Extracting Recursive Programs in
Type Theory

Scott F. Smith
The Johns Hopkins University, Baltimore, MD 21218 USA

Abstract

Martin-Lo6f’s constructive type theory is a foundational theory of mathe-
matics and programming. The key to using type theory as a logic is the
formulas as types principle, whereby propositional assertions are directly
expressed by types. Furthermore, using the eztraction method programs
can automatically be extracted from proofs. One weakness of the use of
the extraction method to date, however, is that it is impossible to extract
arbitrary recursively defined programs from proofs, because all functions
in type theory must be total. We show that under some extensions to
type theory extraction of recursive programs is direct and useful.

1 Introduction

We believe the motivations and directions of this work are best seen in the light
of historical development, and will thus take a short historical digression into
intuitionism, realizability, proofs as programs, and formulas as types.

The most basic tenet of the philosophy of intuitionism, as set forth by
Brouwer, is that a mathematical proofis a mental construction (see [8]). Start-
ing from Heyting, logicians have been making Brouwer’s non-formal philosophy
more formal and precise. Heyting developed a formal logic for intuitionism,
Heyting arithmetic, and argued that proofs in this logic are mental construc-
tions. Kleene made Heyting’s argument precise in his realizability interpreta-
tion of logic [9], the basic idea of which is worth recounting. Heyting stated that
a proof of Ya.A(2) consisted of a construction which from any @ can produce
a proof of A(z). For Kleene, this was made precise as follows. The realizer
e of a formula Vz.4(z) is a computable function such that for every =, e(z)
realizes A(z). This pattern also holds for the other connectives: some explicit
computation realizes the implicit computation inherent in intuitionistic logic.
Computer scientists, of which Constable [4] was an early exponent, saw great
practical potential in Kleene’s method, because realizers of theorems are equiv-
alently programs that provably meet a specification. For instance, the theorem
Ve.Jy.z < y & prime(y) expresses the fact that there are infinitely many prime
numbers: this is the specification. The realizer is a program which given z
returns a prime number larger than @. This realizer is thus a program that
meets the specification. The art of programming may thus be equated with the
art of proving. This insight is often called the “proofs as programs” paradigm

A related thread was the development of a “theory of realizers,” making e
realizes A the judgement of the theory; formulas A may be viewed as collections
of terms that realize them, i.e. as types, and e realizes A may be rephrased
e € A. Early versions of such theories were developed by Scott and others [14,



and references therein], but it was the Constructive Type Theory (CTT) of
Martin-L6f [10, 11] that brought this idea to full fruition. From this perspective,
then, formulas are viewed as types. Putting this together with the “proofs as
programs” paradigm, we have proofs of formulas equated with programs that
are members of types.

Theorem proving systems have been constructed that allow formal proof to
be equated with program construction: given a formal proof in intuitionistic
logic, the system automatically extracts the realizer from the proof. One such
system is A-PRL [2]. It is worth pondering this for a moment: in A-PRL, the
user apparently is building a proof, but is also simultaneously (and perhaps
even unknowingly) building a program. This gives a very different view of
how one programs, as will be seen in examples later in this paper. Although
it would at first glance seem an artificial way to program, one must keep in
mind that the resulting program provably meets the specification embodied in
the theorem. Other systems have been constructed that extend this idea to
constructive type theory; instead of proving a theorem, the user is applying
rules of the type theory to show a type has some member (any member), a
program. As rules are applied, the program is automatically incrementally
constructed. This procedure is known as eziraction. The Nuprl system is a
primary example of such a system [5].

Now we come to the reason for this digression: one weakness of the afore-
mentioned systems is the style of programming is more restricted than most
programmers would accept. There is no possibility of directly writing fixed-
point programs (i.e. the language does not allow for arbitrary recursion) by
this method. Work we have done provides a solution to this problem, how-
ever. Constructive Type Theory has been extended by adding new types and
principles, and using these principles we here show that direct extraction of
fixed-point programs is possible. By enriching the collection of programs that
may be directly extracted, the extraction paradigm becomes a more viable
method for deriving correct programs. The price we must pay is that we be-
come directly concerned with questions of termination of programs, because
some of the constructions might not be total.

Partial type theory is CTT with types for computations which might not
terminate added. This is accomplished by adding a type constructor: given a
type A, the type A (“A bar”) is the type of computations over A. A naive
interpretation of A would be A U {1}, where | is a never terminating com-
putation. In a rich enough partial type theory [6, 17] it is possible to directly
extract fixed-point computations from proofs.

