What are we talking about?!?

- What is privacy?
- What privacy concerns do you have when you go online?
- What privacy concerns have you heard about (in the press, your text books, etc.)
- How are online privacy concerns different from offline privacy concerns?

The online privacy landscape

- Web privacy concerns
 - Surveys
 - Fair information practice principles
- How do they get my Data?
 - Browser chatter
 - Cookies 101
 - Online and offline merging
 - Subpoenas
 - Spyware
 - Monitoring devices
- Authentication
- Wireless privacy issues
- Solutions
 - Privacy policies
 - Voluntary guidelines
 - Seal programs
 - Chief privacy officers
 - Laws and Regulations
 - Software tools
Web privacy concerns

- Data is often collected silently
 - Web allows large quantities of data to be collected inexpensively and unobtrusively
- Data from multiple sources may be merged
 - Non-identifiable information can become identifiable when merged
- Data collected for business purposes may be used in civil and criminal proceedings
- Users given no meaningful choice
 - Few sites offer alternatives

Privacy surveys find concerns

- Increasingly people say they are concerned about online privacy (80-90% of US Net users)
- Improved privacy protection is factor most likely to persuade non-Net users to go online
- 27% of US Net users have abandoned online shopping carts due to privacy concerns
- 64% of US Net users decided not to use a website or make an online purchase due to privacy concerns
- 34% of US Net users who do not buy online would buy online if they didn’t have privacy concerns
Few read privacy policies

- 3% review online privacy policies carefully most of the time
 - Most likely to review policy before providing credit card info
 - Policies too time consuming to read and difficult to understand
- 70% would prefer standard privacy policy format
- Most interested in knowing about data sharing and how to get off marketing lists
- People are more comfortable at sites that have privacy policies, even if they don’t read them

Simplified principles

- Notice and disclosure
- Choice and consent
- Data security
- Data quality and access
- Recourse and remedies

US Federal Trade Commission, Privacy Online: A Report to Congress (June 1998),
http://www.ftc.gov/reports/privacy3/
Browser Chatter

- Browsers chatter about
 - IP address, domain name, organization,
 - Referring page
 - Platform: O/S, browser
 - What information is requested
 - URLs and search terms
 - Cookies

- To anyone who might be listening
 - End servers
 - System administrators
 - Internet Service Providers
 - Other third parties
 - Advertising networks
 - Anyone who might subpoena log files later

Typical HTTP request with cookie

```
GET /retail/searchresults.asp?qu=beer HTTP/1.0
Referer: http://www.us.buy.com/default.asp
User-Agent: Mozilla/4.75 [en] (X11; U; NetBSD 1.5_ALPHA i386)
Host: www.us.buy.com
Accept: image/gif, image/jpeg, image/pjpeg, */*
Accept-Language: en
Cookie: buycountry=us; dcLocName=Basket;
dcCatID=6773; dcLocID=6773; dcAd=buybasket; loc=
parentLocName=Basket; parentLoc=6773;
ShopperManager%2F=ShopperManager%2F=66FUQULL0QBT8MMTVSC5MMNKBJFWDVH7; Store=107;
Category=0
```
Referer log problems

- GET methods result in values in URL
- These URLs are sent in the referer header to next host
- Example:

 http://www.merchant.com/cgi_bin/order?name=Tom+Jones&address=here+there&credit+card=234876923234&PIN=1234->index.html

Cookies

- What are cookies?
- What are people concerned about cookies?
- What useful purposes do cookies serve?
Cookies 101

Cookies can be useful
- Used like a staple to attach multiple parts of a form together
- Used to identify you when you return to a web site so you don’t have to remember a password
- Used to help web sites understand how people use them

Cookies can do unexpected things
- Used to profile users and track their activities, especially across web sites

How cookies work - the basics

- A cookie stores a small string of characters
- A web site asks your browser to "set" a cookie
- Whenever you return to that site your browser sends the cookie back automatically

