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Abstract—Push-to-Talk (PTT) is a useful capability for rapidly
deployable wireless mesh networks used by first responders. PTT
allows several users to speak with each other while using a single,
half-duplex, communication channel, such that only one user
speaks at a time while all other users listen.

This paper presents the architecture and protocol of a robust
distributed PTT service for wireless mesh networks. The architec-
ture supports any 802.11 client with SIP-based (Session Initiation
Protocol) VoIP software and enables the participation of regular
phones. Collectively, the mesh nodes provide the illusion of a
single third party call controller, enabling clients to participate
via any reachable mesh node. Each PTT group instantiates its
own logical floor control manager that is highly available and
resilient to mesh connectivity changes such as node crashes and
recoveries and network partitions and merges. Experimental
results on a fully deployed mesh network consisting of 14 mesh
nodes and tens of emulated clients demonstrate the scalability
and robustness of the system.

I. INTRODUCTION

Push-to-Talk (PTT) is a well known service in the law en-
forcement and public safety communities, where coordination
and spectral efficiency are key for efficient communication.
Some cell phone companies offer a similar service in the
commercial world. However, core differences in motivation
drive these two sectors. Cellular phone systems are designed
for the busiest hour, as outages impact revenue, while public
safety systems are designed for worst case scenarios, as
outages impact lives.

Unfortunately, first responders cannot always rely on pre-
existing ground communication infrastructure. For example,
the White House report on hurricane Katrina [1] states that
1,477 cell towers were incapacitated, leaving millions unable
to communicate. Wireless mesh networks have emerged as
a viable technology that allows for rapid deployment of an
instant infrastructure [2]. Mobile clients can roam throughout
the area covered by the mesh and seamlessly handoff between
access points while utilizing real-time applications such as
VoIP [3], [4]. These attributes make wireless mesh networks
an appealing technology for first responders. While centralized
solutions for providing PTT service exist (e.g., POC [5](Push-
To-Talk Over Cellular)), there are currently no solutions for a
robust and efficient PTT service that can be applied in more
dynamic environments.

A PTT system requires an arbitration mechanism (also
known as floor control) which determines the order in which
participants speak. All participants that wish to communicate
with each other form a PTT group. As the name suggests, they
request to talk by pressing a button. In contrast to peer-to-peer
VoIP systems, data must be disseminated from the speaker to
all the participants in a given PTT group.

Fig. 1. Push-to-Talk system overview.

Building a robust and practical Push-to-Talk system for the
wireless mesh environment is challenging for several reasons.
First, it requires the ability to coordinate communication be-
tween users even when part of the infrastructure is unavailable
(mesh node crashes) or when there is intermittent connectivity
between nodes (network partitions and merges). This rules
out traditional approaches such as POC, where arbitration
is assured by a centralized point. Second, it must operate
correctly when users join and leave the network, when they
are partitioned away, lose their connectivity, or move from one
access point to another. Third, it must use the wireless medium
efficiently and should provide low transfer times between
users’ requests. Last but not least, an important property for
first responders is the ability to integrate regular PSTN (Pub-
lic Switched Telephone Network) and cellular phone users,
allowing them to seamlessly participate in the PTT sessions
conducted by the wireless mesh PTT service at a disaster site.

This paper presents the architecture and protocol of a
robust distributed PTT service for wireless mesh networks.
Collectively, the mesh nodes provide the illusion of a single
third party call controller (3pcc), enabling clients to participate
via any reachable mesh node. Each PTT group (also referred
to as a PTT session) instantiates its own logical floor control
manager that is responsible for keeping track of the floor re-
quests of the participants and for issuing Permission-to-Speak
when a participant releases the floor. Any of the mesh nodes
in the network can play the controlling role for a session. To
maintain high availability, each controller node is continuously
monitored by every mesh node with a participating PTT client
and is quickly replaced if it becomes unavailable due to a
crash or network partition. The controller relinquishes its role
to another mesh node upon determining that this node is better
situated (network-wise) to control the PTT session, based on
the current locations of the clients participating in the session.
In addition to improved performance, this migration increases
the availability of the service in the face of network partitions
because it keeps the controller in the “center of gravity” of
the clients in the PTT session.
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Fig. 2. System architecture.

The main contributions of this paper are:
• The first robust Push-to-Talk service for wireless mesh

networks that can withstand connectivity changes such
as node crashes, network partitions, and network merges.

• Novel use of multicast for localized access points coor-
dination to share PTT client state, such that the entire
network appear to the client as a single call controller.

• Novel decentralized floor control protocol that maintains
a different logical controller for each PTT session and
adaptively migrates it to the most suitable node in the
network.

• An architecture that uses standard signaling for session
control that allows regular PSTN phones users (e.g.,
cell phone users) and unmodified VoIP SIP phones to
seamlessly participate in PTT sessions.

