International Journal of Foundations of Computer Science

© World Scientific Publishing Company

HYBRID PARTIAL-TOTAL TYPE THEORY

SCOTT F. SMITH

Department of Computer Science, The Johns Hopkins University
Baltimore, Maryland 21218 USA
scott@cs.jhu.edu

ABSTRACT

In this paper a hybrid type theory HTT is defined which combines the programming
language notion of partial type with the logical notion of total type into a single theory.
A new partial type constructor A is added to the type theory: objects in A may diverge,
but if they converge, they must be members of A. A fixed point typing rule is given to
allow for typing of fixed points. The underlying theory is based on ideas from Feferman’s
Class Theory and Martin Lof’s Intuitionistic Type Theory. The extraction paradigm of
constructive type theory is extended to allow direct extraction of arbitrary fixed points.
Important features of general programming logics such as LCF are preserved, including
the typing of all partial functions, a partial ordering I on computations, and a fixed
point induction principle. The resulting theory is thus intended as a general-purpose
programming logic. Rules are presented and soundness of the theory established.

Keywords: Constructive Type Theory, Logics of Programs, Least Fixed Points

1. Introduction

In the seventies, Scott proposed a Logic for Computible Functions.3! This theory
axiomatized an ordering C on programs based on the domain-theoretic ordering,
and included rules for typing fixed points and a fixed-point induction principle.
Milner and others extended and implement Scott’s ideas in the Edinburgh LCF
system.'®

Another line of research developing programming logics grew out of work by

22,7 has at its core a functional

logicians. Martin-Lof’s Intuitionistic Type Theory
programming language, and contains a rich collection of types for typing programs.
Through the duality of types and propositions, proofs and programs are linked.

12,13,18,35__ c]agses are are ar-

Another related approach is Feferman’s class theory,
bitrary collections of untyped computations, and a rich array of classes can be
defined. In both of these approaches, however, the standard notion of function
space is a total one, and neither theory has general principles for typing fixed points
as members of partial function spaces, or for ordering terms via C, so many of the
concepts expressible in LCF are missing.

The goal of this paper is to extend type/class theory to make it possible to

type and reason about partial functions as is possible in LCF. This is thus a work

of synthesis, and the resulting theory is a hybrid partial-total type theory. It is
also a hybrid of class theory and type theory; in fact the foundations bear more
resemblance to class theory. We refer to it as a “type theory” only in a generic sense.
The purpose of HTT should not be confused with the purpose of Intuitionistic
Type Theory. We aim solely for a practical foundation that is the core of a usable
programming logic, not for a philosophical foundation.

We start with constructive type theory and add a new collection of types, the
partial types A. There are three main principles governing the use of partial types.
If an object is in a partial type A and its computation always terminates, it is in
the type A of total objects. It is possible to type fixed points of functions on partial
types, extending the programming power of type theory to arbitrary recursive pro-
grams. This fixed point typing rule is the subject of much of the metamathematical
investigation of this paper, for its justification is somewhat difficult. With this rule,
arbitrary recursive programs can be typed and in addition can be extracted from
proofs following the proof-as-programs interpretation of constructive type theory.
There is also a Scott-style fixed point induction principle.

This work grew from Constable’s desire to extend the Nuprl type theory” to en-
compass ideas of LCF. Early results may be found in (Ref. 9,32,34). The Nuprl type
theory is derived from Martin-Lof’s I'TTo.22 One important difference is that Nuprl
takes an untyped view of computation: untyped computations are sensible, in par-
ticular it is possible to compute expressions before they are typed. Feferman-style
class theories!?:13:18:35 take a similar approach: classes are collections of untyped
computations. HTT borrows additional ideas from class theory: it includes a type
E of all expressions and a type-free equality judgement a 2 b and ordering a T b,
making pure untyped reasoning possible. The author’s original interest in this
mix of type theory and class theory is due to Howe.'® In ITTy and Nuprl, on the
other hand, types come with an equivalence on their members, a = a’ € A. Thus,
types are PER’s. The notion of types as PER’s does not fit as well with partiality,
for fundamental to partiality is the idea of an ordering L. Fixed-point induction
for instance is an uninteresting principle without an atomic ordering L, nontrivial
equivalences cannot be directly established by the principle. It thus might seem
that the idea of a partial ordering relation (POR), a © a’ € A, would be the natural
way to generalize a PER and develop hybrid type theory. However this idea proves
problematic. We thus believe the approach taken here is the most natural setting
for a hybrid type theory.

1.1. Outline of the paper

In section 2 HTT is defined. Section 3 illustrates uses of the theory through

examples. Lastly, semantics is given and soundness proved in section 4. We assume

the reader has some familiarity with constructive type theory.”2%27

2. The Theory

We now define HTT, a hybrid theory of partial and total typed computations.

HTT is not a full-featured type theory, but is the core of one; some important
features not included are higher-order principles such as type universes, subtypes
and recursive types, and classical reasoning principles. These are removed so we
may focus on the core ideas in this presentation.

2.1. The terms

The theory has one sort, terms, which includes both types and computations.
This means there is no rigid separation of types and terms; it is only in how the
terms are used that the separation lies. We have an untyped language with numbers,
pairing and projection, functions and application, and types.

Definition 1 (Terms) The terms of HT'T are
(i) Variables z, y, z,...,
(ii) Data constructors 0,1,2,..., {(a,b), Ax.a,
(iii) Type constructors B, N, A, 2:AxB, x:A—B, a in A, a5 b, a]

(iv) Computation constructors pred(a), succ(a), if_zero(a;b;c), mi(a), ma(a),

a(h)

where inductively a, b, ¢, A, B range over terms, and x ranges over variables.

We let a—t, A-T range over terms. Although terms and types are of the same
sort, we informally use capital letters to denote what is intended to be a type and
small letters, terms. Notions of bound and free variables, open and closed terms
and substitution of b for # in a, a[b/x], are standard (we rename bound variables to
avoid capture); a-variants will be considered equal. We define a notion of contextual
substitution: contexts are terms with holes e; afe], A[e] ... range over contexts, and
a[b] denotes the replacement of all holes occurring in a[e] with b, possibly capturing
free variables in b. The values (also called canonical terms) are outermost a data or
type constructor, and are terms which cannot be computed further.

2.2. Judgements

All judgements are sequents, and take two forms: we may assert A to be a type,
“AType”, and assert a to be a member of type A, “a € A”. The rules are organized
such that in the process of showing a to inhabit A, A will be shown to be a type.

An assumption list I is of the form z1:A41, 29: A5, ... 2,:A,, and signifies reason-
ing takes place under assumptions z; € Ay, ..., z, € A,. Two forms of judgement
may be made; the first is

' A Type
which asserts that under assumptions I', A is a type. The second is

'Fae A
which asserts under assumptions I', @ inhabits type A. Note it is an invariant that
a € A always implies A Type: for a type to be inhabited it first must be well-formed.

