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Abstract cavity 

Recent advan.ces in cementless hip replacement surgery 
have significantly improved the accuracy of bone cavity 
preparation and custom implant shape design. With 
the increased accuracy and tighter fit, determining 
whether the implant can actually be inserted t o  its f i -  
nal working position inside ihe cavity during surgery is 
essential to guarantee full implant functionality. This 
paper presents an implemented algorithm for determin- 
ing if an implant can be successfully inserted into a 
cavity. The program computes an insertion trajectory 
consisting of small implant motion steps. Motion steps 
are computed by  solving a series of linear optimization 
problems whose solution corresponds to  the maximum 
allowed displacement in a preferred direction satisfying 
localized motion constraints. The program implements 
a greedy, search-free algorithm to find a monotone tra- 
jectory in a preferred direction t o  any desired resolu- 
tion. The program has been successfully tested on real 
cases. 

Introduction 

Computer-based medical imaging and modeling sys- 
tems, coupled with computer-aided design and man- 
ufacturing technology, have already begun to have a 
major impact on the clinical practice of medicine [12]. 
The design and fabrication of custom orthopedic im- 
plants from C T  data is one growing application of such 
systems [IO]. 

In the case of cementless implants, which rely on a 
press fit, or tissue ingrowth and significant surface-to- 
surface contact between the implant and the bone for 
fixation, the accuracy of bone preparation can have a 
significant effect on implant efficacy. Recent advances 
in robot bone machining have demonstrated an order- 
of-magnitude improvement in the accuracy of femoral 
canal preparation for hip replacement surgery [9, 111. 
The resulting improved accuracy and consistency of 
bone preparation will greatly facilitate controlled stud- 
ies of implant design efficacy. The added flexibility 
of robot machining, which can create shapes that are 

Figure 1: Sketch of a cementless hip implant tightly 
fit into a femur bone cavity 

impractical to make using conventional hand-held in- 
strumentation, presents both new possibilities and new 
problems for implant designers. 

In cementless hip replacement surgery, the damaged 
joint connecting the femur and the hip is replaced by 
an implant tightly fit into the femur (Fig. 1). To install 
such implants, the surgeon typically starts by sawing 
off the femoral head and drilling a guide hole dowii 
the femur using a flexible reamer. The surgeon then 
drives a broach into the guide hole to make a cavity 
with the same shape as the implant. Since the broach 
shape matches the implant shape and the broach has 
been inserted into the cavity, there is some assurance 
that the implant will fit into the cavity carved by 
the broach. Unfortunately, the broach design may re- 
quire the removal of bone which, for implant efficiency, 
would perhaps be better left intact. For example, the 
implant designer may desire the implant shape follow 
a (slightly smoothed out) iso-density contour, as de- 
termined from C T  data. However, even if the robot 
can machine a cavity with the desired shape, there is 
no guarantee that the implant can actually be inserted 
into the cavity. It is highly undesirable discover this 
situation in the operating room. It would be much 
better to  discover an insertability problem after the 
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implant is designed and before it is fabricated. It is 
even more desirable to identify a feasible insertion tra- 
jectory automatically, if one exists, and to identify pos- 
sible places for design modification if such trajectory 
cannot, be forind. 

This paper presents an implemented algorithm for 
determining if an implant can be successfully inserted 
into a cavity. Given the shapes of the implant and 
the femoral cavity, the program coinputes a insertion 
trajectory for the implant, which ensures, to  any de- 
sired resolution, that the implaiit does not penetrate 
the cavity walls during the insertion. If the implant 
cannot be extracted, the trajectory terminates at a 
wedged implant configuration. 

Related work 
Testing for implant insertability is an instance of the 
classical path planning problem, where the goal is 
to find a collision-free trajectory of a moving object 
amidst. fixed obstacles [SI. Finding a collision-free tra- 
jectory requires searching the space of non-overlapping 
object configurations (the configuration space) for a 
continuous path from the initial to the final configu- 
ration. Global strategies first construct a configura- 
tion space connectivity graph and then search it for 
the desired path. Local strategies directly search for 
the path, performing geometric computations as the 
search progresses. 

