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Abstract
We have been studying brachytherapy planning with the objective of minimizing the maximum
deviation of the delivered dose from prescribed dose bounds for treatment volumes. A
general framework for optimal treatment planning is presented and the minmax optimization
is formulated as a linear program. Dose rate calculations are based on the dosimetry formulation
of the American Association of Physicists in Medicine, Task Group 43. We apply the technique
to optimal planning for intravascular brachytherapy of intimal hyperplasia using ultrasound data
and192Ir seeds. The planning includes determination of an optimal dwell-time sequence for a
train of seeds that deliver radiation while stepping through the vessel lesion. The results illustrate
the advantage of this strategy over the common approach of delivering radiation by positioning
a single train of seeds along the whole lesion.
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1. INTRODUCTION

The inhibitive effect of radiation on proliferative cells is
the basis for radiotherapy. Radiotherapy has long been
recognized as a minimally invasive treatment for cancer
(Mould, 1994). It has recently been proposed as an
effective treatment for intimal hyperplasia, the proliferative
component of restenosis or the renarrowing process of the
vessel (Diamond and Vesely, 1998). The clinical relevance
and importance of intravascular radiation therapy is revealed
by the fact that intimal hyperplasia is usually stimulated by
vascular injury, following, for example, coronary angioplasty
(Teirstein et al., 1997). While radiotherapy of cancer
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is often not possible without subjecting healthy organs or
structures at risk around the treatment site to some amount
of radiation, the treatment is useful only if it sustains delivery
of sufficiently large amounts of radioactive dose to the tumor.
Treatment planning and optimization is therefore an integral
part of cancer radiation therapy. A similar trade-off is
revisited in radiotherapy of intimal hyperplasia; low doses of
radiation stimulate neointimal proliferation, while high doses
may cause vascular complications such as aneurysms and
thrombosis (Diamond and Vesely, 1998).

Two main radiation treatment modalities include
brachytherapy or treatment by radioactive seeds or implants,
and external radiation therapy (Hendee and Ibbott, 1996).
Brachytherapy is an interstitial or intracavitary radiation
technique (brachy is the Greek word for near) where
small sealed radioactive sources are applied to deliver
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radiation at a short distance from the treatment volume
(Khan, 1994). Compared to external radiation therapy,
this technique provides the advantage of delivering a large
dose to a very localized treatment target, while sparing
the surrounding normal tissue. In the past both radium
and radon sources were used in brachytherapy, but today
radionuclides such as 192Ir, 125I and 103Pd are being used
increasingly. Brachytherapy may be divided into high dose
rate involving insertion of temporary radioactive material
in close proximity of the target tissues, and low dose rate
involving insertion of permanent radioactive implants
(Hilaris et al., 1988). Even though the basic planning
objectives, mathematical formulation and appropriate
optimization techniques are similar for different treatment
modalities, there are differences in dosimetry, the dose
distribution forms and the associated gradient fields, and
the physical quantities involved in the planning procedure.
Different dose distribution forms and gradient fields affect
suitable sampling strategies for point dose evaluations, and
different physical quantities impose different constraints on
the planning.

A typical treatment objective is delivery of a prescribed
dose distribution to the treatment volume (Webb, 1993). The
exact form of this problem, also known as inverse dosimetry,
cannot be solved in general, i.e. in general it is not possible
to determine the treatment variables so as to generate any
desired dose distribution in a given volume (Webb, 1993).
Alternatively, an optimization approach is followed where the
treatment variables are determined so as to optimize a score
or objective function associated with the dose distribution.
The treatment variables (optimization variables) consist of the
configuration of the sources (placement of seeds, orientation
of beams, beam geometry etc.) and the weighting among
them. Optimal weighting concerns optimal assignment
of the radiation time of each source for high dose rate
brachytherapy, the radioactive quantity of each source for
low dose rate brachytherapy and the fraction of each beam
contributing to the total delivered dose for external beam
therapy. It holds for all treatment modalities that the delivered
dose to each point is a linear function of the source weights.
However the relationship between configuration variables
such as placement and orientation and the dose values is non-
linear. In some cases, the treatment is fractionated which
means treatment according to a schedule over a period of
time. The formulation of fractionated treatment planning
leads to an optimal control problem (Swan, 1981).

In this paper we focus on high dose rate brachytherapy.
The ideal design objective is to confine the delivered dose
to the target and surrounding tissues to prescribed bounds
determined by an expert. We study situations where the
prescribed bounds are not feasible. Even though the emphasis

of the paper is directed towards high dose rate brachytherapy,
the planning problem is stated in general terms. Therefore
the presented formulation and techniques may be applicable
to other treatment modalities. The design variables for high
dose rate brachytherapy which are considered in this paper
are optimal source weights or radiation times.

