Reflective Semantics of Constructive Type Theory
(Preliminary Report)

Scott F. Smith
The Johns Hopkins University*

August 30, 1991

Abstract

It is well-known that the proof theory of many sufficiently powerful logics may be represented
internally by Godelization. Here we show that for Constructive Type Theory, it is furthermore
possible to define a semantics of the types in the type theory itself, and that this procedure
results in new reasoning principles for type theory. Paradoxes are avoided by stratifying the
definition in layers.

1 Introduction

Given a sufficiently powerful logical theory L such as Peano Arithmethic, it is well-known that the
proof theory of L may be expressed internally via Gédelization. This is accomplished by defining a
metafunction [A] that encodes formulas A as data, and a predicate Provabler([A]) which is true
just when formula A is provable. This gives L knowledge of its own proof theory, but it doesn’t
know that it knows it: the embedded proof theory could just as well be for some different logic.
What is needed then are principles of self-knowledge that connect the provability predicate with
the actual proof theory. Feferman [Fef62] for one has studied adding such principles; the principle
most relevant to this work is

Given a theory Ly, extend it to give a theory L4, with added reflection axiom

Ly, Provabler,([A]) = A.

In other words, if we prove that we can prove it, we can prove it. Note that this is not a true
self-knowledge principle, because Lj does not have self-knowledge of the reflection axiom. Given a
theory Lq, this principle induces a hierarchy of theories Lq, Ly, L3,..., which we call the reflected
proof hierarchy.

Logicians have studied this hierarchy to understand its proof-theoreric strength; here we are
not directly interested in this issue. We are interested in how computer scientists have found it
applicable for automated theorem proving systems. Suppose there was an assumption A from which
we wished to prove B. If the theorem-proving system knew of a way of always proving B from A4,
not by having assumption A = B but by observing some syntactic property of A, the system would
still have to construct each step of the proof. Given a reflected proof system, this construction may
be avoided. Suppose we were to prove the theorem

V[A], [B].“[A] is of appropriate syntactic form” & Provabler([A]) = Provabler([B])

*email scott@cs.jhu.edu, phone (410) 516-5299, fax (410) 516-6134.

Now, if a proof of B is desired and a proof of A is given, if A is of the appropriate form the above
principle allows us to immediately conclude Provabler([B]), whence B by the reflection axiom.
Some systems incorporating this general paradigm are [ACHA90, BM81, DS79].

Cornell researchers [ACHA90] have formulated such a reflected proof hierarchy for the Nuprl
type theory [CABT86]. One advantage of studing reflected proof in such a context is there is a pro-
gramming language built in to Nuprl, so it is possible to have the condition “[A] is of appropriate
syntactic form” be a decidible property that may actually be computed inside the Nuprl computa-
tion system, meaning the proof of that property also need not be constructed. Since formal proofs
can get very large, this is an important method for shortening proof length.

Our goals are similar, but the method is different. Instead of reflecting proof, we reflect the
semantics. Nuprl and other constructive type theories (CTT’s) [Mar82] may be interpreted by
inductively defining the types and their members [A1187]. We show here that this inductive definition
is actually expressible inside CTT. As in proof reflection there is a hierarchy of reflective semantic
interpretations. The stratification is by the universe levels of the CTT. It is then possible to give
an internal interpretation of proofs, leading to the internal k-soundness theorem. The hierarchy of
internal k-soundness proofs then can be taken as an internal proof of soundness and thus consistency
of the entire theory, contradicting G6del’s incompleteness theorem all but in name.

An axiom of self-awareness also may be added, and addition of the axiom does not lead to a
hierarchy of proof theories, for the proof theory is not being reflected; the only hierarchy is based
on universe levels.

2 Type Theory

This section is a short survey of constructive type theory (CTT) necessary for basic comprehension
of this paper; for fuller descriptions and examples, see [CAB186, Tho91]. The CTT used herein,
called simply “CTT,” is a variant of standard CTTs like Nuprl and Martin L6f’s theories in that
types do not come with equality a = b € A; instead we just have a € A, and equivalences are
expressed via type-free equality @ ~ b. This is type theory more in the spirit of Feferman class
theory [Fef75].

