,z),setcar(y,w) = seq(setcar(y,w), setcar(z, z))
(vi) seq(setcar(z,yo), setcar(z,y;)) = setcar(z,y;)
(vil)  let{z:= cons(z,y)}seq(setcar(z,w),e) = let{z := cons(w,y)}e
z not free in w
(viii) seq(setcar(z,z),setcdr(y,w)) = seq(setcdr(y, w), setcar(z, z))

We have only included the axioms for setcar, the axioms for setcdr are analogous.
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6.2.1. Caveats

An alternative representation of cons cells would be as a pair of distinct unary cells. As
an implementation this makes modification of cons cells more efficient (finer grain access).
However many of the standard properties of S-expressions operations fail to hold for this
representation. An example of the failure is the following. In the Lisp S-expressions world,
if two cons cells are not identical then they are disjoint. Assigning to the car of one cell can
not change the contents of the cdr of that cell or any other. Consequently, the operations
setcar and setcdr commute. In the cons pairs world the situation is more complicated.
Although the two cells of a cons pair are required to be distinct, two cons pairs z,y can
have disjoint component cells or they can share in a number of ways. For example:

1%

fst(z) (y) A snd(z) = snd(y)

fst
fst(y) A —(snd(z) = snd(y))

1%

fst(x)
For example let a,b be unary cells containing t, and let x = pr(a,b), y = pr(b,a). Then

cdr(y) =2t A seq(setcar(z,nil), [cdr(y) = nil])

—(seq(setcar(z,0),setcdr(y, 1)) = seq(setcdr(y, 1), setcar(z,0)))

6.3. Well-founded S-expressions and Lists

Traditionally the set of (well-founded) S-expressions over some set A is defined to be
the least set containing A and closed under the cons operation. This corresponds to the
set of binary trees with leaves in A. Using minimal fixed points we can define this set in
our theory. The only point that requires attention is that we need to formulate the closure
operation in terms of existing cons cells. Thus we define the S-expression closure operation
for a class of atoms A, Tsexp[A], and the class of S-expressions with atoms in A as follows.

Tsexp|A][X] = AU {z | cons?(z) A car(z) € X A cdr(z) € X}
Sexp[A] = Tsexp [4]"

The S-expression induction principle derived from this definition is

Theorem (Sexp):

(fix) (Vz)(z € Sexp[A4]
=
(x € A) V (cons?(z) =t A car(z) € Sexp[A] A cdr(z) € Sexp[A4]))
(ind) (VX)(AC X A (Vz)(cons?(z) =2t A car(z) € X A cdr(z) e X = z € X)
= Sexpl4] C X)
One of the properties that should hold of well-founded S-expressions is that there are no

cycles — the only car-cdr path that leads from a well-founded S-expression to itself is the
empty path. This can be proved using S-expression induction. For this we define the locator
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function loc that takes an S-expression and a sequence of ts and nils (representing a car-
cdr path) and returns the S-expression located by the path if it lies within the S-expression,
and returns a newly created cell otherwise.

loc = Y(M.Az.Ap.if(p,
if(cons?(z),

[(if(eq(fst(p),0), car(z)cdr(zx)), snd(p))
mk(nil)),
z)

Theorem (Wf-Sexp):

(Vz € Sexp|[A])(Vp € Bool*)(loc(z,p) 2z = p = nil)

This is easily proved by S-expression induction. We have restricted attention to S-
expressions over Lisp atoms. We could allow other cells, but we must omit cells containing
pairs from the base set as there is no way to distinguish these cons cells from S-expression
cons cells.

A (mutable) list is either the empty list (nil) or a cons cell whose cdr is a list. We
define the class List, of acyclic lists, as the least fixed point of the operator T1,;st where

Definition (List):
Trist[X] = NilU {z | cons(z) 2t A cdr(z) € X}
List = TLiStn
Theorem (List):
(fix) (Vz)(z € List & (x &2 nil V (cons?(z) 2t A cdr(z) € List)))
(ind) (VX)(nil € X A (Vz)(cons?(z) =2t A cdr(z) € X = z € X) = List C X)
We formalize the acyclic property of lists as follows.
Definition (iterate,length):
iterate = Af.Y(Ai.Az.An.if(eq(n,0),z,i(f(z),n —1)))
len = Y(AM.Az.if(cons?(z),1 + I(cdr(z)),0))

Lemma (length):

(Vz € List)(3n € N)(iterate(cdr)(z,n) = nil)
(Vz € List)(len(z) € N)
(Vz € List)(iterate(cdr)(z,len(z)) = nil)
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6.4. Iterative List Traversal