Earlier work
Niemierko and Goitein (1992) consider optimization of
biological response to cancer radiation therapy. This requires
a detailed modeling of the response as a function of the treat-
ment variables (Niemierko and Goitein, 1993). Mohan et al.
(1992) use simulated annealing to optimize the biological
response to external beam therapy. The problem with such
criteria is the unknown and often very complex response
mechanism to radiation. There is an extensive literature
on optimal treatment planning for external beam radiation
therapy (Webb, 1993) where the goal is to deliver a dose dis-
tribution as close as possible to a prescribed distribution. This
includes least-squares (Webb, 1991; Menguy et al., 1997)
and dose bounding (Schweikard et al., 1994) formulations.
The least-squares criterion has been solved by simulated an-
nealing (Webb, 1991) and quadratic programming (Menguy
et al., 1997). The quadratic programming solution to the
least-squares criterion is more appropriate for computation
of optimal beam weights since the least-squares objective
function is quadratic in the weights. Linear programming
has been applied to dose bounding (Schweikard et al., 1994).
In connection with brachytherapy, Laarse and Prins (1994)
summarize the commonly used optimization objectives and
techniques. This includes dose bounding, least-squares and
polynomial optimization. An interactive optimizer based on a
genetic algorithm that uses expert opinion to rank competitive
plans has also been suggested (Yu, 1997).

The formulation of planning objectives in this paper is
in spirit close to the work of Schweikard et al. (1994).
Contributions of this paper relative to the prior art may be
summarized as follows. We present a general formulation
for optimal treatment planning under infeasibility of the
prescribed bounds on the delivered dose to the target and
surrounding tissues. This formulation illustrates the con-
nection between various planning objectives and considers
uncertainty factors in the planning process. Minimizing the
largest deviation of the delivered dose from the prescribed
bounds (minmax optimization) is of special interest. Minmax
optimization is used as a simple way to address problems
arising in, for example, intravascular brachytherapy on the
one hand, and generating feasible bounds to constraint
optimization according to other objectives on the other. The
most recent published works on high dose rate intravascular
brachytherapy consider determination of the radiation time
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for a single train of seeds or radioactive wire (see, for
example, Chan et al., 1998). In the approach considered here,
we assume on the other hand, that a train of seeds is stepped
throughout the vessel’s length of interest. A common method
of high dose rate radiation delivery uses an afterloader to
step trains of seeds (Hendee and Ibbott, 1996). During the
stepping process the train resides (dwells) at predetermined
positions along the stepping path for specific durations of
time. These positions and time durations are referred to as
dwell positions and dwell times. Assuming that dwell times
are much smaller than seed half-lives, the amount of dose
delivered by the train at each dwell position is equal to the
dwell time at that position multiplied by the dose delivery
rate of the train. Moreover, the amount of delivered dose
during the transience between two consequent dwell positions
may be ignored due to high after loading velocity (typically
100–300 mm s−1 for transience between two consequent
dwell positions). Hence for a fixed sequence of dwell
positions, the sequence of dwell times wholly determine
the dose distribution delivered by the train of seeds to the
target and surrounding tissues. We consider optimization
of the dwell-time sequence of such stepping train of seeds.
The related optimization problem is formulated as a linear
program which offers great computational advantage because
of various existing numerical solutions (Bazaraa et al., 1990).
The technique can be readily generalized to high dose rate
brachytherapy planning.

The rest of the paper is organized as follows. Section 2
concerns optimal planning and dosimetry. This includes a
general framework for optimal treatment planning, formula-
tion of the planning objective for high dose rate brachyther-
apy as a linear program, and the physical background in
dosimetry of radioactive implants. The planning framework
of Section 2 is directed towards an audience with general
interest in treatment planning problems and may be studied
independently of any particular application. Section 3
discusses the application of the developed techniques to a
treatment planning problem from the area of intravascular
brachytherapy. Finally, Section 4 offers concluding remarks.

2. OPTIMAL TREATMENT PLANNING AND
DOSIMETRY

Optimal treatment planning addresses the question of deter-
mining the treatment variables so as to achieve a desired
distribution of delivered dose to the target and surrounding
tissues. The prescribed dose distributions are in many cases
stated as upper and/or lower dose bounds for target and sur-
rounding tissues. For instance, radiotherapy of local disease
involves delivering high amounts of dose to malformations
such as tumors while keeping the dose to organs or structures

at risk below a tolerance level. The numerical study of
the paper concerns an important application from the area
of intravascular brachytherapy where it is desired to deliver
minimum and maximum amounts of radioactive dose to a
target volume defined within the vessel. In this section, we
first consider a general formulation of the planning problem
(Subsection 2.1) independently of any particular application.
Subsection 2.2 focuses on optimal planning of dwell-time
sequences for high dose rate brachytherapy where the plan-
ning problem is formulated as a linear program. Finally in
Subsection 2.3, we consider dosimetry or calculation of dose
delivery rates which determine the coefficients of the linear
program formulated in Subsection 2.2.

2.1. Optimal treatment planning
Given a set of bounds for the delivered dose to the target
and surrounding tissues, which are referred to generically as
target volumes in this paper, the ideal planning objective is
to constrain the delivered dose values within the prescribed
bounds. This task might however be impossible due to the
infeasibility of the prescribed bounds. Infeasibility analysis
of the bounds is therefore essential to the design of optimal
treatment plans. We propose a minmax optimization as
a way of dealing with infeasibilities and discuss ways of
incorporating the obtained solution in problems where other
planning objectives such as dose homogeneity are of primary
interest.

