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ABSTRACT

X-ray imaging is an extensively used intra-operative imaging
modality because of its low cost and portability. These images
have to be corrected for geometric distortion in order to use
them for quantitative analysis. Current distortion correction
techniques, which use a grid pattern phantom, are not user
friendly, for example the phantom interferes with the patient
anatomy being imaged. We present a novel method to es-
timate the c-arm distortion parameters along with the patient
pose using patient CT as a fiducial. This method could be very
useful in applications such as 3D reconstruction and surgical
navigation. In this method, we characterize the c-arm distor-
tion patterns statistically using principal component analysis.
The distortion correction method optimizes the distortion pa-
rameters by comparing the fluoroscopic images and the pro-
jections of the registered patient CT. Our simulation experi-
ments show that the distortion parameters can be recovered
up to an average accuracy of 0.5117 mm with a pose error of
about 0.1692 mm in translation, 0.2112 deg in rotation.

1. INTRODUCTION

Fluoroscopic images are extensively used for intra-operative
imaging analysis because of the relatively low cost and ease
of operation of the x-ray fluoroscope. These images suffer
from pose dependent geometric distortion mainly due to the
curved nature of detector and earth’s magnetic field [1]. In
order to perform quantitative analysis in applications such as
surgical navigation or 3D reconstruction, these images need
to be corrected for distortion.
Current distortion correction techniques, for example, use

a calibration phantom with metal BBs [1, 2] or grooves im-
planted [3] in certain geometry. All these methods character-
ize the distortion by fitting a high-order polynomial between
the observed point or line features of the grid in the x-ray im-
age to the physical geometrical coordinates of the respective
phantom grid. These phantoms are easy to use offline, but
might be cumbersome when used for intra-operative distor-
tion correction. The disadvantages being: 1)the grid interferes
with the imaged patient anatomy if left on the image intensi-
fier while imaging; 2) the c-arm has to be tracked for pose
dependent distortion correction; and 3) increased dose and

time if two image sets are taken, one with and the other with-
out the phantom. [1] proposes to interpolate the distortion
parameters from the neighboring poses, to avoid the phantom
interference with the patient anatomy. But this requires the
c-arm to be tracked accurately to determine the pose. Yao et
al. [3] propose to use the same c-arm poses intra-operatively
for which the distortion was measured offline. This proce-
dure works for few images, could be time-consuming when
collecting a lot of data and the c-arm must be repeatable.
Our approach to address these issues is to use patient CT

images as a fiducial for both distortion correction and c-arm
tracking. [4] presents preliminary work on c-arm pose recov-
ery using patient specific model as fiducial. In this paper, we
propose a novel method to perform simultaneous distortion
correction and pose estimation using patient CT. This method
uses prior knowledge in two forms 1) patient CT and 2)sta-
tistical characterization of the distortion patterns. C-arm dis-
tortion variations are characterized with principal component
analysis. We then register the patient CT to a set of X-ray
images, create projections of the registered CT, and then re-
cover the distortion parameters by comparing the actual X-ray
images to the CT projections as shown in Fig 1.

Fig. 1. Flowchart showing simultaneous pose estimation and
distortion correction

There has been extensive prior work on rigid 2D/3D regis-
tration between the patient CT and the x-ray images [5]. Cur-
rently, we use a mutual information based rigid 2D/3D regis-
tration method developed by Sadowsky et al. [6], an exten-
sion of Yao et al. [7], although any rigid 2D/3D registration
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method would satisfy our requirements in this work. The rest
of the paper is organized as follows. Section 2 discusses the
principal component analysis of the distortion patterns and
the algorithmic aspects of the distortion correction method.
Simulation results are given in section 3 and conclusions and
future work in section 4.

2. METHOD

2.1. Statistical Characterization of C-arm Distortion

Fluoroscopic images of the phantom grid are used to measure
c-arm distortion patterns. C-arm distortion is modelled with a
high-order polynomial that maps the observed phantom grid
coordinates from the image extracted through segmentation
(ud, vd) to the nominal coordinates from the physical geome-
try of the phantom (uo, vo). The distortion vector, defined for
each grid point, is given by

�
−→
d = (�u,�v) = (ud, vd)− (u0, v0)

The array of such vectors for all the grid points is the distor-
tion map of that image. These grid coordinates define the con-
trol points to parameterize the distortion using a fifth-order
Bernstein polynomial (n = 5) as shown in the following
equation.