We also wish to extend CTT to include a mechanism for recursive type definition. Recursive
types for Nuprl have been defined by Mendler [CAB*86], and Dybjer has defined these types
for Martin-Lof’s theories [Dyb87]. CTT with recursive types added will be denoted CTTR. The
internal presentation of the semantics of CTT is not possible without recursive types.

A type theory has as its language a collection of untyped terms. Some of these terms repre-
sent types, others computations; the two, perhaps surprisingly, are not separated. The terms of
CTT include numbers and basic operations 0,1, 2, ..., pred(a), succ(a), if _zero(a; b; ¢); pairing and
projection (a, b), a.1, a.2; injection and decision terms inl(a), inr(b), decide(a;b; c); and functions
and application Az.a, a(b). This language is thus a small functional programming language. On
untyped terms we write a ~ b meaning a is operationally equivalent to b, a notion we will not
elaborate on here; see for instance [Plo75, Smi9la).

Letters a—d, A-D will range over terms, and v-z, V-Z will range over variables. Although
terms and types are formally of the same sort, we use capitol letters to denote types and small
letters to denote terms. Notions of bound and free variables, open and closed terms and captureless
substitution of b for = in a a[b/z] are standard.

2.1

Types

The expressiveness of type theory is largely due to the diversity of types that are definable. Here
we list the types of CTT and CTTR.

(i)
(i)

(ii)
(iv)

(vii)

2.2

N is a type of natural numbers.

a ~ b is a type that is inhabited (by placeholder 0) just when a and b are indistinguishable
as computations.

a in A is a type that internalizes the assertion a € A: 0 € (a in A) just when a € A.

z:A X B(z) is a dependent product type (the type B(z) depends on the member of the type
A) whose inhabitants are pairs (a,b), with a € A and b € B(a).

z:A — B(z) is a dependent function type whose inhabitants are functions Az.b, where for all

a € A, (Az.b)(a) € B(a).

U1,Usy, ..., Ug,... are universes or large types, types that have types as members. The levels
are constructed in sequence: U; has as members all types closed under the type forming
operators; U, has as members all types closed under the same operators, plus the type Uy;
et cetera.

CTTR has parameterized recursive types in addition to all the types mentioned up to now.
rec(X; z:A.B(X)(z))(a) is a parameterized recursive type. In simplified non-parametric form
rec(X; B(X)), it denotes the solution to a recursive type equation of the form X = B(X).
A parameter z is added to give solutions to more general type equations X (z) = B(X)(z),
with initial parameter a € A.

Formulas as types

One of the defining features of constructive type theory is it is a theory of realizability. Formulas

are viewed as types for which the members are the realizers of the formula. To prove the formula,

show that when it is viewed as a type, the type is inhabited, i.e. has some member. Formulas are

defined in terms of types as follows.

A=B ¥4 B
A&B ¥axnB
AvB A4+ BE N« if -zero(z; A; B)
-A d:efA—>false
false o~
Vz:A.B ¥ 2.4 - B
def

Je:A.B = z:A X B

The type universes Uy also serve as universes of formulas, and the type A — Uy has as members

predicates on the type A.

2.3 Refinement proof and extraction

An assumption list I" is of the form #; € A;,z5 € As,...2, € A,. One form of assertion may be
made:

I'tac A

which asserts under assumptions I', term a inhabits type A.

The rules of CTT may be presented in goal-directed or refinement-style fashion: a rule is applied
to a goal, and this gives subgoals which when proven realize the goal. Proofs are thus trees with
nodes being goals and children of a node being its subgoals. The leaves of the tree are goals with
no subgoals. A sample rule, the introduction rule for (non-dependent) products, is

F(a,b) e Ax B
Faec A
Fbe B

where the first line is the goal and the indented lines are the subgoals. A full set of rules for CTT
is given in appendix A.

3 Semantics of CTT

CTT and CTTR may be proven sound by giving an inductive definition of the types and their
inhabitants, using the method of Allen [All187]. Types are defined by induction on their structure. In
the presence of dependent types it is impossible to first define the types and then define membership
predicates for the types, because for a term z:4 — B(z) to be a type, B(a) must be a type for all
members a of type A. This means the members of A must be defined before the type z:4 — B(z) is
considered well-formed. The solution Allen developed is to simultaneously define types and their
inhabitants. This inductive definition can be viewed as a term model of CTT.

