
ALGORITHMIC HEURISTICS IN DEEP LEARNING:
REGULARIZATION AND ROBUSTNESS

by
Poorya Mianjy

A dissertation submitted to The Johns Hopkins University in conformity
with the requirements for the degree of Doctor of Philosophy

Baltimore, Maryland
August, 2022

© 2022 Poorya Mianjy
All rights reserved

Abstract

While deep learning continues to advance our technological world, its theoretical

underpinnings are far from understood. In this thesis, we focus on regularization and

robustness due to algorithmic heuristics that are often leveraged in state-of-the-art

deep learning systems. In particular, we take steps towards a formal understanding of

regularization due dropout, which is a popular local-search heuristics in deep learning.

We also present a theoretical study of adversarial training, an effective local-search

heuristic to train models that are more robust against adversarial perturbations. The

thesis is organized as follows.

In Chapters 2 and 3, we focus on the explicit regularization due to dropout in

shallow and deep linear networks. We show that dropout, as a learning rule, amounts

to regularizing the objective with a data-dependent term, which includes products

of the weights along certain cycles in the network graph. We then show that under

certain conditions, this regularizer boils down to a trace-norm penalty, which provides

a rich inductive bias in matrix learning problems.

In Chapter 4, we study the learning theoretic implications of the explicit regularizer.

In particular, focusing on the matrix completion problem, we provide precise ϵ-

suboptimality results for the dropout rule. We also provide extensive empirical

evidence establishing that even in this simple application, algorithmic heuristics such

as dropout can dramatically boost the generalization performance of gradient-based

optimization methods. We further provide generalization error guarantees for the

dropout rule in the two-layer neural networks with ReLU activation. We provide

ii

extensive numerical evaluations verifying that the proposed theoretical bound is

predictive of the observed generalization gap.

In Chapter 5, we focus on the computational aspects of dropout. We provide precise

iteration complexity rates for training two-layer ReLU neural networks with dropout,

under certain distributional assumptions and over-parameterization requirements. We

also show that dropout implicitly compresses the network. In particular, we show

that there exists a sub-network, i.e., one of the iterates of dropout training, that can

generalize as well as any complete network.

Finally, in Chapter 6, we switch gears towards adversarial training in two-layer

neural networks with Leaky ReLU activation. We provide precise iteration complexity

results for end-to-end adversarial training when the underlying distribution is sepa-

rable. Our results include a convergence guarantee for the PGD attack, which is a

popular local-search heuristic for finding adversarial perturbations, and guarantees

suboptimality in terms of the robust generalization error, both of which are the first

of their kind. More importantly, our results hold for any width and initialization.

Thesis Readers

Dr. Raman Arora (Primary Advisor)
Department of Computer Science
Johns Hopkins University

Dr. Amitabh Basu
Department of Applied Mathematics and Statistics
Johns Hopkins University

Dr. René Vidal
Department of Biomedical Engineering
Johns Hopkins University

iii

To my parents and my wife

iv

Acknowledgements

First and foremost, I would like to thank my advisor, Raman Arora, for his continued

support throughout the course of this study. He has been a constant source of

inspiration in all projects that I’ve worked on. Raman has helped me to develop my

critical thinking skill, which has had profound effects in my life, beyond the scope

of this thesis. His patience has given me the courage to take on some challenging

problems, which at first appeared intimidating to me. He gave me the freedom to

experience a wide range of topics in machine learning, which has broadened my

horizons and will be immensely valuable for my future professional advancements.

I’m grateful for the opportunity of working with my senior collaborators and

coauthors, Peter Bartlett, Amitabh Basu, Nati Srebro, and René Vidal. They have

guided me on a number of projects that I worked on during my Ph.D. studies. I’m

particularly owing gratitude to Amitabh and René, from whom I’ve learned a lot of

useful tools in optimization theory.

I would like to thank my colleagues and collaborators at JHU. In particular, my

labmates and coauthors Teodor Marinov, Enayat Ullah, and Yunjuan Wang, and my

fellow machine learning researcher and coauthor Anirbit Mukherjee.

Finally, I’m grateful to my family and my wife, for supporting me through thick

and thin. Without them, this work was not possible.

v

Contents

Abstract . ii

Dedication . iv

Acknowledgements . v

Contents . vi

List of Tables . x

List of Figures . xi

Chapter 1 Introduction . 1

1.1 Preliminaries . 6

1.1.1 Statistical Perspective of Generalization 8

1.1.2 Computational Perspective of Generalization 15

1.1.3 Robust Learning . 18

1.2 Related Work . 22

1.2.1 Regularization due to Dropout 23

1.2.2 Adversarial Training . 23

1.3 Contributions . 24

1.3.1 Explicit Regularization Due to Dropout 25

1.3.2 Statistical Guarantees for Dropout 26

1.3.3 Computational Guarantees for Dropout 27

vi

1.3.4 Robustness Guarantees for Adversarial Training 27

Chapter 2 Dropout Regularizer: Shallow Linear Networks 29

2.1 Linear autoencoders with tied weights 32

2.2 General Two-Layer Networks . 36

2.3 The Optimization Landscape . 39

2.3.1 Implicit bias in local optima 39

2.3.2 Landscape properties . 40

2.4 Matrix Factorization with Dropout 41

2.4.1 Comparison with Previous Work 44

2.5 Proofs . 44

2.5.1 Proofs of Theorems in Section 2.1 45

2.5.2 Proofs of Theorems in Section 2.2 50

2.5.3 Proofs of Theorems in Sections 2.3 53

2.6 Empirical Results . 61

2.7 Discussion . 63

Chapter 3 Dropout Regularizer: Deep Linear Networks 65

3.1 The explicit regularizer . 69

3.2 The induced regularizer . 74

3.3 Global optimality . 84

3.4 Experimental Results . 90

3.4.1 Spectral shrinkage and rank control 91

3.4.2 Convergence to equalized networks 92

3.5 Discussion . 94

Chapter 4 Statistical Guarantees for Dropout 95

4.1 Related Work . 97

4.2 Matrix Sensing . 98

vii

4.2.1 Comparison with Previous Work 101

4.3 Non-linear Networks . 102

4.3.1 Comparison with Previous Work 108

4.4 Role of Parametrization . 109

4.5 Proofs . 110

4.5.1 Matrix Sensing . 110

4.5.2 Non-linear Neural Networks 113

4.6 Experimental Results . 120

4.7 Discussion . 123

Chapter 5 Computational Guarantees for Dropout 125

5.1 Related Work . 127

5.2 Poblem Setup . 129

5.2.1 Notation . 132

5.3 Main Results . 133

5.4 Proofs . 135

5.5 Experimental Results . 150

5.6 Discussion . 152

Chapter 6 Robustness Guarantees for Adversarial Training 154

6.1 Related Work . 156

6.2 Problem Setup . 157

6.3 Main Results . 159

6.3.1 Comparison with Previous Work 163

6.4 Proofs . 163

6.5 Empirical Results . 173

6.5.1 Grid Search Optimization . 173

6.5.2 Binary Classification . 174

viii

6.5.3 Extension to multi-label setting 176

6.6 Discussion . 178

Chapter 7 Conclusion . 181

7.1 Main Contributions . 181

7.2 Other Contributions . 182

7.3 Future Work . 183

Bibliography . 185

.1 Table of Notations . 213

.2 Auxiliary Results . 214

ix

List of Tables

4-I Test RMSE of plain SGD as well as dropout on the MovieLens dataset 120

6-I Robust test error of adversarially trained models with and without

reflecting the loss (Binary Classification) 174

6-II Robust test accuracy of adversarially trained models with and without

reflecting the loss (Multiclass Classification) 177

x

List of Figures

Figure 1-1 Adversarial Examples: imperceptible perturbations that can fool

the model . 20

Figure 2-1 Optimization landscape of the dropout objective for a single

hidden-layer linear autoencoder 34

Figure 2-2 Convergence of dropout from two different initialization to a

global optimum . 41

Figure 2-3 Dropout converges to global optima for different dropout rates

and different widths of the hidden layer 62

Figure 3-1 Illustration of the explicit regularizer due to dropout in deep

linear networks . 70

Figure 3-2 Distribution of the singular values of a deep linear network

trained using dropout . 92

Figure 3-3 Dropout converges to the set of equalized networks 93

Figure 4-1 Comparing peformance of plain SGD and dropout on the Movie-

Lens dataset . 120

Figure 4-2 Evaluating co-adaptation, generalization gap, and the theoretical

gap on the MNIST dataset . 121

Figure 5-1 Linear upperbound on the logistic loss 146

xi

Figure 5-2 Test accuracy of the full network as well as the sub-networks

drawn by dropout iterates . 150

Figure 5-3 Test accuracy of the full network as well as 100 random i.i.d.

sub-networks . 152

Figure 6-1 The 0-1 loss, the cross-entropy loss, and the reflected cross-

entropy loss . 158

Figure 6-2 Number of the top-k attack vectors that are optimal for the

cross entropy loss and the reflected version 174

xii

Chapter 1

Introduction

Deep learning is revolutionizing the technological world with recent advances in

artificial intelligence. However, a formal understanding of when or why deep learning

algorithms succeed has remained elusive. Developing a theory around deep learning

will help the field grow faster by reducing the amount of trial-and-error involved in

training deep neural networks. With this motivation, in this dissertation, we take

some steps towards developing a theoretical foundation for deep learning, focusing on

regularization and robustness imparted by algorithmic heuristics.

In deep learning, the hypothesis class is represented by deep neural networks.

Given an input, a deep neural network computes a composition of layers, each of

which performs a parameterized transformation of their input. From an approximation

theoretic perspective, deep neural networks provide a rich hypothesis class for machine

learning applications: even with a single hidden layer of finite size, a neural network can

represent any continuous function arbitrary well [Cyb89, Hor91]. Moreover, success

of deep learning is in part attributed to the depth of the networks, i.e. number of

layers, which is shown to extract hierarchical features from the data [Ben09]. On the

contrary, traditional machine learning models such as support vector machines and

kernel machines can be viewed as shallow networks, where only a linear transformation

is learned on a fixed layer of nonlinear feature extraction.

1

The goal of machine learning is to find a hypothesis within the target hypothesis

class, which has a small expected error (often referred to as generalization error). The

underlying data distribution is unknown, and the learner can only access it through

a sample, known as the training data. A natural, common practice is to minimize

the empirical error, or a surrogate, associated with the model on the sample. For

traditional, shallow models, this empirical risk minimization often reduces to a convex

optimization problem. Such convex learning problems can be efficiently solved using

principled first-order optimization methods such as Gradient Descent (GD) and its

variants. However, the objective landscape associated with a deep neural network is

often highly non-convex, with spurious local-optima and saddle-points [Kaw16, SS18].

Therefore, in principle, first-order methods are doomed to fail in learning deep neural

networks. Yet, in practice, local-search heuristics are quite successful in minimizing

the empirical objective, and finding models that can also generalize well.

From a theoretical perspective, this empirical success is quite surprising, due to

both computational and statistical challenges involved in training neural networks.

From a computational viewpoint, it is well-known that even training a 3-node neural

network is NP-complete [BR92]. In fact, under some cryptographic assumptions,

even improper learning of small neural networks is hard [KS09, DLSS14]. From a

statistical perspective, classical learning theory attributes generalization error to some

form of model-class complexity, measured e.g. in terms of combinatorial properties

such as the VC-dimension [Vap13], or scale-sensitive measures such as Rademacher

complexity [BM02]. The VC-dimension of deep neural networks (with hard-threshold

activation) is equal, up to logarithmic factors, to the number of network parame-

ters [ABB+99, SSBD14]. Thus, VC-theory falls short in resolving the generalization

puzzle in the over-parameterized settings, where number of parameters far exceeds

the sample size. Moreover, despite all efforts in tightening the upperbounds on the

scale-sensitive measures [Bar98, NTS15, GRS18, NBS17], these bounds often yield

2

trivial, vacuous generalization guarantees [NK19].

A recent strand of research attributes the generalization ability of neural networks

to the implicit bias of optimization algorithms (through the geometry of local search

methods) [NTS14, ZBH+16, NTSS17]. Implicit bias refers to the tendency of the

optimization algorithm towards solutions with certain structural properties, e.g.,

having a small norm. While it has been shown in simpler linear models that GD

is implicitly biased towards low-norm solutions [SHN+18, JT19a], there is growing

evidence that implicit bias may be unable to explain generalization even in a simpler

setting of stochastic convex optimization [DFKL20]. Furthermore, most real-world

state-of-the-art deep learning systems do employ various explicit architectural and

algorithmic heuristics – from normalization layers [IS15, BKH16, SK16] to residual

connections [HZRS16a] and exotic regularization techniques such as dropout [HSK+12,

SHK+14]. Therefore, implicit bias might not give the whole picture when we aim to

understand the empirical success of deep learning.

Although neural networks trained by first-order methods generalize well, they are

often highly susceptible to small, imperceptible, adversarial perturbations of data

at test time [SZS+14]. Such vulnerability to adversarial examples imposes severe

limitations on the deployment of neural networks-based systems, especially in critical

high-stakes applications such as autonomous driving, where safe and reliable operation

is paramount. An abundance of studies demonstrating adversarial examples across

different tasks and application domains [GSS15, MDFF16, CW17] has led to a renewed

focus on robust learning as an active area of research within machine learning. The

goal of robust learning is to find models that yield reliable predictions on test data

notwithstanding adversarial perturbations.

The computational and statistical challenges involved in learning deep neural

networks are even more severe when robust generalization is the desired objective. In

particular, from a computational perspective, even checking the robustness of a given

3

model at a given test sample is NP-hard [ADV19]. In fact, there exist learning problems

where standard learning can be done efficiently, whereas robust learning becomes

computationally intractable [BLPR19, Nak19]. Also, from a statistical perspective,

the robust variants of complexity measures such as robust Rademacher complexity,

often yield even more pessimistic bounds [YKB19, AFM20] compared to the standard

counterparts.

There has been a flurry of recent publications on designing defense strategies

against adversarial examples, including Distillation [PMW+16], randomization at

inference time time [XWZ+18], thermometer encoding [BRRG18], adversarial train-

ing [MMS+18], and convex outer approximation [WK18]. In particular, adversarial

training is a principled approach for learning models that are robust to adversarial ex-

amples, wherein the robust learning problem is formulated as a min-max optimization

problem, and alternating local-search heuristics are employed to solve it. Despite the

aforementioned computational and statistical challenges involved in robust learning, in

practice, such first-order heuristics used in adversarial training has shown to improve

robust generalization across a wide range of experimental settings.

A comprehensive theory of deep learning – one that addresses generalization and

robustness – needs to take into account idiosyncrasies involved in various local-search

heuristics used widely by practitioners. How do these heuristics provide deep neural

networks with such remarkable generalization ability? How do they impart robustness

to models that are adversarially trained? Addressing these questions in a principled

fashion is paramount in theoretical deep learning, as we do in this thesis. In particular,

our focus is on the following two aspects.

Regularization due to Dropout. Dropout is one of the most popular algo-

rithmic heuristics in deep learning. Drawing insights from the success of the sexual

reproduction model in the evolution of advanced organisms, dropout aims at breaking

co-adaptation between neurons by randomly dropping a subset of neurons at the

4

time of training. First introduced by Hinton et al. [HSK+12], dropout has been

widely used in state-of-the-art models for several tasks including large-scale visual

recognition [SLJ+15], large vocabulary continuous speech recognition [DSH13], image

question answering [YHG+16], handwriting recognition [PBKL14], sentiment predic-

tion and question classification [KGB14], dependency parsing [CM14], and brain tumor

segmentation [HDWF+17]. Following the empirical success of dropout, there have

been several studies in recent years aimed at explaining why and how dropout helps

with generalization [BS13, McA13, WWL13, WFWL14, HL15, HL17]. However, our

understanding of the theoretical foundations of dropout still remains limited. In the

first four chapters of this thesis, we present several recent results which contributes to

the growing body of literature on grounding the underpinnings of dropout.

Robustness Imparted by Adversarial Training. Local-search heuristics play

a crucial role in robust learning – both in finding adversarial examples, and in defense

strategies against those adversarial examples [MMS+18, SZS+14, GSS15, KGB17,

CW17]. In particular, in adversarial training, the robust generalization problem is

formulated as a min-max optimization problem, and local-search heuristics are often

employed to solve both the inner-max and the outer-min problems. Adversarial training

has been shown effective in learning models that are more robust against adversarial

examples across a wide range of experimental settings [MMS+18, CW17, ACW18].

Following this empirical success, several recent works study the convergence properties

of local-search heuristics used in adversarial training of deep neural networks [GCL+19,

ZPD+20]. While these results shed light on the dynamics of adversarial training in the

over-parameterized settings, as we point out later, they are limited in several directions.

In the last chapter of this thesis, we take a step towards a better understanding of

adversarial training by providing precise robust generalization guarantees for two-layer

neural networks.

5

1.1 Preliminaries

We denote matrices, vectors, scalar variables and sets by Roman capital letters, Roman

small letters, small letters and script letters respectively (e.g. X, x, x, and X). We

denote the i-th column of a matrix X and the j-th entry of vector y with xi and yj,

respectively. Let ⟨·, ·⟩ denote the standard inner product. For p ≥ 1, we denote the

ℓp-norm of vector x as ∥x∥p; we often drop the subscript when p = 2, and denote

the Euclidean norm as ∥x∥. Furthermore, we denote the dual conjugate of p with p∗,

where 1
p

+ 1
p∗ = 1. We represent the spectral norm and the Frobenius norm of matrix

X by ∥X∥2 and ∥X∥F , respectively. Furthermore, ∥X∥p,q :=
(︂∑︁

j

(︂∑︁
i |Xi,j|p

)︂q/p)︂1/q
is

the ℓq-norm of the vector that collects the ℓp-norm of the columns of X.

Let X and Y denote the input and label spaces, respectively. While the input space

is often a subset of Rd, the label space depends on the underlying task. For example,

in classification and regression, the label spaces are best represented as Y = {1, . . . , k}

and Y ⊆ Rk, respectively. We assume that the data is jointly distributed according to

an unknown distribution D on X × Y .

In a typical machine learning application, the learner first chooses a parameterized

hypothesis class F := {fw : X → Y , w ∈ W} suitable for the learning task, where W

denotes the parameter space. In this thesis, we are interested in feed-forward neural

networks parameterized by a set of weight matrices w := {Wi}k+1
i=1 , Wi ∈ Rdi×di−1 for

all i ∈ {1, . . . , k + 1}, computing the function:

fw : x ↦→Wk+1σ(Wkσ(· · ·σ(W1x) · · ·))

where σ : R→ R is an activation function acting elementwise on the input, d0 and

dk+1 correspond to the input and output dimensionality, and d1, . . . , dk denote the

widths of the hidden layers. We further let d := max{d1, . . . , dk} denote the overal

width of the network.

Given n i.i.d. examples Sn = {(xi, yi)}ni=1 ∼ Dn and a loss function ℓ : Y ×Y → R,

6

the goal of learning is to find parameters ˆ︁w ∈ W such that the hypothesis fˆ︁w ∈ F
enjoys a small generalization error L(w) := ED[ℓ(fw(x), y)]. A common approach to

this learning problem is empirical risk minimization (ERM), which returns the model

with smallest empirical loss on the sample:

ˆ︁wERM ∈ argmin
w∈W

ˆ︁L(w) := 1
n

n∑︂
i=1

ℓ(fw(xi), yi)

The goodness of any model fˆ︁w, including the ERM solution fˆ︁wERM
, can be measured in

terms of its excess error, i.e., the error that fˆ︁w incurs in excess of the best hypothesis

in class. In particular, a generalization error guarantee establishes – in expectation or

with high probability over the draw of a random sample – that:

L(ˆ︁w)− min
w∈W

L(w) ≤ ϵ,

for some small ϵ that depends on the sample size and other problem-specific parameters.

The sample complexity of the corresponding learning rule is the sample size required

to achieve the desired ϵ-suboptimality in the generalization error.

When the empirical problem is convex, first-order methods provide a principled

approach to find an approximate ERM solution. In particular, gradient descent (GD)

is an iterative first-order method, which starts at an initialization w1, and updates

the parameters as wt+1 ← wt − ηt∇ˆ︁L(wt), where ηt > 0 is the so-called learning rate.

Stochastic gradient descent (SGD) – a staple learning algorithm – is a computationally

attractive variant of GD, which at each iterate, updates the parameters based on only

a few samples drawn uniformly at random from the empirical distribution1. Under

additional regularity conditions (boundedness, Lipschitzness, smoothness), one can

appeal to standard analysis of (S)GD in convex optimization literature and provide

precise iteration complexity guarantees for (S)GD, i.e., bound the number of iterations

required to achieve certain ϵ-suboptimality in the objective (see [SSBD14] and the

references therein).
1or based on fresh samples drawn i.i.d. from the underlying distribution.

7

In deep learning, despite the non-convexity of the loss landscape, gradient-based

methods are still used to train deep neural networks. In particular, the back-

propagation algorithm [RHW86] – the main powerhouse behind deep learning systems

– is simply an instance of gradient descent with an efficient, inductive procedure for

computing the gradient of the loss with respect to the parameters of each layer.

The rest of this section is organized as follows. In Section 1.1.1, we introduce the

statistical aspects of the learning problem. In particular, we present some useful tools

from statistical learning theory to bound the sample complexity of a given learning

rule, ignoring the computational cost of the rule. In Section 1.1.2, we shift gears

towards the computational aspects of the learning problem, wherein the goal is to

understand the iteration complexity of the learning rule. In each of these sections,

we review several recent schools of thought for understanding generalization in deep

learning, and discuss their limitations. Finally, in Section 1.1.3, we rigorously lay out

the robust learning framework by extending the standard learning setup presented

above, and present adversarial training, which is a principled approach to solve this

problem.

1.1.1 Statistical Perspective of Generalization

If the hypothesis class is sufficiently expressive, we expect an approximate ERM

solution to have a small empirical loss. This is indeed the case for deep neural

networks of even a moderate size. In particular, [YSJ19] showed that 3-layer ReLU

networks with Ω(
√
n) hidden nodes can perfectly fit most datasets. It is then useful

to bound the deviation between the generalization error and the empirical error of the

model, i.e., L(ˆ︁w)− ˆ︁L(ˆ︁w), known as the generalization gap. In particular, for ERM, it

is easy to see that a small generalization gap implies a small excess error (see, e.g.,

[MRT18]). A crude upperbound on the generalization gap can be obtained via a

8

uniform deviation bound:

L(ˆ︁w)− ˆ︁L(ˆ︁w) ≤ sup
w∈W
|L(w)− ˆ︁L(w)|.

The uniform convergence of the empirical risk to the expected risk is well-studied

in statistical learning theory. This framework establishes that a model with small

empirical error also generalizes well to unseen data, provided that the hypothesis class

F is not too complex [Vap13]. This result suggests that the learner should find a

trade-off between the empirical fit and the model complexity. A common approach is

to penalize complex models by adding a regularization term to the empirical error,

and solving the following regularized empirical risk minimization (R-ERM) problem:

min
w∈W

1
n

n∑︂
i=1

ℓ(fw(xi), yi) + λR(w),

where R(·) is the regularizer, and λ is the associated regularization parameter. The

regularizer often captures some norm of the model parameters. For example, in linear

regression, ℓ1-penalty, or ℓ2-penalty, or a combination of both, are often used to

regularize the empirical risk [NH92].

Statistical learning theory provides several useful analytical tools to control the

uniform deviation bound associated with a hypothesis class. In particular, Rademacher

complexity is a sample-dependent measure of complexity of a hypothesis class that

gives tight upper- and lower-bounds on uniform convergence [BM02, KP00, Kol01].

The empirical Rademacher complexity of a function class F with respect to a sample

S of size n is defined as:

ˆ︁RS(F) := Eσ
[︄
sup
f∈F

1
n

n∑︂
i=1

σif(xi)
]︄
,

where σi are i.i.d. Rademacher random variables. Roughly speaking, Rademacher

complexity measures how well, on average, functions from the hypothesis class F

restricted to the sample S correlate with random noise.

9

We summarize a few important recent advances in theoretical deep learning that

bound the generalization gap using tools from statistical learning theory. In particular,

controlling the Rademacher complexity of neural networks with bounded parameter

norms – directly, or indirectly through other complexity measures – has been an active

area of research [Bar98, NTS15, GRS18, BFT17]. Work of [NTS15] introduced the

notion of ℓp-path norm of a neural network, which is simply the ℓp-norm of the vector

that collects the product of the weights along each path from input to output. More

formally, ℓp-path norm of a network computes ψp(w) := ∥π(w)∥p, where π(w) has one

entry per each path from an input node to the output, whose value is given by the

product of the weights along that path. They give Rademacher complexity bounds

that scale with this quantity as follows:

generalization gap ≤ O

⎛⎝√︄(2d1/p∗)2kψp(w)2 log(d0)
n

⎞⎠ , (1.1)

where d represents the width of the network, and p∗ is the dual conjugate of p, that is,
1
p

+ 1
p∗ = 1. Unfortunately, this bound directly depends on both the width and the

depth of the network. In particular, unless p = 1, the bound scales with dk, which is

an excessively large number even for moderate size networks. Even when p = 1, the

bound still suffers from an exponential blow up in the network depth, due to the 4k

factor under the squared root.

Following the work of [NTS15], there has been a flurry of research papers aiming

to address the explicit dependence of the generalization bound to the architectural

parameters, i.e., the depth and the width of the network. In particular, the work

of [BFT17] uses a covering number argument and bounds the Rademacher complexity,

and therefore the generalization gap, as follows:

generalization gap ≤ O

⎛⎜⎜⎜⎜⎝
(︂∏︁k+1

i=1 ∥Wi∥2
)︂ (︃∑︁k+1

i=1
∥W⊤

i ∥2/3
2,1

∥Wi∥
2/3
2

)︃3/2

√
n

⎞⎟⎟⎟⎟⎠ , (1.2)

where ∥W∥2 denotes the spectral norm of W, and ∥W∥p,q :=
(︂∑︁

j

(︂∑︁
i |Wi,j|p

)︂q/p)︂1/q

10

is the ℓq-norm of the vector that collects the ℓp-norm of the columns of W. In a related

line of research, [NBS17] leverage PAC-Bayes theory and prove the following bound:

generalization gap ≤ O

⎛⎜⎜⎜⎝
(︂∏︁k+1

i=1 ∥Wi∥2
)︂(︃

dk2∑︁k+1
i=1

∥Wi∥2
F

∥Wi∥2
2

)︃1/2

√
n

⎞⎟⎟⎟⎠ , (1.3)

where ∥W∥F denotes the Frobenius norm of matrix W. We would like to make a few

remarks regarding the latter two bounds in Equation 1.2 and Equation 1.3.

• First, the work of [BFT17] also shows that Rademacher complexity is lower

bounded by the product of the spectral norm of weight matrices, i.e., ∏︁k+1
i=1 ∥Wi∥2.

Therefore, when bounding the generalization gap via a uniform deviation bound,

an implicit exponential dependence on the depth of the network is unavoidable.

In particular, this exponential blow-up show up explicitly in the bounds provided

by [BFT17] and [NBS17] in Equation 1.2 and Equation 1.3.

• Second, we note that the bound in [BFT17] is never worse than the bound in

[NBS17]. This can be shown by observing that ∥W⊤
i ∥2

2,1 ≤ d∥Wi∥2
F , for any

individual weight matrix Wi. The claim follows from the fact that ∥v∥2/3 ≤

(k + 1)∥v∥2, where vi = ∥Wi∥F for all layers i ∈ [k + 1].

• Third, as noted in [GRS18], both of these bounds quickly explode as network

size increases. For example in [BFT17] – even if we ignore the product of the

spectral norms – the right hand side of Equation 1.2 is at least in the order of

Ω(
√︂

k3

n
), since ∥W⊤

i ∥2,1
∥Wi∥2

≥ 1 for any i. As for the bound in [NBS17], ignoring the

product of spectral norms again, the right hand side of Equation 1.3 scales at

least as Ω(
√︂

dk3

n
), since ∥Wi∥F

∥Wi∥2
≥ 1 for any i. These bounds, therefore, become

trivial for large values of d and/or k.

In a subsequent work, aiming to address the issues in the third remark above,

[GRS18] give an alternative analysis of Rademacher complexity, and provide the

11

following guarantee on the generalization gap:

generalization gap ≤ O

(︄√
k
∏︁k+1
i=1 ∥Wi∥F√
n

)︄
, (1.4)

While this bound avoids an explicit dependence on the network width, it still suffers

from an implicit dependence on d. In fact, the implicit exponential dependence on the

network depth is even more exacerbating compared to [BFT17] and [NTS15], as the

Frobenius norm in the right hand side of Equation 1.4 can be
√

width larger than the

spectral norm. It is, however, not possible to give a direct comparison – one that is

consistent across all regimes of width and depth parameters – between [GRS18] and

the other two bounds in Equation 1.2 and Equation 1.3.

Finally, we would like to remark that in practice, evaluating these bounds on

common network architectures that are trained on real datasets, often yield vacuous

generalization bounds. In fact, there are empirical evidences showing that the norms

of weight matrices can increase with the sample size, suggesting that such norm-based

generalization bounds might fail to explain generalization in deep learning [NK19].

We remind the reader that despite the non-convexity of the loss landscape associated

with deep neural networks, local-search heuristics often succeed in finding networks

that can nearly perfectly fit the sample. From a practical perspective, therefore, the

main question here is how to ensure neural networks that are trained to a reasonably

small empirical error can also generalize to unseen data? The literature suggests a

few potential answers to this question, as we detail below.

First, it has been widely observed that over-parameterized neural networks trained

with pure first-order optimization methods such as (S)GD – in absence of any explicit

regularization – can still generalize reasonably well [ZBH+16]. In fact, increasing

the network size beyond the interpolation point – where the models can perfectly

fit the dataset – does not seem to hurt the generalization ability of models that are

trained using (S)GD, somewhat contradictory to the traditional view of over-fitting in

12

statistical learning theory [NTS14].

It was then conjectured that the optimization algorithms used to train deep

neural networks are implicitly biased towards model with small generalization er-

ror [NTS14]. Thenceforth, characterizing the implicit bias of optimization algorithms

in learning over-parameterized models for specific learning problems – from linear

regression [GLSS18a] and matrix factorization [GWB+17, ACHL19], to linear binary

classification [SHN+18, JT19a] and neural networks [CB20] – has been a central theme

in the machine learning literature. At a high level, a typical result of this kind

establishes that, first-order methods tend to find near-optimal empirical fits that are

close to initialization [GLSS18a, AH19], or have a small norm [SHN+18, JT19a].

On the other hand, there is growing evidence that implicit bias may be unable

to explain generalization even in a simpler setting of stochastic convex optimiza-

tion [DFKL20]. In particular, [SPR18] exhibit a learning problem where gradient

flow – that is, gradient descent with an infinitely small step size – diverges from

the closest point to the initialization. In a subsequent work, [DFKL20] provide a

systematic approach to assess if the implicit bias of an optimization algorithm can be

represented by a reasonable regularizer. At a high level, if a regularizer R(·) is meant

to capture the implicit bias of an optimization algorithm A, then the set of models that

simultaneously beat A on both the empirical loss ˆ︁L(·) and the regularizer R(·) should

be small. By constructing convex learning problems where SGD provably converges

to solutions which are simultaneously suboptimal both in terms of the empirical loss

and any reasonable regularizer, the work of [DFKL20] rejects the possibility that the

implicit bias of SGD can be captured by any reasonable regularizer.

Theoretical aspects aside, from an empirical perspective, most real-world state-of-

the-art deep learning systems do employ various forms of explicit architectural and

algorithmic regularization – the list includes but is not limited to early stopping, weight

decay, max-norm regularization [SHK+14], weight normalization [IS15, BKH16, SK16],

13

residual connections [HZRS16a], Jacobian penalty [RVM+11], and dropout [HSK+12].

Therefore, implicit bias might not give the whole picture when we aim to understand

the empirical success of deep learning.

Second, as suggested by the R-ERM framework, one can choose to explicitly

regularize the empirical objective. In particular, weight-decay, which essentially

penalizes the ℓ2-norm of the parameters, is often leveraged in practice and has shown

effective in helping generalization. Other norm-based regularizer, such as ℓ2 max-norm

regularization (also known as per-unit regularization), has also been reported useful

in improving generalization [SHK+14]. Both of these measures can indeed be used

to provide generalization error bounds for deep neural networks [NTS15]. In fact,

max-norm regularization is closely related to path-norm [NTS15], for which we have

already introduced a generalization error bound in Equation 1.1.

Another tempting idea, motivated by the Structural Risk Minimization frame-

work [VC74] , is to directly regularize the empirical objective by the complexity

measures given in different upperbounds on the generalization gap, such as those

presented in Equations 1.1, 1.2, 1.3, and 1.4. However, when the complexity measure

is mathematically complicated, as in the case of spectrally-normalized generalization

error bounds in Equation 1.2 and Equation 1.3, it can impose additional computational

overhead on the learning algorithm. Furthermore, such a complicated regularizer

can potentially introduce new optimization barriers by changing the loss landscape

in non-trivial ways. More importantly, as suggested by a recent careful empirical

analysis [JNM+19], some of the complexity measures present in the upperbounds,

including the product of the spectral norms, can even negatively correlate with the

generalization of the trained models. Regardless, we note that there has been a few

efforts to efficiently incorporate some of these complexity measures, path-norm in

specific, approximately, through the geometry of the optimization method [NSS15].

Third, besides traditional, norm-based regularizers, deep learning practitioners

14

often employ more exotic, algorithmic heuristics such as early stopping, layer normal-

ization [IS15, BKH16, SK16], residual connections [HZRS16a], and dropout [HSK+12,

SHK+14]. This thesis is especially concerned about the theoretical foundations of

such algorithmic heuristics. How does an algorithmic heuristic explicitly regularize

the empirical objective? How does the explicit regularizer help generalization? How

efficiently does the heuristic find a good solution? A comprehensive theory of deep

learning needs to rigorously address these questions; yet, at this time, these questions

are far from understood.

In this thesis, we focus on dropout, wherein at each step of (S)GD, each node in

the network is dropped independently and identically according to a Bernoulli random

variable with parameter θ. Formally, let b = {Bi}ki=1, where Bi = diag [bi,1, . . . , bi,di]

represents the dropout pattern in the ith layer with Bernoulli random variables on

the diagonal. If Bi(j, j) = 0 then the jth hidden node in the ith layer is dropped,

i.e., it does not contribute in computing the function, and does not participate in

the gradient updates. We refer to the parameter 1− θ as the dropout rate; smaller θ

means higher rate of dropping the corresponding node. Given this formalism, we view

dropout, algorithmically, as an instance of SGD on the following objective over w:

ˆ︁Lθ(w) := Eb

[︄
1
n

n∑︂
i=1

ℓ(fw,b(xi), yi)
]︄
,

where fw,b : x ↦→ Wk+1Bkσ(Wkσ(· · ·B1σ(W1x) · · ·)) represents the neural networks

sampled according to the dropout pattern.

1.1.2 Computational Perspective of Generalization

The loss landscape associated with deep neural networks is often non-convex. In

practice, the back-propagation algorithm, which is an efficient implementation of

gradient descent for hierarchical architectures, is used to train deep neural networks.

Over-parameterized neural networks trained using back-propagation often fit the

sample almost perfectly and also generalize well. A central theme for theoretical

15

research in deep learning is then the following question: how can a simple local-search

method often succeed in finding an approximate global minimizer despite the non-

convexity of the problem? In recent years, there has been a flurry of studies trying to

rigorously address this question. These efforts mainly fall into two categories, as we

detail below.

According to the first camp, the success of first-order methods in deep learning is

associated with the geometric properties of the loss landscape [CHM+15]. In particular,

it was conjectured that sub-optimal critical points are benign, in the sense that all

local optima are global, and all saddle points are strict. Formally, let L :W → R be

a twice differentiable function and let w ∈ W be a critical point of L. Then, w is a

strict saddle point of L if the Hessian of L at w has at least one negative eigenvalue,

i.e. λmin(∇2L(w)) < 0. Furthermore, L satisfies strict saddle property if all saddle

points of f are strict saddle. This property allows first-order methods to efficiently

escape the saddle points and converge to a local optimum [LSJR16, GHJY15], which

will be global if the landscape doesn’t have any poor local optimum.

Following this benign landscape conjecture, there has been a flurry of works on

studying the landscape of different machine learning problems, including low rank

matrix recovery [BNS16], generalized phase retrieval problem [SQW16], matrix comple-

tion [GLM16], deep linear networks [Kaw16], matrix sensing and robust PCA [GJZ17]

and tensor decomposition [GHJY15], making a case for global optimality of first-order

methods in deep learning.

However, there is ample evidence for refuting the benign landscape conjecture in

deep learning [SCP16, Kaw16, ZL17, YSJ18, SS18]. In particular, work of [Kaw16]

showed that even for deep linear networks, the loss landscape has non-strict saddle

points where the Hessian has no negative eigenvalues. It was also shown, empirically

and theoretically, that even in two-layer ReLU networks, spurious local optima are

common [SS18]. Furthermore, the landscape approach ignores the role of initialization,

16

which has shown to be crucial for the success of gradient-based methods in deep

learning [SMDH13].

Given the limitations of the landscape approach, the second camp posits that un-

derstanding optimization in deep learning requires a careful analysis of the trajectories

traversed at time of training [ZSJ+17, BG17, Tia17, BGMSS18, AGCH19, ACHL19].

In particular, there has been significant recent progress in such trajectory-based analysis

of local-search heuristics in the so-called lazy regime; wherein under certain initializa-

tion, learning rate, and over-parameterization requirements, the iterates of (S)GD tend

to stay close to initialization. In such settings, therefore, a first-order Taylor expansion

of the t-th iterate around initialization, i.e. fwt(x) ≈ fw1(x) + ⟨∇fw1(x),wt −w1⟩, can

be used as a proxy to track the evolution of the network predictions [COB18, LXS+19].

Leveraging the approximate linearity of the neural networks in a small neighborhood

of the initialization, training in lazy regime reduces to finding a linear predictor in

the reproducing kernel Hilbert space (RKHS) associated with ∇fw1(·), the gradient

of the network at initialization. In the limit of over-parameterization, the induced

kernel k(x, x′) = ⟨∇fw1(x),∇fw1(x′)⟩ is often referred to as the Neural Tangent Kernel

(NTK) [JGH18]. The dynamics of (S)GD is then completely governed by the NTK,

and for that reason, lazy regime is also referred to as the kernel regime.

Building on the standard convergence guarantees of (S)GD in learning linear

models, there has been a flurry of recent work establishing that in the lazy regime,

gradient-based methods can efficiently find a solution with vanishing empirical and

expected error [LL18, DZPS19, Dan17, ZCZG18, AZLL19, SY19, ADH+19, CG19,

OS20, NS19, JT19b]. Furthermore, akin to implicit bias of (S)GD in learning linear

models, it is also established that in the lazy regime, (S)GD is implicitly biased

towards minimum norm solutions (with respect to the RKHS norm induced by the

NTK) [COB18, ADH+19, CB20]. These results suggest an equivalence between

deep learning and learning with classical kernel machines: instead of training deep

17

neural networks and learning hierarchical features, one can use kernel methods by

leveraging fixed features that are solely determined by the gradient of the model at

the initialization.

Although the idea of reducing deep learning to learning linear predictors in an

appropriate RKHS seems promising, it is far from capturing the reality. In particular,

empirical evidence suggests that in a typical real-word deep learning scenario, deep

neural networks leave the lazy regime and explore the parameter space beyond a small

neighborhood of initialization (see, e.g., [NK19]).

Furthermore, a series of empirical and theoretical works suggest that training

over-parameterized neural networks with gradient-based methods induce rich implicit

biases that cannot be captured by any RKHS norm. For example, the implicit bias

of gradient descent in training deep linear convolutional networks corresponds to

bridge regularization in the frequency domain [GLSS18b]. In the over-parameterized

matrix learning problems, [GWB+17] conjectured and provided empirical evidence

that gradient descent is implicitly biased towards solutions with minimum nuclear

norm; this conjecture was later formally proved by [LMZ18] under the restricted

isometry property. In a subsequent work, for matrix sensing and matrix completion

problems, [ACHL19] showed that learning deep linear networks with gradient descent

has an implicit tendency towards low rank solutions. Finally, [CB20] showed that

gradient flow in two-layer ReLU networks is implicitly biased towards the max-margin

solution with respect to a variation norm. We note that none of these implicit biases

can be represented as an RKHS norm, and therefore, cannot be explained by the lazy

regime.

1.1.3 Robust Learning

Recent advances of deep learning in core machine learning tasks such as computer

vision [KSH12, KTS+14, OBLS14], natural language processing [ZZL15, CVMG+14],

18

and reinforcement learning [MKS+15, SHM+16] has produced some major technolog-

ical breakthroughs in artificial intelligence. However, deep learning systems can be

extremely brittle against small distribution shift in data, which can arise naturally

or adversarially, due to a change in environment or a malicious actor [BCM+13,

SZS+14, NYC15]. In particular, recent studies has shown that neural networks are

highly susceptible to adversarial examples – inputs that are contaminated with tiny,

imperceptible adversarial perturbations, yet can fool the model to make a wrong

prediction [GSS15, MDFF16, CW17]. Figure 1-1 illustrates one such adversarial ex-

ample: a perturbed image of a pig (on the right) – indistinguishable from the correctly

classified original image (on the left) – is wrongly classified as a wombat by the same

model.

The rise of deep learning in artificial intelligence has made it an indispensable tool

in autonomous systems with minimal to no human assistance, including self-driving

cars, domestic robots, automated medical delivery systems, and surgical robots. In

such critical high-stakes applications, risk of failure due to adversarial examples can

be catastrophic, and should be avoided at all costs. As a result, in recent years,

robust learning has arisen as an active area of research within the machine learning

community. The goal of robust learning is to find models that yield reliable predictions

on test data notwithstanding adversarial perturbations. In the following, we formally

introduce robust learning by extending the standard learning setting discussed in the

previous sections.

First, we need to choose a threat model, a class of adversarial perturbations that

we allow at the test time, and we aim to be robust against. At an abstract level, an

adversarial perturbation is simply a function that maps an input x ∈ X to another

look-alike input x′ ∈ X . A natural threat model in many applications is the class

of ℓp-bounded additive perturbations ∆p,ν(x) := {x + δ, ∥δ∥p ≤ ν}, where ν ≥ 0 is

the perturbation budget that limits the power of the adversary. Under this model,

19

A Pig Perturbation ×50 A Wombat

Figure 1-1. (left) An image of a pig, predicted correctly by the model; (middle) image
of an adversarial perturbation scaled by a factor of 50 to be visible; and (right) the image
in the left after perturbation; predicted as a wombat by the same model. Images are
downloaded from Adversarial Robustness - Theory and Practice.

an adversarial example is generated as x′ = x + δ for an appropriate choice of a

norm-bounded δ. For example, in an image classification problem like the one in

Figure 1-1, the class of ℓ∞-bounded attacks is a natural choice for imperceptible

perturbations. In this thesis, we focus on ℓ2-bounded adversarial attacks, which is

denoted as ∆ := ∆2,ν for the simplicity of the notation.

Given a hypothesis class and a threat model, robust learning can be viewed as a

game played between a learner and an adversary. The single goal of the adversary

is to trick the learner into making a wrong prediction on a perturbed test sample.

That is, at any given datapoint (x, y) ∼ D, the adversary aims to solve the following

problem against the learner fw:

max
x′∈∆p,ν(x)

I{fw(x′) ̸= y}, (1.5)

which is precisely the loss that the learner incurs at (x, y). Here, I{·} denotes the

indicator function. In particular, the maximization problem above can only take

values in {0, 1}. If the maximum equals zero, then the model fw is said to be robust

against the threat model ∆p,ν at (x, y). Otherwise, there exists an x′ ∈ ∆p,ν(x) such

that fx(x′) ̸= y, and therefore, the model fails to robustly predict the label of x. The

20

https://adversarial-ml-tutorial.org/

goal of the learner is then to minimize the robust error in expectation over samples

drawn from D:

min
w∈W

Lrob(w) := E(x,y)∼D

[︄
max

x′∈∆p,ν(x)
I{fw(x′) ̸= y}

]︄
. (1.6)

Given n samples {(xi, yi)}ni=1 drawn i.i.d. from the source distribution D, the goal

of robust learning is then to find ˆ︁w which enjoys a small robust risk Lrob(·) defined

above. In particular, a hypothesis fˆ︁w with vanishing Lrob(ˆ︁w) is robust against the

threat model ∆p,ν , in expectation over the random draw of a test sample.

Adversarial training is a recent promising approach that addresses the above robust

learning problem [MMS+18] in a principled fashion. In adversarial training, the 0− 1

loss inside the expectation is replaced with a convex surrogate such as the cross entropy

loss, and the expected value is estimated using a sample average, which leads to the

following min-max optimization problem:

min
w∈W

ˆ︁Lrob(w) := 1
n

n∑︂
i=1

max
x′
i∈∆p,ν(xi)

ℓ(yi, fw(x′
i)). (1.7)

This formalism gives a unifying view over much of the prior work on both adversarial

attacks and defense strategies. In particular, the difference between different strategies

mainly stems from the particular choice of the surrogate loss and the optimization

method used to solve the saddle-point problem in Equation 1.7 [MMS+18].

In practice, alternating local-search heuristics are often employed to solve the above

min-max problem – both for finding an attack in the inner-max problem, and finding

a robust model in the outer-max problem. In a typical algorithm of this kind, at each

iterate, the learner first attempts to simulate the adversary by finding adversarial

examples {ˆ︁x1, . . . , ˆ︁xn} that approximately maximize the inner-max problems. The

learner then updates the weights to minimize the empirical loss evaluated on the

perturbed dataset, i.e., ˆ︁L(w; {(ˆ︁xi, yi)}ni=1) := 1
n

∑︁n
i=1 ℓ(fw(ˆ︁xi), yi), and continues with

the next iterate.

21

Finally, we emphasize that most attack strategies can be viewed as some form of

the projected gradient descent (PGD) algorithm for solving the constrained inner-max

problem. Given sample (x, y), such methods initialize the adversarial example at an

arbitrary point x′
1 ∈ ∆p,ν(x), and iteratively update it by taking a step in the direction

of the gradient of the surrogate loss, followed by a projection onto the feasible set of

the corresponding threat model:

x′
t+1 = Π∆p,ν [x′

t + ηt∇ℓ(fw(x′
t), y)],

where ηt is the step size, and ΠC(v) projects v onto S with respect to the ℓ2-norm.

For example, for an ℓ∞ threat model (∆∞,ν), the projection simply corresponds to

clipping entries of the adversarial example x′ if they leave the range (x− ν, x + ν). In

particular, a popular instance of PGD for the ℓ∞ threat model, the Fast Gradient

Signed Method (FGSM) [GSS15] computes an adversarial example as follows:

x′ = x + ν sgn[∇xℓ(fw(x), y)],

which is equivalent to a single step of PGD with infinite step size for an ℓ∞ bounded

adversary.

1.2 Related Work

In this dissertation, we develop a theoretical foundation around deep learning, focusing

on regularization and robustness due to local-search heuristics often used in practice.

Following the empirical success of such algorithmic heuristics, there has been numerous

theoretical studies aiming to explain why and when they work. In this section, we

survey the previous art around the main focus of the thesis; we review the literature

related to the theoretical foundations of dropout in Section 1.2.1, and the previous

work on adversarial training in Section 1.2.2, respectively.

22

1.2.1 Regularization due to Dropout

Early theoretical studies on dropout focus on understanding the regularization due

to dropout in simpler models. After introducing dropout [HSK+12], in a follow-up

work, the authors showed that dropout in linear regression amounts to a weight decay

penalty [SHK+14]. A similar result was also shown by [BS13], who further establish

that for a single sigmoidal unit trained to minimize the cross entropy loss, dropout

induces a weight decay penalty which is adaptively scaled by the second moment of

the input and the dropout rates. A more general result by [WWL13] showed that

for generalized linear models, dropout performs an adaptive regularization which

is equivalent to a data-dependent scaling of the weight decay penalty. In contrast,

[HL15] argued that in linear classification, the regularizer due to dropout can radically

differ from weight decay, in the sense that it can be non-convex and non-monotone in

individual weight parameters.

In a related strand of research, several early studies focus on understanding how

dropout helps with generalization, using tools from statistical learning theory. In

particular, the work of [McA13] leverages the PAC-Bayes framework and provides a

generalization bound for dropout that decays with the dropout rate; interestingly, the

connection between dropout and weight decay is also evident in their analysis. In

a follow-up work by the authors of [WWL13], they show that under a certain topic

model assumption on the data, dropout in linear classification can improve the decay

of the excess risk of the empirical risk minimizer [WFWL14].

1.2.2 Adversarial Training

Adversarial training, and theoretical studies around it, are fairly new topics in the

machine learning literature. Some of the earliest studies focus on adversarial training

of linear models, where the optimal attack has a simple closed-form expression,

which mitigates the challenge of analyzing the optimization method used for the

23

inner-max problem. In particular, [CRWP19, LXXZ20] give robust generalization

error guarantees for adversarially trained linear models under a margin separability

assumption. The hard margin assumption was relaxed by [ZFG21] who give robust

generalization guarantees for distributions with agnostic label noise.

There has also been a few efforts to understand adversarial training in non-linear

neural networks. The works of [GCL+19] and [ZPD+20] study the convergence

of adversarial training in the lazy regime. Under specific initialization and width

requirements, these works guarantee small robust training error with respect to

the attack strategy that is used in the inner-loop, without explicitly analyzing the

convergence of the attack. [GCL+19] assume that the activation function is smooth

and require that the width of the network, as well as the overall computational cost,

is exponential in the input dimension. The work of [ZPD+20] partially addresses

these issues. In particular, their results hold for ReLU neural networks, and they

only require the width and the computational cost to be polynomial in the input

parameters.

1.3 Contributions

In this dissertation, we build a theoretical framework around the regularization and

robustness imparted by local-search heuristics in deep learning. First, focusing on

dropout, in the next four chapters of this thesis we rigorously analyze several important

theoretical questions that were poorly understood before this work. How does dropout

explicitly regularize the empirical objective? We formally answer this question in

Chapter 2 and Chapter 3, focusing on shallow and deep linear networks as a case

study. How does the explicit regularizer due to dropout provide capacity control in deep

learning? In Chapter 4 of this thesis, we answer this question by providing precise

sample complexity bounds for the dropout rule, in the context of matrix sensing

problem, and for two-layer ReLU neural networks. Does dropout, as an iterative

24

local-search heuristic, converge to a solution with small generalization error? In

Chapter 5, we give precise iteration complexity results for learning a two-layer ReLU

neural network with dropout. Finally, in the last chapter of this thesis, we shift gears

towards the robustness due to local-search heuristics. In particular, we seek to answer

can adversarial training provably robustly learn neural networks? In Chapter 6, we

answer this question affirmatively by providing precise iteration complexity guarantees

for end-to-end adversarial training of two-layer neural networks with Leaky-ReLU

activation. In the following, we detail the main contributions of this dissertation.