First visit to site

Later visits
How cookies work - advanced

- Cookies are only sent back to the “site” that set them - but this may be any host in domain
 - Sites setting cookies indicate path, domain, and expiration for cookies

- Cookies can store user info or a database key that is used to look up user info - either way the cookie enables info to be linked to the current browsing session

Cookie terminology

- Cookie Replay - sending a cookie back to a site
- Session cookie - cookie replayed only during current browsing session
- Persistent cookie - cookie replayed until expiration date
- First-party cookie - cookie associated with the site the user requested
- Third-party cookie - cookie associated with an image, ad, frame, or other content from a site with a different domain name that is embedded in the site the user requested
 - Browser interprets third-party cookie based on domain name, even if both domains are owned by the same company
Web bugs

- Invisible “images” (1-by-1 pixels, transparent) embedded in web pages and cause referer info and cookies to be transferred
- Also called web beacons, clear gifs, tracker gifs, etc.
- Work just like banner ads from ad networks, but you can’t see them unless you look at the code behind a web page
- Also embedded in HTML formatted email messages, MS Word documents, etc.
- For more info on web bugs see: http://www.privacyfoundation.org/resources/webbug.asp
- For software to detect web bugs see: http://www.bugnosis.org

How data can be linked

- Every time the same cookie is replayed to a site, the site may add information to the record associated with that cookie
 - Number of times you visit a link, time, date
 - What page you visit
 - What page you visited last
 - Information you type into a web form
- If multiple cookies are replayed together, they are usually logged together, effectively linking their data
 - Narrow scoped cookie might get logged with broad scoped cookie
Ad networks

Ad company can get your name and address from CD order and link them to your search for medical information.

What ad networks may know...

- Personal data:
 - Email address
 - Full name
 - Mailing address (street, city, state, and Zip code)
 - Phone number

- Transactional data:
 - Details of plane trips
 - Search phrases used at search engines
 - Health conditions

“It was not necessary for me to click on the banner ads for information to be sent to DoubleClick servers.”

- Richard M. Smith
Online and offline merging

- In November 1999, DoubleClick purchased Abacus Direct, a company possessing detailed consumer profiles on more than 90% of US households.

- In mid-February 2000 DoubleClick announced plans to merge “anonymous” online data with personal information obtained from offline databases.

- By the first week in March 2000 the plans were put on hold.
 - Stock dropped from $125 (12/99) to $80 (03/00)

Offline data goes online...
Subpoenas

- Data on online activities is increasingly of interest in civil and criminal cases
- The only way to avoid subpoenas is to not have data
- In the US, your files on your computer in your home have much greater legal protection that your files stored on a server on the network

Spyware

- Spyware: Software that employs a user's Internet connection, without their knowledge or explicit permission, to collect information
 - Most products use pseudonymous, but unique ID
- Over 800 known freeware and shareware products contain Spyware, for example:
 - Beeline Search Utility
 - GoZilla Download Manager
 - Comet Cursor
- Often difficult to uninstall!

- Anti-Spyware Sites:
 - http://grc.com/oo/spyware.htm
 - http://www.adcop.org/smallfish
 - http://www.spychecker.com
 - http://cexx.org/adware.htm
Devices that monitor you

Creative Labs Nomad JukeBox
Music transfer software reports all uploads to Creative Labs.
http://www.nomadworld.com

Sportbrain
Monitors daily workout. Custom phone cradle uploads data to company Web site for analysis.
http://www.sportbrain.com/

Sony eMarker
Lets you figure out the artist and title of songs you hear on the radio. And keeps a personal log of all the music you like on the emarker Web site.
http://www.emarker.com

:CueCat
Keeps personal log of advertisements you’re interested in.
http://www.crq.com/cuecat.html

See http://www.privacyfoundation.org/

What is Authentication?

■ Short answer: establishes identity
 ★ Answers the question: To whom am I speaking?

■ Long answer: evaluates the authenticity of identity proving credentials
 ★ Credential - is proof of identity
 ★ Evaluation - process that assesses the correctness of the association between credential and claimed identity
 • for some purpose
 • under some policy
Why authentication?

