Problem 16 (4 points):
A graph G is called 3-colorable if 3 colors suffice to color its nodes so that no two adjacent nodes have the same color. Consider the problem

$$3\text{COL} = \{ \langle G \rangle \mid G \text{ is 3-colorable} \}$$

Show that $3\text{COL} \in \text{IP}$. That is, design an interactive proof for 3COL and show that it satisfies the conditions of IP.

Problem 17 (3 points):
Prove that NP is equal to the set of all languages L for which there exists a polynomial time checkable relation R_L such that

$$L = \{ x \mid \exists y \ (x, y) \in R_L \}$$

and $(x, y) \in R_L$ only if $|y| \leq \text{poly}(|x|)$. Hint: consider the SAT problem.

Problem 18 (3 points):
Look at the proofs in the lecture notes that $\#\text{SAT} \in \text{IP}$ and $\text{PSPACE} \subseteq \text{IP}$ and use the information in these proofs to design an interactive proof for QSAT. (A proof of correctness is not required.)