1.3.1 Explicit Regularization Due to Dropout

A natural first step toward understanding generalization due to dropout, is to instan-

tiate the explicit form of the regularizer due to dropout, and analyze the dropout

objective, i.e., the resulting regularized risk minimization problem that dropout aims

to solve. This is precisely the focus of our study in Chapters 2 and 3, as we detail

below.

In Chapter 2, we study dropout in linear regression with shallow linear neural

networks. We show that the regularizer due to dropout is equal to the ℓ2-path norm

of the network. We then prove that at the minima of the dropout objective, the

regularizer induced by dropout amounts to a nuclear norm penalty. This allows us

to completely characterize the global minima of the dropout objective, despite the

objective being non-convex (Theorem 6).

We also describe the optimization landscape of the dropout problem in the case of

two-layer autoencoders with tied weights. In particular, we show that for a sufficiently

small dropout rate, all local minima of the dropout objective are global and all saddle

points are non-degenerate (Theorem 7). This allows dropout to efficiently escape

saddle points and converge to a global optimum.

In Chapter 3, we extend the results of Chapter 2 to deep linear networks with

25

arbitrary architecture. First, we show that dropout induces a data-dependent reg-

ularizer that includes, among other terms, the ℓ2-path norm of the network. We

then completely characterize the global minima of the dropout objective, under a

simple eigengap condition (see Theorem 10). This gap condition depends on the

model, the data distribution, the network architecture and the dropout rate, and is

always satisfied by two-layer linear networks, as well as deep linear networks with one

output neuron. In particular, under this gap condition, at any global minimum of the

objective, the regularizer induced by dropout boils down to the nuclear norm of the

network.

1.3.2 Statistical Guarantees for Dropout

As we formally show in Chapters 2 and 3, training deep linear networks with dropout

induces a rich inductive bias that is captured by the nuclear norm of the network. The

next natural step is to investigate how such an inductive bias controls the capacity of

the underlying model. In Chapter 4, we study capacity control due to dropout through

the lens of Rademacher complexity, and establish precise generalization bounds for

the matrix sensing problem (Theorem 11) and two-layer neural networks with ReLU

activations (Theorem 12).

We formally argue that dropout training alone does not directly control the norms

of the weight vectors (Proposition 2); and therefore, to prove capacity control due to

dropout, one cannot simply appeal to norm-based generalization error bounds discussed

in Section 1.1.1. Our generalization bounds in Chapter 4 are solely in terms of the value

of the dropout regularizer and without additional norm constraints on the predictors.

In the case of two-layer neural networks with ReLU activation, this is a significant

departure from most of the prior work wherein dropout is analyzed in conjunction

with additional norm-based capacity control, e.g., max-norm [WZZ+13, GZ16], or ℓp

norm on the weights of the model [ZW18].

26

We also provide extensive numerical evaluations for validating our theory including

verifying that the proposed theoretical bound on the Rademacher complexity is

predictive of the observed generalization gap.

1.3.3 Computational Guarantees for Dropout

In Chapters 2 - 4 we rigorously argue for the inductive bias due to dropout and provide

precise sample complexity guarantees for dropout training; however, our results in

those chapters completely ignores the computational complexity of learning with

dropout. In Chapter 5, we study dropout through the lens of computational learning

theory and focus on the iteration complexity of learning non-linear neural networks

with dropout.

We leverage recent advances in the theory of deep learning in the lazy regime and

extend convergence guarantees and generalization bounds for GD-based methods with

explicit regularization due to dropout. In Theorem 14, we give precise non-asymptotic

convergence rates for achieving ϵ-subotimality in the generalization error via dropout

training in two-layer ReLU networks. Furthermore, we show that dropout training

implicitly compresses the network. In particular, we show in Theorem 15 that there

exists a sub-network, i.e., one of the iterates of dropout training, that can generalize

as well as any complete network. We also provide empirical evidence (see Figure 5-2)

to support the compression results.

1.3.4 Robustness Guarantees for Adversarial Training

Recall that in adversarial training, robust learning is formulated as a min-max opti-

mization problem wherein the classification error is replaced by a convex upperbound,

and alternating local-search heuristics are used to solve the resulting saddle point

problem. In Chapter 6, we propose a simple modification of adversarial training:

when solving the inner-max problem searching for an “optimal” perturbation vector

27

to attack the current model, we reflect the convex upperbound about the origin,

which yields a concave lowerbound for the misclassification error (see Figure 6-1 and

Algorithm 5).

With this simple modification, under a margin separability assumption, we provide

convergence guarantees for PGD attacks on two-layer neural networks with leaky ReLU

activation (Lemma 18), which is the first of its kind in the literature. Furthermore,

in Theorem 16 we give global convergence guarantees and establish learning rates

for adversarial training. Notably, our guarantees hold for any bounded initialization

and any width – a property that is not present in the previous works in the NTK

regime [GCL+19, ZPD+20].

We also provide extensive empirical evidence evaluating the idea of reflecting the

surrogate loss in the inner loop. First, we show that reflecting the loss can indeed lead

to finding “better” attacks in the inner-max loop (Figure 6-2), resulting in adversarially

trained models that are more robust (Table 6-I). We then propose a simple, greedy

heuristic to extend our approach to the multi-class setting. We show empirically, that

this simple extension does not have a significant impact on the test time performance

of the adversarially trained models (Table 6-II).

28

Chapter 2

Dropout Regularizer: Shallow
Linear Networks

Dropout regularizes the model by dropping a random subset of hidden nodes at each

iterate of back-propagation. A natural first step to understand how dropout helps

with generalization is to extract the explicit regularization due to dropout, and study

the optima of the resulting regularized risk minimization problem. We argue that a

prerequisite for understanding regularization due to dropout, is to analyze its behavior

in simpler models. Therefore, in this chapter, we focus on dropout in linear-regression

with two-layer linear networks. For simplicity of analysis, we also assume that the

input marginals are isotropic – a condition that we lift in the next chapter, when we

study dropout in deep linear networks.

Formally, we consider the following learning problem. Let x ∈ Rd0 represent an

input feature vector with some unknown distribution D such that Ex∼D[xx⊤] = I. The

output label vector y ∈ Rd2 is given as y = Mx for some M ∈ Rd2×d0 . We consider the

hypothesis class represented by a single hidden-layer linear network parametrized as

hU,V(x) = UV⊤x, where V ∈ Rd0×r and U ∈ Rd2×r are the weight matrices in the first

and the second layers, respectively. The goal of learning is to find weight matrices

U,V that minimize the expected loss

L(U,V) := Ex∼D[∥y− hU,V(x)∥2] = Ex∼D[∥y− UV⊤x∥2].

29

A natural learning algorithm to consider is back-propagation with dropout, which can

be seen as an instance of stochastic gradient descent on the following objective:

Lθ(U,V) := Ebi∼Ber(θ),x∼D

[︄⃦⃦⃦⃦
y− 1

θ
U diag(b)V⊤x

⃦⃦⃦⃦2]︄
, (2.1)

where the expectation is w.r.t. the underlying distribution on data as well as random-

ization due to dropout (each hidden unit is dropped independently with probability

1− θ). This procedure, which we simply refer to as dropout in this chapter, is given

in Algorithm 1.

It is easy to check (see Lemma 2 in Section 2.5) that the objective in equation (2.1)

can be written as

Lθ(U,V) = L(U,V) + λ
r∑︂
i=1
∥ui∥2∥vi∥2, (2.2)

where λ = 1−θ
θ

is the regularization parameter, and ui and vi represent the ith columns

of U and V, respectively. Note that while the goal was to minimize the expected

squared loss, using dropout with gradient descent amounts to finding a minimum of the

objective in equation (2.2); we argue that the additional term in the objective serves

as a regularizer, R(U,V) := λ
∑︁r
i=1 ∥ui∥2∥vi∥2, and is an explicit instantiation of the

implicit bias of dropout. Furthermore, we note that this regularizer is closely related

to path regularization which is given as the square-root of the sum over all paths,

from input to output, of the product of the squared weights along the path [NTS15].

Formally, for a single layer network, path regularization is given as

ψ2(U,V) =
⎛⎝ r∑︂
i=1

d2∑︂
j=1

d0∑︂
k=1

u2
jiv

2
ki

⎞⎠ 1
2

. (2.3)

Interestingly, the dropout regularizer is equal to the square of the path regularizer,

i.e. R(U,V) = λψ2
2(U,V). While this observation is rather immediate, it has profound

implications owing to the fact that path regularization provides size-independent

capacity control in deep learning, thereby supporting empirical evidence that dropout

finds good solutions in over-parametrized settings.

30

In this chapter, we focus on studying the optimization landscape of the objective in

equation (2.2) for a single hidden-layer linear network with dropout and the special case

of an autoencoder with tied weights. Furthermore, we are interested in characterizing

the solutions to which dropout (i.e. Algorithm 1) converges. We make the following

progress toward addressing these questions.

1. We formally characterize the inductive bias of dropout. We argue that, when

minimizing the expected loss Lθ(U,V) with dropout, any global minimum (Ũ, Ṽ)

satisfies ψ2(Ũ, Ṽ) = min{ψ2(U,V) s.t. UV⊤ = ŨṼ⊤}. More importantly, for

auto-encoders with tied weights, we show that all local minima inherit this

property.

2. Despite the non-convex nature of the problem, we completely characterize the

global optima by giving necessary and sufficient conditions for optimality.

3. We describe the optimization landscape of the dropout problem. In particular,

we show that for a sufficiently small dropout rate, all local minima of the dropout

objective in equation (2.2) are global and all saddle points are non-degenerate.

This allows Algorithm 1 to efficiently escape saddle points and converge to a

global optimum.

The rest of the chapter is organized as follows. In Section 2.1, we study dropout

for single hidden-layer linear auto-encoder networks with weights tied between the

first and the second layers. This gives us the tools to study the dropout problem

in a more general setting of single hidden-layer linear networks in Section 2.2. In

Section 2.3, we characterize the optimization landscape of the objective in (2.2), show

that it satisfies the strict saddle property, and that there are no spurious local minima.

We specialize our results to matrix factorization in Section 2.4, and in Section 2.6, we

discuss preliminary experiments to support our theoretical results.

31

Algorithm 1: Training a single hidden layer network with dropout
Input: Data {(xt, yt)}T−1

t=0 , dropout rate 1−θ, learning rate η
1: Initialize U0,V0
2: for t = 0, 1, . . . , T − 1 do
3: sample bt element-wise from Bernoulli(θ)
4: update the weights

Ut+1←Ut−η

(︃1
θ

Ut diag(bt)V⊤
t xt−yt

)︃
x⊤
t Vt diag(bt)

Vt+1←Vt−ηxt
(︃1

θ
x⊤
t Vt diag(bt)U⊤

t −y⊤
t

)︃
Ut diag(bt)

5: end for
Output: UT ,VT

2.1 Linear autoencoders with tied weights

We begin with a simpler hypothesis family of single hidden-layer linear auto-encoders

with weights tied such that U = V. Studying the problem in this setting helps our

intuition about the implicit bias that dropout induces on weight matrices U. This

analysis will be extended to the more general setting of single hidden-layer linear

networks in the next section.

Recall that the goal here is to find an autoencoder network represented by a weight

matrix U ∈ Rd0×r that solves:

min
U∈Rd0×r

Lθ(U,U) = L(U,U) + λ
r∑︂
i=1
∥ui∥4, (2.4)

where ui is the ith column of U. Note that the loss function L(U,U) is invariant under

rotations, i.e., for any orthogonal transformation Q ∈ Rd×d,Q⊤Q = QQ⊤ = Id, it

holds that

L(U,U) = Ex∼D[∥y− UQQ⊤U⊤x∥2] = L(UQ,UQ),

so that applying a rotation matrix to a candidate solution U does not change the value

of the loss function. However, the regularizer is not rotation-invariant and clearly

depends on the choice of Q. Therefore, in order to solve Problem (2.4), we need to

32

Algorithm 2: EQZ(U) equalizer of an auto-encoder hU,U

Input: U ∈ Rd×r

1: G← U⊤U
2: Q← Ir
3: for i = 1 to r do
4: [V,Λ]← eig(G) {G = VΛV⊤ eigendecomposition}
5: w = 1√

r−i+1
∑︁r−i+1
i=1 vi

6: Qi ← [w w⊥] {w⊥ ∈ R(r−i+1)×(r−i) orthonormal basis for the Null space of w}
7: G← Q⊤

i GQi {Making first diagonal element zero}
8: G← G(2 : end, 2 : end) {First principal submatrix}

9: Q← Q
[︄

Ii−1 0
0 Qi

]︄
10: end for
Output: Q {such that UQ is equalized}

find a rotation matrix that minimizes the value of the regularizer for a given weight

matrix.

To that end, let us denote the squared column norms of the weight matrix U by

nu = (∥u1∥2, . . . , ∥ur∥2) and let 1r ∈ Rr be the vector of all ones. Then, for any U,

R(U,U) = λ
r∑︂
i=1
∥ui∥4 = λ

r
∥1r∥2∥nu∥2

≥ λ

r
⟨1r, nu⟩2 = λ

r

(︄
r∑︂
i=1
∥ui∥2

)︄2

= λ

r
∥U∥4

F ,

where the inequality follows from Cauchy-Schwartz inequality. Hence, the regularizer

is lower bounded by λ
r
∥U∥4

F , with equality if and only if nu is parallel to 1r, i.e. when

all the columns of U have equal norms. Since the loss function is rotation invariant,

one can always decrease the value of the overall objective by rotating U such that UQ

has a smaller regularizer. A natural question to ask, therefore, is if there always exists

a rotation matrix Q such that the matrix UQ has equal column norms. In order to

formally address this question, we introduce the following definition.

Definition 1 (Equalized weight matrix, equalized autoencoder, equalizer). A weight

matrix U is said to be equalized if all its columns have equal norms. An autoencoder

with tied weights is said to be equalized if the norm of the incoming weight vector

33

λ = 0 λ = 0.6 λ = 2

Figure 2-1. Optimization landscape (top) and contour plot (bottom) for a single hidden-
layer linear autoencoder network with one dimensional input and output and a hidden layer
of width r = 2 with dropout, for different values of the regularization parameter λ. Left:
for λ = 0 the problem reduces to squared loss minimization, which is rotation invariant as
suggested by the level sets. Middle: for λ > 0 the global optima shrink toward the origin.
All local minima are global, and are equalized, i.e. the weights are parallel to the vector
(±1,±1). Right: as λ increases, global optima shrink further.

is equal across all hidden nodes in the network. An orthogonal transformation Q is

said to be an equalizer of U (equivalently, of the corresponding autoencoder) if UQ is

equalized.

Next, we show that any matrix U can be equalized.

Theorem 1. Any weight matrix U ∈ Rd×r (equivalently, the corresponding autoencoder

network hU,U) can be equalized. Furthermore, there exists a polynomial time algorithm

(Algorithm 2) that returns an equalizer for a given matrix.

The key insight here is that if GU := U⊤U is the Gram matrix associated with the

weight matrix U, then hU,U is equalized by Q if and only if all diagonal elements of

Q⊤GUQ are equal. More importantly, if GU = VΛV⊤ is an eigendecomposition of GU,

34

then for w = 1√
r

∑︁r
i=1 vi, it holds that w⊤GUw = Trace GU

r
; Proof of Theorem 1 uses

this property to recursively equalize all diagonal elements of GU.

Finally, we argue that the implicit bias induced by dropout is closely related to the

notion of equalized network introduced above. In particular, our main result of the

section states that the dropout enforces any globally optimal network to be equalized.

Formally, we show the following.

Theorem 2. If U is a global optimum of Problem 2.4, then U is equalized. Furthermore,

it holds that

R(U) = λ

r
∥U∥4

F .

Theorem 2 characterizes the effect of regularization induced by dropout in learning

autoencoders with tied weights. It states that for any globally optimal network, the

columns of the corresponding weight matrix have equal norms. In other words, dropout

tends to give equal weights to all hidden nodes – it shows that dropout implicitly

biases the optimal networks towards having hidden nodes with limited overall influence

rather than a few important ones.

While Theorem 2 makes explicit the bias of dropout and gives a necessary condition

for global optimality in terms of the weight matrix U∗, it does not characterize the

bias induced in terms of the network (i.e. in terms of U∗U⊤
∗). The following theorem

completes the characterization by describing globally optimal autoencoder networks.

Since the goal is to understand the implicit bias of dropout, we specify the global

optimum in terms of the true concept, M.

Theorem 3. For any j ∈ [r], let κj := 1
j

∑︁j
i=1 λi(M). Furthermore, define ρ :=

max{j ∈ [r] : λj(M) > λjκj
r+λj}. Then, if U∗ is a global optimum of Problem 2.4, it

satisfies that U∗U⊤
∗ = S λρκρ

r+λρ
(M).

We note that the global optimality result presented in Theorem 3 extends the

35

results in [CHL+18], which holds only for sufficiently large factorization size r. Detailed

comparisons are deferred to Section 2.4.

Remark 1. In light of Theorem 2, the proof of Theorem 3 entails solving the following

optimization problem

min
U∈Rd×r

L(U,U) + λ

r
∥U∥4

F , (2.5)

instead of Problem 2.4. This follows since the loss function L(U,U) is invariant under

rotations, hence a weight matrix U cannot be optimal if there exists a rotation matrix

Q such that R(UQ,UQ) < R(U,U). Now, while the objective in Problem 2.5 is a lower

bound on the objective in Problem 2.4, by Theorem 1, we know that any weight matrix

can be equalized. Thus, it follows that the minimum of the two problems coincide.

Although Problem 2.5 is still non-convex, it is easier to study owing to a simpler form

of the regularizer. Figure 2-1 shows how optimization landscape changes with different

dropout rates for a single hidden layer linear autoencoder with one dimensional input

and output and with a hidden layer of width two.

2.2 General Two-Layer Networks

Next, we consider the more general setting of a shallow linear network with a single

hidden layer. Recall, that the goal is to find weight matrices U,V that solve

min
U∈Rd2×r,V∈Rd0×r

L(U,V) + λ
r∑︂
i=1
∥ui∥2∥vi∥2. (2.6)

As in the previous section, we note that the loss function is rotation invariant, i.e.

L(UQ,VQ) = L(U,V) for any rotation matrix Q, however the regularizer is not

invariant to rotations. Furthermore, it is easy to verify that both the loss function

and the regularizer are invariant under rescaling of the incoming and outgoing weights

to hidden neurons.

Remark 2 (Rescaling invariance). The objective function in Problem (2.2) is invariant

under rescaling of weight matrices, i.e. invariant to transformations of the form

36

Ū = UD, V̄ = VD−1, where D is a diagonal matrix with positive entries. This

follows since ŪV̄⊤ = UDD−⊤V⊤ = UV⊤, so that L(Ū, V̄) = L(U,V), and also

R(Ū, V̄) = R(U,V) since
r∑︂
i=1
∥ūi∥2∥v̄i∥2 =

r∑︂
i=1
∥diui∥2∥ 1

di
vi∥2 =

r∑︂
i=1
∥ui∥2∥vi∥2.

As a result of rescaling invariance, Lθ(Ū, V̄) = Lθ(U,V). Now, following similar

arguments as in the previous section, we define nu,v = (∥u1∥∥v1∥, . . . , ∥ur∥∥vr∥), and

note that

R(U,V) = λ
r∑︂
i=1
∥ui∥2∥vi∥2 = λ

r
∥1r∥2∥nu,v∥2

≥ λ

r
⟨1r, nu,v⟩2 = λ

r

(︄
r∑︂
i=1
∥ui∥∥vi∥

)︄2

= λ

r

(︄
r∑︂
i=1
∥uiv⊤

i ∥∗

)︄2

≥ λ

r

(︄
∥

r∑︂
i=1

uiv⊤
i ∥∗

)︄2

= λ

r

(︂
∥UV⊤∥∗

)︂2
,

where the first inequality is due to Cauchy-Schwartz, the second inequality follows

from the triangle inequality, and the lower bound is achieved if and only if nu,v is

a scalar multiple of 1r and ∥ui∥∥vi∥ = 1
r
∥UV⊤∥∗ for all i ∈ [r]. This observation

motivates the following definition.

Definition 2 (Jointly equalized weight matrices, equalized linear networks). A pair

of weight matrices (U,V) ∈ Rd2×r × Rd0×r is said to be jointly equalized if ∥ui∥∥vi∥ =
1
r
∥UV⊤∥∗ for all i ∈ [r]. A single hidden-layer linear network is said to be equalized if

the product of the norms of the incoming and outgoing weights are equal for all hidden

nodes. Equivalently, a single hidden-layer network parametrized by weight matrices

U,V, is equalized if U,V are jointly equalized. An orthogonal transformation Q ∈ Rr×r

is an equalizer of a single hidden-layer network hU,V parametrized by weight matrices

U,V, if hUQ,VQ is equalized. The network hU,V (the pair(U,V)) then are said to be

jointly equalizable by Q.

37

Note that Theorem 1 only guarantees the existence of an equalizer for an au-

toencoder with tied weights. It does not inform us regarding the existence of a

rotation matrix that jointly equalizes a general network parameterized by a pair of

weight matrices (U,V); in fact, it is not true in general that any pair (U,V) is jointly

equalizable. Indeed, the general case requires a more careful treatment. It turns out

that while a given pair of matrices (U,V) may not be jointly equalizable there exists

a pair (Ũ, Ṽ) that is jointly equalizable and implements the same network function,

i.e. hŨ,Ṽ = hU,V. Formally, we state the following result.

Theorem 4. For any given pair of weight matrices (U,V) ∈ Rd2×r × Rd0×r, there

exists another pair (Ũ, Ṽ) ∈ Rd2×r × Rd0×r and a rotation matrix Q ∈ Rr×r such that

hŨ,Ṽ = hU,V and hŨ,Ṽ is jointly equalizable by Q. Furthermore, for Ū := ŨQ and

V̄ := ṼQ it holds that ∥ūi∥2 = ∥v̄i∥2 = 1
r
∥UV⊤∥∗ for i = 1, . . . , r.

Theorem 4 implies that for any network hU,V there exists an equalized network

hŪ,V̄ such that hŪ,V̄ = hU,V. Hence, it is always possible to reduce the objective by

equalizing the network, and a network hU,V is globally optimal only if it is equalized.

Theorem 5. If (U,V) is a global optimum of Problem 2.6, then U,V are jointly

equalized. Furthermore, it holds that

R(U,V) = λ

r

(︄
r∑︂
i=1
∥ui∥∥vi∥

)︄2

= λ

r
∥UV⊤∥2

∗

Remark 3. As in the case of autoencoders with tied weights in Section 2.1, a complete

characterization of the implicit bias of dropout is given by considering the global

optimality in terms of the network, i.e. in terms of the product of the weight matrices

UV⊤. Not surprisingly, even in the case of single hidden-layer networks, dropout

promotes sparsity, i.e. favors low-rank weight matrices.

Theorem 6. For any j ∈ [r], let κj := 1
j

∑︁j
i=1 λi(M). Furthermore, define ρ :=

max{j ∈ [r] : λj(M) > λjκj
r+λj}. Then, if (U∗,V∗) is a global optimum of Problem 2.6,

it satisfies that U∗V⊤
∗ = S λρκρ

r+λρ
(M).

38

2.3 The Optimization Landscape

While the focus in Section 2.1 and Section 2.2 was on understanding the implicit

bias of dropout in terms of the global optima of the resulting regularized learning

problem, here we focus on computational aspects of dropout as an optimization

procedure. Since dropout is a first-order method (see Algorithm 1) and the landscape

of Problem 2.4 is highly non-convex, we can perhaps only hope to find a local minimum,

that too provided if the problem has no degenerate saddle points [LSJR16, GHJY15].

Therefore, in this section, we pose the following questions: What is the implicit bias of

dropout in terms of local minima? Do local minima share anything with global minima

structurally or in terms of the objective? Can dropout find a local optimum?

For the sake of simplicity of analysis, we focus on the case of autoencoders with

tied weight as in Section 2.1. We show in Section 2.3.1 that (a) local minima of

Problem 2.4 inherit the same implicit bias as the global optima, i.e. all local minima

are equalized. Then, in Section 2.3.2, we show that for sufficiently small regularization

parameter, (b) there are no spurious local minima, i.e. all local minima are global,

and (c) all saddle points are non-degenerate (see Definition 3).

2.3.1 Implicit bias in local optima

We begin by recalling that the loss L(U,U) is rotation invariant, i.e. L(UQ,UQ) =

L(U,U) for any rotation matrix Q. Now, if the weight matrix U were not equalized,

then there exist indices i, j ∈ [r] such that ∥ui∥ > ∥uj∥. We show that it is easy to

design a rotation matrix (equal to identity everywhere expect for columns i and j) that

moves mass from ui to uj such that the difference in the norms of the corresponding

columns of UQ decreases strictly while leaving the norms of other columns invariant.

In other words, this rotation strictly reduces the regularizer and hence the objective.

Formally, this implies the following result.

39

Lemma 1. All local optima of Problem 2.4 are equalized, i.e. if U is a local optimum,

then ∥ui∥ = ∥uj∥ ∀i, j ∈ [r].

Lemma 1 unveils a fundamental property of dropout. As soon as we perform

dropout in the hidden layer – no matter how small the dropout rate – all local minima

become equalized.

2.3.2 Landscape properties

Next, we characterize the solutions to which dropout (i.e. Algorithm 1) converges.

We do so by understanding the optimization landscape of Problem 2.4. Central to our

analysis, is the following notion of strict saddle property.

Definition 3 (Strict saddle point/property). Let f : U → R be a twice differentiable

function and let U ∈ U be a critical point of f . Then, U is a strict saddle point of

f if the Hessian of f at U has at least one negative eigenvalue, i.e. λmin(∇2f(U)) < 0.

Furthermore, f satisfies strict saddle property if all saddle points of f are strict saddle.

Strict saddle property ensures that for any critical point U that is not a local

optimum, the Hessian has a significant negative eigenvalue which allows first order

methods such as gradient descent (GD) and stochastic gradient descent (SGD) to

escape saddle points and converge to a local minimum [LSJR16, GHJY15]. Following

this idea, there has been a flurry of works on studying the landscape of different machine

learning problems, including low rank matrix recovery [BNS16], generalized phase

retrieval problem [SQW16], matrix completion [GLM16], deep linear networks [Kaw16],

matrix sensing and robust PCA [GJZ17] and tensor decomposition [GHJY15], making

a case for global optimality of first order methods.

For the special case of no regularization (i.e. λ = 0; equivalently, no dropout),

Problem 2.4 reduces to standard squared loss minimization which has been shown

to have no spurious local minima and satisfy strict saddle property (see, e.g. [BH89,

40

λ = 0.1 λ = 0.5 λ = 1

Figure 2-2. Convergence of dropout (Algorithm 1) from two different initialization
(marked in red circles) to a global optimum of Problem 2.4 (marked in green circles), for
the simple case of scalar M (one dimensional input and output) and r = 2. It can be seen
that dropout quickly converges to a global optimum, which is equalized (i.e. weights are
parallel to (±1,±1)) regardless of the value of the regularization parameter, λ = 0.1 (left),
λ = 0.5 (middle) and λ = 1.0 (right).

JGN+17]). However, the regularizer induced by dropout can potentially introduce new

spurious local minima as well as degenerate saddle points. Our next result establishes

that that is not the case, at least when the dropout rate is sufficiently small.

Theorem 7. For regularization parameter λ < rλr(M)∑︁r

i=1 λi(M)−rλr(M) , (a) all local minima

of Problem 2.4 are global, and (b) all saddle points are strict saddle points.

A couple of remarks are in order. First, Theorem 7 guarantees that any critical

point U that is not a global optimum is a strict saddle point, i.e. ∇2f(U,U) has a

negative eigenvalue. This property allows first order methods, such as dropout given

in Algorithm 1, to escape such saddle points. Second, note that the guarantees in

Theorem 7 hold when the regularization parameter λ is sufficiently small. Assumptions

of this kind are common in the literature (see, for example [GJZ17]). While this is a

sufficient condition for the result in Theorem 7, it is not clear if it is necessary.

2.4 Matrix Factorization with Dropout

The optimization problem associated with learning a shallow network, i.e. Prob-

lem 2.6, is closely related to the optimization problem for matrix factorization. Recall

41

that in matrix factorization, given a matrix M ∈ Rd2×d0 , one seeks to find factors U,V

that minimize L(U,V) = ∥M−UV⊤∥2
F . Matrix factorization has recently been studied

with dropout by [ZZ15, HLL+16] and [CHL+18] where at each iteration of gradient

descent on the loss function, the columns of factors U,V are dropped independently

and with equal probability. Following [CHL+18], we can write the resulting problem

as

min
U∈Rd2×r,V∈Rd0×r

∥M− UV⊤∥2
F + λ

r∑︂
i=1
∥ui∥2∥vi∥2, (2.7)

which is identical to Problem 2.6. However, there are two key distinctions. First, we

are interested in stochastic optimization problem whereas the matrix factorization

problem is typically posed for a given matrix. Second, for the learning problem that

we consider here, it is unreasonable to assume access to the true model (i.e. matrix

M). Nonetheless, many of the insights we develop here as well as the technical results

and algorithmic contributions apply to matrix factorization. Therefore, the goal in

this section is to bring to bear the results in Sections 2.1, 2.2 and 2.3 to matrix

factorization.

We note that Theorem 6 and Theorem 4, both of which hold for matrix factorization,

imply that there is a polynomial time algorithm to solve the matrix factorization

problem. In order to find a global optimum of Problem 2.7, we first compute the

Algorithm 3: Polynomial time solver for Problem 2.7
Input: Matrix M ∈ Rd0×d0 to be factorized, regularization parameter λ

1: r ← Rank(M)
2: ρ← max{j ∈ [r] : λj(M) > λjκj

1+λj},
where κj = 1

j

∑︁j
i=1 λi(M) for j ∈ [r].

3: M̄← S λρκρ
1+λρ

(M)
4: (U,Σ,V)← svd(M̄)
5: Ũ← UΣ 1

2 , Ṽ← VΣ 1
2

6: Q← EQZ(Ũ) {Algorithm 2}
7: Ū← ŨQ, V̄← ṼQ

Output: Ū, V̄ {global optimum of Problem 2.7}

42

optimal M̄ = ŨṼ⊤ using shrinkage-thresholding operation (see Theorem 6). A global

optimum (Ū, V̄) is then obtained by joint equalization of (Ũ, Ṽ) (see Theorem 4) using

Algorithm 2. The whole procedure is described in Algorithm 3. Few remarks are in

order.

Remark 4 (Computational cost of Algorithm 3). It is easy to check that computing

ρ, M̄, Ũ and Ṽ requires computing a rank-r SVD of M, which costs O(d2r), where

d = max{d2, d0}. Algorithm 2 entails computing GU = U⊤U, which costs O(r2d) and

the cost of each iterate of Algorithm 2 is dominated by computing the eigendecomposition

which is O(r3). Overall, the computational cost of Algorithm 3 is O(d2r + dr2 + r4).

Remark 5 (Universal Equalizer). While Algorithm 2 is efficient (only linear in the

dimension) for any rank r, there is a more effective equalization procedure when r is a

power of 2. In this case, we can give a universal equalizer which works simultaneously

for all matrices in Rd×r. Let U ∈ Rd×r, r = 2k, k ∈ N and let U = WΣV⊤ be its full

SVD. The matrix Ũ = UQ is equalized, where Q = VZk and

Zk :=

⎧⎪⎪⎪⎨⎪⎪⎪⎩
1 k = 1

2−k+1
2

⎡⎣ Zk−1 Zk−1

−Zk−1 Zk−1

⎤⎦ k > 1
.

Finally, we note that Problem 2.7 is an instance of regularized matrix factorization

which has recently received considerable attention in the machine learning litera-

ture [GLM16, GJZ17, HV17]. These works show that the saddle points of a class of

regularized matrix factorization problems have certain “nice” properties (i.e. escape

directions characterized by negative curvature around saddle points) which allow

variants of first-order methods such as perturbed gradient descent [GHJY15, JGN+17]

to converge to a local optimum. Distinct from that line of research, we completely

characterize the set of global optima of Problem 2.7, and provide a polynomial time

algorithm to find a global optimum.

43

2.4.1 Comparison with Previous Work

The work most similar to the matrix factorization problem we consider in this section

is that of [CHL+18], with respect to which we make several important contributions:

1. [CHL+18] characterize optimal solutions only in terms of the product of the

factors, and not in terms of the factors themselves, whereas we provide globally

optimal solutions in terms of the factors;

2. [CHL+18] require the rank r of the desired factorization to be variable and above

some threshold, whereas we consider fixed rank-r factorization for any r;

3. [CHL+18] can only find low rank solutions using an adaptive dropout rate, which

is not how dropout is used in practice, whereas we consider any fixed dropout

rate;

4. We give an efficient polynomial time algorithm to find optimal factors.

2.5 Proofs

We first provide a proof for Lemma 2, which extracts the explicit regularizer.

Lemma 2. Let x ∈ Rd0 be distributed according to distribution D with Ex[xx⊤] = I.

Then, for L(U,V) := Ex[∥y− UV⊤x∥2] and Lθ(U,V) := Eb,x[∥y− 1
θ
U diag(b)V⊤x∥2],

it holds that

Lθ(U,V) = L(U,V) + λ
r∑︂
i=1
∥ui∥2∥vi∥2. (2.8)

Furthermore, L(U,V) = ∥M− UV⊤∥2
F .

Proof of Lemma 2. The proof closely follows [CHL+18]. Recall that y = Mx, for some

unknown M ∈ Rd0×d2 . Observe that

Lθ(U,V) = Ex[∥y∥2] + 1
θ2Eb,x[∥U diag(b)V⊤x∥2]

− 2
θ
Ex[⟨Mx,Eb[U diag(b)V⊤]x⟩] (2.9)

44

where we used the fact that y = Mx. We have the following set of equalities for the

second term on the right hand side of Equation (2.9):

Eb,x[∥U diag(b)V⊤x∥2] = Ex

d0∑︂
i=1

Eb

⎛⎝ r∑︂
j=1

uijbjv⊤
j x
⎞⎠2

= Ex

d0∑︂
i=1

Eb[
r∑︂

j,k=1
uijuikbjbk(v⊤

j x)(v⊤
k x)]

= Ex

d0∑︂
i=1

r∑︂
j,k=1

uijuik(θ21j ̸=k + θ1j=k)(v⊤
j x)(v⊤

k x)

= θ2Ex[∥UV⊤x∥2] + (θ − θ2)Ex

d0∑︂
i=1

r∑︂
j=1

u2
ij(v⊤

j x)2

= θ2Ex[∥UV⊤x∥2] + (θ − θ2)
r∑︂
j=1
∥vj∥2

d0∑︂
i=1

u2
ij

= θ2Ex[∥UV⊤x∥2] + (θ − θ2)
r∑︂
j=1
∥vj∥2∥uj∥2, (2.10)

where the second to last equality follows because Ex[(v⊤
j x)2] = v⊤

j Ex[xx⊤]vj = ∥vj∥2.

For the third term in Equation (2.9) we have:

⟨Mx,Eb[U diag(b)V⊤]x⟩ = θ⟨Mx,UV⊤x⟩ (2.11)

Plugging Equations (2.10) and (2.11) into (2.9), we get

Lθ(U,V) = Ex[∥y∥2] + Ex[∥UV⊤x∥2]− 2Ex⟨Mx,UV⊤x⟩

+ 1− θ
θ

r∑︂
i=1
∥ui∥2∥vi∥2 (2.12)

It is easy to check that the first three terms in Equation (2.12) sum to L(U,V).

Furthermore, since for any A ∈ Rd0×d2 it holds that ∥Ax∥2 = ∥A∥2
F , we should have

L(U,V) = ∥M− UV⊤∥2
F .

2.5.1 Proofs of Theorems in Section 2.1

Theorem 1 states that any weight matrix can be equalized. In the following, we

provide a constructive proof for this theorem, which is the basis of our analysis for

the main results of this section.

45

Proof of Theorem 1. Consider the matrix G1 := GU − Trace GU
r

Ir. We exhibit an

orthogonal transformation Q, such that Q⊤G1Q is zero on its diagonal. Observe that

Q⊤GUQ = Q⊤G1Q + Trace GU

r
Ir,

so that all diagonal elements of GU are equal to Trace GU
r

, i.e. GU is equalized.

Our construction closely follows the proof of a classical theorem in matrix analysis,

which states that any trace zero matrix is a commutator [AM57, Kah99]. For the

zero trace matrix G1, we first show that there exists a unit vector w11 such that

w⊤
11G1w11 = 0.

Claim 1. Assume G is a zero trace matrix and let G = ∑︁r
i=1 λiuiu⊤

i be an eigende-

composition of G. Then w = 1√
r

∑︁r
i=1 ui has a vanishing Rayleigh quotient, that is,

w⊤Gw = 0, and ∥w∥ = 1.

Proof of Claim 1. First, we notice that w has unit norm

∥w∥2 = ∥ 1√
r

r∑︂
i=1

ui∥2 = 1
r
∥

r∑︂
i=1

ui∥2 = 1
r

r∑︂
i=1
∥ui∥2 = 1.

It is easy to see that w has a zero Rayleigh quotient

w⊤Gw = (1√
r

r∑︂
i=1

ui)⊤G(1√
r

r∑︂
i=1

ui)

= 1
r

r∑︂
i,j=1

uiGuj = 1
r

r∑︂
i=1

λju⊤
i uj = 1

r

r∑︂
i=1

λi = 0.

Let W1 := [w11,w12, · · · ,w1d] be such that W⊤
1 W1 = W1W⊤

1 = Id. Observe that

W⊤
1 G1W1 has zero on its first diagonal elements

W⊤
1 G1W1 =

[︄
0 b⊤

1
b1 G2

]︄

The principal submatrix G2 also has a zero trace. With a similar argument, let w22 ∈

Rd−1 be such that ∥w22∥ = 1 and w⊤
22G2w22 = 0 and define W2 =

[︄
1 0 0 · · · 0
0 w22 w23 · · · w2d

]︄
∈

46

Rd×d such that W⊤
2 W2 = W2W⊤

2 = Id, and observe that

(W1W2)⊤G1(W1W2) =

⎡⎢⎢⎣
0 · · · ·
· 0 · · ·
... ... G2

⎤⎥⎥⎦ .
This procedure can be applied recursively so that for the equalizer Q = W1W2 · · ·Wd

we have

Q⊤G1Q =

⎡⎢⎢⎢⎢⎣
0 · · · · ·
· 0 · · · ·
...
· · · 0

⎤⎥⎥⎥⎥⎦ .

Proof of Theorem 2. Let us denote the squared column norms of U by nu = (∥u1∥2, . . . , ∥ur∥2).

Observe that for any weight matrix U:

R(U,U) = λ
r∑︂
i=1
∥ui∥4 = λ

r
∥1r∥2∥nu∥2

≥ λ

r
⟨1r, nu⟩2 = λ

r

(︄
r∑︂
i=1
∥ui∥2

)︄2

= λ

r
∥U∥4

F ,

where 1r ∈ Rr is the vector of all ones and the inequality is due to Cauchy-Schwartz.

Hence, the regularizer is lower bounded by λ
r
∥U∥4

F , with equality if and only if nu

is parallel to 1r, i.e. when U is equalized. Now, if U is not equalized, by Theo-

rem 1 there exist a rotation matrix Q such that UQ is equalized, which implies

R(UQ,UQ) < R(U,U). Together with rotational invariance of the loss function, this

gives a contradiction with global optimality U. Hence, if U is a global optimum then

it is equalized and we have R(U,U) = λ
∑︁r
i=1 ∥ui∥4 = λ

r
∥U∥4

F .

If a weight matrix W minimizes the dropout objective, then it should also minimize

the explicit regularizer over all weight matrices U such that WW⊤ = UU⊤. In light of

Theorem 1, we can characterize such weight matrices, which is the key idea in the

proof of Theorem 3.

47

Proof of Theorem 3. By Theorem 2, if W is an optimum of Problem 2.4, then it holds

that λ∑︁r
i=1 ∥wi∥4 = λ

r
∥W∥4

F . Also, by Theorem 1, it is always possible to equalize

any given weight matrix. Hence, Problem 2.4 reduces to the following problem:

min
W∈Rd×r

∥M−WW⊤∥2
F + λ

r
∥W∥4

F (2.13)

Let M = UMΛMU⊤
M and W = UWΣWV⊤

W be an eigendecomposition of M and a full

SVD of W respectively, such that λi(M) ≥ λi+1(M) and σi(W) ≥ σi+1(W) for all

i ∈ [d − 1]. Rewriting objective of Problem 2.13 in terms of these decompositions

gives:

∥M−WW⊤∥2
F + λ

r
∥W∥4

F

= ∥UMΛMU⊤
M − UWΣWΣ⊤

WU⊤
W∥2

F + λ

r
∥UWΣWV⊤

W∥4
F

= ∥ΛM − U′ΣWΣ⊤
WU′⊤∥2

F + λ

r
∥ΣW∥4

F

= ∥ΛM∥2
F + ∥ΛW∥2

F − 2⟨ΛM,U′ΛWU′⊤⟩+ λ

r
(Trace(ΛW))2

where ΛW := ΣWΣ⊤
W and U′ = U⊤

MUW. By Von Neumann’s trace inequality, for a

fixed ΣW we have that

⟨ΛM,U′ΛWU′⊤⟩ ≤
d∑︂
i=1

λi(M)λi(W),

where the equality is achieved when Λi(W) have the same ordering as Λi(M) and

U′ = I, i.e. UM = UW. Now, Problem 2.13 is reduced to

min
∥ΛW∥0≤r,

ΛW≥0

∥ΛM − ΛW∥2
F + λ

r
(Trace(ΛW))2

= min
λ̄∈Rr+

r∑︂
i=1

(︂
λi(M)− λ̄i

)︂2
+

d∑︂
i=r+1

λ2
i (M)+λ

r

(︄
r∑︂
i=1

λ̄i

)︄2

The Lagrangian is given by

L(λ̄, α) =
r∑︂
i=1

(︂
λi(M)− λ̄i

)︂2
+

d∑︂
i=r+1

λ2
i (M)

+ λ

r

(︄
r∑︂
i=1

λ̄i

)︄2

−
r∑︂
i=1

αiλ̄i

48

The KKT conditions ensures that at the optima it holds for all i ∈ [r] that

λ̄i ≥ 0, αi ≥ 0, λ̄iαi = 0

2(λ̄i − λi(M)) + 2λ
r

(︄
r∑︂
i=1

λ̄i

)︄
− αi = 0

Let ρ = |i : λ̄i > 0| ≤ r be the number of nonzero λ̄i. For i = 1, . . . , ρ we have αi = 0,

hence

λ̄i + λ

r

(︄ ρ∑︂
i=1

λ̄i

)︄
= λi(M)

=⇒ (Iρ + λ

r
11⊤)λ̄1:ρ = λ1:ρ(M)

=⇒ λ̄1:ρ = (Iρ −
λ

r + λρ
11⊤)λ1:ρ(M)

=⇒ λ̄1:ρ = λ1:ρ(M)− λρκρ
r + λρ

1ρ

=⇒ ΛW = (ΛM −
λρκρ
r + λρ

Id)+

where κρ := 1
ρ

∑︁ρ
i=1 λi(M) and the second implication is due to Lemma 20. It only

remains to find the optimal ρ. Let’s define the function

g(ρ) :=
ρ∑︂
i=1

(︂
λi(M)− λ̄i

)︂2
+

d∑︂
i=ρ+1

λ2
i (M) + λ

r

(︄ ρ∑︂
i=1

λ̄i

)︄2

=
ρ∑︂
i=1

(︄
λ
∑︁ρ
k=1 λk(M)
r + λρ

)︄2

+
d∑︂

i=ρ+1
λi(M)2

+ λ

r

(︄ ρ∑︂
i=1

(︄
λi(M)− λ

∑︁ρ
k=1 λk(M)
r + λρ

)︄)︄2

.

By Lemma 21, g(ρ) is monotonically non-increasing in ρ, hence ρ should be the

largest feasible integer, i.e.

ρ = max{j : λj >
λjκ

r + λj
}.

We conclude this section by a proof of Remark 5, which gives a universal equalizer

when r is a power of 2.

49

Proof of Remark 5. For Ũ to have equal column norms, it suffices to show that Ũ⊤Ũ

is constant on its diagonal. Next, we note that

Ũ⊤Ũ = Q⊤U⊤UQ

= (VZk)⊤(WΣV⊤)⊤(WΣV⊤)(VZk)

= Z⊤
k V⊤VΣW⊤WΣV⊤VZk

= Z⊤
k Σ2Zk

It remains to show that for any diagonal matrix D, Z⊤
k DZk is diagonalized. First note

that

Z2Z⊤
2 = 1

2

[︄
1 1
−1 1

]︄ [︄
1 −1
1 1

]︄
= I2

so that Z2 is indeed a rotation. By induction, it is easy to see that Zk is a rotation for

all k. Now, we show that Zk equalizes any diagonal matrix D. Observe that

[Z⊤
k DZk]ii =

2k−1∑︂
i=1

Diiz
2
ji =

2k−1∑︂
i=1

Dii2−k+1 = 21−kTrace D

so that all the diagonal elements are identically equal to the average of the diagonal

elements of D.

2.5.2 Proofs of Theorems in Section 2.2

In this section we prove the main optimality results in the general case of two-layer

linear networks.

Proof of Theorem 4. Let UV⊤ = WΣY⊤ be a compact SVD of UV⊤. Define Ũ :=

WΣ1/2 and Ṽ := YΣ1/2 and observe that ŨṼ⊤ = UV⊤. Furthermore, let GŪ = Ũ⊤Ũ

and GṼ = Ṽ⊤Ṽ be their Gram matrices. Observe that GŨ = GṼ = Σ. Hence, by

Theorem 1, there exists a rotation Q such that V̄ := ṼQ and Ū := ŨQ are equalized,

with ∥ūi∥2 = ∥v̄i∥2 = 1
r

Trace Σ.

50

Proof of Theorem 5. Define

nu,v = (∥u1∥∥v1∥, . . . , ∥ur∥∥vr∥)

and observe that

R(U,V) = λ
r∑︂
i=1
∥ui∥2∥vi∥2

= λ

r
∥nu,v∥2∥1r∥2 ≥ λ

r
⟨nu,v, 1r⟩2

= λ

r

(︄
r∑︂
i=1
∥ui∥∥vi∥

)︄2

(2.14)

= λ

r

(︄
r∑︂
i=1
∥uiv⊤

i ∥∗

)︄2

≥ λ

r

(︄
∥

r∑︂
i=1

uiv⊤
i ∥∗

)︄2

= λ

r
∥UV⊤∥2

∗ (2.15)

where the first inequality is due to Cauchy-Schwartz, and it holds with equality if

and only if nu,v is parallel to 1r. The second inequality is a simple application of the

triangle inequality. Let (Ū, V̄) be a global optima of Problem 2.6. The inequality

above together with Theorem 4 imply that Ū and V̄ should be jointly equalized up to

dilation transformations, hence the first equality claimed by the theorem.

To see the second equality, note that if U and V are jointly equalized, then

∥ui∥2 = ∥vi∥2 = 1
r

Trace Σ,

where Σ is the matrix of singular values of UV⊤. Hence,

R(U,V) = λ

r

(︄
r∑︂
i=1
∥ui∥∥vi∥

)︄2

= λ

r

(︄
1
r

r∑︂
i=1

Trace Σ
)︄2

= λ

r
(Trace Σ)2

which is equal to λ
r
∥ŪV̄⊤∥2

∗ as claimed.

51

Proof of Theorem 6. By Theorem 5, if (X,Y) is an optimum of Problem 2.6, then it

holds that

λ
r∑︂
i=1
∥xi∥2∥yi∥2 = λ

r
∥XY⊤∥2

∗.

Hence, Problem 2.6 reduces to the following problem:

min
X∈Rd2×r,Y∈Rd0×r

∥M− XY⊤∥2
F + λ

r
∥XY⊤∥2

∗ (2.16)

Let M = UMΣMV⊤
M and W := XY⊤ = UWΣWV⊤

W be full SVDs of M and W respectively,

such that σi(M) ≥ σi+1(M) and σi(W) ≥ σi+1(W) for all i ∈ [d − 1] where d =

min{d2, d0}. Rewriting objective of Problem 2.16 in terms of these decompositions,

∥M− XY⊤∥2
F + λ

r
∥XY⊤∥2

∗

= ∥UMΣMV⊤
M − UWΣWV⊤

W∥2
F + λ

r
∥UWΣWV⊤

W∥2
∗

= ∥ΣM − U′ΣWV′⊤∥2
F + λ

r
∥ΣW∥2

∗

= ∥ΣM∥2
F + ∥ΣW∥2

F − 2⟨ΣM,U′ΣWU′⊤⟩+ λ

r
∥ΣW∥2

∗

where U′ = U⊤
MUW. By Von Neumann’s trace inequality, for a fixed ΣW we have that

⟨ΣM,U′ΣWU′⊤⟩ ≤ ∑︁d
i=1 σi(M)σi(W), where the equality is achieved when Σi(W) have

the same ordering as Σi(M) and U′ = I, i.e. UM = UW. Now, Problem 2.16 is reduced

to

min
∥ΣW∥0≤r,

ΣW≥0

∥ΣM − ΣW∥2
F + λ

r
∥ΣW∥2

∗

= min
σ̄∈Rr+

r∑︂
i=1

(σi(M)− σ̄i)2 +
d∑︂

i=r+1
σ2
i (M) + λ

r

(︄
r∑︂
i=1

σ̄i

)︄2

The Lagrangian is given by

L(λ̄, α) =
r∑︂
i=1

(σi(M)− σ̄i)2 +
d∑︂

i=r+1
σ2
i (M)

+ λ

r

(︄
r∑︂
i=1

σ̄i

)︄2

−
r∑︂
i=1

αiσ̄i

52

The KKT conditions ensures that ∀i = 1, . . . , r,

σ̄i ≥ 0, αi ≥ 0, σ̄iαi = 0

2(σ̄i − σi(M)) + 2λ
r

(︄
r∑︂
i=1

σ̄i

)︄
− αi = 0

Let ρ = |i : σ̄i > 0| ≤ r be the number of nonzero σ̄i. For i = 1, . . . , ρ we have αi = 0,

hence

σ̄i + λ

r

(︄ ρ∑︂
i=1

σ̄i

)︄
= σi(M)

=⇒ (Iρ + λ

r
11⊤)σ̄1:ρ = σ1:ρ(M)

=⇒ σ̄1:ρ = (Iρ −
λ

r + λρ
11⊤)σ1:ρ(M)

=⇒ σ̄1:ρ = σ1:ρ(M)− λρκρ
r + λρ

1ρ

=⇒ ΣW = (ΣM −
λρκρ
r + λρ

Id)+

where κρ = 1
ρ

∑︁ρ
i=1 σi(M) and the second implication holds since (Iρ + λ

r
11⊤)−1 =

Iρ − λ
r+λρ11⊤. It only remains to find the optimal ρ. Let’s define the function

g(ρ) :=
ρ∑︂
i=1

(σi(M)− σ̄i)2+
d∑︂

i=ρ+1
σ2
i (M) + λ

r

(︄ ρ∑︂
i=1

σ̄i

)︄2

=
ρ∑︂
i=1

(︄
λ
∑︁ρ
k=1 σk(M)
r + λρ

)︄2

+
d∑︂

i=ρ+1
σi(M)2

+ λ

r

(︄ ρ∑︂
i=1

(︄
σi(M)− λ

∑︁ρ
k=1 σk(M)
r + λρ

)︄)︄2

.

