Problem 6 (4 points):
Consider the algorithm given in Figure 1. Show that for any flow problem with demands \(d_i = 1 \) for every \(i \) that has a feasible flow solution with paths of length at most \(L \) when using demands \(d'_i = (1 + \epsilon) \), it holds that the algorithm with sufficiently large queues never has to delete any flow.

Hints: The original Awerbuch-Leighton (AL) algorithm maximizes \(\sum_i f_i(\Delta_i(e) - f_i) \), which represents exactly the amount by which the potential at the queues at \(e \) drops when moving a normalized flow of \(f_i \) for each commodity \(i \). When using instead the rule in Figure 1, we have to distinguish between two cases:

- \(\max_i \Delta_i(e) > 2 \): Then argue that \(f_i \) in Figure 1 can be set to 1. So the potential drop is \((\Delta_i(e) - 1) \geq (\sum_j f_j(\Delta_j(e) - f_j)) - 1 \), where the \(f_j \) are chosen as in the original AL-Algorithm.

- \(\max_i \Delta_i(e) \leq 2 \): Then simply use the fact that \(\max_i \Delta_i(e)/d_i \geq \sum_j f_j(\Delta_j(e) - f_j) \) where the \(f_j \) are chosen as in the original AL-Algorithm.

Use the arguments above to show that in any case, the discrete Awerbuch-Leighton Algorithm achieves a potential drop that is at most an additive 2 worse at any edge than the potential drop achieved by the original Awerbuch-Leighton Algorithm. Use this insight to adapt the proof in the lecture notes for the original Awerbuch-Leighton Algorithm to show that one can bound the queue sizes. This should mostly be just cut-and-paste. Note that the proof has been updated in the lecture notes!!

Problem 7 (6 points):
Implement the Discrete Awerbuch-Leighton algorithm in the Spheres simulation environment for the graph in Figure 2. Output the maximum observed queue size (obtained after at least 200 rounds).
Discrete Awerbuch-Leighton Algorithm:
At each node u:

1. Distribute newly injected flow evenly among the buffers $Q_i(e)$, i.e. distribute it so that afterwards for every i, $\bar{q}_i(e)$ is the same for every edge e leaving u.

2. For every edge (u, v), select any i with maximum $\Delta_i(u, v)$. If this is negative, no flow is sent. Otherwise, compute $f_i = \min\{1, \Delta_i(u, v)/2\}$ and send a flow of $c(e) \cdot f_i$ from $Q_i(u, v)$ to $Q_i(v, u)$.

3. Receive the transmitted flow and absorb flow that reached its destination.

4. Rebalance the queue heights so that for every i, $\bar{q}_i(e)$ is the same for every edge e leaving u.

Figure 1: The Discrete Awerbuch-Leighton algorithm.

Figure 2: An example graph for the Discrete Awerbuch-Leighton algorithm. Both source nodes inject a flow of 1 into the graph at every time step. All edges have capacity 1.