Global methods require computing the configuration 
space, whose complexity is polynomial in the geomet- 
ric size of the objects and exponential in their total 
number of degrees of freedom. The characteristics of 
the implant insertability problem - very complex 3D 
shapes, six degrees of freedom, tight fit, fine motion 
planning - rule out global strategies and their varia- 
tions, such as hierarchical configuration space decom- 
position [3, 51, planning in low-dimensional configura- 
tion space projections [2], and exploiting the objects’ 
geometrical regularities [7]. In addition, any strategy 
that repeatedly uses object overlap detection is im- 
practical due to the objects’ complexity. 

Local strategies depend on the efficiency of the geo- 
metric computations and the effectiveness of the search 
strategy. Existing local strategies emphasize search ef- 
fectiveness. Donald’s [4] algorithm for a moving six 
degree of freedom polyhedron places a fine resolution 
grid on the configuration space and uses a set of heuris- 
tics based on the local configuration space geometry 
to search for the path. For a tight fit, this method re- 
quires a very fine grid resolution and precise geomet- 
ric computations which significantly affect the overall 
efficiency. Other potential field methods [6,  11 make 
similar assumptions. 

This paper presents a local path planning technique 
for the implant insertion problem that emphasizes ef- 
ficient local geometry and motion constraints compu- 

tation over search. Due to the tight fit and obvious 
general insertion direction, little or no search is nec- 
essary. However, the objects’ complex shapes requires 
efficient local geometric computations. The method 
contributes to research in path planning by providing: 

0 a practical solution to a real problem, including a 
working pr0gra.m and tests on real data 

0 a formulation of approximated localized linear con- 
figuration space constraints for small six degree-of- 
freedom motions 

0 a formulation of linear programming problems to 
find the maximum allowed displacement in a pre- 
ferred direction satisfying the motion constraints 

0 a greedy, search-free algorithm to find a monotone 
trajectory in a preferred direction to any desired res- 
olution 

Problem formulation 
We formulate the implant insertion problem as a mo- 
tion planning problem, where the implant is a three- 
dimensional moving object with six degrees of freedom, 
and the cavity is a fixed three-dimensional obstacle. A 
moving coordinate frame is attached to the origin of 
the implant. A fixed coordinate frame is attached to  
the origin of the cavity. The implant and cavity shapes 
are described with respect to their coordinate frames. 
The position and orientation of the implant in space, 
also called the implant configuration, is defined with 
respect to the cavity’s fixed coordinate frame. 

General formulation 
Let (jj, e) be the six configuration variables (three 
translations and three rotations) describing the con- 
figuration (position and orientation) of the implant 
with-respect to the cavity’s fixed coordinate frame’. 
Let b be the location of a point in the implant_sur- 
face expressed in implant coordinates. Let F(B,@)  be 
the transformation mapping points in implant coordi- 
nates to po$s in fixed coordinates in position jj gnd 
orientation 0. The position of an implant point b in 
configuration ( p ,  0) with respect to the cavity’s fixed 
frame is expressed as: 

- v = F$,B) . b =  ROt(3) . b + p  
where Rot(@ is the 3x3 rotation matrix specifying the 
orientation of the implant with respect to the cavity’s 
fixed coordinate frame. 

Let H be the function describing the shape of cavity. 
A point f lies on or inside the cavity when: 

H ( Z )  5 0 

‘Notation conventions: lower case letters with an over- 
bar, T, denote three-dimensional vectors. Upper case let- 
ters with an overbar, X ,  denote n-dimensional vectors. 
Bold capital letters, A, denote matrices. 
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An implant point 6 in configuration @,a) lies. on or 
inside the cavity when: 

H ( F ( B , B ) .  6) 5 0 (1) 

This inzquality, formulated over the set of all implant 
points 6 ,  defines the implant configuration constraints 
which must hold for the implant not to penetrate the 
cavity. 