By Lemma 21, g(ρ) is monotonically non-increasing in ρ, hence ρ should be the

largest feasible integer, i.e.

ρ = max{j : σj >
λjκj
r + λj

}.

2.5.3 Proofs of Theorems in Sections 2.3

In this section for ease of notation we let λi denote λi(M). Furthermore, with slight

abuse of notation we let f(U), ℓ(U) and R(U) denote the objective, the loss function

53

and the regularizer, respectively.

It is easy to see that the gradient of the objective of Problem 2.4 is given by

∇f(U) = 4(UU⊤ −M)U + 4λU diag(U⊤U).

We first make the following important observation about the critical points of Prob-

lem 2.4.

Lemma 3. If U is a critical point of Problem 2.4, then it holds that UU⊤ ⪯ M.

Proof of Lemma 3. Since ∇f(U) = 0, we have that

(M− UU⊤)U = λU diag(U⊤U)

multiply both sides from right by U⊤ and rearrange to get

MUU⊤ = UU⊤UU⊤ + λU diag(U⊤U)U⊤ (2.17)

Note that the right hand side is symmetric, which implies that the left hand side must

be symmetric as well, i.e.

MUU⊤ = (MUU⊤)⊤ = UU⊤M,

so that M and UU⊤ commute. Note that in Equation (2.17), U diag(U⊤U)U⊤ ⪰ 0.

Thus, MUU⊤ ⪰ UU⊤UU⊤. Let UU⊤ = WΓW⊤ be a compact eigendecomposition of

UU⊤. We get

MUU⊤ = MWΓW⊤ ⪰ UU⊤UU⊤ = WΓ2W⊤.

Multiplying from right and left by WΓ−1 and W⊤ respectively, we have that

W⊤MW ⪰ Γ

which completes the proof.

54

Lemma 3 allows us to bound different norms of the critical points, as will be seen

later in the proofs.

To explore the landscape properties of Problem 2.4, we first focus on the non-

equalized critical points in Lemma 4. We show that the set of non-equalized critical

points does not include any local optima. Furthermore, all such points are strict

saddles. Therefore, we turn our focus to the equalized critical points in Lemma 5. We

show all such points inherit the eigenspace of the input matrix M. This allows us to

give a closed-form characterization of all the equalized critical points in terms of the

eigendecompostion of M. We then show that if λ is chosen appropriately, all such

critical points that are not global optima, are strict saddle points.

Lemma 4. All local minima of Problem 2.4 are equalized. Moreover, all critical points

that are not equalized, are strict saddle points.

Proof of Lemma 4. We show that if U is not equalized, then any ϵ-neighborhood of

U contains a point with objective strictly smaller than f(U). More formally, for any

ϵ > 0, we exhibit a rotation Qϵ such that ∥U−UQϵ∥F ≤ ϵ and f(UQϵ) < f(U). Let U

be a critical point of Problem 2.4 that is not equalized, i.e. there exists two columns

of U with different norms. Without loss of generality, let ∥u1∥ > ∥u2∥. We design a

rotation matrix Q such that it is almost an isometry, but it moves mass from u1 to

u2. Consequently, the new factor becomes “less un-equalized” and achieves a smaller

regularizer, while preserving the value of the loss. To that end, define

Qδ :=

⎡⎢⎣
√

1− δ2 −δ 0
δ

√
1− δ2 0

0 0 Ir−2

⎤⎥⎦
and let ˆ︁U := UQδ. It is easy to verify that Qϵ is indeed a rotation. First, we show that

55

for any ϵ, as long as δ2 ≤ ϵ2

2 Trace(M) , we have ˆ︁U ∈ Bϵ(U):

∥U− ˆ︁U∥2
F =

r∑︂
i=1
∥ui − ˆ︁ui∥2

= ∥u1 −
√

1− δ2u1 − δu2 ∥2

+ ∥u2 −
√

1− δ2u2 + δu1 ∥2

= 2(1−
√

1− δ2)(∥u1∥2 + ∥u2∥2)

≤ 2δ2 Trace(M) ≤ ϵ2

where the second to last inequality follows from Lemma 3, because ∥u1∥2 + ∥u2∥2 ≤

∥U∥2
F = Trace(UU⊤) ≤ Trace(M), and also the fact that 1−

√
1− δ2 = 1−1+δ2

1+
√

1−δ2 ≤ δ2.

Next, we show that for small enough δ, the value of the function at ˆ︁U is strictly

smaller than that of U. Observe that

∥ˆ︁u1∥2 = (1− δ2)∥u1∥2 + δ2∥u2∥2 + 2δ
√

1− δ2u⊤
1 u2

∥ˆ︁u2∥2 = (1− δ2)∥u2∥2 + δ2∥u1∥2 − 2δ
√

1− δ2u⊤
1 u2

and the remaining columns will not change, i.e. for i = 3, · · · , r, ˆ︁ui = ui. Together

with the fact that Qδ preserves the norms, i.e. ∥U∥F = ∥UQδ∥F , we get

∥ˆ︁u1∥2 + ∥ˆ︁u2∥2 = ∥u1∥2 + ∥u2∥2. (2.18)

Let δ = −c · sgn(u⊤
1 u2) for a small enough c > 0 such that ∥u2∥ < ∥ˆ︁u2∥ ≤ ∥ˆ︁u1∥ < ∥u1∥.

Using Equation (2.18), This implies that ∥ˆ︁u1∥4 +∥ˆ︁u2∥4 < ∥u1∥4 +∥u2∥4, which in turn

gives us R(ˆ︁U) < R(U) and hence f(ˆ︁U) < f(U). Therefore, a non-equalized critical

point cannot be local minimum, hence the first claim of the lemma.

We now prove the second part of the lemma. Let U be a critical point that is

not equalized. To show that U is a strict saddle point, it suffices to show that the

Hessian has a negative eigenvalue. In here, we exhibit a curve along which the second

directional derivative is negative. Assume, without loss of generality that ∥u1∥ > ∥u2∥

and consider the curve

∆(t) :=[(
√

1−t2−1)u1+tu2, (
√

1−t2−1)u2−tu1, 0d,r−2]

56

It is easy to check that for any t ∈ R, ℓ(U + ∆(t)) = ℓ(U) since U + ∆(t) is essentially

a rotation on U and ℓ is invariant under rotations. Observe that

g(t) := f(U + ∆(t))

= f(U) + ∥
√

1− t2u1 + tu2∥4 − ∥u1∥4

+ ∥
√

1− t2u2 − tu1∥4 − ∥u2∥4

= f(U)− 2t2(∥u1∥4 + ∥u2∥4) + 8t2(u1u2)2

+4t2∥u1∥2∥u2∥2+4t
√

1−t2u⊤
1u2(∥u1∥2−∥u2∥2)+O(t3).

The derivative of g then is given as

g′(t)=−4t(∥u1∥4+∥u2∥4)+16t(u1u2)2+8t∥u1∥2∥u2∥2

+4(
√

1−t2 − t2√
1−t2

)(u⊤
1u2)(∥u1∥2− ∥u2∥2) +O(t2).

Since U is a critical point and f is continuously differentiable, it should hold that

g′(0) = 4(u⊤
1 u2)(∥u1∥2−∥u2∥2) = 0. Since by assumption ∥u1∥2−∥u2∥2 > 0, it should

be the case that u⊤
1 u2 = 0. We now consider the second order directional derivative:

g′′(0) = −4(∥u1∥4 + ∥u2∥4) + 16(u1u2)2 + 8∥u1∥2∥u2∥2

= −4(∥u1∥2 − ∥u2∥2)2 < 0

which completes the proof.

We now focus on the critical points that are equalized, i.e. points U such that

∇f(U) = 0 and diag(U⊤U) = ∥U∥2
F

r
I.

Lemma 5. Assume that λ < rλr∑︁r

i=1 λi−rλr
. Then all equalized local minima are global.

All other equalized critical points are strict saddle points.

Proof of Lemma 5. Let U = WΣV⊤ be a compact SVD of the rank-r′ weight matrix

57

U. We have:

∇f(U) = 4(UU⊤ −M)U + 4λU diag(U⊤U) = 0

=⇒ UU⊤U + λ∥U∥2
F

r
U = MU

=⇒WΣ3V⊤ + λ∥Σ∥2
F

r
WΣV⊤ = MWΣV⊤

=⇒ Σ2 + λ∥Σ∥2
F

r
I = W⊤MW

Since the left hand side of the above equality is diagonal, it implies that W ∈ Rd×r′

corresponds to some r′ eigenvectors of M. Let E ⊆ [d], |E| = r′ denote the set of

eigenvectors of M that are present in W. Note that the above is equivalent of the

following system of linear equations:

(I + λ

r
11⊤)σ2 = λ⃗,

where σ2 := diag(Σ2) and λ⃗ = diag(W⊤MW). By Lemma 20, the solution to this

linear system is given by

σ2 = (I− λ

r + λr′)λ⃗. (2.19)

The set E belongs to one of the following categories:

1. E = [r′], r′ = ρ

2. E = [r′], r′ < ρ

3. E ̸= [r′]

The case E = [r′], r′ > ρ is excluded from the above partition, since whenever E = [r′],

it should hold that r′ ≤ ρ. To see this, note that due to U = WΣV⊤ being a compact

SVD of M, it holds that σj > 0 for all j ∈ [r′]. Specifically for j = r′, plugging σr′ > 0

back to Equation (2.19), we get

λr′ >
λ
∑︁r′

i=1 λi
r + λr′ = λr′κr′

r + λr′ .

58

Then it follows from definition of ρ in Theorem 3 that r′ ≤ ρ. We provide a case by

case analysis for the above partition here.

Case 1. [E = [r′], r′ = ρ] When W corresponds to the top-ρ eigenvectors of M,

we retrieve the global optimal solution described by Theorem 3. Therefore, all such

critical points are global minima.

Case 2. [E = [r′], r′ < ρ] Let Wr := [W,W⊥] be the top-r eigenvectors of M and

V⊥ span the orthogonal subspace of V, i.e. Vr := [V,V⊥] be an orthonormal basis for

Rr. Define U(t) = WrΣ′V⊤
r where σ′

i =
√︂
σ2
i + t2 for i ≤ r. Observe that

U(t)⊤U(t) = VΣV⊤ + t2V⊤
r Vr = U⊤U + t2Ir

so that for all t, the parametric curve U(t) is equalized. The value of the loss function

at U(t) is given by:

ℓ(U(t)) =
r∑︂
i=1

(λi − σ2
i − t2)2 +

d∑︂
i=r+1

(λi)2

= ℓ(U) + rt4 − 2t2
r∑︂
i=1

(λi − σ2
i).

Furthermore, since U(t) is equalized, we obtain the following form for the regularizer:

R(U(t)) = λ

r
∥U(t)∥4

F = λ

r

(︂
∥U∥2

F + rt2
)︂2

= ℓ(U) + λrt4 + 2λt2∥U∥2
F .

Now define g(t) := ℓ(U(t)) +R(U(t)) and observe

g(t) = ℓ(U) +R(U) + rt4 − 2t2
r∑︂
i=1

(λi − σ2
i)

+ λrt4 + 2λt2∥U∥2
F .

It is easy to verify that g′(0) = 0. Moreover, the second derivative of g at the origin is

59

given as:

g′′(0) = −4
r∑︂
i=1

(λi − σ2
i) + 4λ∥U∥2

F

= −4
r∑︂
i=1

λi + 4(1 + λ)∥U∥2
F

= −4
r∑︂
i=1

λi + 4 r + rλ

r + λr′

r′∑︂
i=1

λi

where the last equality follows from the fact Equation (2.19) and the fact that

∥U∥2
F = ∑︁r′

i=1 σ
2
i . To get a sufficient condition for U to be a strict saddle point, we set

g′′(0) < 0:

− 4
r∑︂

i=r′+1
λi + 4(r − r′)λ

r + λr′

r′∑︂
i=1

λi < 0

=⇒ (r − r′)λ
r + λr′

r′∑︂
i=1

λi <
r∑︂

i=r′+1
λi

=⇒ λ <
(r + λr′)∑︁r

i=r′+1 λi

(r − r′)∑︁r′
i=1 λi

=⇒ λ(1− r′∑︁r
i=r′+1 λi

(r − r′)∑︁r′
i=1 λi

) < r
∑︁r
i=r′+1 λi

(r − r′)∑︁r′
i=1 λi

=⇒ λ <
r
∑︁r
i=r′+1 λi

(r − r′)∑︁r′
i=1 λi − r′∑︁r

i=r′+1 λi

=⇒ λ <
rh(r′)∑︁r′

i=1 (λi − h(r′))

where h(r′) :=
∑︁r

i=r′+1 λi

r−r′ is the average of the eigenvalues λr′+1, · · · , λr. It is easy to see

that the right hand side is monotonically decreasing with r′, since h(r′) monotonically

decrease with r′. Hence, it suffices to make sure that λ is smaller than the right hand

side for the choice of r′ = r − 1, i.e. λ < rλr∑︁r

i=1(λi−λr) .

Case 3. [E ≠ [r′]] We show that all such critical points are strict saddle points. Let

w′ be one of the top r′ eigenvectors that are missing in W. Let j ∈ E be such that wj

is not among the top r′ eigenvectors of M. For any t ∈ [0, 1], let W(t) be identical

to W in all the columns but the jth one, where wj(t) =
√

1− t2wj + tw′. Note that

W(t) is still an orthogonal matrix for all values of t. Define the parametrized curve

60

U(t) := W(t)ΣV⊤ for t ∈ [0, 1] and observe that:

∥U− U(t)∥2
F = σ2

j∥wj − wj(t)∥2

= 2σ2
j (1−

√
1− t2) ≤ t2 Trace M

That is, for any ϵ > 0, there exist a t > 0 such that U(t) belongs to the ϵ-ball around

U. We show that f(U(t)) is strictly smaller than f(U), which means U cannot be a

local minimum. Note that this construction of U(t) guarantees that R(U′) = R(U).

In particular, it is easy to see that U(t)⊤U(t) = U⊤U, so that U(t) remains equalized

for all values of t. Moreover, we have that

f(U(t))− f(U) = ∥M− U(t)U(t)⊤∥2
F − ∥M− UU⊤∥2

F

= −2 Trace(Σ2W(t)⊤MW(t)) + 2 Trace(Σ2W⊤MW)

= −2σ2
j t

2(wj(t)⊤Mwj(t)− w⊤
j Mwj) < 0,

where the last inequality follows because by construction wj(t)⊤Mwj(t) > w⊤
j Mwj.

Define g(t) := f(U(t)) = ℓ(U(t)) + R(U(t)). To see that such saddle points are

non-degenerate, it suffices to show g′′(0) < 0. It is easy to check that the second

directional derivative at the origin is given by

g′′(0) = −4σ2
j (wj(t)⊤Mwj(t)− w⊤

j Mwj) < 0,

which completes the proof.

Proof of Lemma 1. Follows from Lemma 4

Proof of Theorem 7. Follows from Lemma 4 and Lemma 5.

2.6 Empirical Results

Dropout is a popular algorithmic technique used for avoiding overfitting when training

large deep neural networks. The goal of this section is not to attest to the already

61

λ = 1 λ = 0.5 λ = 0.1 equalization

100 101 102 103 104 105

Iteration

5

10

15

20

O
bj

ec
tiv

e

Dropout
Truth

100 101 102 103 104 105

Iteration

5

10

15

O
bj

ec
tiv

e

100 101 102 103 104 105

Iteration

2

5

10

15

O
bj

ec
tiv

e

100 101 102 103 104 105

Iteration

10-4

10-3

10-2

10-1

100

V
ar

 o
f i

m
po

rt
an

ce
 s

co
re

s

=0.1
=0.5
=1

100 101 102 103 104 105

Iteration

2

5

10

15

20

O
bj

ec
tiv

e

100 101 102 103 104 105

Iteration

1

2

5

10

15

O
bj

ec
tiv

e

100 101 102 103 104 105

Iteration

1

2

5

10

15

O
bj

ec
tiv

e

100 101 102 103 104 105

Iteration

10-5

10-4

10-3

10-2

10-1

V
ar

 o
f i

m
po

rt
an

ce
 s

co
re

s

Figure 2-3. Dropout converges to global optima for different values of λ ∈ {0.1, 0.5, 1}
and different widths of the hidden layer r = 20 (top) and r = 80 (bottom). The right
column shows the variance of the product of column-wise norms for each of the weight
matrices. As can be seen, the weight matrices become equalized very quickly since variance
goes to zero.

well-established success of dropout. Instead, the purpose of this section is to simply

confirm the theoretical results we showed in the previous section, as a proof of concept.

We begin with a toy example in order to visually illustrate the optimization

landscape. We use dropout to learn a simple linear auto-encoder with one-dimensional

input and output (i.e. a network represented by a scalar M = 2) and a single hidden

layer of width r = 2. The input features are sampled for a standard normal distribution.

Figure 2-2 shows the optimization landscape along with the contours of the level sets,

and a trace of iterates of dropout (Algorithm 1). The initial iterates and global optima

(given by Theorem 3) are shown by red and green dots, respectively. Since at any

global optimum the weights are equalized, the optimal weight vector in this case is

parallel to the vector (±1,±1). We see that dropout converges to a global minimum.

For a second illustrative experiment, we use Algorithm 1 to train a shallow linear

network, where the input x ∈ R80 is distributed according to the standard Normal

distribution. The output y ∈ R120 is generated as y = Mx, where M ∈ R120×80 is

drawn randomly by uniformly sampling the right and left singular subspaces and with

62

a spectrum decaying exponentially. Figure 2-3 illustrates the behavior of Algorithm 1

for different values of the regularization parameter (λ ∈ {0.1, 0.5, 1}), and for different

sizes of factors (r ∈ {20, 80}). The curve in blue shows the objective value for the

iterates of dropout, and the line in red shows the optimal value of the objective

(i.e. objective for a global optimum found using Theorem 6). All plots are averaged

over 50 runs of Algorithm 1 (averaged over different random initializations, random

realizations of Bernoulli dropout, as well as random draws of training examples).

To verify that the solution found by dropout actually has equalized factors, we

consider the following measure. At each iteration, we compute the “importance

scores”, α(i)
t = ∥uti∥∥vti∥, i ∈ [r], where uti and vti are the i-th columns of Ut and Vt,

respectively. The rightmost panel of Figure 2-3 shows the variance of α(i)
t ’s, over the

hidden nodes i ∈ [r], at each iterate t. Note that a high variance in αt corresponds

to large variation in the values of ∥uti∥∥vti∥. When the variance is equal to zero, all

importance scores are equal, thus the factors are equalized. We see that iterations of

Algorithm 1 decrease this measure monotonically, and the larger the value of λ, the

faster the weights become equalized.

2.7 Discussion

In this chapter, we study the inductive bias of dropout in shallow linear networks.

We show that dropout prefers solutions with minimal path regularization which yield

strong capacity control guarantees in deep learning. Despite being a non-convex

optimization problem, we are able to fully characterize the global optima of the

dropout objective. Our analysis shows that dropout favors low-rank weight matrices

that are equalized. This theoretical finding confirms that dropout as a procedure

uniformly allocates weights to different subnetworks, which is akin to preventing

co-adaptation.

63

We characterize the optimization landscape of learning autoencoders with dropout.

We first show that the local optima inherit the same implicit bias as global optimal,

i.e. all local optima are equalized. Then, we show that for sufficiently small dropout

rates, there are no spurious local minima in the landscape, and all saddle points

are non-degenerate. These properties suggest that dropout – as an optimization

procedure – can efficiently converge to a globally optimal solution specified by our

theorems. Extending (or rejecting) these benign landscape properties beyond shallow

autoencoders is an interesting open problem that we leave for the future work.

64

Chapter 3

Dropout Regularizer: Deep Linear
Networks

In Chapter 2, we studied dropout in linear regression, focusing on two-layer linear

networks, under the assumption that the input marginals are isotropic. We showed

that, learning such shallow models with dropout amounts to regularizing the objective

with ℓ2-path norm of the network [NTS15], and completely characterized the optima

of the resulting regularized risk minimization problem. We discovered that under

dropout – irrespective of the dropout rate or the width of the network – the optima

of the regularized objective obey a fundamental structural property, that we called

equalization. In particular, in an equalized network, the product of the norms of

the weights incoming and outgoing to/from hidden nodes are equal across all neu-

rons. We argued that equalized networks have minimal co-adaptation among hidden

neurons, a property which is one of the main motivations behind the invention of

dropout [HSK+12, SHK+14]. We further analyzed the non-convex landscape of the

dropout objective for the case of linear auto-encoders with tied weights, and showed

that it enjoys benign landscape properties that allow dropout to efficiently escape

saddle points and find a global optimum.

In this chapter, we completely lift the isotropic assumption that we made in the

previous chapter, and analyze dropout for deep linear networks of any architecture, i.e.,

65

any number of layers, and any number of hidden nodes at each layer [GBCB16]. While

the overall function is linear, the representation in factored form makes the optimization

landscape non-convex and hence, challenging to analyze. More importantly, we argue

that the fact we choose to represent a linear map in a factored form has important

implications to the learning problem, akin in many ways to the implicit bias due to

stochastic optimization algorithms and various algorithmic heuristics used in deep

learning [GWB+17, LMZ18, AH19].

Several recent works have investigated the optimization landscape properties of

deep linear networks [BH89, SMG13, Kaw16, HM16, LB18], as well as the implicit bias

due to first-order optimization algorithms for training such networks [GLSS18b, JT18],

and the convergence rates of such algorithms [BHL18, ACGH18]. The focus here is to

have a similar development for dropout when training deep linear networks.

Formally, we consider the hypotheses class of multilayer feed-forward linear net-

works with input dimension d0, output dimension dk+1, k hidden layers of widths

d1, . . . , dk, and linear transformations Wi ∈ Rdi×di−1 , for i = 1, . . . , k + 1 :

L{di} = {g : x ↦→Wk+1 · · ·W1x, Wi ∈ Rdi×di−1}.

We refer to the set of k + 1 integers {di}k+1
i=0 specifying the width of each layer as the

architecture of the function class, the set of the weight parameters {Wi}k+1
i=1 as an

implementation, or an element of the function class, and Wk+1→1 := Wk+1Wk · · ·W1

as the network map1.

The focus here is on deep regression with dropout under ℓ2 loss, which is widely used

in computer vision tasks, including human pose estimation [TS14], facial landmark

detection, and age estimation [LMAPH19]. More formally, we study the following

learning problem for deep linear networks. Let X ⊆ Rd0 and Y ⊆ Rdk+1 denote

the input feature space and the output label space, respectively. Let D denote
1Similarly Wi→j := WiWi−1 · · ·Wj denotes the linear map given by product of the layers

i, i− 1, . . . , j.

66

the joint probability distribution on X × Y . We assume that E[xx⊤] has full rank.

Given a training set {xi, yi}ni=1 drawn i.i.d. from the distribution D, the goal of

the learning problem is to minimize the population risk under the squared loss

L({Wi}) := Ex,y[∥y−Wk+1→1x∥2]. Note that the population risk L depends only on

the network map and not the specific implementations of it, i.e. L({Wi}) = L({W′
i})

for all Wk+1 · · ·W1 = W′
k+1 · · ·W′

1. For that reason, with a slight abuse of notation

we write L(Wk+1→1) := L({Wi}).

Dropout is an iterative procedure wherein at each iteration each node in the

network is dropped independently and identically according to a Bernoulli random

variable with parameter θ. Equivalently, we can view dropout, algorithmically, as an

instance of stochastic gradient descent for minimizing the following objective over

{Wi}:

Lθ({Wi}) := E(x,y,{bi})[∥y− W̄k+1→1x∥2], (3.1)

where W̄i→j := 1
θk

WiBi−1Wi−1 · · ·BjWj, and Bl = diag [bl(1), . . . , bl(dl)] represents

the dropout pattern in the lth layer with Bernoulli random variables on the diagonal;

if Bl(i, i) = 0 then all paths from the input to the output that pass through the ith

hidden node in the lth layer are turned “off”, i.e., those paths have no contribution in

determining the output of the network for that instance of the dropout pattern; we

refer to the parameter 1 − θ as the dropout rate. W̄i→j is an unbiased estimator of

Wi→j, i.e. E{bi}[W̄i→j] = Wi→j.

We say that the dropout algorithm succeeds in training a network if it returns a

map Wk+1→1 that (approximately) minimizes Lθ. In this paper, the central question

under investigation is to understand which network maps/architectures is a successful

dropout training biased towards.

To answer this question, we begin with the following simple observation that

Lθ({Wi})=L({Wi})+E(x,{bi})∥Wk+1→1x− W̄k+1→1x∥2

67

In other words, the dropout objective is composed of the population risk L({Wi})

plus an explicit regularizer R({Wi}) := E(x,y,{bi})[∥Wk+1→1x − W̄k+1→1x∥2] induced

by dropout. Denoting the second moment of x by C := E[xx⊤], we note that

R({Wi}) = E{bi}[∥Wk+1→1 − W̄k+1→1∥2
C]. Since any stochastic network map specified

by W̄k+1→1 is an unbiased estimator of the network map specified by Wk+1→1, the

explicit regularizer captures the variance of the network implemented by the weights

{Wi} under Bernoulli perturbations. By minimizing this variance term, dropout

training aims at breaking co-adaptation between hidden nodes – it biases towards

networks whose random sub-networks yield similar outputs [SHK+14].

If {W∗
i } is an infimum of (3.1), then it minimizes the explicit regularizer among

all implementations of the network map,

M = W∗
k+1 · · ·W∗

1, i.e. , R({W∗
i }) = inf

Wk+1···W1=M
R({Wi}).

We refer to the infimum of the explicit regularizer over all implementations of a

given network map M as the induced regularizer :

Θ(M) := inf
Wk+1···W1=M

R({Wi}) (3.2)

The domain of the induced regularizer Θ is the linear maps implementable by the

network, i.e., the set {M : Rank M ≤ mini di}. Since the infimum of the induced

regularizer is always attained (see Lemma 6 in the appendix), we can equivalently

study the following problem to understand the solution to Problem 3.1 in terms of

the network map:

min
M

L(M) + Θ(M), Rank M ≤ min
i∈[k+1]

di. (3.3)

To characterize which networks are preferable by dropout training, one needs to

understand the explicit regularizer R, understand the induced regularizer Θ, and

explore the global minima of Problem 3.3. In this regard, we make several important

contributions summarized as follows.

68

1. We derive the closed form expression for the explicit regularizer R({Wi}) induced

by dropout training in deep linear networks. The explicit regularizer is comprised

of the ℓ2-path regularizer as well as other rescaling invariant sub-regularizers.

2. We show that the convex envelope of the induced regularizer is proportional to

the squared nuclear norm of the network map, generalizing a similar result for

matrix factorization [CHL+18] and single hidden layer linear networks [MAV18].

Furthermore, we show that the induced regularizer equals its convex envelope

if and only if the network is equalized, a notion that quantitatively measures

co-adaptation between hidden nodes [MAV18].

3. We completely characterize the global minima of the dropout objective Lθ in

Problem 3.1 despite the objective being non-convex, under a simple eigengap

condition (see Theorem 10). This gap condition depends on the model, the

data distribution, the network architecture and the dropout rate, and is always

satisfied by deep linear network architectures with one output neuron.

The rest of this chapter is organized as follows. In Section 3.1, we present the

explicit regularizer due to dropout, and in Section 3.2, we analyze the induced

regularizer. In Section 3.3, we identify a simple sufficient condition under which

we completely characterize the global optima of the dropout objective. Finally, in

Section 3.4, we conclude this chapter by providing experimental results confirming

our theoretical finding.

3.1 The explicit regularizer

In this section, we give the closed form expression for the explicit regularizer R({Wi}),

and discuss some of its important properties.

Proposition 8. The explicit regularizer is composed of k sub-regularizers: R({Wi}) =

69

∑︁
l∈[k] λ

lRl({Wi}), where λ := 1−θ
θ

. Each of the sub-regularizers has the form:

Rl({Wi}) =
∑︂

(jl,...,j1)
∈([k]

l)

∑︂
(il,...,i1)

∈[djl]×···×[dj1]

α2
j1,i1

∏︂
p=1···l−1

β2
pγ

2
jl,il

where αj1,i1 := ∥Wj1→1(i1, :)∥C, βp := Wjp+1→jp+1(ip+1, ip), γjl,il := ∥Wk+1→jl+1(:, il)∥.

...
...

x[1]

x[2]

x[d0]

i1

i2

i3

y[1]

y[2]

y[dk+1]

Input
layer

j1-th
pivot

j2-th
pivot

j3-th
pivot

Output
layer

Figure 3-1. Illustration of the explicit regularizer as given in Proposition 8 for k = 9, l = 3,
(i1, i2, i3) = (2, 3, 2) and (j1, j2, j3) = (2, 5, 7). The head term α2

j1,i1 corresponds to the
summation over the product of the weights on any pairs of path from an input node to i1-th node
in the j1-th hidden layer. Similarly, the tail term γ2

jl,il
accounts for the product of the weights

along any pair of path between the output and the il-th node in the jl-th hidden layer. Each
of the middle terms β2

p , accumulates the product of of the weights along pair of path between
ip-th node in the (jp + 1)-th hidden layer and the ip+1-th node in the jp+1-th hidden layer.

Proof of Proposition 8. A quantity that shows up when analyzing dropout training

under squared error is E[∥U diag bVx∥2], where b is a Bernoulli random vector with

parameter θ. As we show in Proposition 8, it holds that:

E[∥U diag bVx∥2] = θ2E[∥UVx∥2] + (θ − θ2)
r∑︂
j=1
∥u:j∥2∥C 1

2 vj:∥2. (3.4)

We start by expanding the squared error:

Lθ({Wi}k+1
i=1) = Ebi∼Bern(θ)

(x,y)∼D
[∥y− W̄k+1→1x∥2]

= E[∥y∥2]− 2E[⟨W̄k+1→1x, y⟩] + E[∥W̄k+1→1x∥2]

= E[∥y∥2]− 2E⟨Wk+1→1x, y⟩+ 1
θ2kE[∥Wk+1 diag bkWk . . . diag b1W1x∥2] (3.5)

70

We now focus on the last term in the right hand side of Equation (3.5).

E[∥Wk+1 diag bkWk . . . diag b1W1x∥2] = E[∥W̄k+1→2 diag b1W1x∥2]

= θ2E[∥W̄k+1→2W1x∥2] + (θ − θ2)
d1∑︂
j=1

E[∥W̄k+1→2(:, j)∥2]∥C 1
2 W1(j, :)∥2 (3.6)

The second equality follows from Equation (3.4). Similarly, the first term on the right

hand side of Equation (3.6) can be expressed as:

E[∥W̄k+1→2W1x∥2] = E[∥W̄k+1→3 diag b2W2→1x∥2]

= θ2E[∥W̄k+1→3W2→1x∥2]

+ (θ − θ2)
d2∑︂
j=1

E[∥W̄k+1→3(:, j)∥2]∥C 1
2 W2→1(j, :)∥2

By recursive application of the above identity and plugging the result into Equa-

tion (3.6), we obtain:

E[∥W̄k+1→1x∥2] = θ2kE[∥Wk+1→1x∥2] (3.7)

+ (1− θ)
k∑︂
i=1

di∑︂
j=1

θ2i−1E[∥W̄k+1→i+1(:, j)∥2]∥C 1
2 Wi→1(j, :)∥2 (3.8)

Plugging back the above equality into Equation (3.5), we get

Lθ({Wi}) = ∥y∥2 − 2E⟨Wk+1→1x, y⟩+ E[∥Wk+1→1x∥2] (3.9)

+ 1− θ
θ2k

k∑︂
i=1

di∑︂
j=1

θ2i−1E[∥W̄k+1→i+1(:, j)∥2]∥C 1
2 Wi→1(j, :)∥2

= Ex[∥y−Wk+1→1x∥2] (3.10)

+ (1− θ)
k∑︂
i=1

di∑︂
j=1

θ2(i−k)−1E[∥W̄k+1→i+1(:, j)∥2]∥C 1
2 Wi→1(j, :)∥2. (3.11)

It remains to calculate the terms of the form E[∥W̄k+1→i+1(:, j)∥2] in the right hand

side of Equation (3.9). We introduce the variable x ∼ N (0, 1) so that we can use

Equation (3.4) again:

E[∥W̄k+1→i+1(:, j)∥2] = E[∥W̄k+1→i+2 diag bi+1Wi+1(:, j)x∥2]

= θ2E[∥W̄k+1→i+2Wi+1(:, j)∥2] + (θ − θ2)E
di+1∑︂
l=1
∥W̄k+1→i+2(:, l)∥2Wi+1(l, j)2.

(3.12)

71

The first term on the right hand side of Equation (3.12) can be expanded as:

E[∥W̄k+1→i+2Wi+1(:, j)∥2] = E[∥W̄k+1→i+3 diag bi+2Wi+2→i+1(:, j)x∥2]

= θ2E[∥W̄k+1→i+3Wi+2→i+1(:, j)∥2]

+ (θ − θ2)E
di+2∑︂
l=1
∥W̄k+1→i+3(:, l)∥2Wi+2→i+1(l, j)2

By recursive application of the above equality and plugging the results into Equa-

tion (3.12), we get

E[∥W̄k+1→i+1(:, j)∥2] = θ2(k−i)∥Wk+1→i+1(:, j)∥2

+ (1− θ)
k−i∑︂
m=1

θ2m−1E
di+m∑︂
l=1
∥W̄k+1→i+1+m(:, l)∥2Wi+m→i+1(l, j)2

Plugging back the above identity into Equation (3.9) we get

R({Wi}) = (1− θ)
k∑︂
i=1

di∑︂
j=1

θ2(i−k)−1∥C 1
2 Wi→1(j, :)∥2E[∥W̄k+1→i+1(:, j)∥2]

= 1− θ
θ

k∑︂
i=1

di∑︂
j=1
∥C 1

2 Wi→1(j, :)∥2∥Wk+1→i+1(:, j)∥2+

(1− θ
θ

)2
k∑︂
i=1

di∑︂
j=1
∥C 1

2 Wi→1(j, :)∥2
k−i∑︂
m=1

θ2(i+m−k)E
di+m∑︂
l=1

Wi+m→i+1(l, j)2∥W̄k+1→i+m+1(:, l)∥2

= 1− θ
θ

k∑︂
i=1

di∑︂
j=1
∥C 1

2 Wi→1(j, :)∥2∥Wk+1→i+1(:, j)∥2

+ (1− θ
θ

)2
k∑︂
i=1

di∑︂
j=1
∥C 1

2 Wi→1(j, :)∥2
k−i∑︂
m=1

di+m∑︂
l=1

Wi+m→i+1(l, j)2∥Wk+1→i+m+1(:, l)∥2

+ (1− θ
θ

)3
k∑︂
i=1

di∑︂
j=1
∥C 1

2 Wi→1(j, :)∥2
k−i∑︂
m=1

di+m∑︂
l=1

Wi+m→i+1(l, j)2
(︄
k−i−m∑︂
mm=1

θ2(i+m+mm)

di+m+mm∑︂
ll=1

Wi+m+mm→i+m+1(ll, l)2E∥W̄k+1→i+1+m+mm(:, ll)∥2

⎞⎠
= · · ·

=
k∑︂
l=1

λl
∑︂

(jl,...,j1)
∈([k]

l)

∑︂
(il,...,i1)

∈[djl]×···×[dj1]

∥C 1
2 Wj1→1(i1, :)∥2

∏︂
p=1···l−1

Wjp+1→jp+1(ip+1, ip)2∥Wk+1→jl+1(:, il)∥2,

which completes the proof.

72

Understanding the regularizer in Proposition 8. For simplicity, we assume

here the case where the data distribution is whitened, i.e. C = I. This assumption is

by no means restrictive, as we can always redefine W1 ←W1C
1
2 to absorb the second

moment the first layer. Moreover, it is a common practice to whiten the data as a

preprocessing step. The l-th sub-regularizer, i.e. Rl({Wi}), partitions the network

graph (see Figure 3-1) into l + 1 subgraphs. This partitioning is done via the choice

of l pivot layers, a set of l distinct hidden layers, indexed by (j1, . . . , jl) ∈
(︂

[k]
l

)︂
. The

sub-regularizer enumerates over all such combinations of pivot layers, and pivot nodes

within them indexed by (i1, . . . , il) ∈ [dj1]× · · · × [djl]. For a given set of pivot layers

and pivot nodes, the corresponding summand in the sub-regularizer is a product of

three types of terms: a “head” term αj1,i1 , “middle” terms βp, p ∈ [l − 1], and “tail”

terms γjl,il . It is easy to see that each of the head, middle and tail terms computes a

summation over product of the weights along certain walks on the (undirected) graph

associated with the network (see Figure 3-1). For instance, a head term

αj1,i1 =
∑︂

i0∈[d0]

∑︂
i′1,i

′
2,...,i

′
j1−1

i′′j1−1,...,i
′′
2 ,i

′′
1

W1(i′1, i0)W2(i′2, i′1) · · ·

Wj1(i1, i′jl−1)Wj1(i1, i′′jl−1) · · ·W2(i′′2, i′′1)W1(i′′1, i0),

is precisely the sum of the product of all weights along all walks from i0 in the input

layer to i1 in layer j1 and back to i0, i.e., walks from i0
i′1,i

′
2,...,i

′
j1−1−−−−−−−→ i1

i′′j1−1,...,i
′′
2 ,i

′′
1−−−−−−−→ i0.

Similarly, middle terms are the sum of the product of the weights along ip
i′1,i

′
2,...,i

′
j1−1−−−−−−−→

ip+1
i′′j1−1,...,i

′′
2 ,i

′′
1−−−−−−−→ ip.

A few remarks are in order.

Remark 6. For k = 1, the explicit regularizer reduces to

R(W2,W1) = λ
d1∑︂
i=1
∥W1(:, i)∥2∥W2(i, :)∥2,

which recovers the explicit regularizer for shallow networks in Proposition 8.

73

Remark 7. All sub-regularizers, and consequently the explicit regularizer itself are

rescaling invariant. That is, for any given implementation {Wi}, and any sequence

of scalars α1, . . . , αk+1 such that ∏︁i αi = 1, it holds that Rl({Wi}) = Rl({αiWi}). In

particular, Rk equals

Rk({Wi}) =
∑︂

ik,...,i1

∥W1(i1, :)∥2W2(i2, i1)2

W3(i3, i2)2 · · ·Wk(ik, ik−1)2∥Wk+1(:, ik)∥2.

Note that Rk({Wi}) = ψ2
2(Wk+1, . . . ,W1), the ℓ2-path regularizer, which which has

been recently studied in [NTS15] and [NSS15].

3.2 The induced regularizer

In this section, we study the induced regularizer as given by the optimization problem

in Equation (3.2). We show that the convex envelope of Θ factors into a product of

two terms: a term that only depends on the network architecture and the dropout rate,

and a term that only depends on the network map. These two factors are captured by

the following definitions.

Definition 4 (effective regularization parameter). For given {di} and λ, we refer to

the following quantity as the effective regularization parameter:

ν{di} :=
∑︂
l∈[k]

∑︂
(jl,...,j1)∈([k]

l)

λl∏︁
i∈[l] dji

.

We drop the subscript {di} whenever it is clear from the context.

The effective regularization parameter naturally arises when we lowerbound the

explicit regularizer (see Equation (3.14)). It is only a function of the network architec-

ture and the dropout rate and does not depend on the weights – it increases with the

dropout rate and the depth of the network, but decreases with the width.

74

Definition 5 (equalized network). A network implemented by {Wi}k+1
i=1 is said to

be equalized if ∥Wk+1 · · ·W1C
1
2∥∗ is equally distributed among all the summands in

Proposition 8, i.e. for any l ∈ [k], (jl, . . . , j1) ∈
(︂

[k]
l

)︂
, and (il, . . . , i1) ∈ [djl]×· · ·× [dj1]

it holds that

|αj1,i1β1 · · · βl−1γjl,il | =
∥Wk+1 · · ·W1C

1
2∥∗

Πldjl
.

Before stating the main result of this section, we highlight three important proper-

ties of the dropout regularizer, which are essential in our analysis.

Lemma 6. [Properties of R and Θ] The following statements hold true:

1. All sub-regularizers, and hence the explicit regularizer, are re-scaling invariant.

2. The infimum in Equation (3.2) is always attained.

3. If C = I, then Θ(M) is a spectral function, i.e. if M and M′ have the same

singular values, then Θ(M) = Θ(M′).

Proof of Lemma 6. First, it is easy to see that the explicit regularizer and the sub-

regularizers are all rescaling invariant. For any sequence of scalars {αi} such that

such that ∏︁k+1
i=1 αi = 1, let W̄i := αiWi . Then it holds that:

Rl({W̄i})

=
∑︂

(jl,...,j1)
∈([k]

l)

∑︂
(il,...,i1)

∈[djl]×···×[dj1]

∥
j1∏︂
q=1

αqWj1→1(i1, :)∥2

⎛⎝ ∏︂
p∈[l−1]

jp+1∏︂
q=jp+1

α2
qWjp+1→jp+1(ip+1, ip)2

∥
k+1∏︂

q=jl+1
αqWk+1→jl+1(:, il)∥2

⎞⎠
=

k+1∏︂
q=1

α2
q

∑︂
(jl,...,j1)

∈([k]
l)

∑︂
(il,...,i1)

∈[djl]×···×[dj1]

∥Wj1→1(i1, :)∥2

∏︂
p∈[l−1]

Wjp+1→jp+1(ip+1, ip)2∥Wk+1→jl+1(:, il)∥2

= Rl({Wi})

75

Therefore, without loss of generality, we can express the induced regularizer as

follows:

Θ(M) := inf
Wk+1···W1=M
∥Wi∥F≤∥M∥F

R({Wi}) (3.13)

Note that R({Wi}) is a continuous function and the feasible set F := {(Wi)k+1
i=1 :

Wk+1 · · ·W1 = M, ∥Wi∥F ≤ ∥M∥F} is compact. Hence, by Weierstrass extreme value

theorem, the infimum is attained.

Now let U ∈ Rdk+1×dk+1 and V ∈ Rd0×d0 be a pair of rotation matrices, i.e.

U⊤U = UU⊤ = I and V⊤V = VV⊤ = I. When the data is isotropic, i.e. C = I, the

following equalities hold

R({Wi}) =
k∑︂
l=1

λl
∑︂

(jl,...,j1)
∈([k]

l)

∑︂
(il,...,i1)

∈[djl]×···×[dj1]

∥Wj1→1(i1, :)∥2

⎛⎝ ∏︂
p=1···l−1

Wjp+1→jp+1(ip+1, ip)2

∥Wk+1→jl+1(:, il)∥2
)︂

=
k∑︂
l=1

λl
∑︂

(jl,...,j1)
∈([k]

l)

∑︂
(il,...,i1)

∈[djl]×···×[dj1]

∥Wj1→1(i1, :)⊤V∥2

⎛⎝ ∏︂
p=1···l−1

Wjp+1→jp+1(ip+1, ip)2

∥U⊤Wk+1→jl+1(:, il)∥2
)︂

= R(U⊤Wk+1,Wk, · · · ,W2,W1V)

That is, R(U⊤Wk+1,Wk, . . . ,W2,W1V) = R(Wk+1,Wk, . . . ,W2,W1) for all rotation

matrices U and V. In particular, let U,V be the left and right singular vectors of

M, i.e. M = UΣV⊤. To prove that Θ is a spectral function, we need to show that

Θ(M) = Θ(Σ). Let {W̄i}, {W̃i} be such that Θ(M) = R({W̄i}),Θ(Σ) = R({W̃i}).

Note that such weight matrices always exist since the infimum is always attained.

Then

Θ(Σ) = Θ(U⊤MV) ≤ R(U⊤W̄k+1, W̄k, . . . , W̄2, W̄1V)

= R(W̄k+1, W̄k, . . . , W̄2, W̄1) = Θ(M).

76

Similarly, we have that

Θ(M) ≤ R(U⊤W̃k+1, W̃k, . . . , W̃2, W̄1V) = R(W̃k+1, W̄k, . . . , W̃2, W̃1) = Θ(Σ),

which completes the proof.

We are now ready to state the main result of this section. Recall that the convex

envelope of a function is the largest convex under-estimator of that function. We show

that irrespective of the architecture, the convex envelope of the induced regularizer is

proportional to the squared nuclear norm of the network map times the principal root

of the second moment.

Theorem 9 (Convex Envelope). For any architecture {di} and any network map

M ∈ Rdk+1×d0 implementable by that architecture, it holds that:

Θ∗∗(M) = ν{di}∥MC 1
2∥2

∗

Furthermore, Θ(M) = Θ∗∗(M) if and only if the network is equalized.

This result is particularly interesting because it connects dropout, an algorithmic

heuristic to avoid overfitting, to nuclear norm regularization, which is a classical

regularization method with strong theoretical foundations. We remark that a result

similar to Theorem 9 was recently established for matrix factorization [CHL+18].

The key steps in the proof of Theorem 9 are as follows:

1. First, in Lemma 7, we show that for any set of weights {Wi}, it holds that

R({Wi}) ≥ ν{di}∥Wk+1→1C
1
2∥2

∗. In particular, this implies that Θ(M) ≥ ν{di}∥MC 1
2∥2

∗

holds for any M.

2. Next, in Lemma 8, we show that Θ∗∗(M) ≤ ν{di}∥MC 1
2∥2

∗ holds for all M.

3. The claim is implied by Lemmas 7 and 8, and the fact that ∥ · ∥2
∗ is a convex

function.

77

Despite the complex form of the explicit regularizer given in Proposition 8, we

can show that it is always lower bounded by effective regularization parameter times

∥MC 1
2∥2

∗. This result is given by Lemma 7.

Lemma 7. Let {Wi} be an arbitrary set of weights. The explicit regularizer R({Wi})

satisfies

R({Wi}) ≥ ν{di}∥Wk+1Wk · · ·W1C
1
2∥2

∗,

and the equality holds if and only if the network is equalized.

Proof of Lemma 7. Recall that the explicit regularizer R({Wi}) is composed of k

sub-regularizers

R({Wi}) = R1({Wi}) +R2({Wi}) + · · ·+Rk({Wi}).

The l-th sub-regularizer Rl({Wi}) can be written in the form of:

Rl({Wi}) = λl
∑︂

(jl,...,j1)∈([k]
l)
R{jl,...,j1}({Wi})

where

R{jl,...,j1}({Wi}) := ∥C 1
2 Wj1→1(i1, :)∥2 ∏︂

p=1···l−1
Wjp+1→jp+1(ip+1, ip)2∥Wk+1→jl+1(:, il)∥2.

78

The following set of equalities hold true:

R{jl,...,j1}({Wi})

=
∑︂

il,··· ,i1
∥Wk+1→jl+1(:, il)∥2Wjl→jl−1+1(il, il−1)2 · · ·Wj2→j1+1(i2, i1)2∥C 1

2 Wj1→1(i1, :)∥2

≥

(︂∑︁
il,...,i1 ∥Wk+1→jl+1(:, il)∥|Wjl→jl−1+1(il, il−1)| · · · |Wj2→j1+1(i2, i1)|∥C

1
2 Wj1→1(i1, :)∥

)︂2

∏︁
i∈[l] dji

=

(︂∑︁
il,...,i1 ∥Wk+1→jl+1(:, il)Wjl→jl−1+1(il, il−1) · · ·Wj2→j1+1(i2, i1)Wj1→1(i1, :)⊤C 1

2∥∗
)︂2

∏︁
i∈[l] dji

≥
∥∑︁il,...,i1 Wk+1→jl+1(:, il)Wjl→jl−1+1(il, il−1) · · ·Wj2→j1+1(i2, i1)Wj1→1(i1, :)⊤C 1

2∥2
∗∏︁

i∈[l] dji

=
∥∑︁il,i1Wk+1→jl+1(:, il)

(︂∑︁
il−1,...,i2Wjl→jl−1+1(il, il−1) · · ·Wj2→j1+1(i2, i1)

)︂
Wj1→1(i1, :)⊤C 1

2∥2
∗∏︁

i∈[l] dji

=
∥∑︁il,i1 Wk+1→jl(:, il)Wjl−1→j1(il, i1)Wj1→1(i1, :)⊤C 1

2∥2
∗∏︁

i∈[l] dji

= ∥Wk+1 · · ·W1C
1
2∥2

∗∏︁
i∈[l] dji

where the first inequality follows due to the Cauchy-Schwartz inequality, and the

second inequality follows from the triangle inequality for the matrix norms. The

inequality holds with equality if and only if all the summands inside the summation

are equal to each other, and sum up to ∥Wk+1→1C
1
2 ∥∗∏︁

i∈[l] dji
, i.e. when

∥Wk+1→jl+1(:, il)∥|Wjl→jl−1+1(il, il−1)| · · · |Wj2→j1+1(i2, i1)|∥C
1
2 Wj1→1(i1, :)∥

= 1∏︁
i∈[l] dji

∥Wk+1→1C
1
2∥∗

for all (il, . . . , i1) ∈ [djl]× · · · × [dj1]. This lowerbound holds for all l ∈ [k], and for all

(jl, . . . , j1) ∈
(︂

[k]
l

)︂
. Thus, we get the following lowerbound on the regularizer:

R({Wi}) ≥
∑︂
l∈[k]

λl
∑︂

(jl,...,j1)∈([k]
l)

1∏︁
i∈[l] dji

∥Wk+1→1C
1
2∥2

∗ = ν{di}∥Wk+1→1C
1
2∥2

∗

which completes the proof.

Lemma 7 is central to our analysis for two reasons. First, it gives a sufficient and

necessary condition for the induced regularizer to equal the square of the nuclear

79

norm of the network map. This also motivates the concept of equalized networks in

Definition 5. We note that for the special case of single hidden layer linear networks,

i.e., for k=1, this lower bound can always be achieved [MAV18]; it remains to be seen

whether the lower bound can be achieved for deeper networks. Second, summing over

{jl, . . . , j1} ∈
(︂

[k]
l

)︂
, we conclude that

Rl({Wi}) ≥
∑︂

jl,...,j1

∥Wk+1→1∥2
∗∏︁

l djl
=: LBl({Wi}). (3.14)

The right hand side above is the lowerbound for l-th subregularizer, denoted by LBl.