The object of this paper is to show how to carry out extraction of fixed-
point programs in a type-theoretic setting. We first review basic concepts of
type theory, then outline the extensions that allow fixed-point programs to
be extracted. With this come new notions of proposition and proof, partial
proposition and partial proof, both of which are discussed in detail. There
follows an example to illustrate the actual extraction process; some readers
might find it useful to skip ahead to the examples to get a flavor of the method.
This paper is written to more give an overview of and intuitions behind the
method; a complete collection of rules, semantics, a full proof of soundness,
and other metatheoretic results are found in [17].



2 Type Theory

This section is a short survey of the constructive type theory (CTT) that is
necessary for basic comprehension of this paper; for fuller descriptions and
examples, see [5, 18]. Before beginning, however, it is worth mentioning that
we are here solely concerned with the predicative theories based on Martin-Lof’s
Extensional Type Theory [11, 18]; impredicative theories such as the Calculus
of Constructions [7] are out of our purview.

A type theory has as its language a collection of untyped terms. Some of
these terms represent types, others computations; the two, perhaps surpris-
ingly, are not separated. The terms include numbers and basic operations such
as 0,1,2,..., pred(a), succ(a), if -zero(a; b; ¢); pairing and projection (a,b), a.1,
a.2; injection and decision terms inl(a), inr(b), decide(a; b; ¢); and functions and
application Az.a, a(b). This language is thus a small functional programming
language. It is possible to write fixed-point functions using the Y-combinator

y &f Ay.(Az.y(z(2)))(Az.y(z(=))). Note however that even though such pro-
grams may be written, they might not be typable. On untyped terms we write
a| to mean the computation a terminates, and write @ ~ b meaning a is com-
putationally equal to . This is an untyped equality, so our presentation differs
from Martin-Lof and Nuprl theories, where equalities are intimately associated
with types. See [16] for foundations of this untyped equality.

Types are collections of terms. Judgments express the truths of type theory;
the judgment a € A asserts that a is a member of the type A. The rules (not
presented here) give meaning to the judgments.

2.1 Types

The expressiveness of type theory is largely due to the diversity of types that
are definable. Here we survey some common types, making sure to include all
that are used in the remainder of the paper.

First, we have atomic data types. N is a type of natural numbers 0,1, 2, . ...

The type A — B is the space of all total functions from A to B. There
is no provision for defining partial functions in traditional CTT. The function
space may be generalized to a dependent function space #:4— B(z) where B(z)
depends on z: the range type B(z) may depend on the value the function is
applied on. These types are often notated Ilz:A.B. An informal example is

n
——
feEnN—-Nx...xN;

f(m) is thus an m-ary tuple of natural numbers.

The type A x B is the product of types A and Bj; its members are pairs
(a,b), where @ € A and b € B. The product type may be generalized to a
dependent product #:4 x B(z): the type B(z) depends on the member of the
type A. Such types are also notated Xz:4.B(z). This introduces a left-to-right
dependency in the product: first an element a is placed in 4, and b can be
placed in € B(a), to give (a,b) € z:4 x B(z).

The type A + B is the disjoint union of types A and B. If a € A, a is
injected into the union by inl(a) € A + B, and similarly inr(b) € A + B.

A type void that is empty is needed to represent the unprovable proposition.
The assertion a € A is expressed within the type theory as the type a in A,



which is inhabited (by the placeholder 0) just when @ € 4 holds. A typea ~b
is inhabited by 0 just when a and b are computationally equal. This approach
is actually a departure from Martin-Lof type theory, because there each type
comes with its own definition of equality on the type, whereas here equality is
untyped and universal.

2.2 Formulas as types

As discussed in the introduction, one of the defining features of constructive
type theory is that it is a theory of realizability. Formulas are viewed as types
for which the members are the realizers of the formula. To prove the formula,
show that when it is viewed as a type, the type is inhabited, i.e. has some
member. Here is an example. To constructively prove

Vn:N. prime(n) V —prime(n)

is to have a decision procedure for whether n is prime or not. In type theory,
the type

n:N — prime(n) + —prime(n)

represents the above proposition, which has as members functions which given
a natural number n, return whether or not n is prime. Any member of this
type is thus a realizer for the proposition.