(ud, vd) =
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i=0
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j=0

CijBij(u0, v0) (1)
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This can be written in the matrix form as follows.

(Uobs)m×2 = (B(Unom))m×(n+1)2 × C(n+1)2×2 (2)

where Uobs is the array of observed grid coordinates in the
image; Unom is the array of physical grid coordinates; andm

being number of grid points on the phantom (herem = 300).
The coefficients of the polynomial C matrix or Cij are

computed in the least squares sense. This polynomial is then
used to interpolate the distortion at all image pixels to create
a dewarped image. For statistical analysis, data matrix is cre-
ated by stacking the distortion maps of all the images in one
matrix as given below.

Δ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

�u11 �u12 . . . �u1k

. . . . . .

. . . . . .

�um1 �um2 . . . �umk

�v11 �v12 . . . �v1k

. . . . . .

. . . . . .

�vm1 �vm2 . . . �vmk

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

where (�uij ,�vij) is the distortion vector of the ith grid
point in the jth image; m is the number of grid points on
the phantom; and k is the number of images (in our case,
k = 100).
The mean distortion map M0 is given by the average of

the columns of theΔmatrix. Principal component analysis is
performed on the zero mean (subtract mean distortion map)
data matrix to extract the principal modes of variation. This
analysis enables us to express any distortion map as a linear
combination of the principal modes.

�
−→
d = M0 +

n∑
i=1

λiDi (3)

whereM0 is the mean distortion map andDi is the ith princi-
pal component. The intial characterization of distortion with
Bernstein polynomials has 72 parameters for a fifth-order poly-
nomial, where as the principal component analysis shows that
3-5 parameters are sufficient to characterize the same dis-
tortion, thereby significantly reducing the dimensionality of
the problem. These results indicates that the C-arm distor-
tion patterns although appear to be random, can be predicted
fairly accurately with this model. This parameterization of
distortion function does not need any pose information for
correction which in turn avoids C-arm tracking which is time-
consuming and expensive.

Fig. 2. Number of principal components required to recover
distortion parameters. Our experiments have shown that the
first three modes capture about 99% of the variation [8].

2.2. Pose Estimation and Distortion Correction

The following steps explain the two step optimization setup
for recovering the distortion parameters. The image is given
as a tuple I

j
i , Fi,�di where I

j
i are fluoroscopic images in jth

view, Fi is the patient pose and�di is the estimated distortion
map in ith iteration. We assume that the c-arm is calibrated
for intrinsic projective parameters and the trajectory of the c-
arm is known. Ij

0 , F0,M0 is the input to the optimizer where
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I
j
0 are the actual distorted x-ray images, F0 is the intial esti-
mate of the pose andM0 is the mean distortion map.

1. Update the patient pose by computing the 2D/3D rigid
transformation between the patient model and the x-
ray images. This is achieved by maximizing the mu-
tual information based similarity measure between the
x-ray images and the projections of the patient model.
In our 2D/3D registration method, we use a tetrahedral
mesh approximation of the patient CT as our 3D model
[6]. This method uses downhill simplex optimization
method.

Fi+1 = arg max
F

∑
j

MI(Ij
i , DRR(Fi)) (4)

2. Apply the transformation obtained in the previous step
and create the projections (DRRs)Ij

p of the registered
patient specific model.

Ij
p = Project(Fi+1 ∗Model, Posej) (5)

3. Estimate the distortion parameters by searching the mode
weight parameter space to optimize the similarity mea-
sure between the 2D projections of the 3D model and
the x-ray images.

λ
j
opt = arg min

λ
SSD(Ij

p , Dewarp(Ij
0 ,M0, λ

j)) (6)

For dewarping any image, compute the estimated ob-
served grid coordinates for each image as follows and
the polynomial coefficients as given in 2.

Uobs = Unom + M0 + D × λ (7)

4. Dewarp the distorted x-ray images using the optimal
mode parameters computed in the previous step.

I
j
i+1 = DewarpImage(Ij

0 , M0, λ
j
opt) (8)

Note that the actual x-ray (Ij
0) images are used in de-

warping where as the dewarped images (Ij
i ) in each

iteration are used to estimate the pose. Iterate steps 1
through 4 until convergence with i = i + 1.