Let B be a set of points in the implant surface. The 
implant configuration space C is the set of implant con- 
figurations for which the implant and the cavity sur- 
faces do not interpenetrate: 

C = {@,e) I H(F(j5,8) .6) 5 0, V6 E B }  

We define an implant motion as a continuous func- 
tion T( t )  specifying the position and orientation of the 
implant at time t .  An implant trajectory t ra j (T( t ) )  
is the set of implant configurations reached during an 
implant motion. It is the image of the implant motion 
function. 

An implant insertion motion is a feasible implant 
motion that takes the implant from an initial configu- 
ration outside the cavity to a final configuration inside 
the cavity. A motion is physically feasible iff the im- 
plant does not penetrate the cavity a t  any time dur- 
ing the motion. Thus, all implant configurations in 
a feasible implant trajectory must satisfy the implant 
configuration constraints in Eq. (1): 

traj(T(t)) = {T( t )  = ( P ( t ) , W ) )  I 
H(F( j j ( t ) ,B ( t ) )  .6) 5 0, V6 E B,  t E [ t o ’ t j ] }  

for T(toj = (F0,&) the initial configuration at starting 
time t o  and T ( t j )  = (jj,, 3,) the final implant config- 
uration at ending time t j .  

Note that the implant extraction trajectory - the 
implant trajectory that takes the implant from inside 
to outside the cavity - is identical to the implant inser- 
tion trajectory. The implant extraction motion is sim- 
ply the implant insertion motion backwards in time. 
In the following, we refer to the implant insertion and 
extraction trajectories and motions interchangeably. 

Problem specialization 
Finding an exact solution to the implant insertion 
problem is computationally intractable and practically 
unnecessary. Instead, we solve an approximate version 
of the problem to a desired resolution by exploiting the 
properties of the problem and by making key approx- 
imations. 

We compute the implant extraction trajectory be- 
cause the implant’s final configuration inside the cavity 
is known precisely, whereas the implant’s initial con- 
figuration can be anywhere outside the cavity, above 
a prespecified height. 

We decompose the problem into a series of sim- 
pler optimization problems, where the solution to each 
problem yields a fragment of the implant extraction 
trajectory. To decompose the extraction problem into 
simpler problems we: 

0 discretize and a.pprosimate the implant and cavity 

linearize and simplify the configuration constraints 
0 discretize the extraction trajectory 
0 linearize small implant motions along the extraction 

The resulting extraction trajectory configurations 
specify small implant motion steps that do not ex- 
ceed a prespecified displacement and do not violate 
the configuration constraints. 

The remaining of this section describes and moti- 
vates each assumption and approximation in detail. 
The next section describes the formulation of the op- 
timization problems. 

Because the implant and the cavity have relatively 
smooth shapes, we can describe their contours by a 
finite set of surface elements to any desired resolu- 
tion. We discretize the implant shape by sampling 
its surface with control points bj E B. We discretize 
the cavity shape by decomposing its surface into small 
patches. Patches are defined around a set of points 
sampled on the surface of the cavity. 

Let Zi be a sample point in the surface of the cav- 
ity and let hi@) be the function describing the cavity 
patch in the neighborhood A@). The cavity shape 
H ( Z )  can be described by a family of simpler func- 
tions hi(z) such that: 

shapes 

trajectory 

E? 3hi(Z) s.t.  (FE A(5j) A H ( Z )  = hi(Z))  

The neighborhood A@) can be chosen, for example, 
to be the set of points contained in the sphere centered 
at of radius ri. 