Let us first state a general formulation of the treatment
planning problem. Within this framework, we take into
account the fact that the delivered dose to a voxel for any
treatment parameter may be affected by a variable whose
value is unknown (an uncertainty variable). This variable may
consist of factors such as uncertain positioning of the seeds
and uncertain dose calculation models. Furthermore, the
prescribed upper and lower bounds for a voxel are assumed to
be uncertain due to uncertainty in, for example, segmentation
of the target volumes. Let d(θ; v, δ), d(v, δ) and d(v, δ)

denote, respectively, the delivered dose, dose upper bound
and dose lower bound for voxel v and treatment parameter
θ where all uncertainty factors are collected in the variable δ.
The ideal dose bounding may be formulated as the problem
of finding a θ ∈ 	 such that

d(v, δ) ≤ d(θ; v, δ) ≤ d(v, δ) (1)

for all v ∈ V and δ ∈ 
 where 	, V and 
 denote the set
of physical or other feasible constraints on θ , all voxels of
interest and all possible uncertainty values respectively. The
prescribed bounds may be infeasible. Consider a sequence of
non-negative variables {α(v, δ)|v ∈ V, δ ∈ 
} for which the
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inequalities

d(v, δ) − α(v, δ) ≤ d(θ; v, δ) ≤ d(v, δ) + α(v, δ)

∀v ∈ V ∀δ ∈ 

(2)

can be satisfied simultaneously for some θ ∈ 	. There
are infinitely many such sequences since α should merely be
selected large enough for Equation (2) to hold. If {α(v, δ) =
0} is one such sequence, the prescribed dose bounds are
feasible. Under infeasibility conditions, however, we seek
a sequence with smallest norm where the l p norm of a
sequence { f (z)|z ∈ Z} is defined by (

∑
Z

| f (z)|p)1/p. Hence,

the general l p optimization is defined as

minθ∈	,α(v,δ)≥0

∑

v,δ

α(v, δ)p

∀v ∈ V ∀δ ∈ 
 :

d(v, δ) − α(v, δ) ≤ d(θ; v, δ) ≤ d(v, δ) + α(v, δ).

(3)

Remark 1 Noting that for each given θ , the smallest value of
α(v, δ) satisfying

d(v, δ) − α(v, δ) ≤ d(θ; v, δ) ≤ d(v, δ) + α(v, δ)

is equal to

max
{
αmin(θ; v, δ), αmin(θ; v, δ)

}

where

αmin(θ; v, δ) = max{0, d(θ; v, δ) − d(v, δ)}
αmin(θ; v, δ) = max{0, d(v, δ) − d(θ; v, δ)}

the general l p optimization Equation (3) is equivalent to

min
θ∈	

∑

v,δ

(
max

{
αmin(θ; v, δ), αmin(θ; v, δ)

})p
.

In the special case where the upper and lower bounds at a
point are equal to a target dose at that point, i.e.

d(v, δ) = d(v, δ) = dT (v, δ)

the optimization may be formulated in the following simpler
form:

min
θ∈	

∑

v,δ

|d(θ; v, δ) − dT (v, δ)|p.

The selected norm is dependent upon planning objectives.
We identify several special cases of interest:

• as p → 0+, α(v, δ)p approaches an indicator function
which is zero if α(v, δ) = 0 and 1 if α(v, δ) > 0, i.e.
minimizing l0 is equivalent to maximizing the number
of elements of V ×
 that receive dose values within the
prescribed bounds;

• p = 1 and 2 cases correspond to minimization of
the mean and mean square of the sequence {α(v, δ)}
respectively;

• as p → +∞, the l p optimization tends to minimization
of maxv,δ α(v, δ).

The case p → 0+ has a direct connection to the histogram
over delivered dose values which from a clinical standpoint is
one of the most important figures of merit for a treatment plan
(Hendee and Ibbott, 1996). Unfortunately, optimization of
the l0 norm is a formidable task since for p < 1, the l p norm
is non-convex in α and as p → 0+ the problem becomes one
of combinatorial nature.

The l1 and l2 problems are appealing since they both are
convex in α and minimize the deviations in an average sense,
hence resulting in homogeneous dose distributions. The l2
norm for the case where the upper and lower dose bounds at
a point are set equal to a target dose value at that point (see
Remark 1) has received particular attention in the literature
and is mostly referred to as least-squares optimization
(C. Davatzikos et al., personal communication). In forming
the l1 or l2 norms, a weighted sum might be preferable where
the weight at (v, δ), denoted by w(v, δ), may be defined as
the loss associated with a unit dose deviation from the upper
or lower bound at v multiplied by the probability of δ.

The case p → +∞ or the minmax problem is of particular
interest in this paper. Firstly, the minmax formulation arises
naturally in applications such as intravascular brachytherapy
planning which is discussed in the numerical study of the
paper. Secondly, the minmax analysis finds a lowest feasible
upper bound on the sequence {α(v, δ)|v ∈ V, δ ∈ 
}. This
bound may be used to constrain the solution to optimization
problems where other criteria such as dose homogeneity are
of primary concern. Finally, the l∞ problem is computation-
ally appealing.

Denote β = maxv,δ α(v, δ). The minmax problem may
simply be formulated as

minθ∈	,β≥0 β

∀v ∈ V ∀δ ∈ 
 :

d(v, δ) − β ≤ d(θ; v, δ) ≤ d(v, δ) + β.

(4)

Denoting the optimal value of β in Equation (4) by β∗∞, the
constraints

d(v, δ) − β0 ≤ d(θ; v, δ) ≤ d(v, δ) + β0

∀v ∈ V ∀δ ∈ 

(5)
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Figure 1. The beams of radiation are shown by directed lines that
aim at A. Possible critical structures are marked by X.

are feasible iff β0 ≥ β∗∞. The above inequalities for β0 ≥ β∗∞
may be added to the constraint sets of any l p optimization.
Through constraining, for example, the l1 or l2 optimization
by the inequalities of Equation (5), the average deviation is
sought minimized while the worst deviation is ensured to be
bounded by a selected value of β0.