Formulas are defined in terms of types as follows:

def

A=1B — A— B

A&B “axB

AvB  *a+B

-4 L4 void

Vaz:A. B(z) def A — B(z)
def

Jz:A. B(z) = #:A x B(z)

2.3 Refinement proof and extraction

The rules of CTT may be presented in goal-directed or refinement-style fashion:
a rule is applied to a goal, and this gives subgoals which when proven realize
the goal. Proofs are thus trees with nodes being goals and children of a node
being its subgoals. The leaves of the tree are goals with no subgoals. A sample
rule, the introduction rule for (non-dependent) products, is

F{a,b) e Ax B
Fag A
FbeB

where the first line is the goal and the indented lines are the subgoals.
To prove P we need to find any member. Take the specific case of P =
A & B,ie. P=Ax B. We need members/realizers for both A and B, and

to be able to form them into a pair. But, at the time of use of this rule, it is



not expected that the complete realizers will be known. What is desired, then,
is to allow postponement of construction of a and b. Following the Isabelle
implementation of CTT [13], it is possible to implement rules as unification
steps. The initial goal is entered as - ?p € P, where ?p is a metavariable and
P is a type to be proved; as the proof proceeds, ?p’s structure is incrementally
constructed via unification steps. For instance, if P = A x B, an application
of the above rule unifies p with (?a, ?b), giving subgoals of - ?a € A and
F ?b € B. Further application of rules to these two subgoals will instantiate ?a
and ?b as well. Nuprl directly implements extraction via special rules, but for
the purposes of presenting proofs in this paper, we use Isabelle notation.

3 Partial types

The extensions to type theory that allow fixed-point functions to be typed and
thus extracted from proofs are now given.

The bar type A is the type of (possibly diverging) computations over A4;
this gives a very general notion of partiality. For example, consider the (total)
function space on natural numbers N — N; there are seven distinct partial type
versions, N-N,N—-N,N-N,N—-N, N> N,N—N,and N—-N. N—Nis
a type of partial functions, allowing also the function itself to diverge. This will
in fact be the type generally used herein to express partial functions, notated
zAD B(z) def i 4 — B(z), and A4 ¥4 B

The three main principles for reasoning about bar types are as follows,
ignoring issues of type well-formedness.

introduction a € 4 if a| implies a € A

elimination Ifa € 4 and a| then a € A

fixed point typing If the type 4 2, B is admissible and
fe(A2B)—- (A2 B) then Y(f)c 42 B.

The fixed point typing principle gives types to functions defined using the Y-
combinator, and it may be shown that all partial recursive functions can be
typed in this language. This principle also extends the extraction paradigm
to allow fixed-point programs to be extracted from proofs. One complication
of this principle is the necessity of showing types are admissible, because the
principle is not valid for all types. The original presentations of partial type
theory [6, 15] had too restrictive an admissibility condition: dependent products
could not appear at all, meaning existential quantifiers could not be used. For
instance, the example given at the end of this paper would not be expressible in
the earlier versions of partial type theory. Recently the collection of admissible
types has been greatly extended, making the principle much more useful [17];
a rough explanation of admissibility is as follows:

A is admissible if for any dependent product subterms 2:B x C
occurring in A, and if there is in turn a dependent function y:D— E
inside C, certain restrictions are met by the occurrences of # in D.



The entire theory is presented and proved sound in [17], where we refer the
reader to for details. We mention that Audebaud [1] has recently developed
a partial type theory for the Calculus of Constructions. Martin-Lof has also
developed a partial type theory (see [12]), but his theory has partial types only,
so all types viewed as propositions are true. This is equivalent in our theory to
having bars over all type constructors.

4 Partial propositions

We sketch how these new concepts may be used for reasoning, with particular
emphasis on proving by extracting fixed point objects.
The bar operator may be applied to types which represent propositions,

giving types such as Vn:N. 3nu:N. P(m, n), called partial propositions. However,
are such forms of proposition at all useful? A for any type A is trivially true
under the formulas-as-types interpretation, because | € A. However, if a € A
and a, then a € A, so A is true. Thus, a partial proposition is very useful
when its realizer terminates. Since a may diverge it does not fit the Brouwerian
notion of a construction, so a € A cannot truly be considered a realizer; such
terms a are partial proofs. This can thus be seen to be an extension of the
Brouwerian notion of construction to encompass partial constructions, much as
partial functions extend total ones.