Because of the cavity’s smooth shape, we can ap- 
proximate the cavity patches with polynomial func- 
tions to any desired resolution. In particular, we 
can approximate the cavity patches with planar facets 
?ii.Z- E, such that: 

I hi@) - (8i.Z- F i )  I 5 r e s ,  E E A@) 

for a given resolution r e s .  We jointly describe the 
cavity facet_and its neighborhood by a planar convex 
cell Ai.5 - Ci. A point Z is inside the cell when: 

Ai.Z-C, 5 D (2) 

Having discr_etized the implant shape with a set of 
control points bj E B,  we can rewrite the implant con- 
figuration constraint in Eq. (1) as a collection of con- 
figuration constraints on each implant control point: 

H(F(j5,8) . 6 j )  5 0 
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Figure 2: Detail of an implant control point $j in con- 
figuration (?j,8) in the neighborhood of cavity point 
Ti. The shaded area corresponds to h(Fi)  5 0. 

Because of the tight fit between the implant and 
the cavity, a motion of each implant control point is 
constrained by a small piece of the cavity's surface 
in its immediate neighborhood (see Fig. 2). That 
cavity patch imposes configuration constraints that 
subsume the configuration constraints imposed by all 
other patches, provided the control point remains in 
the neighborhood of the patch. For a y  implant con- 
figuration in the neighborhood of ( p ,  e), there exists, 
for every implant control point i j ,  a patch hi@) such 
that: 

hi(F(F,8)  . j )  5 0 e H ( F ( F , 8 )  Jj)  I 0 
for F ( p ,  8) . Jj) E A@;) 

Thus, for each implant configuration in the extraction 
trajectory, it is sufficient only to consider the config- 
uration constraints imposed by the patches that are 
nearest to each implant control point. The inequality 

hi ( F ( F ,  3) . bj 5 o (3) 

defines the lo_cal configuration constraint of implant 
control point bj . 

Since the implant and cavity shapes are relatively 
smooth, the extraction trajectory will also be rela- 
tively smooth. We discretize the implant extraction 
trajectory t ra j (T( t ) )  with a sequence of configurations 
(pk,gk) such that ( p 0 , 8 o )  and (pm,gm) are the initial 
and final implant configurations and: 

- 
( F k + l , e k + l )  = ( G , G )  @ ( F k , e k )  

where (Fk , Zk)@(jJk, e,) is defined by F ( r k ,  Ek) e,) 
and (Tk , Z k )  are small configuration displacements that 
do not exceed a prespecified maximum displacement: 
(Tmaz, Emas): 

I r k  I 5 rmaz 

IEk I 5 zmoz  

We can now derive the discretized approximate tra- 
jectory t r ~ j ( T ~  (k)) by substituting the configuration 
constraints of Eq. (3) into the trajectory definition of 
Eq. (2), obtaining: 

traj(TD(k)) = {TD(k) = (&,e,) I 
hi(F( j j , ,Bk)  * $ j )  5 0, V q  E B ,  0 5 k 5 m} 

TD(O) and To(m) are the initial and final configura- 
tions of the implant. 

We have thus reduced the problem of finding an ex- 
traction trajectory to finding a sequence of implant 
configuration displacements (Fk, Eh) which satisfy the 
configuration constraints and do not exceed a prede- 
fined maximum displacement. 

Extraction steps 

We compute each (Tk, &) iteratively by formulating 
a series of inear  optimization problems. Initially, we 
set Po and Bo to the initial position and orientation of 
the implant. We compute the maximum displacement 
(Sk,&) in a preferred direction that satisfies all the 
configuration constraints, maintains all the implant 
control points in their neighborhood, and is less than 
the maximum allowed displacement. We then move 
all the implant control points to t_he new configura- 
tion ( f jk+ l , t9k+l )  = (Ek,Ek) @ (pk,8k) and repeat the 
process until the final configuratioii is reached. 