2.3. Rules and proofs

Before presenting the rules, some conventions are given. In the hypothesis list
z1:A1, ®2: A, .. 201 An, &; may occur free in any A;4; for positive j, and free vari-
ables in the conclusion are no more than the z;. a-conversion is an unmentioned
rule. The judgement 0 € a T b will be abbreviated a T b, likewise for a| and
a in A—since there is at most one inhabiting object, 0, it need not be mentioned.

Also, in hypothesis lists, z:(a § b) will be abbreviated a T b, since z is known

to be 0. ¥ % Ay.(Az.y(z(@)))Ae.y(e(2))), and bot = (Az.z(2)) M.z (2)).

We also make a convention that when writing a dependent type as z:A—B(x) or
x:Ax B(x), x will not occur free in B. This means the only x bound by z:4 is the
z appearing in the application.

2.4. Computation

A call-by-name method of computation is used: the outermost constructor is
computed; if it is a value, no computation is performed. A terminating computation
is thus one which computes to a value. The deterministic nature of the computation
system 1s an important part of the partial type definition, because computations
may terminate but still contain undefined components. Take for example Az.bot,
which inhabits the type N—N: for some reduction strategies, this term would not
be in normal form and thus could not inhabit any type but a partial type A for
some A.

Two types directly assert properties of untyped terms: a L b asserts b is as
defined as a, and a| asserts a terminates. In accordance with the principle of
propositions-as-types, these types are inhabited (by the placeholder 0) just when
they are true. Equivalence a = b abbreviates (¢ £ b)x(b © @). The inhabiting
object justifying the truth of @ = b, (0,0), is often elided, following the above
convention for L. a 2 b abbreviates a = b—0 L 1, and a [Z b abbreviates a T
b—00 1.

(Computation) TriE

where ¢t and t’ are one of the following pairs:

t
(Az.b)(a) bla/z]
71({a,b)) a
wal(a b)) b
suce(n) n+1
pred(n+1) n
if zero(0;a;b) a

FFa?0 TraeN

I'F if zero(a;b;c) = ¢

(Comp if)

C -
(5 refl) F'Fal a

FFalb reslec
|: ~ ~
(€ trans) TFaC e

IFalb
|: ~
(K subst) = om

I e:EF (Az.a)(@) § (Az.b) (@)
F'FAz.a L Az.b

where z 1s not free in a or b.

(5 extensionality)

(Bottom) oo

L . Fcalb I'tal
(Termination inherit) TFb]

.. . FrFalb I'Fa=(m(a), 72(a))
(Pair inherit) TF b= (1 (8), ma(0))

F'Falb I'ka=Ax.alz)

(Func inherit) kb= Azx.b(z)
where z is not free in a or b

)) Frtalb I'FaeN
(Number inherit) TEa~}

. . Tt ai(a)l
(Pair left strict) TFa = (m(a), 72(@))

(Pair right strict) 11: :: ;Tzéazil (a), ma(a))

Lka(b)]

(Func strict) I'kFa=lzalz)
where x i1s a new variable not free in a

. 'k if zero(a;b;c)]
(If arg strict) TEaeN

. I+ succ(a)l
(Succ strict) FFacN

. I'F pred(a)l
(Pred strict) TFainNxaZ0

The strictness rules are surprisingly important for proofs in that they characterize

the evaluation order.

2.5. Membership

The expression a in A reifies the judgement a € A as a type; 0 € (@ in A) just
when a € A. The placeholder member 0 is implicit in the rules below.

. I'Fac A
(Member intro) Train A
. I'tain A
(Member elim) TFacA

2.6. Term

E is a type of all terms. A more useful theory is obtained by admitting E as a
type, quantifying over E allows abstract reasoning about untyped computations.

(Eintro) e

2.7. Natural numbers

N is a type of natural numbers, with standard rules.

(N intro) F'FaeN
Where a is one of 0, 1, 2,.. ..

'ra€eN
(N succ) 't succ(a) €N
There is a symmetric rule (N pred).

'aeN I'Fa20
I'F succ(pred(a)) = a

(N succpred)

F'raeN
I' F pred(succ(a)) = a

(N predsucc)

F'=6(0) € B(O) F'FaeN
(N induction) T, 2:N,b(x) in B(z) F b(succ(z)) € B(succ(z))
I'+b6(a) € B(a)

2.8. Dependent function

Dependent functions z:A—B(z) are also commonly notated lz:A.B(z). We
let A— B abbreviate #:A— B where z is not free in B.

I z:AFbe B(x) ' A Type
F'FAzbexz:A—B(x)

(Func intro)

Ttace A 'tbex:A—B(x)
(Func elim) I'Fb(a) € B(a)

where z 1s not free in b.

I'tac A I'tbex:A—B(x)
(Func lam) TFb=Az.b(x)

where z 1s not free in b.

2.9. Dependent product

Dependent products z:Ax B(x) are also commonly notated Xz:A.B(x), but
“dependent product” is a more apt computational description. These are types of
pairs for which the type of the second component of the pair depends on the value
of the first component. Let Ax B abbreviate z:Ax B where z is not free in B.

l'Fae A I'tbe B(a) I',z:AF B(z) Type
I'F{a,b) € x:AxB(x)

(Prod intro)

I'taecxz:AxB(x)
I'Fma)e A

(Prod elim left)

I'Faecxz:AxB(x)
I'my(a) € B(mi(a))

(Prod elim right)

. . F'Faexz:AxB(z)
(Prod elim pair) TF a= (mi(a), ma(@))
The third assumption of (Prod intro) assures that x:AxB(x) is a sensible type.
This antecedent is not found in (Func intro) because there it follows from the
antecedent z:AF b€ B(x).

2.10. Partial type

The bar type A is the type of (possibly diverging) computations over A. Three
principles axiomatize partial types: terminating objects in types A are also in A,
fixed points of functions f € A—A may be taken using the fixed point typing rule,
and inductive properties may be proven via fixed point induction. The latter two
properties only hold for certain admissible types A, defined below.

IalFa€e A ')Al F A Type
I'Fae A

(Bar intro)

['tal I'Fa€A
'Fagc A

(Bar elim)

I'tac A—A
(Fixed point) FFY(a)eAd
where A € A

Letting A be B—C|, partial functions may be typed with (Fixed point); examples
of its use are found in the next section. (Fixed point) is not generally true for all
types; a counterexample appears in section 3.3.

11,2129 3]lows inductive properties

A Scott-style fixed point induction principle
of partial functions to be proven. It is closely related to the fixed point typing
principle: both share the same admissible formulae, and in section 4, it will be

shown that their soundness proofs both follow from a single general lemma.

I'Fa(f(bot)) € P(f(bot)) TF feB—B
Iz:B,y:P(z) Fa(f(x)) € P(f(x))
LEa(Y(f)) e PO

where z:BxP(z) € A

(FP induction)

The set of admissible types A are those types for which the fixed point principle
and fixed point induction are valid. Informally, A is defined to be admissible if
for any dependent product subterms z:BxC occurring in A, if there is in turn
a dependent function y:D—FE inside C, z may not occur in D. What is defined
here is one approximation to a set of admissible types, an approach also taken in
first-order axiomatizations of fixed point induction.!®:29:2° The general question of
admissibility is undecidable.

