1 Introduction to Complexity Theory

“Complexity theory” is the body of knowledge concerning fundamental principles of computa-
tion. Its beginnings can be traced way back in history to the use of asymptotic complexity and
reducibility by the Babylonians. Modern complexity theory is the result of research activities
in many different fields: biologists studying models for neuron nets or evolution, electrical en-
gineers developing switching theory as a tool to hardware design, mathematicians working on
the foundations of logic and arithmetics, linguists investigating grammars for natural languages,
physicists studying the implications of building Quantum computers, and last but not least,
computer scientists searching for efficient algorithms for hard problems. The course will give an
introduction to some of these areas.

In this lecture we introduce the notation and models necessary to follow the rest of the
course. First, we introduce some basic notation. Afterwards, we discuss the question “what is
computation?”, followed by definitions of various types of Turing machines. We also introduce
some basic complexity classes for these machines.

1.1 Basic notation
Set notation

Basically, a set is a collection of elements without repetition. Finite sets may be specified by
listing their members between brackets. For example, {0,1} is a set. The most important sets
are the set of all natural numbers IN = {1,2,3,...} and the set of all real numbers IR. We also
specify sets by a set former:

{z[P(z)} or {zesS|P)},

where P() is a predicate that can be either true or false. Thus, {z | P(x)} is the set of all
elements x such that P(z) is true.

If x is a member of S, we write z € S. If every member of A is a member of B, we write
A C B and say A is contained in B. In case that A C B but A # B, we write A C B. Sets A
and B are equal if and only if A C B and B C A. The cardinality of a set S, denoted by |5,
is the number of members it contains. A set if enumerable if its elements can be enumerated in
such a way that every element has a finite number of predecessors. Obviously, every finite set
is enumerable.

The usual operations defined on sets are:

e AUB={z|xz € Aorxec B}, called the union of A and B
e ANB={z|xze€ Aand x € B} (or A\ B), called the intersection of A and B,

A—B={x]|z € Aandx ¢ B}, called the difference between A and B,

Ax B={(z,y) | x € Aand y € B}, called the Cartesian product of A and B, and

24 = {B | B C A}, called the power set of A.

Strings, alphabets, and languages

A symbol is an abstract, atomic entity. Letters and digits are examples of frequently used
symbols. A string is a finite sequence of symbols juxtaposed. For example, a, b, and ¢ are
symbols and abcb is a string. The length of a string w, denoted |w/|, is the number of symbols
composing the string. The empty string, denoted by ¢, is the string consisting of zero symbols.
Thus |¢| = 0. The concatenation of two strings is the string formed by writing the first, followed
by the second, with no intervening space. For example, the concatenation of aaa and bb is aaabb.
The juxtaposition is used as the concatenation operator. That is, if v and w are strings, then vw
is the concatenation of these two strings. The empty string is the identity for the concatenation
operator. That is, ew = we = w for each string w.

An alphabet is a finite set of symbols. A language is a set of strings of symbols from some
alphabet. Examples for languages are the empty set, (), the set consisting of the empty string
{€}, or the set {a,ab,aabc}. Note that the first two sets are distinct. Given an alphabet ¥,
>* denotes the set of all possible strings that can be composed from the symbols in ¥, and
Yt =¥* — {e}. For example, if ¥ = {0, 1} then 3* = {¢,0,1,00,01, 10, 11,000,001, .. .}.

Relations and functions

A (binary) relation is a set of pairs. The first component of each pair is chosen from a set called
the domain, and the second component of each pair is chosen from a (possibly different) set
called the range. Often, the domain and the range are the same set S. In that case we say the
relation is on S. If R is a relation and (a,b) is a pair in R, then we often write aRb.

We say a relation R on set S is

o reflexive if aRa for all a € S,

e irreflexive if aRa is false for all a € S,

e transitive if aRb and bRc imply aRc,

o symmetric if aRb implies bRa,

e asymmetic if aRb implies that bRa is false, and

e antisymmetric if aRb and bRa implies that a = b.

A relation R is called an equivalence relation if R is reflexive, symmetric, and transitive. An
example for an equivalence relation is the mathematical symbol “=". R is called an order if R
is reflexive, antisymmetric, and transitive. An example for an order is the mathematical symbol
“7,

A relation R is a partial mapping from M to N if for every x € M there is at most one
y € N with zRy. R is a mapping if for every x € M there is exactly one y € N with zRy.
Partial mappings or mappings R are often represented as functions of the form fzr: M — N
with the property that for every (z,y) € R, fr(xz) =y. We will only use the latter notation in
the following.