Finally, if the dose at (v, δ) should be bounded from one
side only, the two-sided inequalities on d(θ; v, δ) should
obviously be modified to one sided throughout by keeping
only the relevant side of the inequalities.

We illustrate the discussed planning concepts by means of
a simple example.

Example 2.1 Consider two beams of radiation aiming at
point A in Figure 1 and assume that the radiation dose is equal
along the path of beam travel.

Point C is outlined as a critical structure, while point B
might be a critical structure with some positive probability.
Let the random variable δ = 0, 1 be defined such that δ = 1
if B is a critical structure and δ = 0 otherwise, and let p0
and p1 denote the probabilities of δ = 0 and 1 respectively.
Suppose that the prescribed dose bounds (according to some
unit for radiation) are given by

dA = d(A, δ = 0, 1) = 2

dB0 = d(B, δ = 0) = 1.5

dB1 = d(B, δ = 1) = 0.5

dC = d(C, δ = 0, 1) = 0.5.

Letting θ1 and θ2 denote the beam weights (variables that
determine beam intensities and affect dose linearly) of the
vertical and horizontal beams respectively, the delivered dose
values are given by

d(θ1, θ2; A, δ = 0, 1) = θ1 + θ2

d(θ1, θ2; B, δ = 0, 1) = θ1

d(θ1, θ2; C, δ = 0, 1) = θ2.

The defined bounds are obviously infeasible and the minmax

solution is β∗∞ = 0.33 with 0.83 as the corresponding optimal
value for θ1 and θ2. Now consider the non-negative variables
αA, αB0, αB1 and αC and constraints

αA ≥ dA − d(θ1, θ2; A, δ = 0, 1)

αB0 ≥ d(θ1, θ2; B, δ = 0) − dB0

αB1 ≥ d(θ1, θ2; B, δ = 1) − dB1

αC ≥ d(θ1, θ2; C, δ = 0, 1) − dC.

(6)

The weighted l2 problem may be stated as determining non-
negative θ1, θ2, αA, αB0, αB1, αC so as to minimize

α2
A + p0α

2
B0 + p1α

2
B1 + α2

C

subject to the linear constraints of Equation (6), and the
constraints

θ1 + θ2 ≥ 2 − β0
θ1 ≤ 0.5 + β0
θ2 ≤ 0.5 + β0

(7)

for some β0 > 0.33 where this last set of inequalities
ensures that the largest deviation always remains within
predetermined bounds. Assuming that p0 = 0.8 and p1 =
0.2, the l2 optimization without enforcing Equation (7) yields
1.21 and 0.64 as the optimal values of θ1 and θ2 respectively,
i.e. 1.21 units of radiation at point B. Selecting β0 = 0.5 and
enforcing Equation (7) yields 1.00 and 0.75 as the optimal
solution for θ1 and θ2. The reduction of the delivered dose
to B by ≈0.2 units is done by ≈0.1 unit increase in the dose
delivered to C and ≈0.1 unit decrease in the delivered dose
to A. Through constraining the optimization by Equation (7),
B is spared for excessive exposure to radiation in the event
that it is a critical structure (even though such event is less
likely). Notice further that the optimal dose at C according
to the constrained l2 solution is ≈0.1 units less than the
corresponding dose provided by minmax optimization.

Remark 2 Kelley’s cutting plane algorithm (Kelley, 1960;
Zangwill, 1969; Luenberger, 1984) provides a simple method
for optimization problems such as Equation (4). In general
consider the problem:

min
x∈X

f (x) g(x; y) ≤ 0 ∀y ∈ Y

where f (x) is convex in x , X is described by a set of linear
inequalities, and g(x; y) is convex and differentiable in x
for all y ∈ Y (Y may in general be infinite). Starting with
the solution to minx∈X f (x), the algorithm consists of the
following steps which are performed iteratively. First x is
fixed to its current solution and a value for y that maximizes
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g(x; y) is computed. Then y is fixed to this computed value
and g(x; y) is linearized in x around the current solution.
The linearization step yields a linear constraint (in x) which
is added to the set of constraints on x . A new value for x
as the minimizing argument of f (x) subject to the updated
set of constraints is computed. The whole procedure is
repeated until at some current solution, g(x; y) is smaller than
a selected small positive number for all y ∈ Y . Now if 	

is described by a set of linear constraints, application of the
algorithm to, for example, Equation (4) obviously requires
sequential linear programming. Moreover, if d(θ; v, δ) is
linear in θ , the linearization step of the above procedure will
no longer be necessary.

2.2. Optimal high dose rate brachytherapy
As mentioned in the introduction, high dose rate brachyther-
apy concerns delivery of radiation dose to target tissues by
temporary insertion of radioactive material in close proximity
of the target. A common method of high dose rate radiation
delivery uses an afterloader to step trains of seeds along
one or more paths (Hendee and Ibbott, 1996). With the
assumption that the total irradiation times are much smaller
than seed half-lives, the dose delivery rates may be assumed
constant within the time intervals of radiation. So for a train
of seeds dwelling at a certain position along its path, the
amount of delivered dose to a point is equal to the dwell time
of the train multiplied by the dose delivery rate to the point
of interest for that dwell position. The total delivered dose
to a point is equal to the superposition of delivered doses
from each dwell position. The seed paths, relative positioning
of the seeds within a train, initial and final positions of
the trains on the paths, and the stepping lengths constitute
the configuration of dose delivery. The goal of treatment
planning is determination of the optimal configuration and
the corresponding dwell-time sequence to deliver a desired
dose distribution to the target and surrounding tissues. We
address optimization of the dwell-time sequence for a given
delivery configuration. Developing fast algorithms for dwell-
time optimization enables the user to select an optimal plan
by comparing dwell-time optimization results for various
configurations. Such comparisons may alternatively be done
by appropriate search algorithms.