The main technical result of this paper is to show that Allen’s method of inductive definition
may be expressed inside CTTR itself, giving an internal definition of truth. We first give the
inductive definition of CTT and show it has reasonable properties. The definition is then expressed
in CTTR. Inductive definition of recursive types requires considerable extra notation, so we will
settle for a summary at the end of the paper of the steps necessary to inductively define CTTR.
Mendler [Men87] has developed techniques for giving an inductive definition of recursive types.

The development of the semantics of CT'T now proceeds in three phases: untyped equality on
terms is defined, the inductive definition of types is given, and the theory is proven sound with
respect to this definition.

First, an evaluator for untyped closed terms and equivalence thereupon is defined. See [Smi91b]
for complete definitions.

DEFINITION 3.1 For closed CTT terms a and b, a — b iff a computes under call-by-name syntactic
reduction to b.

Equality @ ~ b is defined to mean a and b are indistinguishable when placed in any context.
c[—] is defined to be a context, i.e. a term with a distinguished hole “—” in which another term
may be placed. c[a] denotes ¢[—]| with a placed in the hole, possibly capturing free variables of a.

DEFINITION 3.2 a ~ b iff for all closing contexts ¢[—]. c[a] — a' iff ¢[b] — ¥'.

A collection of properties may be proven about this equivalence that in turn allows the ~ rules of
CTT to be justified; see [Smi91b].

Given the collection of terms with equivalence relation, the types and their inhabitants may be
simultaneously defined. Open terms are considered only when interpreting hypothetical assertions,
so until that point all terms may be implicitly taken to be closed.

DEFINITION 3.3 A {ype interpretation is a two-place predicate 7(A, €) where A is a term, and € is
a one-place predicate on terms.

For 7(A, €) to be true means in type interpretation 7, 4 is a type with its members specified by e.
The following definitions make this explicit.

DeriNiTION 3.4 (i) A Type, iff 7(4,€) for some €
(ii) a €, A iff (A, €) for some € and €(a).

A Type, thus means A is a type in interpretation 7, and a €, A means a is a member of the type
A.

Recall we have both small types and a hierarchy of large types Ug. The universes are predicative,
so Uy € Uy fails. This is important because it means larger universes may be defined in terms of the
(small) type constructors and the smaller universes. The definition of the full theory thus proceeds
a universe at a time: vy is the type interpretation for universe Uy.

To give a well-formed inductive type definition, a monotonic operator is defined, and the least
fixed point is then taken. The proof of monotonicity of the operator will be omitted.

DEFINITION 3.5 vy is the least fixed-point of the following monotonic operator ¥y on type inter-
pretations:

Ur(7) 4f 1 where 7/(T, €) is true if and only if

EITHER T ~ N, in which case

for all ¢, €(t) iff t ~ n, where nis 0,1,2,...
orR T ~ (a ~ b), in which case

for all ¢, e(t) iff t ~ 0 and a ~ b
OR T ~ a in A, in which case A Type, and

for all ¢, e(t) iff t ~0 and a €, A
orR T ~ z:A — B(z), in which case

A Type,. and for all a €, A4, B(a) Type,, and

for all ¢, €(t) iff t ~ Az.b and for all @ €, A, t(a) €, B(a)
oR T ~ z:A X B(z), in which case

A Type, and for all a €, A, B(a) Type,, and

for all ¢, €(t) iff t ~ (a,b) and a €; A and b €, B(a)
OR T ~ Uy, in which case

k' < k and for all ¢, €(t) iff v (¢, €') for some €'.

This completes the definition is each universe level, and thus the entire CTT. Some abbreviations

are now made: a €5 A ey €, Ayac A f 4 €r A for some k, and A Type, def 4 Type

Vg ?
A Type def 4 Type,, for some k.

Some straightforward lemmas about typehood and membership are now proven. They can be
taken as defining what it means for the different forms of term to be types, and for what it means
to be an inhabitant of the different types.

LEMMA 3.6 Type formation is characterized by the following properties.
(i) N Type, a ~ b Type.
(ii) a in A Type iff A Type.

(iii) #:A — B(z) Type iff A Type and for all a € A, B(a) Type.

)
)
)
(iv) z:A x B(z) Type iff A Type and for all a € 4, B(a) Type.
(v) if A € Uy, then A Type.
(vi) if A Type then A € Uy, for some k.

)

(vii) if @ € A then A Type.