We give a very simple inductive definition of admissible types. A more liberal se-
mantic as opposed to syntactic constraint is possible,3* but the resultant complexity
of such an approach places it beyond the scope of the present paper.

Definition 2 Given a set of variables X, the admissible types A are inductively
defined as follows:

A = zA—-A+c:AxBIE 44 inA—i—Z—I—a,‘;_b—}—al—}—E—i—N
BX = 2:C0—BX +e:BXxBX#t L g in BX+BX +alb+al+E+N

where C' contains no free occurrences of variables in X and is by inspection a well-
formed type.

Note how equivalence assertions a = b are not admissible. This is one reason why
the theory herein is based around T instead of =, and why the PER approach to

type equivalence falls short in a partial setting.

2.11. Type
C
(K form) 'al b Type
(1 form) I'Fal| Type
' A Type

(Member form)

I'F(a in A) Type

(Eform) —rgype

(Nform) R gype

'+ A Type I',z:AF B(z) Type
I'txz:A—B(z) Type

(Func form)

I'H A Type I'z:AF B(x) Type
I'Fxz:AxB(z) Type

(Prod form)

')Al F A Type
I'F A Type

(Bar form)

2.12. Miscellaneous

(Contradict) FalLbkFeeC
where a [Z b by inspection

I'beB IzBFaeA

(Cut) Froea

F''kbeB [z:BF A Type

(Cut type) ' A Type

(Hypothesis) rrzeA
where z:A4 occurs in I

FFa=b I'F cla] € Cla]

(Subst) F e cm

FFa=b I'F Cla] Type

(Subst type) TF Ol Type

I'Fae A
(Type termination) I'tal
where A is by inspection not of the form B or E.

(Prop member) DzAbz=0
where Ais (b in B), a 5 b, or a].

3. Examples of the theory in use

We now give examples illustrating how HTT may be used to reason about
programs, concentrating on the partial types and associated fixed point rules. We
demonstrate two uses for the fixed point typing rule: for typing fixed points, and
for proving by extracting fixed point objects.

3.1. Propositions and extraction

Propositions are expressed as types, using to the now-standard embedding.
First, disjoint sums may be defined using existing types.
Definition 3

A+ B def z:Nxif _zero(xz; A; B),

in1(a) € (0, a),
inr(a) ef (1, a),

decide(a, b, ¢) def if zero(my(a); b(ma(a)); c(ma(a))).

Definition 4 Logical expressions are defined in terms of types as follows:

A=B “a.pB
AANB “axB
AvB ¥Aain

~A T A-(0C
Vz:A. B def z:A—B

Jdz:A. B def r:AxB

3.2. Using partial types

The partial type operator A gives a general notion of partiality. For example,
consider the (total) function space on natural numbers N—N; there are seven partial
type versions, N—N, N—N, N—N, N—N, N—=N, N—N, and N—N. N—N is the

type of terms which, if they terminate, are total functions on natural numbers.

N—N is closer to what we would consider a partial function: the argument of the
function always terminates, but the result might not terminate. N—N is also a type
of partial functions, allowing the function itself to diverge. This will in fact be the
type generally used herein to express partial functions, it has the advantage over the
previous form that partial functions compose. N—N is the type of partial functions

for a call-by-name functional programming language. Fully partial types, as used
in a programming language, may be defined by inductively barring all constructors
in the type. Note A = A.

For convenience we use the following abbreviation for partial functions:

ALY B(z) def z:A—B(z).
To express recursive functions, fixed points Y(f) € A L. B of functionals fe
(A it B)—(A na B) are typed using the fixed point typing principle. In this general

10

manner all recursive functions may be typed. We give an example of typing a simple
recursive addition function of two curried arguments.
Lemma 1 F plus € N—N 2 N, where
plus def Az Y(Az.Ay.if zero(y; z; succ(z (pred(y))))).
Proof. By the fixed point typing principle and (Bar intro), (Func intro), it
suffices to show
NS N,y:N, z:N I if zero(y; z; succ(z(pred(y)))) € N.
Since y € N, we can proceed by cases on y = 0 or not, using (N induction). First,
consider the case where y = 0; computing with (Computation) gives
:L‘:NgN,y:N,z:N,yE OFz€&N,
which follows directly by (Bar intro). Consider next the case y 2 0. By (N Pred),
(Hyp), (Succ strict) and (N Succ),
N N, y:N,z:N,y 2 0, succ(z(pred(y)))| I succ(z(pred(y))) € N.
By (Bar intro),
N 2 N,y:N, z:N,y 2 0 F succ(z (pred(y))) € N,
which by (N succ) and (Bar intro) gives
N N,y:N,z:N,y 22 0,z (pred(y)) | F z(pred(y)) € N.
At this point, since pred(y) € N (by (N pred)), we only need to apply the function
z. However, as written, « may not be a function because it may diverge, but
since z(pred(y))], (Func strict) gives z|. Then, by (Bar elim), 2 € N—N, so
z(pred(y)) € N, so by (Bar elim), z(pred(y)) € N. O

3.3. Not all fized points are typable

To illustrate the limits of the fixed point typing principle, we show a type which
cannot be admissible if the theory is to be consistent.
Theorem 1 There is a type D and term d such that - d € D—D, but -Y(d) € D
implies =022 1.
Proof. Define

D z:(N—=N)x=(Vy:N. z(y) |) and

4% Az.(Ay.if zero(y; 0; (m1(z)) (pred(y))), Aw.0).
D states “there exists a function z that is not total”; Y(d) is a pair consisting of a
total function and the proof object Aw.0. Y(d) € D is then a contradiction, because
a total function is asserted non-total.

First, show - d € D—D. Using (Fixed point), assume z € D, and show the pair
to be in D. For the left half of the pair, f % Ay.if zero(y; 0; (m1(2))(pred(y)))
must be shown to be in N—N. This proof is similar to the proof of Lemma
1 above. For the right half of the pair, we show —=(Vy:N. f(y)|): suppose the
antecedent were true; then, z| because mi(z)| by strictness. Thus, z € D, so
ma(z) € =(Vy:N. m1(2)(y) |). But, if 71(2) is not total, f will also not be total,
contradicting our assumption. Thus, d € D—D.

Since we assume - Y(d) € D, F Y(d) € D follows by computing. From this it
follows that the function 71 (Y(d)) € N—N is not total. However this is a contradic-
tion as F m1(Y(d)) € N—N is provable using natural number induction. Therefore,

11

F=(Y(d) in D), and F0=1. O

3.4. Partial propositions and partial proofs

The bar operator may also be applied to types which represent propositions,

giving types such as Vn:N. 3m:N. P(m, n). We call such types partial propositions.
A for any type A is trivially true under the propositions-as-types interpretation,
because bot € A. However, if a € A and a|, then a € A, so A is true. If we can
potentially show termination of a, proving a partial proposition is useful. Partial
propositions can be viewed as a logical notion of partial correctness.