In this example we deal with two programs for appending lists. The first is the tradi-
tional pure program, append, that concatenates its first argument with its second, copying
the top level list structure of its first argument in the process. This example was first dealt
with in depth in (Mason, 1986b; Mason, 1988)

Definition (append):

append(z,y) « if(eq(z,nil),y, cons(car(z), f(cdr(z),y)))

The problem with this definition of append is that to perform the cons in the non-trivial
case we must first compute the result of append-ing the cdr of the first argument onto the
second. This is easily seen to entail that append will use up stack proportional to the length
of its first argument. The second program is an iterative version written using setcdr. It
utilizes the destructive operations in the following way. Instead of waiting around for the
result of doing the append of the cdr of the first argument before it can do the cons, it
performs the cons with a, possibly, dummy cdr value and later on in the computation
rectifies this haste. The result is a program that need not use any stack.

Definition (iterative.append):

iterative.append(z,y) +
if(eq(z,nil),y, let{w := cons(car(z),y)}seq(it.app(cdr(z),w),w))
it.app(z,w) «
if(eq(z,nil),
z,
let{z := cons(car(z), cdr(w))}seq(setcdr(w, z), it.app(cdr(z), 2)))
The following result could and should be taken as verification of the correctness of the

iterative.append program, since we are reducing its behavior to that of a very simple
program.

Theorem (append): z € List = iterative.append(z,y) = append(z,y)

Before proving (append) we prove following lemma. It demonstrates that one can
postpone setting the cdr of a newly created cell until the cell is referenced. This is the key
property used in the optimization of append to iterative.append. An analogous result
holds for the car.

Lemma (delaying assignment): If w ¢ FV(e) and w # z then

let{w := cons(z,y)}[seq(setcdr(w, z),e,e') = seq(e, setcdr(w, 2),€')]
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Proof (delaying assignment):

let{w := cons(z,y)}seq(setcdr(w, z),e,e') = let{w := cons(x, 2)}seq(e,e’)
by (setedr.vii)
™~ seq(e, let{w := cons(z, z) }¢’) by (cons.iv)
> seq(e, let{w := cons(z,y)}seq(setcdr(w, z),e'))

by (setedr.vii, ca.i, ca.ii)

=~ let{w := cons(z,y)}seq(e, setcdr(w, 2), €') by (cons.iv)

|

Proof (append): Since z € List = z = nil V cons?(z) = t by (list.fix), we argue by
cases.

(z = nil)

z = nil = iterative.append(z,y)
=~ if(eq(z,nil),y, let{w := cons(car(z),y)}seq(it.app(cdr(z), w),w))
by the definition of iterative.append
= if(t,y,let{w := cons(car(car(z)),y)}seq(it.app(cdr(nil), w),w))
by (atomic.v, implies.ii)
y by (atomic.viii, atomic.ix)

& append(z, y) by identical reasoning

a
(cons?(z) =2t) In this case we use the following two lemmas (proved below)

Lemma (A):

x = [Tq4,24) = cons(z,,append(z4,y)) = append(z,y)
Lemma (B):

z € List =

(Vz,y)(cons(z, append(z,y)) = let{w := cons(z,y) }seq(it.app(z,w), w)

By (cons.v) we have (Jz,,z4)(z = [z4,24]), so by classical logic it suffices to rea-
son under the additional assumption z = [z,,z4). Thus, we may make the assumption
z € List A z = [z4,7z4]. The first three steps unfold and simplify the definition of



54

iterative.append. The next two steps evaluate car(z) and cdr(z) relative to the as-
sumptions.
z € List A z = [z4,24] = iterative.append(z,y)
= if(eq(z,nil),y, let{w := cons(car(z),y)}seq(it.app(cdr(z), w),w))
unfolding iterative.append
& if(nil,y, let{w := cons(car(z),y)}seq(it.app(cdr(z), w), w))
by (cons.vii, cons.vi, implies.ii)
= let{w := cons(car(z),y)}seq(it.app(cdr(z),w),w)) by (atomic.vii)
= let{w := cons(z,, y)}seq(it.app(cdr(z),w),w)) by (implies.ii)
= let{w := cons(z,,y)}seq(it.app(z4,w),w)) by (cons.ii, implies.ii, ca.ii)
&~ cons(z,,append(z4,Y)) by (B)
= append(z,y) by (A)
a

Proof (A): This is left as an exercise. Oa
Proof (B): The proof is by List induction, using (class.allE) to instantiate (List.ind)
with

