Enlisting Har dwar e Ar chitecture
to Thwart Malicious Code | njection

Ruby B. Lee, David K. Karig, John P. McGregor, and 2hghi
Princeton Architecture Laboratory for Multimedia and@8#y (PALMS)
Department of Electrical Engineering

Princeton University
{rblee, dkarig, mcgregor, zshi}@ee.princeton.edu

Abstract. Software vulnerabilities that enable the injection and e>atuif
malicious code in pervasive Internet-connected computing depiseEsserious
threats to cyber security. In a common type of attatigstile party induces a
software buffer overflow in a susceptible computing devicarder to corrupt a
procedure return address and transfer control to malicious chdese buffer
overflow attacks are often employed to recruit obliviousthidnto distributed
denial of service (DDoS) attack networks, which ultimatalynch devastating
DDoS attacks against victim networks or machines. In spitexisting
software countermeasures that seek to prevent buffer avegftploits, many
systems remain vulnerable.

In this paper, we describe a hardware-based secure return adtielss
(SRAS), which prevents malicious code injection involving pdoce return
address corruption. Implementing this special hardware stagkrequires
low cost modifications to the processor and operating systehis enables the
hardware protection to be applied to both legacy executable ayudlenew
programs. Also, this hardware defense has a negligible fropgeerformance
in the applications examined. The security offered by this haedaaution
complements rather than replaces that provided by existing staftware
techniques. Thus, we detail how the combination of the proposareseturn
address stack and software defenses enables comprehensivdayaulti-
protection against buffer overflow attacks and malicious aaéetion.

1 Introduction

As the number and networking capabilities of pervasivepeding devices increase,
built-in security for these devices becomes morecaliti Hostile parties can exploit
any of several security vulnerabilities in Interne&kled computing devices to inject
malicious code that is later employed to launch largkesatiacks. Furthermore,
attacks involving billions of compromised pervasive cormgutievices can be much
more devastating than attacks that employ thousands lGormsi of traditional
desktop machines. Malicious code is often insertedvicton computers by taking
advantage of software vulnerabilities such as bufferfloves, which can alter the

This work was supported in part by the NSF under grants Q2DR946 and
CCR-0105677 and in part by a research gift from Hewlett-Pdcka

handler | handlerl | handlerl | handlerl
[[
|agent|"'|agent||agent|"'|agent||agentl"'lagent”agentl"'|agent|

Fig. 1. Distributed denial of service attack network

Table 1. CERT buffer overflow advisories

Y ear Advisories| Advisoriesinvolving | Percent buffer
buffer overflow overflow
1996 27 5 18.52 %
1997 28 15 53.57 %
1998 13 7 53.85 %
1999 17 8 47.06 %
2000 22 2 9.09 %
2001 37 19 51.35 %

control flow of the program. In this paper, we propodmiit-in hardware defense
for processors to prevent malicious code injection diseifier overflow attacks.

Buffer overflows have caused security problems since ¢arly days of
computing. In 1988, the Morris Worm, which resulted in lesgale denial of
service, spread throughout the Internet using a buffeflowevulnerability as one of
its means of intrusion. The Code Red worm further exiéiemplthe severity of
problems that buffer overflow vulnerabilities stilluse today. Code Red and its
variants, which stung companies over the summer of 200k, advantage of a
buffer overflow problem in Microsoft 1IS. The totatonomic cost of these worms
was estimated at $2.6 billion by Computer Economics [19].

Buffer overflow vulnerabilities also play a significamole in distributed denial of
service (DDoS) attacks. In such attacks, an adversampromises a large number
of machines to set up a DDoS network that is later weethunch a massive,
coordinated attack against a victim machine or netwdérkypical DDoS network is
shown in Figure 1. An adversary controls one or mamedier machines, which in
turn command the agent machines (also called “zombilat)actually carry out the
attack. This network structure allows an attacker silyeaontrol a large number of
machines and makes the attacker difficult to trace. heumore, as the number of
pervasive computing devices grows rapidly, the potentiakudsteness of DDoS
attacks greatly increases.

Various tools are available that provide for the lasgale compromise of
machines and the installation of DDoS attack softwarbese tools scan thousands
of hosts for the presence of known weaknesses such uffer overflow
vulnerabilities. Susceptible hosts are then compraimisend attack tools are

installed on the oblivious handler or agent machinEse compromised hosts can
then be used to scan other systems, and this cydlgrakion may be repeated
indefinitely [11]. The tools differ in the types of atks they execute and in the
communication between nodes in the attack network, Ibutllaw the attacker to
orchestrate large-scale, distributed attacks [15, 16]. Poptiack tools include
Trinity, trinoo, Tribal Flood Network (TFN) and TFN2lénd Stacheldraht [4].