Summing over l ∈ [k], we get the following lowerbound on the explicit regularizer

R({Wi}) ≥ ∥Wk+1→1∥2
∗
∑︂
l

∑︂
jl,...,j1

λl∏︁
l djl⏞ ⏟⏟ ⏞

ν{di}

(3.15)

which motivates the notion of effective regularization parameter in Definition 4. As

an immediate corollary of Lemma 7, it holds that for any matrix M we have that

Θ(M) ≥ ν{di}∥M∥2
∗. We now focus on the biconjugate of the induced regularizer, and

show that it is upper bounded by the same function, i.e. the effective regularization

parameter times the square of the nuclear norm of the network map.

Not only ν{di}∥MC 1
2∥2

∗ is a lowerbound for the induced regularizer, but also is an

upperbound for its convex envelope. We prove this result in Lemma 8.

Lemma 8. For any architecture {di} and any network map M, it holds that Θ∗∗(M) ≤

ν{di}∥MC 1
2∥2

∗.

Proof of Lemma 8. The induced regularizer is non-negative. Hence, the domain of

the Fenchel dual of the induced regularizer is the whole Rdk+1×d0 . The Fenchel dual of

the induced regularizer Θ(·) is given by:

Θ∗(M) = max
P
⟨M,P⟩ −Θ(P)

= max
P
⟨M,P⟩ − min

{Wi}
Wk+1→1=P

R({Wi})

= max
{Wi}

⟨M,Wk+1→1⟩ −R({Wi}). (3.16)

80

Define Φ({Wi}) := ⟨M,Wk+1→1⟩ − R({Wi}) as the objective in the right hand side

of Equation (3.16). Due to the complicated products of the norms of the weights in

the regularizer, maximizing Φ with respect to {Wi} is a daunting task. Here, we find

a lower bound on this maximum value. Let Wα
k+1 := αu11⊤

dk
and Wα

1 := 1d1v⊤
1 C− 1

2 ,

where (u1, v1) is the top singular vectors of MC− 1
2 , and 1d is the d-dimensional vector

of all 1s. Furthermore, let Wα
i := 1di1⊤

di−1
, for all i ∈ {2, . . . , k}. Note that

Θ∗(M) = max
{Wi}

Φ({Wi}) ≥ max
α

Φ({Wα
i }).

We now simplify Φ({Wα
i }). First, the following equalities hold for the ⟨M,Wα

k+1→1⟩:

⟨M,Wα
k+1→1⟩ =

∑︂
(ik+1,...,i1)∈[dk+1]×···×[d1]

⟨M,Wα
k+1(:, ik)

∏︂
j={k−1,...,1}

Wα
j+1(ij+1, ij)Wα

1 (i1, :)⊤⟩

=
∑︂

(ik+1,...,i1)∈[dk+1]×···×[d1]
Wα

k+1(:, ik)⊤MWα
1 (i1, :)

=
∑︂

(ik+1,...,i1)∈[dk+1]×···×[d1]
αu⊤

1 MC− 1
2 v1

=
∑︂

(ik+1,...,i1)∈[dk+1]×···×[d1]
α∥MC− 1

2∥2

= α∥MC− 1
2∥2

∏︂
j∈[k]

dj =: α∥MC− 1
2∥2D.

The following terms show up in the expansion of the regularizer:

Wα
j1→1(i1, :)⊤ = Wα

j1(i1, :)Wα
j1−1 · · ·Wα

2 Wα
1 = 1⊤

dj1−1
1dj1−11⊤

dj1−2
· · · 1d21⊤

d11d1v⊤
1

=
∏︂

i∈[j1−1]
div⊤

1 C− 1
2

Wα
jp+1→jp+1(ip+1, ip) = Wα

jp+1(ip+1, :)Wα
jp+1−1 · · ·Wα

jp+2Wα
jp+1(:, ip)

= 1⊤
djp+1−1

1djp+1−11⊤
djp+1−2

· · · 1djp+21⊤
djp+1

1djp+1 =
∏︂

i∈{jp+1,··· ,jp+1−1}
di

Wα
k+1→jl+1(:, il) = αWα

k+1Wα
k · · ·Wα

jl+2Wα
jl+1(:, il) = αu11⊤

dk
1dk1⊤

dk−1
· · · 1djl+21⊤

djl+1
1djl+1

= α
∏︂

i∈{jl+1,··· ,k}
diu1

81

With the above equalities, the explicit regularizer reduces to:

R({Wα
i })

=
k∑︂
l=1

λl
∑︂

(jl,...,j1)
∈([k]

l)

∑︂
(il,...,i1)

∈[djl]×···×[dj1]

∥C 1
2 Wα

j1→1(i1, :)∥2 ∏︂
p=1···l−1

Wα
jp+1→jp+1(ip+1, ip)2∥Wα

k+1→jl+1(:, il)∥2

=
k∑︂
l=1

λl
∑︂

(jl,...,j1)
∈([k]

l)

∑︂
(il,...,i1)

∈[djl]×···×[dj1]

∥C 1
2 C− 1

2 v1
∏︂

i∈[j1−1]
di∥2 ∏︂

p=1···l−1
i∈{jp+1,··· ,jp+1−1}

d2
i ∥αu1

∏︂
i∈{jl+1,··· ,k}

di∥2

=
k∑︂
l=1

λl
∑︂

(jl,...,j1)
∈([k]

l)

∑︂
(il,...,i1)

∈[djl]×···×[dj1]

∏︂
i∈[j1−1]

d2
i

∏︂
p=1···l−1

∏︂
i∈{jp+1,··· ,jp+1−1}

d2
iα

2 ∏︂
i∈{jl+1,··· ,k}

d2
i

= α2
k∑︂
l=1

λl
∑︂

(jl,...,j1)∈([k]
l)

∑︂
(il,...,i1)∈[djl]×···×[dj1]

∏︁
i∈[k] d

2
i∏︁

i∈[l] d
2
ji

=: α2ρ

Plugging back the above equalities into the definition of Φ, we arrive at Φ({Wα
i }) =

α∥MC− 1
2∥2D − α2ρ. The maximum of Φ({Wα

i }) with respect to α is achieved when

α∗ = ∥MC− 1
2 ∥2D

2ρ , in which case we have

Θ∗(M) ≥ Φ({Wα∗

i }) = D2

4ρ ∥MC− 1
2∥2

2 =: Ψ(M).

Since Fenchel dual is order reversing, we get

Θ∗∗(M) ≤ Ψ∗(M)

= ρ

D2∥MC 1
2∥2

∗

=

∑︁k
l=1 λ

l∑︁
(jl,...,j1)∈([k]

l)
∑︁

(il,...,i1)∈[djl]×···×[dj1]

∏︁
i∈[k] d

2
i∏︁

i∈[l] d
2
ji∏︁

j∈[k] d
2
j

∥MC 1
2∥2

∗

=
k∑︂
l=1

λl
∑︂

(jl,...,j1)∈([k]
l)

∑︂
(il,...,i1)∈[djl]×···×[dj1]

1∏︁
i∈[l] d

2
ji

∥MC 1
2∥2

∗

=
k∑︂
l=1

λl
∑︂

(jl,...,j1)∈([k]
l)

1∏︁
i∈[l] dji

∥MC 1
2∥2

∗

= ν{di}∥MC 1
2∥2

∗

where the first equality follows from the fact that if f(M) = β∥MA∥2 and A ≻ 0 then

f ∗(M) = 1
4β∥MA−1∥2

∗. This result is standard in the literature, but we prove it here

82

for completeness. Note that

⟨Y,M⟩ − β∥YA∥2 = ⟨YA,MA−1⟩ − β∥YA∥2

≤ ∥YA∥∥MA−1∥∗ − β∥YA∥2

where the inequality is due to Holder’s identity. The right hand side above is a

quadratic in ∥YA∥ and is maximized when ∥YA∥ = 1
2β∥MA−1∥∗, in which case we

have

f ∗(M) = sup
Y
⟨Y,M⟩ − β∥YA∥2

= 1
2β ∥MA−1∥∗∥MA−1∥∗ − β(1

2β ∥MA−1∥∗)2

= 1
4β ∥MA−1∥2

∗.

We now provide a proof of Theorem 9.

Proof of Theorem 9. By Lemma 7, for any architecture, any dropout rate, and any

set of weights {Wi} that implements a network map Wk+1→1, the explicit regularizer

is lower bounded by the effective regularization parameter times the product of the

squared nuclear norm of the network map and the principal squared root of the

second moment of x, i.e. R({Wi}) ≥ ν{di}∥Wk+1→1C
1
2∥2

∗. Consequently, the induced

regularizer can also be lowerbounded as Θ(M) ≥ ν{di}∥MC 1
2∥2

∗. On the other hand,

Lemma 8 establishes that Θ∗∗(M) ≤ ν{di}∥MC 1
2∥2

∗ holds for any network map M.

Putting these two inequalities together, we arrive at

Θ∗∗(M) ≤ ν{di}∥MC 1
2∥2

∗ ≤ Θ(M).

Since Θ∗∗(M) is the largest convex underestimator of Θ(M), and the squared nuclear

norm is a convex function, we conclude that Θ∗∗(M) = ν{di}∥M∥2
∗.

83

3.3 Global optimality

Theorem 9 provides a sufficient and necessary condition under which the induced

regularizer equals its convex envelope. If any network map can be implemented by an

equalized network, then Θ(M) = Θ∗∗(M) = ν{di}∥MC 1
2∥2

∗, and the learning problem

in Equation (3.3) is a convex program. In particular, for the case of linear networks

with single hidden layer, [MAV18] show that any network map can be implemented

by an equalized network, which enables them to characterize the set of global optima

under the additional generative assumption y = Mx. However, it is not clear if the

same holds for general deep linear networks since the regularizer here is more complex.

Nonetheless, the following result provides a sufficient condition under which global

optima of Lθ({Wi}) are completely characterized.

Theorem 10. Let Cyx := E[yx⊤] and C := E[xx⊤], and denote M̄ := CyxC− 1
2 . If

σ1(M̄)− σ2(M̄) ≥ 1
ν
σ2(M̄), then M∗, the global optimum of Problem 3.3, is given by

W∗
k+1→1 = S νσ1(M̄)

1+ν
(M̄)C− 1

2 ,

where Sα(M̄) shrinks the spectrum of matrix M̄ by α and thresholds it at zero. Fur-

thermore, it is possible to implement M∗ by an equalized network {W∗
i } which is a

global optimum of Lθ({Wi}).

In light of Theorem 9, if the optimal network map W∗
k+1→1, i.e. the optimum

of the problem in Equation 3.3 can be implemented by an equalized network, then

Θ(W∗
k+1→1) = Θ∗∗(W∗

k+1→1) = ν{di}∥W∗
k+1→1C

1
2∥2

∗. Thus, the learning problem essen-

tially boils down to the following convex program:

min
W

Ex,y[∥y−Wx∥2] + ν{di}∥WC 1
2∥2

∗. (3.17)

Following the previous work of [CHL+18, MAV18], we show that the solution to

problem (3.17) can be given as W∗ = Sαρ(CyxC− 1
2)C− 1

2 , where αρ := ν
∑︁ρ

i=1 σi(CyxC− 1
2)

1+ρν ,

84

ρ is the rank of W∗, and Sαρ(M) shrinks the spectrum of the input matrix M by αρ

and thresholds them at zero. However, as mentioned above, it is not clear if any

network map can be implemented by an equalized network. Nonetheless, it is easy to

see that the equalization property is satisfied for rank-1 network maps.

Proposition 1. Let {di}k+1
i=0 be an architecture and M ∈ Rdk+1×d0 be a rank-1 network

map. Then, there exists a set of weights {Wi}k+1
i=1 that implements M, and is equalized.

Proof of Proposition 1. When the network map has rank equal to one, it can be

expressed as uv⊤, where u ∈ Rdk+1 and v ∈ Rd0 . We show that for any architecture

{di} and any network mapping uv⊤ ∈ Rdk+1×d0 , it is always possible to represent

uv⊤ = Wk+1 · · ·W1 such that the resulting network is equalized. One such factorization

is when W1 = 1d1 v⊤
√
d1

, Wk+1 =
u1⊤
dk√
dk

, and Wi =
1di1

⊤
di−1√

didi−1
for i ∈ {2, . . . , k}. For these

weight parameters, we have that

Wj1→1(i1, :)⊤ = Wj1(i1, :)⊤Wj1−1 · · ·W2W1

=
1⊤
dj1−1√︂
dj1dj1−1

1dj1−11⊤
dj1−2√︂

dj1−1dj1−2
· · ·

1d21⊤
d1√

d2d1

1d1v⊤
√
d1

= v⊤√︂
dj1

Wjp+1→jp+1(ip+1, ip) = Wjp+1(ip+1, :)⊤Wjp+1−1 · · ·Wjp+2Wjp+1(:, ip)

=
1⊤
djp+1−1√︂

djp+1djp+1−1

1djp+1−11⊤
djp+1−2√︂

djp+1−1djp+1−2
· · ·

1djp+21⊤
djp+1√︂

djp+2djp+1

1djp+1√︂
djp+1djp

= 1√︂
djp+1djp

Wk+1→jl+1(:, il) = Wk+1Wk · · ·Wjl+2Wjl+1(:, il)

=
u1⊤

dk√
dk

1dk1⊤
dk−1√

dkdk−1
· · ·

1djl+21⊤
djl+1√︂

djl+2djl+1

1djl+1√︂
djl+1djl

= u√︂
djl

85

With the above equalities, the regularizer reduces to:

R({Wi}) =
k∑︂
l=1

λl
∑︂

(jl,...,j1)
∈([k]

l)

∑︂
(il,...,i1)

∈[djl]×···×[dj1]

∥C 1
2 Wj1→1(i1, :)∥2

⎛⎝ ∏︂
p=1···l−1

Wjp+1→jp+1(ip+1, ip)2

∥Wk+1→jl+1(:, il)∥2
)︂

=
k∑︂
l=1

λl
∑︂

(jl,...,j1)
∈([k]

l)

∑︂
(il,...,i1)

∈[djl]×···×[dj1]

∥C 1
2

v√︂
dj1
∥2 ∏︂
p=1···l−1

1
djp+1djp

∥ u√︂
djl
∥2

=
k∑︂
l=1

λl
∑︂

(jl,...,j1)
∈([k]

l)

∑︂
(il,...,i1)

∈[djl]×···×[dj1]

∥C 1
2 v∥2∥u∥2∏︁
p∈[l] d

2
jp

=
k∑︂
l=1

∑︂
(jl,...,j1)

∈([k]
l)

λl∏︁
p∈[l] djp

∥uv⊤C 1
2∥2

∗ = ν{di}∥uv⊤C 1
2∥2

∗

where we used the fact that ∥u∥∥C 1
2 v∥ = ∥uv⊤C 1

2∥∗. Moreover, note that the network

specified by the above weight matrices is equalized, since

|αj1,i1|
∏︂

p=1···l−1
|βp||γjl,il | =

⌜⃓⃓⎷∥uv⊤C 1
2∥2

∗∏︁
p∈[l] d

2
jp

= 1∏︁
p∈[l] djp

∥uv⊤C 1
2∥∗.

For example, for deep networks with single output neuron, the weights W1 = 1d1 w⊤
√
d1

and Wi =
1di1

⊤
di−1√

didi−1
for i ̸= 1 implements the network map w⊤, and are equalized.

Denote M̄ := CyxC− 1
2 . Equipped with Proposition 1, the key here is to ensure that

Sα(M̄) has rank equal to one. In this case, W∗ will also have rank at most one and

can be implemented by a network that is equalized. To that end, it suffices to have

α ≥ σ2(M̄), which implies

νσ1(M̄)
1 + ν

≥ σ2(M̄) =⇒ σ1(M̄)− σ2(M̄) ≥ σ2(M̄)
ν

which gives the sufficient condition in Theorem 10. This discussion leads to the

following Lemma.

86

Lemma 9. Consider the following optimization problem where the induced regularizer

in Problem 3.3 is replaced with its convex envelope:

min
W∈Rdk+1×d0

E[∥y−Wx∥2] + Θ∗∗(W), Rank W ≤ min
i∈[k+1]

di =: r (3.18)

Define the “model” M̄ := CyxC− 1
2 . The global optimum of problem 3.18 is given as

M∗ = Sαρ(M̄)C− 1
2 , where αρ := ν{di}

∑︁ρ

j=1 σj(M̄)
1+ρν{di}

, and ρ ∈ [min{r,Rank M̄}] is the largest

integer such that for all i ∈ [ρ], it holds that σi(M̄) > αρ.

Proof of Lemma 9. Denote the objective in the optimization problem (3.18) as

Eν{di}
(W) := E[∥y−Wx∥2] + ν{di}∥WC 1

2∥2
∗.

Let Cy := E[yy⊤] and Cxy := E[xy⊤]. Note that

min
Rank W≤r

Eν{di}
(W) = min

Rank W≤r
E[∥y∥2] + E[∥Wx∥2]− 2E[⟨y,Wx⟩] + ν{di}∥WC 1

2∥2
∗

≡ min
Rank W≤r

Tr
(︂
E[Wxx⊤W⊤]

)︂
− 2 Tr

(︂
E[Wxy⊤]

)︂
+ ν{di}∥WC 1

2∥2
∗

= min
Rank W≤r

Tr
(︂
WCW⊤

)︂
− 2 Tr (WCxy) + ν{di}∥WC 1

2∥2
∗

Make the change of variable W̄←WC 1
2 and denote M̄ := CyxC− 1

2 , the goal is to solve

the following problem

min
Rank W≤r

Tr
(︃

W̄W̄⊤
)︃
−2⟨W̄, M̄⟩+ν{di}∥W̄∥2

∗ ≡ min
Rank W̄≤r

∥M̄−W̄∥2
F+ν{di}∥W̄∥2

∗ (3.19)

If W̄ is a solution to the above problem, then a solution to the original problem

in Equation (3.18) is given as W̄C− 1
2 . Following [CHL+18, MAV18], we show that

the global optimum of Problem 3.19 is given in terms of an appropriate shrinkage-

thresholding on the spectrum of M̄. Define r′ := max{Rank M̄, r}. Let M̄ = UM̄ΣM̄V⊤
M̄

and W̄ = UW̄ΣW̄V⊤
W̄ be rank-r′ SVDs of M̄ and W̄ respectively, such that σi(M̄) ≥

σi+1(M̄) and σi(W̄) ≥ σi+1(W̄) for all i ∈ [r′− 1]. Rewriting objective of Problem 3.19

87

in terms of these decompositions gives:

∥M̄− W̄∥2
F + ν{di}∥W̄∥2

∗ = ∥UM̄ΣM̄V⊤
M̄ − UW̄ΣW̄V⊤

W̄∥
2
F + ν{di}∥UW̄ΣW̄V⊤

W̄∥
2
∗

= ∥ΣM̄ − U′ΣW̄V′⊤∥2
F + ν{di}∥ΣW̄∥2

∗

= ∥ΣM̄∥2
F + ∥ΣW̄∥2

F − 2⟨ΣM̄,U′ΣW̄V′⊤⟩+ ν{di}∥ΣW̄∥2
∗

where U′ = U⊤
M̄UW̄ and V′ = V⊤

M̄VW̄. By Von Neumann’s trace inequality, for a fixed

ΣW̄ we have that

⟨ΣM̄,U′ΣW̄V′⊤⟩ ≤
r′∑︂
i=1

σi(M̄)σi(W̄),

where the equality is achieved when UM̄ = UW̄ and VM̄ = VW̄. Hence, problem 3.19 is

reduced to

min
∥ΣW̄∥0≤r,

ΣW̄≥0

∥ΣM̄ − ΣW̄∥2
F + ν{di} (Trace(ΣW̄))2 = min

σ̄∈Rr+

r∑︂
i=1

(︂
λi(M̄)− σ̄i

)︂2
+ ν{di}

(︄
r∑︂
i=1

σ̄i

)︄2

The Lagrangian is given by

L(σ̄, α) =
r∑︂
i=1

(︂
λi(M̄)− σ̄i

)︂2
+ ν{di}

(︄
r∑︂
i=1

σ̄i

)︄2

−
r∑︂
i=1

αiσ̄i

The KKT conditions ensures that at the optima it holds for all i ∈ [r] that

σ̄i ≥ 0, αi ≥ 0, σ̄iαi = 0, 2(σ̄i − σi(M̄)) + 2ν{di}

r∑︂
j=1

σ̄j − αi = 0

Let ρ = |i : σ̄i > 0| ≤ r be the number of nonzero σ̄i, i.e. rank of the global

optimum W̄. For i ∈ [ρ], we have αi = 0. Therefore, we have that:

σ̄i + ν{di}

r∑︂
j=1

σ̄j = σi(M̄)

=⇒ (Iρ + ν{di}1ρ1⊤
ρ)σ̄1:ρ = σ1:ρ(M̄)

=⇒ σ̄1:ρ = (Iρ −
ν{di}

1 + ρν{di}
1ρ1⊤

ρ)σ1:ρ(M̄) = σ1:ρ(M̄)− ν{di}ρκρ
1 + ρν{di}

1ρ

where κj := 1
j

∑︁j
i=1 σi(M̄). Also, in the second implication we use an instance of the

Woodbury’s matrix identity. In particular, for any integer r, and for any ν ∈ R+, it

88

holds that

(Ir + ν1r1⊤
r)−1 = Ir −

ν

1 + rν
1r1⊤

r . (3.20)

The proof simply follows from the following set of equations.

(Ir + ν1r1⊤
r)(Ir −

ν

1 + rν
1r1⊤

r) = Ir + ν1r1⊤
r −

ν

1 + rν
1r1⊤

r −
ν2

1 + rν
1r1⊤

r 1r1⊤
r

= Ir +
(︄
ν − ν

1 + rν
− ν2r

1 + rν

)︄
1r1⊤

r = Ir

The equation above tell us that for i ∈ [ρ], the singular values of W̄ are just

a shrinkage of the singular values of M̄. In particular, it means that ρ ≤ Rank M̄.

Therefore, without loss of generality, we assume that r ≤ Rank M̄. Also, since σ̄i > 0

for all i ∈ [ρ], it holds that σi(M̄) > ν{di}ρκρ

1+ρν{di}
for all i ∈ [ρ]. For i ∈ {ρ+ 1, . . . , r}, on

the other hand, σ̄i = 0 and we have

1
2αi = σ̄i + ν{di}

r∑︂
j=1

σ̄j − σi(M̄)

= 0 + ν{di}

1 + ρν{di}

ρ∑︂
j=1

σj(M̄)− σi(M̄)

= −σi(M̄) + ν{di}ρκρ
1 + ρν{di}

,

where we used the fact that
r∑︂
i=1

σ̄i = 1⊤
ρ σ̄1:ρ =

ρ∑︂
i=1

σi(M̄)− ν{di}ρ
2κρ

1 + ρν{di}
= (1− ν{di}ρ

1 + ρν{di}
)κρ = ρκρ

1 + ρν{di}
.

By dual feasibility, we conclude that σi(M̄) ≤ ν{di}ρκρ

1+ρν{di}
for all i ∈ {ρ + 1, . . . , r},

which completes the proof.

In light of the above discussions, we can finally provide a proof for Theorem 10.

Proof of Theorem 10. Consider W∗, a global optimum of problem 3.3. If all such

global optima can be implemented by equalized networks, then by Theorem 9 it

holds that Θ(W∗) = Θ∗∗(W∗) = ν{di}∥W∗C 1
2∥2

∗. In this case, the lifted problem in

Equation 3.3 boils down to the following convex problem

min
W∈Rdk+1×d0

E[∥y−Wx∥2] + ν{di}∥WC 1
2∥2

∗, Rank W ≤ min
i∈[k+1]

di =: r. (3.21)

89

Proposition 1, on the other hand, states that any rank-1 network map can be imple-

mented by an equalized network. Therefore, the key idea of the proof is to make

sure that the global optimum of problem 3.21 has rank equal to one. It suffices

to notice that under the assumption σ1(M̄) − σ2(M̄) ≥ 1
ν{di}

σ2(M̄), it holds that

σ1(M̄) > ν{di}σ1(M̄)
1+ν{di}

and σj(M̄) ≤ ν{di}σ1(M̄)
1+ν{di}

for all j > 1. In this case, using Lemma 9,

the solution Sα1(M̄)C− 1
2 has rank equal to one, which completes the proof.

The gap condition in the theorem above can always be satisfied (e.g. by increasing

the dropout rate or the depth, or decreasing the width) as long as there exists a gap

between the first and the second singular values of M̄. Moreover, for the special case

of deep linear networks with one output neuron [JT18, NLG+18], this condition is

always satisfied since M̄ ∈ R1×d0 and σ2(M̄) = 0.

Corollary 1. Consider the class of deep linear networks with a single output neuron.

Let {W∗
i } be a minimizer of Lθ. For any architecture {di} and any network map

Wk+1→1, it holds that: (1) Θ(Wk+1→1) = ν∥Wk+1→1∥2
C, (2) W∗

k+1→1= 1
1+νCyx, (3) the

network specified by {W∗
i } is equalized.

We conclude this section with a remark. We know from the early work of [SHK+14]

that feature dropout in linear regression is closely related to ridge regression. Corol-

lary 1 generalizes the results of [SHK+14] to deep linear networks, and establishes a

similar connection between dropout training and ridge regression.

3.4 Experimental Results

Dropout is widely used for training modern deep learning architectures resulting in the

state-of-the-art performance in numerous machine learning tasks [SHK+14, KSH12,

SLJ+15, TS14]. The purpose of this section is not to make a case for (or against)

dropout when training deep networks, but rather verify empirically the theoretical

90

results from the previous section.2

For simplicity, the training data {xi} is sampled from a standard Gaussian dis-

tribution which in particular ensures that C = I. The labels {yi} are generated as

yi ← Nxi, where N ∈ Rdk+1×d0 . N is composed of UV⊤ + noise, where U ∈ Rdk+1×r,

V ∈ Rd0×r are sampled from a standard Gaussian and the entries of noise are sampled

independently from a Gaussian distribution with small standard deviation. At each

step of the dropout training, we use a minibatch of size 1000 to train the network.

The learning rate is tuned over the set {1, 0.1, 0.01}. All experiments are repeated 50

times, the curves correspond to the average of the runs, and the grey region shows the

standard deviation.

The experiments are organized as follows. First, since the convex envelope of the

induced regularizer equals the squared nuclear norm of the network map (Theorem 9),

it is natural to expect that dropout training performs a shrinkage-thresholding on the

spectrum of CyxC− 1
2 = M (see Lemma 9 in the appendix). We experimentally verify

this in Section 3.4.1. Second, in Section 3.4.2, we focus on the equalization property.

We attest Theorem 10 by showing that dropout training equalizes deep networks with

one output neuron.

3.4.1 Spectral shrinkage and rank control

Note that the induced regularizer Θ(M) is a spectral function (see Lemma 6 in the

appendix). On the other hand, by Theorem 9, Θ∗∗(M) = ν{di}∥M∥2
∗. Therefore, if

dropout training succeeds in finding an (approximate) minimizer of Lθ, it minimizes

an upperbound on the squared of the nuclear norm of the network map. Hence, it is

natural to expect that the dropout training performs a shrinkage-thresholding on the

spectrum of the model, much like nuclear norm regularization. Figure 3-2 confirms

this intuition. Here, we plot the singular value distribution of the final network map
2The code for the experiments can be found at: https://github.com/r3831/dln_dropout

91

https://github.com/r3831/dln_dropout

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
Index of the singular values

0

5

10

15

20

25

30

35

Si
ng

ul
ar

 v
al

ue
s

θ= 1.00
θ= 0.95
θ= 0.90
θ= 0.85
θ= 0.75
θ= 0.65
θ= 0.55
θ= 0.45
θ= 0.35
θ= 0.25
θ= 0.15
True Model

Figure 3-2. Distribution of the singular values of the trained network for different values
of the dropout rate 1 − θ. It can be seen that the dropout training performs a more
sophisticated form of shrinkage and thresholding on the spectrum of the model matrix M.

trained by dropout, for different values of the dropout rate.

As can be seen in the figure, dropout training indeed shrinks the spectrum of the

model and thresholds it at zero. However, unlike the nuclear norm regularization,

the shrinkage is not uniform across the singular values that are not thresholded.

Moreover, note that the shrinkage parameter in Theorem 10 is governed by the

effective regularization parameter ν{di}, which strictly increases with the dropout rate.

This suggests that as we increase the dropout rate (decrease θ), the spectrum should

be shrunk more severely, and the resulting network map should have a smaller rank.

This is indeed the case as can be seen in Figure 3-2.

3.4.2 Convergence to equalized networks

One of the key concepts behind our analysis is the notion of equalized networks. In

particular, in Lemma 7 we see that if a network map can be implemented by an

equalized network, then there is no gap between the induced regularizer and its convex

envelope. It is natural to ask if dropout training indeed finds such equalized networks.

92

102 103 104

Training iterations

10−3

10−1

101

103

105

No
rm

al
ize

d
Eq

ua
liz

at
io

n
Ga

p

r1(t)
r2(t)
r3(t)
r4(t)
r5(t)
r(t)

Figure 3-3. The normalized equalization gap r(t)
ℓ , which captures the gap between the

sub-regularizers and their respective lower bounds, is plotted as a function of the number
of iterations. Dropout converges to the set of equalized networks.

As we will discuss, Figure 3-3 answers this question affirmatively.

Recall that a network is equalized if and only if each and every sub-regularizer

achieves its respective lowerbound in Equation 3.14, i.e. Rl({Wi}) = LBl({Wi}) for

all l ∈ [k]. Figure 3-3 illustrates that dropout training consistently decreases the gap

between the sub-regularizers and their respective lowerbounds. Here, the network has

one output neuron, five hidden layers each of width 5, and input dimensionality of

d0 = 5. In Figure 3-3 we plot the normalized equalization gap r(t)
ℓ := Rℓ({W(t)

i })
LBℓ({W(t)

i })
− 1 of

the network under dropout training as a function of the iteration number. Similarly, we

define the normalized equalization gap for the explicit regularizer r(t) = R({Wi})
Θ∗∗(Wk+1→1)−1.

The network quickly becomes (approximately) equalized, and thereafter the trajectory

of dropout training stays close to the equalized networks. We believe that this

observation can be helpful in analyzing the dynamics of dropout training, which we

leave for future work.

93

3.5 Discussion

Previous work of [ZZ15, HLL+16, CHL+18] study dropout training with ℓ2-loss in

matrix factorization. In the previous Chapter, we also study dropout training with

ℓ2-loss in shallow linear networks. The work that is most relevant to us is that

of [CHL+18], whose results are extended to the case of deep linear networks in this

paper. In particular, we derive the explicit regularizer induced by dropout, which

happens to be composed of the ℓ2-path regularizer and other rescaling invariant

regularizers. Furthermore, we show that the convex envelope of the induced regularizer

factors into an effective regularization parameter and the square of the nuclear norm

of network map multiplied with the principal root of the second moment of the input

distribution. We further highlight equalization as a key network property under which

the induced regularizer equals its convex envelope. We specify a subclass of problems

satisfying the equalization property, for which we completely characterize the optimal

networks that dropout training is biased towards.

94

Chapter 4

Statistical Guarantees for Dropout

In the previous two chapters, we laid out a foundation for a formal understanding of how

dropout explicitly regularizes the learning objective. We focused on linear regression

with shallow and deep linear networks (in Chapter 2 and Chapter 3, respectively), and

provided a range of theoretical and empirical results suggesting that dropout explicitly

biases the learning algorithm towards low-rank solutions.

In Chapter 3, we demonstrated the explicit form of the regularizer due to dropout

for general deep linear networks of any architecture, which recovers our results for

two-layer linear networks in Chapter 2 as a special case. We showed that the regularizer

is a data-dependent quantity which includes (is equal to, for shallow networks) the

ℓ2-path norm of the network as well as other rescaling invariant terms that can be

seen as product of the weights along certain circles in the graph of the network. We

then analyzed the induced regularizer, i.e., the minimum of the explicit regularizer

across all possible reparameterization of the network which compute the same function.

We characterized a sufficient condition – always satisfied by shallow networks, and

arbitrary deep networks with a single output neuron – under which, the induced

regularizer reduces to a nuclear norm penalty.

The theoretical results presented in the previous chapters give precise charac-

terization of the inductive bias due to dropout for factored models used in lin-

95

ear regression. In particular, the nuclear norm penalty, which is explicitly in-

duced by dropout in deep regression, is the canonical regularizer in low-rank ma-

trix learning problems, and is known to yield a rich inductive bias in such prob-

lems [SRJ04, Bac08, RFP10, SS10, CT10, KLT11]. However, neither of the previous

chapters discuss how the induced regularizer provides capacity control, or equivalently,

help us establish generalization bounds for dropout. It is thus natural to take a step

forward and ask how does the regularizer induced by dropout help generalization?

In this chapter, we provide an answer to this question. First, we give explicit

forms of the regularizers induced by dropout for the matrix sensing problem and

two-layer neural networks with ReLU activations. Further, we leverage tools from

statistical learning theory and establish capacity control due to dropout by giving

precise generalization bounds. Our key contributions are as follows.

1. Our generalization bounds are solely in terms of the value of the explicit regu-

larizer due to dropout. This is a significant departure from most of the prior

work wherein dropout is analyzed in conjunction with additional norm-based

capacity control, e.g., max-norm [WZZ+13, GZ16], or ℓp norm on the weights of

the model [ZW18].

2. Our generalization bounds are data-dependent. We identify a simple distribu-

tional property (a notion we refer to as retentivity) that yields tight generalization

bounds as evidenced by matching lower and upper bounds. We believe that this

property may be useful more generally; see [ZDK+21] for another application.

3. Our results emphasize the role of parametrization, i.e., the choice of model

architecture. We find that dropout does not yield useful capacity control when

training a two-layer linear networks (unless we further assume that the covariance

matrix of input features satisfies certain isotropic assumption). On the other

hand, dropout for training a network with convolutional topology or a non-

96

linearity imparts useful inductive bias (see Section 4.4 for more details).

4. We provide extensive numerical evaluations for validating our theory including

verifying that the proposed theoretical bound on the Rademacher complexity

is predictive of the observed generalization gap as well as highlighting how

dropout breaks “co-adaptation”, a notion that was the main motivation behind

the invention of dropout [HSK+12].

The rest of this chapter is organized as follows. In Section 4.1, we survey the

related work. In Section 4.2, we study dropout for matrix completion, wherein, the

matrix factors are dropped randomly during training. We show that this algorithmic

procedure induces a data-dependent regularizer that in expectation behaves similar

to the weighted trace-norm which has been shown to yield strong generalization

guarantees for matrix completion [FSSS11]. In Section 4.3, we study dropout in

two-layer ReLU networks. We show that the regularizer induced by dropout is a

data-dependent measure that in expectation behaves as ℓ2-path norm [NSS15], and

establish distribution-dependent generalization bounds. We prove the main results

in Section 4.5. In Section 4.6, we present empirical evaluations that confirm our

theoretical findings for matrix completion and deep regression on real world datasets

including the MovieLens data, as well as the MNIST and Fashion MNIST datasets.

4.1 Related Work

There has been several studies in recent years aimed at establishing theoretical

underpinnings of why and how dropout helps with generalization. Of particular

interest to the focus of this chapter, the works of [ZW18], [GZ16], and [WZZ+13]

bound the Rademacher complexity of deep neural networks trained using dropout. In

particular, [GZ16] show that the Rademacher complexity of the target class decreases

polynomially or exponentially, for shallow and deep networks, respectively, albeit

97

they assume additional norm bounds on the weight vectors. Similarly, the works of

[WZZ+13] and [ZW18] assume that certain norms of the weights are bounded, and

show that the Rademacher complexity of the target class decreases with dropout rates.

We argue in this paper that dropout alone does not directly control the norms

of the weight vectors; therefore, each of the works above fail to capture the practice.

We emphasize that none of the previous works provide a generalization guarantee,

i.e., a bound on the gap between the population risk and the empirical risk, merely

in terms of the value of the explicit regularizer due to dropout. We give a first such

result for dropout in the context of matrix completion and for a single hidden layer

ReLU network.

4.2 Matrix Sensing

We begin with understanding dropout for matrix sensing, a problem which arguably

is an important instance of a matrix learning problem with lots of applications, and is

well understood from a theoretical perspective. The problem setup is the following.

Let M∗ ∈ Rd2×d0 be a matrix with rank r∗ := Rank(M∗). Let A(1), . . . ,A(n) be a set of

measurement matrices of the same size as M∗. The goal of matrix sensing is to recover

the matrix M∗ from n observations of the form yi = ⟨M∗,A(i)⟩ such that n≪ d2d0. A

natural approach is to represent the matrix in terms of factors and solve the following

empirical risk minimization problem:

min
U,V

ˆ︁L(U,V) := ˆ︁Ei(yi − ⟨UV⊤,A(i)⟩)2 (4.1)

where U = [u1, . . . , ud1] ∈ Rd2×d1 ,V = [v1, . . . , vd1] ∈ Rd0×d1 . When the number

of factors is unconstrained, i.e., when d1 ≫ r∗, there exist many “bad” empirical

minimizers, i.e., those with a large true risk L(U,V) := E(y−⟨UV⊤,A⟩)2. Interestingly,

[LMZ18] showed recently that under a restricted isometry property (RIP), despite the

existence of such poor ERM solutions, gradient descent with proper initialization is

98

implicitly biased towards finding solutions with minimum nuclear norm – this is an

important result which was first conjectured and empirically verified by [GWB+17].

We do not make an RIP assumption here. Further, we argue that for the most part,

modern machine learning systems employ explicit regularization techniques. In fact,

as we show in the experimental section, the implicit bias due to (stochastic) gradient

descent does not prevent it from blatant overfitting in the matrix completion problem.

We propose solving the ERM problem (4.1) using dropout, where at training

time, corresponding columns of U and V are dropped uniformly at random. As

opposed to an implicit effect of gradient descent, dropout explicitly regularizes the

empirical objective. It is then natural to ask, in the case of matrix sensing, if dropout

also biases the ERM towards certain low norm solutions. To answer this, we begin

with the observation that dropout can be viewed as an instance of SGD on the

following objective [WM13, SHK+14] ˆ︁Ldrop(U,V) = ˆ︁EjEB(yj − ⟨UBV⊤,A(j)⟩)2, where

B ∈ Rd1×d1 is a diagonal matrix whose diagonal elements are Bernoulli random

variables distributed as Bii ∼ 1
1−pBer(1− p). It is easy to show that for p ∈ [0, 1):

ˆ︁Ldrop(U,V) = ˆ︁L(U,V) + p

1− p
ˆ︁R(U,V), (4.2)

where ˆ︁R(U,V) := ∑︁d1
i=1

ˆ︁Ej(u⊤
i A(j)vi)2 is a data-dependent term that captures the

explicit regularizer due to dropout. A similar result was shown by [MAV18], but we

provide a proof for completeness (see Proposition 3 in Section 4.5).

Furthermore, given that we seek a minimum of ˆ︁Ldrop, it suffices to consider the

factors with the minimal value of the regularizer among all that yield the same

empirical loss. This motivates studying the following distribution-dependent induced

regularizer:

Θ(M):= min
UV⊤=M

R(U,V), where R(U,V):=EA[ˆ︁R(U,V)].

We instantiate induced regularizer for two instances of random measurements (See

Proposition 4 in Section 4.5).

99

Gaussian Measurements. For all j ∈ [n], let A(j) be standard Gaussian matrices.

In this case, it is easy to see that L(U,V) = ∥M∗ −UV⊤∥2
F and we recover the matrix

factorization problem. Furthermore, we know from [MA19] that dropout regularizer

acts as trace-norm regularization, i.e., Θ(M) = 1
d1
∥M∥2

∗.

Matrix Completion. For all j ∈ [n], let A(j) be an indicator matrix drawn from a

product distribution over the rows and columns. That is, the probability of choos-

ing the indicator of the (i, k)-th element is p(i)q(k), where p(i) and q(k) denote

the probability of choosing the i-th row and the k-th column, respectively. Then,

Θ(M) = 1
d1
∥ diag(√p)UV⊤ diag(√q)∥2

∗ is the weighted trace-norm studied by [SS10]

and [FSSS11].

These observations are specifically important because they connect dropout, an

algorithmic heuristic in deep learning, to strong complexity measures that are empiri-

cally effective as well as theoretically well understood. To illustrate, here we give a

generalization bound for matrix completion using dropout in terms of the value of the

explicit regularizer at the minimizer.

Theorem 11. Assume that d2 ≥ d0 and ∥M∗∥ ≤ 1. Furthermore, assume that

mini,k p(i)q(k) ≥ log(d2)
n

√
d2d0

. Let Let (U,V) be the output of ERM with dropout with

R(U,V) ≤ α/d1. Then, for any δ ∈ (0, 1), the following generalization bounds holds

with probability at least 1− δ over a sample of size n:

L(g(UV⊤)) ≤ ˆ︁L(U,V) + 8
√︄

2αd2 log(d2) + 1
4 log(2/δ)

n

where g(M) thresholds M at ±1, i.e. g(M)(i, j) = max{−1,min{1,M(i, j)}}, and

L(g(UV⊤)) := E(y − ⟨g(UV⊤),A⟩)2 is the true risk of g(UV⊤).

The proof of Theorem 11 follows from standard generalization bounds for ℓ2

loss [MRT18] based on the Rademacher complexity [BM02] of the class of functions with

weighted trace-norm bounded by
√
α, i.e. Mα := {M : ∥ diag(√p)M diag(√q)∥2

∗ ≤ α}.

The non-degeneracy condition mini,j p(i)q(j) ≥ log(d2)
n

√
d2d0

is required to obtain a bound

100

on the Rademacher complexity of Mα, as established by [FSSS11]. Furthermore,

since the induced regularizer is scaled as 1/d1 compared to the squared weighted

trace-norm, i.e. Θ(UV⊤) = 1
d1
∥ diag(√p)UV⊤ diag(√q)∥2

∗, we scale α accordingly by

letting R(U,V) ≤ α/d1.

In practice, for models that are trained with dropout, the training error ˆ︁L(U,V)

is negligible (see Figure 4-1 for experiments on the MovieLens dataset). Moreover,

given that the sample size is large enough, the third term can be made arbitrarily

small. Having said that, the second term, which is Õ(
√︂
αd2/n), dominates the right

hand side of generalization error bound in Theorem 20. In Appendix, we also give

optimistic generalization bounds that decay as Õ(ad2/n).

Finally, the required sample size depends on the value of the explicit regularizer

(i.e., α/d1), and hence, on the dropout rate p. In particular, increasing the dropout

rate increases the regularization parameter λ := p
1−p , thereby intensifying the penalty

due to the explicit regularizer. Intuitively, a larger dropout rate p results in a smaller α,

thereby a tighter generalization gap can be guaranteed. We show through experiments

that that is indeed the case in practice.

4.2.1 Comparison with Previous Work

Our study of dropout in this section is motivated in part by recent works of [CHL+18],

as well as our own results in Chapter 2 and Chapter 3. This line of work was initiated by

[CHL+18], who studied dropout for low-rank matrix factorization without constraining

the rank of the factors or adding an explicit regularizer to the objective. They show

that dropout in the context of matrix factorization yields an explicit regularizer whose

convex envelope is given by nuclear norm. We further strengthened this result in

Chapter 3, where we show that induced regularizer is indeed nuclear norm.

While matrix factorization is not a learning problem per se (for instance, what is

training versus test data), as we showed in Chapter 2, training deep linear networks

101

with ℓ2-loss using dropout reduces to the matrix factorization problem if the marginal

distribution of the input feature vectors is assumed to be isotropic, i.e., E[xx⊤] = I.

We note that this is a strong assumption. If we do not assume isotropy, we show

that dropout induces a data-dependent regularizer which amounts to a simple scaling

of the parameters and, therefore, does not control capacity in any meaningful way.

We revisit this discussion in Section 4.4. To summarize, while we are motivated by

[CHL+18], the problem setup, the nature of statements in this chapter, and the tools

we use are different from that in [CHL+18].

We note that, different from our results in Chapter 2, in this chapter, we rigorously

argue for dropout in matrix completion by 1) showing that the induced regularizer is

equal to weighted trace-norm, which as far as we know, is a novel result, 2) giving strong

generalization bounds, and 3) providing extensive experimental evidence that dropout

provides state of the art performance on one of the largest datasets in recommendation

systems research. Beyond that, in the next section, we rigorously extend our results

to two layer ReLU networks, describe the explicit regularizer, bound the Rademacher

complexity of the hypothesis class controlled by dropout, show precise generalization

bounds, and support them with empirical results.

4.3 Non-linear Networks

Next, we focus on neural networks with a single hidden layer. Let X ⊆ Rd0 and

Y ⊆ [−1, 1]d2 denote the input and output spaces, respectively. Let D denote the joint

probability distribution on X × Y. Given n examples {(xi, yi)}ni=1 ∼ Dn drawn i.i.d.

from the joint distribution and a loss function ℓ : Y × Y → R, the goal of learning is

to find a hypothesis fw : X → Y, parameterized by w, that has a small population

risk L(fw) := ED[ℓ(fw(x), y)].

We focus on the squared ℓ2 loss, i.e., ℓ(y, y′) = ∥y − y′∥2, and study the gen-

102

eralization properties of the dropout algorithm for minimizing the empirical risk
ˆ︁L(fw) := ˆ︁Ei[∥yi − fw(xi)∥2]. We consider the hypothesis class associated with feed-

forward neural networks with 2 layers, i.e., functions of the form fw(x) = Uσ(V⊤x),

where U = [u1, . . . , ud1] ∈ Rd2×d1 ,V = [v1, . . . , vd1] ∈ Rd0×d1 are the weight matrices.

The parameter w is the collection of weight matrices {U,V} and σ : R → R is the

ReLU activation function applied entrywise to an input vector. As in Section 4.2, we

view dropout as an instance of stochastic gradient descent on the following dropout

objective:
ˆ︁Ldrop(w) := ˆ︁EiEB∥yi−UBσ(V⊤xi)∥2, (4.3)

where B is a diagonal random matrix with diagonal elements distributed i.i.d. as

Bii ∼ 1
1−pBern(1− p), i ∈ [d1], for some dropout rate p. We seek to understand the

explicit regularizer due to dropout:

ˆ︁R(w) := ˆ︁Ldrop(w)− ˆ︁L(fw). (4.4)

We denote the output of the i-th hidden node on an input vector x by ai(x) ∈ R;

for example, a2(x) = σ(v⊤
2 x). Similarly, the vector a(x) ∈ Rd1 denotes the activation of

the hidden layer on input x. Using this notation, we can rewrite the objective in (4.3)

as ˆ︁Ldrop(w) := EiEB∥yi − UBa(xi)∥2. It is then easy to show that the regularizer due

to dropout in (4.4) is given as (See Proposition 5 in Section 4.5):

ˆ︁R(w) = p

1− p

d1∑︂
j=1
∥uj∥2ˆ︁a2

j , where ˆ︁aj =
√︂ˆ︁Eiaj(xi)2.

The explicit regularizer ˆ︁R(w) is a summation over hidden nodes, of the product of

the squared norm of the outgoing weights with the empirical second moment of the

output of the corresponding neuron. We should view it as a data-dependent variant

of the ℓ2 path-norm of the network, studied recently by [NTS15] and shown to yield

capacity control in deep learning. Indeed, if we consider ReLU activations and input

distributions that are symmetric and isotropic [MAV18], the expected regularizer is

103

equal to the sum over all paths from input to output of the product of the squares

of weights along the paths, i.e., R(w) := E[ˆ︁R(w)] = 1
2
∑︁d0,d1,d2
i0,i1,i2=1 U(i2, i1)2V(i0, i1)2,

which is precisely the squared ℓ2 path-norm of the network. We refer the reader to

Proposition 6 in the Appendix for a formal statement and proof.

Generalization Bounds. To understand the generalization properties of dropout,

we focus on the following distribution-dependent hypothesis class

Fα := {fw : x ↦→ u⊤σ(V⊤x),
d1∑︂
i=1
|ui|ai ≤ α}, (4.5)

where u ∈ Rd1 is the top layer weight vector, ui denotes the i-th entry of u, and

a2
i :=Ex[ˆ︁a2

i] =Ex[ai(x)2] is the expected squared activation of the i-th hidden node.

For simplicity, we focus on networks with one output neuron (d2 = 1); extension to

multiple output neurons is straightforward.

We argue that networks trained with dropout belong to the class Fα, for a small

value of α. In particular, by Cauchy-Schwartz inequality, it is easy to to see that∑︁d1
i=1 |ui|ai ≤

√︂
d1R(w). Thus, for a fixed width, dropout implicitly controls the

function class Fα. More importantly, this inequality is loose if a small subset of

hidden nodes J ⊂ [d1] “co-adapt” in a way that for all j ∈ [d1] \ J , the other

hidden nodes are almost inactive, i.e. ujaj ≈ 0. In other words, by minimizing the

expected regularizer, dropout is biased towards networks where gap between R(w)

and (∑︁d1
i=1|ui|ai)2/d1 is small, which in turn happens if |ui|ai≈|uj|aj,∀i, j∈ [d1]. In

this sense, dropout breaks “co-adaptation” between neurons by promoting solutions

with nearly equal contribution from hidden neurons.

As we mentioned in the introduction, a bound on the dropout regularizer is not

sufficient to guarantee a bound on a norm-based complexity measures that are common

in the deep learning literature (see, e.g., [GRS18] and the references therein), whereas

a norm bound on the weight vector would imply a bound on the explicit regularizer

due to dropout. Formally, we show the following.

104

Proposition 2. For any C > 0, there exists a distribution on the unit Euclidean

sphere, and a network fw : x ↦→ σ(w⊤x), such that R(w) =
√︂
Eσ(w⊤x)2 ≤ 1, while

∥w∥ > C.

Proof of Proposition 2. For δ ∈ (0, 1
2), consider the following random variable:

x =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

[1; 0] with probability δ

[−δ
1−δ ;

√
1−2δ
1−δ] with probability 1−δ

2

[−δ
1−δ ;−

√
1−2δ
1−δ] with probability 1−δ

2

It is easy to check that the x has zero mean and is supported on the unit sphere. Con-

sider the vector w = [1√
δ
; 0]. It is easy to check that x satisfies R(w) =

√︂
Eσ(w⊤x)2 = 1;

however, for any given C, it holds that ∥w∥ ≥ C as long as we let δ = C2.

In other words, even though we connect the dropout regularizer to path-norm, the

data-dependent nature of the regularizer prevents us from leveraging that connection

in data-independent manner (i.e., for all distributions). At the same time, making

strong distributional assumptions (as in Proposition 6) would be impractical. Instead,

we argue for the following milder condition on the input distribution which we show

as sufficient to ensure generalization.

Assumption 1 (β-retentive). The marginal input distribution is β-retentive for some

β ∈ (0, 1/2], if for any non-zero vector v ∈ Rd, it holds that Eσ(v⊤x)2 ≥ βE(v⊤x)2.