- Well, we live in a world of rights, permissions, and duties?
 - Authentication establishes our identity so that we can obtain the set of rights
 - E.g., we establish our identity with Tiffany’s by providing a valid credit card which gives us rights to purchase goods - physical authentication system

- Q: How does this relate to privacy?

Why authentication (cont.)?

- Same in online world, just different constraints
 - Vendor/customer are not physically co-located, so we must find other ways of providing identity
 - e.g., by providing credit card number - electronic authentication system
 - Risks (for customer and vendor) are different

- Most of computer security is crucially dependent on the proper management and use of authentication system.
What is Identity?
- That which gives you access ... which is largely determined by context
 - We all have lots of identities
 - Pseudo-identities
- Really, determined by who is evaluating credential
 - Driver’s License, Passport, SSN prove ...
 - Credit cards prove ...
 - Signature proves ...
 - Password proves ...
 - Voice proves ...

Credentials ...
- ... are evidence used to prove identity
- Credentials can be
 - Something I am
 - Something I have
 - Something I know
Something you know ...

- Passport number, mothers maiden name, last 4 digits of your social security, credit card number

- Passwords and pass-phrases
 - Note: passwords are generally pretty weak
 - University of Michigan: 5% of passwords were goblue (followed by: love, beer)
 - Passwords used in more than one place
 - Not just because bad ones selected: If you can remember it, then a computer can guess it
 - Computers can often guess very quickly

Something your have ...

- Tokens (transponders, ...)
 - Speedpass, EZ-pass

- Smartcards

- Digital Certificates (used by Websites to authenticate themselves to customers)
 - More on this later ...
Somethng your are ...

- Biometrics
 - Measures some physical characteristic
 - Fingerprint, face recognition, retina scanners, voice, signature, DNA
 - Can be extremely accurate and fast
 - Active biometrics authenticate, passive biometrics recognize

- What is the fundamental problem?
 - Revocation - lost fingerprint?
 - Great for physical security, generally not feasible for online systems

Single Sign-On (MS Passport)

- The end-user (customer) is authenticated

User

Gimme’ content
No, you need a ticket

Website

Passport (MS)
Single Sign-On (MS Passport)

The end-user (customer) is authenticated

User
(password)

Ticket

Website

Passport (MS)

Single Sign-On (MS Passport)

The end-user (customer) is authenticated

User
(password)

Gimme’ content ... content ...

Website
Single Sign-On Systems (SSO)

What SSO systems provide
★ Centrally, the idea is that the “provider” (MS) performs authentication on users ...
★ Sites subscribing to the service automatically have an “authenticatable” user community
★ Removes barriers to user access
★ From the users perspective, I don’t have to remember a password for each site.

What aspect of this model is particularly interesting/troublesome to privacy?
★ Do you trust Microsoft to act responsibly?

Certificate Authentication (SSL/TSL)

The site is authenticated by the user
Certificate Authentication (SSL/TSL)

- The site is authenticated by the user

Certificates

- Technical detail: Certificates provide a (strong) tie between a “private key” and an identity
 - Your browser uses the SSL protocol to prove the site knows the private key
 - If the site knows the key, it is authentic

- Is the site certificate is valid?
 - The browser knows Certification Authority (CA)
 - Certificate is *signed* by a CA
 - The browser uses that signature to infer validity (plus timing information)
Authentication Privacy Principles

Source: Privacy Principles Working Group

1) Control (informed consent at enrollment)
2) Service Diversity (pick one of several soln.)
 - avoid MS controlling all data issue
3) Limit identity authentication
 - Use “proof of valid user” rather than identity
4) Provide notice (of information use)
5) Minimize collection and storage
6) Provide accountability

Lessons

- Ask why you need to authenticate customers, employees, vendors, etc.
- What are you authenticating people to do?
- Match effort and cost of authentication to the value of the things you are protecting.
- Technology imperative: don’t try to invent or build your own authentication service.
Questions

- What risks are present in physical authentication systems that are not present in electronic authentication systems?
- What about vice-versa?