Defending against DDoS attacks in progress is extremdlgutif Hence, one
of the best countermeasures is to hinder attack netviks being established in
the first place, and defending against buffer overflow exdbilities is an important
step in this direction. Table 1 shows the percentaf@ERT advisories between
1996 and 2001 relating to buffer overflow weaknesses. In 200le than 50
percent of CERT advisories involved buffer overflonurthermore, buffer overflow
weaknesses play a very significant role in the 20 maosical Internet security
vulnerabilities identified by the SANS Institute and #® [20].

The majority of buffer overflow exploits involve antatker “smashing the
stack” and changing the return address of a targeted funictipoint to injected
code. Thus, protecting return addresses from corruptioeipiemany attacks. Past
work addresses the problem through static and dynamicaseftmethods, such as
safe programming languages, operating system patches, conotyEleges, and even
run-time defense. However, the examination of potestiltions at the hardware
architecture level is justified by the frequency of ttyige of attack, the number of
years it has been causing problems, the continuing enmrgef such problems
despite existing software solutions, and the explosive#@se of vulnerable devices.

We propose a hardware-based, built-in, non-optionalr layeprotection to
defend against common buffer overflow vulnerabilitiesalh future systems. We
detail how a hardware secure return address stack (SRé&@jamism can be used to
achieve this goal. The mechanism preserves a cawopygtof every procedure return
address for correct program control flow, and it proveeseans of detecting buffer
overflow attacks with high probability. Our proposahishardware safety net” that
should be applied in conjunction with safe programming tieckas and compiler-
inserted checking mechanisms to provide a multi-layereshdef

In Section 2, we describe the problem of return addressiption caused by
buffer overflows. We summarize and compare past woeition 3. In Section 4,
we present a multi-layer software and hardware proteatiechanism for buffer
overflow attacks in pervasive computing devices. We descthe hardware
architectural support for our proposal in Section 5. lctiGe 6, we discuss
performance and implementation costs, and we conclu8edtion 7.

2 Stack Smashing via Buffer Overflow

Most buffer overflow attacks involve corruption of prdoee return addresses in the
memory stack. During the execution of a procedure cdituatson, the processor
transfers control to code that implements the targatguiure. Upon completing the
procedure, control is returned to the instruction foltaythe call instruction. This
transfer of control occurs in a LIFO (i.e., Last First Out) fashion, or properly

higher
FP FP addresses
stack stack stack
frame of frame of frame of
f() f() f()
SP FP SP
sl
s2 stack
0t return furn t growth
call to address return to
a() saved 0
— P —
a
v
buf to code lower
SP region addresses
Fig. 2. Example of stack operation
int () stack stack
frame of frame of
f0 f0
g(s1, s2);
FP FP
} sl sl
int g(char *s1, s2 s2
char *s2) return | strepy() | corrupt
] address exploit address
int & saved
char buf[100]; Fp ——
strepy(buf, s1); a malicious
code
} buf
SP SP
Fig. 3. Code example Fig. 4. Buffer overflow attack

nested fashion. Thus, a procedure call stack, whichLiE@ data structure, is used
to save the state between procedure calls and retu@wnpilers for different
languages use the same stack format, and therefore aofurnvetitten in one
language can call functions written in other language® déscribe memory stack
behavior for the IA-32 architecture [12], but the gengnadcedures apply to all
conventional I1SAs.

The memory stack is typically implemented as a contigisboisk of memory
that grows from higher addresses toward lower addressesh(avn in Figure 2).
The stack pointer (SP) is used to keep track of the tdpeaftack. When an item is
pushed onto or popped off the stack, the SP is adjusted awggrdi Anything
beyond the SP is considered to be garbage. We caerrededata on the stack by

adding an offset to the SP, and modifying the SP direettyeither remove a batch
of data or reserve space for a data such as locablegiaThe stack consists of a set
of stack frames; a single frame is allocated for gadsedure that has yet to return
control to an ancestor procedure. The SP points ttothef the stack frame of the
procedure that is currently executing, and the frame pojRE&r points to the base of
the stack frame for that procedure. To avoid destroyiegvalue of the current FP
upon calling a new procedure, the FP must be saved onterttrg new procedure
and restored on exit.

