
Joey Chau
Mark Dlugokencky

Lauren Dana Rosenblatt
Kevin Sheu

Security and Privacy in Computing 600.443

E-Voting Project – Part II

Registration
 We will work with the assumption that the voter registration system has already been set
up. Voters will be given a pin number upon registration to vote. This pin number, along with
the last four digits of their social security number and their zip code will be used to authenticate
themselves at the poll sites. Upon, authentication, a new number will be given to the voter, thus
removing any connection between the voter and his/her vote once it has been cast. The voter
will use this number, along with their zip code to place his/her vote.

Ballot Formation
 Once the ballot in each county is set, the information will be set to a central location for
each state. As soon as this location receives the ballot for every county, it will send the
information to a group that will compile the information from all 50 states. A database
containing all of this information will be placed on every kiosk computer and its respective
county cluster. This will be done to facilitate remote voting during a denial of service attack.
We also plan to have a website that will have a sample page for each ballot. A voter may look at
the website before voting so there are no surprises at the poll site; the ballot they see there will be
exactly the same as the one they use during the actual voting process. They will have the
opportunity to view the entire candidate list for their district or any other district from any
location.

User Interface
 Our system will have a simple, easy-to-use interface. It will contain straightforward
pages with instructions telling the user exactly what to do at each stage. There will be textboxes
for the voters to put in their information, as well as submit buttons to send the data to the proper
location. The voter will vote for each office on a separate page, so that all information can fit on
one screen. We do not want the user to not vote for a candidate just because he/she did not see
the candidate listed and did not think to scroll down. The pages will have a circle (or some type
of object) next to each name. The user will click appropriate one to place his/her vote. There
will be no ads or irrelevant text to distract a user while voting. The pages will only have
election-related material on them.

Software Detail
 The software will be developed in java. The client software will be composed of two
components. The first program will be for authentication, and the second will be for the actual
voting. Users will input their zip code, pin number (received during registration) and the last
four digits of their social security number. They will then be given a random number. They will
open up the second program and type in the random number (which proves simply that they are a
registered voter) and their zip code (so that they receive the proper ballot). The data is stored in

two separate databases: one to hold the voters and one to hold the votes. There will not be a way
to connect the voters to the vote they made, thus providing evidence to the voters that their vote
is in fact private and cannot be traced back.

Hierarchical Structure
 In our design, we plan to implement a hierarchical structure to our voting system. Each
layer of the system will have its own cluster of independent distributed server systems. The
cluster will be used as a mechanism to both provide backup and to protect against denial of
service attacks by providing multiple points of information access. Each cluster will contain
between three and five computers/servers. The servers within a cluster will maintain a database
for registration. In addition, the servers will maintain a data file of all the vote tallies that have
occurred. This will be detailed in a later section. Each cluster will only tally the information
pertaining to issues at that level. It will then only pass on vote counts and not individual votes.
For example, the county clusters will tally all issues that pertain to city council elections. Votes
for state representative will be stored on the county clusters and then sent up to the state cluster
where the votes will be tallied. Similarly, votes for president are passed up from county level to
state level and then eventually passed up to the national cluster. Below is a diagram of the
hierarchical structure.

National
Cluster

Burst update national issues tallied at state

State
Cluster

State
Cluster

State
Cluster

Burst update
state issues
tallied at county

Burst update
state issues
tallied at county

Burst update
state issues
tallied at county

County
Cluster

County
Cluster

County
Cluster

County
Cluster

County
Cluster

County
Cluster

Poll
Kiosk

Poll
Kiosk

Poll
Kiosk

Poll
Kiosk

Kiosk level

 Kiosks are light weight voting entities that contain a voting program, a ballot database,
and a storage database for tallies. When a user logs into a kiosk, they provide the necessary
information – pin numer, 4-digit SSN, and zip code. The zip code is used to find the correct
county cluster to ask for verification. Furthermore, the appropriate ballot for the designated zip
code will also be queried from the poll kiosk and presented to the user. The user votes and this
information is stored with their identification as a provisional ballot. If the county verifies the
user, then the user information is stripped from the tally and the tally is saved and waits to be
transmitted to the county level. In the case of a denial of service attack where the county
database cannot be reached, then all user login information will be stored at the local kiosk
machine, and the voter will be given a provisional ballot. Once the kiosk machine is reconnected
to the County Cluster, the registration information will first be verified, and once this has been
completed, the Provisional Ballot will be converted to a tally and sent to the cluster. In the case
of a loss of connection with the County Cluster, a time period, T, will be defined for how long a
time period to wait before attempting another reconnection.