Suppose that M target volumes, V1, . . . , VM , are given
where each target volume is specified by a set of sampled
points (voxels) within the volume. We neglect the uncertainty
variable and let di and di respectively denote d(v) and d(v)

for v ∈ Vi . The more general situation can be handled
using the techniques described in the earlier subsection. The
linearity of dose in dwell times yields,

d(T1, . . . , Tn; v) = φ1(v) T1 + φ2(v) T2 + · · · + φn(v) Tn

where Tj is the dwell time of the train of seeds for positioning
j , n is the total number of dwell positions, v denotes voxel
and φ j (v) denotes dose delivery rate at v for positioning j .
We consider calculation of the delivery dose rates in the next
subsection. The minmax problem in Equation (4) transforms
into the linear program,

min β

di − β ≤
n∑

j=1

φ j (v)Tj ≤ di + β ∀i∀v ∈ Vi

T1, . . . , Tn β ≥ 0

(8)

where the minimization is with respect to T1, . . . , Tn, β.
Depending on the sampling resolution, the number of

constraints in the above linear program may be large, since
each voxel introduces two inequalities (one inequality if the
voxel belongs to a volume where the dose should be bounded
from one side only). Linear programming is a well explored
area in optimization for which numerous efficient algorithms
and approaches exist (Dantzig, 1963; Murty, 1986; Bazaraa
et al., 1990; Saigal, 1994) even for high-dimensional cases.
A simple way of dealing with the large number of inequalities
of the above problem is a cutting plane method which is
described in Remark 2 of the previous subsection.

2.3. Dosimetry
Let us now consider calculation of the dose rate values,
i.e. the coefficients of the linear system of Equation (8).
Each coefficient, φ j (v), is calculated by summing over
contributions from each seed to the dose rate at v when the
train of seeds assumes positioning j .

The dose rate is not only a function of the configuration
of the train of seeds but the physical characteristics of
the radionuclide within the seed (gamma or beta source,
energy spectrum and half-life). In cancer treatment, the
radionuclides used for interstitial brachytherapy in the United
States are gamma sources, most commonly 192Ir and 125I.
Also, 103Pd seeds have become available recently as al-
ternative sources. In terms of vascular brachytherapy, the
dose must be delivered to lesions in the range of 1–3 mm.
Photons above an energy of 20 keV and electrons above an
energy of 1.0 MeV are found to be adequately penetrating
at this depth range (Nath and Liu, 1997). Dose rates
>5 Gy min−1 are desired to deliver the prescribed dose at
reasonable treatment times since longer times mean increased
patient risk of complication due to reduced arterial blood
flow. 192Ir has been used in several animal and clinical
trials (Crocker and Waksman, 1997) because it is considered
a high-energy gamma emitter which provides an acceptable
dose distribution within 5 mm from the source axis, and
the prescribed dose can be delivered within a reasonable
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Figure 2. Isodose curves of a 3 mm long 192Ir seed. The curves are plotted for dose rate values varying from 1 to 2 Gy min−1 with intervals
of 0.2 Gy min−1.

irradiation time. Other low-energy gamma sources (125I,
103Pd) as well as beta emitters (32P, 90Y) are under current
investigation by several research groups (?).

In the numerical study of the paper (Section 3), we
present the optimization results for the 192Ir seed used for
vascular brachytherapy. 192Ir is a gamma emitter with a
73.8 day half-life and an average photon energy of 370 keV.
The modeled 192Ir seed is available commercially (Best
Industries, Springfield, VA). This seed is in the form of a
cylinder (3 mm long with a 0.5 mm diameter), and has a
0.1 mm diameter core of 30% Ir–70% Pt encapsulated by a
0.2 mm thick stainless steel cladding.

For calculation of dose rate from a seed to a point, we
assume that seeds are line sources and follow the American
Association of Physicists in Medicine (AAPM) task group
43 (TG43) formalism (Nath et al., 1995) as recommended
by the AAPM-TG60 (R. Nath et al., unpublished) for
photon-emitting sources. For small distances between the
point and the source center (range of several millimeters),
which are typical for intravascular brachytherapy, the line-
source assumption yields more accurate results than the
more common point-source approximation, mainly due to
suppression of the inverse squared dependency of the dose
rate upon small distances in line-source dose calculations
(Nath et al., 1995). The dose rate value calculated on the
basis of line-source approximation also depends on the seed
direction which is equivalent to the tangent to the seed path
at the location of the seed. The information required for
calculation of dose rate values on the basis of the TG43
formalism is relative positioning of the target volumes with
respect to the seeds. The data needed for dosimetry and

treatment planning are typically image based. Common
image modalities are computed tomography (CT), magnetic
resonance (MR) and ultrasound. In the numerical study of the
paper, tomographic sections of intravascular ultrasonography
(IVUS) are employed for calculation of dose delivery rates to
the target volume.