Figure 2 illustrates the operation of the memory stacktfe example program
in Figure 3. The leftmost stack shows the state oftaek immediately preceding
the call tog() . When functionf() callsg() , a new stack frame will be pushed
onto the stack. This frame includes the input poinsdrsands2, the procedure
return address, the frame pointer, and the local vasabland buf . Upon
completingg() , the program will return to the address stored)’s stack frame;
this address should equal the location of the instruétionediately following the
call tog() in the functionf() . The SP and the FP are also restored to their forme
values, and the stack frame belonging(o is effectively popped from the stack.

Figure 4 illustrates a buffer overflow attack on the clisted in Figure 3. A
security vulnerability exists becausgcpy() does not perform bounds checking.
In the functiong() , if the string to whichsl points exceeds the size bif ,
strepy() will overwrite data located adjacent bouf in the memory stack. A
malicious party can exploit this situation by stratedgycabnstructing a string that
contains malicious code and a corrupted return addressl Hoints to such a
string, strcpy() will copy malicious code into the stack and overwrite teturn
address ing() 's stack frame with the address of the initial instiarctof the
malicious code. Consequently, org@ completes, the program will jump to and
execute the malicious code instead of returning contrd{)to. There are many
variations of this form of attack, but most rely dre tability to modify the return
address [17]. For example, rather than the attackertimgehis own exploit code,
the return address may be modified to point to legitinateexisting code that can

be used for malicious purposes. In another variant, riedicious code
inconspicuously installs agent software for a future DDmfack and returns
execution to the calling functiof{) . Thus, the program appears to execute

normally, and the user is unaware that his machinebeeyme a DDoS zombie in a
future attack.

3 Past Work

Researchers have proposed many software-based courderesedor thwarting
buffer overflow attacks. These methods differ in thiersyth of protection provided,
the effects on performance, and the ease with whigy ttan be effectively
employed.

One solution is to store the memory stack in nongadte pages. This can
prevent an attacker from executing code injected intonteenory stack. For

Table 2. Required system changes

Technique for defending Required system changes
against procedurereturn | Source)
addr ess corruption code | Compiler OS | Processor
Safe programming languages Yes Yes No No
Static analysis techniqueg Yes No No No
StackGuard No Yes No No
StackGhost No No Yes No
libsafe No No Yes No
libverify No No Yes No
Our SRAS proposal No No" Yes Yes

ICompiler changes may be required for certain progr operate properly depending on the
method used to handle non-LIFO procedure contual {see Section 5).

Table 3. Benefit and cost comparison

Technique for defending Provides | Appliesto |Application| Adverse
against procedurereturn | complete many codesize |performance
address corruption protection® | platforms | increase impact
Safe programming languages Yes’ Yes Can be highCan be high

Static analysis techniqueg No Yes Varie$ Varies
StackGuard No Yes Low Moderate
StackGhost Yes No None Low
libsafe No Yes Low Low

libverify Yes Yes High Moderate
Our SRAS proposal Yes Yes Nonég? Low

By “complete protection,” we mean complete protecagainst buffer overflow attacks that directly
corrupt procedure return addresses.

2Depending on how non-LIFO procedure control flowamdled, some programs may experience a
very small increase in code size (see Section 5).
®Provided that programmers comply and write correde.

example, Multics was one of the first operating systwnzovide support for non-
executable data memory, i.e., memory pages with executdege bits [14].
However, the return address may instead be redirecfg@dwisting, legitimate code
in memory that the attacker wishes to run for makvbteasons. In addition, it is
difficult to preserve compatibility with existing applicatis, compilers, and
operating systems that employ executable stacks. Linwin$tance, depends on
executable stacks for signal handling.

Researchers have proposed using more secure (or saéetdf C and C++,
since a high percentage of buffer overflow vulnerabiittan be attributed to features
of the C programming language. Cyclone is a dialect tiaf focuses on general
program safety, including prevention of stack smashingckstd10]. Safe
programming languages have proven to be very effectiveractice. While
programs written in Cyclone may require less scrupulouskaig for certain types
of vulnerabilities, the downside is that programmersehto learn the numerous
distinctions from C, and legacy application source codet rbasrewritten and

recompiled. In addition, safe programming dialects can ecasignificant
performance degradation and executable code bloat.

Methods for the static, automated detection of bufferfamv vulnerabilities in
code have also been developed [22, 23, 24]. Using such atatligsis techniques,
complex application source code can be scanned prior tpiledion in order to
discover potential buffer overflow weaknesses. Thectiete mechanisms are not
perfect: many false positives and false negatives canro Also, as true with
Cyclone, these techniques ultimately require the prograntmméspect and often
rewrite sections of application source code. Re-codiay aiso increase the total
application code size.