Intuitively, what the assumption implies is that the variance (aka, the information

or signal in the data) in the pre-activation at any node in the network is not quashed

considerably due to the non-linearity. In fact, no reasonable training algorithm should

learn weights where β is small. However, we steer clear from algorithmic aspects of

dropout training, and make the assumption above for every weight vector as we need

to take a union bound. We now present the first main result of this section, which

bounds the Rademacher complexity of Fα in terms of α, the retentiveness coefficient

105

β, and Mahalanobis norm of data w.r.t. the pseudo-inverse of the second moment

matrix, i.e. ∥X∥2
C† = ∑︁n

i=1 x⊤
i C†xi.

Theorem 12. For any sample S = {(xi, yi)}ni=1 of size n, RS(Fα) ≤ 2α∥X∥C†

n
√
β
. Fur-

thermore, it holds for the expected Rademacher complexity that Rn(Fα) ≤ 2α
√︃

Rank(C)
βn

.

First, note that the bound depends on the quantity ∥X∥C† which can be in the

same order as ∥X∥F with both scaling as ≍
√
nd0; the latter is more common in

the literature [NLB+18, BFT17, NBS17, GRS18, NTS15]. This is unfortunately

unavoidable, unless one makes stronger distributional assumptions.

Second, as we discussed earlier, the dropout regularizer directly controls the value

of α, thereby controlling the Rademacher complexity in Theorem 12. This bound

also gives us a bound on the Rademacher complexity of the networks trained using

dropout. To see that, consider the following class of networks with bounded explicit

regularizer, i.e., Hr := {hw : x ↦→ u⊤σ(V⊤x), R(u,V) ≤ r}. Then, Theorem 12 yields

RS(Hr) ≤
2
√
d1r∥X∥C†

n
√
β

. In fact, we can show that this bound is tight up to 1/
√
β by a

reduction to the linear case. Formally, we show the following.

Theorem 13 (Lowerbound). There is a constant c such that for any r>0, RS(Hr)≥
c
√
d1r∥X∥C†
n

.

Moreover, it is easy to give a generalization bound based on Theorem 12 that

depends only on the distribution dependent quantities α and β. Let gw(·) :=

max{−1,min{1, fw(·)}} project the network output fw onto the range [−1, 1]. We

have the following generalization gurantees for gw.

Corollary 2. For any w ∈ Fα, for any δ ∈ (0, 1), with probability at least 1− δ over

a sample S of size n, we have L(gw) ≤ ˆ︁L(gw) + 16α∥X∥C†√
βn

+ 12
√︂

log(2/δ)
2n .

Proof of Corollary 2. We use the standard generalization bound in Theorem 19 for

106

class Gα:

LD(gw) ≤ ˆ︁LS(gw) + 4MRS(Gα) + 3M2

√︄
log(2/δ)

2n

≤ ˆ︁LS(gw) + 8RS(Fα) + 12
√︄

log(2/δ)
2n (Lemma 10)

≤ ˆ︁LS(gw) + 16α∥X∥C†√
βn

+ 12
√︄

log(2/δ)
2n (Theorem 12)

where second inequality follows because the maximum deviation parameter M in

Theorem 19 is bounded as

M = sup
w∈W

sup
(x,y)∈X ×Y

|y − gw(x)| ≤ sup
w∈W

sup
(x,y)∈X ×Y

|y|+ |gw(x)| ≤ 2.

We would like to remark that the focus here is on understanding how the expected

explicit regularizer alone – without any additional norm-bounds on the weights – can

provide generalization. If one is interested in predicting the generalization gap, then

one can estimate the (empirical) explicit regularizer on a held-out dataset, and appeal

to simple concentration arguments, just as we do in our experiments.

β-independent Bounds. Geometrically, β-retentiveness requires that for any hyper-

plane passing through the origin, both halfspaces contribute significantly to the second

moment of the data in the direction of the normal vector. It is not clear, however, if

β can be estimated efficiently on a dataset. Nonetheless, when X ⊆ Rd0
+ , which is the

case for image datasets, a simple symmetrization technique, described below, allows

us to give bounds that are β-independent. We propose the following randomized

symmetrization. Given a training sample S = {(xi, yi), i ∈ [n]}, consider the randomly

perturbed dataset, S ′ = {(ζixi, yi), i ∈ [n]}, where ζi’s are i.i.d. Rademacher random

variables. We give a generalization bound (w.r.t. the original data distribution) for

the hypothesis class with bounded regularizer w.r.t. perturbed data distribution.

107

Corollary 3. Given an i.i.d. sample S = {(xi, yi)}ni=1, let F ′
α := {fw : x ↦→

u⊤σ(V⊤x), ∑︁d1
i=1 |ui|a′

i ≤ α}, where a′
i
2 := Ex,ζ [ai(ζx)2]. For any w ∈ F ′

α, for any

δ ∈ (0, 1), with probability at least 1− δ over a sample of size n and the randomization

in symmetrization, we have that L(gw) ≤ 2ˆ︁L(gw) + 46α∥X∥C†
n

+ 24
√︂

log(2/δ)
2n , where ˆ︁L is

evaluated on the symmetrized sample S ′.

Note that the population risk of the clipped predictor gw(·) :=max{−1,min{1,fw(·)}}

is bounded in terms of empirical risk on S ′. Finally, we verify in Section 4.6 that

symmetrization of the training set, on MNIST and FashionMNIST datasets, does not

have an effect on performance of the trained models.

4.3.1 Comparison with Previous Work

We would like to make a remark regarding the previous work of [MZGW18]. They

consider a variant of dropout, which they call “truthful” dropout, that ensures that

the output of the randomly perturbed network is unbiased.

Note that the results of this section, and in particular Corollary 2, bounds the

generalization gap, i.e., L(·)− ˆ︁L(·). However, rather than bound generalization gap,

[MZGW18] bound the gap between the population risk and the dropout objective,

i.e., the empirical risk plus the explicit regularizer. That is, [MZGW18] bound

L(·)− ˆ︁Ldrop(·), where ˆ︁Ldrop(w) = ˆ︁L(fw) + ˆ︁R(w), as in Equation (4.4).

The explicit regularizer ˆ︁R(·) is a positive quantity that does not vanish with the

sample size. Therefore, the bound of [MZGW18] can guarantee that the generalization

gap decays as 1/
√
n only if the dropout rate decreases as 1/

√
n (to ensure that

ˆ︁R(·) = O(1/
√
n)). This is a stringent requirement on the dropout rate – in practice,

dropout rate is treated as a hyperparameter that is tuned over a validation set,

or otherwise is simply set to a constant, which does not decay with the sample

size [HSK+12, SHK+14]. In sharp contrast, our analysis here is valid for any dropout

rate.

108

4.4 Role of Parametrization

In this section, we argue that parametrization plays an important role in determining

the nature of the inductive bias. We begin by considering matrix sensing in non-

factorized form, which entails minimizing ˆ︁L(M) := ˆ︁Ei(yi−⟨vec (M) , vec
(︂
A(i)

)︂
⟩)2, where

vec (M) denotes the column vectorization of M. Then, the expected explicit regularizer

due to dropout equals R(M) = p
1−p∥ vec (M) ∥2

diag(C), where C = E[vec (A) vec (A)⊤]

is the second moment of the measurement matrices. For instance, with Gaussian

measurements, the second moment equals the identity matrix, in which case, the

regularizer reduces to the Frobenius norm of the parameters R(M) = p
1−p∥M∥

2
F . While

such a ridge penalty yields a useful inductive bias in linear regression, it is not “rich”

enough to capture the kind of inductive bias that provides rank control in matrix

sensing.

However, simply representing the hypotheses in a factored form alone is not

sufficient in terms of imparting a rich inductive bias to the learning problem. Recall

that in linear regression, dropout, when applied on the input features, yields ridge

regularization. However, if we were to represent the linear predictor in terms of a

deep linear network, then we argue that the effect of dropout is markedly different.

Consider a deep linear network, fw : x ↦→Wk · · ·W1x with a single output neuron. In

this case, [MA19] show that ν∥f∥2ˆ︁C = min
fw=f

ˆ︁R(w), where ν is a regularization parameter

independent of the parameters w. Consequently, in deep linear networks with a single

output neuron, dropout reduces to solving

min
u∈Rd0

ˆ︁Ei(yi − u⊤xi)2 + ν∥u∥2ˆ︁C.
All the minimizers of the above problem are solutions to the system of linear equations

(1 + ν
n
)XX⊤u = Xy, where X = [x1, . . . , xn] ∈ Rd0×n, y = [y1; . . . ; yn] ∈ Rn are the

design matrix and the response vector, respectively. In other words, the dropout

regularizer manifests itself merely as a scaling of the parameters.

109

What we argue above may at first seem to contradict the results of Section 4.2

on matrix sensing, which is arguably an instance of regression with a two-layer linear

network. Note though that casting matrix sensing in a factored form as a linear

regression problem requires us to use a convolutional structure. This is easy to check

since

⟨UV⊤,A⟩ = ⟨vec
(︂
U⊤

)︂
, vec

(︂
V⊤A⊤

)︂
⟩

= ⟨vec
(︂
U⊤

)︂
, (Id2 ⊗ V⊤) vec

(︂
A⊤

)︂
⟩,

where ⊗ is the Kronecker product, and we used the fact that vec (AB) = (I⊗A) vec (B)

for any pair of matrices A,B. The expression (I⊗ V⊤) represents a fully connected

convolutional layer with d1 filters specified by columns of V. The convolutional

structure in addition to dropout is what imparts the problem of matrix sensing the

nuclear norm regularization. For nonlinear networks, however, a simple feed-forward

structure suffices as we saw in Section 4.3.

4.5 Proofs

4.5.1 Matrix Sensing

The following Proposition gives the explicit regularizer due to dropout in matrix

sensing.

Proposition 3 (Dropout regularizer in matrix sensing). The following holds for any

p ∈ [0, 1):
ˆ︁Ldrop(U,V) = ˆ︁L(U,V) + λ ˆ︁R(U,V), (4.6)

where ˆ︁R(U,V) = ∑︁d1
i=1

ˆ︁Ej(u⊤
i A(j)vi)2 and λ = p

1−p is the regularization parameter.

Proof of Proposition 3. Similar statements and proofs can be found in several previous

works [SHK+14, WM13, CHL+18, MAV18]. For completeness, we include a proof

110

here. The following equality follows from the definition of variance:

Eb[(yi − ⟨UBV⊤,A(i)⟩)2] =
(︂
Eb[yi − ⟨UBV⊤,A(i)⟩]

)︂2
+ Var(yi − ⟨UBV⊤,A(i)⟩)

(4.7)

Recall that for a Bernoulli random variable Bii, we have E[Bii] = 1 and Var(Bii) = p
1−p .

Thus, the first term on right hand side is equal to (yi − ⟨UV⊤,A(i)⟩)2. For the second

term we have

Var(yi − ⟨UBV⊤,A(i)⟩) = Var(
d1∑︂
j=1

Bjju⊤
j A(i)vj)

=
d1∑︂
j=1

(u⊤
j A(i)vj)2 Var(Bjj)

= p

1− p

d1∑︂
j=1

(u⊤
j A(i)vj)2

Plugging the above into Equation (4.7) and averaging over samples we get

ˆ︁Ldrop(U,V) = ˆ︁EiEb[(yi − ⟨UBV⊤,A(i)⟩)2]

= ˆ︁Ei(yi − ⟨UV⊤,A(i)⟩)2 + ˆ︁Ei p

1− p

d1∑︂
j=1

(u⊤
j A(i)vj)2

= ˆ︁L(U,V) + p

1− p
ˆ︁R(U,V).

which completes the proof.

The following Proposition gives the induced regularizer in matrix completion.

Proposition 4. [Induced regularizer] For j ∈ [n], let A(j) be an indicator matrix

whose (i, k)-th element is selected randomly with probability p(i)q(k), where p(i) and

q(k) denote the probability of choosing the i-th row and the k-th column. Then

Θ(M) = 1
d1
∥ diag(√p)UV⊤ diag(√q)∥2

∗.

Proof of Proposition 4. For any pair of factors (U,V) it holds that

R(U,V) =
d1∑︂
i=1

E(u⊤
i Avi)2 =

d1∑︂
i=1

d2∑︂
j=1

d0∑︂
k=1

p(j)q(k)(u⊤
i eje⊤

k vi)2

=
d1∑︂
i=1

d2∑︂
j=1

d0∑︂
k=1

p(j)q(k)U(j, i)2V(k, i)2 =
d1∑︂
i=1
∥ diag(√p)ui∥2∥ diag(√q)vi∥2

111

We can now lower bound the right hand side above as follows:

R(U,V) ≥ 1
d1

⎛⎝ d1∑︂
i=1
∥ diag(√p)ui∥∥ diag(√q)vi∥

⎞⎠2

= 1
d1

⎛⎝ d1∑︂
i=1
∥ diag(√p)uiv⊤

i diag(√q)∥∗

⎞⎠2

≥ 1
d1

⎛⎝∥ diag(√p)
d1∑︂
i=1

uiv⊤
i diag(√q)∥∗

⎞⎠2

= 1
d1
∥ diag(√p)UV⊤ diag(√q)∥2

∗

where the first inequality is due to Cauchy-Schwartz and the second inequality follows

from the triangle inequality. The equality right after the first inequality follows

from the fact that for any two vectors a, b, ∥ab⊤∥∗ = ∥ab⊤∥ = ∥a∥∥b∥. Since the

inequalities hold for any U,V, it implies that

Θ(UV⊤) ≥ 1
d1
∥ diag(√p)UV⊤ diag(√q)∥2

∗.

Applying Theorem 4 on (diag(√p)U, diag(√p)V), there exist a rotation matrix Q such

that

∥ diag(√p)Uqi∥∥ diag(√q)Vqi∥ = 1
d1
∥ diag(√p)UV⊤ diag(√q)∥∗

We evaluate the expected dropout regularizer at UQ,VQ:

R(UQ,VQ) =
d1∑︂
i=1
∥ diag(√p)Uqi∥2∥ diag(√q)Vqi∥2

=
d1∑︂
i=1

1
d2

1
∥ diag(√p)UV⊤ diag(√q)∥2

∗

= 1
d1
∥ diag(√p)UV⊤ diag(√q)∥2

∗ ≤ Θ(UV⊤)

which completes the proof of the first part.

We now provide a proof for Theorem 11.

Proof of Theorem 11. We use Theorem 19 to bound the population risk in terms of

the Rademacher complexity of the target class. Define the class of predictors with

weighted trace-norm bounded by
√
α, i.e.

Mα = {M : ∥ diag(√p)M diag(√q)∥2
∗ ≤ α}.

112

In particular dropout empirical risk minimizers U,V belong to this class:

∥ diag(√p)UV⊤ diag(√q)∥2
∗ = d1Θ(UV⊤) ≤ d1R(U,V) ≤ α

where the first inequality holds by definition of the induced regularizer, and the second

inequality follows from the assumption of the theorem. Since g is a contraction,

by Talagrand’s lemma and Theorem 20, we have that Rn(g ◦ Mα) ≤ Rn(Mα) ≤√︂
αd2 log(d2)

n
. To obtain the maximum deviation parameter M in Theorem 19, we

note that the assumption ∥M∗∥ ≤ 1 implies that |M∗(i, j)| ≤ 1 for all i, j, so that

g(M∗) = M∗. We have that:

max
A
|⟨M∗ − g(UV⊤),A⟩| = max

i,j
|⟨M∗ − g(UV⊤), eie⊤

j ⟩|

≤ max
i,j
|M∗(i, j)|+ max

i,j
|⟨UV⊤, eie⊤

j ⟩|

≤ ∥M∗∥+ 1 ≤ 2

Let L(g(UV⊤)) := E(y − ⟨g(UV⊤),A⟩)2 and ˆ︁L(g(UV⊤)) := ˆ︁Ei(yi − ⟨g(UV⊤),A(i)⟩)2

denote the true risk and the empirical risk of g(UV⊤), respectively. Plugging the

above results in Theorem 19, we get

L(g(U,V)) ≤ ˆ︁L(g(U,V)) + 8Rn(g ◦Mα) + 4
√︄

log(2/δ)
2n

≤ ˆ︁L(U,V) + 8
√︄
αd2 log(d2)

n
+ 4

√︄
log(2/δ)

2n

≤ ˆ︁L(U,V) + 8
√︄

2αd2 log(d2) + 1
4 log(2/δ)

n

where the second inequality holds since ˆ︁L(g(U,V)) ≤ ˆ︁L(U,V).

4.5.2 Non-linear Neural Networks

We begin this section by giving the dropout regularizer in deep regression.

Proposition 5 (Dropout regularizer in deep regression).

ˆ︁Ldrop(w) = ˆ︁L(w) + ˆ︁R(w), where ˆ︁R(w) = λ
d1∑︂
j=1
∥uj∥2ˆ︁a2

j .

113

where ˆ︁aj =
√︂ˆ︁Eiaj(xi)2 and λ = p

1−p is the regularization parameter.

Proof of Proposition 5. Similar statements and proofs can be found in several previous

works [SHK+14, WM13, CHL+18, MAV18]. Here we include a proof for completeness.

Recall that E[Bii] = 1 and Var(Bii) = p
1−p . Conditioned on x, y in the current

mini-batch, we have that:

EB∥y− U⊤Ba(x)∥2 =
d2∑︂
i=1

(︂
EB[yi − u⊤

i Ba(x)]
)︂2

+
d2∑︂
i=1

Var(yi − u⊤
i Ba(x))

Since E[B] = I, the first term on right hand side is equal to ∥y− U⊤a(x)∥2. For the

second term we have

d2∑︂
i=1

Var(yi − u⊤
i Ba(x)) =

d2∑︂
i=1

Var(
d1∑︂
j=1

Uj,iBjjaj(x))

=
d2∑︂
i=1

d1∑︂
j=1

(Uj,iaj(x))2 Var(Bjj)

= p

1− p

d1∑︂
j=1
∥uj∥2aj(x)2

Thus, conditioned on the sample (x, y), we have that

EB[∥y− U⊤Ba(x)∥2] = ∥y− U⊤a(x)∥2 + p

1− p

d1∑︂
j=1
∥uj∥2aj(x)2

Now taking the empirical average with respect to x, y, we get

ˆ︁Ldrop(w) = ˆ︁L(w) + p

1− p

d1∑︂
j=1
∥uj∥2ˆ︁a2

j = ˆ︁L(w) + ˆ︁R(w)

which completes the proof.

We then focus on two layer networks and characterize the regularizer when the

distribution is symmetric and isotropic.

Proposition 6. Consider a two layer neural network fw(·) with ReLU activation

functions in the hidden layer. Furthermore, assume that the marginal input distribution

114

PX (x) is symmetric and isotropic, i.e., PX (x) = PX (−x) and E[xx⊤] = I. Then the

following holds for the expected explicit regularizer due to dropout:

R(w) := E[ˆ︁R(w)] = λ

2

d0,d1,d2∑︂
i0,i1,i2=1

U(i1, i2)2V(i1, i0)2, (4.8)

Proof of Proposition 6. Using Proposition 5, we have that:

R(w) = E[ˆ︁R(w)] = λ
d1∑︂
j=1
∥uj∥2E[σ(V(j, :)⊤x)2]

It remains to calculate the quantity Ex[σ(V(j, :)⊤x)2]. By symmetry assumption, we

have that PX (x) = PX (−x). As a result, for any v ∈ Rd0 , we have that P(v⊤x) =

P(−v⊤x) as well. That is, the random variable zj := W1(j, :)⊤x is also symmetric

about the origin. It is easy to see that Ez[σ(z)2] = 1
2Ez[z

2].

Ez[σ(z)2] =
∫︂ ∞

−∞
σ(z)2dµ(z) =

∫︂ ∞

0
σ(z)2dµ(z)

=
∫︂ ∞

0
z2dµ(z) = 1

2

∫︂ ∞

∞
z2dµ(z) = 1

2Ez[z
2].

Plugging back the above identity in the expression of R(w), we get that

R(w) = λ
d1∑︂
j=1
∥uj∥2E[(V(j, :)⊤x)2] = λ

2

d1∑︂
j=1
∥uj∥2∥V(j, :)∥2

where the second equality follows from the assumption that the distribution is isotropic.

Next, we define some function classes that will be used frequently in the proofs.

Definition 6. For any closed subset [a, b] ⊂ R, let Π[a,b](y) := max{a,min{b, y}}.

For z := (x, y) and f : X → Y, define the squared loss ℓ2(f, z) := (1− yf(x))2. For a

given value α > 0, consider the following classes

Wα := {w = (u,V) ∈ Rd1 × Rd0×d1 ,
d1∑︂
i=1
|ui|

√︂
Eσ(v⊤

i x)2 ≤ α}

Fα := {fw : x ↦→ u⊤σ(V⊤x), w ∈ Wα},

Gα := Π[−1,1] ◦ Fα = {gw = Π[−1,−1] ◦ fw, fw ∈ Fα}

Lα := {ℓ2 : (gw, z) ↦→ (y − gw(x))2, gw ∈ Gα}

115

Lemma 10. Let Wα,Fα,Gα,Lα be as defined in Definition 6. Then the following

holds true:

1. RS(Gα) ≤ RS(Fα).

2. If Y = {−1,+1} (binary classification), then it holds that RS(Lα) ≤ 2RS(Gα).

Proof. Since Π[−1,−1](·) is 1-Lipschitz, by Talagrand’s contraction lemma, we have

that RS(Gα) ≤ RS(Fα). The second claim follows from

RS(Lα) = Eζ sup
w∈W

1
n

n∑︂
i=1

ζi(yi − gw(xi))2

= Eζ sup
w∈W

1
n

n∑︂
i=1

ζi(1− yigw(xi))2 (yi ∈ {−1,+1})

≤ 2Eζ sup
w∈W

1
n

n∑︂
i=1

ζiyigw(xi)

= 2Eζ sup
w∈W

1
n

n∑︂
i=1

ζigw(xi) = 2RS(Gα)

where the first inequality follows from Talagrand’s contraction lemma due to the fact

that h(z) = (1 − z)2 is 2-Lipschitz for z ∈ [−1, 1], and the penultimate holds true

since for any fixed (yi)ni=1 ∈ {−1,+1}n, the distribution of (ζ1y1, . . . , ζnyn) is the same

as that of (ζ1, . . . , ζn).

We now prove the Rademacher complexity upper bound in Theorem 12.

Proof of Theorem 12. For any j ∈ [h], let a2
j := E[σ(v⊤

j x)2] denote the average squared

activation of the j-th node with respect to the input distribution. Given n i.i.d. samples

S = {x1, · · · , xn}, the empirical Rademahcer complexity is bounded as follows:

RS(Fα) = Eζ sup
f{u,V}∈Fα

1
n

h∑︂
j=1

ujaj
n∑︂
i=1

ζi
σ(v⊤

j xi)
aj

≤ Eζ sup
f{u,V}∈Fα

1
n

h∑︂
j=1
|ujaj| |

n∑︂
i=1

ζi
σ(v⊤

j xi)
aj

|

≤ Eζ

⎡⎣⎛⎝ sup
f{u,V}∈Fα

h∑︂
j=1
|ujaj|

⎞⎠ (︄
sup

V
max
j∈[h]
| 1
n

n∑︂
i=1

ζi
σ(v⊤

j xi)
aj

|
)︄⎤⎦

116

where we used the fact that the supremum of product of positive functions is upper-

bounded by the product of the supremums. By definition of Fα, the first term on the

right hand side is bounded by α. To bound the second term in the right hand side,

we note that the maximum over rows of V⊤ can be absorbed into the supremum.

1
n
Eζ sup

v
|
n∑︂
i=1

ζi
σ(v⊤xi)√︂
E[σ(v⊤x)2]

| = 1
n
Eζ sup

E[σ(v⊤x)2]≤1
|
n∑︂
i=1

ζiσ(v⊤xi)|

≤ 2
n
Eζ sup

E[σ(v⊤x)2]≤1

n∑︂
i=1

ζiσ(v⊤xi)

≤ 2
n
Eζ sup

βE(v⊤x)2≤1

n∑︂
i=1

ζiσ(v⊤xi) (β-retentiveness)

Let C† be the pseudo-inverse of C. We perform the following change the variable:

w← C−†/2v.

R.H.S. ≤ 2
n
Eζ sup

E[(w⊤C†/2x)2]≤1/β

n∑︂
i=1

ζiw⊤C†/2xi

= 2
n
Eζ sup

∥w∥2≤1/β
⟨w,

n∑︂
i=1

ζiC†/2xi⟩

= 2
n
√
β
Eζ∥

n∑︂
i=1

ζiC†/2xi∥

≤ 2
n
√
β

⌜⃓⃓⎷Eζ∥
n∑︂
i=1

ζiC†/2xi∥2 = 2
n
√
β

⌜⃓⃓⎷ n∑︂
i=1

x⊤
i C†xi

where the last inequality holds due to Jensen’s inequality. To bound the expected

Rademacher complexity, we take the expected value of both sides with respect to

sample S, which gives the following:

Rn(Fα) = Ex[RS(Fα)] ≤ 2
n
√
β
ES

⌜⃓⃓⎷ n∑︂
i=1

x⊤
i C†xi ≤

2
n
√
β

⌜⃓⃓⎷ n∑︂
i=1

Exi [x⊤
i C†xi],

where the last inequality holds again due to Jensen’s inequality. Finally, we have that

Exix⊤
i C†xi = Exi⟨xix⊤

i ,C†⟩ = ⟨C,C†⟩ = Rank(C), which completes the proof of the

Theorem.

Next, we give the Rademacher complexity lower bound in Theorem 13.

117

Proof of Theorem 13. For simplicity, assume that the width of the hidden layer is

even. Consider the linear function class:

Gr := {gw : x ↦→ w⊤x, E(w⊤x)2 ≤ d1r/2}.

Recall that Hr := {hw : x ↦→ u⊤σ(V⊤x), R(u,V) ≤ r}. First, we argue that Gr ⊂ Hr.

Let gw ∈ Gr; we show that there exist u,V such that gw = fu,V and fu,V ∈ Hr. Define

u := 2
d1

[1;−1; · · · 1;−1] ∈ Rd1 , and let V = w(e1 − e2 + e3 − e4 + · · ·+ ed1−1 − ed1)⊤,

where ei ∈ Rd1 is the i-th standard basis vector. It’s easy to see that

fu,V(x) = u⊤σ(V⊤x) =
d1∑︂
i=1

uiσ(v⊤
i x)

=
d1∑︂
i=1

2
d1

(−1)i−1σ(v⊤
i x)

=
d1/2∑︂
i=1

2
d1

(σ(v⊤
2i−1x)− σ(v⊤

2ix))

=
d1/2∑︂
i=1

2
d1

(σ(w⊤x)− σ(−w⊤x)) = w⊤x = gw.

Furthermore, it holds for the explicit regularizer that

R(u,V) =
d1∑︂
i=1

u2
iEσ(v⊤

i x)2 =
d1/2∑︂
i=1

4
d2

1

(︂
Eσ(v⊤

2i−1x)2 + Eσ(v⊤
2ix)2

)︂

=
d1/2∑︂
i=1

4
d2

1
E[σ(w⊤x)2 + σ(−w⊤x)2]

= 2
d1

E(w⊤x)2 ≤ r

118

Thus, we have that Gr ⊂ Hr, and the following inequalities follow.

RS(Hr) ≥ RS(Gr) = Eϵi sup
gw∈Gr

1
n

n∑︂
i=1

ϵigw(xi)

= Eϵi sup
E(w⊤x)2≤d1r/2

1
n

n∑︂
i=1

ϵiw⊤xi

= Eϵi sup
w⊤Cw≤d1r/2

1
n
⟨w,

n∑︂
i=1

ϵixi⟩

= Eϵi sup
∥C1/2w∥2≤d1r/2

1
n
⟨C1/2w,

n∑︂
i=1

ϵiC−†/2xi⟩

=
√
d1r√
2n

Eϵi∥
n∑︂
i=1

ϵiC†/2xi∥

≥ c
√
d1r√
2n

⌜⃓⃓⎷ n∑︂
i=1
∥C†/2xi∥2 = c

√
d1r∥X∥C†√

2n

where the last inequality follows from Khintchine-Kahane inequality in Lemma 22.

Proof of Corollary 3. Recall that the input is jointly distributed as (x, y) ∼ D. For

X ⊆ Rd0
+ , let X ′ = X ∪−X be the symmetrized input domain. Let ζ be a Rademacher

random variable. Denote the symmetrized input by x′ = ζx, and the joint distribution

of (x′, y) by D′. By construction, D′ is centrally symmetric w.r.t. x′, i.e., it holds for

all (x, y) ∈ X × Y that D′(x, y) = D′(−x, y) = 1
2D(x, y). As a result, population risk

with respect to the original distribution D can be bounded in terms of the population

risk with respect to the symmetrized distribution D′ as follows:

LD(f) := ED[ℓ(f(x), y)]

≤ ED[ℓ(f(x), y) + ℓ(f(−x), y)]

= 2ED[12ℓ(f(x), y) + 1
2ℓ(f(−x), y)]

= 2EDEζ [ℓ(f(ζx), y) | x, y]

= 2ED′ [ℓ(f(x′), y)] = 2LD′(f) (4.9)

Moreover, since D′ is centrally symmetric, Assumption 1 holds with β = 1
2 . The proof

of Corollary 3 follows by doubling the right hand side of inequalities in Corollary 2,

and substituting β = 1
2 .

119

plain SGD dropout
width last iterate best iterate p = 0.1 p = 0.2 p = 0.3 p = 0.4
d1 = 30 0.8041 0.7938 0.7805 0.785 0.7991 0.8186
d1 = 70 0.8315 0.7897 0.7899 0.7771 0.7763 0.7833
d1 = 110 0.8431 0.7873 0.7988 0.7813 0.7742 0.7743
d1 = 150 0.8472 0.7858 0.8042 0.7852 0.7756 0.7722
d1 = 190 0.8473 0.7844 0.8069 0.7879 0.7772 0.772

Table 4-I. MovieLens dataset: Test RMSE of plain SGD as well as the dropout algorithm with
various dropout rates for various factorization sizes. The grey cells shows the best performance(s)
in each row.

100k 200k 300k 400k 500k
0.6

0.7

0.8

0.9

1.0

Train RMSE
plain SGD
p=0.10
p=0.20
p=0.30
p=0.40

100k 200k 300k 400k 500k
0.78

0.80

0.82

0.85

0.88

0.90

0.93

Test RMSE

100k 200k 300k 400k 500k
0.00

0.05

0.10

0.15

0.20

Generalization gap

Figure 4-1. MovieLens dataset: training error (left), test error (middle), and generalization
gap (right) for plain SGD and dropout with p ∈ {0.1, 0.2, 0.3, 0.4} as a function of number of
iterations; factorization size, d1 = 70.

4.6 Experimental Results

In this section, we report our empirical findings on real world datasets. All results are

averaged over 50 independent runs with random initialization.

Matrix Completion. We evaluate dropout on the MovieLens dataset [HK16], a

publicly available collaborative filtering dataset that contains 10M ratings for 11K

movies by 72K users of the online movie recommender service MovieLens. We initialize

the factors using the standard He initialization scheme [HZRS15]. We train the model

for 100 epochs over the training data, where we use a fixed learning rate of lr = 1,

and a batch size of 2000. We report the results for plain SGD (p = 0.0) as well as the

dropout algorithm with p ∈ {0.1, 0.2, 0.3, 0.4}.

Figure 4-1 shows the progress in terms of the training and test error as well as the

gap between them as a function of the number of iterations for d1 = 70. It can be

seen that plain SGD is the fastest in minimizing the empirical risk. The dropout rate

clearly determines the trade-off between the goodness of fit and the model complexity:

120

102 103 104

width

0.0

0.2

0.4

0.6

0.8

1.0

co
-a

da
pt

at
io

nplain SGD
p=0.25
p=0.50
p=0.75
Co-Adapatation
No Co-Adapatation

102 103 104

width
0.005

0.010

0.015

0.020

0.025

0.030

ge
ne

ra
liz

at
io

n
ga

p

102 103 104

width

10 1

/
n

102 103 104

width

0.0

0.2

0.4

0.6

0.8

1.0

co
-a

da
pt

at
io

nplain SGD
p=0.25
p=0.50
p=0.75
Co-Adapatation
No Co-Adapatation

102 103 104

width

0.005

0.010

0.015

ge
ne

ra
liz

at
io

n
ga

p

102 103 104

width

10 1

/
n

Figure 4-2. (left) “co-adaptation” ; (middle) generalization gap; and (right) α/
√
n as

a function of the width of networks trained with dropout on MNIST, with symmetrization
(top) and without symmetrization (bottom). In left figure, the dashed brown and dotted
purple lines represent minimal and maximal co-adaptations, respectively.

as the dropout rate p increases, the algorithm favors less complex solutions that suffer

larger empirical error (left figure) but enjoy smaller generalization gap (right figure).

The best trade-off here seems to be achieved by a moderate dropout rate of p = 0.3.

We observe similar behaviour for different factorization sizes; please see the Appendix

for additional plots with factorization sizes d1 ∈ {30, 110, 150, 190}.

It is remarkable, how even in the “simple” problem of matrix completion, plain

SGD lacks a proper inductive bias. As it is clearly depicted in the middle plot, without

explicit regularization – in particular early stopping or dropout in this figure – SGD

suffers from gross overfitting. We further illustrate this fact in Table 4-I, where we

compare the test root-mean-squared-error (RMSE) of plain SGD with the dropout

algorithm, for various factorization sizes. To show the superiority of dropout over

SGD with early stopping, we give SGD the advantage of having access to the test set

(and not a separate validation set), and report the best iterate in the third column.

121

Even with this impractical privilege, dropout performs significantly better (> 0.01

difference in test RMSE).

Neural Networks. We train 2-layer neural networks with and without dropout, on

MNIST dataset of handwritten digits and Fashion MNIST dataset of Zalando’s article

images, each of which contains 60K training examples and 10K test examples, where

each example is a 28 × 28 grayscale image, associated with a label from 10 classes.

We extract two classes {4, 7} and label them as {−1,+1}. We observe similar results

across other choices of target classes. The learning rate in all experiments is set to

lr = 1e − 3. We train the models for 30 epochs over the training set. We run the

experiments both with and without symmetrization. Here we only report the results

with symmetrization, and on the MNIST dataset. We remark that under the above

experimental setting, trained networks achieve 100% training accuracy.

For any node i ∈ [d1], define its flow as ψi := |ui|ai (respectively ψi := |ui|a′
i for

symmetrized data), which measures the overall contribution of a node to the output

of the network. Co-adaptation occurs when a small subset of nodes dominate the

overall function of the network. We argue that ϕ(w) = ∥ψ∥1√
d1∥ψ∥2

is a suitable measure

of co-adaptation (or lack thereof) in a network parameterized by w. In case of high

co-adaptation, only a few nodes have a high flow, which implies ϕ(w) ≈ 1√
d1

. At

the other end of the spectrum, all nodes are equally active, in which case ϕ(w) ≈ 1.

Figure 4-2 (left) illustrates this measure as a function of the network width for several

dropout rates p ∈ {0, 0.25, 0.5, 0.75}. In particular, we observe that a higher dropout

rate corresponds to less co-adaptation. More interestingly, even plain SGD is implicitly

biased towards networks with less co-adaptation. Moreover, for a fixed dropout rate,

the regularization effect due to dropout decreases as we increase the width. Thus, it

is natural to expect more co-adaptation as the network becomes wider, which is what

we observe in the plots.

The generalization gap is plotted in Figure 4-2 (middle). As expected, increasing

122

dropout rate decreases the generalization gap. In our experiments, the generalization

gap increases with the width of the network. The figure on the right shows the quantity

α/
√
n that shows up in the Rademacher complexity bounds in Section 4.3. We note

that, the bound on the Rademacher complexity is predictive of the generalization gap,

in the sense that a smaller bound corresponds to a curve with smaller generalization

gap.

4.7 Discussion

In this chapter, we studied the capacity control provided by dropout in matrix

completion as well as two-layer neural networks. We gave generalization bounds that

are solely in terms of the value of the dropout regularizer. In sharp contrast, in most of

the prior work, dropout is analyzed in conjunction with additional norm-based capacity

control. The generalization bounds presented in this chapter are data-dependent. In

particular, we identify retentiveness as a simple distributional property that yields

tight generalization bounds as evidenced by matching lower and upper bounds.

The focus here has been on understanding how the expected explicit regularizer

alone – without any additional norm-bounds on the weights – can provide gener-

alization. If one is interested in predicting the generalization gap, then one can

estimate the (empirical) explicit regularizer on a held-out dataset, and appeal to

simple concentration arguments, just as we do in our experiments.

Next, we list few natural research directions for future work.

Dropout Regularizer in more General Settings. In this chapter, as well as

Chapters 2, and 3 of this thesis, we considered simpler linear models and shallow

non-linear models; it would be interesting to extend these results to deep non-linear

neural networks. Furthermore, these results were obtained for the particular choice of

squared loss; it is important to understand dropout in networks trained with other

123

loss functions, especially those that are popular for various classification tasks.

Matrix Sensing: General Sampling Distributions. Our characterization of the

induced regularizer due to dropout in the matrix sensing problem, and the corre-

sponding generalization error bound, are under the assumption that the observations

are drawn from a product distribution, i.e., row and column indices are selected

independently. While we show that dropout induces a rich inductive bias even under

this restricted distributional setting, it is important to analyze the induced regularizer

in more general distributional settings.

ReLU Networks: Beyond β-retentivity. The generalization error bound presented

in this chapter assumes that the distribution is β-retentive: for any hyperplane passing

through the origin, both halfspaces contribute significantly to the second moment of the

data. We also give a simple randomized symmetrization technique, with no additional

computational overhead, which allows us to give bounds that are β-independent. Our

empirical results confirm that this technique does not hurt the performance of the

learned models. Regardless, it would be interesting to see if such an assumption

can be avoided without any algorithmic tricks, like the symmetrization technique we

introduced here, or show otherwise that it is required.

124

Chapter 5

Computational Guarantees for
Dropout

In Chapter 2 and Chapter 3 of this dissertation, we analyzed the regularizer induced

by dropout in deep regression. We showed that dropout in linear regression with deep

linear networks induces a nuclear norm penalty on the learning objective. We therefore

completely characterized the global optima of the resulting regularized objective –

despite the non-convexity of the problem – and showed that dropout favors low-rank

solutions. We also provided empirical evidence to verify this theoretical finding.

In Chapter 4, we turned our focus towards the learning theoretic aspects of dropout.

We built on our analysis on Chapter 2 and gave explicit forms of the regularizers

induced by dropout in two important learning problems: matrix sensing, and regression

with two-layer ReLU neural networks. For each problem, we bounded the Rademacher

complexity of the class of corresponding models with a small dropout regularizer,

which enabled us to give precise generalization error bounds for dropout training in

those problems.

Our results in previous chapters provide several rigorous theoretical explanations

for the success of dropout in deep learning; however, we emphasize that so far in this

dissertation, we have steered clear from the algorithmic and computational learning

aspects of dropout. In fact, none of the prior work, before the current chapter of the

125

thesis, yields insights into the runtime of learning using dropout on non-linear neural

networks. Here, we initiate a study into the iteration complexity of dropout training

for achieving ϵ-suboptimality on true error – the misclassification error with respect

to the underlying population – in two-layer neural networks with ReLU activations.

We leverage recent advances in the theory of deep learning in over-parameterized

settings with extremely (or infinitely) wide networks [JGH18, LXS+19]. Analyzing

two-layer ReLU networks in such a regime has led to a series of exciting results

recently establishing that gradient descent (GD) or stochastic gradient descent (SGD)

can successfully minimize the empirical error and the true error [LL18, DZPS19,

Dan17, ZCZG18, AZLL19, SY19, ADH+19, CG19, OS20]. In a related line of re-

search, several works attribute generalization in over-parametrized settings to the

implicit inductive bias of optimization algorithms (through the geometry of local

search methods) [NTSS17]. However, many real-world state-of-the-art systems employ

various explicit regularizers, and there is growing evidence that implicit bias may

be unable to explain generalization even in a simpler setting of stochastic convex

optimization [DFKL20]. Here, we extend convergence guarantees and generalization

bounds for GD-based methods with explicit regularization due to dropout. We show

that the key insights from analysis of GD-based methods in over-parameterized settings

carry over to dropout training.

We summarize the key contributions of this Chapter as follows.

1. We give precise non-asymptotic convergence rates for achieving ϵ-subotimality

in the test error via dropout training in two-layer ReLU networks. This is the

first of its kind result in the literature.

2. We show that dropout training implicitly compresses the network. In particular,

we show that there exists a sub-network, i.e., one of the iterates of dropout

training, that can generalize as well as any complete network.

126

3. Our results contributes to a growing body of work geared toward a theoretical

understanding of GD-based methods for regularized risk minimization in over-

parameterized settings.

The rest of this chapter is organized as follows. In Section 5.1, we survey the

related work. In Section 5.2, we formally introduce the problem setup and dropout

training, state the key assumptions, and introduce the notation. In Section 5.3, we

give the main results of the paper. In Section 5.4, we present the proofs of our main

results. We conclude this chapter by providing empirical evidence for our theoretical

results in Section 5.5.

5.1 Related Work

Empirical success of dropout has inspired a series of works aimed at understanding its

theoretical underpinnings. As we discussed in the previous chapters, most of these

works have either focused on explaining the explicit regularization due to dropout in

terms of conventional regularizers [SHK+14, BS13]; or bounding the generalization gap

in dropout training, leveraging tools from uniform convergence [WFWL14, WZZ+13,

ZW18, GZ16, MZGW18].

Despite the crucial insights provided by the previous art, there is not much known

about the non-asymptotic convergence behaviour of dropout training in the literature.

A very recent work by [SCS20] shows for deep neural networks with polynomially

bounded activations with continuous derivatives, under squared loss, that the network

weights converge to a stationary set of system of ODEs. In contrast, our results

leverages over-parameterization in two-layer networks with non-differentiable ReLU

activations, works with logistic loss, and establishes ϵ-suboptimality in the true

misclassification error.

Our results are inspired by the recent advances in over-parameterized settings. A

127

large body of literature has focused on deriving optimization theoretic guarantees for

(S)GD in this setting. In particular, [LL18, DZPS19] were among the first to provide

convergence rates for empirical risk minimization using GD. Several subsequent works

extended those results beyond two-layers, for smooth activation functions [DLL+18],

and general activation functions [AZLS18, ZCZG18].

Learning theoretic aspects of GD-based methods have been studied for several im-

portant target concept classes. Under linear-separability assumption, via a compression

scheme, [BGMSS18] showed that SGD can efficiently learn a two-layer ReLU network.

[LL18] further showed that SGD enjoys small generalization error on two-layer ReLU

networks if the data follows a well-separated mixture of distributions. [AZLL19]

showed generalization error bounds for SGD in two- and three-layer networks with

smooth activations where the concept class has fewer parameters. [ADH+19] proved

data-dependent generalization error bounds based on the neural tangent kernel by

analyzing the Rademacher complexity of the class of networks reachable by GD.

When the data distribution can be well-classified in the random feature space

induced by the gradient of the network at initialization, [CG19] provide generalization

guarantees for SGD in networks with arbitrary depth. [NS19] studied convergence

of GD in two-layer networks with smooth activations, when the data distribution

is further separable in the infinite-width limit of the random feature space. [JT19b]

adopted the same margin assumption and improved the convergence rate as well as

the over-parameterization size for non-smooth ReLU activations. Here, we generalize

the margin assumption in [NS19] to take into account the randomness injected by

dropout into the gradient of the network at initialization, or equivalently, the scale of

the corresponding random feature. Our work is most closely related to and inspired

by [JT19b]; however, we analyze dropout training as opposed to plain SGD, give

generalization bounds in expectation, and show the compression benefits of dropout

training.

128

We emphasize that all of the results above focus on (S)GD in absence of any

explicit regularization. We summarize a few papers that study regularization in the

over-parameterized setting. The work of [WLLM19] showed that even simple explicit

regularizers such as weight decay can indeed provably improve the sample complexity

of training using GD in the Neural Tangent Kernel (NTK) regime, appealing to a

margin-maximization argument in homogeneous networks. We also note the recent

works by [LSO19] and [HLY20], which studied the robustness of GD to noisy labels,

with explicit regularization in forms of early stopping; and squared norm of the

distance from initialization, respectively.

5.2 Poblem Setup

Let X ⊆ Rd and Y = {±1} denote the input and label spaces, respectively. We

assume that the data is jointly distributed according to an unknown distribution D on

X ×Y . Given T i.i.d. examples ST = {(xt, yt)}Tt=1 ∼ DT , the goal of learning is to find

a hypothesis f(·; Θ) : X → R, parameterized by Θ, that has a small misclassification

error R(Θ) := P{yf(x; Θ) < 0}. Given a convex surrogate loss function ℓ : R→ R≥0, a

common approach to the above learning problem is to solve the stochastic optimization

problem minΘ L(Θ) := ED[ℓ(yf(x; Θ))].

In this paper, we focus on logistic loss ℓ(z) = log(1 + e−z), which is one of the most

popular loss functions for classification tasks. We consider two-layer ReLU networks

of width m, parameterized by the “weights” Θ = (W, a) ∈ Rm×d×Rm, computing the

function f(·; Θ) : x ↦→ 1√
m

a⊤σWx. We initialize the network with ar ∼ Unif({+1,−1})

and wr,1 ∼ N (0, I), for all hidden nodes r ∈ [m]. We then fix the top layer weights

and train the hidden layer W using the dropout algorithm. We denote the weight

matrix at time t by Wt, and wr,t represents its r-th column. For the sake of simplicity

of the presentation, we drop non-trainable arguments from all functions, e.g., we use

f(·; W) in lieu of f(·; Θ).

129

Algorithm 4: Dropout in Two-Layer Networks
Input: data ST = {(xt, yt)}Tt=1 ∼ DT ; Bernoulli masks BT = {Bt}Tt=1;

dropout rate 1− q; max-norm constraint parameter c; learning rate η
1: initialize: wr,1 ∼ N (0, I) and ar ∼ Unif({+1,−1}), r ∈ [m]
2: for t = 1, . . . , T − 1 do
3: forward: g(Wt; xt,Bt) = 1√

m
a⊤Btσ(Wtxt)

4: backward: ∇Lt(Wt) = ∇ℓ(ytg(Wt; xt,Bt) = ℓ′(ytg(Wt; xt,Bt)) · yt∇g(Wt; xt,Bt)

5: update: Wt+ 1
2
←Wt − η∇Lt(Wt)

6: max-norm: Wt+1 ← Πc(Wt+ 1
2
)

7: end for
Output: re-scale the weights as Wt ← qWt

Let Bt ∈ Rm×m, t ∈ [T], be a random diagonal matrix with diagonal entries

drawn independently and identically from a Bernoulli distribution with parameter

q, i.e., br,t ∼ Bern(q), where br,t is the r-th diagonal entry of Bt. At the t-th iterate,

dropout entails a SGD step on (the parameters of) the sub-network g(W; x,Bt) =
1√
m

a⊤Btσ(Wx), yielding updates of the form Wt+ 1
2
←Wt− η∇ℓ(ytg(Wt; xt,Bt)). The

iteration concludes with projecting the incoming weights – i.e. rows of Wt+ 1
2

– onto

a pre-specified Euclidean norm ball. We note that such max-norm constraints are

standard in the practice of deep learning, and has been a staple to dropout training

since it was proposed in [SHK+14]1. Finally, at test time, the weights are multiplied

by q so as to make sure that the output at test time is on par with the expected output

at training time. The pseudo-code for dropout training is given in Algorithm 42.

Our analysis is motivated by recent developments in understanding the dynamics

of (S)GD in the so-called lazy regime. Under certain initialization, learning rate, and

network width requirements, these results show that the iterates of (S)GD tend to stay

close to initialization; therefore, a first-order Taylor expansion of the t-th iterate around
1Quote from [SHK+14]: “One particular form of regularization was found to be especially useful

for dropout— constraining the norm of the incoming weight vector at each hidden unit to be upper
bounded by a fixed constant c”

2In a popular variant that is used in machine learning frameworks such as PyTorch, known as
inverted dropout, (inverse) scaling is applied at the training time instead of the test time. The
inverted dropout is equivalent to the method we study here, and can be analyzed in a similar manner.

130

initialization, i.e. f(x; Wt) ≈ f(x; W1)+⟨∇f(x; W1),Wt−W1⟩, can be used as a proxy

to track the evolution of the network predictions [LL18, COB18, DZPS19, LXS+19].

In other words, training in lazy regime reduces to finding a linear predictor in the

reproducing kernel Hilbert space (RKHS) associated with the gradient of the network

at initialization, ∇f(·; W1). In this work, following [NS19, JT19b], we assume that

the data distribution is separable by a positive margin in the limiting RKHS:

Assumption 2 ((q, γ)-Margin). Let z ∼ N (0, Id) and b ∼ Bern(q) be a d-dimensional

standard normal random vector, and a Bernoulli random variable with parameter q,

respectively. There exists a margin parameter γ > 0, and a linear transformation

ψ : Rd → Rd satisfying A) Ez[∥ψ(z)∥2] < ∞; B) ∥ψ(z)∥2 ≤ 1 for all z ∈ Rd; and C)

Ez,b[y⟨ψ(z), bxI[z⊤x ≥ 0]⟩] ≥ γ for almost all (x, y) ∼ D.

The above assumption provides an infinite-width extension to the separability of

data in the RKHS induced by ∇g(W1; ·,B1). To see that, define V := [v1, . . . , vm]⊤ ∈

Rm×d, where vr = 1√
m
arψ(wr,1) for all r ∈ [m], satisfying ∥V∥F ≤ 1. For any given

point (x, y) ∈ X × Y, the margin attained by V is at least y⟨∇g(W1; x,B1),V⟩ =
1
m

∑︁m
r=1 y⟨ψ(wr,1), br,1xI{w⊤

r,1x > 0}⟩, which is a finite-width approximation of the

quantity E[y⟨ψ(z), bxI{z⊤x > 0}⟩] in Assumption 2.

We remark that when q = 1 (pure SGD – no dropout), with probability one it

holds that b = 1, so that Assumption 2 boils down to that of [NS19] and [JT19b].

When q < 1, this assumption translates to a margin of γ/q on the full features

∇f(·; W1), which is the appropriate scaling given that ∇f(·; W1) = 1
q
EB[∇g(W1; ·,B)].

Alternatively, dropout training eventually outputs a network with weights scaled down

as qWt, which (in expectation) corresponds to the shrinkage caused by the Bernoulli

mask in bxI{z⊤x > 0}. Regardless, we note that our analysis can be carried over even

without this scaling; however, new polynomial factors of 1/q will be introduced in the

required width in our results in Section 5.3.

131

5.2.1 Notation

The r-th entry of vector y, and the r-th row of matrix Y, are denoted by yi and yi,

respectively. For a sequence of matrices Wt, t ∈ N, the r-th row of the t-th matrix

is denoted by wr,t. Let I denote the indicator of an event, i.e., I{y ∈ Y} is one if

y ∈ Y, and zero otherwise. For any integer d, we represent the set {1, . . . , d} by [d].