Partial propositions are most relevant for universal quantifiers, because their
extract objects are functions; a partial function type has as analogue a partial

universal quantifier.

Definition 5 Vz:A. B(z) def pa B B(z)

Consider for instance the type
P VN, Jy:N. y Zmult(x) (z), where
mult Y(Az. Az Ay.if zero(x; 0; plus(y, z(pred(z)) (y)))).
If p € P and for some particular n € N p(n) |, then p(n) inhabits the type Jy:N.y =
mult(n) (n). Inhabiting objects validating propositions are always total, whereas
objects inhabiting partial propositions are partial.

3.4.1. Extracting recursive programs

An extension to the extraction paradigm is possible via the notion of par-
tial proposition: arbitrary recursive computations may be directly extracted from
proofs. Consider the following derived rule.

Lemma 2 The following non-well-founded induction principle is a derived rule in

HTT.

L, h:(Vz:A. B(2)),z:AF b € B(x)
(Partial Induction) ['FY(AhAz.b) €Ve:A. B(x)
where Vz:A. B(z) € A

Proof. Direct from the fixed point typing principle. O

When using this rule we may use the fact Yaz:A. B(z) in the proof of itself, result-
ing in an extract object which is a fixed-point computation. There is a well-known
analogy between programming constructs and proof constructs: implication corre-
sponds to function abstraction, disjunction corresponds to if-then-else, etc. The
above rule gives the proof analogue to the fixed-point programming construct. This
rule is not sound in total type theory, so there the fixed-point construct has no
corresponding rule. For example, consider the partial proposition

Vi:List. 3I":List. sorted(l’) A permutation(,!).

Using (Partial Induction), we can assume what we are trying to prove, and thus give
a proof where the proof recursion is exactly the algorithm recursion. This induction
is not necessarily well-founded, because if we apply the induction hypothesis in
a fashion that the value is not decreasing, the resulting extract object will loop

12

forever. For instance, using this rule Y(Ah.Az.h(z)) proves all ¥ propositions. For
this reason partial proofs will often not be appropriate.

3.4.2. An Example of Recursive Function Extraction

A sketch of the extraction of a fixed-point primality tester from a partial propo-
sition is now given.
Definition 6

minus 2 Y(Az. Az . Ay.if zero(x;0;if zero(y; z; z(pred(z)) (pred(y)))))
rLleqy def minus(z,y) =0

yDivides ey Leqy A Jz:N.mult(y) (z) =«

2 Is Prime Thruy = Vz:N. 2 Leqz = zLeqy = —(zDividesz)

z Is_Composite Thruy L 3,N. 2 Legz N zLeqy A zDivides

Lemma 3 + ¢ € Vz:N.Vy:N. 2 Is Prime_Thruy V z Is_Composite_Thruy.

The extract object e will be a fixed-point function such that e (z) (pred(z)) decides
whether or not z is prime; furthermore, if is composite, one of its factors will be
returned. An induction argument could then be given to prove this function is in
fact total.

Proof. Using the fixed point typing principle, assume

Fze (Vm:N.Vy:N. 2 Is Prime Thruy V z Is_Composite Thruy),z € N,y € N,
and show

F e’ € x Is Prime Thruy V z Is_Composite Thruy,

where ¢ %< Y(Az.Az.Ay.e’) and €’ is to be determined. Inside €', uses of z are
=2 0ory=1the
proof is trivial, so assume 2 Leq y is inhabited. Proceed by cases on yDivides z,

recursive calls, which logically are uses of the hypothesis z. If y

taking as given the obvious term div and proof of F div(z)(z) € (zDivides z) V
—(zDivides z)).
case yDividesz: Clearly then z is composite, so the right disjunct can be proven
letting z be y, noting 2 Leq y by assumption.
case —(yDividesz): Recursively use the hypothesis z for y one smaller, i.e. apply
z(x) (pred(y)), and the result also follows. O
The full extract object e is
Y(Az, 2, y.if zero(y; inl(Az. Awi Aw;.0); if zero(pred(y); inl(Az.Aw; Aws.0);
decide(div(z) (y); Aw.inr({y, (0,0, w))); Aw.z (z, pred(y)))))).
For instance, e(6)(5), a test if 6 is prime, computes to inr((3,(0,0))), meaning
3Divides 6 (studying e will convince the reader that the largest factor is returned
if the number is composite). Note that since this proof term terminated, we now
have a (total) proof that 6 is not prime. This notion of proof may be particularly
well suited to reflected proof search, for the proof searcher will be a partial proof
which, if it terminates, produces an actual proof.

13

Partial propositions extend the collection of statements that can be phrased
when reasoning constructively, giving a more expressive logic. The notion of par-
tial proposition makes no sense in a purely classical theory since proofs may not
have computational content. See (Ref. 5) for some applications of partial proofs in
theorem proving.

4. Semantics

A semantics for HTT is now given which shows it to be a soundly constructed
theory. A simultaneous inductive definition of types and their members is given.
Our approach is based on the work of Allen,>? for which there is some precedence
in the literature’%17. We refer the reader to these references for a more detailed
description of the technique, a terse treatment will be given here.

Types are properties of type-free computations in HTT so untyped computa-
tions have independent meaning. An untyped equivalence = is defined, and types
are defined as sets of untyped computations. In this paper, untyped equivalence is
defined operationally following Morris?® and Plotkin3%: two terms are considered
equivalent iff no program context can distinguish between the two upon execution.

Once operational equivalence on terms is defined, the types and their inhabitants
may be inductively defined as outlined above. Establishing soundness of the rules
is then straightforward except for the fixed-point rules. These rules require a proof
by induction on the structure of the admissible types.

4.1. Interpretation of computations

Since an operational meaning is given to terms, terms are interpreted in the
semantics as themselves, i.e. a term model is constructed. Our presentation of
operational semantics follows the approach of (Ref. 33,23), and we refer the reader to
these papers for the details missing here. One contribution found in these references
is a definition of operational equivalence over directed sets of computations, =;.
The following property of this ordering, Theorem 4 below, is behind the proof of

soundness of the fixed point rules:
{Y(N)} = {f*(bot) | k € N}.

To obtain the appropriate notion of untyped equivalence, types need to be de-
structable. Otherwise, all types with the same outer constructor would be opera-
tionally equivalent, for no program context could distinguish between them. For
this purpose, the collection of terms is extended.

Definition 7 The extended terms are the terms as defined in Definition 1 with in
addition the computation constructor destr(A).

For the remainder of this paper, we will work over extended terms. First, an
operational interpreter for untyped computations is defined. We present a single-
step rewriting interpreter, using the more convenient notion of a reduction context
to isolate the next redex.'?