StackGuard is a compiler-based solution involving a paidtc that defends
against buffer overflow attacks that corrupt procedure meaaldresses [8]. In the
procedure prologue of a called function, a “canary” valygldased on the stack next
to the return address, and a copy of the canary iglsitoi@e general-purpose register.
In the epilogue, the canary value in memory is compavetié¢ canary register to
determine whether a buffer overflow has occurred. @&pplication randomly
generates the 32-bit or 64-bit canary values, so the afipliccan detect improper
modification of a canary value resulting from a buffeerflow with high probability.
However, there exist attacks that can circumvent Staakf3s canaries to
successfully corrupt return addresses and defeat the segfithity system [2].

StackGhost employs the SPARC architecture’'s registerdaws to defend
against buffer overflow exploits [9]. Return addresseshhsge stack space allocated
in register windows are partially protected from corruptio The OS has the
responsibility of spilling and filling register windows émd from memory, and once
a return address is stored back in memory, it is potBntialnerable. Various
methods of protecting such spilled stacks are defined. Bo¥ferflow protection
without requiring re-compilation of application source code a benefit of
StackGhost, but the technique is only applicable to SP&RE&mSs.

Transparent run-time software defenses have also Ipeeposed. The
dynamically loaded librariekbsafe andlibverify provide run-time defenses
against stack smashing attacks and do not require prograbesreacompiled [1].
libsafe intercepts unsafe C library functions and performs boghdsking to
protect frame pointers and return addressbbverify protects programs by
saving a copy of every function and every return addmesthe heap. The first
instruction of the original function is overwritten &xecute code that stores the
return address and jumps to the copied function code. Tima ri@struction for the
copied function is replaced with a jump to code that eifhe return address before
actually returning.

The downside tdibsafe is that it only defends against buffer overflow
intrusions resulting from certain C library functiontn addition, static linking of
these C library functions in a particular executable Ipdes libsafe from

protecting the program. Implementationdilo¥erify can double the code space
required for each process, which is taxing for embedded efewidth limited
memory. Alsoibverify can degrade performance by as much as 15% for some

applications.

We compare past work in Tables 2 and 3. We observenthexisting solution
combines the features of support for legacy applicatioicéted by no changes to
source code or the compiler), wide applicability to wasioplatforms, low
performance overhead, and complete protection againsedua return address
corruption. Therefore, we propose a low-cost, hardased solution that enables
built-in, transparent protection against common buffeerfitow vulnerabilities
without depending on user or application programmer effortamplying with
software safeguards and countermeasures.

4 A Multi-layer Defense

We advocate a multi-layer approach to solving buffer ftaxgrproblems that lead to
procedure return address corruption. By “multi-layer”, weama combination of
static software defenses and dynamic software or haediefenses. Static software
techniques include safe programming languages, static seauatysis of source
code, and security code inserted into executables at estipié. Dynamic software
security solutions include run-time defenses such as SheckGibsafe , and
libverify . We present a dynamic hardware defense in the ndidrsec

We categorize programs as new software and legacy aseftw With new
software, the source code is available, so the progeancan apply static software
techniques for defending against buffer overflows. In @iditthe platform can
provide dynamic software or hardware defenses to supplerttede static
techniques. Legacy software consists of compiled biregcutables— the
corresponding source code is no longer available. Hethee,only applicable
protection for legacy software is dynamic (i.e., rund) software or hardware
defense. The dynamic software countermeasures desailtmas may provide
incomplete coveragdilfsafe), only apply to a certain platform (StackGhost), or
cause performance degradation and code bliae(ify). Therefore, we
recommend using a dynamic hardware countermeasure, whialkesigned to
transparently provide protection for both new and legaftyvare.

We propose low-cost enhancements to the core hardwaksoftware of future
programmable machines that enable the detection andrpi@v of return address
corruption. Such a processor-based mechanism would coemtestatic software
techniques in a multi-layered defense by overcoming stefieiencies of existing
software solutions. Our proposed hardware defense prawbast protection, can
be used in all platforms, causes negligible performanceadation, and does not
increase code size. Since we require changes to poodessiware, our proposal is
meant to be a longer-term solution. In the intersoffware patches and defenses
against buffer overflow vulnerabilities should continadé applied when available.