For a matrix W ∈ Rm×d, and a scalar c > 0, Πc(W) projects the rows of W onto the

Euclidean ball of radius c with respect to the ℓ2-norm.

For any t ∈ [T] and any W, let ft(W) := f(xt; W) denote the network output given

input xt, and let gt(W) := g(W; xt,Bt) denote the corresponding output of the sub-

network associated with the dropout pattern Bt. Let Lt(W) = ℓ(ytgt(W)) andQt(W) =

−ℓ′(ytgt(W)) be the associated instantaneous loss and its negative derivative. The

partial derivative of gt with respect to the r-th hidden weight vector is given by ∂gt(W)
∂wr =

1√
m
arbr,tI{w⊤

r xt ≥ 0}xt. We denote the linearization of gt(W) based on features at

time t by g
(k)
t (W) := ⟨∇gt(Wk),W⟩; and its corresponding instantaneous loss and

its negative derivative by L
(k)
t (W) := ℓ(ytg(k)

t (W)) and Q
(k)
t (W) := −ℓ′(ytg(k)

t (W)),

respectively. Q plays an important role in deriving generalization bounds for dropout

sub-networks g(Wt; x,Bt); it has been recently used in [CG19, JT19b] for analyzing

the convergence of SGD and bounding its generalization error.

We conclude this section by listing a few useful identities that are used through-

out the paper. First, due to homogeneity of the ReLU, it holds that g(t)
t (Wt) =

⟨∇gt(Wt),Wt⟩ = gt(Wt). Moreover, the norm of the network gradient, and the norm

of the the gradient of the instantaneous loss can be upper-bounded as ∥∇gt(W)∥2
F =∑︁m

r=1 ∥
∂gt(W)
∂wr ∥

2 ≤ ∥Bt∥2
F

m
≤ 1, and ∥∇Lt(W)∥F = −ℓ′(ytgt(W))∥yt∇gt(W)∥F ≤ Qt(W),

respectively. Finally, the logistic loss satisfies |ℓ′(z)| ≤ ℓ(z), so that Qt(W) ≤ Lt(W).

132

5.3 Main Results

We begin with a simple observation that given the random initialization scheme

in Algorithm 4, the ℓ2-norm of the rows of W1 are expected to be concentrated

around
√
d. In fact, using Gaussian concentration inequality (Theorem 21 in the

appendix), it holds with probability at least 1 − 1/m, uniformly for all r ∈ [m],

that ∥wr,1∥ ≤
√
d + 2

√
lnm. For the sake of the simplicity of the presentation, we

assume that the event maxr∈[m] ∥wr,1∥ ≤ 2
√

lnm holds through the run of dropout

training. Alternatively, we can re-initialize the weights until this condition is satisfied,

or multiply the probability of success in our theorems by a factor of 1− 1/m.

Our first result establishes that the true misclassification error of dropout training

vanishes as Õ(1/T).

Theorem 14 (Learning with Dropout). Let c =
√
d + max{ 1

14γ2 , 2
√

lnm} + 1 and

λ := 5γ−1 ln 2ηT +
√︂

44γ−2 ln 24ηc
√
mT 2. Under Assumption 2, for any learning rate

η ∈ (0, ln 2] and any network of width satisfying m ≥ 2401γ−6λ2, with probability one

over the randomization due to dropout, we have that

min
t∈[T]

E[R(qWt)] ≤
1
T

T∑︂
t=1

E[R(qWt)] ≤
4λ2

ηT
= O

(︄
lnT 2 + lnmdT

T

)︄
,

where the expectation is with respect to the initialization and the training samples.

Theorem 14 shows that dropout successfully trains the complete network f(·; Wt).

Perhaps more interestingly, our next result shows that dropout successfully trains a

potentially significantly narrower sub-network g(Wt; ·,Bt). For this purpose, denote

the misclassification error due to a network with weights W given a Bernoulli mask B

as follows

R(W; B) := P{yg(W; x,B) < 0}.

133

Then the following result holds for the misclassification error of the iterates of dropout

training.

Theorem 15 (Compression with Dropout). Under the setting of Theorem 14, with

probability at least 1− δ over initialization, the training data, and the randomization

due to dropout, we have that

min
t∈[T]
R(Wt; Bt) ≤

1
T

T∑︂
t=1
R(Wt; Bt) ≤

12λ2

ηT
+ 6 ln 1/δ

T
= O

(︄
lnmT
T

)︄
.

A few remarks are in order.

Theorem 14 gives a generalization error bound in expectation. A technical challenge

here stems from the unboundedness of the logistic loss. In our analysis, the max-norm

constraint in Algorithm 4 is essential to guarantee that the logistic loss remains

bounded through the run of the algorithm, thereby controlling the loss of the iterates

in expectation. However, akin to analysis of SGD in the lazy regime, the iterates

of dropout training are not likely to leave a small proximity of the initialization

whatsoever. Therefore, for the particular choice of c in the above theorems, the

max-norm projections in Algorithm 4 will be virtually inactive for a typical run.

The expected width of the sub-networks in Theorem 15 is only qm. Using Ho-

effding’s inequality and a union bound argument, for any δ ∈ (0, 1), with probability

at least 1− δ, it holds for all t ∈ [T] that g(Wt; x,Bt) has at most qm+
√︂

2m lnT/δ

active hidden neurons. That is, in a typical run of the dropout training, with high

probability, there exists a sub-network of width ≈ qm+ Õ(
√
m) whose generalization

error is no larger than Õ(1/T). In Section 5.5, we further provide empirical evidence

to verify this compression result. We note that dropout has long been considered as a

means of network compression, improving post-hoc pruning [GZS+19], in Bayesian

settings [MAV17], and in connection with the Lottery Ticket Hypothesis [FC19]. How-

ever, we are not aware of any theoretical result supporting that claim prior to our

work.

134

Finally, the sub-optimality results in both Theorem 14 and Theorem 15 are agnostic

to the dropout rate 1− q. This is precisely due to the (q, γ)-Margin assumption: if it

holds, then so does (q′, γ)-Margin for any q′ ∈ [q, 1]. That is, these theorems hold for

any dropout rate not exceeding 1− q. Therefore, in light of the remark above, larger

admissible dropout rates are preferable since they result in higher compression rates,

while enjoying the same generalization error guarantees.

5.4 Proofs

We begin by bounding ESt [R(qWt)], the expected population error of the iter-

ates, in terms of ESt,Bt [Lt(Wt)], the expected instantaneous loss of the random

sub-networks. In particular, using simple arguments including the smoothing prop-

erty, the fact that Wt is independent from (xt, yt) given St−1, and that logistic loss

upper-bounds the zero-one loss, it is easy to bound the expected population risk

as ESt [R(qWt)] ≤ ESt [ℓ(ytf(xt; qWt))]. Furthermore, using Jensen’s inequality, we

have that ℓ(ytft(qWt)) ≤ EBt [Lt(Wt)]. The upper bound then follows from these two

inequalities.

Lemma 11. For any t ∈ [T], let Bt := {B1, . . . ,Bt} denote the set of Bernoulli masks

up to time t. Then it holds almost surely that:

T∑︂
t=1

ℓ(ytft(qWt)) ≤ EBT [
T∑︂
t=1

Lt(Wt)]. (5.1)

Proof of Lemma 11. For any a, b ∈ R, the function ℓ(z) = log(1 + exp(az + b)) is

135

convex in z. We have the following inequalities:

EBT [
T∑︂
t=1

Lt(Wt)] =
T∑︂
t=1

EBt [ℓ(yt ·
1√
m

a⊤Btσ(Wtxt))]

=
T∑︂
t=1

EBt−1 [EBtℓ(yt ·
1√
m

m∑︂
r=1

arbr,tσ(w⊤
r,txt))|Bt−1]

(smoothing property)

≥
T∑︂
t=1

EBt−1 [ℓ(yt ·
1√
m

m∑︂
r=1

arEBt [br,t]σ(w⊤
r,txt))|Bt−1]

(Jensen’s inequality)

=
T∑︂
t=1

ℓ(yt ·
1√
m

m∑︂
r=1

arσ(qw⊤
r,txt))

(E[br,t] = q, homogeneity of ReLU)

=
T∑︂
t=1

ℓ(ytft(qWt))

which completes the proof.

In the following, we present the main ideas in bounding the average instantaneous

loss of the iterates.

Under Algorithm 4, dropout iterates are guaranteed to remain in the set Wc :=

{W ∈ Rm×d : ∥wr∥ ≤ c}. Using this property and the dropout update rule, we track

the distance of consecutive iterates (Wt+1,Wt) from any competitor U ∈ Wc, which

leads to the following upper bound on the average instantaneous loss of iterates.

Lemma 12. Let W1, . . . ,WT be the sequence of dropout iterates with a learning rate

satisfying η ≤ ln 2. Then, it holds for any U ∈ Wc that

1
T

T∑︂
t=1

Lt(Wt) ≤
∥W1 − U∥2

F

ηT
+ 2
T

T∑︂
t=1

L
(t)
t (U). (5.2)

Proof of Lemma 12. Using the dropout update rule in Algorithm 4, we start by

analyzing the distance of consecutive iterates from the reference point U, assuming

136

that Πc(U) = U:

∥Wt+1 − U∥2
F = ∥Πc(Wt+ 1

2
)− U∥2

F

≤ ∥Wt+ 1
2
− U∥2

F (U ∈ Wc)

= ∥Wt − η∇Lt(Wt)− U∥2
F

= ∥Wt − U∥2
F − 2η⟨∇Lt(Wt),Wt − U⟩+ η2∥∇Lt(Wt)∥2

F

The last term on the right hand side above is bounded as follows:

η2∥∇Lt(Wt)∥2
F = η2∥ℓ′(ytgt(Wt))yt∇gt(Wt)∥2

F

= η2 (−ℓ′(ytgt(Wt))∥∇gt(Wt)∥F)2

= η2Qt(Wt)2
m∑︂
r=1
∥∂gt(Wt)
∂wr,t

∥2

≤ η2Qt(Wt)2 (∥∂gt(Wt)
∂wr,r ∥ ≤

1√
m

)

≤ η2

ln 2Qt(Wt) (Qt(·) ≤ 1/ ln 2)

≤ ηQt(Wt) (assumption η ≤ ln 2)

≤ ηLt(Wt) (Qt(·) ≤ Lt(·))

The second term can be bounded as follows:

⟨∇Lt(Wt),Wt − U⟩ = ℓ′(ytgt(Wt))⟨yt∇gt(Wt),Wt − U⟩

= ℓ′(ytgt(Wt))(ytgt(Wt)− ytg(t)
t (U))

(Homogeneity, definition of g(t)
t)

≥ (ℓ(ytgt(Wt))− ℓ(ytg(t)
t (U))) (convexity of ℓ(·))

= Lt(Wt)− L(t)
t (U)

Plugging back the above inequalities we get

∥Wt+1 − U∥2
F ≤ ∥Wt+ 1

2
− U∥2

F ≤ ∥Wt − U∥2
F − 2η(Lt(Wt)− L(t)

t (U)) + ηLt(Wt)

= ∥Wt − U∥2
F − ηLt(Wt) + 2ηL(t)

t (U) (5.3)

137

Rearranging, dividing both sides by η, and averaging over iterates we arrive at

1
T

T∑︂
t=1

Lt(Wt) ≤
T∑︂
t=1

∥Wt − U∥2
F − ∥Wt+1 − U∥2

F

ηT
+ 2
T

T∑︂
t=1

L
(t)
t (U)

≤ ∥W1 − U∥2
F

ηT
+ 2
T

T∑︂
t=1

L
(t)
t (U) (Telescopic sum)

Note that the upper bound in Equation (5.2) holds for any competitor U ∈ Wc;

however, we seek to minimize the upper-bound on the right hand side of Equation (5.2)

by finding a sweet spot that maintains a trade-off between 1) the distance from initializa-

tion, and 2) the average instantaneous loss for the linearized models. Following [JT19b],

we represent such a competitor as an interpolation between the initial weights W1 and

the max-margin competitor V, i.e. U := W1 + λV, where λ is the trade-off parameter.

Recall that V := [v1, · · · , vm] ∈ Rd×m, where vr = 1√
m
arψ(wr,1) for any r ∈ [m], and

ψ is given by assumption 2 . Thus, the first term on the right hand side above can be

conveniently bounded as λ2

ηT
; Lemma 13 bounds the second term as follows.

Lemma 13. Under the setting of Theorem 14, it holds with probability at least 1− δ

simultaneously for all iterates t ∈ [T] that 1) ∥wr,t − wr,1∥ ≤ 7λ
2γ

√
m

, for all r ∈ [m];

and 2) L(t)
t (U) ≤ λ2

2ηT .

We now present the main ideas in proving Lemma 13, which closely follows [JT19b].

In order to prove Lemma 13, we need Lemma 16, Lemma 14, and Lemma 15 that

we are going to present next. Since L(t)
t (U) ≤ e−yt⟨∇gt(Wt),U⟩, the proof entails lower

bounding yt⟨∇gt(Wt),U⟩, which can be decomposed as follows

yt⟨∇gt(Wt),U⟩ = yt⟨∇gt(W1),W1⟩+ yt⟨∇gt(Wt)−∇gt(W1),W1⟩

+ λyt⟨∇gt(W1),V⟩+ λyt⟨∇gt(Wt)−∇gi(BtW1),V⟩. (5.4)

By homogeneity of the ReLU activations, the first term in Equation (5.4) precisely

computes ytgt(W1), which cannot be too negative under the initialization scheme used

in Algorithm 4, as we show in Lemma 14.

138

Lemma 14. With probability at least 1− δ/3 it holds uniformly over all t ∈ [T] that

|gt(W1)| ≤
√︂

2 ln 6T/δ, provided that m ≥ 25 ln 6T/δ.

Proof of Lemma 14. The proof is similar to the proof of Lemma A.1 in [JT19b], except

for that we have to take into account the randomness due to dropout as well. In

particular, there are four different sources of randomness in gt(W1) = g(W1; xt,Bt):

1) the randomly initialized hidden layer weights W1, 2) the randomly initialized top

layer weights a, 3) the input vector xt, t ∈ [T], and 4) the Bernoulli masks Bt, t ∈ [T].

Given input xt and the dropout mask Bt, let ht(W) = 1√
m

Btσ(Wxt) ∈ Rm denote the

(scaled) output of the dropout layer with hidden weights W. It is easy to see that the

function g : W ↦→ ∥ht(W)∥ is 1-Lipschitz:

|g(W)− g(W′)| = |∥ht(W)∥ − ∥ht(W′)∥|

≤ ∥ht(W)− ht(W′)∥ (Reverse Triangle Inequality)

=
⌜⃓⃓⎷ m∑︂
r=1

(1√
m
b

(t)
i σ(⟨wr,1, xt⟩)−

1√
m
b

(t)
i σ(⟨w′

r,1, xt⟩))2

=

√︂∑︁m
r=1(⟨wr,1, xt⟩ − ⟨w′

r,1, xt⟩)2
√
m

(1-Lipschitzness of ReLU)

≤

√︂∑︁m
r=1 ∥wr,1 − w′

r,1∥2∥xt∥2
√
m

(Cauchy-Schwarz)

= ∥W−W′∥F√
m

Using Gaussian concentration (Lemma 21), we get that ∥ht(W1)∥ − EW1 [∥ht(W1)∥] ≤√︃
2 ln 6T

δ

m
with probability at least 1− δ

6T . It also holds that:

EW1 [∥ht(W1)∥] ≤
√︂
EW1 [∥ht(W1)∥2]

=
⌜⃓⃓⎷ m∑︂
r=1

Ewr,1(1√
m
br,tσ(w⊤

r,1xt))2

≤

√︄∑︁m
r=1 Ewr,1 [σ(w⊤

r,1xt)2]
m

=
√︂
Ez∼N (0,1)[σ(z)2] = 1√

2

139

As a result, we have with probability at least 1− δ
6T that ∥ht(W1)∥ ≤

√︂
2 ln 6T/δ

m
+

√
2

2 ≤ 1

whenever m ≥ 25 ln 6T/δ. Now, taking a union bound over all t ∈ [T], we get that

∥ht(W1)∥ ≤ 1 holds simultaneously for all iterates. Conditioned on this event, the

random variable gt(W1) = ⟨a, ht(W1)⟩ is zero mean and 1-sub-Gaussian, so that by

the general Hoeffding’s inequality, for any t, with probability at least 1− δ
6T , it holds

that |gt(W1)| ≤
√︂

2 ln 6T/δ. Taking union bound over all t ∈ [T], with probability

1− δ/6 it holds that |gt(W1)| ≤
√︂

2 ln 6T/δ simultaneously for all t ∈ [T]. Finally, the

probability that both of these events hold is no less than (1− δ/6)2 ≥ 1− δ/3, which

completes the proof.

On the other hand, we show in Lemma 15 that under Assumption 2, V has a good

margin with respect to the randomly initialized weights W1, so that the third term in

Equation (5.4) is concentrated around the margin parameter γ. This Lemma provides

a finite-width analogues to the Assumption 2.

Lemma 15. Under Assumption 2, for any δ ∈ (0, 1), with probability at least 1− δ/3

it holds uniformly for all t ∈ [T] that:

ytg
(1)
t (V) = yt⟨∇gt(W1),V⟩ ≥ γ −

√︄
2 ln 3T/δ

m

Proof of Lemma 15. By Assumption 2, it holds that Ez,b[y⟨ψ(z), bxI{z⊤x > 0}⟩] ≥ γ

for all (x, y) in the domain of D. We observe that ytg(1)
t (V) is an empirical estimate

of this quantity:

ytg
(1)
t (V) = yt⟨∇gt(W1),V⟩

= yt
m∑︂
r=1
⟨ 1√

m
arbr,tI{x⊤

t wr,1 > 0}xt,
1√
m
arψ(wr,1)⟩

= 1
m

m∑︂
r=1

yt⟨ψ(wr,1), br,txtI{w⊤
r,1xt > 0}⟩

For t, r ∈ [T]× [m], let γt,r := yt⟨ψ(wr,1), br,txtI{w⊤
r,1xt > 0}⟩. Note that EW1,Bt [γt,r] =

Ez,b[yt⟨ψ(z), bxtI{z⊤xt > 0}⟩]. Also, for any t, the random variable γt,r is bounded

140

almost surely as follows:

|γt,r| ≤ |yt| ∥ψ(wr,1)∥ |br,t| ∥xt∥
⃓⃓⃓
I{w⊤

r,1xt > 0}
⃓⃓⃓
≤ 1.

Therefore by Hoeffding’s inequality (Theorem 17), with probability at least 1− δ
3T , it

holds that:

ytg
(1)
t (V)− γ ≥ ytg

(1)
t (V)− E[ytg(1)

t (V)] ≥ −
√︄

2 ln 3T/δ
m

Applying a union bound over t finishes the proof.

The second and the fourth terms in Equation (5.4) can be bounded thanks to

the lazy regime, where Wt remains close to W1 at all times. In particular, provided

∥wr,t − wr,1∥ ≤ 7λ
2γ

√
m

, we show in Lemma 16 that at most only O(1/
√
m)-fraction

of neural activations change, and thus ∇gt(Wt) −∇gt(W1) has a small norm. The

following Lemma bounds |Rt|, where Rt := {r ∈ [m]| I{w⊤
r,txt > 0} ≠ I{w⊤

r,1xt > 0}}

is the set of hidden nodes at time t whose activation on sample xt is different from

the initialization.

Lemma 16. Assume that ∥wr,1 − wr,t∥ ≤ D holds for all r ∈ [m], where D is a

positive constant. Then, with probability at least 1− δ
3 , we have that

|Rt| ≤ mD +
√︄
m ln 3T/δ

2 , for all t ∈ [T].

Proof of Lemma 16. Assume that r ∈ Rt. Then it holds that

|w⊤
r,1xt| ≤ |w⊤

r,1xt|+ |w⊤
r,txt|

= |(wr,1 − wr,t)⊤xt| (r ∈ Rt)

≤ ∥wr,1 − wr,t∥∥xt∥ (Cauchy-Schwarz)

= ∥wr,1 − wr,t∥ ≤ D (∥xt∥ = 1)

Since w⊤
r,1xt is a standard Gaussian random variable, by anti-concentration property

of the Gaussian distribution, E[I{
⃓⃓⃓
w⊤
r,1xt

⃓⃓⃓
≤ D}] = Pr{

⃓⃓⃓
w⊤
r,1xt

⃓⃓⃓
≤ D} ≤ 2D√

2π . On the

141

other hand, we have that

|Rt| =
⃓⃓⃓
{r| I{w⊤

r,txt > 0} ≠ I{w⊤
r,1xt > 0}}

⃓⃓⃓
≤ |{r|

⃓⃓⃓
w⊤
r,1xt

⃓⃓⃓
≤ D}| =

m∑︂
r=1

I{
⃓⃓⃓
w⊤
r,1xt

⃓⃓⃓
≤ D}

By Hoeffding’s inequality, we have the following with probability at least 1− δ
3T :

1
m

m∑︂
r=1

I{
⃓⃓⃓
w⊤
r,1xt

⃓⃓⃓
≤ D} ≤ Pr{

⃓⃓⃓
w⊤
r,1xt

⃓⃓⃓
≤ D}+

√︄
ln 3T/δ

2m ≤ 2D√
2π

+
√︄

ln 3T/δ
2m .

Multiplying both sides by m and applying union bound on t ∈ [T] completes the

proof.

In light of Lemma 16, Lemma 14, and Lemma 15, the result of Lemma 13 follows

from carefully choosing λ and m such that the right hand side of Equation (5.4) is

sufficiently positive.

Proof of Lemma 13. We adopt the proof of Theorem 2.2 in [JT19b] for dropout

training. Assume that ∥wr,t−wr,1∥ ≤ 7λ
2γ

√
m

holds for the first T iterates of Algorithm 4.

Then with probability at least 1− (δ3 + δ
3 + δ

3) = 1− δ, Lemma 16, Lemma 14, and

Lemma 15 hold simultaneously. We first prove that L(t)
t (U) ≤ λ2

2ηT for all t ∈ [T].

Using the inequality log(1 + z) ≤ z, we get that

L
(t)
t (U) = log(1 + e−yt⟨∇gt(Wt),U⟩) ≤ e−yt⟨∇gt(Wt),U⟩

To upper-bound the right hand side, we lower-bound yt⟨∇gt(Wt),U⟩. By definition of

U, we have

yt⟨∇gt(Wt),U⟩ = yt⟨∇gt(Wt),W1⟩+ λyt⟨∇gt(Wt),V⟩ (5.5)

We bound each of the terms separately. The first term can be decomposed as follows:

yt⟨∇gt(Wt),W1⟩ = yt⟨∇gt(W1),W1⟩+ yt⟨∇gt(Wt)−∇gt(W1),W1⟩

≥ − |ytgt(W1)| − |yt⟨∇gt(Wt)−∇gt(W1),W1⟩| (5.6)

142

By Lemma 14, the first term on right hand side is lower-bounded by − |gt(W1)| ≥

−
√︂

2 ln 6T/δ. We bound the second term as follows:

|yt⟨∇gt(Wt)−∇gt(W1),W1⟩| =
⃓⃓⃓⃓
⃓ yt√m

m∑︂
r=1

arbr,t(I{w⊤
r,txt > 0} − I{w⊤

r,1xt > 0})w⊤
r,1xt

⃓⃓⃓⃓
⃓

≤ 1√
m

∑︂
r∈Rt
|arbr,t⟨wr,1, xt⟩| (Triangle inequality)

≤ 1√
m

∑︂
r∈Rt
|⟨wr,t − wr,1, xt⟩| (r ∈ Rt)

≤ |Rt| ∥wr,t − wr,1∥√
m

≤ 49λ2

4γ2√m
+
√︄

49λ2 ln 3T/δ
8γ2m

(Lemma 16)

≤ λγ

2 (5.7)

where the last inequality holds whenm ≥ max{98γ−4 ln 3T/δ, 2401γ−6λ2} = 2401γ−6λ2.

The second term in Equation 5.5 is bounded as follows:

yt⟨∇gt(Wt),V⟩ = yt⟨∇gt(W1),V⟩+ yt⟨∇gt(Wt)−∇gt(W1),V⟩

≥ yt⟨∇gt(W1),V⟩ − |yt⟨∇gt(Wt)−∇gt(W1),V⟩|

= ytg
(1)
t (V)−

⃓⃓⃓⃓
⃓ yt√m

m∑︂
r=1

arbr,t(I{w⊤
r,txt > 0} − I{w⊤

r,1xt > 0})⟨ 1√
m
arψ(wr,1), xt⟩

⃓⃓⃓⃓
⃓

≥ γ −
√︄

2 ln 3T/δ
m

− 1
m

∑︂
r∈Rt
|arbr,t⟨ψ(wr,1), xt⟩| (Lemma 15)

≥ γ −
√︄

2 ln 3T/δ
m

− |Rt|
m

≥ γ −
√︄

2 ln 3T/δ
m

− 7λ
2γ
√
m
−
√︄

ln 3T/δ
2m (Lemma 16)

≥ γ − γ2

7 −
γ2

14 −
γ2

14 = γ − 2γ2

7 ≥ 5γ
7 (5.8)

where the penultimate inequality holds when m ≥ max{98γ−4 ln 3T/δ, 2401γ−6λ2} =

2401γ−6λ2. Plugging Equations (5.7) and (5.8) in Equation 5.5, we get that

yt⟨∇gt(Wt),U⟩ ≥ −
√︂

2 ln 6T/δ + 3λγ
14 ≥ ln 2ηT

λ2 , (5.9)

143

where the inequality hold true for λ := 5γ−1 ln 2ηT +
√︂

44γ−2 ln 6T/δ. Thus, we have

that

L
(t)
t (U) = log(1 + e−yt⟨∇gt(Wt),U⟩) ≤ λ2

2ηT .

We now prove by induction that ∥wr,t − wr,1∥ ≤ 7λ
2γ

√
m

holds throughout dropout

training. First, we show that the claim holds for t = 2:

∥wr,2 − wr,1∥ = ∥Πc(η
∂Lt(B1W1)

∂wr,1
)∥ ≤ ∥η∂Lt(B1W1)

∂wr,1
∥

≤ ∥ηℓ′(ytft(B1W1))yi
∂ft(B1W1)
∂wr,1

∥

≤ η

ln 2
√
m
≤ 7λ

2γ
√
m
, (η ≤ ln 2)

which proves the basic step. Now by induction hypothesis, we assume that the claim

holds for all k ∈ [t], i.e., it holds that ∥wr,k − wr,1∥ ≤ 7λ
2γ

√
m

. Therefore, it holds that

∥wr,k∥ ≤ ∥wr,1∥+ ∥wr,k −wr,1∥ ≤ c− 1 + 1 ≤ c, where we used the triangle inequality,

the fact that ∥wr,1∥ ≤ c− 1, and that m ≥ 2401γ−6λ2. This, in particular, means that

all iterates 1 < k ≤ t remain in Wc:

Wk = Πc(Wk− 1
2
) = Wk− 1

2
for all 1 < k ≤ t. (5.10)

For the t+ 1-th iterate, we first upper-bound the distance from initialization in terms

of the Q function:

∥wr,t+1 − wr,1∥ = ∥Πc(wr,t − η
∂Lt(Wt)
∂wr,t

)− wr,1∥

≤ ∥wr,t − η
∂Lt(Wt)
∂wr,t

− wr,1∥

≤ ∥η∂Lt(Wt)
∂wr,t

∥+ ∥wr,t − wr,1∥

≤
t∑︂

k=1
∥η∂Lk(Wk)

∂wr,k

∥

≤ η
t∑︂

k=1
−ℓ′(ykgk(Wk))∥yk

∂gk(Wk)
∂wr,k

∥

≤ η√
m

t∑︂
k=1
−ℓ′(ykgk(Wk))

144

The idea is to turn the right hand side above into a telescopic sum using the identity

Wk+1 −Wk = Wk+ 1
2
−Wk = ηℓ′(ykgk(Wk))yk∇gk(Wk), k ∈ [t − 1]. By induction

hypothesis, for all k ∈ [t], Equation (5.8) guarantees yk⟨∇gk(Wk),V⟩ ≥ 5γ
7 . Thus,

multiplying the right hand side of (5.11) by 7
5γyk⟨∇gk(Wk),V⟩, we get that:

∥wr,t+1 − wr,1∥ ≤
7η

5γ
√
m

t∑︂
k=1
−ℓ′(ykgk(Wk))yk⟨∇gk(Wk),V⟩

= 7
5γ
√
m

t∑︂
k=1
⟨η∇Lk(Wk),V⟩

= 7
5γ
√
m
⟨Wt+ 1

2
−W1,V⟩ (Equation (5.10))

=
7⟨Wt+ 1

2
− U,V⟩+ 7⟨U−W1,V⟩

5γ
√
m

≤
7∥Wt+ 1

2
− U∥F∥V∥F + 7⟨λV,V⟩

5γ
√
m

(Cauchy-Schwarz)

≤
7∥Wt+ 1

2
− U∥F + 7λ

5γ
√
m

(5.11)

Again by induction hypothesis, Equation (5.3) and Equation (5.9) hold for all k ∈ [t],

which are used to bound ∥Wt+ 1
2
− U∥F as follows:

∥Wt+ 1
2
− U∥2

F ≤ ∥Wt − U∥2
F − 2η(Lt(Wt)− L(t)

t (U)) + ηLt(Wt)

(Equation (5.3))
≤ ∥Wt − U∥2

F + 2ηL(t)
t (U))

≤ ∥W1 − U∥2
F + 2η

t∑︂
k=1

L
(k)
k (U)

≤ ∥λV∥2
F + 2ηt λ

2

2ηT (Equation 5.9)

≤ λ2 + λ2t

T
(∥V∥F ≤ 1)

≤ 2λ2

=⇒ ∥Wt+ 1
2
− U∥F ≤

√
2λ (5.12)

Plugging Equation (5.12) back in Equation (5.11), we arrive at:

∥wr,t+1 − wr,1∥ ≤
7
√

2λ+ 7λ
5γ
√
m

≤ 7λ
2γ
√
m

145

Which completes the induction step and the proof.

Therefore, left hand side of Equation (5.2), i.e., the average instantaneous loss of the

iterates, can be bounded with high probability as 2λ2

ηT
. To get the bound in expectation,

4.0 3.5 3.0 2.5 2.0 1.5 1.0 0.5 0.0
1

2

3

4

5

6
log(1+exp(-z))
1 - z/ln(2)

Figure 5-1. Linear upperbound on
the logistic loss

as presented in Theorem 14, we need to control

L
(t)
t (U) in worst-case scenario. A crucial step in

giving generalization bounds in expectation via

upper-bounding the logistic loss is to control the

maximum value the loss can take on any iterate

of the algorithm. In particular, we need to upper-

bound the instantaneous loss of g(t)
t (U), which

appears in the right hand side of Lemma 12. To

that end, we note that the logistic loss only grows

linearly for z < 0. More formally, it holds for all z < 0 that:

log(1 + e−z) ≤ −zln 2 + 1 (5.13)

as depicted in Figure 5-1. We take advantage of the max-norm constraints in Al-

gorithm 4, and show in Lemma 17 that with probability one all iterates satisfy

L
(t)
t (U) ≤ c

√
m

ln 2 + 1.

Lemma 17. Under Algorithm 4, it holds with probability one for all iterates that

L
(t)
t (U) ≤ c

√
m

ln 2 + 1.

Proof of Lemma 17. Recall that L(t)
t (U) = ℓ(ytg(t)

t (U)). First we bound the argument

146

inside the loss function:
⃓⃓⃓
ytg

(t)
t (Wt)

⃓⃓⃓
= |yt⟨∇gt(Wt),U⟩|

≤
m∑︂
r=1

⃓⃓⃓⃓
⃓⟨∂gt(Wt)

∂wr,t

, ur⟩
⃓⃓⃓⃓
⃓ (triangle inequality)

≤
m∑︂
r=1
∥∂gt(Wt)
∂wr,t

∥∥wr,1 + λvr∥ (Cauchy-Schwarz)

≤
m∑︂
r=1

c− 1 + λ/
√
m√

m
(∥wr,1∥ ≤ c− 1, ∥vr∥ ≤ 1/

√
m)

≤ c
√
m (λ ≤

√
m)

Now using Equation (5.13), we get that

L
(t)
t (U) = log(1 + e−yt⟨∇gt(Wt),U⟩) ≤ log(1 + exp(c

√
m)) ≤ c

√
m

ln 2 + 1.

The proof of Theorem 14 then follows from carefully choosing δ, the confidence

parameter.

Proof of Theorem 14. Note that Wt is conditionally independent from xt given x1, . . . , xt−1.

Thus,

EST [Lt(Wt)] = ESt−1 [E(xt,yt)ℓ(ytft(Wt))|St−1] = ESt−1 [L(Wt)]

Using the fact that logistic loss upper-bounds the zero-one loss, taking expectation

over initialization, taking average over iterates, and using Lemma 11, we get that:

EW1,a,ST [1
T

T∑︂
t=1
R(qWt)] ≤ EW1,a,ST [1

T

T∑︂
t=1

ℓ(ytft(qWt))] (I{z < 0} ≤ ℓ(z))

≤ EW1,a,ST ,BT [1
T

T∑︂
t=1

Lt(Wt)] (Lemma 11)

≤ EW1 [∥W1 − U∥2
F]

2ηT + 2
T

T∑︂
t=1

EW1,a,ST ,BT [L(t)
t (U)]

(Lemma 12)

The first term is upper-bounded by λ2

2ηT since ∥W1 − U∥2
F = ∥W1 −W1 − λV∥2

F =

λ2∥V∥2
F ≤ λ2. Bounding the second term is based on the following two facts:

147

1. By Lemma 13, with probability at least 1− δ, it holds that L(t)
t (U) ≤ λ2

2ηT =: u1.

2. By Lemma 17, it holds with probability one that L(t)
t (U) ≤ c

√
m

ln 2 + 1 ≤ 2c
√
m =:

u2.

Therefore, the expected value of L(t)
t (U) can be upper-bounded as:

E[L(t)
t (U)] ≤ (1− δ)u1 + δu2 ≤

λ2

2ηT + 2δc
√
m

Choosing δ := 1
4ηc

√
mT

guarantees that

E[L(t)
t (U)] ≤ λ2

2ηT + 1
2ηT ≤

λ2

ηT
,

where λ := 5γ−1 ln 2ηT +
√︂

44γ−2 ln 24ηc
√
mT 2.

To prove the compression result in Theorem 15, we use the fact that the zero-one

loss can be bounded in terms of the negative derivative of the logistic loss [CG19].

Therefore, we can bound R(Wt; Bt), the population risk of the sub-networks, in terms

of Q(Wt; Bt) = ED[−ℓ′(ytgt(Wt))]. Following [JT19b], the proof of Theorem 15 then

entails showing that ∑︁T
t=1 Q(Wt; Bt) is close to ∑︁T

t=1 Qt(Wt), which itself is bounded

by the average instantaneous loss of the iterates.

Proof of Theorem 15. First, recall the following property of the logistic loss:

I{z < 0} ≤ −2 ln 2ℓ′(z) ≤ 2 ln 2ℓ(z)

which implies thatR(Wt; Bt) ≤ 2 ln 2Q(Wt; Bt), whereQ(W; B) := ED[−ℓ′(yg(W; x,B)]

is the expected value of the negative derivative of the logistic loss. On the other

hand, taking the empirical average over the training data, and using Lemma 12 and

148

Lemma 13, we conclude that the following holds with probability at least 1− δ:

1
T

T∑︂
t=1

Qt(Wt) ≤
1
T

T∑︂
t=1

Lt(Wt)

≤ ∥W1 − U∥2
F

ηT
+ 2
T

T∑︂
t=1

L
(t)
t (U) (Lemma 12)

≤ λ2

ηT
+ 2
T

T∑︂
t=1

λ2

2ηT (Lemma 13)

≤ 2λ2

ηT
.

Given the dropout masks BT , since Q(Wt; Bt) = ED[Qt(Wt)], we know that
T∑︂
t=1

Q(Wt; Bt)−
T∑︂
t=1

Qt(Wt)

is a martingale difference with respect to the past observations, ST−1. We next show

that the average of Qt(Wt) on the right hand side above is close to the average of

Q(Wt; Bt), using Theorem 22, similar to Lemma 4.3. of [JT19b]. First, this martingale

difference sequence is bounded almost surely as R := 1/ ln 2 ≥ Q(Wt; Bt)−Qt(Wt),

simply because 0 ≤ −ℓ′(z) ≤ 1/ ln 2. The conditional variance can be bounded as:

Vt :=
T∑︂
t=1

E[(Q(Wt; Bt)−Qt(Wt))2|St−1]

=
T∑︂
t=1

Q(Wt; Bt)2 − 2Q(Wt; Bt)E[Qt(Wt)|St−1] + E[Qt(Wt)2|St−1]

≤
T∑︂
t=1

E[Qt(Wt)2|St−1] (E[Qt(Wt)|St−1] = Q(Wt; Bt))

≤ 1
ln 2

T∑︂
t=1

E[Qt(Wt)|St−1] (0 ≤ Qt(Wt) ≤ 1/ ln 2)

= 1
ln 2

T∑︂
t=1

Q(Wt; Bt)

Thus, using Theorem 22 with R ≤ 1/ ln 2 and Vt ≤
∑︁T
t=1 Q(Wt; Bt)/ ln 2, we conclude

that with probability at least 1− δ it holds that
T∑︂
t=1

Q(Wt; Bt)−
T∑︂
t=1

Qt(Wt) ≤ (e− 2)
T∑︂
t=1

Q(Wt; Bt) + ln 1/δ
ln 2

=⇒ 1
T

T∑︂
t=1

Q(Wt; Bt) ≤
4
T

T∑︂
t=1

Qt(Wt) + 4 log(1/δ)
T

149

103 104 105 106

Iterate
0

20

40

60

80

100

Te
st

 A
cc

ur
ac

y

width = 250000, p = 0.1

full network f(; Wt)
sub-network g(Wt; , Bt)

103 104 105 106

Iterate
0

20

40

60

80

100

width = 250000, p = 0.5

103 104 105 106

Iterate
0

20

40

60

80

100

width = 250000, p = 0.7

103 104 105 106

Iterate
0

20

40

60

80

100

Te
st

 A
cc

ur
ac

y

width = 100, p = 0.5

103 104 105 106

Iterate
0

20

40

60

80

100

width = 10000, p = 0.5

103 104 105 106

Iterate
0

20

40

60

80

100

width = 100000, p = 0.5

Figure 5-2. Test accuracy of the full network f(·; Wt) as well as the sub-networks
g(Wt; ·,Bt) drawn by dropout iterates, as a function of number of iterations t, for (top)
fixed width m = 250K and several dropout rates 1− p ∈ {0.1, 0.5, 0.7}; and (bottom)
fixed dropout rate 1− p = 0.5 and several widths m ∈ {100, 10K, 100K}.

Plugging the above back in R(Wt; Bt) ≤ 2 ln 2Q(Wt; Bt), and averaging over iterates

we have:
1
T

T∑︂
t=1
R(Wt; Bt) ≤

16 ln 2λ2

ηT
+ 8 ln 2 ln 1/δ

T

which completes the proof.

5.5 Experimental Results

The goal of this section is to investigate if dropout indeed compresses the model, as

predicted by Theorem 15. In particular, we seek to understand if the (sparse) dropout

sub-networks g(W; ·,B) – regardless of being visited by dropout during the training –

are comparable to the full network f(·; W), in terms of the test accuracy.

We train a convolutional neural network with a dropout layer on the top hidden

layer, using cross-entropy loss, on the MNIST dataset. The network consists of two

convolutional layers with max-pooling, followed by three fully-connected layers. All

150

the activations are ReLU. We use a constant learning rate η = 0.01 and batch-size

equal to 64 for all the experiments. We train several networks where except for the top

layer widths (m ∈ {100, 500, 1K, 5K, 10K, 50K, 100K, 250K}), all other architectural

parameters are fixed. We track the test accuracy over 25 epochs as a function of

number of iterations, for the full network, the sub-networks visited by dropout, as

well as random but fixed sub-networks that are drawn independently, using the

same dropout rate. We run the experiments for several values of the dropout rate,

1− p ∈ {0.1, 0.2, 0.3, . . . , 0.9}.

Figure 5-2 shows the test accuracy of the full network f(·; Wt) (blue, solid curve)

as well as the dropout iterates g(Wt; ·,Bt) (orange, dashed curve), as a function of

the number of iterations. Both curves are averaged over 50 independent runs of the

experiment; the grey region captures the standard deviation. It can be seen that the

(sparse) sub-networks drawn by dropout during the training, are indeed comparable

to the full network in terms of the generalization error. As expected, the gap between

the full network and the sparse sub-networks is higher for narrower networks, and for

higher dropout rates. This figure verifies our compression result in Theorem 15.

Next, we show that dropout also generalizes to sub-networks that were not

observed during the training. In other words, random sub-networks drawn from

the same Bernoulli distribution, also performed well. We run the following experi-

ment on the same convolutional network architecture described above with widths

m ∈ {100, 1K, 10K, 100K}. We draw 100 sub-networks g(W; ·,B1), . . . , g(W; ·,B100),

corresponding to diagonal Bernoulli matrices B1, . . . ,B100, all generated by the same

Bernoulli distribution used at training (Bernoulli parameter p = 0.2, i.e., dropout rate

1 − p = 0.8). In Figure 5-3, we plot the generalization error of these sub-networks

as well as the full network as a function of iteration number, as orange and blue

curves, respectively. We observe that, as the width increases, the sub-networks become

increasingly more competitive; it is remarkable that the effective width of these typical

151

102 103 104 105 106

Iterate
0

20

40

60

80

100

Te
st

 A
cc

ur
ac

y

width = 100
sub-networks
full network

102 103 104 105 106

Iterate
0

20

40

60

80

100

width = 1000

102 103 104 105 106

Iterate
0

20

40

60

80

100

width = 10000

102 103 104 105 106

Iterate
0

20

40

60

80

100

width = 100000

Figure 5-3. Test accuracy of the full network f(·; Wt) as well as 100 random sub-networks
g(Wt; ·,B1), . . . , g(Wt; ·,B100) with dropout rate 1− p = 0.8, as a function of number of
iterations t, for several width m ∈ {100, 1K, 10K, 100K}.

sub-networks are only ≈ 1/5 of the full network.

5.6 Discussion

We leveraged recent advances in the theory of deep learning in over-parameterized

settings and extended convergence guarantees and generalization bounds for GD-based

methods with explicit regularization due to dropout. We gave precise non-asymptotic

convergence rates for achieving ϵ-subotimality in the test error via dropout training in

two-layer ReLU networks. We also showed that dropout training implicitly compresses

the network – there exists a sub-network, i.e., one of the iterates of dropout training,

that can generalize as well as any complete network.

Most of the results in the literature of over-parameterized neural networks focus

on GD-based methods without any explicit regularization. On the other hand, recent

theoretical investigations have challenged the view that implicit bias due to such

GD-based methods can explain generalization in deep learning [DFKL20]. Therefore,

it seems crucial to explore algorithmic regularization techniques in over-parameterized

neural networks. In this chapter we take a step towards understanding a popular

algorithmic regularization technique in deep learning. In particular, assuming that the

data distribution is separable in the RKHS induced by the neural tangent kernel, we

presents precise iteration complexity results for dropout training in two-layer ReLU

networks using the logistic loss.

152

We see natural extensions of our results in two directions. First, our analysis holds

in the lazy regime, where network weights stay close the initialization; it is important

to investigate generalization and compression due to dropout beyond the lazy regime.

Second, we show empirically, that compression is not limited to subnetworks that are

visited at the time of training; typical subnetworks sampled according to the dropout

pattern also generalize well. A formal proof of this observation can be an interesting

direction for future work.

153

Chapter 6

Robustness Guarantees for
Adversarial Training

Despite the tremendous success of local-search heuristics in deep learning – as we

rigorously argued for in the previous chapters – they can result in models that are

highly susceptible to adversarial examples; imperceptible perturbations of data that are

incorrectly classified by the model [SZS+14]. Such vulnerability limits the deployment

of neural networks-based systems, especially in safety-critical applications such as

autonomous driving. In recent years, robust learning has been a central theme in

machine learning, where the goal is to find models that yield reliable predictions on

test data notwithstanding adversarial perturbations.

A principled approach to training models that are robust to adversarial examples

that has emerged in recent years is that of adversarial training [MMS+18]. Adversarial

training formulates learning as a min-max optimization problem wherein the 0-1

classification loss is replaced by a convex surrogate such as the cross-entropy loss, and

alternating local-search heuristics are used to solve the resulting saddle point problem.

In this chapter, we turn our focus towards the robustness due to local-search

heuristics used in adversarial training. Despite the empirical success of such heuristics

in adversarial training [MMS+18, ACW18, CW17], our understanding of their theo-

retical underpinnings remains limited. From a practical standpoint, it is remarkable

154

that gradient based techniques can efficiently solve both (1) the inner maximization

problem to find adversarial examples, and (2) the outer maximization problem to

impart robust generalization. On the other hand, a theoretical analysis is challenging

because (1) both the inner- and outer-level optimization problems are non-convex,

and (2) it is unclear a-priori if solving the min-max optimization problem would even

guarantee robust generalization.

Here, we take a step towards a better understanding of local-search heuristics

in adversarial training. In particular, under a margin separability assumption, we

provide robust generalization guarantees for two-layer neural networks with Leaky

ReLU activation trained using adversarial training. Our key contributions are as

follows.

1. We identify a disconnect between the robust learning objective and the min-

max formulation of adversarial training. This observation inspires a simple

modification of adversarial training – we propose reflecting the surrogate loss

about the origin in the inner maximization phase when searching for an “optimal”

perturbation vector to attack the current model.

2. We provide convergence guarantees for PGD attacks on two-layer neural networks

with leaky ReLU activation. This is the first of its kind in the literature.

3. We give global convergence guarantees and establish learning rates for adversarial

training for two-layer neural networks with Leaky ReLU activation function.

Notably, our guarantees hold for any bounded initialization and any width – a

property that is not present in the previous works in the neural tangent kernel

(NTK) regime [GCL+19, ZPD+20].

4. We provide extensive empirical evidence showing that reflecting the surrogate loss

in the inner loop does not have a significant impact on the test time performance

of the adversarially trained models.

155

The rest of the chapter is organized as follows. In Section 6.1, we survey the related

work. In Section 6.2, we formally introduce the problem setup and adversarial training,

and introduce some additional notations. We give the main theoretical results of

the chapter in Section 6.3, and present the proofs of the main results in Section 6.4.

Finally, in Section 6.5, we provide supporting empirical evidence for our theoretical

results.

6.1 Related Work

Adversarial training of linear models was recently studied by [CRWP19, LXXZ20,

ZFG21]. In particular, [CRWP19, LXXZ20] give robust generalization error guarantees

for adversarially trained linear models under a margin separability assumption. The

hard margin assumption was relaxed by [ZFG21] who give robust generalization

guarantees for distributions with agnostic label noise. We note that the optimal attack

for linear models has a simple closed-form expression, which mitigates the challenge

of analyzing the inner loop PGD attack. In contrast, one of our main contributions is

to give convergence guarantees for the PGD attack. Nonetheless, as the Leaky ReLU

activation function can also realize the identity map for α = 1, our results also provide

robust generalization error guarantees for training linear models.

Most related to our results are the works of [GCL+19] and [ZPD+20], which study

the convergence of adversarial training in non-linear neural networks. Under specific

initialization and width requirements, these works guarantee small robust training error

with respect to the attack that is used in the inner-loop, without explicitly analyzing

the convergence of the attack. [GCL+19] assume that the activation function is smooth

and require that the width of the network, as well as the overall computational cost,

is exponential in the input dimension. The work of [ZPD+20] partially addresses

these issues. In particular, their results hold for ReLU neural networks, and they

only require the width and the computational cost to be polynomial in the input

156

parameters.

In a parallel strand of research, a series of previous work study robust generalization

in the adversarial settings through the lens of statistical learning theory. In particular,

the works of [KL18] and [YKB19] study the adversarial Rademacher complexity of

linear models under ℓ∞- and general ℓp-threat models, respectively. The bounds were

further improved later by [AFM20]. Furthermore, [AFM20] and [YKB19] also provide

robust Rademacher complexity bounds for the adversarial Rademacher complexity of

two-layer and general deep neural networks with ReLU activation.

6.2 Problem Setup

We focus on two-layer networks with m hidden nodes computing f(x; a,W) = a⊤σWx,

where W ∈ Rm×d and a ∈ Rm are the weights of the first and the second layers,

respectively, and σ(z) = max{αz, z} is the Leaky ReLU activation function. We

randomly initialize the weights a and W such that ∥a∥∞ ≤ κ and ∥W∥F ≤ ω. The

top linear layer (i.e., weights a) is kept fixed, and the hidden layer (i.e., W) is trained

using stochastic gradient descent (SGD).

For simplicity of notation, we represent the network as f(x; W), suppressing the

dependence on the top layer weights. Further, with a slight abuse of notation, we

denote the function by fW(x) when optimizing over the input adversarial perturbations,

and by fx(W) when training the network weights.

Formally, adversarial learning is described as follows. Let X ⊆ Rd and Y = {±1}

denote the input feature space and the output label space, respectively. Let D be an

unknown joint distribution on X ×Y . For any fixed x ∈ X , we consider norm-bounded

adversarial perturbations in the set ∆(x) := {δ : ∥δ − x∥ ≤ ν}, for some fixed noise

budget ν.

Given a training sample S := {(xi, yi)}ni=1 ∼ Dn drawn independently and iden-

157

-4 -2 2 4

-4

-2

2

4

Figure 6-1. The 0-1 loss (red), its convex surrogate, the cross-entropy loss (blue), and
the reflected cross-entropy loss (green).

tically from the underlying distribution D, the goal is to find a network with small

robust misclassification error

Lrob(W) = ED max
δ∈∆(x)

I[yfW̄(δ) < 0], (6.1)

where W̄ := W/∥W∥F is the weight matrix normalized to have unit Frobenius norm.

Note that, due to the homogeneity of Leaky ReLU, such normalization has no effects

on the robust error whatsoever.

In adversarial training, the 0 − 1 loss inside the expectation is replaced with a

convex surrogate such as cross entropy loss ℓ(z) = log(1 + e−z), and the expected

value is estimated using a sample average:

ˆ︁Lrob(W) := 1
n

n∑︂
i=1

max
δi∈∆(xi)

ℓ(yifW̄(δi)) (6.2)

Notwithstanding the conventional wisdom, adversarial training entails maximizing

an upper bound as opposed to a lower bound on the 0− 1 loss. In contrast, we propose

using a concave lowerbound on the 0− 1 loss to solve the inner maximization problem.