Kiosk Communication with County Cluster During Normal Operation:

Poll Kiosk

County Cluster 1.) User Enters
pin number, 4-
digit SSN, zip
code

2.) Verify user
exists in the
county registration
database

3.) Fetch ballot for
user based on zip
code entered

6.) Tally database
receives tallies
from poll site and
updates tally for
county issues.

4.) Vote is stored
on the Poll Site as
a tally object

5.) Periodically
groups of votes
are sent to the
county for tallying

Kiosk Operation with County Cluster when Communication is Blocked:

Poll Kiosk

County Cluster 1.) User Enters pin
number, 4-digit
SSN, zip code

2.) Fetch ballot for
user based on zip
code entered

3.) Vote is stored
on the Poll Site as
a provisional vote
until user verified

4.) Verify user
exists in the
county registration
database

5.) User is
Verified.
Provisional ballots
are converted to
tallies and are
Sent. 6.) Tally database

receives tallies
from poll site and
updates tally for
county issues.

County, State and National Levels
 Periodically, votes will be tailed at the county level and then forwarded to the state
clusters to be added to those counts. We chose to do this rather than just send the final counts
upon the close of elections. If we waited till the end a denial of service attack could make it so
no votes make it to the state level. This way, a large percentage of the votes will already be
there. In the same manner, vote counts will periodically be forwarded to the national level. This
will be very beneficial to news stations that like to keep up-to-the-minute accounts of how the
election is going.

Remote Voting Detail
 There must be a way for each person to be remotely authenticated. Remote voters will
use the exact same interface as local users, but their zip code will be identified by the system as
being out-of-county. It will then be transmitted to the proper county for verification. Upon
verification at the correct poll site, the voter’s zip code will be used to identify the county in
which the voter is registered to vote. The voter will then make his/her vote, and it will
consequently be transmitted to the proper county’s server cluster. In the case of a denial of

service attack, the votes will be stored and sent out once the denial of service attack is resolved.
Backups of all remote votes will be stored at the polling site at which they were made.

Server Cluster Architecture

Server Assumptions

• As mentioned earlier, we are assuming that the registration process has already been
completed. Our design focuses on the server architecture during the actual vote casting
and counting process.

• We assume that there are no network partitions.

Overall Design

We have designed our system so that every district/poll site has a cluster of three servers. A
voter can connect to any machine within any cluster, so that people can vote from any poll site in
the country, and do not have to be physically present in their home district. The connection
process will be detailed later. The additional servers provide reliable service and increased
availability should any server fail. In this section, we introduce a unique protocol so that the
three servers provide:

1. Consistency between data on the servers
2. Redundant and Reliable vote and registration storage
3. Availability and service remains unchanged as long as at least one server is available. It

is persistent in light of server failures.
4. Load balancing between the servers, so that users will not have a long delay when

voting.
Although it was not the original intention, the protocol provides for some protection against

Denial of Service Attacks. Should a server come under a denial of service attack, the client
machine can switch to another machine. However, in light of the limited number of machines,
this policy becomes exhausted once all three servers have failed. However, our system has
accounted for denial of service attacks at the client level as well by only sending out votes when
the servers are available.

Each server group will communicate between servers through a multicast protocol. In the
prototype, we have chosen the Spread Toolkit (introduced in Distributed Systems, 600.437) to
provide the reliable multicast service.

The system architecture is designed so that all servers in a cluster are members of one
multicast group. The communication between servers is completed through the server group; the
server communication protocol will be detailed later in the document. Additionally, each server
is a member of a personal group. The personal group only has a single member, and nobody else
can ever join that group. The client communicates with a server by directly sending messages to
the personal group of the server.

Client
(in Baltimore)

Server

Client
(in D.C.)

Client
(in Baltimore)

Server

Server Group
(Baltimore)

Client
(in Baltimore)

Client
(in California)

Server

Client
(in Baltimore)

Server Design
 The basic concept of our servers involves a responding system which maintains vote
information. In general the server never initiates any type of information transfer except for
initial start up message. The core of the server is a system of maintaining two crucial data
structures: the vote list and the action queue. Together, the two data structures work to preserve
voting information and ensure reliable consistent communication of voting action. Secondly,
servers maintain knowledge of which other servers in currently in its group.