Figure 2 illustrates isodose curves of a 3 mm long 192Ir
line source with an air kerma strength of 400 U; kerma stands
for kinetic energy released per unit mass and is a measure
of the energy released in a volume of air at some distance
from a radioactive source (see Nath et al., 1995). The curves
are computed on the basis of TG43 formalism. Figure 2a
shows isodose curves on a plane containing the source,
while Figure 2b plots the curves on a plane perpendicular to
the source where the origin coincides with the seed center.
Notice that in contrast to Figure 2b, the isodose curves of
Figure 2a are anisotropic which is a result of the line-source
assumption.

3. NUMERICAL EXAMPLE:
ULTRASOUND-GUIDED INTRAVASCULAR
DOSIMETRY

Coronary angioplasty is a minimally invasive technique for
treatment of atherosclerosis, the principal process of heart
disease. Despite its wide acceptance, coronary angioplasty
is limited by rates of restenosis of 30–60% (Teirstein et al.,
1997). A major component of the restenosis process is
intimal hyperplasia which refers to the proliferative response
to vascular injury. While coronary stents virtually remove
recoil and remodeling (other components of the restenosis
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Figure 3. Media boundaries outlined on a series of tomographic sections.

process) they do not decrease the proliferative response
caused by angioplasty. Recent studies show that ionizing
radiation, administered during or after angioplasty, can inhibit
the proliferative component of restenosis (Waksman, 1996).
Possible radiation techniques are temporary or high dose
rate catheter-based brachytherapy using radioactive seeds,
wire or liquid-filled balloons, permanent or low dose rate
brachytherapy using radioactive stents and external beam
radiation. Treatment planning is essential since low doses
of radiation stimulate neointimal proliferation and high doses
may cause vascular complications such as aneurysms and
thrombosis (Diamond and Vesely, 1998).

In the short-term study of patients with previous coronary
restenosis that was conducted at the Scripps clinic and re-
search foundation, it was demonstrated that coronary stenting
followed by catheter-based intracoronary radiotherapy sub-
stantially reduced the rate of subsequent restenosis (Teirstein
et al., 1997). The target volume was defined to be the media
which is a smooth muscle cell layer of the vessel filling
the area between the innermost intima and the outermost
adventitia. The volume boundaries were outlined on a series
of tomographic sections obtained by ultrasonography and
dosimetry included calculation of the radiation time for a
single train of seeds with the goal of delivering a minimum
of 8 Gy and a maximum of 30 Gy to the target volume.
In computing the optimal radiation time, it was assumed
that the path traveled by the pull-back ultrasound imaging
device was a straight line and equivalent to the path of the
train of seeds. This assumption holds throughout the rest
of this section unless otherwise stated. Figure 3 illustrates
typical delineation of media boundaries on three tomographic
sections where the origin of each section coincides with the
position of the imaging device during its passage through that
section. Let P and P be the closest and furthest media points
from the path of the sonographic device (equivalent to the
path of the train of seeds) respectively. These two points
may be determined by simple examination of boundary point

positions relative to the origins on the tomographic sections.
Under the above assumptions and noting that dose rate falls
monotonically with distance from the radioactive source, the
dosimetry planning of the Scripps trial may be stated as a
determination of the radiation time of a single train of seeds
with the goal of a minimum of 8 Gy delivery to P and a
maximum of 30 Gy delivery to P .

We extend the dosimetry planning of the Scripps trial
to treatment planning on a 36 mm long coronary lesion
where the treatment variable is the dwell-time sequence of
a stepping train of seeds rather than the radiation time of a
single train. Ultrasound tomographic sections of the lesion
which are 1 mm apart are obtained with the use of a pull-back
apparatus. The media boundaries are outlined manually on
the sections of the lesion. Inner and outer boundary points at
longitudinal and angular resolutions of 0.25 mm and 10◦ are
computed by interpolation. On each slice i (of the 0.25 mm
apart slices), we determine two points, Pi and Pi , that are
closest to and furthest from the origin of that slice. Recalling
that dose rate falls monotonically with distance from the
source, the ideal dose bounds of the Scripps trial may be
stated as

d(T1, . . . , Tn; v) ≤ 30 Gy ∀v ∈ V1

d(T1, . . . , Tn; v) ≥ 8 Gy ∀v ∈ V2
(9)

where V1 and V2 represent the sets of points {Pi } and {Pi }
respectively and T1,. . . ,Tn , as earlier, denote the sequence of
dwell times.

Remark 3 Even though we have assumed equivalence of
the paths of the train of seeds and the imaging device, the
extension to cases where this equivalence does not hold is
straightforward under a straight midline assumption. At each
slice i , the points Pi and Pi should merely be determined as
points closest to and furthest from a possible positioning of
the source relative to the center of the slice. As a result of
monotonic dose rate decrease with distance, the inequalities
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Lesion to be radiated: 36mm
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Figure 4. Side projection of the vessel to be radiated. The centers of the seeds are marked by X and the travel path of the seeds is illustrated by
the directed lines connecting points A and B.

of Equation (9) will in this case imply that the dose is
bounded at all media points for all possible non-centering
uncertainties.

The bounds in Equation (9) may be infeasible in which
case an optimization approach should be followed. We select
the minmax approach as a natural extension of the dosimetry
planning of the Scripps trial. The reason is that for n = 1 we
obviously have

d(T1; P) = max
v∈V1

d(T1; v)

d(T1; P) = min
v∈V2

d(T1; v).

