Theory of Network Communication
Fall 2004
Assignment 7

Problem 16 (10 points):
The task of this assignment is to implement a dynamic wheel network.
Consider the space $U = [0, 1)$ and let F just consist of the function $f(x) = x + 1/2 \ (\text{mod} \ 1)$. Suppose that we use the consistent hashing strategy to place nodes in the $[0, 1)$ interval and to assign regions to them.
Implement a dynamic overlay network that keeps the nodes organized in a doubly-linked cycle and that contains an edge (v, w) for any two nodes v and w for which there are points $x \in R(v)$ and $y \in R(w)$ so that $(x, y) \in \mathcal{E}_F$. Three operations have to be implemented for this:

- **JOIN(q):** this allows a new peer p to join the wheel network by contacting a peer q already in the network. It requires the ROUTE operation to forward a join request to the closest successor of $h(p)$ so that p can be integrated.

- **LEAVE():** this allows a peer to leave the wheel network.

- **ROUTE(y, msg):** this allows to route a message msg to the peer q whose region contains point y. In our context, the only relevant message is a join request.