Wireless communication

- What is a wireless network?
 - The use of radio frequencies (RF) to transmit digital data between computers/devices
 - Collections of often wireless-enabled computers form ad hoc networks
 - In more structured environments, computers access the network/Internet via access-points

- What is a mobile user?
 - User moving around wireless network

- Q: Why wireless now?
Wireless Technologies

<table>
<thead>
<tr>
<th>Standard</th>
<th>Range</th>
<th>Bandwidth</th>
<th>Use</th>
</tr>
</thead>
<tbody>
<tr>
<td>802.11a,g</td>
<td>50 Meters</td>
<td>54Mbps</td>
<td>High-speed LAN (Offices)</td>
</tr>
<tr>
<td>802.11b</td>
<td>100 Meters</td>
<td>11Mbps</td>
<td>Large LAN (Airport)</td>
</tr>
<tr>
<td>Bluetooth</td>
<td>10/100 Meters</td>
<td>1Mbps</td>
<td>Low-cost devices - PAN (Keyboard)</td>
</tr>
</tbody>
</table>

Wireless Issues

Advantages
- Easy to move around and work freely
- Computers become less physically constraining
- Affords new models of computing (geography, find/user local service)

How does wireless communication change the threats (real or perceived)?
- Broadcast technology (eavesdropping)
- Denial-of-service (DOS, jamming)
- Privacy (monitoring, tracking)
Ubiquitous Computing

- User (devices) communicate with infrastructure that surrounds them
 - Allows geography to become relevant (new)
 - Opportunity to aid development

- E.g., McDonald’s Coupons
 - Walking through a mall
 - ... you have been to McDonald’s
 - ... and you like Big Mac’s
 - Suddenly, Big Mac coupons appear on your PDA

- Anybody have a problem with this?

Tracking (GPS)

- Global Positioning System (GPS) uses 15+ satellites to triangulate (locate) receiver
 - Used to track users, vehicles, E-911
 - Very important for commercial navigation, military applications, and tracking (with transmitter)

- OnStar uses technology
 - Offers roadside assistance
 - Emergency road assistance
 - Navigation, services locator (e.g., where is gas)

- Like many other technologies, can be abused
 - Tracking where people go, when they, who they (potentially) meet, ...
When good technologies go bad ...

- The Nanny Cam
 - X.10 Camera (heavily advertised on web)
 - Allows “small footprint” camera to transmit to local computer/TV (undetectable)
 - Sold to be used to monitor without detection
 - Transmits data via 802.11

- Any problems here?

The Nanny-Cam (NBC)

Wireless Technology ...

- The Motherhood Principle
 - ... wireless makes life easier because we are not longer required to interact with computing environments through fixed media (e.g., Internet) ...
 - ... which allows new ways of working (and new business models) ...
 - ... but, raises user concerns about both privacy and security.
 - So, the realization of technology is only possible where these issues are adequately addressed.
Approaches to privacy protection

- Privacy policies
- Voluntary guidelines and codes of conduct
- Seal programs
- Chief privacy officers
- Laws and regulations
- Software tools

Platform for Privacy Preferences Project (P3P)

- Developed by the World Wide Web Consortium (W3C)
 - Final P3P1.0 Recommendation issued 16 April 2002
- Allows web sites to communicate about their privacy policies in a standard computer-readable format
 - Does not require web sites to change their server software
- Enables the development of tools (built into browsers or separate applications) that
 - Summarize privacy policies
 - Compare privacy policies with user preferences
 - Alert and advise users
- P3P helps users understand privacy policies
 - P3P increases transparency, but it does not set baseline standards or enforce policies
- P3P user agent software available (as of July 2002)
 - Microsoft Internet Explorer 6
 - Netscape Navigator 7
 - AT&T Privacy Bird
 http://privacybird.com/
- For more information
 - http://www.w3.org/P3P/
 - http://p3ptoolbox.org/
 - Web Privacy with P3P
 by Lorrie Faith Cranor
 http://p3pbook.com/