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Abstract. A computer algorithm for determining optimal surgical paths
in the brain is presented. The algorithm computes a cost function asso-
ciated with each point on the outer brain boundary, which is treated as
a candidate entry point. The cost function is determined partly based
on a segmentation of the patients images into gray and white matter,
and partly based on a spatially transformed atlas of the human brain
registered to the patient’s MR images. The importance of various struc-
tures, such as thalamic nuclei, optic nerve and radiations, and individual
Brodman’s areas, can be defined on the atlas and transferred onto the
patient’s images through the spatial transformation. The cost of a par-
ticular path associated with each critical structure, as well as the total
cost of each path are computed and displayed, allowing the surgeon to
define a low cost path, to visualize an arbitrary cross-section through
the patient’s MR images that contains this path, and to examine all the
cross-sectional images orthogonal to that path.

1 Introduction

Modern tomographic imaging techniques have opened new and exciting opportu-
nities for the surgical treatment of brain tumors, and for functional neurosurgery
such as tremor treatment procedures. In particular, since magnetic resonance
(MR) images show the internal structure of the human brain in great detail, a
neurosurgeon can now use them to plan and perform procedures for the removal
and biopsy of a tumor or its radiotherapeutic treatment, and for operating on
delicate structures such as the globus pallidus and the thalamus, with substan-
tially smaller risk than open craniotomies.

A key issue in image-guided neurosurgery is to effectively utilize the wealth
of anatomical information provided by tomographic images in order to define an
optimal surgical strategy. Such planning, however, is often a difficult task even
for the experienced surgeon, for three reasons. First, because of the difficulty
of mentally reconstructing the three-dimensional shape of brain structures from
two-dimensional tomographic images. Second, because of the complexity of the
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morphology of the human brain. Third, because the functional complexity of the
human brain makes the prediction of the physiological consequences of various
surgical plans a rather complicated task. Consequently, the surgeon can typically
find a good path, but not necessarily the optimal path to approach a target.

Most stereotactic path planning systems [1, 2, 3, 4, 5, 6] rely on interac-
tive visualization of proposed needle trajectories to avoid passage through crit-
ical structures. There has been some work to automate checking or generation
of ”safe” paths that completely avoid some critical structures. For example,
Lavallee [6] extended this approach to provide automatic detection of potential
intersections with blood vessels, based on stereo angiograms.

Because of its complexity, the problem of the surgical path planning can
be effectively treated in a mathematical optimization framework. Several such
frameworks have been investigated for automatically generating motion arcs for
radiation beam therapy machines that intersect a tumor while minimally inter-
secting any designated ”critical” structures [7, 8], although they typically rely
on linear cost functions and constraints. In the system proposed here, we develop
computationally efficient methods for scoring proposed paths based on nonlinear
costs associated with destruction of some but not all of designated structures,
for generating a complete map of such costs to assist selection of optimal trajec-
tories, and for making allowances for uncertainties in tissue segmentation and
intraoperative registration errors. Moreover, we utilize an anatomical brain atlas,
adapted to the individual morphology of the patient’s brain, to define regions of
interest on the patient’s images, such as cortical cytoarchitectonic sections and
subcortical structures. Considering the complexity of the brain structure, the
availability of automated ways of defining critical structures is very important
for the effective use of path planning systems in the clinical practice.

In this paper we have focused on the relatively simpler problem of finding
a single path from the outer boundary of the brain (the entry point of the sur-
gical probe) to a target outlined in an MR image of the patient; this problem
arises typically in the surgical biopsy of tumors and in tremor treatment proce-
dures. Our methods however, can be extended to the relatively more complicated
problem of finding optimal sets of beam paths in radiotherapy planning.

2 Methods

2.1 Path Planning Algorithm
In our approach we have incorporated information extracted from magnetic res-
onance images of the patient, and from a widely used anatomical atlas of the
human brain [9], into a precise mathematical framework which quantifies the
risk of damaging healthy brain tissue that is associated with a particular surgical
strategy. Since the coordinates of the target point are predefined, the unknown
parameters in this optimization problem are the coordinates of the entry point,
denoted by x. = (Ze,¥e, 2¢). Our goal is to find the path that avoids, as much
as possible, a number, S, of critical regions.