Data Structures
 The server maintains two sets of data structures to provide reliable and consistent
communication. The Vote List, contains a list of Vote Issue Objects, which each contain an
issue that is being voted upon, and maintains a tally for each issue. As an example, in the 2000
presidential election, a Vote Issue Object would contain:

President of the United States
George W. Bush 321
Al Gore 325
Pat Buchanan 11

Each time a Vote Issue Object has been modified, which happens during a new vote, the

queue is written out to disk. Thus, in the event of a server crash, or Denial of Service attack, the
information can immediately be recovered upon server revival. In addition, if the server cannot
be brought back up, the file is portable, and can be moved to a separate machine.

As a note, when a voter votes, his or her registration information is also updated. It will
indicate in the database that the voter has already voted. Therefore, if the voter tries to log into
the system again, the database will recognize that the voter has already voted, and prevent him or
her from voting a second time.

 The second data structure that a server maintains is a set of action queues. On each
server, there is an action queue representing every server – because we only have three servers,
every server has three action queues. The concept of an action is any transmission on the server
communication group that affects the vote tally. Anytime a transmission which alters a vote is
received, the server will transform the transmission into an action – an action is a representative
container of the transmission and the transmission type – and place the action into the action
queues. Not all action queues add the latest action. Depending on which servers are available –
as described in the membership maintenance section – only those queues representing servers
that are not available will add the current action. The result is that on every server, there is a
queue of actions for every server. For a given server A, the action queues representing servers
that are available will be empty. For the same server A, the action queues representing servers
not available will hold all the actions that those partitioned servers have missed. When a server
determines that a server has become available again, it will flush its queue for that newly joined
server. Flushing the queue will bring the new server up to date. It is important to note that if
there are multiple servers in a group when a new server joins, only one of the grouped servers
will actually transmit the flushed actions.

SERVER 3 Action Queues A new action
has just been

received.

1 Servers 2
and 3 are
currently
available

Actions in

Servers 2
and 3 are
currently
available

Queue for Server

This action

must be
added to the 2

queue

Queue for Server
action queues
3 Because server 2 is
Queue for Server
available, so the
representative action

queue is empty

1

s The new
action is only

placed in
Queue for Server
2

those queues
representing
servers that
Queue for Server
3 Because server 2 is
are not

available
Queue for Server
SERVER 3 Action Queue
available, so the
representative action

queue is empty

Server Availability Maintenance
Each server maintains availability information about the servers in its cluster. This is

represented as an integer array of size three. Each slot represents one of the servers, and a value
of zero indicates that the associated server is not in the partition, and a value of one indicates that
the associated server is currently in the server. Every time the server receives any type of
availability information, this array is updated. At the same time, whenever a server receives
availability information, it also determines if there are any new members have joined the group
or partition. One machine from each partition or group will then update the new members that
have joined this group.

Initialization and Maintenance
 Before servers are placed in the state where they can communicate with one another, the
server must first initialize its data structures. This mainly involves reading data files currently
stored on the machines. Every server has a Vote List data file that stores information about all
the information in the Vote List. Also, every machine has three Action Queue data files for each
server in the cluster. The Vote List must be loaded as well as the Action Queues because if a
server is brought down, other servers will only stored actions occurring after the crash. In order
to preserve consistency, servers must be able to return to the state right before the crash.
Furthermore, storing and loading action queues is necessary to allow downed servers to actually
update new servers if it boots up in a different partition!

Client

Before each communication with the server, a client machine will randomly choose one
of the servers within the cluster group for the specified district. A client will initially check to
see if the server is running. It is essentially a ping, where the client sends a zero sized packet to
the server, and waits for that zero sized packet to be returned. If the server does not return the
packet, then it is an indication that the server has failed, and the client is switched to one of the
other servers.

Client Action on Server Failure
 If a server becomes temporarily unavailable, the client will be able to log into a separate
server. The communication between all the servers that has been detailed will provide the same
service to the client. This provides increased availability in light of server crashes, or limited
Denial of Service resiliency.

Encryption
 After the user enters in their three unique numbers, they will be encrypted and sent to a
server for authentication. The server will then send back an encrypted response and if the person
is verified, a random number for use in the second program. In the second program, encryption
will be used in the same way. An encrypted copy of the vote and corresponding zip code will
also be printed, thus ensuring security of the vote.