Z=A{z|

(Vz4,y)(cons(z,, append(z,y)) = let{w := cons(z,,y)}seq(it.app(z, w),w)}

We thus must show nil € Z and (Vz)(cons?(z) 2t A cdr(z) € Z = z € Z); from this
and the instantiated (List.ind) we obtain List C Z, so by (class.ca), (B) directly follows.
Show nil € Z.

let{w := cons(z,,y)}seq(it.app(nil, w),w))
& let{w := cons(z,,y)}seq(nil, w)
by the definition of it.app, and (atomic.v, atomic.vii, ca.i, ca.ii)
& let{w := cons(z,,y) }w by (atomic.iv, ca.i)
& cons(z4,Y) by (Let,.i)

~

&~ cons(z,,append(z,y)) as in the z 2 nil case of (append), (implies.ii)
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Show cons?(z) 2 t A cdr(z) € Z = z € Z. By (cons.v) we strengthen the assumptions
to show z = [24,24] A cdr(z) € Z = z € Z. Then,
z2=[2a,2d) N W= [T4,y] =
it.app(z,w)
= let{u := cons(car(z), cdr(w))}seq(setcdr(w,u),it.app(cdr(z),u))
by (cons.vii, cons.vi, atomic.vi, atomic.vii, implies.ii)
& let{u := cons(z,,y) }seq(setcdr(w,u),it.app(cdr(z), u),w)
by (implies.ii) applied twice

Now we introduce the context let{w := cons(z,,y)}seq(e,w) using (cons.i, cons.ii,
implies.i), and permute the conses using (cons.iv) to obtain

z = [2q4,2d] =
let{w := cons(z,,y)}seq(it.app(z, w), w)
= let{u := cons(z,,y)}
let{w := cons(z,,y)}seq(setcdr(w, u),it.app(cdr(z), u),w).
Using (delaying assignment) we have
let{w := cons(z,,y)}seq(setcdr(w, u),it.app(cdr(z),u),w)
= let{w := cons(z,, y)}seq(it.app(cdr(z), u), setcdr(w, u), w).

Using (ca.i) we introduce let{u := cons(z,,y)}e, use (cons.iv) permute the conses, and
use (cons.ii, implies.ii, ca.ii) to evaluate cdr(z) to z, obtaining

z = [2a,2d] =
let{w := cons(z,,y)}seq(it.app(z, w), w)
= let{w := cons(z,,y)}
let{u := cons(z,,y)}seq(it.app(z4,u), setcdr(w,u), w).
Rearranging and applying the induction hypothesis we have
Z2 = (24, 2d] N W= [Tq,y] A cdr(z) € Z =
let{u := cons(z,,y)}seq(it.app(z4, u), setcdr(w,u), w)
& let{u := cons(z,,y) }seq(setcdr(w, seq(it.app(zq4, u),u)), w)
by (let..ii)
= seq(setcdr(w, let{u := cons(z,,y)}seq(it.app(zq4, u),u)), w)
by (Lete.iii)
& seq(setcdr(w, cons(z,, append(zq4,y))), w)
by (implies.ii) and applying the induction hypothesis using (class.ca)
= let{w, := append(z,y)}seq(setcdr(w,wq), w)

by (let..iii, A, implies.ii)
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Finally, by (cons.i. cons.ii, implies.i), and permuting conses using (cons.iv) we have

z=[24,24] N\ cdr(z) € Z =

let{w := cons(z4,y)}

7.

let{u := cons(z,,y)}seq(it.app(zq,u), setcdr(w,u), w)
= let{w, := append(z,y)}let{w := cons(z,,y)}seq(setcdr(w,wq),w)

&~ let{wy := append(z,y)}cons(z,, w,) by (setcdr.vii, ca.i, ca.ii)

[aY)

& cons(z,,append(z,y)) by (let..iii)

O I:lappend

Issues and Conclusions

In this paper we have presented a logic, VTLoE, for reasoning about programs with

effects. The semantics of this logic is based on a notion of program equivalence relative to
a given memory. VTLoE goes well beyond traditional programming logics, such as Hoare’s
and Dynamic logic:

(1)

(2)

(8)

The underlying programming language is a rich language based on the call-by-value
lambda calculus extended by the reference primitives mk, set, get, as well as constants
representing traditional forms of atomic and structured data.

In our language atoms, references and lambda abstractions are all first class values
and as such are storable.

The separation of mutation and variable binding allows us to avoid the problems that
typically arise (e.g. in Hoare’s and dynamic logic) from the conflation of program
variables and logical variables.

The equality and sharing of references (aliasing) may be directly expressed and rea-
soned about.