We now describe the formulation of the linear opti- 
mization problem for step k+ 1 using the result of step 
k. Let V j k  be the position of point bj in configuration 
(Fk,e,): 

(4) 
- 
V j k  = F ( & , B k )  .$j 

The new position Fjjk+lof an implant control point 
bj in configuration (pk+l, B k + l )  is obtained by displac- 
ing b j  in configuration (pk, e,) by ( S k ,  &): 

- 
v j k + 1  = F ( F k , Z k )  . Vjk 

= Rot(Zk) ' F j k  + Tk 
Since ( S k  , &) is a small configuration displacement, 

we can approximate it by: 
- 
vjk+l N (Eik x F j k )  + F j k  + Ek 

for I 7k I< Fmar and I E k  15 Emax. 

in Eq. (3) as: 
We can rewrite the local configuration constraints 

hi(Fjjk+l) I 0 
hi((Ck x V j k )  + T j k  + S k )  5 O 

Substituting the planar facet approximation of hi@) 
from Eq. (2) we obtain: 

- 
Ai . ((Ek x V j k )  + V j k  + Tk) - Ci 5 0 

( F j k  x Ai) . Z k  + (Ai . S k )  5 Ci - Ai . V j k  (5) 
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for every bj E B,  1 Sk (5  Smaz, and I ZFk I< m a = .  
We have thus obtained a family of linear constraints 
in ( k ,  z k )  that approximate the local configuration 
constraints. 

w e  find the largest displacement ( T k ,  z k )  in a pre- 
ferred directmion by setting and solving the linear opti- 
mization problem L P k :  

WZUIi"? r ( T k ,  z k )  

subject to 
( Z j k  X A i ) . Z k + ( A i . T k )  5 C i - A i ' T j k  

J T k  I I :ma+ 

I E k  I < zmas (6) 

where the objective function r ( T k ,  ZFk) is a linear func- 
tion that locally maximizes the extraction displace- 
ment in the preferred direction. Since the primary 
preferred direction is the cavity's vertical axis t, we 
chose, for example, T ( F k ,  ~ h )  = c z .  

Implant insertion/extraction algorithm 
We now present the implant extraction algorithm. The 
extraction trajec.tory is a sequence of small implant 
configuration displacements in a preferred direction 
satisfying the local configuration constraints in Eq. (3). 
The configuration displacements are iteratively com- 
puted by solving a series of linear programming prob- 
lems L P k  (Eq. ( 6 ) ) .  Solving the h e a r  programming 
problem L P k  yields the largest small configuration 
displacement consistent with the configuration con- 
straints formulated in the neighborhood of the implant 
control points. 

Moving the implant by the maximum allowable dis- 
placement a t  each step in a preferred direction is a 
greedy strategy to reach the final configuration with- 
out searching for alternative trajectories. It is success- 
ful when monotone progress towards the final implant 
configuration along the preferred direction is possible. 
This is usually the case for typically smooth implant 
and cavity shapes. The implant's preferred extrac- 
tion direction is parallel to the cavity's vertical axis. 
We expect the extraction trajectory to be mainly ver- 
tical displacements compensated by small variations 
in the other motion parameters. Note that monotone 
progress in a preferred direction is a desirable property 
because it facilitates the manual insertion of the im- 
plant into the cavity. Alternatively, we can temporar- 
ily select a different preferred direction to "unwedge" 
the implant. We have not found this to be necessary 
in the cases we have studied. 

Solving the linear programming problem L p k  yields 
a small configuration displacement which defines the 
new non-overlapping implant configuration in the ex- 
traction trajectory. When moving the implant to its 
new configuration in preparation for the next step, one 
of the following scenarios occurs: 