5 The Processor-based Defense

In instruction set architectures, procedure call and mehustructions are clearly
recognizable from other branch instructions. Fotainse, in many RISC ISAs, a

branch and link instruction is identified as a procedule @ad a branch to the link
register (such as R31) is identified as a procedure retustruation [18].
Furthermore, as explained in Section 2, procedure callsratodns occur in a
properly nested, or LIFO, fashion. Since the procesaorclearly identify call and
return instructions, it can maintain its own LIFO dhaare stack to store the correct
nested procedure return addresses. The processor doeseddordepend on the
memory stack in which return addresses can be corruptedtbsnal sources (that
exploit software vulnerabilities such as buffer over8pw

We propose that security-aware processors implemeetare return address
stack (SRAS) that preserves correct values of dynamic proeeckiurn addresses
during program execution. Only call and return instructzars modify the contents
of the SRAS, and the processor can rely on the SRABdvide the correct return
address when executing a procedure return instruction.e Ifefturn address given
by the SRAS hardware differs from that stored in tleenory stack, then it is highly
likely that the return address in the memory stack leas lsorrupted. In this event,
the processor can terminate execution, continue execusiog the correct address
from the top of the SRAS, or issue a nawalid return addresdrap. With the
SRAS, we can achieve our goal of thwarting buffer deerittacks in which hostile
code is injected into innocent hosts.

Our SRAS solution differs significantly in the securftynction it provides
compared to the performance function provided by hardwetterr address stacks
[13, 25] found in some high-performance processors like tpbaaA21164 [5] and
the Alpha 21264 [6]. In these processors, the hardwarenratidress stack provides
a mechanism for branch prediction; the target addresa @rocedure return
instruction is highly predictable, and thus it can be maehslable earlier in the
pipeline. The processor uses a return address stack jonction with other
mechanisms such as branch target buffers to performchorarediction. Since
branch prediction mechanisms are not expected to be 100%ates; if the address
predicted by the hardware return address stack differstiiemeturn address saved
in the memory stack, the processor assumes that ametbiprediction is incorrect.
It will “squash” instructions based upon the address poppead fie hardware
return address stack and start fetching instructions begjrat the return address
stored in the memory stack. Hence, in the evenétofrn address corruption due to
buffer overflow exploitation, existing processors will jpnto the malicious code
pointed to by the corrupted return address. In contrastSRAS solution places
trust in the processor’s hardware stack rather thahe@rmemory stack, which can
be modified by external sources.

5.1 SRAS Architectural Requirements

Supporting a Secure Return Address Stack mechanism in asgwpaequires a
hardware return address stack (the SRAS itself), motidicaf the implementation
of procedure call and return instructions to use the SRA8,a method for securely
spilling and filling of the contents of the SRAS to aindm memory upon SRAS
overflow or underflow. Since we do not require re-coatmh or changes to

PC+4 > PC+4 >
NextPC Y NextPC
SRAS SRAS
Call Instruction: Return Instruction:
Push address onto SRAS Pop address from SRAS

Fig. 5. SRAS operation for call and return instructions

programming languages and application source code, both legdayew software
can benefit from the security provided by these enhaants.

The hardware SRAS is simply awrentry LIFO stack. We transparently modify
the execution of procedure call and return instructiongldoe trust in the SRAS
rather than the memory stack as follows. We mainthe ISA definitions and
visible behavior of call and return instructions, bet aiter the manner in which the
processor executes call and return instructions to usBRI& (see Figure 5). This
enables protection for legacy programs as well as negrams. During the
execution of a call instruction, the target of the pdoce call is assigned to the next
PC. Also, the return address (i.e., PC + 4 assumingahtenstruction size is 4
bytes) is pushed onto the top of the SRAS. When a gsocdetches a return
instruction, the return address popped from the top of dhéware SRAS islways
assigned to the next PC. The processor then determiregber the return address
from the memory stack is the same as the return addopg®d from the SRAS. If
these addresses differ, return address corruption (or sttrae error) has occurred,
and the processor should take appropriate action.

A hardware SRAS structure contains a finite numbemtfies, which may be
exceeded by the number of dynamically nested return addresshe program.
When this happens, the processor must securely spill $BABnts to memory. We
define the event in which the SRAS becomes full feihg a call instruction as
overflow; the event where the SRAS becomes emplywiolg a return is defined as
underflow. The processor issues an OS interrupt to writead SRAS contents to
or from protected memory pages when SRAS overflow or rfiodeoccurs. To
prevent thrashing in some programs due to SRAS spilling fillimd), we only
transfer half (instead of all) of the SRAS entriesot from memory on an SRAS
overflow or underflow.

This SRAS overflow space in memory is protected framruption by external
sources by only allowing the OS kernel to access dp#IRAS contents. The OS
executes code that transfers contents of the SRAGftoro these protected memory
pages; the application does not, and cannot, participad&RAS content transfers.
The kernel is responsible for managing the memory strestrequired to store the

spilled SRAS entries for all threads running on theesyst This is achieved by
maintaining one stack of spilled SRAS return addressesedoh process. In

addition, the virtual memory regions that store the SRAintents are mapped to
physical pages that can only be accessed by the keteelce, user-level application
threads cannot corrupt the contents of their respespivied stacks. Also, since the
values popped from the SRAS must always be valid to pmeservect execution, the
OS must transfer the SRAS contents to and from medhaing context switches.