14

Definition 8 Computations are terms that are outermost a computation construc-
tor, i.e. pred(a), succ(a), if_zero(a; b;c), m1(a), m2(a), a(b), or destr(A). Values
are terms that are outermost a data constructor or type constructor.
Computations are terms that may be further evaluated; closed terms are either
computations or values. A call-by-name evaluation strategy is deterministic, so at
most one reduction applies. Recall earlier we had defined contexts c[e], terms with
holes in which other terms may be placed. Reduction contexts are a special form
of context that isolate the position of the next reduction.
Definition 9 A reduction context R[e] is inductively of the form

o, R[e](a), if zero(R[e];a;b), pred(R[e]),

succ(R[e]), m1(R[e]), ma(R[e]), or destz([e]),
where R[e] is a reduction context, and a and b are terms.

Single-step computation — is next defined. Since the reduction context isolates
the next reduction to perform, it is only a matter of performing the reductions at
the point isolated by the reduction context.

Definition 10 1, single-step computation, is the least relation such that

R[succ(a)] 1 Rla+1]
Rlpred(a+1)] —1 R[a]
R[if zero(0;b;¢)] —1 R[b]

R[if zero(a;b;c)] +—1 Rc], wherea e {1,2,...}

R[(Az. b)(a)] —1 Rlb[a/z]]
Rlm({(a,8))] =1 R[d]
Rlms((a,0))] —1 R[b]

Rldestr(T)] 1 R[(IL(T), Mx(T))],

where 111 (T) and M2(T) are defined as follows.

T IL(T) T(7)
z:A—DB 0 (A, Az.b)
z:Ax B 1 (A, Az.b)

A2 A

al 3 a
ain A 4 (a, A)

albb 5 (a, b)

N 6 0

E 7 0

Definition 11 — is the transitive, reflexive closure of —1. a| iff a — b for some
value b.

Note we overload the type syntax “a|” as a relation here; the appropriate meaning
should be clear from context. A similar overloading of L and = will be defined
below.

4.2. Equivalence and ordering of computations

HTT has an untyped ordering type a L b. We give an operational interpretation
of this ordering. Here a terse exposition of the results relevant to HTT soundness is

15

given; for a more detailed exposition and proofs, consult (Ref. 33,23). Operational
ordering a I b and equivalence a = b are defined as follows.

Definition 12 a T b iff for all contexts c[e] such that c[a] and c[b] are closed, c[a]]|
implies c[b]]. a=b iff aL b and b T a.

In order to establish useful properties of [it is useful to give an alternative char-
acterization for which proving equivalences is easier. Let ¢ range over finite substi-
tutions [a1/21, as/x2,...]. o(a) denotes applying substitution ¢ to term a.
Definition 13 « ,Ecm b iff for all substitutions o and all reduction coniexts R[e]
for which R[o(a)] and R[o(b)] are closed, R[o(a)]| implies R[o(b)]].

This ordering is called ciu-ordering since the contexts are closed instances of all
uses. The main characterization is then as follows.

Theorem 2 a gcm biffalb

Using this Theorem, a large number of properties of I and = may be established.
Lemma 4 (i) T is transitive and reflezive, and = is an equivalence relation;

(ii) © is a pre-congruence: a 5 b implies c[a] § c[b] for all c[o];
(iii) = is a congruence: a = b implies c[a] = c[b] for all c[e];
(iv) 5 is extensional: Az.a Az.b iff for all ¢, (Az.a)(c) § (Az.b)(c).
(v) ot L a;
(vi) a=d ifa—d
(vii) If a] and a 5 b, then b].
(viti) If a 5 b and a = (w1(a), 72(a)), then b= (w1 (b), ma(d));
(iz) If a S b and a = Ax.a(z), then b = Az.b(z), for fresh variable z;
(z) IfaC b and a € {0,1,2,...}, then a = b;
(zi) If mi(a)] or ma(a)l, then a = (m1(a), m2(a));
(zii) If a(b) | then a = Az.a(xz) for fresh variable x;
(ziii) If if _zero(a;b;c)| then a € {0,1,2,...};
(ziv) If if zero(0;b;c)| then b];
(zv) If if zero(n;b;c)| and n € {1,2,3,...}, then c|;
(zvi) If succ(a)| or pred(a)| then a €{0,1,2,...}.

All of the computational rules may be justified by one of the cases of the above
Lemma. Note, (bot,bot) = Az.bot, but this artifact causes no problems.

Next the ordering T on L-directed sets of terms, and associated equivalence
=, are defined. As mentioned previously, properties of this ordering will aid in
establishing the fixed point rules.

Definition 14 A set of terms S is directed iff for every a,b€ S, a S c and b T ¢
for some c € S.

16

We hereafter restrict ourselves to L-directed sets of terms S containing only finitely
many free variables, for otherwise it may be difficult to obtain fresh variables.

Definition 15 S _ S" iff S and S'are T- directed and for all reduction contexts
c[e] such that c[S] and ¢[S'] are closed, for all s € S, if ¢[s]], then ¢[s']| for some
s'eS. S S fSE. S and S’ S.

The following properties are direct from the definitions.

Lemma 5

(1) a5 b ff {a} 5, {b}.

(i1) 5, is a pre-congruence, i.e. if SIS then c[S'] I c[B].

(iii) =g is a congruence, i.e. if S = S’ then c[S'] = ¢[B].
(iv) ST 8" if for all s € S, there is an s' € S such that s s’

As with = the crucial tool in establishing =25 equivalences is an alternate charac-
terization, which takes an analogous form.

Definition 16 S g;iu S"iff S and S directed and for all reduction contexts R|e]
such that R[o(S)] and R[o(S")] are closed, for all s € S, if R[o(s)]], then R[o(S")]]
for some s’ € 5.

Theorem 3 for all T-directed sets S and ', ST_S" iff S Eziu S’

Using this alternate characterization, the key property may be proven. For some
given function f, define

def

So % {bot, f(bot), F(F(bot)), ..., fi(bot),...}.

Theorem 4 {Y(f)} =, So.
Proof. {Y(f)} 3, So is a direct induction; show . Observe Y(f) = f'(f")
where f' = Az.f(x(x)), so it suffices to show {f (")} T {f*(bot) | k € N}.
Expanding definitions, show

R[f'(f)]] implies R[f* (bot)]| for some k.
To prove this we need to generalize the statement to allow the term in the reduction
hole to appear elsewhere in R, and for the reduction point to be a more general
form. We will notate this as R[e][e], where the first hole can be anywhere in R and
the second hole represents the reduction point. See (Ref. 34) for a more detailed
description of this technique. The generalized goal is

RIF' CO[elf (FO]]] implies R[f* (bot)][c[f* (bot)]]| for some k,
proved by induction on the length of computation. The only interesting case, where
f'(f") is touched, is

R DI D] =1 RIFUDIFG SN,
with the goal to show R[f* (bot)][f* (bot)]|. By induction hypothesis, for some ',
R[f* (bot)][f (f* (bot))]], so since f* (bot) T f* +1(bot), and f(f* (bot)) =
FE 41 (bot), R[f*'+1 (bot)][f*'+1 (bot)]|, and letting k be k’'+1, the goal is proven.
O

17

Intuitively, this proof formalizes the fact that in any particular program context,
some finite-depth recursion stack will suffice to compute a recursive function to
termination, provided we know the function terminates to begin with.