The combination of mutable references and lambda abstractions allows us to study
object-based programming within VI'LoE.

Central to VTLoE is the ability to express the operational equivalence of programs, a
very general notion of program equivalence.

In addition to the usual first-order formula constructions and quantification over class
variables, the logic includes contextual assertions. This allows for direct reasoning
about changes in state, and subsumes the state-based reasoning methods possible in
both Hoare’s and Dynamic logic.

Class membership and quantification allows us to express a wide variety of useful
notions including presence of effects, functionality, and structural induction principles.

The logic presented here is perhaps best viewed as a starting point for further research

rather than a final product. In particular there at least five directions for further research.
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There seems to be good evidence to support a more localized semantics for contextual
assertions. One indication is the failure of the following principle:

e0 = e = (let{z := e }[P] & let{z := e1}[?P])

This principle is false even for quantifier free ®. One counterexample is:

ey = Ay.y
e; = let{z := mk(A\y.y) } \w.app(get(z), w)
® = (z = Ay.y)

The problem is that the reduction contexts allowed in the atomic clause are allowed
to alter the contents of any cell in memory, regardless of whether or not that cell is
local. Similarly it may be that by restricting the quantifiers to range over wvisible or
non-local values, the resulting logic will have nicer metatheoretic properties (although
the plethora of choices is somewhat confusing).

At present there are very simple wvalid principles that VTLoFE as axiomatized herein
does not establish. One simple example is:

let{z := get(y) }let{z := mk(v)}[get(y) = 2]

Even though it appears to be related to (get.i) and (mk.iv), it does not follow from
them. What is lacking is any way of reasoning about the equivalence of contexts, not
just expressions. It will probably be fruitful to extend the formal system to include
assertions concerning the equivalence of contexts as well as expressions. For example
we could introduce a new judgement of the form

Up=x Uy

to mean that the contexts are equivalent with respect to a set X of allowable trapped
variables. It may also be productive to examine both the system and the results
obtained concerning L4 in the paper (German et al., 1989).

It may be productive to study contextual assertions in the simpler simply typed A
calculus making use of Milner’s context lemma.

Two important concepts that appear to lie outside the realm of VTLoE are the ability

to express type information, and the ability to perform some sort of computation induction.

(D)
(E)

Since it appears that types cannot be encoded as classes it may be that some type
structure, via a new form of judgment, should be built in from the beginning.

A powerful semantic method for establishing laws of program equivalence is compu-
tation induction, induction on the length of computation. Unfortunately, by its very
nature, computation induction does not yield readily to axiomatization in a formal
theory that admits non-trivial equivalences. This is due to the difficulty of maintaining
a dual view of programs as descriptions of computations and programs as black boxes
within a single formal theory. One approach to solving this problem is to extend the
logic to include an ordering ey C e; that expresses the operational approximation of
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computations. Finite projection operations modeled on the finite projections of domain
theory can hopefully be used to prove inductive properties of C.
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9. Index of Notations