LEMMA 3.7 Type membership is characterized by the following properties.
(i) cea~biffc~0anda~b.
(ii) ce Niffe ~ 0,1,2,....

)

)
(iii) c € (a in A) iff (a in A) Type and ¢ ~ 0 and a € A.
(iv) c € 2:A — B(z) iff 2:A — B(z) Type and ¢ ~ Az.c(z) and for all a € A, ¢(a) € B(c).
)

(v) c€ z:A x B(z) iff 2:A x B(z) Type and ¢ ~ (c.1,¢.2) and c.1 € A and ¢.2 € B(c.1).

These two collections of lemmas closely correspond to the type formation and introduction/elimination
rules, respectively. From the lemmas, it is then direct to show

THEOREM 3.8 (SOUNDNEss) If - a € A in CTT, then a € A, meaning the interpretation is sound.

COROLLARY 3.9 (INTUITIONISTIC CONSISTENCY) There is no proof of F 0 € (0 ~ 1) in CTT.

4 Reflective semantics of CTT

The previous section gave a semantics of CTT; in this section we show how this semantics may
be phrased inside CTTR. The key insights are that parameterized recursive types are powerful
enough that general inductive definitions may be expressed, and that the type definitions v may
be expressed in Uy, meaning each universe is defined inside the next one.

A Godelization of the CTT terms consists of a type Term encoding all terms of the theory,
together with operations to construct, destruct, and compare terms. To convert terms to and from
Godelized form, we use metafunctions [a] and |a|, respectively. We also will use the convention
that a metavariable with a hat (@) means the variable is a Godelized term, so @ € Term. The proof
theory (the rules of appendix A) may also be Godelized as follows.

(i) Sequent is a type of sequents, lists of pairs of terms.
(ii) Ptree is a type of primitive proof trees.

(iii) Proof is a type of proof trees that are well-formed, i.e. the provability of the children of a
node imply the provability of the node by one of the rules.

(iv) Provable([I'a € A]) iff [I' F a € A] is the top node of a Proof tree.

A rigorous Godelization of the terms and proofs of CTT in CTT may be found in [ACHA90]; details
will not be given here.

Since here we are here concerned with truth and not just proof, the evaluator and equivalence
defined in the previous section also need to be expressed in CTT. Define an n-step evaluator
Eval € Term X N — Term, and an untyped term equality predicate Fqual € Term x Term — U;.
For this paper, we take these as given: they amount to expressing the definitions of — and ~ inside
CTT. Since the proofs in [Smi9la] are constructive, this internalization should be routine.

The internalized equality should properly reflect the external equality.

LemMA 4.1 (i) If for some t, t € Equal([a], [b]), then a ~ b.

(ii) If for some ¢, t € ~FEqual([a], [b]), then a « b.

4.1 The inductive definition

We will define a family of predicates CTTy € Term x (Term — Uy)— Ugyq for £ = 1,2,3,.... Each
CTTy is intended to be an internal expression of the type definition v. Then, it is possible to prove
a family of theorems in CTT that collectively express its own soundness and thus consistency.
The predicates CTT}j are now defined inductively using parameterized recursive types. The
definition below thus is only expressible in CTTR; see section 5 for a sketch of how predicates

CTTR) may be defined.

DEFINITION 4.2

cTT, MA, M ; 1)-rec(X; (A, M j):Term x Term — Uy,

Equal(A, [1) & Va:Term. M j(a) <= 3n:Term. Equal(a,n) & Natnum(n)
\
3b, é: Term. Equal(4, [|b] ~ [¢]]) &)
Va:Term. M ; (d) < FEqual(a,[0]) & Equal(b,¢)
\
3b, B: Term. Equal(A, [|b] in |B|]) & dMg: Term — Uy, X(<B,MB>) &
Va: Term. M ;(a) <= Equal(a, [0]) & Mg(b)
\
AB: Term. 3C: Term — Term. Equal(fl [z:|B] — |C](2)]) & IMyg: Term — Up,. (<B,M]§>) &
IMp: Term — Term — Uy. Vb: Term. Mz(b) = X(<C‘(b),Mé(b2>) &)
Va: Term M;(a) <= FEqual(a, [Az.|a|(z)]) & Vb: Term. Mg(b) = Mx(b)([|a]([b])])
\
3B:Term. 3C: Term — Term. Equal(fl [2:|B] x |C|(=)
IMp:Term — Term — Uy. Vb: Term. Ma(b) = X ((C(b), M4(b))) &
Vas Term. My(a) > Bqual(a, [(|a].1, |a].2)]) & Ma([|a].1]) & Me([|a)17)([(a]-2])