In general, all of the propositional connectives have partial analogues, de-

fined as follows: A&B < A& B, AVB =R B, A=B ef g B,Vz:A.B(z) def

Vz:A. B(z), and Jz:A. B(z) def Jz:A. B(z). The most interesting partial

propositions are those with universal quantifiers, for Va:A. B(z) is the type

2AD B(z), meaning its realizers are partial functions.

One important extension to the extraction paradigm is the direct extrac-
tion of fixed-point computations. This is significant, because direct extraction
of fixed-points is not possible without bar types, limiting the usefulness of ex-
traction. For instance, take the proposition that partially specifies a sorting
function,

Vi:List. 31': List. Ordered(l').

Suppose we wished to give a “mergesort” proof of this theorem to guarantee
an order n -log n algorithm. Using partial propositions, the proof proceeds on
the same lines as the standard mergesort procedure, extracting a mergesort
algorithm. Without bar types an ordering must be defined and proved well-
founded, and the proof can proceed by induction on this ordering. In the case
of mergesort this ordering is nontrivial to define and reason about, and results
in a more convoluted algorithm. So, if extraction is to be useful in developing
efficient algorithms, partial propositions are necessary. Additionally, partial
functions that cannot be proved total may nonetheless be extracted from partial
propositions; these functions and their correctness properties cannot even be
expressed without bar types.

Before giving an example of fixed-point function extraction, it is shown
how the fixed point principle can in general be used to extract fixed-point
functions. Suppose the goal to prove was I ?e € V:A. B(2); by using the fixed



point principle, it suffices to show from the assumption y € Va:A. B(z) that I
%' € Va:A. B(z) (unify ?e = Y(Ay.?¢')). In the proof, uses of the hypothesis y
amount to fixed-point calls, but if the user is not careful a divergent proof may
be constructed. For instance, Te’ could trivially be y, since we are assuming
what we want to prove. However, in this case the extract object is Y(Ay.y),
which always diverges.

5 An example

A sketch of a fixed-point primality tester being extracted from a partial propo-
sition is now given.

DEFINITION 1 Define three predicates,

y Divides = ey < y& JzN.y*xz~ =
@ Is_Prime_Thruy CfyaN1< 2 <y = —(z Divides &)
2 Is_Composite_Thruy e, N1<2 < y & z Divides =

LEMMA 2 We may show

F ?e € Va:N.Vy:N. & Is_Prime_Thru y V @ Is_Composite_Thru y.

The extract object ?e will be a fixed-point function such that ?e(z)(pred(z))
decides whether or not # is prime; furthermore, if # is composite, one of its
factors will be returned. Since any programmer should be able to tell by in-
spection that ?e(z)(pred(z)) will converge for any number #, this proof can
thus be used to give a (non-partial) proof that any particular number is either
prime or composite.

Proor. Using the fixed point typing principle, it suffices to assume

Fze (Va::N. Vy:N. 2 Is_Prime_Thru y V  Is_Composite_Thru y),z €N,y €N,

and show

F ?e' € & Is_Prime_Thruy V ® Is_Composite_Thru y,

where 7e & Y(Az.Az.Ay?e’). This means we are extracting a fixed-point func-
tion from this proof; inside 7e’, applications of z are recursive calls, which
proof-theoretically amount to uses of the hypothesis z. First, proceed by cases
on y ~ 0; if this is the case the proofis trivial, so assume y % 0. Proceed by cases
on yDividesz (we take as given a proof div(z, z) € (2 Dividesz)V—(z Dividesz)).
CASE y Divides #: Clearly then z is composite, so the right disjunct can be
proven.

CASE —(y Divides #): Recursively use the hypothesis z for y one smaller, i.e.
apply z(z)(pred(y)), and the result also follows.

QED.

The full extract object 7e is

Y(Az, 2, y.if zero(y; inl(Az.Aw; Aw,.0);
decide(div(z, y); Aw.inr((y, (0, w))); Aw.z(=, pred(y))))).



For instance, ?e(6)(5), a test if 6 is prime, computes to inr((3, (0,0))), meaning
3 Divides 6 (studying the proof will convince the reader that the largest factor
is returned if the number is composite).

This shows that it is possible to extract fixed-point programs from partial

propositions in straightforward fashion. This in turn makes the extraction
method of program derivation more viable.
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