5.2 Non-LIFO Procedure Control Flow

If software always exhibited LIFO procedure control floghavior, the SRAS would
transparently provide hardware-based protection of retddnesses for all programs.
No compiler changes or recompilation of existing souameovould be necessary:
the system would provide protection for all legacy and &toinary executables.
Unfortunately, however, some existing executables useLHeD procedure control
flow. For example, some compilers seek to improve pmidoice by allowing certain
procedures to return to an address located deep withinatie sThe memory stack
pointer is then set to an address of a frame buriedinnttie stack; the frames
located in between the former top of the stack andéhssigned stack pointer are
effectively popped and discarded. Exception handling in Cienéstechnique that
can lead to such non-LIFO behavior.

Other common causes of non-LIFO control flow are thesetimp and
longjmp library functions. These functions are employed to stppoftware
signal handling. Thdongjmp function may cause a program to return to an
address that is located deep within the memory stack antaddress that is no
longer located in the memory stack. More specificalyparticular return address
may be explicitly pushed onto the stack only once, buteghaes may return to that
address more than once. Note that tail call optinumat which seem to involve
non-LIFO procedure control flow, do not cause problemgtfe SRAS. Compilers
typically maintain proper pairing of procedure call and meturstructions when
implementing tail call optimizations.

Our security proposal depends on the correctness of thesadawpped from the
top of the hardware SRAS. Hence, the SRAS mechadéstribed so far does not
accommodate non-LIFO procedure control flow. We can exddthis issue in at
least four ways. The first option prohibits non-LIH&&havior in programs,
providing the greatest security at the lowest cost Bd #ie least flexibility. The
fourth and last option disables the SRAS, providing thetlsecurity but the greatest
flexibility for programs that exhibit non-LIFO behaviofhere exist several possible
alternatives between these two options that tradgingrdegrees of non-LIFO
support for implementation cost and complexity. We predamt of these
possibilities: the second option described below ralrege-compilation, while the
third option described below uses only dynamic code iiosert Both options only
support certain non-LIFO behavior for cost and complex@asons.

The first option is to implement the SRAS as descrideove and completely
prohibit code and compiler practices that employ non-L{F@cedure control flow.

This provides the highest degree of security against retddness corruption. To
support this option, we may need to rewrite or re-comgilérce code for certain
legacy applications. Legacy executables that exhibit LiiB@- procedure calling
behavior will terminate with an error (if not recpited).

The second option is to permit certain types of nornGLffFocedure control flow
such as returning to addresses located deep within the Staés option requires re-
compilation of some legacy programs. During re-compitatihe compiler must
take precautions to ensure that the top of the SRASamikhys contain the correct
target address for an executed return instruction in progthatsuse non-LIFO
techniques. We define new instructiorssas_push and sras_pop , which
explicitly push and pop entries from and to the SRAS witimaaessarily calling or
returning from a procedure. Compilers can employ theseim&ructions to return
to an address deep within the SRAS (and to the assbdia®e in the memory
stack) when usintpngjmp , C++ exception handling, or other non-LIFO routines.

The third option is to provide dynamic support for common-hlFO behavior.
This approach does not support all instances of non-lbél@avior that the second
option can handle via re-compilation, but it does alkxecution of some legacy
executables (where the source code is no longer awiltidt exhibit non-LIFO
procedure control flow. First, we implement thems_push and sras_pop
instructions described above. We also need an installime or run-time software
filter that strategically injectsras_push andsras_pop instructions (as well as
other small blocks of code) into binaries prior tadaring execution. The software
filter inserts these instructions in recognized rowgitiet cause non-LIFO procedure
control flow. For instance, standardized functions §k§mp andlongjmp can
be identified at run-time via inspection of linked libesrsuch abc . This option
only handles executables that employ known non-LIFOriectes, however. For
new manifestations of non-LIFO procedure control flthe software filter may not
identify some locations where the new instructioreusdh be inserted.

The fourth option is to allow the users to disable 8RAS with a new
sras_off instruction. This enables the execution of code éxhtbits non-LIFO
procedure control behavior as permitted in systems uftbm SRAS. In some
situations (e.g., program debugging), a user may wish tooftithe SRAS and run
insecure code. In other cases, the user may disab®eRAS to execute legacy code
with unusual non-LIFO behavior.