All that remains is to show the atomic case of fixed point induction. This theo-
rem will directly justify admissibility for base types containing L for free occurrences
of z.

Theorem 5 (Atomic fixed point induction) If c[f*(bot)] T ¢/[f* (bot)] for
all k, c[Y(H]T YN

Proof. By Lemma 5 and Theorem 4, {c[f*(bot)] | k € N} =, {c[Y(f)]} and
{[fF(bot)] | k € N} = {¢/[Y(f)]}. Then, using the fact {c[f¥(bot)] |k e N} T
{c'[f*(vot)] | k € N} (by definition of L,) and the above equivalences, the result
is immediate. O

4.3. Defining the types and their inhabitants

The types and their inhabitants may now be defined by simultaneous induction.
In the presence of dependent types it is impossible to first define the types and then
define membership relations for the types, because for a term z:A—B(x) to be a
type, B(a) must be a type for all members a of type A. This means the members
of A must be defined before the type x:A— B(z) is considered well-formed.
Open terms are considered only when interpreting hypothetical judgements, so
until that point all terms are implicitly taken to be closed.
Definition 17 A type interpretation is a two-place relation T(A,€) where A is a
term, and € is a one-place relation on terms.
7(A, €) means A is a type with its members specified by e. The following definitions
make this more clear:
Definition 18
A Type, iff Je. 7(A,€)
a€; Aiff Je. 7(A, €) and e(a).
A Type, means A is a type in interpretation 7, and @ €, A means a is a member
of the type A.
The desired type interpretation v is now inductively defined as the least fixed
point of a monotone operator.
Definition 19 Operator ¥ on type interpretations is defined as follows:

W(T) def 7', where 7/(T,€) is true if and only if

ecither T — E, in which case
Vi €(?)
or T+ N, in which case
Vi e(t) iff t = n, wheren is0,1,2,...
or T al b, in which case
Vi e(t) iff t =0 anda T b
or T v al, in which case
Vi e(t) iff t =0 and al

or T a in A, in which case

18

A Type,, and

Vie(t) ifft=0andae, A
or T w— x:A—B(z), in which case

A Type, AVae; A. B(a) Type,, and

Vi e(t) iff t = de.b A Va €, A t(a) €, B(a)
or T w— x:AxB(x), in which case

A Type, AVae; A. B(a) Type,, and

Vi e(t) iff t = (a,b) Nae; ANbe; B(a)
or T +— A, in which case

Al = A Type,, and

Vi e(t) ifft] => te, A

Lemma 6 V¥ is a monotone operator on type interpretations.
Definition 20 v is the least fized-point of the monotone operator V.

Hereafter we will be working in type interpretation v, and subscripts may be

dropped: a € A L €, A, and A Type 4 Type,. With this definition in

place, numerous lemmas about these relations can be proven either directly or by
straightforward induction on the definition of v.
Lemma 7 (i) a € A implies A Type.

(ii) A Type implies A].

(iii) c[a] € C[A] and a = b and A= B implies c[b] € C[B].

Now some lemmas about typehood and membership which follow directly from
the definitions are proven. a, b, ¢, A, and B may be taken to be arbitrary closed
terms.

Lemma 8 Type formation is characterized by the following properties.

(i) E Type, N Type.
(ii) a] Type, a 5 b Type.
(iii) a in A Type iff A Type.
(iv) x:A—B(x) Type iff A Type and for alla € A, B(a) Type.
(v) ©:AxB(x) Type iff A Type and for alla € A, B(a) Type.
(vi) A Type iff A| implies A Type.
(vii) A€ A and A closed implies A Type.
Lemma 9 Type membership is characterized by the following properties.
(i) c€ E iff ¢ closed.
(ii) c€al iff c=0 and al.

(iit) c€albiff c=0 and a T b.

19

(i) c€Niffe=0,1,2,. ...
(v) c€(ain A) iff (a in A) Type and ¢ =0 and a € A.

(vi) ¢ € w:A—B(x) iff 2:A—B(x) Type and ¢ = dz.c(z) and for all a € A,
c(a) € B(c).

(vii) ¢ € x:AxB(x) iff x:AxB(x) Type and ¢ = (m1(c), m2(c)) and m1(c) € A and
ma(e) € B(mi(c)).

(viii) c € A iff A Type and if c|, c € A.

Most of the rules for individual types can be justified directly from the preceding
Lemmas. The one exception is the fixed point rules, which require a more in-depth
analysis.

4.4. Soundness of the fized point rules

The fixed point typing principle is not true for all types, illustrated by the
counterexample presented in section 3.3. Here we show the principle is in fact true
for the admissible types: if f € A—A, and A is admissible, then Y(f) € A. The
fixed point induction principle is also proven sound. The theorems are proved by
induction on the definition of the admissible types.

We will use the shorthand fi1 for {f* (bot) | k > j}; when it is not ambiguous,
notation will be stretched to make assertions such as “f/T € A[f/T/z]”, meaning
¥ (vot) € A[f* (bot) /] for all k > j.

Theorem 6 (Fixed point typing) If A € A and there exists j with f* (bot) € A
for all k > j, then Y(f) € A.

Proof. This theorem is proved by first generalizing to an arbitrary context
afe] containing f* (bot) or Y(f), from which the theorem directly follows. Types
in A and B have different properties that are proved of them, so we establish two
properties by simultaneous induction:

(i) For arbitrary afe] and A € A, if there exists j such that a[f/T] € A then
alY(f)] € A

(ii) For arbitrary a[e] and A € B{*} and z being the only free variable in A, if there
exists j such that a[f7T(bot)] € A[f/T(bot)/x] then a[Y(f)] € A[Y(f)/x].

Proceed by induction on the definition of A. Consider case A € A. From the
assumption a[f/T(bot)] € A, show a[Y(f)] € A by case analysis on the form of A.
case A = E or N: For E, the result is trivial, for N it is computationally clear:
Y(f) = f(Y(f)) by computing, and bot T Y(f), so f*(bot) T Y(f) by Theorem
4.
case A =b| or b ¢: Computationally obvious just as above, because a[f’1] and
a[Y(f)] can at most compute to 0.
case A =b in B: To show a[Y(f)] € b in B it suffices to show

alY(f)] =0 and b € B,

20

using Lemma 9 (uses of which we refrain from citing hereafter). Both of these
conditions are direct by assumption.
case A = z:B—C: To show a[Y(f)] € :B—C it suffices to show

alY(f)] = Az.d for some d and for all b € B, a[Y(f)](b) € C[b/z].
The first condition is computationally direct from the assumption a[f/T (bot)] =
Az.d'. For the second condition, assume b € B; by assumption, a[f/1](b) € C[b/x].
So, since A is defined in terms of C[b], the induction hypothesis may be applied to
complete the proof of this case (let afe] there be a(e) (h)).
case A = 2:BxC: To show a[Y(f)] € 2:BxC' it suffices to show

alY(f)] = (b,¢) and m1(a[Y(f)]) € B and ma(a[Y(f)]) € Clmi(a[Y(F])/x]
The first condition is computationally direct from the assumption a[f?T(bot)] =
(b, ') for some j. For the second condition m1(a[Y(f)]) € B, by assumption we
have m1(a[f?1]) € B for some j. So, since A is defined in terms of B, the induction
hypothesis may be applied to prove this condition. For the third condition, since
mo(a[f71]) € Cla[f1]/x] for some j, and C € BI*} and thus Cla[z]/z] € BI*}, the
conclusion follows by induction hypothesis.
case A = B: 'Toshow a[Y(f)] € B it suffices to show

if a[Y(f)]] then a[Y(f)] € B.
So, assuming a[¥(f)]], show a[Y(f)] € B. Since {f* (bot) | k € N} =, {¥(f)} (by
Theorem 4) and by the definition of =, there is some j’ for which a(le (bot))|;
all larger approximations also clearly terminate. By assumption,