For each point in the three-dimensional image of the patient, and for each
important structure (indexed by s), we first determine a function my(-), which
reflects the cost for a surgical path passing through this particular point; this



function will be explained in detail later in this section. A second function, f,(-),
quantifies the penalty imposed to a particular path for damaging a fraction of
a structure. This is typically a sigmoid function, whose value is small if only a
small fraction of a structure is destroyed?, but rises sharply above a threshold.
This threshold can be different for different structures; regions of highly focal
character (e.g. the primary motor or visual cortex) have a low threshold, while
regions in which the function is more diffused have a higher threshold.

Our optimization problem is stated as follows: Find the path from a point
X, on the outer brain boundary to the target point x;, which minimizes the
following cost function:

Clxe) = 2f ( / 1 ms<x<1))dz) , M)

where x(I) = x. + (x¢ — x¢)!,1 € [0,1], is a parameterization of the linear path
connecting the entry point x, with the target point x;.

The value of the function m(-), associated with the structure indexed by s,
at a point reflects the importance of the tissue located at this particular point.
In principle, in order to define ms(-), the surgeon could outline structures of
interest on each patient’s images individually and assign a risk level to each
outlined structure. Such approach, however, would be very laborious. Moreover,
it would be limited by the fact that the MR images do not show all the details
of the brain structure. For example, the divisions of the cortex into different
cytoarchitectonic regions [10], each playing a different functional role, and the
location of certain structures such as the optic nerve and radiations, and the
individual thalamic nuclei, are not visible in the MR images.

Such structures are outlined in detail in anatomical atlases of the brain [11,
9], which can be therefore used for defining structures of interest. In order for
anatomical atlases to be utilized in our path planning problem, however, they
must be adapted to the individual morphology of the patient’s brain. In our
system we do this using an elastic transformation described in more detail in
the appendix. The surgeon can define the value of the function my(-) in each
structure in the atlas, depending on its importance. The assigned values are then
mapped onto the patient’s brain through the registration transformation.

In addition to structures defined through the spatially transformed atlas,
structures defined directly on the MR images of the patient are also used to
determine the function ms(-). In particular, we have used a fuzzy c-means seg-
mentation method [12, 13] to determine the cortical region; mg(-) is then set to
a higher value on the segmented cortex and a lower value elsewhere.

In principle, having defined the structures of interest in the MR image and
the associated risk levels, we could find the path that minimizes the cumulative
cost in (1). In practice, however, one must account for errors in mapping the
image coordinates to the physical coordinates in the patient’s brain, i.e. in errors
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of the localizing devices, as well as for errors in the registration between atlas
and MR images. We do this by applying a spatial filtering to each structure of
interest; this effectively widens the spatial extent of each structure, typically by
a few millimeters, accounting for the localization and registration errors. The
type and size of the filtering kernel can be controlled by the surgeon. In our
experiments we have used a Gaussian filter. It is important to note that (1)
holds if this filtering procedure causes structures to overlap, because m;(-) along
each path is integrated separately for each structure. This allows f,(-) to be
different for each structure.

2.2 Software Description

Fig. 1. The layout of the path planning software interface. The upper right window
shows a 3D rendering of the outer boundary of the brain with cost superimposed in a
color scale. The planar domain in which this surface is parameterized is displayed in the
upper left window. The lower left window displays a cross-section through the MRI vol-
ume containing a particular trajectory. The lower right window displays cross-sectional
images oriented perpendicularly to the surgical path. The surgeon can visualize the cost
associated with each entry point on the outer boundary of the brain, can click on a
particular entry point on the upper left window (which is also displayed on the 3D
rendered surface on the upper right window) and visualize any cross-section contain-
ing the corresponding path in lower left window, as well as visualize the orthogonal
cross-sections of that path in the lower right window.

A layout of the software interface is shown in Fig. 1. The upper right window
shows a 3D rendering of the outer boundary of the brain, using the OpenGL
graphics library. This surface is determined in two steps: in the first step, the
brain tissue is extracted from a volumetric magnetic resonance image of the



Fig. 2. Overlay of selected critical structures on the MRI images. The structures were
determined by spatially transforming the Talairach atlas into registration with the
MR image. (a) Brodman areas 17-19 (b) Brodman areas 1-4, (c) Optic radiations, (d)
Thalamus, (e) VPL nucleus (the target).

patient, and in the second step, a parameterization of the outer brain boundary
is found using a deformable surface algorithm.