158

Algorithm 5: Atk PGD Attack
Input: Sample (x, y), Weights W, Stepsize ηatk, # Iters Tatk

1: Initialize δ1 ← x
2: for t = 1 to T do
3: δt+1 ← Π∆(x)(δt + ηatk∇δℓ−(yfW(δt)))
4: end for

Output: δτ , where τ ∈ arg maxt∈[T] ℓ−(yfW(δt))

Algorithm 6: AdvTr Adversarial Training
Input: Stepsize ηtr, # Iters Ttr

1: Initialize a and W1 such that ∥a∥∞ ≤ κ and ∥W1∥F ≤ ω
2: for t = 1 to T do
3: Draw (xt, yt) ∼ D
4: δt ← Atk(Wt, xt, yt)
5: Wt+1 ←Wt − ηtr∇Wℓ(ytfδt(Wt))
6: end for

Let

ℓ−(z) = −ℓ(−z) = − log(1 + ez)

denote the reflected loss. In Figure 6-1, we plot the 0-1 loss, the cross-entropy loss,

and the reflected cross-entropy loss. Starting from δ1 = x, the PGD attack updates

iterates via

δt+1 = Π∆(x)(δt + ηatkℓ−(yfW(δt))),

as described in Algorithm 5. We emphasize that the only difference between standard

adversarial training and what we propose in Algorithm 6 and Algorithm 5 is that we

reflect the loss (about the origin) in Algorithm 5.

6.3 Main Results

We begin by stating the distributional assumption we need for our analysis.

Assumption 3. Samples (x, y) are drawn i.i.d. from an unknown joint distribution

D that satisfies the following:

• ∥x∥ ≤ R with probability 1.

159

• There exists a unit norm vector v∗ ∈ Rd, ∥v∗∥ = 1, such that for (x, y) ∼ D, we

have with probability 1 that y(v∗ · x) ≥ γ > 0.

The first assumption requires that the inputs are bounded, which is standard in

the literature and is satisfied for most practical applications. The second assumption

implies that D is linearly separable with margin γ > 0. While this assumption

may seem restrictive, we note that even for training two-layer neural networks using

SGD, the convergence guarantees in the hard margin setting were unknown until

recently [BGMSS18], and we are not aware of any prior work analyzing adversarial

training for two-layer neural networks in this setting.

We consider a slightly weaker version of the robust error. In particular, we are

interested in adversarial attacks that can fool the learner with a margin – for some

small, non-negative constant β, we define the β-robust misclassification error as:

Lβ(W) = P
{︄

min
δ∈∆(x)

yfW̄(δ) < −β
}︄
. (6.3)

In particular, as β tends to zero, Lβ(W) → Lrob(W). When β is a small positive

constant bounded away from zero, Lβ(W) captures a more stringent notion of robust-

ness: (x, y) contributes to Lβ(W) only if there exists an attack δ ∈ ∆(x) such that fW̄

confidently makes a wrong prediction on δ.

Our bounds depend on several important problem parameters. Before stating

the main result of the paper, we remind the reader of these important quantities. R

denotes the bound on the input. γ and ν denote the hard margin and the attack size.

κ and ω are the bounds on the norm of the parameters a and W at the initialization.

Finally, α is the Leaky-ReLU parameter. The following theorem establishes that

adversarial training can efficiently find a network with small β-robust error.

Theorem 16 (Convergence of Algorithm 6). For any ϵ > 0, in at most Ttr ≤
64(R+ν)2(1+ωγακ

√
mϵ)

(γ−ν)2α2ϵ2
iterations, Algorithm 6 with step-size ηtr ≤ 1

mκ2(R+ν)2 finds an

160

iterate τ that, in expectation over {(xt, yt)}Ttr
t=1, satisfies:

Lβ(Wτ) ≤ 2ϵ

for any β ≥ 2ν(1 − α)κ
√
m, provided that for all t ∈ [T], ηatk ≤ 1

κ2m∥Wt∥2
F

and

Tatk ≥ 8ν2

ηatkϵ
.

A few remarks are in order.

Beyond Neural Tangent Kernel. As opposed to the convergence results

in the previous work [GCL+19, ZPD+20] which requires certain initialization and

width requirements specific to the NTK regime, our results holds for any bounded

initialization and any width m.

Role of the Robustness Parameter ν. Our guarantee holds only when the

desired robustness parameter ν is smaller than the distribution margin γ. Furthermore,

the iteration complexity increases gracefully as O(ν2/(γ − ν)2) as the attacks become

stronger, i.e., as the size of adversarial perturbations tends to the margin. Intuitively,

as ν → 0, the attack becomes trivial, and the adversarial training reduces to the

standard non-adversarial training. This is fully captured by our results — as ν → 0,

the number of attack iterates Tatk goes to zero, and we recover the overall runtime of

O(γ−2ϵ−2) as in the previous work [BGMSS18, FCG21].

Computational Complexity. To guarantee ϵ-suboptimality in the β-robust

misclassification error, we require Ttr = O((γ−ν)−2ϵ−2) iterations of Algorithm 6. Each

iteration invokes the PGD attack in Algorithm 5, which itself requires Tatk = O(ν2/ϵ)

gradient updates. Therefore, the overall computational cost of adversarial training

to achieve ϵ-suboptimality is O(ν2

(γ−ν)2ϵ3
). Note that Tatk is a purely computational

requirement, and the statistical complexity of adversarial training is fully captured

by Ttr. Remarkably, there is only a mild O(γ2/(γ − ν)2) statistical overhead for

β-robustness, and the computational cost increases gracefully by a multiplicative

factor of O
(︂

ν2γ2

(γ−ν)2ϵ

)︂
.

161

Learning Robust Linear Halfspaces. When α = 1, the Leaky ReLU activation

equals the identity map, and the network reduces to a linear predictor. In this case, we

retrieve strong robust generalization guarantees for learning halfspaces, as the lower

bound required for β in Theorem 16 vanishes. The following corollary instantiates

such a robust generalization guarantee.

Corollary 4. Let κ = 1/
√
m, ω = 1/γ, and ηtr = (R + ν)−2. For any ϵ > 0, in at

most Ttr ≤ 128(R+ν)2

(γ−ν)2ϵ2
iterations, Algorithm 6 finds an iterate τ , that in expectation

over {(xt, yt)}Ttr
t=1, satisfies Lrob(Wτ) ≤ 2ϵ, provided that for all t ∈ [T], ηatk ≤ ∥Wt∥−2

F

and Tatk ≥ 8ν2

ηatkϵ
.

Dependence on the Norm of Iterates. The iteration complexity of Algorithm 5

is inversely proportional to the learning rate ηatk, and therefore increases with ∥Wt∥2
F .

Thus, when calculating the overall computational complexity, one needs to compute

an upper bound on the norm of the iterates. As we show in Equation (6.7) in the

appendix, it holds for all iterates that ∥Wt+1∥2
F ≤ ∥W1∥2

F + 3ηtrt. Therefore, if we set

κ = 1/
√
m and ω2 = 3/(R+ ν)2, we have the following worst-case weight-independent

bound on the overall computational cost:

T ≤
Ttr∑︂
t=1

8ν2

ηatkϵ
≤

Ttr∑︂
t=1

8ν2∥Wt∥2
F

ϵ

≤
Ttr∑︂
t=1

8ν2(ω2 + 3ηtr(t− 1))
ϵ

≤
Ttr∑︂
t=1

24ν2t

(R + ν)2ϵ

≤ 12ν2T 2
tr

(R + ν)2ϵ
≤ 196608ν2(R + ν)2

(γ − ν)4α4ϵ5 .

Therefore, the worst-case overall computational cost is of order O(1
(γ−ν)4ϵ5

). We note

again that this cost is purely computational – the statistical complexity is still in the

order of O
(︂

1
(γ−ν)2ϵ2

)︂
.

Adversarial Robustness for any β. As we discussed earlier, as β → 0, the β-

robust error tends to the robust error, i.e., Lβ(W)→ Lrob(W). Although Theorem 16

does not hold for β = 0 (except for the linear case discussed above), it is possible to

162

guarantee robust generalization with arbitrarily small β, as stated in the following

corollary.

Corollary 5. For any desirable β > 0, let κ = β
2ν(1−α)

√
m

. For any ϵ > 0, in at most

Ttr ≤ 64(R+ν)2(1+ωγαβϵ/(2ν(1−α)))
(γ−ν)2α2ϵ2

iterations, Algorithm 6 with step-size ηtr ≤ 4ν2(1−α)2

β2(R+ν)2

finds an iterate τ that, in expectation over {(xt, yt)}Ttr
t=1 , satisfies:

Lβ(Wτ) ≤ 2ϵ

provided that for all t ∈ [T], ηatk ≤ 4ν2(1−α)2

β2∥Wt∥2
F

and Tatk ≥ 2(1−α)2

β2∥Wt∥2
F ϵ

.

6.3.1 Comparison with Previous Work

The results we present in this chapter are different from that of [GCL+19] and

[ZPD+20] in several ways. Here we highlight three key differences.

1. First, while the prior work analyzes the convergence in the NTK setting with spe-

cific initialization and width requirements, our results hold for any initialization

and width.

2. Second, none of the prior works studies computational aspects of finding an

optimal attack vector in the inner loop. Instead, the prior work assumes oracle

access to optimal attack vectors. We provide precise iteration complexity results

for the projected gradient method (i.e., for the PGD attack) for finding near-

optimal attack vectors.

3. Third, the prior works focus on minimizing the robust training loss, whereas we

provide computational learning guarantees on the robust generalization error.

6.4 Proofs

In this section, we highlight the key ideas and insights based on our analysis, and give

a sketch of the proof of the main result. We begin by recalling that we are interested

163

in bounding the β-robust misclassification error, which is the probability that for

(x, y) ∼ D, a β-effective attack exists.

Definition 7 (Effective Attacks). Given a neural networks with parameters (a,W)

and a data point (x, y) and some constant β > 0, we say that δ∗ ∈ ∆(x) is a β-effective

attack if

yfW̄(δ∗) ≤ −β, (6.4)

where W̄ = W/∥W∥F .

Using the definition above, the proof of Theorem 16 crucially depends on the

following two facts.

1. Whenever there exists a β-effective attack, Algorithm 5 will efficiently find an

approximate attack (Lemma 18),

2. As long as the attack size ν is smaller than the margin γ, adversarial training is

no harder than standard training.

The following Lemma gives convergence rates for Algorithm 5 in terms of the

negated loss derivative −ℓ′(·) under the assumption that an effective attack exists.

The negative derivative, −ℓ′(·), of the loss function has been used in several previous

works to give an upper bound on the error [CG19]; here, we borrow similar ideas

from [FCG21]. In particular, as it will become clear later, we will use positivity and

monotonicity of −ℓ′(·) to give an upper bound on the β-robust loss using Markov’s

inequality.

Lemma 18. Let δ∗ be a β-effective attack for a given network with weights (a,W) and

a given example (x, y), with β ≥ 2ν(1 − α)κ
√
m. Then, after Tatk iterations, PGD

with step size ηatk ≤
1

κ2m∥W∥2
F

generates an attack δatk such that

−ℓ′(yfW(δ∗)) ≤ −2ℓ′(yfW(δatk)) + 4ν2

ηatkTatk
.

164

For simplicity of the notation, in our analysis of the PGD attack, we drop the

subscripts denoting the iterates. That is, at the t-th iterate of the outer loop, the

weight matrix and the sample point is denoted by W and x, y, instead of Wt and xt, yt.

We can then use the same variable t to measure the progress of the attack in the inner

loop. PGD updates are therefore given by Π∆(x)[δt + η∇ℓ−(yfW(δt))].

Proof of Lemma 18. Let G := ∥W∥F be the Frobenius norm of the iterate. We have

the following bound on the gradient norm:

∥∇fW(δt)∥ = ∥
m∑︂
r=1

arσ
′(wr · δt)wr∥

≤
m∑︂
r=1
∥arσ′(wr · δt)wr∥

≤ κ
m∑︂
r=1
∥wr∥

≤ κ
√
m∥W∥F =: G

We analyze the distance of iterates from δ∗:

∥δt+1 − δ∗∥2 − ∥δt − δ∗∥2 = ∥Π[δt + ηatt∇ℓ−(yfW(δt))]− δ∗∥2 − ∥δt − δ∗∥2

≤ ∥δt + ηatt∇ℓ−(yfW(δt))− δ∗∥2 − ∥δt − δ∗∥2

= 2ηatt⟨∇ℓ−(yfW(δt)), δt − δ∗⟩+ η2
att∥∇ℓ−(yfW(δt))∥2

= 2ηattℓ
′
−(yfW(δt))y⟨∇fW(δt), δt − δ∗⟩+ η2

attℓ
′
−(yfW(δt))2∥∇fW(δt)∥2

≤ 2ηattℓ
′
−(yfW(δt))y⟨∇fW(δt), δt − δ∗⟩ − η2

attℓ−(yfW(δt))G2

(
⃓⃓⃓
ℓ′

−(·)
⃓⃓⃓
≤ max{1,−ℓ−(·)})

≤ 2ηattℓ
′
−(yfW(δt)) (yfW(δt)− yfW,t(δ∗))− ηattℓ−(yfW(δt))

(ηatt ≤ 1/G2)
≤ 2ηatt (ℓ−(yfW(δt))− ℓ−(yfW,t(δ∗)))− ηattℓ−(yfW(δt))

(concavity)
≤ ηattℓ−(yfW(δt))− 2ηattℓ−(yfW,t(δ∗))

where fW,t(δ∗) := ⟨∇fW(δt), δ∗⟩. Averaging over iterates, rearranging, and cancelling

165

telescopic terms, we arrive at:

1
T

T∑︂
t=1
−ℓ−(yfW(δt)) ≤

T∑︂
t=1

∥δt − δ∗∥2 − ∥δt+1 − δ∗∥2

ηattT
− 2
T

T∑︂
t=1

ℓ−(yfW,t(δ∗))

≤ ∥δ1 − δ∗∥2

ηattT
− 2 min

t
ℓ−(yfW,t(δ∗)) (Telescopic sum)

≤ ν2

ηattT
− 2 min

t
ℓ−(yfW,t(δ∗)) (δ1 = x, δ∗ ∈ ∆(x))

=⇒ −ℓ−(yfW(δatt)) ≤
ν2

ηattT
− 2 min

t
ℓ−(yfW,t(δ∗))

Next, we show that if δ∗ is an effective attack on fW, then it’s also effective on fW,t.

In other words, we have that:

yfW,t(δ∗) = y⟨∇fW(δt), δ∗⟩

= y⟨∇fW(δ∗), δ∗⟩+ y⟨∇fW(δt)−∇fW(δ∗), δ∗⟩

= yfW(δ∗) + y⟨∇fW(δt)−∇fW(δ∗), δ∗⟩

Let It := {j ∈ [m]|σ′(wj · δt) ̸= σ′(wj · δ∗)} be the set of nodes whose pre-activation

sign at time t is different from the optimal δ∗. The second term can be bounded as

follows:

y⟨∇fW(δt)−∇fW(δ∗), δ∗⟩ = y
m∑︂
j=1

aj (σ′(wj · δt)− σ′(wj · δ∗)) wj · δ∗

≤ |y|
m∑︂
j=1
|aj (σ′(wj · δt)− σ′(wj · δ∗)) wj · δ∗|

= κ
∑︂
j /∈It

|σ′(wj · δt)− σ′(wj · δ∗)| |wj · δ∗|

≤ (1− α)κ
∑︂
j /∈I
|wj · δ∗ − wj · δt| (j /∈ It)

≤ (1− α)κ
∑︂
j /∈I
∥wj∥∥δ∗ − δt∥ (Cauchy-Schwarz)

≤ (1− α)κν
√
m∥W∥F (Cauchy-Schwarz)

Given that there exist a β-effective, i.e. there exist δ∗ such that yfW(δ∗) ≤ −β∥W∥F ,

166

we have:

yfW,t(δ∗) ≤ yfW(δ∗) + (1− α)κν
√
m∥W∥F

≤ yfW(δ∗) + β

2 ∥W∥F (ν ≤ β
2(1−α)κ

√
m

)

≤ 1
2yfW(δ∗).

Together with the previous inequality on the average of instantaneous loss, we arrive

at:

−ℓ−(yfW(δatt)) = min
t∈[T]
−ℓ−(yfW(δt))

≤ 1
T

T∑︂
t=1
−ℓ−(yfW(δt))

≤ ν2

ηattT
− 2ℓ−(yfW(δ∗)/2).

Therefore, we have

2ℓ−(yfW(δ∗/2)) ≤ ℓ−(yfW(δatt)) + ν2

ηattT
. (6.5)

Next, we show that for any z, z′, and ϵ > 0, the inequality 2ℓ−(z/2) ≤ ℓ−(z′) + ϵ

implies that −ℓ′(z) ≤ −2ℓ′(z′) + 4ϵ. The following inequalities hold true:

2ℓ−(z/2) ≤ ℓ−(z′) + ϵ′

=⇒ − 2 log(1 + ez/2) ≤ − log(1 + ez
′) + ϵ′

=⇒ 2 log(1
1 + ez/2) ≤ log(eϵ

′

1 + ez′)

=⇒ 1
1 + ez+2ez/2 ≤

eϵ
′

1 + ez′

=⇒ e−z

1 + e−z+2e−z/2 ≤
e−z′

1 + e−z′ · eϵ
′

=⇒ 1
2

e−z

1 + e−z ≤
e−z′

1 + e−z′ · eϵ
′ (2e−z/2 ≤ 1 + e−z)

=⇒ − ℓ′(z) ≤ −ℓ′(z′) · 2eϵ′ (definition of ℓ′(·))

=⇒ − ℓ′(z) ≤ −ℓ′(z′)2(1 + 2ϵ′) (ez ≤ 1 + 2z for all z ∈ [0, 1])

=⇒ − ℓ′(z) ≤ −2ℓ′(z′) + 4ϵ′ (−ℓ′(·) ≤ 1)

167

Let z∗ := yfW(δ∗), zatt := yfW(δatt) and ϵ′ := ν2

ηattT
. Using the above inequality,

sub-optimality in terms of ℓ−(·), as given in Equation (6.5), implies sub-optimality in

terms of −ℓ′(·):

2ℓ−(z∗/2) ≤ ℓ−(zatt) + ϵ′ =⇒ −ℓ′(z∗) ≤ −2ℓ′(zatt) + 4ϵ′

That is, for any (x, y) ∼ D, it holds with probability one that

−ℓ′(yfW(δ∗)) ≤ −2ℓ′(yfW(δatt)) + 4ν2

ηattT
. (6.6)

Finally, we show that robust training is not much harder than standard training if

the attack size is smaller than the margin. In particular, the next Lemma establishes

that the expected value of the negative loss derivative eventually becomes arbitrarily

small.

Lemma 19. For any ϵ > 0, Algorithm 6 with stepsize ηtr ≤ m−1κ−2(R + ν)−2 finds

an iterate τ that, in expectation over {(xt, yt)}Ttr
t=1, satisfies:

ED[−ℓ′(yfWτ (δatk(x)))] ≤ ϵ

in at most Ttr ≤
4(1 + ∥W1∥Fγακ

√
mϵ)

ηtr(γ − ν)2α2κ2mϵ2 iterations.

We remark that the result in Lemma 19 holds for any attack algorithm Atk, as

long as it respects the condition δatk(x) ∈ ∆(x) for all x.

We need the following additional notations for the proof of Lemma 19. Let
ˆ︂G2
t = ∥Wt∥2

F and ˆ︂Ht := ⟨Wt,V∗⟩ denote the squared-norm of the iterates and

the correlation between the iterates and V∗, respectively. Let EAdvTr[·] denote the

expectation over a random draw of samples (xi, yi)ti=1 for Adversarial Training given

in Algorithm 6, and let Ht := EAdvTr[ˆ︂Ht] and G2
t := EAdvTr[ˆ︂G2

t] be the corresponding

population version of ˆ︂Ht and ˆ︂G2
t .

168

Proof of Lemma 19. Let V∗ ∈ Rm×d be such that vr = 1√
m

sgn(ar)v∗. ˆ︂Ht evolves as:

ˆ︂Ht+1 = ⟨Wt+1,V∗⟩

= ⟨Wt − ηtr∇ℓ(ytfδt(Wt)),V∗⟩

= ˆ︂Ht − ηtrℓ
′(ytfδt(Wt))yt⟨∇Wfδt(Wt),V∗⟩

Recall that ∂
∂wr fδ(W) = arσ

′(wr · δ)δ. Therefore, we have that:

yt⟨∇Wfδt(Wt),V∗⟩ = yt
m∑︂
r=1
⟨arσ′(wr · δ)δ,

1√
m

sgn(ar)v∗⟩

= κ√
m

m∑︂
r=1

σ′(wr · δ)yt⟨δ, v∗⟩

Note that

yt⟨δ, v∗⟩ = yt⟨x, v∗⟩+ yt⟨δ − x, v∗⟩

≥ γ − |yt⟨δ − x, v∗⟩|

≥ γ − ∥δ − x∥∥v∗∥

≥ γ − ν

On the other hand, for leaky ReLU, it holds that σ′(·) ≥ α. Therefore, we arrive at

yt⟨∇Wfδt(Wt),V∗⟩ ≥
κ√
m

m∑︂
r=1

α(γ − ν)

= κα
√
m(γ − ν)

Therefore, we have that

ˆ︂Ht+1 ≥ ˆ︂Ht − ηtrℓ
′(ytfδt(Wt))ακ

√
m(γ − ν)

=⇒ HT+1 ≥ H1 − ηtr(γ − ν)ακ
√
m

T∑︂
t=1

EAdvTrℓ
′(ytfδt(Wt))

where the implication follows from taking expectation EAdvTr[·] on both sides. The

gradient norm is bounded as follows:

∥∇Wfδt(Wt)∥2 =
m∑︂
j=1
∥ajσ′(wj,t · δt)δt∥2 ≤ mκ2(R + ν)2

169

Next, we analyze the norm of the iterates, i.e., ˆ︁G2
t = ∥Wt∥2

F . It is also easy to verify

that −ℓ′(z)z = ze−z

1+e−z = z
1+ez ≤ 1. We have:

ˆ︁G2
t+1 = ∥Wt − ηtr∇ℓ(ytfδt(Wt))∥2

= ∥Wt∥2
F + η2

tr∥∇ℓ(ytfδt(Wt))∥2 − 2ηtrℓ
′(ytfδt(Wt))yt∇Wfδt(Wt) ·Wt

= ˆ︁G2
t + η2

trℓ
′(ytfδt(Wt))2∥∇Wfδt(Wt))∥2 − 2ηtrℓ

′(ytfδt(Wt))ytfδt(Wt)

≤ ˆ︁G2
t + η2

trmκ
2(R + ν)2 + 2ηtr (−ℓ′(z)z ≤ 1)

≤ ˆ︁G2
t + 3ηtr (ηtr ≤ m−1κ−2(R + ν)−2)

Therefore, taking expectation EAdvTr on both sides, we have that

G2
T+1 ≤ G2

1 + 3ηtrT, (6.7)

and using
√
a+ b ≤

√
a +
√
b, we have GT ≤ G1 +

√
3ηtrT . Also, we have that

H2
t = (EAdvTr⟨Wt,V∗⟩)2 ≤ EAdvTr∥Wt∥2

F∥V∗∥2
F ≤ G2

t , so that |Ht| ≤ Gt. Putting all

together, we get:

−G1 − ηtr(γ − ν)ακ
√
m

T−1∑︂
t=0

EAdvTrℓ
′(ytfδt(Wt)) ≤ H0 − ηtr(γ − ν)ακ

√
m

T−1∑︂
t=0

EAdvTrℓ
′(ytfδt(Wt))

≤ HT

≤ GT

≤ G1 +
√︂

3ηtrT

−ηtr(γ − ν)ακ
√
m

T−1∑︂
t=0

EAdvTrℓ
′(ytfδt(Wt)) ≤ 2G1 + 2

√︂
ηtrT

We now argue that for any ϵ, there exist an iterate t such that −EAdvTrℓ
′(ytfδt(Wt)) ≤ ϵ.

170

Assume otherwise, then we get:

ηtr(γ − ν)ακ
√
mϵT ≤ −ηtr(γ − ν)ακ

√
m

T−1∑︂
t=0

EAdvTrℓ
′(ytfδt(Wt))

≤ 2G1 + 2
√︂
ηtrT

=⇒ ηtr(γ − ν)ακ
√
mϵτ 2 − 2√ηtrτ − 2G1 ≤ 0

=⇒ τ ≤
√
ηtr +

√︂
ηtr + 2G1ηtrγακ

√
mϵ

ηtr(γ − ν)ακ
√
mϵ

=⇒ T ≤ 4(1 +G1γακ
√
mϵ)

ηtr(γ − ν)2α2κ2mϵ2

Therefore, we have that −EAdvTrℓ
′(ytfδt(Wt)) = −EAdvTrℓ

′(ytfWt(δatt(xt))) ≤ ϵ. More-

over,

EAdvTr[−ℓ′(ytfWt(δatt(xt)))] = ESt∼Dt [−ℓ′(ytfWt(δatt(xt)))]
(independence from future samples)

= ESt−1∼Dt−1E(xt,yt)∼D [−ℓ′(ytfWt(δatt(xt)))|St−1]
(Smoothing property of the conditional expectation)
= ESE(x,y)∼D[−ℓ′(yfWt(δatt(x)))]

(Wt independent of (xt, yt) given St−1)

which completes the proof.

We are now ready to present the proof of the main result.

Proof of Theorem 16. Recall, that β-robust misclassification error is defined as:

Lβ(W) = P
{︄

min
δ∈∆(x)

yfW̄(δ) < −β
}︄

= P
{︄

min
δ∈∆(x)

yfW(δ) < −β∥W∥F
}︄

(Homogeneity of f)

A key step in the proof is to give an upper bound on ϵβ in terms of the at-

tack returned by PGD, i.e., δatk(x), rather than the optimal attack minδ∈∆(x) yfW(δ).

Lemma 18 does provide us with such an upper bound; however, (1) it only holds in

expectation, and 2) it is conditioned on existence of an effective attack at the given

example (x, y) and the weights W. Naturally, we can use Markov’s inequality to bound

171

the probability above. In order to address the conditional nature of the result in

Lemma 18, we introduce a truncated version of the negative loss derivative. In partic-

ular, for any c, let ℓ′
c(z) = ℓ′(z)I[z ≤ c] be the loss derivative thresholded at c. Note

that z ≤ c implies that −ℓ′
c(z) ≥ −ℓ′

c(c) – therefore, P{z ≤ c} ≤ P{−ℓ′
c(z) ≥ −ℓ′

c(c)}.

Let βτ := β∥Wτ∥F , where Wτ is the iterate guaranteed by Lemma 19. We have:

Lβ(Wτ) = P
{︄

min
δ∈∆(x)

yfWτ (δ) ≤ −βτ
}︄

≤ P
{︄
−ℓ′

−βτ (min
δ∈∆(x)

yfWτ (δ)) ≥ −ℓ′
−βτ (−βτ)

}︄

≤
ED

[︂
−ℓ′

−βτ (minδ∈∆(x) yfWτ (δ))
]︂

−ℓ′
−βτ (−βτ)

(Markov’s inequality)

≤ 2ED

[︄
−ℓ′

−βτ (min
δ∈∆(x)

yfWτ (δ))
]︄

(−ℓ′
−βτ (z) ≥ 1/2 for z ≤ 0)

Given Wτ , for any (x, y) ∼ D, one of the two following cases can happen:

1. There exists a β-effective attack. In this case, by Definition 7, it holds that

minδ∈∆(x) yfWτ (δ) ≤ −β∥Wτ∥F = −βτ . Therefore, by definition of the trun-

cated negative loss derivative, it also holds that −ℓ′
βτ (minδ∈∆(x) yfWτ (δ)) =

−ℓ′(minδ∈∆(x) yfWτ (δ)). Now, using Lemma 18, we get that

−ℓ′
−βτ (min

δ∈∆(x)
yfWτ (δ)) ≤ −2ℓ′(yfWτ (δatk(x))) + 4ν2

ηatkTatk
(6.8)

2. There does not exist a β-effective attack. In this case, by Definition 7, it holds

that minδ∈∆(x) yfWτ (δ) > −β∥Wτ∥F = −βτ . Therefore, by definition of the

truncated negative loss derivative, it also holds that −ℓ′
βτ (minδ∈∆(x) yfWτ (δ)) = 0,

which is trivially bounded by the upper bound in the first case above, given by

Equation (6.8).

Putting back the above cases in the upper bound on the β-robust error, we arrive

172

at:

Lβ(Wτ) ≤ 2
(︄

2ED[−ℓ′(yfWτ (δatk(x)))] + 4ν2

ηatkTatk

)︄
(Lemma 18)

≤ 2
(︄
ϵ

2 + 4ν2

ηatkTatk

)︄
(Lemma 19 with the proper choice of TTr)

≤ 2
(︃
ϵ

2 + ϵ

2

)︃
= 2ϵ (Tatk ≥ 8ν2

ηatkϵ
)

which completes the proof of the main result.

6.5 Empirical Results

Adversarial training is widely used in training robust models and has been shown to

be fairly effective in practice. The goal of this section is not to attest or reproduce

previous empirical findings. Instead, since the focus in this paper is on the theoretical

analysis of adversarial training in non-linear networks, the goal of this section is merely

to empirically study the effect of using reflected loss in Algorithm 5.

The experimental results are organized as follows. First, in Section 6.5.1, we

compare the optimal attacks found by a grid search on the surrogate loss and its

reflected version. In Section 6.5.2, we empirically study adversarial training with

reflected loss in the binary classification setting. Finally, in Section 6.5.3, we generalize

the reflected loss – which is the key to our theoretical analysis – to the multi-class

classification settings. We then report the results on the CIFAR-10 dataset using a

deep residual network.

6.5.1 Grid Search Optimization

We look at the following simple 3-dimensional 3-class classification problem. Consider

the point (x, y) where x = [3, 2, 1] and y = 1. We focus on the simplest non-trivial

function, i.e., the identity mapping, given by f(x) = x. Obviously, f correctly assigns

x to the first class because the first dimension is larger than the others. Also, a

173

0 2 4 6 8 10

Top 10 Attacks, Sorted by the Corresponding Loss

0

0.5

1

1.5

2

2.5

3

3.5

4

N
um

be
r

of
 O

pt
im

al
 A

tta
ck

s

Cross Entropy
Reflected Cross Entropy

0 20 40 60 80 100

Top 100 Attacks, Sorted by the Corresponding Loss

0

5

10

15

20

25

30

35

40

N
um

be
r

of
 O

pt
im

al
 A

tta
ck

s

0 200 400 600 800 1000

Top 1000 Attacks, Sorted by the Corresponding Loss

0

50

100

150

200

250

300

350

400

N
um

be
r

of
 O

pt
im

al
 A

tta
ck

s

Figure 6-2. Number of the top-k attack vectors that are optimal, i.e., can induce a label
flip, for the cross entropy loss (blue) and the reflected version (red), for different values of
k: Left: k = 10, Middle: k = 100, and Right: k = 1000.

perturbation of the form δ = [−0.501, 0.5, 0] with ∥δ∥ = 0.7078 can flip the label,

because f(x + δ) = [2.499, 2.5, 1] incorrectly predicts the second class.

We restrict the attack to the set {δ ∈ (−0.51,+0.51)3| ∥δ∥ ≤ 0.7078}. We look

at every possible attack vector on a grid of size 800 × 800 × 800. We then sort

these vectors in a descending order of the corresponding loss function, i.e., the cross

entropy loss and its reflected version, and simply count how many of the top-k attack

vectors actually induce a label flip. We take this as a measure of how effective is the

corresponding loss maximization problem at finding a good attack vector. As we can

see in Figure 6-2, the proposed method of maximizing the reflected cross entropy loss

is a far more effective way of generating the attacks than maximizing the cross entropy

loss.