1) & IMy:Term — Uy. X ((B, Mp)) &
(

> <<

Equal(A, [Uy_1]) & VB: Term. MA(B) <= dMpg:Term — Uj_;. CTTk_l(B,MB)

<

< -

Equal(A, [U;]) & VB: Term. MA(B) <= dMg:Term — Uy. C’TTl(B,MB) (A, M;))

LEMMA 4.3 CTTy € Ugyq.

This completes the definition; now we establish its reasonableness. A first step is the proof
of soundness of the previous section may be internalized. First, we define the notion of a proof
occurring entirely within some maximum universe.

DEFINITION 4.4 For arbitrary k, Provable(t) iff Provable(t) and all universes appearing in the
proof are of level at most k.

Since all proofs have some maximum universe level, if Provable(t) then Provableg(t) for some k.
All k-provable statements can then internally be shown sound.

THEOREM 4.5 (INTERNAAL k-soUNDNEss) For any na}tural number k, the following thAeorem may be
proved in CTTR: - V¢, T: Term. Provable,([F |£] € |T|]) = IM:Term — Ug. CTTx(T, M) & M(%).

Proor. This is just a matter of repeating the arguments of the previous section inside type
theory. The most interesting facet of that procedure is proofs by induction on the definition of v
now proceed by the (Rec induction) rule on CTT}, definitions.

QED.

COROLLARY 4.6 (INTERNAL k-CONSISTENCY) The consistency of proofs at any particular level &
may then be proven, i.e. - = Provable,([0 € (0 ~ 1)]).

The interpretation of CTTk([A], M) in the external semantics v, may be connected to the
external semantics itself, and this proves useful.

THEOREM 4.7 (INTERNAL-EXTERNAL) If ¢ €41 IM:Term — Uy. CTT([A], M) & M([a]) then
vi(A,€) and €(a).

This means internal truth implies external truth. Rules may be added to the theory to reflect this
fact.

CTT is extended to give the theory CTTI by adding the rule (In), which we present for the
simplified case that the hypothesis list is empty.

(In) Fac A
FtedM:Term — Uy. CTTy([A], M) & M(]a])

With the (In) rule, proving a term is in a type is accomplished by showing the term to be in the
membership predicate for the type in the internal semantics. This rule is justified to be sound by
theorem 4.7.

5 Semantics of Recursive Types

Recursive types present more difficulties. For rec(X;z:A.B(X)(z))(a) to be a type, the formation
rule states the body B(X)(z) must be a type for all types X, but this means a new type is
defined by quantifying over all types, obviously circular. The solution is to use Girard’s candidat
de réductibilité method [Gir71] and interpret X as an arbitrary predicate, not a type. This breaks
the circularity, but at the expense of needing environments to bind all such X to some predicate.
Mendler [Men87] gives a detailed semantics for CTT with parameterized recursive types. The
reflective semantics for the full CTTR type theory then involves encoding Mendler’s method inside

CTTR.

5.1 Uses of reflective semantics

We sketch some application of these ideas through a simple example. Many types are obviously
well-formed, but in an automated implementation of a type theory such as Nuprl, the complete
proofs of well-formedness must be given. Since a significant amount of processing time is spent
proving types are well-formed, it would be useful to be able to immediately recognize some simple
types and avoid constructing their proofs of well-formedness.

Suppose the function Simple Type(fi) was defined such that Simple Type(fi) ~ true just when A
meets some criteria of being a simple well-formed type. Then, we may prove a theorem

- VY A: Term. Simple Type(A) ~ true = IM:Term — Uy. CTTRy([|A] € U], M)

meaning all such simple types may be shown, by the internal semantics, to be types. Then, any
time it is necessary to show a type well-formed, - 4 € U;, we may try the following procedure:

(i) Compute SimpleType(|A]); fail if the result is not true.
(ii) apply the (In) rule to give the subgoal F CTTRy([A € U], M).

(iii) using the above theorem and modus ponens, the proof is complete.

A The rules

The rules will be presented refinement-style, giving a goal sequent, followed by subgoal sequents
which if proven imply the truth of the goal.