In order to extract the brain tissue in the first step, we use a thresholding
followed by a morphological erosion [14] which isolates the brain tissue from the
surrounding tissues (dura, skin, fat, etc.). A 3D seeded region growing is then
used to extract the brain tissue. Finally, a morphological conditional dilation is
applied to recapture the tissue that was lost in the erosion step.

In the second step, a deformable surface algorithm [15, 16] is applied to
the skull-stripped images. The surface is initialized in a spherical configuration
surrounding the brain, and deforms elastically under an image-derived force
field, wrapping around the outer surface of the brain. This surface is defined
on a planar parametric domain, which is displayed in the upper left window in
Fig. 1.

The user can select a number of structures of interest from a list, and calculate
the cost of the path connecting each point on the outer cortical surface, which
is typically sampled with 80,000 polygons, to a prespecified target point. The
cost is displayed in a color scale on the rendered surface, and in gray scale on
the parametric domain. The gray-scale representation of the color is that darker



regions in the upper right window of Fig. 1 (actually displayed as blue in color)
correspond to relatively safer areas. The actual gray scale representation of cost,
in the upper left window of Fig. 1, is that bright regions correspond to safer
areas. The user can then visualize a particular path by defining the entry point
on the parametric domain (the point is simultaneously displayed on the rendered
surface), and a second point needed to uniquely define a cutting plane together
with the entry and target points. The resulting cross-sectional image containing
the path is displayed in the bottom left window (see Fig. 1) and the user can
scroll through cross-sectional images, displayed in the bottom right window,
oriented perpendicularly to a selected path. Finally, the graphical user interface
allows the user to interactively change the subset of structures and the function
fs(+) for each structure; recalculation of the cost for each possible entry point

is then very fast because fol ms(x(l))dl has already been computed resulting in
nearly immediate update of the display.

3 Experiments

In the experiment presented in this section, we chose the VPL thalamic nu-
cleus as our targeted region in a subject. The critical structures were the cortex
that was determined from the MR images of the subject, and the optic radia-
tions, the thalamus, and Brodman areas 1-3, 4, 17-19, 22, 41-42, representing
somatosensory cortex, motor cortex, visual cortex, and auditory cortex, which
were determined from the spatially transformed Talairach atlas. The registered
VPL nucleus was superimposed on the 3D data set(see Fig. 2e), and a target
within this region was manually selected. The outer surface of the brain was ex-
tracted using the procedure described in Sect. 2.2. The function m(-) for each
structure and the type and size of the smoothing filter were then set to unity
on the critical structures and zero elsewhere. The cost C(x.) was then computed
for each entry point x. on the outer brain boundary. Run time for the atlas
registration procedure was approximately 3 minutes and the cost calculation for
these structures was approximately 30 seconds on an SGI Onyx running with
R10000 processors.

The resulting cost associated with each possible entry point is mapped to the
planar domain in which the brain boundary is parameterized (see Fig. 3a, and
Fig. 4), and to a color scale on the rendered surface (see Fig. 3b). The brighter
regions in Fig. 3a and Fig. 4 indicate relatively safer areas of entry which in
this experiment are localized along the gyri of the left hemisphere (images are
displayed in radiology convention) away from the posterior and central regions
of the brain. These results are in agreement with the entry location which would
be typically chosen by a neurosurgeon. The target was in the thalamus of the left
hemisphere (right side of the images, according to the radiology convention), so
one would expect safer entry on the left side of the brain in order to minimize
the total amount of brain tissue at risk (Fig. 4d). Entry along the gyri is safer
because the cortex is oriented orthogonal to the path’s direction, therefore the
amount of cortical tissue near the path’s trajectory would be minimized(Fig. 4a).
The posterior and central regions of the outer surface are high risk for entry
because a substantial amount of the functionally important regions, defined by



the Brodman areas and optic radiations, would be destroyed along the path’s
trajectory (Fig. 4b and 4c).

Fig. 3. Total risk associated with each possible entry point on the outer boundary
of the brain. (a) The total risk is superimposed on the planar domain in which the
boundary was parameterized, with brighter regions being the relatively safer entry
points. (b) The total risk superimposed on the 3D rendered surface. Here, the darker
a region is (the brighter blue, in color), the safer the entry point is. There is a one to
one correspondence between the points in (a) and those in (b).