Regardless of the method used to handle non-LIFO procedateicflow, we
require that the SRAS be “turned on” by default in orderptovide built-in
protection. Our architecture definition stipulates tthet SRAS is always enabled
unless explicitly turned off by the user, at his own risk.

6 Performance I mpact

We now analyze the implementation costs of our propoBakt, we investigate the
performance degradation caused by the SRAS mechanisypioal programs. The
SRAS does not impact the performance of procedure cdllreturn instructions.
Any performance degradation is due to spilling and retrgetire contents of the

SRAS to and from memory during program execution. Althougtwaork-
processing software is most vulnerable to buffer overfittacks, the SRAS provides
transparent protection for all applications, and theeefany SRAS-induced
performance degradations apply to all software. Heneexamine the performance
impact of our SRAS solution on the SPEC2000 benchmarksyigh are typically
used to model a representative workload in processor perfare studies.

We gather performance data using SimpleScalar versiora@¢le-accurate
processor simulator [3]. Our base machine model clasglyesents an ARM11
processor core, which is used in many network-enablethegded computing
devices [7]. The ARM11 is a single-issue processor wikB8.1 instruction and
data caches. Also, the ARM11 core supports limited ootdér execution to
compensate for the potentially high latencies of laadl store instructions.

We simulate the execution of the first 1.5 billion imstions of 12 SPEC2000
integer benchmarks [21]. Our performance data is basedthpdast 500 million
instructions of each 1.5 billion instruction simulationorder to capture steady-state
behavior. We obtain performance results for all 1Zxberarks and 6 SRAS sizes of
8, 16, 32, 64, 128, and infinite entries. Hence, we performed 272 simulations.
To model the code executed by the OS upon SRAS overfldwiaderflow, we wrote
a swapping and memory management routine in C. All eftbnchmarks and
swapping code were compiled usiog with -O2 optimizations.

We find that the performance degradation caused by SRASppémg is
negligible (i.e., less than 1%) for all the benchmavken using SRAS sizes of 128
or more entries. When using a 64-entry SRAS, the behchmark that suffers a
non-negligible performance penalty igarser , which experiences a small
performance degradation of 2.11%.

Next, we compare the implementation costs of our proppsecessor-based
solution to libverify , a dynamic software-based solution that provides robust
security against procedure return address corruption. Wetdmnsider StackGhost
and libsafe , for these solutions only function on SPARC platforared only
provide protection against buffer overflows in certainfudctions, respectively.
libverify does not require any changes to processors or hardwiaic) is an
advantage over our proposal. Although our solution does eechérdware
enhancements, the necessary modifications are mimoaddition, many processors
already contain a return address stack that would setthe @sre of the SRAS.

Our SRAS solution causes a negligible performance pemaltthe set of
benchmarks examined, wherelsverify causes performance degradation as
high as 15% in some common applications. Furthermoresadution requires little
or no expansion of executable code size. Sibgerify copies functions to the
heap at run-timdjbverify can increase code size by a factor of two. Such code
bloat can be very taxing for constrained devices in gsve computing
environments. Hence, our dynamic hardware-based soligtisuperior to dynamic
software defenses from a performance perspectiveutAgefprocessors are designed
to include SRAS mechanisms, our dynamic hardware defeagde used to replace
dynamic software defenses against procedure return addresgton.

7 Conclusion

Malicious parties utilize buffer overflow vulnerabilisig¢o inject and execute hostile
code in an innocent user’s machine by corrupting procedduen addresses in the
memory stack. Due to the growing threat of attacks siscklistributed denial of
service that exploit the rapidly increasing number of g&e computing devices,
addressing such buffer overflow vulnerabilities is a hgglority for network and
computer security. Although software-based countermeasamresavailable, a
processor architecture defense is justified because segarity problems stemming
from buffer overflow vulnerabilities continue to plagusrputer systems.

We propose a built-in, non-optional, secure hardware meaddress stack
(SRAS) that detects corruption of procedure return address@éhe SRAS
mechanism only requires minor changes to the operaystgns and the processor,
so legacy and new software can enjoy the securityfiteméthout the need to modify
application source code or re-compile the source, whiah mo longer be available.
Also, the SRAS mechanism causes a negligible perforengrenalty in the
applications examined. For greatest security, we suggashéhw software disallow
non-LIFO procedure control flow techniques. However,describe compiler, OS,
and hardware methods for supporting non-LIFO behavior vithismecessary. We
also discuss the tradeoffs between security, implementabmplexity, and software
flexibility associated with supporting non-LIFO proceduratcal flow.