1. the implant has moved by the largest small displace- 
ment step 

2. some implant control points have reached their 
neighborhood boundaries 

3. the implant did not move 

If the implant has moved by the largest small displace- 
ment step allowable, the extraction can proceed by 
finding a new displacement from the new configura- 
tion. The h e a r  programming problem L P k + 1  is for- 
mulated by recomputing the same local configuration 
constraints of L P k  in  the new configuration. How- 
ever, if some implant control points have reached their 
neighborhood boundaries, any further displacement in 
the preferred direction will take these points out of 
their neighborhoods, thereby invalidating their local 
configuration constraints. A transition to adjacent 
neighborhoods is necessary to continue the extraction. 
The new h e a r  programming problem L P k + l  is formu- 
lated by finding the new implant control points neigh- 
borhoods, replacing their configuration constraints in 
L P k  , and computing the resulting configuration con- 
straints in the new configuration. Finally, if the im- 
plant did not move, it is stuck in a wedged position and 
no further motion in the preferred direction is possible. 
We can either decide that the extraction has failed, or 
pick a different preferred direction by changing the ob- 
jective function T ( T ~ ,  Z k )  and resolving L P k .  

The solution of L P k  provides the information neces- 
sary to determine which scenario occurs and to formu- 
late L P k + l .  The basis of linear programming problem 
L P k  indicates which inequality constraints are active 
(an inequality constraint is said to be active when the 
equality condition holds). Thus, if one or more of the 
small displacement constraints is active, the implant 
has moved by the maximum displacement step. If 
one or more local configuration constraints are active, 
the corresponding implant control points have reached 
their neighborhood boundary. Zero displacement val- 
ues indicate that no displacement is possible in the 
preferred direction. 

To formulate the local configuration constraints for 
LPk (Eq. ( 5 ) ) ,  we keep track of the cavity neighbor- 
hoods A(Fi) each implant control point bj is in con- 
figuration (&, e k ) .  The local configuration constraints 
are then formulated by computing the values of Ejk 
(Eq. (4)) for all the implant control points &j in config- 
uration (&, &) and substituting the appropriate cav- 
ity patch description. 

The extraction algorithm is summarized in Table 1. 
First, we sample the implant surface with a set of con- 
trol points and partition the cavity into a set of small 
planar facets. Next, we establish the initial correspon- 
dence between implant control points and cavity facets 
in the initial configuration and formulate the initial 
linear programming problem L P O .  We then solve LPo 
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I. select implant control points 
!. approximate cavity with planar facets 
1. match implant control points and cavity facets i 

1. set ( 7 0 , h o )  to initial configuration, and 12 to 0 
5 .  formulate the initial problem LP,J 
5 .  while implant is below desired height do 
(a) solve LPk to obtain displacement ( T t  , Eh) 
(b) if the displacement is null, 

- declare the implant stuck and fail, or 
- replace the objective function and 

initial configuration 

- resolve LPk. 
(c) set next implant configuration (j&+l, d k + l )  t 

(d) if one or more small displacement constraint 
(GI&) f3 (&,U 
active, 
formulate LPk+1 by computing the configur: 
tion constraints in new implant configuration 

active, 
formulate LPk+l by replacing the new configi 
ration constraints and computing them in t h  
new implant configuration 

(e) if one or more configuration constraints are 

(f) increment 12 by 1 
7. return the extraction trajectory ( & , 8 k )  

Table 1: Implant extraction algorithm 

and move the implant to its new configuration by the 
specified displacement. If the implant did not move, 
it cannot be extracted in the preferred direction. De- 
pending on the amount of search and backtracking de- 
sired, we can try again by choosing a new preferred 
direction. If the the implant has moved by the largest 
small displacement step, we formulate the next step by 
recomputing the local configuration constraints at the 
new implant configuration. If one or more implant con- 
trol points have reached their neighborhood boundary, 
we find their adjacent cavity neighborhoods and for- 
mulate the next step by replacing their configuration 
constraints and computing the new set of local config- 
uration constraints at the new implant configuration. 
We repeat this process until the implant reaches a de- 
sired height outside the cavity (the z position of the 
implant is greater than a prespecified height). The 
resulting displacement configuration sequence defines 
the motion steps that extract the implant from the 
cavity. 