We confine various technical conventions for the presentation of the rules to this paragraph.
The hypothesis list is always increasing going from goal to subgoals, even though subgoals do not
list goal hypotheses. In the hypothesis list, z; may occur free in any A;,; for positive j. The
free variables in the conclusion are no more than the z;. a-conversion is an unmentioned rule. To
improve readability, the assertion 0 € a ~ b will be abbreviated a ~ b, likewise for 0 € (a in A).
Since there is at most one inhabiting object, 0, it need not be mentioned. Also, in hypothesis lists,
z € a ~ b will be abbreviated a ~ b, since z is known to be 0. Abbreviatea ~b— 0~ 1as a « b.

A.1 Computation

The type a ~ b asserts a and b are equivalent computations. In accordance with the principle of
propositions-as-types, this type is inhabited (by the placeholder 0) just when it is true.

(Computation) 't~ t¢t

where t and ¢’ are one of the following pairs:

t t'
(Az.b)(a) bla/z]
(a,b).1 a
(a,b).2 b
suce(n) n', where n' is one larger than n
pred(n) n', where n' is one smaller than n or 0if n = 0

if -zero(0; a; b) a.

(Computation) I' - if _zero(a; b;¢) ~ ¢
Fadf0

(Contradict) IFa~bkFceC

where a and b are different values by inspection.

(Sim refl) 'ra~a
(Sim sym) Fa~bFb~a
(Sim trans) I'na~bb~clFar~c

A.2 Membership

The expression a in A reifies the assertion @ € A as a type; 0 € a in A just when a € A. The
inhabitant 0 is implicit in the rules below.

(Member intro) I'ain A
Fac A

(Member elim) 'rac A
Fain A

A.3 Natural number

N is a type of natural numbers.

(N intro) 'raeN
Where a is one of 0, 1, 2,....

(N succ) I'F succ(a) €N
FacN

There is a symmetric rule (N pred).

(N induction) I'ya e NF b(a) € B(a)
a~ 0+t b(a) € B(a)
a0,z €N,z 0,b(pred(z)) € B(pred(z)) - b(z) € B(z)

A.4 Dependent function

Dependent functions z:4 — B(z) are also commonly notated IIz:A.B(z). We let A— B abbreviate
z:A — B where z is not free in B.

(Func intro) I'-Az.bec z:A— B(z)
rcAFbe B(z)
HAeUyg

(Func elim) 'ceC
b~ Az.b(z),b(a)e Bla)FceC
Fac A
Fbecz:A— B(z)

where z is not free in b.

10

A.5 Dependent product

Dependent products z:4 X B(z) are also commonly notated Xz:4.B(z), but “dependent product”
is a more apt computational description. These are types of pairs for which the type of the second
component of the pair depends on the value of the first component. Let A X B abbreviate z:4 x B
where z is not free in B.

(Prod intro) 'k (a,b) € 2:A x B(z)
Fac A
kb€ B(a)
z€AF B(z) € Ug

The third subgoal assures that z:4 x B(z) is a sensible type.

(Prod elim) 'ceC
a~ (a.l,a.2),a.l1€ A,a.2€ B(a.l)FceC
Fae€z:AX B(z)

A.6 TUniverse

(U form) I'FUg € Ugss

(U cumulativity) I'FAe Uk
FAecUg

(Nform) Fl—aNbEUk

(Member form) I'F(ain A) € U
FAecUg

(N form) I'-NecUg

(Func form) I'-2:A— B(z) € Uy
FAecUg
ze A B e Uy

(Prod form) I't-2:A x B(z) € Uy
FAecUg

z€AF B(z) € Ug

A.7 Miscellaneous

(Cut) 'racA
Fbe B
zcBtacA
(Hypothesis) '~zcAd
where ¢ € A occurs in T'.
(Subst) I' - cla] € Cla]
Fa~b
F c[b] € C[b]
(Prop member) Feec AFz~0

where A is b in B, or a ~ b.