A mapping f: M — N is called

o injective if for all x1, 29 € M with x; # xo we have f(x1) # f(x2),
e surjective if for every y € N there is at least one x € M with f(x) =y, and

e bijective if f is injective and surjective (that is, for every y € N there is exactly one x € M
with f(z) = y).

O-notation

In complexity theory, one is mostly interested in the “bigger picture”. Therefore, constant factors
are usually ignored when considering the resource requirements of computations, although they
are certainly important in practice. For this, the O-notation has been introduced. For any
function f : IN — IN, the set

e O(f(n)) denotes the set of all functions g : IN — IN with the property that there are

constants ¢ > 0 and ny > 0 so that for all n > ny, % <g

e ((f(n)) denotes the set of all functions g : IN — IN with the property that there are

constants ¢ > 0 and ny > 0 so that for all n > ny, % > ¢; and

e O(f(n)) denotes the set of all functions g : IN — IN with the property that g(n) € O(f(n))
and g(n) € Q(f(n)).

For example, 2¢/n+3 € O(n), 4n*—5n € Q(n), and 3n—logn+2 € O(n). Also stricter variants
of O and 2 are known. For any function f : IN — IN, the set

e o(f(n)) denotes the set of all functions g : IN — IN with the property that lim,, % = 0;
and
e w(f(n)) denotes the set of all functions ¢ : IN — IN with the property that lim,, % =0.

Q

For example, it is also true that 2\/n + 3 € o(n) and 4n® — 5n € w(n), but 3n —logn + 2 is
neither in o(n) nor in w(n).

Although it is not correct from a formal point of view, one can often find statements like
2y/n+3 = o(n) and 4n? —5n = w(n), or 3n —logn +2 = O(n) in the literature instead of using
the correct “€” relation, but it has been used so often that people just got stuck with it.

1.2 What is computation?

Before we start with defining any computational models, we will discuss the question “what is
computation?”.

From a logical point of view, computation is the process by which to produce an answer to
a question:

To ensure that all parts of this process (the question, the computation, and the answer) are
finite, it must be possible to present the question in finite time, to do a computation in finite
time, and to read the answer in finite time. Using human standards, all questions that can be
presented in finite time must be pairwise distinguishable by a human in finite time. Or in other
words, a human must be able to determine in finite time whether two questions are different

computation

guestion

\/

answer

or the same. Since the limits to human cognition are finite, it can be argued that the set of
all possible questions consists of finite, enumerable elements. The same holds for the answers.
Furthermore, it can be shown that any infinite set of enumerable elements is equal to the set
of natural numbers (in a sense that there is a bijection between the set of enumerable elements
and the set of natural numbers). Thus, a computation can be viewed as a transformation from
a natural number ¢ (the question) to a natural number a (the answer).

Computation always requires a “computer”, i.e., a system that performs the computation.
A configuration of a computer is a complete description of the state of such a system at some
time point. The initial configuration of the computer is the question plus the initial part of its
state that is independent of the question (this usually consists of the computational rules or
algorithms the computer will apply in order to answer the question). The final configuration of
the computer contains the answer. Note that a computer may not necessarily always reach a
final configuration (that is, there may be questions for which it runs forever). Mathematically,
a computer can be viewed as a (partial) mapping that maps the set of questions to the set
of answers, i.e. a function of the form f : @ — A, (or, using our arguments above, simply
f:IN—IN).

A fundamental problem has been: is there a “universal” model for computation? Or in
other words, is there a model of a computer that ensures that for every function f that is
“computable” there is a computer with an initial configuration (independent of the question)
so that for every ¢ € @ it outputs f(gq) in finite time (if f(q) exists)? The main difficulty
in answering this problem is that we simply do not know how powerful computation can be.
Obviously, any realizable computer must be a finite physical system. The operation of any such
system is limited by the physical laws. However, as long as we do not have a complete picture of
the physical laws, we do not know what kind of computations, or changes in state, are possible.