Hence dosimetry planning with the objective of bounding
maxv∈V1 d(T1, . . . , Tn; v) and minv∈V2 d(T1, . . . , Tn; v) cov-
ers the dosimetry planning of the Scripps trial as a special
case for n = 1. For n > 1, more desirable dose distributions
may be achieved through adjustment of the dwell times to
variations in the vessel diameter. These variations may be
represented by slicewise variations in the diameters of inner
and outer circles around the IVUS catheter (imaging device)
where the radii of the circles are respectively equal to the
smallest and largest distances of the media from the IVUS
catheter. Notice that all points on each one of the inner and
outer circles receive the same radioactive dose. The surfaces
described by the inner and outer circles are referred to as inner
and outer surfaces. Under the straight midline assumption
for the lesion, the inner and outer surfaces may be obtained
by simple stacking of the circles. In general, obtaining the
surfaces requires establishing coordinates of the points with
respect to a fixed coordinate system. Even though IVUS to-
mographic sections provide excellent structural information,
they do not provide direct information about the coordinates
of points with respect to a fixed coordinate system and a
reconstruction step is therefore necessary. Transcutaneous
ultrasonography (McPherson, 1996), MR or CT scans, on
the other hand, directly establish global coordinates but are
not commonly used. Three-dimensional reconstruction of the
surfaces which are spanned by the outlined circles requires
extra information about the curvature and twist of the midline

of the vessel obtainable by, for example, magnetic tracking
of the IVUS catheter (McPherson, 1996) or data fusion with
biplane angiograms (Prause et al., 1996).

We study intravascular radiation therapy for 192Ir seeds
with air kerma strength of 400 U (see Section 2 for physical
properties). We consider two different delivery configurations
C1 and C2. Figure 4 illustrates the positions that the seed
centers of both C1 and C2 may assume relative to the lesion.
In both configurations the length of each seed is 3 mm and the
centers of two neighboring seeds are 4 mm apart, i.e. a gap of
1 mm between two neighboring seeds. These dimensions are
commonly used in intravascular brachytherapy (Jani et al.,
1998). Configuration C1 corresponds to a single train of 12
seeds (i.e. a total length of 44 mm between the centers of the
seeds at the two ends of the train), covering the 36 mm long
lesion. The single-train configuration of C1 is consistent with
the delivery setting of the Scripps trial or the work of Chan
et al. (1998). There is only one dwell time (equal to the total
radiation time) associated with C1. For configuration C2, a
train of two seeds is stepped throughout the lesion dwelling
at six distinct positions. The step length is uniformly selected
to be 8 mm, i.e. a total length of 4 mm+5×8 mm = 44 mm,
which is equal to the total length covered by C1, is spanned
between the furthest locations the seed centers may assume.
We use the procedure of the previous section to compute the
optimal dwell times, and compare the result for these two
configurations. The minmax problem is formulated as

min β
n∑

j=1

φ j (v)Tj ≤ 30 + β ∀v ∈ V1

n∑

j=1

φ j (v)Tj ≥ 8 − β ∀v ∈ V2

T1, . . . , Tn β ≥ 0.

The total number of points that participate in the optimization,
i.e. the total number of points in V1 and V2, is equal to
[36 mm × (1/0.25 mm) + 1] × 2 = 290.
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Figure 6. Dose distribution on V1 (top figure) and V2 (bottom figure) for C1. The area of each box represents the number of surface points
receiving dose values within the horizontal range of the box.

We perform the computations on a SGI Octane workstation
with MATLABa software. The inner and outer surfaces are
visualized in Figure 5 for which a longitudinal resolution
of 1 mm and angular resolution of 10◦ are selected. The
optimization results are summarized in Table 1 where the
optimization time refers to the time needed to solve the
linear program. Since the optimization of the original linear

aMATLAB is a registered trademark of the Mathworks Incorporation.

program is fast, no cutting plane method is applied. For
the configuration C2, Figure 8 plots the optimal dwell-
time sequence as a function of the distance from the initial
position of the train where the train enters the lesion from
coordinates (0, 0, 0) in Figure 5. Comparing Figures 8
and 5 shows that the optimization responds to variations
in the diameter by corresponding adjustments in the dwell
times (i.e. smaller dwell times correspond to smaller radii
and vice versa). Finally, the dose histograms for the two
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Figure 7. Dose distribution on V1 (top figure) and V2 (bottom figure) for C2. The area of each box represents the number of surface points
receiving dose values within the horizontal range of the box.

Table 1. Summary of optimization results for configurations C1 and
C2.

Configuration

C1 C2

Radiation time (min) 4.4 31.4
Max. deviation (Gy) 1.52 0.38
Dose histograms Figure 6 Figure 7
Optimization time (s) <1 <1

configurations are plotted in Figures 6 and 7. Comparison
of these histograms shows improved results for the stepping
train of seeds strategy. There is a maximum deviation of
1.52 Gy from the prescribed bounds for the single train of
seeds configuration versus 0.38 Gy for the stepping train of
seeds where the underdose and overdose deviations are equal
to the optimum for both configurations. The price to pay
is larger total radiation time (31.4 min for C2 obtained by
summing over the optimized dwell times versus 4.4 min for
C1). However, a delivery system that irradiates the whole
lesion for 4.0 min (minimum dwell time of C2) using a single
train of seeds, and afterwards steps the train of two seeds,
dwelling 4 min less than the designed dwell time of C2 at
each dwell position, will save 4 × 6 − 4 = 20 min in total
radiation time. Such a delivery system will reduce the total
radiation time of C2 to about 10 min.