11

A.8 Recursive Types and CTTR

CTTR is CTT extended to have parameterized recursive types. rec(X;z:4.B(X)(z))(a) denotes

solutions to parameterized recursive type equations X (z) def B(X)(z), where z is a parameter and

has initial value a. Parameterized recursive types for CTT are presented in [CAB*86], chapter 12,
and another version appears in [Men87]. Define Ry C4 R for Ry, € A— U as Vz:A.Vy:R,(z).y €
Rz(ﬂ))

(Rec intro) I'Fbe rec(X;z:A.B(X)(z))(a)
kb€ B(rec(X;z:A.B(X) a:)))()
b rec(X;2:A.B(X)(z))(a) € U

(Rec elim) I',y € rec(X;z:A.B(X)(z))(a)Fce C
y € B(rec(X;z:A.B(X)(z)))(a)Fce C

(Rec induction) I,z € rec(X;2:A.B(X)(2)))(a
ZecA->UpyeAze (Vy:
- e()(v) in C(2)(y

(Rec form) I'F rec(X;z:A.B(X)(z))e A— Uy
XeA—->Up,ec A-B(X)(z) € Uy
Xi€e€A-Up,Xo€c A->Up,ye X3 Cyu XoFec B(Xl) Ca B(Xz)

QQ_/
b;
8
M
N
—~
N
~—
]
~—~
8
~—
—~
N—
™.
3
Q
—_~
~—r
—~
~—
~—
8
M
s
—~
N
~—r
—~
N—

The second subgoal assures the body B(X)(z) to be monotonic, making the least fixed point
sensible.

References

[ACHA90] S. F. Allen, R. L. Constable, D. Howe, and W. Aitken. The semantics of reflected
proof. In Proceedings of the Fifth Annual Symposium on Logic in Computer Science,
pages 95-105, 1990.

[A187] S. F. Allen. A non-type-theoretic semantics for type-theoretic language. Technical
Report 87-866, Department of Computer Science, Cornell University, September 1987.
Ph.D. Thesis.

[BM81] R. S. Boyer and J S. Moore. Metafunctions: Proving them correct and using them
efficiently as new proof procedures. In R. S. Boyer and J Strother Moore, editors, The
Correctness Problem in Computer Science, chapter 3. Academic Press, 1981.

[CAB'86] R. L. Constable, S. F. Allen, H. Bromley, W. R. Cleveland, J. Cremer, R. Harper,
D. Howe, T. Knoblock, N. P. Mendler, P. Panangaden, J. Sasaki, and S. F. Smith.
Implementing Mathematics with the Nuprl Proof Development System. Prentice-Hall,
Englewood Cliffs, New Jersey, 1986.

[DST79] M. Davis and J. T. Schwartz. Metamathematical extensibility for theorem verifiers and
proof-checkers. Computers and Mathematics with Applications, 5:217-230, 1979.

[Dyb87] P. Dybjer. Inductively defined sets in Martin-Lof’s set theory. Technical report, De-
partment of Computer Science, University of Géteburg/Chalmers, 1987.

12

[Fef62]

[Fef75]

[GirT1]

[Mar82]

[Men87]

[Plo75]

[Smi9la]

[Smi9lb]

[Tho91]

S. Feferman. Transfinite recursive progressions of axiomatic theories. Journal of Sym-
bolic Logic, 27:259-316, 1962.

S. Feferman. A language and axioms for explicit mathematics. In J. N. Crossley,
editor, Algebra and Logic, volume 450 of Lecture notes in Mathematics, pages 87-139.
Springer-Verlag, 1975.

J.-Y. Girard. Une extension de I'interprétation de Godel a I’Analyse, et son application
a PElimination des coupures dans I’Analyse et la Théorie des types. In J. E. Fenstad,
editor, Second Scandinavian Logic Symposium, pages 63-92, Amsterdam, 1971. North-
Holland.

P. Martin-Lof. Constructive mathematics and computer programming. In Sizth Inter-
national Congress for Logic, Methodology, and Philosophy of Science, pages 153175,
Amsterdam, 1982. North Holland.

P. F. Mendler. Inductive definition in type theory. Technical Report 87-870, Department
of Computer Science, Cornell University, September 1987. Ph.D. Thesis.

G. Plotkin. Call-by-name, call-by-value, and the A-calculus. Theoretical Computer
Science, pages 125-159, 1975.

S. F. Smith. From operational to denotational semantics. In MFPS 1991, Lecture notes
in Computer Science, 1991. (To appear).

S. F. Smith. Partial computations in constructive type theory. Submitted to Journal
of Logic and Computation, 1991.

S. Thompson. Type Theory and Functional Programming. Addison-Wesley, 1991.

13