All computational models developed so far (including Quantum computing models) have
been shown to be computationally equal to a very simple model, the so-called Turing machine.
This lead Church and Turing in 1936 to the conjecture that the limitations on what can be
computed do not depend on the understanding of physics, but are universal. This is called the
Church-Turing hypothesis:

’Efuery computable function can be computed by a Turing machine.

One can formulate a more restrictive version of this hypothesis:

’Every efficiently computable function can be efficiently computed by a Turing machme.‘

Whereas this was shown to be true for all classical computational models, it is most likely
not true for the Quantum computational models, since there is strong evidence that Quantum
effects cannot be simulated efficiently by a (classical) Turing machine. However, since we are still
far away from building a Quantum computer, the hypothesis still holds for all existing systems.

4

1.3 Decision problems

An important class of problems form the so-called decision problems. A decision problem is a
function f: @Q — A where A = {“yes”,“no” }. If we have a decision problem f, we can simplify
its representation to a set L, containing only those questions ¢ for which f(q) =“yes”. That is,
every decision problem f can be represented as a language L. If we assume that () is enumerable,
then any such language is obviously enumerable. We say that a computer accepts a language
L if it halts and accepts for all questions ¢ with ¢ € L. (For the other questions, it may either
reject or run forever.) With this definition one can show that if a decision problem is acceptable
and () can be enumerated by some computer, there is also a computer that can enumerate all
the elements for which the answer is “yes”. (This is actually one of the assignments.) Therefore,
acceptable decision problems have also been called computationally enumerable. We say that a
computer decides a language L if it accepts L and halts for all inputs. Such a language is called
computable. Fundamental problems for decision problems have been whether every decision
problem is computable or at least computationally enumerable. In order to be able to answer
such questions, we need a formal model for a computer that will be introduced now.

1.4 Turing machine models

In the following we present different variants of the Turing machine that is accepted as a universal
model for the study of decision problems. (Although in the recent advent of Quantum computing
this might change.) In particular, the Turing machine is equivalent in computing power to the
digital computer as we know it and also to all (classical) mathematical notions of computation
such as A-calculus (Church, 1941), recursive functions (Kleene, 1952), and Post systems (Post,
1943).

A formal model for an effective procedure should possess certain properties. First, each
procedure should be finitely describable. Second, the procedure should consist of discrete steps,
each of which can be carried out mechanically. Such a model was introduced by Alan Turing in
1936. We present a variant of it here.

The basic Turing machine

The basic model, illustrated in Figure 1, has a finite control, an input tape that is divided
into cells, and a tape head that scans one cell of the tape at a time. The tape is infinite in
both directions. Each cell of the tape may hold exactly one of a finite number of tape symbols.
Initially, only the input is stored on the tape, surrounded by an infinity of cells that hold the
blank symbol B. This is a special symbol that is not an input symbol.

In one move the Turing machine, depending upon the symbol scanned by the tape head and
the state of the finite control,

1. changes state,
2. prints a symbol on the tape cell scanned, replacing what was written there, and

3. moves its head one cell to the left or right, or does not move.

q,| finite control

head

B |B a |a,fa,| ~ooeee a

Figure 1: Initial state of the Turing machine.

Formally, a Turing machine (TM) is denoted by
M = (Q727Fa57q07B7F))
where

@ is the finite set of states,

I' is the finite set of allowable tape symbols,

B, a symbol of I', is the blank symbol,

Y, a subset of I' not including B, is the set of input symbols,

d is the transition function, a mapping from @ x I' to @ x I' x {L, N, R}
(6 may be undefined for some arguments),

qo € Q) is the start state, and

e F C () is the set of final states.

We denote the configuration of a Turing machine M by (q, a1, as) € @ x ' x I'*. ¢ is the
current state of M, ajas is the string in I'* that is the contents of the tape up to the leftmost
and rightmost nonblank symbol, and the first element in ay represents the current position of
the head.

We define a move of M as follows. Let (p,a;,as) be a configuration. Suppose that, for
instance, ap = 0 and 0(p, z) = (¢, y, R). Then we write

M
(pvala&Q) - (qvalyaﬁ) .

k
If configuration (p, ay, as) yields configuration (g, 51, f2) in k steps, we write M. Furthermore,
if one configuration results from another by some finite number of moves, we write M In cases

where there is no risk of confusion, we will simply write — instead of M or = instead of X5 If
the Turing machine enters a state that has no following state, because ¢ is undefined for it, the
Turing machine halts.