Implementation 

We have implemented the implant extraction algo- 
rithm. The inputs to the program are the implant and 

all left 

right bottom 

Figure 3: Cavity discretization: (a) partition of two 
consecutive contours into cells; (b) a single cell. 

cavity shapes described as data extracted from catscan 
(CT) images, the initial position of the implant inside 
the hole, and the desired implant and cavity resolu- 
tions. The output of the program is an extraction tra- 
jectory and a graphical animation of the extraction. If 
no extraction trajectory is found, the program stops 
at the wedged implant configuration. 

The program is written in C; i t  uses IBM’s opti- 
mization subroutine library (OSL) to solve each linear 
optimization problem LPk and the graphics library GL 
to display three-dimensional views of the implant ex- 
traction sequence. This section provides some imple- 
mentation details. 

The implant and cavity shapes are defined by a stack 
of parallel, two dimensional contour slices described by 
spline segments. The implant control points bj are se- 
lected by sampling the contour splines of each implant 
slice at the desired resolution. 

The cavity is discretized to a desired resolution by 
partitioning it into disjoint cells. Each cell describes 
a cavity facet and its neighborhood. Cells are created 
by dividing contour slices with vertical planes centered 
around the cavity’s spine (Fig. 3(a)). Cells are pie-slice 
shaped volumes consisting of five planar faces: top, 
bottom, right, left, and cavity wall (Fig. 3(b)). The 
wall face, corresponding to a portion of the cavity’s 
inner wall is defined by fitting an approximating plane 
through four points, two on the upper contour slice, 
two on the lower contour slice. Each cell celli is defined 
by a set of five planes, Ai.F - Ci 5 0. A cell mesh 
is produced by recording cell adjacency relationships 
(left, right, top, bottom) between neighboring cells. 

We add a very wide and high “lip” slice to  the top 
of the cavity, so that implant control points always lie 
inside a cavity cell. The lip dimensions are such that 
the implant is guaranteed never to touch lip walls. 

We maintain a data structure that records the cavity 
cell that each implant control point is in. We estab- 
lish the-initial correspondence between implant control 
points bj  and cavity cells celli in the initial configura- 
tion (E, &) by testing which cell inequalities hold: 
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Batch Geometry 

testl 0.1 I 0.05 I 4,638 
res. I growth I size 1 testl 11 ::: 1 0.02 1 4,638 1 n o  1 535 1 321 I 

testl 0.05 0.04 9,405 yes 5,323 4,560 
test2 0.05 19,345 yes 2,340 6,328 
test2 0.1 0.02 19,345 no 657 2,345 
screw 0.1 0.01 1,630 yes 483 43.3 

Table 2: Experiment results. 

Trajectory CPU 
out? I steps time 
yes I 1,830 863 

We update the correspondence as the implant moves 
by using the cell adjacency relationships between cells. 

w e  formulate a linear programming problem Lpk by 
computing the local configurat,ion constraints as de- 
scribed in the previous section and adding the small 
displacement constraints. For n implant control point,s 
and m cavity cells, this yields 5n.m + 12 inequalities 
in 6 variables. For efficiency reasons, we solve the dual 
problem, not the problem itself. 

(In an earlier version of the program, we found the 
cell migration process too slow. To compensate, we 
create an overlapping cavity mesh, so simultaneously 
migration places implant point well inside cavity cells.) 

Experiments 
We have tested our program on a number of real and 
synthetic examples. Fig. 4 shows a typical example of 
a real implant extraction sequence. 

Typical implants are 4” high with cross section di- 
ameters between 0.5” and 2”. The spacing between 
C T  cross-sections is either 0.1” (testl) or 0.05” (test2). 
Each cross section requires between 25 and 80 splines 
to describe it. To describe the implant shape at a 
resolution of 0.05” (maximum distance between con- 
secutive control points in a slice) takes about 20,000 
control points. The cavity shape matches closely the 
implant shape and is often its exact complement grown 
by about 0.05”. In most cases, the critical implant con- 
figurations in the extraction trajectory are near the 
initial configuration. At about 3” height, the implant 
can be directly extracted from the cavity by a straight 
vertical motion. We chose a corkscrew with elliptical 
cross-section as a synthetic example to demonstrate 
the performance of the program when no straight ver- 
tical translation is possible. In all cases, the largest 
small translational displacement limit is 0.1” and the 
largest small rotational displacement limit is one de- 
gree. 