(c)

Fig. 4. Planar domain of the (flattened) outer cortical surface with cost displayed in
gray scale. Bright regions indicate safe points of entry. (a) Cortex, (b) Brodman areas,
and (c) Optic radiations. The dark regions in (b) reflect the risk of damaging the
primary motor, auditory, and visual cortex. The dark region in (c) reflects the risk of
damaging the optic radiations.

4 Summary and Conclusion

We have presented a computer algorithm for path planning in neurosurgical pro-
cedures. The algorithm utilizes information extracted from magnetic resonance
images of the patient’s and from an anatomical atlas adapted to the brain mor-
phology of the patient, and it computes a risk associated with each possible
entry point along the outer boundary of the brain. The risk associated with a



particular structure defined either on the atlas or on the patient’s images can
be separately computed and visualized. A graphical user interface allows the
surgeon to visualize cross-sectional images either containing a particular path or
being orthogonal to it.

Several extensions of this work are possible. For example, functional and an-
giographic images of the patient can be readily incorporated into the cost calcula-
tion procedure. Moreover, the system can be linked to lesion/deficit databases [17],
which can provide valuable cues to the surgeon of the physiological effects that
are likely to result from lesioning a particular region in the brain. Finally, em-
pirical knowledge of the surgeon can also be incorporated into the system as an
additional risk function defined either on the entire brain or on selected struc-
tures.

In this paper we have addressed the relatively simpler problem of finding a
single surgical path. Our current direction in this work is the extension of our
algorithm to the relatively more complex problem of finding a configuration of
multiple paths. The latter problem is a key issue in image-guided radiother-
apy in which an optimal radiation beam configuration is sought, which delivers
maximal radiation to the target while minimizing the radiation delivered to the
surrounding healthy tissue.
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6 Appendix

In order to obtain a shape transformation that adapts the Talairach atlas to
the individual brain morphology of a patient, we use an elastic transformation
method (see [18, 19] for more details). The basis of this method is a map that
corresponds regions along the outer cortical surface in the atlas and homologous
regions in the MR image. In order to find such a map, a parameterization of
the outer cortical surface is first obtained for both the atlas and the MR image,
using a deformable surface algorithm [16, 15]. Specifically, a deformable surface
is initialized at a spherical configuration surrounding the cortex, and is let free
to deform, adapting to the shape of the brain. Since this surface is defined in
a planar parametric domain, denoted by D, a parametric representation of the
outer cortex is readily obtained after convergence of the algorithm.

Using this parametric representation, various curvatures can then be calcu-
lated using the principles of differential geometry [20]. In our algorithm we find
the minimum, the maximum, and the Gaussian curvatures, which reflect dif-
ferent but complementary aspects of the cortical structure [15]. We then find
a reparameterization of the outer cortex of the atlas that brings its curvature
maps into best agreement with those derived from the MR image. This is ac-
complished by finding an elastic deformation of the parametric domain D onto
itself, which is driven by external force fields that attempt to align the curvature



maps of the atlas and the MR image. This reparameterization does not alter the
shape of these surfaces, i.e. it does not alter their extrinsic geometry; it simply
applies a local stretching or shrinking according to the local curvatures.

After the map from the outer cortex in the atlas to that in the MR image has
been determined, it is used to derive a three-dimensional elastic transformation
of the atlas, bringing it into register with the MR image. In order to account for
major structural abnormalities, such as the often dramatic ventricular expansion
found in elderly individuals and tumor growth that pushes the surrounding tis-
sue, we use the framework of pre-strained elasticity (in this paper we deal only
with the ventricular expansion). In this framework, the atlas is not assumed to
be in equilibrium in its reference (undeformed) configuration. Instead, it has a
non-zero strain energy distributed uniformly throughout the ventricles. As this
strained configuration is relaxed, it results in the expansion of the ventricles.
The value of the stress that drives this expansion is determined from the ratio
of the ventricular volumes in the atlas and the MR image.

The ventricular expansion described above is only a gross shape correction,
and it results in a rough alignment in the ventricular and peri-ventricular regions.
Since the latter region is often very important, especially in tremor treatment
procedures, a finer alignment of the ventricular boundaries is obtained using a
force field derived from the image data. This field causes the mutual attraction
of the ventricular boundaries in the warped atlas and in the MR image, as shown
schematically in Fig. 5, resulting in their alignment.

Warped
U(x)

Target
Ventricles

Fig. 5. The forces that align the ventricular boundaries. The surrounding structures
are rearranged by the elastic forces.
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