First, we need to exchange a public key with the client (Pole Sites) and the server
(County). For this we will use 1024-bit RSA encryption.

Client sends n and e to server

Server chooses random number by a “random” number generator and encrypts random
number with e.

client server (n,e)

(me mod n) server client

Client decrypts by using a 56-bit DES block cipher. We chose this because it can encrypt
fast, and cannot be broken in one day.

Client encrypts voter results with DES and sends packets to server

server client DES(votes)

Authentication

The routers will know where the packets came from and thus can reject any packets that
have not come from assigned IP’s to client poll sites. The packets need to be signed by the
server so that the client knows that the actual parent server received these packets. Therefore, as
the server receives each packet it will sign it and return it to the client.

server client DES(votes)

 RSAsig(DES(votes)) server client

Now, the client can be sure that the proper server is receiving the packets. Next, we must
verify to the server that the packets received are from a legal client. Therefore, the client will
sign the same message (DES(votes)) as the server. And the server will verify.

 RSAsig(DES(votes)) server client

This will ensure that each packet that arrives at the server is from a legal client. It will
also ensure that a legal server received each packet sent. This is modeled after the three-way

handshake that occurs in a TCP connection. Since there will not be a large amount of packets
there will not be a significant delay.

Duplicate Votes
 In our current voting system, a voter may only vote once; voters go to the poll site, show
proof of identity and then place their vote. With an online system, things are not as easy. We
would like to ensure that the same is true of our system. Once authenticated, a Boolean variable
will be set saying that the user has voted, and thus cannot vote again. In the case of a DoS
attack, a user could vote at multiple poll sites in an attempt to cast multiple votes. To prevent
this, the first vote will be the only vote counted. Most of the time, the first vote cast will be the
first vote to be authenticated, although there may be a few rare times when different servers go
back online at different times, thus causing a different vote to reach the correct distraction first.
This will also prevent voter coercion as the voter cannot prove who he/she voted for and can
only vote once. Thus, a voter cannot keep switching their vote in order to make money from
opposing sides.

Paper Audit Trail

An anonymous copy of each vote will be printed in encrypted form and stored in case of
an audit. We have decided to design our own prototype for this. It will allow the user to view a
paper copy of their vote, but not allow it to take the copy with them so as to avoid coercion, since
the voter cannot use it as proof of who they voted for. It would be similar to a cash register
receipt. It would print the vote onto the small roll of paper, which would be encased in a box.
The box has a glass window that is the exact size of a printed ballot. Upon voting, the voter’s
ballot is printed out, and he/she may view it (voters who are not computer-literate will feel better
about their vote after seeing it on actual paper). The glass will somehow get covered until the
next person votes and his/her ballot is printed.

Design Tradeoffs and Benefits
 In Part I of the assignment, we stated our main goals to be: accuracy and integrity,
eligibility, authentication, uniqueness, provide an audit trail, convenience, simple and
unambiguous user interface, cost-effective, inclusion of remote voting, and separation of voter
and vote. We feel that our design covers each of these aspects to some extent. A user will be
authenticated and all of his/her information will be kept private and separate from their vote.
The system will have a clear interface that will be easy for the user to vote with. It will have
everyone on one screen so the user will not have to scroll and thus miss important candidates.
Our idea for a paper audit trail as well as having clusters of computers instead of single terminals
will help insure multiple ways for an audit if necessary. We hope that our system is cost-
effective. We do not anticipate the cost of servers/computers to be too much and the printer
device should be pretty cost-effective as well. The majority of the software and databases will
be the same for every computer, thus the development costs will be one-time. We have not yet
decided on a solution for people with disabilities.

Our security requirements included: user authentication, client server communication,
encryption, and prevention of malicious payload, denial of service, fraud and coercion. We
focused the most on providing user authentication, encryption, and preventing denial of service
attacks, fraud and coercion. Our interface authenticates a user without having the user give out
important personal information. The encryption schemes we have chosen will provide adequate

protection of our data throughout all communications. Since we cannot protect against a denial
of service attack, we found ways to have the system work even when it cannot connect to other
servers. As long as they all get online eventually, there will be no data loss and all votes will be
counted. Our duplicate vote and paper trail features helped ensure faith in computer illiterate
voters as well as protect against coercion.

	Server Cluster Architecture
	Server Design
	Client sends n and e to server
	Client encrypts voter results with DES and sends packets to server
	Authentication