The language accepted by M, denoted L(M), is the set of those words in ¥* that cause M
to enter a final state. Formally,

L(M) ={w|w € ¥* and (qo, 6, w) = (p, a1, az) for some p € F and oy, ay € T*} .

Given a TM accepting a language L, we assume without loss of generality that the TM halts
whenever the input is accepted. However, for words not accepted, it is possible that the TM
will never halt. If a Turing machine M halts on all inputs, we say that M decides L(M).

6

Multi-tape Turing machines

A multi-tape Turing machine consists of a finite control with k tape heads and k tapes; each
tape is infinite in both directions (see Figure 2). On a single move, depending on the state of
the finite control and the symbol scanned by each of the tape heads, the machine can:

1. change state,
2. print a new symbol on each of the cells scanned by its tape heads, and

3. move each of its tape heads, independently, one cell to the left or right, or keep it stationary.

finite control

Figure 2: A multi-tape Turing machine.

Initially, the input appears on the first tape, and the other tapes are blank. The rest is
a straightforward generalization of the definition of a single-tape TM. In the following, if we
simply speak about a Turing machine, we will always mean a multi-tape TM.

Recursively enumerable and recursive languages

A language that is accepted by a Turing machine is said to be recursively enumerable (r.e.). The
term “enumerable” derives from the fact that it is precisely these languages whose strings can be
enumerated (resp. listed) by a Turing machine. “Recursively” is a mathematical term predating
the computer, and its meaning is similar to what the computer scientist would call “recursion”.
Since, in contrast to Section 1.3, the term computationally enumerable is well-defined in the
context of Turing machines, we would now be able to study the problem whether all languages
are recursively enumerable. This, however, will be postponed to a later lecture.

An important subclass of the recursively enumerable languages are the so-called recursive
languages, which are those languages that have a Turing machine that decides it. Within
the recursive languages, languages are usually classified according to their time and/or space
requirements.

Time complexity

Consider some TM M. If for every input word of length n, M makes at most ¢(n) moves before
halting, then M is said to be a t(n) time-bounded Turing machine, or of time complexity t(n),
and the language accepted by M is said to be of time complexity t(n). The family of languages
of time complexity O(t(n)) is denoted by DTIME(¢(n)). Such a family forms a complezity class.
The most important time complexity class is the class P that is defined as

P = | J DTIME(n*) .

k>1

Intuitively, P can be viewed as the class of all languages that can be solved efficiently in a
deterministic way. If a language is in P, we say that it can be decided in (deterministic)
polynomial time.

Space complexity

If for every input word of length n, M visits at most s(n) cells before halting, then M is said to be
an s(n) space-bounded Turing machine, or of space complezity s(n), and the language accepted
by M is said to be of space complezity s(n). The family of languages of space complexity O(s(n))
is denoted by DSPACE(s(n)). The most important space complexity class is the class PSPACE
that is defined as

PSPACE = | J DSPACE(n") .

k>1

If a language is in PSPACE, we say that it can be decided in (deterministic) polynomial space.

1.5 The probabilistic Turing machine

Apart from the basic, so-called deterministic Turing machine (DTM), other Turing machine
models have been constructed to include various characteristics. The most important of these
models are the probabilistic Turing machine, the nondeterministic Turing machine, and the
Quantum Turing machine
The single-tape probabilistic Turing machine (PTM) is defined similar to the single-tape
DTM:
M = (Q.5.T,6,q0, B, F),

The only difference is that § is now a mapping from Q x I' to 29*T{LNE} - That is, a move
does no longer have a unique outcome, but can have a set of outcomes that are equally likely
to be selected. Or, in other words, the PTM can have many different computational paths for
the same input. Thus, in contrast to the DTM presented previously, it can now happen that
for some PTM M and input x there are computations for which M started on x halts, and
computations for which M started on x does not halt. Furthermore, there may be computations
for which M started on x does accept, and for which M started on x does not accept. Single-
tape PTMs generalize to multi-tape PTMs in the same way as single-tape DTMs generalize to
multi-tape DTMs.