0 8 16 24 32 40
4

4.5

5

5.5

6

6.5

7

Figure 8. Dwell time of the train of seeds (configuration C2) as
passing through the lesion.

Further analysis of the minmax solution
As a direct generalization of the Scripps trial dosimetry plan-
ning, we have proposed multiple dwell-time minimization
of maximum dose deviation from the prescribed bounds.
In reality, however, other generally accepted factors such
as dose uniformity and the fraction of volume receiving
desirable dose values should not be neglected. Assessing the
minmax solution with respect to these factors is in particular
relevant since the minmax criterion is in general known
to compromise dose uniformity for minimized worst devia-
tion. We investigate this point for intravascular radiotherapy
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Table 2. Comparison of l∞ and l1 optimization results for vessel
models TM1 and TM2. MD, SD and PSC abbreviate maximum
deviation, sum of deviations and percentage of satisfied constraints
respectively.

TM1 TM2

l∞ l1 l∞ l1

MD 0.3821 0.4779 0.6424 1.6903
SD 0.2701 0.1693 0.3957 0.3663
PSC 92% 97% 60% 62%

1.6 mm

2 mm

2 mm

2 mm

Figure 9. Longitudinal cross-section for TM2.

planning with multiple dwell times. We assume two tubular
models TM1 and TM2 for the vessel. For both TM1 and
TM2, we assume the same vessel length as before and
the delivery configuration C2. For TM1 we assume cross-
sectional inner and outer radial variations identical to those
of Figure 5, and for TM2 we assume the longitudinal cross-
section illustrated in Figure 9. The reason for this selection
is that TM2 exhibits a single narrowing around the middle
of the vessel in contrast to TM1 where variations occur
throughout the vessel. We compute the optimal sequence
of dwell times according to both the minmax (l∞) and sum
of absolute deviations from the bounds (l1) criteria. The
latter is representative of criteria that possess optimality
properties in an average sense, therefore resulting in more
uniform dose distributions. The results are summarized
in Table 2. The table entry PSC (percentage of satisfied
constraints) refers to the number of points receiving dose
values within prescribed bounds divided by the total number
of points. The results indicate that for a delivery configuration
that allows adjustment of dwell times in accordance with
variations along the vessel (multiple dwell times), the dose
uniformity is relatively preserved at the minmax optimum.
In general cases where the uniformity is compromised,
the relaxation method of Section 2 may be followed, i.e.
constraining the l1 or l2 optimization by the inequalities of
Equation (5).

4. DISCUSSION AND CONCLUDING REMARKS

We have studied optimal planning for brachytherapy with
application to intravascular radiotherapy of intimal hyper-
plasia. We presented a general formulation for optimal
treatment planning and focused on the important planning
criterion of minimizing the largest deviation from prescribed
dose bounds for the delivered dose to volumes around the
treatment site. In reality, however, a plan should be evaluated
and selected according to multiple criteria (mostly calculable
from dose–volume or dose–surface histograms such as the
sum of absolute or squared deviations and the fraction
of points receiving desirable dose values). Hence either
various criteria should be combined in one optimization
(quite similar to the relaxation method of Section 2) or a
post-optimization analysis should be performed to assess
the appropriateness of a plan that is optimal with respect
to one selected criterion. The general formulation of
the paper allows uncertainties to be taken into account
and optimization with respect to non-linear factors. The
functional dependency of dose upon the treatment parameter
and the defined planning objectives affect the appropriate
optimization tool to be employed. Factors such as non-
convexity of the objective function, non-linearity and non-
convexity of the dose-treatment parameter dependency, and
the discreteness of the decision space for treatment pa-
rameters may significantly raise the complexity level of
the planning problem. The minmax optimization of the
dwell-time sequence of a stepping train of seeds is for-
mulated as a linear program which offers great numerical
convenience.

The technique is applied to planning for intravascular
brachytherapy. Unlike methods that are based on optimizing
the radiation time for a single train of seeds, our approach
allows for adjustment of dwell times in accordance with
variations in the vessel diameter, hence delivering more
desirable dose distributions. Numerical experience with
ultrasound-based treatment planning on a 36 mm long
coronary lesion indicates significant improvement of the
worst deviation from the prescribed dose bounds relative
to the single train of seed strategy followed in, for ex-
ample, the Scripps trial. The drawback of a stepping
train strategy is longer radiation times. Nevertheless,
increasing the air kerma strength, improving the geometry
of the commercially available seeds and designing novel
delivery systems (which are active areas of academic and
industrial research) will reduce the total radiation times of
the optimal strategy to the range of clinically desirable
radiation times (<10 min). Post-optimization analysis
indicates that the minmax optimum in the multiple dwell-
time case is desirable from a dose uniformity standpoint.
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The clinical importance of these improved results is unknown
and requires further investigation by the medical community.
Similar to dosimetry planning of the Scripps trial, the
lesion path is assumed to follow a straight line. This
might not be true and a combination of treatment planning
with reconstruction techniques to obtain the correct 3-D
shape of the vessel poses an interesting direction for future
studies.
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