Symbol Description §
Y Fixed point combinators 1
N The natural numbers, i,7,...,n € N 1
yn Sequences from Y of length n, ¥ = [y1,...,yn] € Y™ 1
Y™ Finite sequences from Y 1
] The empty sequence 1
U * v The concatenation of the sequences u and v 1
P.(Y) Finite subsets of Y 1
Yo 4 Y: Finite maps from Y to Y3 1
Yo— Y11 Total functions from Yy to Y3 1
Dom( f) The domain of the function f 1
Rng(f) The range of the function f 1
fly:=v'} An extension to, or alteration of, the function f 1
X A countably infinite set of variables, x,y,2z € X 2.1
A Atoms 2.1
t,nil Atoms playing the role of booleans 2.1
F Operations, 6 € F 2.1
F, n-ary operation symbols 2.1
Fi; D {get,mk,isatom, cell,fst,snd, ispr,isnat,+1,-1} 2.1
F, D {set,eq,pr} 2.1
Fs D {br} 2.1
L A-abstractions, Ax.e € I 2.1
\% Value expressions, v € V 2.1
E Expressions, e € E 2.1
P Immutable pairs, pr(v, v2) € P 2.1
S Value substitutions, o € S 2.1
Az.e Abstractions 2.1
app(eo, e1) Application 2.1
o(e) Application of operations 2.1
if(eo,e1,e2) Conditional branching 2.1
let{z :=eo}e1 Lexical variable binding 2.1
seq(e1,...,€xn) Sequencing construct 2.1
FV(e) The free variables of the expression e 2.1
elm=c} The result of substituting e’ for x in e 2.1
e’ The substituting o(z) for z in e, Vo € Dom(o) 2.1
Yx Elements of Y whose free variables are among X 2.1
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Symbol Description §
C Contexts, C € C 2.1
° The hole in contexts 2.1
Cle] The result of filling the holes in C with e 2.1
Traps(C) The variables which may be trapped 2.1
E. The set of redexes 2.2
R The set of reduction contexts, R € R 2.2
M The set of memory contexts, I' € M 2.2
r< Applying o to each value in the range of T’ 2.2
D Computation descriptions, I';e € D 2.2
v A value description 2.2
— The single step reduction relation, —C D x D 2.2
at The reduction relation, —C D x D 2.2
ITe A defined description 2.2
le A defined expression 2.2
eoler Equidefined expressions 2.2
eq = ey Operational equivalence between expressions 2.3
eg = eq By (ciu) operational equivalence 2.3.3
U Univalent contexts, U € U 3.1
W Formulas, ® € W 3.1
eo ey Atomic formula of W 3.1
Py = P4 Implications of W 3.1
Ulo] Contextual assertions of W 3.1
(Vz)® Universal generalizations of W 3.1
False An unsatisfiable assertion, such as t 2 nil, of W 3.1
-P Negations of W 3.1
Je Definedness assertions of W 3.1
$o AN Dy Conjunctions of W 3.1
Dy VvV O, Disjunctions of W 3.1
Py & P4 Biconditionals of W 3.1
T; Ulo] &= T U'[0'] Context Reduction 3.2
I E o[0] Tarskian satisfaction 3.3
Eo Validity 3.3
oo A modality of W 3.4
0o A modality of W 3.4
len Length function 3.4
alloc Allocation function 3.4
assign Assignment function 3.4
(Mz)® Strong quantification of W 34
D0_cell Expresses that there are no cells in memory 3.5.2
D1 _cell Expresses that there is one cell in memory 3.5.2



65

Symbol Description §
W, The strong quantifier fragment 3.10
P,Q Parameterless proceedures 4

1 A diverging proceedure 4
beginnew z;... end Local variable declarations 4
contents Dereferencing 4
Ti=wv Assignment 4

T =ty First order equivalence 4
isfun Recongnizer of abstractions 4.5
foeq Recognizer of first order equivalence 4.5
Xe Class variables, A, B,...X,Y,Z € X° 5.1
A° Class constants, letters in this Font € A° 5.1
{z | @} Class comprehension terms 5.1
K Class terms, K € K 5.1
W Formulas extended to classes 5.1
e€ K Atomic formula of W 5.1
(VX))o Class quantification 5.1
[K]T Evaluation of class terms 5.2
I E ®[o] Satisfaction extended to classes 5.2
Ko C K3 Class containment 5.3
Ko =Ky Class equivalence 5.3
] The empty class 5.3
Val The class of values 5.3
Nil The singleton class containg nil 5.3
Bool The class of booleans 5.3
Cell The class of cells 5.3
Nat The class of natural numbers 5.3
T[K] Class operators 5.3
Cell[Z] The class of cells containing elements of Z 5.3
— The class of total functions 5.3
RS The class of partial functions 5.3
5 The class of memory operations 5.3
D_expand(€) e does not expand memory 5.3
X, 50 55Y,®,; A more complicated function space 5.4
D _write[S](€) e does not visibly write in the region S 5.4
T Monomorphic ML-like types 5.5.2
N The type of natural numbers 5.5.2
{nil} The type of nil 5.5.2
(’]I‘i> T) The type of the function space 5.5.2
ref(T) The type of references 5.5.2
{ziim|i<n}re:T The typing judgement 5.5.2
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Symbol Description §

mk - Reference allocation 5.5.3
get_ Reference dereferencing 5.5.3
set, Reference assignment 5.5.3
D.(e, 1) An encoding of the typing judgement 5.5.3
Ny ®X] The intersection of a family of classes 6.1
" The least fixed point of a class operator 6.1
cons Lisp cell allocation 6.2
cons? Lisp cell recognition 6.2
car Lisp cell car destructuring 6.2
cdr Lisp cell cdr destructuring 6.2
Cons[X,Y] Lisp cells with cars in X, cdrs in Y 6.2
setcar Lisp cell car assignment 6.2
setcdr Lisp cell cdr assignment 6.2
loc Lisp path dereferencing 6.3
Sexp[A4] Lisp S-expressions with leaves from A 6.3
iterate Lisp list iteration 6.3
len Lisp list length 6.3
append Lisp list append operation 6.4
iterative.append(z,y) Tterative Lisp list append operation 6.4
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