Yk > j. if a[f*(bot)]| then a[f* (bot)] € B
for some j. Picking j” to be max(j,j'), a[fjl’T] € B, which inductively yields the
result.

Now consider case (i), A € Bi=}.
case A = E or N: same as in case (i).
case A = b c: By hypothesis, a[f/1] € (b[f71] T c[f?1]) for some j. It suffices
to show {b[f*(bot)] | k > j} T {c[f* (bot)] | k > j} by two uses of Theorem 4.
And, this in turn follows by the assumption and Lemma 5 case (iv).
case A =1b|: If b[f*(bot)]], then b[Y(F)]| by the definition of .
case A =b in B: To show a[Y(f)] € b[Y(f)/z] in B[Y(f)/z] it suffices to show
alY(f)] = 0 and b[Y(f)/z] € B[Y(f)/z]. Both of these conditions are direct by
assumption.
case A = y:B—(C": First, B contains no free = by inspection of the definition of
Bz}, To show a[Y(f)] € y:B—C[Y(f)/z] it suffices to show

alY(f)] = Ay.d and for all b € B, a[Y(f)](b) € C[Y(f)/][b/y].
This in turn follows by similar reasoning as for A € A.
case A = y:Bx(C: Toshow a[Y(f)] € y:B[Y(f) /x]xC[Y(f)/x] it suffices to show
al¥(P)] = (b,), mi(al¥(D]) € BIY() /o] and ma(al¥ (P)]) € CYCP [alm(aly (F])/ o).
The first condition is computationally direct from the assumption a[f/T(bot)] =
(b', ') for some j. For the second condition m1(a[Y(f)]) € B[Y(f)/z], by assump-
tion,

3j. m(a[f'1]) € Bf71/2].

21

So, the induction hypothesis may be applied to prove this condition. For the third
condition, since mo(a[fi1]) € C[f1/x][x1(a[f1])/2], and by the definition of BI#}
C € B} so Clmi(a[z])/y] € BI#} and the conclusion follows by induction hypoth-
esis.
case A= B: To show a[Y(f)] € B[Y(f)/x] it suffices to show
if a[Y(f)]] then a[Y(f)] € B[Y(f)/z].
So, assuming a[Y(f)]|, show a[Y(f)] € B[Y(f)/xz]. Since {f*(bot) | k € N} =
{Y(f)} (by Theorem 4) and by the definition of =, there is some j’ for which
a(fjl (bot))|; all larger approximations also clearly terminate. By assumption,
Vk > j. if a[f*(bot)]| then a[f* (bot)] € B[f* (bot)/z]
for some j. Picking j” to be max(j,j'), a[fj”T] € B[fj”T/r], which inductively
yields the result. O
Theorem 7 (Fixed point induction) If

(i) a(f(bot)) € P(f(bot)),
(ii) (Vb€ B.a(b) € P(b) = a(f(b)) € P(f(b))),
(iii) x:BxP(z) € A, and f € B—B,

then a(Y(f)) € P(Y(f)).

Proof. From the assumptions, prove a(Y(f)) € P(Y(f)). First, proceed by
cases on whether f(bot) = bot.?

case f(bot) = bot: Then, f*(bot)] for all n by a direct induction. Thus,
{f¥(bot) | k € N} = {bot}, and since {f¥(bot) | k € N} = {Y(f)} by Theorem
4, the conclusion follows by assumption (i).

case fF(bot)|: We first show a(f*(bot)) € P(f*(bot)) for all k > 1. For
k = 1, this is assumption (i); assuming a(f* (bot)) € P(f*(bot)) for k > 1, show
a(f**1(bot)) € P(f**+!(bot)). Since f*(bot) € B, f*(bot) € B by assumption
f¥(bot)|. Thus from the assumption (ii), a(f¥*1(bot)) € P(f*+1(bot)). P €
Bi#} by inspection of the definition of B, so from the second case of the fixed point
typing theorem (Theorem 6) letting j there be 1, a(Y(f)) € P(Y(f)). O

4.5. Soundness of the rules

All of the pieces of the interpretation are in place, and it only remains to show
each of the rules are sound. Let G stand for one of b € B and B Type.
Definition 21 Validity of a sequent

z1: Ay, 9:As, 2 A EG
1s defined as
Vay € Ay, as € Aslar/z1],. .., an € Anlar/21, ... an—1/Zn_1]
Glay/z1, ..., an/2,].
Theorem 8 (Soundness) IfT G then T = G.

2QObserve this axiom thus is not constructively validated; a slightly weaker version with B
replacing B is constructively valid.

22

Proof. The computation rules each follow directly from one of the cases of
Lemma 4. The type formation rules follow from Lemma 8. Rules for individual
types, with the exception of the fixed point rules, follow from Lemmas 7 and 9.
(Fixed point) follows from Theorem 6, and (FP induction) follows from Theorem
7. The miscellaneous rules are either direct from the definition of = ((Cut), (Cut
type), and (Hypothesis)), follow from Lemma 7 ((Subst) and (Subst type)), or are
direct by inspection of the definition of v ((Contradict), (Prop member), (Type
termination)).

O
Theorem 9 (consistency) HTT is logically consisient, i.e. there exist lypes
which cannot be proven inhabited.
Proof. The type 0 L 1 has no members by inspection of the definition of v, so
for no a is it the case that = a € 0 5 1. Therefore, for no aist a € 0 1 provable,
by Theorem 8. O

5. Conclusion

A hybrid partial-total type theory has been presented. The theory has all of
the features of a programming logic designed to type and reason about partial
functions, as well as the standard total types of constructive type theory. The
fixed point typing principle may be used over a wide range of types (in particular
all of those types not containing the atomic proposition types a in A, a|, and
a T b). However, the collection of admissible types could be enriched still further.
An alternative solution to achieve this is to axiomatize _ within the theory; using
this approach, fixed points may be typed and fixed point induction justified from
more basic principles; see (Ref. 34). This hybridization is in principle possible in
Martin-Lof style type theory, but as was discussed in the introduction, lack of an
ordering I makes it very difficult to formulate a useful induction principle. See the
Appendix of (Ref. 32) for a hybrid version of the Nuprl theory. The induction rule
there is quite restrictive when compared to fixed point induction as axiomatized
herein.