Table 2 summarizes runs on several examples. We 
tested three batches with different dimensions and at 
different resolutions (all dimensions are in inches). The 
first three columns describe the implant and cavity 
geometry: the resolution a t  which the implant and 
body shapes were sampled, the amount by which the 

\ 

, 
\ 

Figure 4: An extraction sequence of a real implant 

implant was grown to obtain the cavity, and the total 
number of points required to describe the shapes. The 
following two columns indicate if the implant can be 
extracted successfully and the number of motion steps 
required. The last column indicates the required CPU 
time in seconds on an IBM RS/SOOO model 530. 

Conclusions and future work 
We have presented an implemented algorithm for de- 
termining if an implant can be successfully inserted 
into a cavity. The program computes an insertion tra- 
jectory consisting of small implant motion steps. Mo- 
tion steps are computed by solving a series of linear 
optimization problems whose solution corresponds to 
the maximum allowed displacement in a preferred di- 
rection satisfying localized motion constraints. The 
program implements a greedy, search-free algorithm 
to find a monotone trajectory in a preferred direction 
to any desired resolution. 
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We are considering a number of alternative methods 
that will speed up the implant extraction by increas- 
ing the size of the steps in the extraction trajectory, 
thus reducing the total number of steps required to ex- 
t,ract the implant. For example, we can force an (adap- 
tively) small implant motion st,ep in a preferred direc- 
tion and use the implant configuration constraints to  
check that the implant is still inside the cavity, or oth- 
erwise reposition it to satisfy those constraints. We are 
also exploring localized search strategies for wedged 
situations, which will guaranfee finding an extraction 
trajectory in any direction when such a trajectory ex- 
ists. An important but difficult extension is to take 
into account friction during the extraction. 

Automatic implant insertability analysis opens up a 
host of possibilities for supporting and automating im- 
plant design from C T  data. To begin with, the implant 
designer can explore more design modifications and al- 
ternative solutions knowing that implant insertability 
can be tested quickly and efficiently. In addition, the 
information produced by the insertability tests can be 
used to modify designs. When a particular implant 
design cannot be extracted, the test. identifies the im- 
plant’s furthest wedged position. Displaying the im- 
plant in that position allows the designer to identify 
the parts of the implant design should be modified to 
allow the insertion. 

The insertability test can also serve as the basis for 
automatic implant shape modification and redesign. 
Starting with an initial implant and cavity shape, the 
goal is to achieve the tightest insertable fit by modi- 
fying the implant’s dimensions and shape. A simple 
(but not very good) method is to shrink or grow the 
implant uniformly by a prespecified amount until the 
tightest insertable fit is achieved (this is the method we 
used in our experiments). A better method is to only 
shrink the implant surface in contact with the cavity 
walls when the implant is wedged, or slightly shorten 
the implant’s stem, or else to make similar modifica- 
tions to  the cavity shape. In the long term, the goal is 
to couple shape constraints with computable criteria 
expressing the underlying goals of the implant design 
process. Many of these criteria are derived from physi- 
cal properties (density, etc.) obtainable from C T  data. 
One can imagine a design process in which process 
ing on the C T  data set produces an “ideal” implant 
shape (with respect to the bone’s physical properties), 
which is then modified by considering constraints gen- 
erated by insertability and manufacturability analysis, 
by engineering analysis of forces and function, and by 
suggestions from the human designer. 

Finally, we note that our insertion/extraction 
method can be applied to problems with similar char- 
acteristics in other domains, where a complex-shaped 
object moves in a highly constrained and complex en- 
vironment. Two examples of such domains are me- 
chanical component assembly/disassembly and casting 

mold design and removal. 
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