3. EXPERIMENTS AND RESULTS

This section discusses the experimental setup and the results
of our simulation experiments. For statistical characterization
of the c-arm distortion, we have taken 120 images of the grid
phantom, one, approximately, every 3 degrees, along the pro-
peller axis of an OEC 9600 c-arm. We corrected all these im-
ages using the grid features with polynomial interpolation and
also computed the distortion map for all these images. Out of
the 120 images, we left out 20 images from the PCA analysis

to perform leave-out validation experiments. For the left out
images, we also computed the inverse warp functions. PCA
analysis on the distortion maps have shown that the first three
principal components capture about 99% of the variation [8].
We have generated 6 DRRs in [0,30,60,90,135, 150] views for
2D/3D registration. Note that the DRRs are generated from
the actual CT volume where as the model we use in 2D/3D
registration is a tetrahedral mesh approximation of the CT.
These DRRs were warped using the inverse warp functions
to simulate the actual x-ray distortion. We have used both
C++ (2D/3D registration) and MATLAB (dewarping) for our
experiments.

Fig. 3. Results from simulation experiments. (a) true projec-
tion; (b) warped projection (simulated x-ray); (c) difference
between true and warped projection ((a) - (b)); (d) registered
and distortion corrected projection; (f) (a) - (d); The bottom
row shows the distortion map before and after correction.

The algorithm converges in 3 to 4 iterations. The regis-
tration results are shown in Fig 3. The figure shows the dif-
ference in the estimated dewarped image and the actual x-ray
image and also the residual distortion map. The bright regions
in (c) is due to the interpolation error in creating inverse warp
functions.The quantitative analysis is shown in Table 1. The
average distortion before correction is about 2.12 mm and a
maximum distortion of 6.4 mm with a pixel size of 0.44 mm
per pixel. The residual error in distortion map is the L2 norm
of the actual distortion map estimated from the phantom grid
and the estimated distortion map from our method.

4. DISCUSSION

We have shown that we can recover the distortion parameters
up to an average accuracy of 0.5112 mm and simultaneously
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Pose Estimation Error
(mm, deg)

Distortion Error
(mm)

Tavg Tstd Tmax Ravg Rstd Rmax avg std max
Unknown Pose,
Known Distortion

0.0050 0.0065 0.0217 0.0069 0.0113 0.0397 N/A N/A N/A

Known Pose, Un-
known Distortion

N/A N/A N/A N/A N/A N/A 0.3309 0.1742 0.7861

Unknown Pose, Un-
known Distortion

0.1692 0.1996 0.6546 0.2112 0.1875 0.4682 0.5117 0.2915 3.2823

Table 1. Pose error and residual error in distortion correction from simulation experiments. Columns 2-4 represent the mean,
standard deviation and the maximum error in estimating the translation and columns 5-7 for rotation respectively. The first row
shows the pose error when the distortion is known from 6 simulations. The second row shows the residual distortion correction
error from 20 experiments and the third row shows the pose and distortion error in simultaneous pose estimation and distortion
correction from 6 simulation experiments.

estimate the pose with an accuracy of 0.1692 mm in transla-
tion and 0.2112 degrees in rotation. These results are promis-
ing as our distortion correction method relies on the patient
CT information as compared to the external phantom based
methods. The maximum error of 3.2823 mm is the maxi-
mum of maximum distortion error in all the images. These
errors can be attributed to the amount of bone present in the
x-ray images. Since the distortion map is defined all over
the image with the grid points, there isn’t enough information
to constrain all the points. This method is not yet feasible
for intra-operative use as the 2D/3D registration step is time
consuming (approx 20 minutes). We are currently exploring
other faster 2D/3D registraton methods that would decrease
the run-time. Real data experiments are currently underway.
We would like to extend this method to do c-arm tracking us-
ing patient information as well. A Further extension would
be to use statistical bone atlas instead of patient CT. The in-
tuition here is that if the anatomical shape variations of the
patient bone and the c-arm distortion patterns lie in differ-
ent subspaces, we can recover distortion parameters using a
statistical bone atlas. However, these preliminary results sup-
port our hypothesis to recover the distortion parameters with
the patient CT as a fiducial and hence can serve as a starting
point for future research.
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