Several time complexity classes have been defined for (multi-tape) PTMs. We present the
two most important of these.

e RP denotes the class of all languages L for which there is a polynomial time PTM so that

— for every x € L, Pr[M accepts =] > 1/2, and
— for every x ¢ L, Pr[M accepts x] = 0.

e BPP denotes the class of all languages L for which there is a polynomial time PTM so
that

— for every x € L, Pr[M accepts x] > 2/3, and
— for every x ¢ L, Pr[M accepts x] < 1/3.

It is not difficult to show that P C RP C BPP and that BPP C PSPACE. BPP can be viewed
as the set of all languages that can be decided efficiently by todays computers in polynomial
time. Important open problems are whether or not P = RP or RP = BPP.

1.6 The nondeterministic Turing machine

The (multi-tape) nondeterministic Turing machine (NTM) is defined in the same way as the
(multi-tape) PTM. The only difference lies in how it accepts a word. We say that a NTM M
accepts input x if at least one computation of M started on x leads to a final state. M decides a
language L if M halts on all inputs on all computational paths and accepts exactly those inputs
x with x € L.

Time complexity

Consider some NTM M. If for every input word of length n, M makes at most ¢(n) moves
before halting, no matter which computational path it selects, then M is said to be a t(n)
time-bounded NTM, and the language accepted by M is said to be of nondeterministic time
complexity t(n). The family of languages of nondeterministic time complexity O(t(n)) is denoted
by NTIME(#(n)). The most important nondeterministic time complexity class is the class NP
that is defined as
NP = | J NTIME(n*) .
k>1

If a language is in NP, we say that it can be decided in nondeterministic polynomial time. It
is not hard to see that RP C NP and that NP C PSPACE. Furthermore, it is widely believed
that P # NP and NP # PSPACE, but nobody can prove it yet.

Space complexity

If for every input word of length n, M visits at most s(n) cells before halting, no matter which
computational path it selects, then M is said to be an s(n) space-bounded NTM, and the language
accepted by M is said to be of nondeterministic space complexity s(n). The family of languages
of nondeterministic space complexity O(s(n)) s(n) is denoted by NSPACE(s(n)). The most
important nondeterministic space complexity class is the class NSPACE that is defined as

NPSPACE = | J NSPACE(n") .

k>1

9

If a language is in NPSPACE, we say that it can be decided with nondeterministic polynomial
space. Obviously, PSPACE C NPSPACE.

1.7 The Quantum Turing machine

The Quantum Turing machine (QTM) is a Turing machine that can perform Quantum mechan-
ical operations. It will be described in more detail later. We only mention here that QP is the
class of all languages that can be decided by some Quantum Turing machine in polynomial time.

1.8 Turing machines as algorithms

Turing machines are ideal for solving string problems (such as, for instance, the problem given
in the assignment). But how about developing algorithms capable of attacking problems whose
instances are mathematical objects such as graphs, networks, and numbers? To solve such a
problem by a Turing machine, we must decide how to represent by a string an instance of the
problem. Once we have fixed this representation, an algorithm for a decision problem can be
easily transformed into a Turing machine that decides the corresponding language. It should
be clear that every finite mathematical object can be represented by a finite string over an
appropriate alphabet. For example, elements of finite sets, such as the nodes of a graph, can
be represented as integers in binary. Pairs and k-tuples of simpler mathematical objects are
represented by using set brackets, and so on. Or, perhaps, a graph can be represented by its
adjacency matrix.

There is a wide range of acceptable representations of integers, finite sets, graphs, and other
elementary objects. All of these acceptable encodings have to be polynomially related. That is,
if A and B are both reasonable representations, then |A| should be at most polynomially larger
than | B|. Representing numbers in unary, for instance, is not an acceptable representation, since
it requires exponentially more symbols than the binary representation. For the mere question
of computability, representation is not an important issue, but in order to determine whether a
problem is efficiently computable, the encoding has to be acceptable.

Having this in mind, we will work in the following with mathematical objects instead of
strings and with algorithms instead of Turing machines.

1.9 References

e R. Gandy. The confluence of ideas in 1936. In: The Universal Turing Machine: A Half-
Century Survey, R. Herken (ed.), Oxford Press, Oxford, 1988, pp. 55-111.

e J.E. Hopcroft and J.D. Ullman. Introduction to Automata Theory, Languages, and Com-
putation. Addison Wesley, Reading, 1979.

e C.H. Papadimitriou. Computational Complexity. Addison Wesley, Reading, 1994.

10