6.5.2 Binary Classification

``````````````̀Training Alg.
Attack FGSM R-FGSM PGD-∞ R-PGD-∞ BIM R-BIM PGD-2 R-PGD-2

Standard 0.236 0.236 0.033 0.286 0.286 0.286 0.003 0.256
PGD-∞ 0.004 0.004 0.005 0.005 0.005 0.005 0.003 0.05

R-PGD-∞ 0.003 0.003 0.004 0.004 0.004 0.004 0.002 0.042
PGD-2 0.013 0.013 0.022 0.024 0.024 0.024 0.002 0.034

R-PGD-2 0.004 0.004 0.005 0.006 0.006 0.006 0.0 0.008

Table 6-I. Robust test error of several adversarially trained models with and without
reflecting the loss (Standard training, PGD-∞, R-PGD-∞, PGD-2, R-PGD-2), for different
attack benchmarks (FGSM, R-FGSM, PGD-∞, R-PGD-∞, BIM, R-BIM, PGD-2, and
R-PGD-2).

174



Experimental Setup. We extract digits 0 and 1 from the MNIST dataset [LBBH98],

which provides a (almost) separable distribution, consistent with our theoretical setup.

The dataset contains 12665 training samples and 2115 test samples. We evaluate

the generalization error as well as the robust generalization error of fully-connected

two-layer neural networks which are adversarially trained with and without reflecting

the loss. The network has 100 hidden nodes with ReLU activation function.

The outer loop consists of 20 epochs over the training data with batch size equal

to 64, randomly shuffled at the beginning of each epoch. The initial learning rate is

set to 1, and is decayed by a multiplicative factor of 0.2 every 5 epochs.

We use several benchmark attacks with and without reflecting the loss. The

benchmarks include the Fast Gradient Sign Method (FGSM) [GSS15], the Basic

Iterative Method (BIM) [KGB17], and the PGD attack with ℓ2 constraint (PGD-

2) and ℓ∞ constraint (PGD-∞). For each of these attack strategies, we have a

corresponding approach that involves reflecting the surrogate loss – we denote the

resulting methods as R-FGSM, R-BIM, R-PGD-2, and R-PGD-∞, respectively. The

perturbation size for FGSM, PGD-∞, and BIM (and their corresponding reflected

version) is set to ν = 0.1. For PGD-2 and R-PGD-2, we let a larger perturbation size

of ν = 2 as recommended in Adversarial ML Tutorial.

In the inner-loop, if the attack is iterative, we use a step-decay scheduler with initial

step-size of 10, which decreases the step-size every 10 steps by a multiplicative factor

of 0.2. In Table 6-I, we report the standard test accuracy as well as the adversarial test

accuracy of the trained models over 10 independent random runs of the experiment.

Different rows and columns correspond to different training algorithms and different

attack models, respectively.

Analysis. We make the following observations in Table 6-I. First, reflecting the loss

has a minimal effect on FGSM and BIM attacks, in terms of robust test accuracy of

the trained models. In particular, the columns 1 and 2 (similarly columns 5 and 6)

175

https://adversarial-ml-tutorial.org/adversarial_examples/


are identical up to the third decimal point.

Second, in PGD-2 attacks, reflecting the loss generally yields a stronger attack –

note the striking differences in the last two columns between PGD-2 and R-PGD-2.

We observe a milder trend for PGD-∞ attacks, where R-PGD-∞ attacks turns out to

be only slightly stronger, except for the standard training setting where reflecting the

loss has a huge impact on the robust error.

Third, we would like to remark on the performance of adversarially trained models.

We can see that reflecting the loss in general helps robustness. In particular, second

and fourth rows (PGD-∞ and PGD-2) are completely dominated by the third and

fifth rows (R-PGD-∞ and R-PGD-2), respectively.

Finally, it is notable that even though PGD-2 and PGD-∞ are much weaker than

their reflected counterparts, they are still very much competitive in terms of the

robustness when used in adversarial training. This, in particular, suggests that finding

a “strong” attack is not a necessity for the success of adversarial training.

6.5.3 Extension to multi-label setting

In binary classification using the logistic loss, in essence, adversarial training finds an

attack that minimizes the log-likelihood of the correct class. Using the reflected loss,

instead, we aim at maximizing the log-likelihood of the wrong class. In a multiclass

classification scenario, there are multiple such wrong classes. Therefore, an important

design question is which wrong class should be targeted in the attack phase? Here,

we focus on the most natural choice: we target the wrong class with the highest log-

likelihood. This greedy approach is easy to implement, and has minimal computational

overhead over standard adversarial training.

We emphasize that the greedy approach that was described above is sub-optimal,

even in a simple linear settings. Intuitively, when the parameters are such that the

logits for the true class correlates with the logits for the most likely wrong class,

176



Attack Size ν = 2/255
Steps = 2 Steps = 4 Steps = 16 Steps = 32

RA SA RA SA RA SA RA SA
PGD 14.182 91.254 20.702 90.424 21.014 90.132 20.848 90.09

R-PGD 14.338 91.208 20.726 90.384 20.958 90.06 20.746 89.992
Attack Size ν = 4/255

PGD 17.764 90.748 30.344 88.736 37.564 86.65 37.304 86.572
R-PGD 17.162 90.114 30.34 88.826 37.4 86.734 37.374 86.522

Attack Size ν = 8/255
PGD 20.064 90.478 34.21 87.746 48.916 78.402 48.936 77.926

R-PGD 20.1 90.564 34.19 87.852 48.792 78.382 48.828 77.982
Attack Size ν = 16/255

PGD 16.19 85.908 21.524 86.816 48.722 68.37 45.292 58.526
R-PGD 15.986 89.708 21.362 86.83 48.742 68.456 44.778 58.486

Table 6-II. Robust test accuracy (RA) of adversarially trained models with and without
reflecting the loss, for different values of the attack size ν ∈ {2, 4, 8, 16}/255 and number
of steps in the attack Steps ∈ {2, 4, 16, 32}. The better performance is highlighted in gray,
where the intensity corresponds to difference in performance. The clean data standard
test accuracy (SA) is also reported for each of the settings.

the greedy approach fails. In particular, consider the following 3-class classification

problem on R2. Let fW(x) = Wx, where W = [2e1, e1, 10e2] ∈ R3×2. Here, ei denotes

the i-th standard basis. Consider the point x = [1, 0]. Clearly, class 1 and 3 have

the highest and the smallest likelihoods, respectively. Given a perturbation size

∥x′ − x∥ ≤ 0.3, the likelihood of the second class will never dominate that of the first

class:

w⊤
1 (x + δ) = 2e⊤

1 (x + δ) = 2(x1 + δ1)

> (x1 + δ1) (x1 = 1, |δ1| ≤ 0.3)

= e⊤
1 (x + δ) = w⊤

2 (x + δ)

Therefore, the greedy approach fails here. Whereas, within the specified perturbation

budget, maximizing the likelihood of the third class can indeed find a label-flipping

attack. For example, with δ = [0, 0.3], the point x′ = [1, 0.3] will be assigned to the

third class, because w⊤
3 x′ = 3 > w⊤

1 x = 2 > w⊤
2 x = 1.

177



Experimental Setup We use adversarial training with and without reflected loss (de-

noted by R-PGD and PGD, respectively) to train a PreActResNet (PARN) [HZRS16b]

on the CIFAR-10 dataset [KH+09]. In the training phase, we conduct experiments

for attack size ν ∈ {2, 4, 8, 16}/255. We build on the PyTorch implementation

in [ZZK+21], and we follow their experimental setup, which is described next. We use

a SGD optimizer with a momentum parameter of 0.9 and weight decay parameter of

5× 10−4. We set the batch size to 128 and train each model for 20 epochs. We use a

cyclic scheduler which increases the learning rate linearly from 0 to 0.2 within the first

10 epochs and then reduces it back to 0 in the remaining 10 epochs. We report robust

test accuracy (RA) of an adversarially-trained model against PGD attacks [MMS+18]

(RA-PGD), where we take 50-step PGD with 10 restarts. We report the results for

several test-time attack sizes ν ∈ {2, 4, 16}/255.

Analysis. Based on our empirical results, using the (greedy) reflected loss in ad-

versarial training does not significantly impact the standard/robust generalization

performance of the learned models.

6.6 Discussion

In this chapter, we studies robust adversarial training of two-layer neural networks as

a bi-level optimization problem. We proposed reflecting the surrogate loss about the

origin in the inner maximization phase when searching for an “optimal” perturbation

vector to attack the current model. We gave convergence guarantee for the inner-loop

PGD attack and precise iteration complexity results for end-to-end adversarial training,

which hold for any width and initialization under a margin assumption. We also

provide an empirical study on the effect of reflecting the surrogate loss in real datasets.

Next, we list few natural research directions for future work.

Extension to multiclass setting. In binary classification, which is the focus of

178



this paper, reflecting the loss about the origin provides a concave lower-bound for

the zero one loss (see Figure 6-1). Maximizing the reflected loss then corresponds

to maximizing the likelihood of the wrong class. This simple modification enables

us to guarantee the convergence of PGD-2 attacks, and yield stronger attacks in our

experiments. However, extending this idea to the multiclass setting is not trivial. In

particular, the idea of maximizing the likelihood of the wrong class does not trivially

generalize to the multiclass setting due to plurality of wrong classes. Nonetheless, as

we show in the experimental section, a naive greedy approach to choose a wrong class

seems to provide competitive performance in terms of standard/adversarial test error.

Is there a simple, principled approach to obtain a lower-bound for the misclassification

error in the multiclass setting? It would be interesting to explore theoretical and

empirical aspects of such possible extensions.

Beyond β-robustness. The notion of β-robustness is crucial in our analysis. Al-

though we provide robustness guarantees for arbitrarily small positive β (see Corol-

lary 5), our current analysis does not allow for standard robustness guarantees (β =

0) except for the linear setting (α = 1). At a high level, the main challenge here is

to guarantee that the attack can always find an adversarial example – if there exists

one – regardless of whether the attack is β-effective or not. This is, in particular,

challenging to establish for iterative attacks such as PGD, because they can only

guarantee getting sufficiently close to an optimal attack in finite time. Therefore, if

the optimal attack can just barely flip the sign, the computational time for finding it

can grow unboundedly. Therefore, providing robust generalization guarantees (β = 0)

is an interesting research direction that we leave for the future work.

Optimization geometry. In our theoretical results, we focus on PGD-2 attacks,

which are based on steepest descent with respect to the ℓ2 geometry. In our experiments,

we also provide empirical results for steepest descent attacks with respect to ℓ∞

geometry (including FGSM and BIM) on the reflected loss. We leave the theoretical

179



analysis of such attacks to future work.

180



Chapter 7

Conclusion

While deep learning continues to advance our technological world, its theoretical

underpinnings are not well-understood. In this dissertation, we develop a theory around

deep learning, focusing on regularization and robustness imparted by algorithmic

heuristics. In this section, we summarize the contributions, and conclude with a

discussion on future work.

7.1 Main Contributions

In Chapters 2- 5 of this dissertation, we rigorously argue for regularization due to

dropout, a popular local-search heuristics in deep learning. We show theoretically

and empirically, that in deep regression, dropout induces a nuclear norm penalty, and

explicitly biases the learning objective towards low-rank solutions [MAV18, MA19].

We leverage tools from statistical learning theory and prove precise generalization

error bounds for dropout training in two important learning problems: matrix sensing,

and regression with two-layer ReLU networks [ABMS21]. Finally, we focus on com-

putational and algorithmic aspects of dropout, and give precise iteration complexity

bounds for learning two-layer ReLU networks in the lazy regime [MA20].

In Chapter 6, we present a theoretical grounding of robustness imparted by local-

search heuristics in adversarial training. We provide convergence guarantees for PGD

181



attacks on two-layer neural networks with leaky ReLU activation, and give global

convergence guarantees and establish learning rates for adversarial training.

7.2 Other Contributions

Learning useful representations of data is a major challenges in machine learning.

Unsupervised representation learning techniques leverage unlabeled data which is

often cheap and plentiful. The goal of these techniques is to learn a representation that

captures the intrinsic low dimensional structure in data and disentangles underlying

factors of variation. For example, Principal component analysis (PCA) is a ubiquitous

representation learning technique in scientific analysis that finds a projection of data

that captures as much of the variance in distribution as possible.

In multiview representation learning, multiple “views” of the data measured from

different modalities are available. For instance, in web-page classification, the two

views can be the text of the page and the hyperlink structure; in automatic speech

recognition, one view may be the acoustics features and the other the articulatory

measurements [BALHJ12]. In such multiview learning problems, a common represen-

tation of the two views is provided by the shared semantic space. In particular, Partial

Least Squares (PLS) and Canonical Correlation Analysis (CCA) are two common

approaches to extracting this space, which find pairs of maximally covarying and

maximally correlated projections of the data in the two views, respectively. Mul-

tiview representation learning based on CCA [HSST04] and its non-linear variants

[LF00, AABL13, WALB15a, BKG+19] has been shown to be helpful for a variety of

tasks [HSST04, WALB15b, AL12, AL13, AL14, BAD16, VCOAA+17, OAVCVB+18,

HPM+19, RVDA15].

Instead of formulating representation learning techniques as a problem about a

fixed given data set, we argue that these techniques should be studied as a stochastic

182



optimization problems, especially in a “big data” setting, where the goal is to optimize

a population objective based on sample. Such a population-based view of subspace

learning has recently been advocated by [ACLS12] and [ACS13] and motivates using

Stochastic Approximation (SA) approaches, such as Stochastic Gradient Descent

(SGD) and enables a rigorous analysis of their benefits. In a series of previous work,

we have developed first-order SA algorithms for ubiquitous representation learning

techniques such as PCA [MA18], its robust [MMA18] and non-linear [UMMA18]

variants, as well as its multiview cousins PLS [AMM16] and CCA [AMMS17], and

provided iteration complexity bounds for the proposed algorithms.

Besides the works above, we have also provided several approximation theoretic

results explaining the role of depth in expressivity of deep neural networks [ABMM18],

and investigated robustness of SGD against data poisoning attacks [WMA21] as well

as adversarial robustness [MA22, WUMA22].

7.3 Future Work

Our theoretical study of regularization and robustness due to local-search heuristics

suggests several interesting directions for future research. We detail these research

directions in the following.

Trajectory-based analysis. This dissertations contributes to a growing body of

literature that leverages trajectory-based analysis of local-search heuristics to explain

the success of deep learning algorithms. In particular, In Chapter 5 and Chapter 6,

we provide precise iteration complexity results for dropout training and adversarial

training, by carefully analyzing the dynamics of the corresponding local-search heuristic

at the time of training. However, these results are either limited to the lazy regime,

or otherwise require strong distributional assumptions, as is the case for most recent

developments in this area. Therefore, extending trajectory-based analysis for local-

183



search heuristics beyond the lazy regime, and for more general distributional settings,

is an important research direction that we leave for future work.

Data-dependent regularization. In Chapter 4 of this thesis, we show that dropout

induces a data-dependent regularizer, which directly controls the capacity of the

underlying hypothesis class. We gave precise sample complexity results that only

depend on the value of the dropout regularizer, without any additional constraints on

the norm of the parameters. Our analysis here is tailored to the regularizer due to

dropout; given ample empirical evidence arguing for other forms of data-dependent

regularizers such as normalization layers and data-augmentation, developing a general

theoretical framework for data-dependent capacity control in deep learning is crucial.

Resolving the landscape puzzle. In Chapter 2 of this dissertation, we show that

under certain assumptions, all suboptimal critical points in the landscape of dropout

objective have negative eigenvalues in their Hessian, which allows dropout to escape

saddle points and converge to a global optima. Our results contribute to a large

body of literature that attributes the empirical success of local-search heuristics to

benign geometric properties of the loss landscape. However, it is still an open question

whether poor local minima with suboptimal performance relative to the global optima

are common in practical deep networks, at least in the space of parameters reachable by

local-search heuristics under standard initialization schemes. Therefore, investigating

the benign landscape conjecture for practical neural networks is an important direction

for future work.

184



Bibliography

[AABL13] Galen Andrew, Raman Arora, Jeff Bilmes, and Karen Livescu. Deep

canonical correlation analysis. In International conference on machine

learning, pages 1247–1255. PMLR, 2013.

[ABB+99] Martin Anthony, Peter L Bartlett, Peter L Bartlett, et al. Neural net-

work learning: Theoretical foundations, volume 9. cambridge university

press Cambridge, 1999.

[ABMM18] Raman Arora, Amitabh Basu, Poorya Mianjy, and Anirbit Mukherjee.

Understanding deep neural networks with rectified linear units. In

International Conference on Learning Representations (ICLR), 2018.

[ABMS21] Raman Arora, Peter Bartlett, Poorya Mianjy, and Nathan Srebro.

Dropout: Explicit forms and capacity control. In International Con-

ference on Machine Learning, pages 351–361. PMLR, 2021.

[ACGH18] Sanjeev Arora, Nadav Cohen, Noah Golowich, and Wei Hu. A con-

vergence analysis of gradient descent for deep linear neural networks.

arXiv preprint arXiv:1810.02281, 2018.

[ACHL19] Sanjeev Arora, Nadav Cohen, Wei Hu, and Yuping Luo. Implicit

regularization in deep matrix factorization. Advances in Neural Infor-

mation Processing Systems, 32, 2019.

185



[ACLS12] Raman Arora, Andrew Cotter, Karen Livescu, and Nathan Srebro.

Stochastic optimization for PCA and pls. In 2012 50th Annual Allerton

Conference on Communication, Control, and Computing (Allerton),

pages 861–868. IEEE, 2012.

[ACS13] Raman Arora, Andy Cotter, and Nati Srebro. Stochastic optimization

of PCA with capped msg. Advances in Neural Information Processing

Systems, 26, 2013.

[ACW18] Anish Athalye, Nicholas Carlini, and David Wagner. Obfuscated

gradients give a false sense of security: Circumventing defenses to

adversarial examples. In International conference on machine learning,

pages 274–283. PMLR, 2018.

[ADH+19] Sanjeev Arora, Simon S Du, Wei Hu, Zhiyuan Li, and Ruosong Wang.

Fine-grained analysis of optimization and generalization for overparam-

eterized two-layer neural networks. arXiv preprint arXiv:1901.08584,

2019.

[ADV19] Pranjal Awasthi, Abhratanu Dutta, and Aravindan Vijayaraghavan.

On robustness to adversarial examples and polynomial optimization.

Advances in Neural Information Processing Systems, 32, 2019.

[AFM20] Pranjal Awasthi, Natalie Frank, and Mehryar Mohri. Adversarial

learning guarantees for linear hypotheses and neural networks. In

International Conference on Machine Learning, pages 431–441. PMLR,

2020.

[AGCH19] Sanjeev Arora, Noah Golowich, Nadav Cohen, and Wei Hu. A con-

vergence analysis of gradient descent for deep linear neural networks.

186



In 7th International Conference on Learning Representations, ICLR

2019, 2019.

[AH19] Navid Azizan and Babak Hassibi. Stochastic gradient/mirror descent:

Minimax optimality and implicit regularization. In International

Conference on Learning Representations (ICLR), 2019.

[AL12] Raman Arora and Karen Livescu. Kernel cca for multi-view learning

of acoustic features using articulatory measurements. In Symposium

on machine learning in speech and language processing, 2012.

[AL13] Raman Arora and Karen Livescu. Multi-view cca-based acoustic

features for phonetic recognition across speakers and domains. In

2013 IEEE International Conference on Acoustics, Speech and Signal

Processing, pages 7135–7139. IEEE, 2013.

[AL14] Raman Arora and Karen Livescu. Multi-view learning with supervision

for transformed bottleneck features. In 2014 IEEE International

Conference on Acoustics, Speech and Signal Processing (ICASSP),

pages 2499–2503. IEEE, 2014.

[AM57] Abraham Adrian Albert and Benjamin Muckenhoupt. On matrices of

trace zero. The Michigan Mathematical Journal, 4(1):1–3, 1957.

[AMM16] Raman Arora, Poorya Mianjy, and Teodor Marinov. Stochastic op-

timization for multiview representation learning using partial least

squares. In International Conference on Machine Learning, pages

1786–1794, 2016.

[AMMS17] Raman Arora, Teodor Vanislavov Marinov, Poorya Mianjy, and Nati

Srebro. Stochastic approximation for canonical correlation analysis. In

187



Advances in Neural Information Processing Systems, pages 4775–4784,

2017.

[AZLL19] Zeyuan Allen-Zhu, Yuanzhi Li, and Yingyu Liang. Learning and

generalization in overparameterized neural networks, going beyond

two layers. In Advances in neural information processing systems,

pages 6155–6166, 2019.

[AZLS18] Zeyuan Allen-Zhu, Yuanzhi Li, and Zhao Song. A convergence

theory for deep learning via over-parameterization. arXiv preprint

arXiv:1811.03962, 2018.

[Bac08] Francis R Bach. Consistency of trace norm minimization. The Journal

of Machine Learning Research, 9:1019–1048, 2008.

[BAD16] Adrian Benton, Raman Arora, and Mark Dredze. Learning multiview

embeddings of twitter users. In Proceedings of the 54th Annual Meeting

of the Association for Computational Linguistics (Volume 2: Short

Papers), pages 14–19, 2016.

[BALHJ12] Sujeeth Bharadwaj, Raman Arora, Karen Livescu, and Mark

Hasegawa-Johnson. Multiview acoustic feature learning using articu-

latory measurements. In Intl. Workshop on Stat. Machine Learning

for Speech Recognition. Citeseer, 2012.

[Bar98] Peter L Bartlett. The sample complexity of pattern classification

with neural networks: the size of the weights is more important than

the size of the network. IEEE transactions on Information Theory,

44(2):525–536, 1998.

[BCM+13] Battista Biggio, Igino Corona, Davide Maiorca, Blaine Nelson, Nedim

vSrndić, Pavel Laskov, Giorgio Giacinto, and Fabio Roli. Evasion

188



attacks against machine learning at test time. In Joint European

conference on machine learning and knowledge discovery in databases,

pages 387–402. Springer, 2013.

[Ben09] Yoshua Bengio. Learning deep architectures for AI. Now Publishers

Inc, 2009.

[BFT17] Peter L Bartlett, Dylan J Foster, and Matus J Telgarsky. Spectrally-

normalized margin bounds for neural networks. In Advances in Neural

Information Processing Systems, pages 6240–6249, 2017.

[BG17] Alon Brutzkus and Amir Globerson. Globally optimal gradient descent

for a convnet with gaussian inputs. In International conference on

machine learning, pages 605–614. PMLR, 2017.

[BGMSS18] Alon Brutzkus, Amir Globerson, Eran Malach, and Shai Shalev-

Shwartz. SGD learns over-parameterized networks that provably

generalize on linearly separable data. In International Conference on

Learning Representations, 2018.

[BH89] Pierre Baldi and Kurt Hornik. Neural networks and principal compo-

nent analysis: Learning from examples without local minima. Neural

networks, 2(1):53–58, 1989.

[BHL18] Peter Bartlett, Dave Helmbold, and Phil Long. Gradient descent

with identity initialization efficiently learns positive definite linear

transformations. In ICML, 2018.

[BKG+19] Adrian Benton, Huda Khayrallah, Biman Gujral, Dee Ann Reisinger,

Sheng Zhang, and Raman Arora. Deep generalized canonical correla-

tion analysis. In Proceedings of the 4th Workshop on Representation

Learning for NLP (RepL4NLP-2019), pages 1–6, 2019.

189



[BKH16] Jimmy Lei Ba, Jamie Ryan Kiros, and Geoffrey E Hinton. Layer

normalization. arXiv preprint arXiv:1607.06450, 2016.

[BLL+11] Alina Beygelzimer, John Langford, Lihong Li, Lev Reyzin, and Robert

Schapire. Contextual bandit algorithms with supervised learning

guarantees. In Proceedings of the Fourteenth International Conference

on Artificial Intelligence and Statistics, pages 19–26, 2011.

[BLPR19] Sébastien Bubeck, Yin Tat Lee, Eric Price, and Ilya Razenshteyn.

Adversarial examples from computational constraints. In International

Conference on Machine Learning, pages 831–840. PMLR, 2019.

[BM02] Peter L Bartlett and Shahar Mendelson. Rademacher and gaussian

complexities: Risk bounds and structural results. Journal of Machine

Learning Research, 3(Nov):463–482, 2002.

[BNS16] Srinadh Bhojanapalli, Behnam Neyshabur, and Nati Srebro. Global

optimality of local search for low rank matrix recovery. In Advances

in Neural Information Processing Systems (NIPS), pages 3873–3881,

2016.

[BR92] Avrim L Blum and Ronald L Rivest. Training a 3-node neural network

is np-complete. Neural Networks, 5(1):117–127, 1992.

[BRRG18] Jacob Buckman, Aurko Roy, Colin Raffel, and Ian Goodfellow. Ther-

mometer encoding: One hot way to resist adversarial examples. In

International Conference on Learning Representations, 2018.

[BS13] Pierre Baldi and Peter J Sadowski. Understanding dropout. In

Advances in Neural Information Processing Systems (NIPS), pages

2814–2822, 2013.

190



[CB20] Lenaic Chizat and Francis Bach. Implicit bias of gradient descent

for wide two-layer neural networks trained with the logistic loss. In

Conference on Learning Theory, pages 1305–1338. PMLR, 2020.

[CG19] Yuan Cao and Quanquan Gu. Generalization bounds of stochastic

gradient descent for wide and deep neural networks. In Advances in

Neural Information Processing Systems, pages 10835–10845, 2019.

[CHL+18] Jacopo Cavazza, Benjamin D. Haeffele, Connor Lane, Pietro Morerio,

Vittorio Murino, and Rene Vidal. Dropout as a low-rank regularizer

for matrix factorization. Int. Conf. on Artificial Intelligence and

Statistics (AISTATS), 2018.

[CHM+15] Anna Choromanska, Mikael Henaff, Michael Mathieu, Gérard Ben

Arous, and Yann LeCun. The loss surfaces of multilayer networks. In

Artificial intelligence and statistics, pages 192–204. PMLR, 2015.

[CM14] Danqi Chen and Christopher Manning. A fast and accurate depen-

dency parser using neural networks. In Proceedings of the 2014 confer-

ence on empirical methods in natural language processing (EMNLP),

pages 740–750, 2014.

[COB18] Lenaic Chizat, Edouard Oyallon, and Francis Bach. On lazy training

in differentiable programming. arxiv e-prints, page. arXiv preprint

arXiv:1812.07956, 2018.

[CRWP19] Zachary Charles, Shashank Rajput, Stephen Wright, and Dimitris

Papailiopoulos. Convergence and margin of adversarial training on

separable data. arXiv preprint arXiv:1905.09209, 2019.

191



[CT10] Emmanuel J Candès and Terence Tao. The power of convex relaxation:

Near-optimal matrix completion. IEEE Transactions on Information

Theory, 56(5):2053–2080, 2010.

[CVMG+14] Kyunghyun Cho, Bart Van Merriënboer, Caglar Gulcehre, Dzmitry

Bahdanau, Fethi Bougares, Holger Schwenk, and Yoshua Bengio.

Learning phrase representations using rnn encoder-decoder for statis-

tical machine translation. arXiv preprint arXiv:1406.1078, 2014.

[CW17] Nicholas Carlini and David Wagner. Towards evaluating the robustness

of neural networks. In 2017 ieee symposium on security and privacy

(sp), pages 39–57. IEEE, 2017.

[Cyb89] George Cybenko. Approximation by superpositions of a sigmoidal

function. Mathematics of control, signals and systems, 2(4):303–314,

1989.

[Dan17] Amit Daniely. SGD learns the conjugate kernel class of the network. In

Advances in Neural Information Processing Systems, pages 2422–2430,

2017.

[DFKL20] Assaf Dauber, Meir Feder, Tomer Koren, and Roi Livni. Can implicit

bias explain generalization? stochastic convex optimization as a case

study. arXiv preprint arXiv:2003.06152, 2020.

[DLL+18] Simon S Du, Jason D Lee, Haochuan Li, Liwei Wang, and Xiyu Zhai.

Gradient descent finds global minima of deep neural networks. arXiv

preprint arXiv:1811.03804, 2018.

[DLSS14] Amit Daniely, Nati Linial, and Shai Shalev-Shwartz. From average

case complexity to improper learning complexity. In Proceedings of

192



the forty-sixth annual ACM symposium on Theory of computing, pages

441–448, 2014.

[DSH13] George E Dahl, Tara N Sainath, and Geoffrey E Hinton. Improving

deep neural networks for lvcsr using rectified linear units and dropout.

In 2013 IEEE international conference on acoustics, speech and signal

processing, pages 8609–8613. IEEE, 2013.

[DZPS19] Simon S. Du, Xiyu Zhai, Barnabas Poczos, and Aarti Singh. Gradient

descent provably optimizes over-parameterized neural networks. In

International Conference on Learning Representations, 2019.

[FC19] Jonathan Frankle and Michael Carbin. The lottery ticket hypothesis:

Finding sparse, trainable neural networks. In International Conference

on Learning Representations, 2019.

[FCG21] Spencer Frei, Yuan Cao, and Quanquan Gu. Provable generalization

of SGD-trained neural networks of any width in the presence of

adversarial label noise. arXiv preprint arXiv:2101.01152, 2021.

[FSSS11] Rina Foygel, Ohad Shamir, Nati Srebro, and Ruslan R Salakhutdinov.

Learning with the weighted trace-norm under arbitrary sampling

distributions. In Advances in Neural Information Processing Systems,

pages 2133–2141, 2011.

[GBCB16] Ian Goodfellow, Yoshua Bengio, Aaron Courville, and Yoshua Bengio.

Deep learning, volume 1. MIT press Cambridge, 2016.

[GCL+19] Ruiqi Gao, Tianle Cai, Haochuan Li, Cho-Jui Hsieh, Liwei Wang, and

Jason D Lee. Convergence of adversarial training in overparametrized

neural networks. Advances in Neural Information Processing Systems,

32:13029–13040, 2019.

193



[GHJY15] Rong Ge, Furong Huang, Chi Jin, and Yang Yuan. Escaping from

saddle points—online stochastic gradient for tensor decomposition. In

Conf. Learning Theory (COLT), 2015.

[GJZ17] Rong Ge, Chi Jin, and Yi Zheng. No spurious local minima in

nonconvex low rank problems: A unified geometric analysis. arXiv

preprint arXiv:1704.00708, 2017.

[GLM16] Rong Ge, Jason D Lee, and Tengyu Ma. Matrix completion has no

spurious local minimum. In Advances in Neural Information Processing

Systems (NIPS), 2016.

[GLSS18a] Suriya Gunasekar, Jason Lee, Daniel Soudry, and Nathan Srebro.

Characterizing implicit bias in terms of optimization geometry. arXiv

preprint arXiv:1802.08246, 2018.

[GLSS18b] Suriya Gunasekar, Jason Lee, Daniel Soudry, and Nathan Srebro.

Implicit bias of gradient descent on linear convolutional networks.

arXiv preprint arXiv:1806.00468, 2018.

[GRS18] Noah Golowich, Alexander Rakhlin, and Ohad Shamir. Size-

independent sample complexity of neural networks. In Conference On

Learning Theory, pages 297–299, 2018.

[GSS15] Ian Goodfellow, Jonathon Shlens, and Christian Szegedy. Explaining

and harnessing adversarial examples. In International Conference on

Learning Representations, 2015.

[GWB+17] Suriya Gunasekar, Blake E Woodworth, Srinadh Bhojanapalli,

Behnam Neyshabur, and Nati Srebro. Implicit regularization in matrix

factorization. In Advances in Neural Information Processing Systems,

pages 6151–6159, 2017.

194



[GZ16] Wei Gao and Zhi-Hua Zhou. Dropout rademacher complexity of deep

neural networks. Science China Information Sciences, 59(7):072104,

2016.

[GZS+19] Aidan N Gomez, Ivan Zhang, Kevin Swersky, Yarin Gal, and Ge-

offrey E Hinton. Learning sparse networks using targeted dropout.

arXiv preprint arXiv:1905.13678, 2019.

[HDWF+17] Mohammad Havaei, Axel Davy, David Warde-Farley, Antoine Biard,

Aaron Courville, Yoshua Bengio, Chris Pal, Pierre-Marc Jodoin, and

Hugo Larochelle. Brain tumor segmentation with deep neural networks.

Medical image analysis, 35:18–31, 2017.

[HK16] F Maxwell Harper and Joseph A Konstan. The movielens datasets:

History and context. Acm transactions on interactive intelligent

systems (tiis), 5(4):19, 2016.

[HL15] David P Helmbold and Philip M Long. On the inductive bias of

dropout. Journal of Machine Learning Research (JMLR), 16:3403–

3454, 2015.

[HL17] David P Helmbold and Philip M Long. Surprising properties of

dropout in deep networks. The Journal of Machine Learning Research,

18(1):7284–7311, 2017.

[HLL+16] Zhicheng He, Jie Liu, Caihua Liu, Yuan Wang, Airu Yin, and Yalou

Huang. Dropout non-negative matrix factorization for independent fea-

ture learning. In Int. Conf. on Computer Proc. of Oriental Languages.

Springer, 2016.

[HLY20] Wei Hu, Zhiyuan Li, and Dingli Yu. Simple and effective regulariza-

tion methods for training on noisily labeled data with generalization

195



guarantee. In International Conference on Learning Representations,

2020.

[HM16] Moritz Hardt and Tengyu Ma. Identity matters in deep learning.

arXiv preprint arXiv:1611.04231, 2016.

[Hor91] Kurt Hornik. Approximation capabilities of multilayer feedforward

networks. Neural networks, 4(2):251–257, 1991.

[HPM+19] Nils Holzenberger, Shruti Palaskar, Pranava Madhyastha, Florian

Metze, and Raman Arora. Learning from multiview correlations

in open-domain videos. In ICASSP 2019-2019 IEEE International

Conference on Acoustics, Speech and Signal Processing (ICASSP),

pages 8628–8632. IEEE, 2019.

[HSK+12] Geoffrey E Hinton, Nitish Srivastava, Alex Krizhevsky, Ilya Sutskever,

and Ruslan R Salakhutdinov. Improving neural networks by preventing

co-adaptation of feature detectors. arXiv preprint arXiv:1207.0580,

2012.

[HSST04] David R Hardoon, Sandor Szedmak, and John Shawe-Taylor. Canon-

ical correlation analysis: An overview with application to learning

methods. Neural computation, 16(12):2639–2664, 2004.

[HV17] Benjamin D Haeffele and Rene Vidal. Structured low-rank matrix

factorization: Global optimality, algorithms, and applications. arXiv

preprint arXiv:1708.07850, 2017.

[HZRS15] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Delving

deep into rectifiers: Surpassing human-level performance on imagenet

classification. In Proceedings of the IEEE international conference on

computer vision, pages 1026–1034, 2015.

196



[HZRS16a] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep

residual learning for image recognition. In Proceedings of the IEEE

conference on computer vision and pattern recognition, pages 770–778,

2016.

[HZRS16b] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Identity

mappings in deep residual networks. In European conference on

computer vision, pages 630–645. Springer, 2016.

[IS15] Sergey Ioffe and Christian Szegedy. Batch normalization: Accelerating

deep network training by reducing internal covariate shift. In Inter-

national Conference on Machine Learning (ICML), pages 448–456,

2015.

[JGH18] Arthur Jacot, Franck Gabriel, and Clément Hongler. Neural tangent

kernel: Convergence and generalization in neural networks. In Ad-

vances in neural information processing systems, pages 8571–8580,

2018.

[JGN+17] Chi Jin, Rong Ge, Praneeth Netrapalli, Sham M Kakade, and Michael I

Jordan. How to escape saddle points efficiently. arXiv preprint

arXiv:1703.00887, 2017.

[JNM+19] Yiding Jiang, Behnam Neyshabur, Hossein Mobahi, Dilip Krishnan,

and Samy Bengio. Fantastic generalization measures and where to

find them. In International Conference on Learning Representations,

2019.

[JT18] Ziwei Ji and Matus Telgarsky. Gradient descent aligns the layers of

deep linear networks. arXiv preprint arXiv:1810.02032, 2018.

197



[JT19a] Ziwei Ji and Matus Telgarsky. The implicit bias of gradient descent

on nonseparable data. In Conference on Learning Theory, pages

1772–1798. PMLR, 2019.

[JT19b] Ziwei Ji and Matus Telgarsky. Polylogarithmic width suffices for

gradient descent to achieve arbitrarily small test error with shallow

ReLU networks. arXiv preprint arXiv:1909.12292, 2019.

[Kah99] William Kahan. Only commutators have trace zero, 1999.

[Kaw16] Kenji Kawaguchi. Deep learning without poor local minima. In Adv

in Neural Information Proc. Systems (NIPS), 2016.

[KGB14] Nal Kalchbrenner, Edward Grefenstette, and Phil Blunsom. A con-

volutional neural network for modelling sentences. arXiv preprint

arXiv:1404.2188, 2014.

[KGB17] Alexey Kurakin, Ian Goodfellow, and Samy Bengio. Adversarial

examples in the physical world, 2017.

[KH+09] Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple layers of

features from tiny images. Technical report, Citeseer, 2009.

[KL18] Justin Khim and Po-Ling Loh. Adversarial risk bounds via function

transformation. arXiv preprint arXiv:1810.09519, 2018.

[KLT11] Vladimir Koltchinskii, Karim Lounici, and Alexandre B Tsybakov.

Nuclear-norm penalization and optimal rates for noisy low-rank matrix

completion. The Annals of Statistics, 39(5):2302–2329, 2011.

[Kol01] Vladimir Koltchinskii. Rademacher penalties and structural risk

minimization. IEEE Transactions on Information Theory, 47(5):1902–

1914, 2001.

198



[KP00] Vladimir Koltchinskii and Dmitriy Panchenko. Rademacher processes

and bounding the risk of function learning. In High dimensional

probability II, pages 443–457. Springer, 2000.

[KS09] Adam R Klivans and Alexander A Sherstov. Cryptographic hardness

for learning intersections of halfspaces. Journal of Computer and

System Sciences, 75(1):2–12, 2009.

[KSH12] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet

classification with deep convolutional neural networks. In Advances

in neural information processing systems, pages 1097–1105, 2012.

[KTS+14] Andrej Karpathy, George Toderici, Sanketh Shetty, Thomas Leung,

Rahul Sukthankar, and Li Fei-Fei. Large-scale video classification with

convolutional neural networks. In Proceedings of the IEEE conference

on Computer Vision and Pattern Recognition, pages 1725–1732, 2014.

[LB18] Thomas Laurent and James Brecht. Deep linear networks with arbi-

trary loss: All local minima are global. In International Conference

on Machine Learning, pages 2908–2913, 2018.

[LBBH98] Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick Haffner.

Gradient-based learning applied to document recognition. Proceedings

of the IEEE, 86(11):2278–2324, 1998.

[LF00] Pei Ling Lai and Colin Fyfe. Kernel and nonlinear canonical correlation

analysis. International Journal of Neural Systems, 10(05):365–377,

2000.

[LL18] Yuanzhi Li and Yingyu Liang. Learning overparameterized neural net-

works via stochastic gradient descent on structured data. In Advances

in Neural Information Processing Systems, pages 8157–8166, 2018.

199



[LMAPH19] Stéphane Lathuilière, Pablo Mesejo, Xavier Alameda-Pineda, and

Radu Horaud. A comprehensive analysis of deep regression. IEEE

transactions on pattern analysis and machine intelligence, 2019.

[LMZ18] Yuanzhi Li, Tengyu Ma, and Hongyang Zhang. Algorithmic regu-

larization in over-parameterized matrix sensing and neural networks

with quadratic activations. In Conference On Learning Theory, pages

2–47, 2018.

[LSJR16] Jason D Lee, Max Simchowitz, Michael I Jordan, and Benjamin

Recht. Gradient descent converges to minimizers. arXiv preprint

arXiv:1602.04915, 2016.

[LSO19] Mingchen Li, Mahdi Soltanolkotabi, and Samet Oymak. Gradient

descent with early stopping is provably robust to label noise for

overparameterized neural networks. arXiv preprint arXiv:1903.11680,

2019.

[LXS+19] Jaehoon Lee, Lechao Xiao, Samuel Schoenholz, Yasaman Bahri, Ro-

man Novak, Jascha Sohl-Dickstein, and Jeffrey Pennington. Wide

neural networks of any depth evolve as linear models under gradient

descent. In Advances in neural information processing systems, pages

8570–8581, 2019.

[LXXZ20] Yan Li, Ethan X.Fang, Huan Xu, and Tuo Zhao. Implicit bias of

gradient descent based adversarial training on separable data. In

International Conference on Learning Representations, 2020.

[MA18] Poorya Mianjy and Raman Arora. Stochastic PCA with ℓ2 and ℓ1

regularization. In International Conference on Machine Learning,

pages 3528–3536, 2018.

200



[MA19] Poorya Mianjy and Raman Arora. On dropout and nuclear norm

regularization. In International Conference on Machine Learning,

pages 4575–4584, 2019.

[MA20] Poorya Mianjy and Raman Arora. On convergence and generalization

of dropout training. In Advances in Neural Information Processing

Systems, volume 33, pages 21151–21161, 2020.

[MA22] Poorya Mianjy and Raman Arora. Robustness guarantees for adver-

sarially trained neural networks. In Review, 2022.

[MAV17] Dmitry Molchanov, Arsenii Ashukha, and Dmitry Vetrov. Variational

dropout sparsifies deep neural networks. In Proceedings of the 34th

International Conference on Machine Learning-Volume 70, pages 2498–

2507. JMLR. org, 2017.

[MAV18] Poorya Mianjy, Raman Arora, and Rene Vidal. On the implicit bias

of dropout. In International Conference on Machine Learning, pages

3537–3545, 2018.

[McA13] David McAllester. A PAC-bayesian tutorial with a dropout bound.

arXiv preprint arXiv:1307.2118, 2013.

[MDFF16] Seyed-Mohsen Moosavi-Dezfooli, Alhussein Fawzi, and Pascal Frossard.

Deepfool: a simple and accurate method to fool deep neural networks.

In Proceedings of the IEEE conference on computer vision and pattern

recognition, pages 2574–2582, 2016.

[MKS+15] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A Rusu,

Joel Veness, Marc G Bellemare, Alex Graves, Martin Riedmiller,

Andreas K Fidjeland, Georg Ostrovski, et al. Human-level control

through deep reinforcement learning. nature, 518(7540):529–533, 2015.

201



[MMA18] Teodor Vanislavov Marinov, Poorya Mianjy, and Raman Arora.

Streaming principal component analysis in noisy settings. In In-

ternational Conference on Machine Learning, pages 3410–3419, 2018.

[MMS+18] Aleksander Madry, Aleksandar Makelov, Ludwig Schmidt, Dimitris

Tsipras, and Adrian Vladu. Towards deep learning models resistant

to adversarial attacks. In International Conference on Learning Rep-

resentations, 2018.

[MRT18] Mehryar Mohri, Afshin Rostamizadeh, and Ameet Talwalkar. Foun-

dations of machine learning. MIT press, 2018.

[MZGW18] Wenlong Mou, Yuchen Zhou, Jun Gao, and Liwei Wang. Dropout

training, data-dependent regularization, and generalization bounds.

In International Conference on Machine Learning, pages 3642–3650,

2018.

[Nak19] Preetum Nakkiran. Adversarial robustness may be at odds with

simplicity. arXiv preprint arXiv:1901.00532, 2019.

[NBS17] Behnam Neyshabur, Srinadh Bhojanapalli, and Nathan Srebro. A

PAC-Bayesian approach to spectrally-normalized margin bounds for

neural networks. arXiv preprint arXiv:1707.09564, 2017.

[NH92] Steven J Nowlan and Geoffrey E Hinton. Simplifying neural networks

by soft weight-sharing. Neural computation, 4(4):473–493, 1992.

[NK19] Vaishnavh Nagarajan and J. Zico Kolter. Uniform convergence may

be unable to explain generalization in deep learning. In H. Wallach,

H. Larochelle, A. Beygelzimer, F. d'Alché-Buc, E. Fox, and R. Gar-

nett, editors, Advances in Neural Information Processing Systems,

volume 32. Curran Associates, Inc., 2019.

202



[NLB+18] Behnam Neyshabur, Zhiyuan Li, Srinadh Bhojanapalli, Yann Le-

Cun, and Nathan Srebro. Towards understanding the role of over-

parametrization in generalization of neural networks. arXiv preprint

arXiv:1805.12076, 2018.

[NLG+18] Mor Shpigel Nacson, Jason Lee, Suriya Gunasekar, Nathan Srebro,

and Daniel Soudry. Convergence of gradient descent on separable

data. arXiv preprint arXiv:1803.01905, 2018.

[NS19] Atsushi Nitanda and Taiji Suzuki. Refined generalization analysis

of gradient descent for over-parameterized two-layer neural networks

with smooth activations on classification problems. arXiv preprint

arXiv:1905.09870, 2019.

[NSS15] Behnam Neyshabur, Ruslan R Salakhutdinov, and Nati Srebro. Path-

SGD: Path-normalized optimization in deep neural networks. In

Advances in Neural Information Processing Systems, pages 2422–2430,

2015.

[NTS14] Behnam Neyshabur, Ryota Tomioka, and Nathan Srebro. In search of

the real inductive bias: On the role of implicit regularization in deep

learning. arXiv preprint arXiv:1412.6614, 2014.

[NTS15] Behnam Neyshabur, Ryota Tomioka, and Nathan Srebro. Norm-based

capacity control in neural networks. In Conference on Learning Theory,

pages 1376–1401, 2015.

[NTSS17] Behnam Neyshabur, Ryota Tomioka, Ruslan Salakhutdinov, and

Nathan Srebro. Geometry of optimization and implicit regularization

in deep learning. arXiv preprint arXiv:1705.03071, 2017.

203



[NYC15] Anh Nguyen, Jason Yosinski, and Jeff Clune. Deep neural networks are

easily fooled: High confidence predictions for unrecognizable images.

In Proceedings of the IEEE conference on computer vision and pattern

recognition, pages 427–436, 2015.

[OAVCVB+18] Juan Rafael Orozco-Arroyave, Juan Camilo Vásquez-Correa,

Jesús Francisco Vargas-Bonilla, Raman Arora, Najim Dehak, Phani S

Nidadavolu, Heidi Christensen, Frank Rudzicz, Maria Yancheva, H Chi-

naei, et al. Neurospeech: An open-source software for parkinson’s

speech analysis. Digital Signal Processing, 77:207–221, 2018.

[OBLS14] Maxime Oquab, Leon Bottou, Ivan Laptev, and Josef Sivic. Learning

and transferring mid-level image representations using convolutional

neural networks. In Proceedings of the IEEE conference on computer

vision and pattern recognition, pages 1717–1724, 2014.

[OS20] Samet Oymak and Mahdi Soltanolkotabi. Towards moderate over-

parameterization: global convergence guarantees for training shallow

neural networks. IEEE Journal on Selected Areas in Information

Theory, 2020.

[PBKL14] Vu Pham, Théodore Bluche, Christopher Kermorvant, and Jérôme

Louradour. Dropout improves recurrent neural networks for handwrit-

ing recognition. In 2014 14th international conference on frontiers in

handwriting recognition, pages 285–290. IEEE, 2014.

[PMW+16] Nicolas Papernot, Patrick McDaniel, Xi Wu, Somesh Jha, and Anan-

thram Swami. Distillation as a defense to adversarial perturbations

against deep neural networks. In 2016 IEEE symposium on security

and privacy (SP), pages 582–597. IEEE, 2016.

204



[RFP10] Benjamin Recht, Maryam Fazel, and Pablo A Parrilo. Guaranteed

minimum-rank solutions of linear matrix equations via nuclear norm

minimization. SIAM review, 52(3):471–501, 2010.

[RHW86] David E Rumelhart, Geoffrey E Hinton, and Ronald J Williams. Learn-

ing representations by back-propagating errors. nature, 323(6088):533–

536, 1986.

[RVDA15] Pushpendre Rastogi, Benjamin Van Durme, and Raman Arora. Mul-

tiview lsa: Representation learning via generalized cca. In Proceedings

of the 2015 conference of the North American chapter of the Asso-

ciation for Computational Linguistics: human language technologies,

pages 556–566, 2015.

[RVM+11] Salah Rifai, Pascal Vincent, Xavier Muller, Xavier Glorot, and Yoshua

Bengio. Contractive auto-encoders: Explicit invariance during feature

extraction. In In International Conference on Machine Learning.

Citeseer, 2011.

[SCP16] Grzegorz Swirszcz, Wojciech Marian Czarnecki, and Razvan Pas-

canu. Local minima in training of neural networks. arXiv preprint

arXiv:1611.06310, 2016.

[SCS20] Albert Senen-Cerda and Jaron Sanders. Almost sure conver-

gence of dropout algorithms for neural networks. arXiv preprint

arXiv:2002.02247, 2020.

[SHK+14] Nitish Srivastava, Geoffrey E Hinton, Alex Krizhevsky, Ilya Sutskever,

and Ruslan Salakhutdinov. Dropout: a simple way to prevent neural

networks from overfitting. Journal of Machine Learning Research

(JMLR), 15(1), 2014.

205



[SHM+16] David Silver, Aja Huang, Chris J Maddison, Arthur Guez, Lau-

rent Sifre, George Van Den Driessche, Julian Schrittwieser, Ioannis

Antonoglou, Veda Panneershelvam, Marc Lanctot, et al. Mastering

the game of go with deep neural networks and tree search. nature,

529(7587):484–489, 2016.

[SHN+18] Daniel Soudry, Elad Hoffer, Mor Shpigel Nacson, Suriya Gunasekar,

and Nathan Srebro. The implicit bias of gradient descent on separable

data. The Journal of Machine Learning Research, 19(1):2822–2878,

2018.

[SK16] Tim Salimans and Durk P Kingma. Weight normalization: A simple

reparameterization to accelerate training of deep neural networks.

Advances in neural information processing systems, 29, 2016.

[SLJ+15] Christian Szegedy, Wei Liu, Yangqing Jia, Pierre Sermanet, Scott

Reed, Dragomir Anguelov, Dumitru Erhan, Vincent Vanhoucke, and

Andrew Rabinovich. Going deeper with convolutions. In Proceedings

of the IEEE conference on computer vision and pattern recognition,

pages 1–9, 2015.

[SMDH13] Ilya Sutskever, James Martens, George Dahl, and Geoffrey Hinton.

On the importance of initialization and momentum in deep learning.

In International conference on machine learning, pages 1139–1147.

PMLR, 2013.

[SMG13] Andrew M Saxe, James L McClelland, and Surya Ganguli. Exact

solutions to the nonlinear dynamics of learning in deep linear neural

networks. arXiv preprint arXiv:1312.6120, 2013.

206



[SPR18] Arun Suggala, Adarsh Prasad, and Pradeep K Ravikumar. Connecting

optimization and regularization paths. Advances in Neural Information

Processing Systems, 31, 2018.

[SQW16] Ju Sun, Qing Qu, and John Wright. A geometric analysis of phase

retrieval. In IEEE International Symposium on Information Theory

(ISIT), pages 2379–2383, 2016.

[SRJ04] Nathan Srebro, Jason Rennie, and Tommi Jaakkola. Maximum-

margin matrix factorization. Advances in neural information processing

systems, 17, 2004.

[SS10] Nathan Srebro and Russ R Salakhutdinov. Collaborative filtering in a

non-uniform world: Learning with the weighted trace norm. Advances

in neural information processing systems, 23, 2010.

[SS18] Itay Safran and Ohad Shamir. Spurious local minima are common

in two-layer ReLU neural networks. In International conference on

machine learning, pages 4433–4441. PMLR, 2018.

[SSBD14] Shai Shalev-Shwartz and Shai Ben-David. Understanding machine

learning: From theory to algorithms. Cambridge university press, 2014.

[SY19] Zhao Song and Xin Yang. Quadratic suffices for over-parametrization

via matrix chernoff bound. arXiv preprint arXiv:1906.03593, 2019.

[SZS+14] Christian Szegedy, Wojciech Zaremba, Ilya Sutskever, Joan Bruna,

Dumitru Erhan, Ian Goodfellow, and Rob Fergus. Intriguing properties

of neural networks. In 2nd International Conference on Learning

Representations, ICLR 2014, 2014.

207



[Tia17] Yuandong Tian. An analytical formula of population gradient for two-

layered ReLU network and its applications in convergence and critical

point analysis. In International conference on machine learning, pages

3404–3413. PMLR, 2017.

[TS14] Alexander Toshev and Christian Szegedy. Deeppose: Human pose

estimation via deep neural networks. In Proceedings of the IEEE

conference on computer vision and pattern recognition, pages 1653–

1660, 2014.

[UMMA18] Enayat Ullah, Poorya Mianjy, Teodor V Marinov, and Raman Arora.

Streaming kernel PCA with Õ(
√
n) random features. In Proceedings of

the 32nd International Conference on Neural Information Processing

Systems, pages 7322–7332, 2018.

[Vap13] Vladimir Vapnik. The nature of statistical learning theory. Springer

science & business media, 2013.

[VC74] Vladimir Vapnik and Alexey Chervonenkis. Theory of pattern recog-

nition. 1974.

[VCOAA+17] Juan Camilo Vasquez-Correa, Juan Rafael Orozco-Arroyave, Raman

Arora, Elmar Nöth, Najim Dehak, Heidi Christensen, Frank Rudzicz,

Tobias Bocklet, Milos Cernak, Hamidreza Chinaei, et al. Multi-view

representation learning via gcca for multimodal analysis of parkinson’s

disease. In 2017 IEEE International Conference on Acoustics, Speech

and Signal Processing (ICASSP), pages 2966–2970. IEEE, 2017.

[Ver18] Roman Vershynin. High-dimensional probability: An introduction with

applications in data science, volume 47. Cambridge University Press,

2018.

208



[WALB15a] Weiran Wang, Raman Arora, Karen Livescu, and Jeff Bilmes. On

deep multi-view representation learning. In International conference

on machine learning, pages 1083–1092. PMLR, 2015.

[WALB15b] Weiran Wang, Raman Arora, Karen Livescu, and Jeff A Bilmes. Un-

supervised learning of acoustic features via deep canonical correlation

analysis. In 2015 IEEE International Conference on Acoustics, Speech

and Signal Processing (ICASSP), pages 4590–4594. IEEE, 2015.

[WFWL14] Stefan Wager, William Fithian, Sida Wang, and Percy S Liang. Alti-

tude training: Strong bounds for single-layer dropout. In Adv. Neural

Information Processing Systems, 2014.

[WK18] Eric Wong and Zico Kolter. Provable defenses against adversarial

examples via the convex outer adversarial polytope. In International

Conference on Machine Learning, pages 5286–5295. PMLR, 2018.

[WLLM19] Colin Wei, Jason D Lee, Qiang Liu, and Tengyu Ma. Regularization

matters: Generalization and optimization of neural nets vs their

induced kernel. In Advances in Neural Information Processing Systems,

pages 9709–9721, 2019.

[WM13] Sida Wang and Christopher Manning. Fast dropout training. In

international conference on machine learning, pages 118–126, 2013.

[WMA21] Yunjuan Wang, Poorya Mianjy, and Raman Arora. Robust learning

for data poisoning attacks. In International Conference on Machine

Learning, 2021.

[WUMA22] Yunjuan Wang, Enayat Ullah, Poorya Mianjy, and Raman Arora.

Adversarial robustness is at odds with lazy training. In Review, 2022.

209



[WWL13] Stefan Wager, Sida Wang, and Percy S Liang. Dropout training as

adaptive regularization. In Advances in Neural Information Processing

Systems (NIPS), 2013.

[WZZ+13] Li Wan, Matthew Zeiler, Sixin Zhang, Yann Le Cun, and Rob Fergus.

Regularization of neural networks using dropconnect. In International

conference on machine learning, pages 1058–1066, 2013.

[XWZ+18] Cihang Xie, Jianyu Wang, Zhishuai Zhang, Zhou Ren, and Alan Yuille.

Mitigating adversarial effects through randomization. In International

Conference on Learning Representations, 2018.

[YHG+16] Zichao Yang, Xiaodong He, Jianfeng Gao, Li Deng, and Alex Smola.

Stacked attention networks for image question answering. In Proceed-

ings of the IEEE conference on computer vision and pattern recognition,

pages 21–29, 2016.

[YKB19] Dong Yin, Ramchandran Kannan, and Peter Bartlett. Rademacher

complexity for adversarially robust generalization. In International

conference on machine learning, pages 7085–7094. PMLR, 2019.

[YSJ18] Chulhee Yun, Suvrit Sra, and Ali Jadbabaie. Small nonlinearities in

activation functions create bad local minima in neural networks. In

International Conference on Learning Representations, 2018.

[YSJ19] Chulhee Yun, Suvrit Sra, and Ali Jadbabaie. Small ReLU networks

are powerful memorizers: a tight analysis of memorization capacity.

Advances in Neural Information Processing Systems, 32, 2019.

[ZBH+16] Chiyuan Zhang, Samy Bengio, Moritz Hardt, Benjamin Recht, and

Oriol Vinyals. Understanding deep learning requires rethinking gener-

alization. arXiv preprint arXiv:1611.03530, 2016.

210



[ZCZG18] Difan Zou, Yuan Cao, Dongruo Zhou, and Quanquan Gu. Stochastic

gradient descent optimizes over-parameterized deep ReLU networks.

arXiv preprint arXiv:1811.08888, 2018.

[ZDK+21] Linjun Zhang, Zhun Deng, Kenji Kawaguchi, Amirata Ghorbani, and

James Zou. How does mixup help with robustness and generalization?

In International Conference on Learning Representations, 2021.

[ZFG21] Difan Zou, Spencer Frei, and Quanquan Gu. Provable robustness of

adversarial training for learning halfspaces with noise. In Proceedings

of the 38th International Conference on Machine Learning, volume

139 of Proceedings of Machine Learning Research, pages 13002–13011.

PMLR, 18–24 Jul 2021.

[ZL17] Yi Zhou and Yingbin Liang. Critical points of neural networks: Analyt-

ical forms and landscape properties. arXiv preprint arXiv:1710.11205,

2017.

[ZPD+20] Yi Zhang, Orestis Plevrakis, Simon S Du, Xingguo Li, Zhao Song, and

Sanjeev Arora. Over-parameterized adversarial training: An analysis

overcoming the curse of dimensionality. In NeurIPS, 2020.

[ZSJ+17] Kai Zhong, Zhao Song, Prateek Jain, Peter L Bartlett, and Inderjit S

Dhillon. Recovery guarantees for one-hidden-layer neural networks.

In International conference on machine learning, pages 4140–4149.

PMLR, 2017.

[ZW18] Ke Zhai and Huan Wang. Adaptive dropout with rademacher com-

plexity regularization. In International Conference on Learning Rep-

resentations, 2018.

211



[ZZ15] Shuangfei Zhai and Zhongfei Zhang. Dropout training of matrix

factorization and autoencoder for link prediction in sparse graphs. In

Proc. of SIAM International Conference on Data Mining (ICDM),

pages 451–459, 2015.

[ZZK+21] Yihua Zhang, Guanhuan Zhang, Prashant Khanduri, Mingyi Hong,

Shiyu Chang, and Sijia Liu. Revisiting and advancing fast adversarial

training through the lens of bi-level optimization. arXiv preprint

arXiv:2112.12376, 2021.

[ZZL15] Xiang Zhang, Junbo Zhao, and Yann LeCun. Character-level convolu-

tional networks for text classification. Advances in neural information

processing systems, 28, 2015.

212



.1 Table of Notations

Numbers, Arrays, and Sets

x Scalar (integer or real)

x Vector

X Matrix

X Set

(x)+ Scalar max{x, 0}

1d d-dimensional vector of all ones

Id Identity matrix with d rows and d columns

I Identity matrix with dimensionality implied by
context

[d] Set of integers {1, . . . , d}(︄
S
k

)︄
Set of all k-combinations of a set S

Indexing, Slicing, Flattening, and Vectorizing

xi i-th entry of vector x

xi i-th column of matrix X

x:i i-th column of matrix X

xj: j-th row of matrix X

ei i-th standard basis vector

diag(X) Vector, given by the diagonal entries X

diag(x) Square, diagonal matrix with diagonal entries
given by x

Arrays Operations

213



⟨·, ·⟩ standard inner product, for vectors or matrices

∥x∥p p-norm of vector x

Trace(X) Trace of matrix X

∥X∥2 Spectral norm of matrix X

∥X∥F Frobenius norm of matrix X

∥X∥∗ Nuclear norm of matrix X

∥X∥p,q q-norm of the p-norm of columns of X

λi(X) i-th largest eigenvalue of matrix X

σi(X) i-th largest singular value of matrix X

(X)+ Matrix given by the elementwise application of
(·)+ to X max{x, 0}

∥x∥2
C Mahalonobis norm of x, given by x⊤Cx, for a

positive definite matrix C

∥X∥2
C Mahalonobis norm of X, given by Tr

(︂
XCX⊤

)︂
,

for a positive definite matrix C

ΠC(x) Vector minx′∈C ∥x− x′∥, projection of x onto C
with respect to the ℓ2-norm

√
x elementwise squared root of x

X† Moore-Penrose pseudo-inverse of X

Probability and Statisticsˆ︁E[x] Expected value of random variable xˆ︁Ei[xi] Empirical average on a sample, given by
1
n

∑︁
i∈[n] xi

Cx Second moment of x, given by E[xx⊤]ˆ︁Cx Empirical second moment on a sample, given
by ˆ︁Ei[xix⊤

i ]

.2 Auxiliary Results

Lemma 20. For any pair of integers ρ and r, and for any λ ∈ R+, it holds that

(Iρ + λ

r
11⊤)−1 = Iρ −

λ

r + λρ
11⊤.

214



Lemma 20 is an instance of the Woodbury’s matrix identity. Here, we include a

proof for completeness.

Proof of Lemma 20. The proof simply follows from the following set of equations.

(Iρ + λ

r
11⊤)(Iρ −

λ

r + λρ
11⊤) = Iρ + λ

r
11⊤ − λ

r + λρ
11⊤ − λ2

r(r + λρ)11⊤11⊤

= Iρ +
(︄
λ

r
− λ

r + λρ
− ρλ2

r(r + λρ)

)︄
11⊤ = Iρ

Lemma 21. Let λ > 0 be a constant. Let a ∈ Rd
+ such that ai ≥ ai+1 for all i ∈ [d−1].

For r ≤ d, let the function g : [r]→ R be defined as

g(ρ) :=
ρ∑︂
i=1

(︄
λ
∑︁ρ
k=1 ak

r + λρ

)︄2

+
d∑︂

i=ρ+1
a2
i + λ

r

(︄ ρ∑︂
i=1

(︄
ai −

λ
∑︁ρ
k=1 ak

r + λρ

)︄)︄2

.

Then g(ρ) is monotonically non-increasing in ρ.

Proof of Lemma 21. Let denote the sum of the top τ elements of a by hτ = ∑︁τ
i=1 ai.

Furthermore, let the sum of squared of τ bottom elements of a be denoted by

tτ = ∑︁d
i=τ+1 a

2
i . We can simplify g(ρ) and give it in terms of hρ and tρ as follows:

g(ρ) = ρ

(︄
λhρ
r + λρ

)︄2

+ tρ + λ

r

(︄(︄
1− λρ

r + λρ

)︄
hρ

)︄2

= ρλ2 + λr

(r + λρ)2 (hρ)2 + tρ =
λh2

ρ

r + λρ
+ tρ

215



It suffices to show that g(ρ+ 1) ≤ g(ρ) for all ρ ∈ [r − 1].

g(ρ+ 1) =
λh2

ρ+1

r + λρ+ λ
+ tρ+1

= λ

r + λρ+ λ

(︂
h2
ρ + λ2

ρ+1(M) + 2λρ+1(M)hρ
)︂

− λ2
ρ+1(M) + tρ

=g(ρ)−
λ2h2

ρ

(r + λρ)(r + λρ+ λ) − λ
2
ρ+1(M)

+ λ

r + λρ+ λ

(︂
λ2
ρ+1(M) + 2λρ+1(M)hρ

)︂
=g(ρ)−

λ2h2
ρ

(r + λρ)(r + λρ+ λ) −
(r + λρ)λ2

ρ+1(M)
r + λρ+ λ

+ λ

r + λρ+ λ
(2λρ+1(M)hρ)

=g(ρ)−

(︂
λhρ − (r + λρ)λ2

ρ+1(M)
)︂2

(r + λρ)(r + λρ+ λ) ≤ g(ρ).

Hence g(ρ) is monotonically non-increasing in ρ.

Lemma 22 (Khintchine-Kahane inequality). Let {ϵi}ni=1 be i.i.d. Rademacher random

variables, and {x}ni=1 ⊂ Rd. Then there exist a pair of universal constants c1, c2 > 0

such that

c1

⌜⃓⃓⎷ n∑︂
i=1
∥xi∥2 ≤ E∥

n∑︂
i=1

ϵixi∥ ≤ c2

⌜⃓⃓⎷ n∑︂
i=1
∥xi∥2.

Theorem 17 (Hoeffding’s inequality:[Ver18]). We state Hoeffding’s inequality for

general Sub-Gaussian random variables, and bounded random variables, as a special

case.

1. General Sub-Gaussian R.V.: Let X1, . . . , XN be independent, mean zero,

sub-Gaussian random variables. Then, for every t ≥ 0, we have

P
(︂⃓⃓⃓ˆ︁EiXi

⃓⃓⃓
≥ t

)︂
≤ 2e

− ct2N2∑︁N

i=1 ∥Xi∥2
ψ2

2. Bounded R.V.: Let X1, . . . , Xn be independent, mean zero random variables.

216



Assume that Xi ∈ [mi,Mi] for every i. Then, for every t > 0, we have

P{
n∑︂
i=1

Xi ≥ t} ≤ e
− 2t2∑︁n

i=1(mi−Mi)2

Theorem 18 (Theorem 3.1 of [MRT18]). Let G be a family of functions mapping

from Z to [0, 1]. Then, for any δ > 0, with probability at least 1 − δ over a sample

S = {z1, . . . , zn}, the following holds for all g ∈ G

E[g(z)] ≤ 1
n

n∑︂
i=1

g(zi) + 2Rn(G) +
√︄

log(1/δ)
2n

E[g(z)] ≤ 1
n

n∑︂
i=1

g(zi) + 2RS(G) + 3
√︄

log(1/δ)
2n

Theorem 19 (Theorem 10.3 of [MRT18]). Assume that ∥h− f∥∞ ≤M for all h ∈ H.

Then, for any δ > 0, with probability at least 1−δ over a sample S = {(xi, yi), i ∈ [n]}

of size n, the following inequalities holds uniformly for all h ∈ H.

E[|h(x)− f(x)|2] ≤ ˆ︁Ei|h(xi)− f(xi)|2 + 4MRn(H) +M2

√︄
log(2/δ)

2n

E[|h(x)− f(x)|2] ≤ ˆ︁Ei|h(xi)− f(xi)|2 + 4MRS(H) + 3M2

√︄
log(2/δ)

2n

Theorem 20 (Theorem 1 in [FSSS11]). Assume that p(i)q(j) ≥ log(d2)
n

√
d2d0

for all i ∈

[d2], j ∈ [d0]. For any α > 0, letMα := {M ∈ Rd2×d1 : ∥ diag(√p)M diag(√q)∥2
∗ ≤ α}

be the class of linear transformations with weighted trace-norm bounded with
√
α. Then

the expected Rademacher complexity of Mα is bounded as follows:

Rn(Mα) ≤ O

⎛⎝√︄αd2 log(d2)
n

⎞⎠
Theorem 21 (Gaussian Concentration [Ver18]). Consider a random vector z ∼

N (0, Id) and a ρ-Lipschitz function f : Rd → R (with respect to the Euclidean metric).

Then f(z) is ρ-sub-Gaussian and it holds for all t ≥ 0:

P{f(z)− E[f(z)] ≥ t} ≤ e
−t2
2ρ2

217



Theorem 22 (Theorem 1 of [BLL+11]). Let X1, . . . , XT be a sequence of real-valued

random variables. Let Et[Y ] := E[Y |X1, . . . , Xt−1]. Assume, for all t, that Xt ≤ R and

that Et[Xt] = 0. Define the random variable St := ∑︁t
k=1 Xt, and Vt := ∑︁t

k=1 Ek[X2
k ].

Then for any δ > 0, with probability at least 1− δ, we have the following guarantee:

St ≤ R ln 1
δ

+ (e− 2)Vt
R

218


	Abstract
	Dedication
	Acknowledgements
	Contents
	List of Tables
	List of Figures
	Introduction
	Preliminaries
	Statistical Perspective of Generalization
	Computational Perspective of Generalization
	Robust Learning

	Related Work
	Regularization due to Dropout
	Adversarial Training

	Contributions
	Explicit Regularization Due to Dropout
	Statistical Guarantees for Dropout
	Computational Guarantees for Dropout
	Robustness Guarantees for Adversarial Training


	Dropout Regularizer: Shallow Linear Networks
	Linear autoencoders with tied weights
	General Two-Layer Networks
	The Optimization Landscape
	Implicit bias in local optima
	Landscape properties

	Matrix Factorization with Dropout
	Comparison with Previous Work

	Proofs
	Proofs of Theorems in Section 2.1
	Proofs of Theorems in Section 2.2
	Proofs of Theorems in Sections 2.3

	Empirical Results
	Discussion

	Dropout Regularizer: Deep Linear Networks
	The explicit regularizer
	The induced regularizer
	Global optimality
	Experimental Results
	Spectral shrinkage and rank control
	Convergence to equalized networks

	Discussion

	Statistical Guarantees for Dropout
	Related Work
	Matrix Sensing
	Comparison with Previous Work

	Non-linear Networks
	Comparison with Previous Work

	Role of Parametrization
	Proofs
	Matrix Sensing
	Non-linear Neural Networks

	Experimental Results
	Discussion

	Computational Guarantees for Dropout
	Related Work
	Poblem Setup
	Notation

	Main Results
	Proofs
	Experimental Results
	Discussion

	Robustness Guarantees for Adversarial Training
	Related Work
	Problem Setup
	Main Results
	Comparison with Previous Work

	Proofs
	Empirical Results
	Grid Search Optimization
	Binary Classification
	Extension to multi-label setting

	Discussion

	Conclusion
	Main Contributions
	Other Contributions
	Future Work

	Bibliography
	Table of Notations
	Auxiliary Results