There has been some work to give a category-theoretic framework for partial
computations in a total-type framework as we do here, using categorical monad
constructions. Moggi’s approach?* is more abstract than that carried out here,
because the monad operator T'(A) represents general computations over type A, not
just potential divergence A. Crole and Pitts!® add a fixed point object to the monad,
allowing fixed points to be typed. They work over base type N and simple functions
A— B only, so the difficult issue of non-admissible types does not arise. Audebaud
has developed a version of partial types for the Calculus of Constructions.* Again,
the lack of (strong) dependent products in the Calculus of Constructions keeps all
types admissible.

Martin-Lof has developed a Partial Type Theory. However his theory is not
a hybrid—all types are partial, and thus the propositions-as-types principle fails
and no logical reasoning is possible. Palmgren has elaborated upon Martin-Lof’s

ideas.?®

23

By adding bar types we allow diverging computations to be typed. An alternate

approach is to add types to allow arbitrary well-ordering types to be constructed

and use these to prove functions are total.26:%1% Howewver there are weaknesses

to this approach—it creates a significant overhead and does not allow general par-

tial correctness results to be proven. There is also no technique for overhead-free

extraction of fixed points, something the partial propositions allow in HTT.

Acknowledgements

Thanks to Robert Constable, Stuart Allen, Doug Howe, Nax Mendler, and Car-
olyn Talcott for comments on earlier versions of this work.

References

1. P. Aczel. Frege structures revisited. In B. Nordstrom and J. Smith, editors, Pro-
ceedings of the 1983 Marstrand Workshop, 1983.

2. S. F. Allen. A non-type theoretic definition of Martin-Lof’s types. In Proceedings
of the Second Annual Symposium on Logic in Computer Science, pages 215-221.
TEEE, 1987.

3. S. F. Allen. A non-type-theoretic semantics for type-theoretic language. Technical
Report 87-866, Department of Computer Science, Cornell University, September
1987. Ph.D. Thesis.

4. P. Audebaud. Partial objects in the calculus of constructions. In Sizth Symposium
on Logic in Computer Science, 1991.

5. D. A. Basin. An environment for automated reasoning about partial functions. In
9th International Conference On Automated Deduction, volume 310 of Lecture notes
in Computer Science, pages 101-110, 1988.

6. M. J. Beeson. Recursive models for constructive set theories. Annals of Mathemat-
teal Logic, 23:127-178, 1982.

7. R. L. Constable, S. F. Allen, H. Bromley, W. R. Cleveland, J. Cremer, R. Harper,
D. Howe, T. Knoblock, N. P. Mendler, P. Panangaden, J. Sasaki, and S. F. Smith.
Implementing Mathematics with the Nuprl Proof Development System. Prentice-
Hall, Englewood Cliffs, New Jersey, 1986.

8. R. L. Constable and N. P. Mendler. Recursive definitions in type theory. In Rohit
Parikh, editor, Logics of Programs, volume 193 of Lecture notes in Computer Science,
pages 61-78, Berlin, 1985. Springer-Verlag.

9. R. L. Constable and S. F. Smith. Partial objects in constructive type theory. In
Proceedings of the Second Annual Symposium on Logic in Computer Science. IEEE,
1987.

10. R. L. Crole and A. H. Pitts. New foundations for fixpoint computations: FIX-
hyperdoctrines and the FIX-logic. Information and Computation, 98:171-210, 1992.

11. J. W. deBakker and D. Scott. A theory of programs. unpublished Notes, 1969.

12. S. Feferman. A language and axioms for explicit mathematics. In J. N. Crossley,
editor, Algebra and Logic, volume 450 of Lecture notes in Mathematics, pages 87—
139. Springer-Verlag, 1975.

13. S. Feferman. Logics for termination and correctness of functional programs. In
Proceedings of the conference “Logic from computer science”. MSRI, 1989.

14. M. Felleisen, D. Friedman, and E. Kohlbecker. A syntactic theory of sequential

24

15.

16.

17.

18.
19.
20.

21.

22.

23.

24.

25.

26.
27.

28.

29.

30.

31.

32.

33.

34.

35.

control. Theoretical Computer Science, 52:205-237, 1987.

D. Galmiche. Program development in constructive type theory. Theoretical Com-
puter Science, 94:237-259, 1992.

M. J. Gordon, R. Milner, and C. P. Wadsworth. Fdinburgh LCF: A Mechanized
Logic of Computation, volume 78 of Lecture Notes in Computer Science. Springer-
Verlag, 1979.

R. Harper. Constructing type systems over an operational semantics. J Symbolic
Computation, 14:71-84, 1991.

S. Hayashi and H. Nakano. PX: a Computational Logic. MI'T press, 1989.
D. J. Howe, 1988. personal communication.

S. Igarashi. Admissibility of fixed-point induction in first-order logic of typed theo-
ries. Technical Report Stan-CS-72-287, Stanford University Computer Science De-
partment, 1972.

7. Manna. Mathematical Theory of Computation. McGraw-Hill, 1974.

P. Martin-Lof. Intuitionistic Type Theory. Bibliopolis, 1984.

I. A. Mason, S. F. Smith, and C. L. Talcott. From operational se-

mantics to domain theory. (Submitted; currently available as URL
file:/ /ftp.cs.jhu.edu/pub/scott /fosdt.ps.Z), 1994.

E. Moggi. Notions of computation and monads. Information and Computation,
93:55-92, 1991.

J. H. Morris. Lambda calculus models of programming languages. PhD thesis, MIT,
1968.

B. Nordstrom. Terminating general recursion. BIT, 28:605-619, 1988.

B. Nordstrom, K. Petersson, and J. Smith. Programming in Martin-Lof’s type
theory. Oxford Science Publications, 1990.

E. Palmgren. An information system interpretation of Martin-Lof’s partial type
theory with universes. Information and Computation, 106:26—60, 1993.

L. C. Paulson. Logic and Computation: Interactive Proof with Cambridge LCF.
Cambridge, 1987.

G. Plotkin. Call-by-name, call-by-value, and the A-calculus. Theoretical Computer
Science, pages 125-159, 1975.

D. Scott. Lattice theoretic models for various type-free calculi. In Proceedings of
the 4th International Congress in Logic, Methodology, and Philosophy of Science,
Amsterdam, 1972. North Holland.

S. F. Smith. Partial objects in type theory. Technical Report 88-938, Department
of Computer Science, Cornell University, August 1988. Ph.D. Thesis.

S. F. Smith. From operational to denotational semantics. In MFPS 1991, volume
598 of Lecture notes in Computer Science, pages 54-76. Springer-Verlag, 1992.

S. F. Smith. Partial computations in constructive type theory. Technical Report
90-20, Department of Computer Science, The Johns Hopkins University 21218, 1992.

C. L. Talcott. A theory for program and data specification. Theoretical Computer
Science, 104:129-159, 1993.

25