We describe a multi-layer software and hardware defegamst buffer overflow
attacks. Our hardware-based solution should be appliedhdera with existing
static software countermeasures to provide robust pimteict pervasive computing
devices. In future work, we will explore SRAS enhancasend alternative
techniques for preventing buffer overflow and distributedalesf service attacks.

References

[1] A. Baratloo, N. Singh, and T. Tsai, “Transparent Riame Defense against
Stack Smashing AttacksProc. of the 9th USENIX Security Symposidome 2000.
[2] Bulba and Kil3r, “Bypassing StackGuard and StackShidhthfack Magazing
vol. 10, issue 56, May 2000.

[3] D. Burger and T. M. Austin, “The SimpleScalar Toolt,S¥ersion 2.0,”
University of Wisconsin-Madison Computer Sciences Department TecReipatt
no. 1342, June 1997.

[4] CERT Coordination Center, http://www.cert.org/, N@00O1.

[5] Compag Computer CorporationAlpha 21164 Microprocessor (.28):
Hardware Reference ManyaDecember 1998.

[6] Compag Computer CorporationAlpha 21264 Microprocessor Hardware
Reference Manualuly 1999.

[7] D. Cormie, “The ARM11 Microarchitecture,” available at
http://www.arm.com/support/White_Papers/, April 2002.

[8] C. Cowan, C. Pu, D. Maier, H. Hinton, J. Walpdke, Bakke, S. Beattie, A.
Grier, P. Wagle, and Q. Zhang, “StackGuard: Automatic Adapbetection and

Prevention of Buffer-Overflow Attacks,Proceedings of the"7USENIX Security
SymposiumJan. 1998.

[9] M. Frantzen and M. Shuey, “StackGhost: Hardware IFaigid Stack
Protection,”Proceedings of the fOUSENIX Security Symposiufugust 2001.

[10] L. Hornof and T. Jim, “Certifying Compilation and Rtime Code
Generation,” Proceedings of the ACM Conference on Partial Evaluation and
Semantics-Based Program Manipulatidanuary 1999.

[11]K. J. Houle, G. M. Weaver, N. Long, and R. Thom&sgends in Denial of
Service Attack Technology,” CERT Coordination Cen@cttober 2001.

[12] Intel Corporation,The 1A-32 Intel Architecture Software Developer's Manual,
Volume 2: Instruction Set Referentetel Corporation, 2001.

[13]D. R. Kaeli and P. G. Emma, “Branch History TaBlediction of Moving
Target Branches Due to Subroutine Returisgdceedings of the f8International
Symposium on Computer Architectupg. 34-41, May 1991.

[14] P. A. Karger and R. R. Schell, “Thirty Years Lateessons from the Multics
Security Evaluation,” Proceedings of the 2002 Annual Computer Security
Applications Conferencep. 119-126, December 2002.

[15]F. Kargl, J. Maier, and M. Weber, “Protecting Wetn&rs from Distributed
Denial of Service Attacks,Proceedings of the Tenth International Conference on
World Wide Weppp. 514-525, April 2001.

[16]D. Karig and R. B. Lee, “Remote Denial of Servigstacks and
Countermeasures,” Princeton University Department tfctEcal Engineering
Technical Report CE-L2001-002, October 2001.

[17]klog, “The Frame Pointer OverwritePhrack Magazing9(55), Sept. 1999.

[18]R. B. Lee, “Precision Architecture[EEE Computer 22(1), pp. 78-91, Jan.
1989.

[19]J. McCarthy, “Take Two Aspirin, and Patch That t8ys — Now,”
SecurityWatchAugust 31, 2001.

[20] The SANS Institute, “The SANS/FBI Twenty Most tzal Internet Security
Vulnerabilities,” http://www.sans.org/top20/, October 2002.

[21] The Standard Performance Evaluation Corporatiom;/htvw.spec.org/, Nov.
2001.

[22]J. Viega, J. T. Bloch, T. Kohno, and G. McGraw[SH: A Static Vulnerability
Scanner for C and C++ Code?toceedings of the 2000 Annual Computer Security
Applications Conferengdecember 2000.

[23] D. Wagner and D. Dean, “Intrusion Detection viatiBtAnalysis,” Proceedings
of the 2001 IEEE Symposium on Security and Privppy156-169, 2001.

[24]D. Wagner, J. S. Foster, E. A. Brewer, and A. Ajk&h First Step towards
Automated Detection of Buffer Overrun Vulnerabilitie$yeétwork and Distributed
System Security Symposijureb. 2000.

[25]C. F. Webb, “Subroutine Call/Return StackiBM Technical Disclosure
Bulletin, 30(11), April 1988.