We implemented the proposed Push-to-Talk architecture
and protocol within the SMesh open source wireless mesh
system [6] and evaluated it in a 14-node testbed deployed
across 3 buildings. In our tests, users experienced less than
150 ms interruption while the system switches between speak-
ers. We show how the system scales to tens of clients, with
an overhead of under 1 Kbps per client with 42 clients in the
mesh. Then, we show that in our testbed, the system scales
to 18 simultaneous PTT groups when dual-radio and packet
aggregation are used. Lastly, an elaborate scenario with 40
clients divided among 10 different PTT sessions demonstrates
that the system remains highly available during mesh network
connectivity changes.

II. BACKGROUND AND RELATED WORK

PTT allows half-duplex communication between multiple
participants which request to speak by pressing a button. On
a PTT group only one user is granted Permission-to-Speak
at a time, while all the other users listen. DaSilva et al. [7]
provide a good survey about PTT technologies. Floor control,
an integral part of PTT, has been studied extensively over the
years [8]–[10]. Some approaches to decentralized floor control
are presented in [11]. A basic level of fault tolerance is built
into some of these protocols to enable crash recovery.

PTT is commonly used by law enforcement and public
safety communities to efficiently communicate between mul-
tiple users. Public safety agencies usually rely on trunked
networks, known as Land Mobile Radio (LMR) systems, for
voice and data communication [12]. The two major LMR
systems are Project-25 [13], which is deployed over North
America, and Terrestrial Trunked Radio (TETRA), which is
deployed over Europe. Stringent guidelines for PTT, such
as 500 ms one-way delay for voice packets to all listeners
of a group, ensure that the system operates with acceptable
performance.

Cell phone users also benefit from PTT type services that
are now offered by telecommunication companies. A common
standard, known as Push-to-Talk over Cellular (PoC) [5],
allows PTT from different cellular network carriers to inter-
operate with one another. PoC uses VoIP protocols (SIP, RTP,
etc) between clients and the PoC server. A floor control mech-
anism, referred to as Talk Burst Control Protocol, arbitrates
communication in each group. The performance requirements
of PoC are less demanding than those in LMR systems. For
example, the standard specifies that end-to-end delay should
typically be no more than 1.6 seconds and that the turnaround
time from the time a user releases the floor until it hears
another user speak should be no longer than 4 seconds. An
initial evaluation on a GPRS cellular network is shown in [14].

Balachandran et al. show a unifying system for bridging
LMR and commercial wireless access technologies [15]. Both
LMR and commercial PTT solutions (PoC) rely on a central
point of arbitration and send a separate unicast voice stream
to each member of the PTT group. On these networks, the
inefficiency inherent in using multiple unicast streams is not
that costly over the wired backbone medium. Such a design
would yield a multi-hop wireless mesh network useless with
just a few users, and therefore is not a good fit in our case.

A decentralized approach with a full-mesh conferencing
model is presented by Lennox and Schulzrinne in [16]. Florian
Maurer [17] shows a decentralized scheme for PTT. Both ap-
proaches rely on all-to-all communication of control and voice
packets between users. While adequate for small conferences
or PTT sessions, this approach does not scale well and does
not provide the robustness necessary to support node crashes
and network partitions and merges, as presented in this paper.

Complementary to our work, some research has looked
at optimizing routes for PTT data traffic in wireless mesh
networks. Kado et al. [18] propose a centralized tree-based
routing protocol that enables a root node to compute and
arbitrate routes in the network. While we also optimize routes
by instead using multicast dissemination trees from each mesh
node to each PTT group in the system, our focus is on the fault
tolerance and availability aspects for providing a highly robust
PTT system.

III. ARCHITECTURE

We consider a two-tier wireless mesh network with two
classes of participants: mesh nodes and mesh clients. Mesh
nodes communicate with each other, possibly using multiple
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hops, to effectively extend the coverage area of a single access
point. Mesh clients, on the other hand, connect directly to
mesh nodes, each of which serves as an access point.

The mesh topology changes when wireless connectivity
between the mesh nodes changes, when mesh nodes crash or
recover, or when additional mesh nodes are added to expand
the wireless coverage. These changes may create network
partitions and merges in the wireless mesh.

Mesh clients are unmodified 802.11 devices. We do not
assume any specific drivers or hardware capabilities present
on the clients. Clients connect to the mesh by associating with
the wireless-mesh 802.11 SSID. A client participates with any
compliant VoIP application.

Regular phones from the Public Switched Telephone Net-
work (PSTN) such as home phones, and cell phones, connect
to the mesh by dialing a regular phone number, in our case
1-877-MESH-PTT. The call is routed by the PSTN to a
SIP gateway that is connected to the Internet (Figure 1).
Normally, a regular VoIP client registers with the SIP gateway
in order to receive incoming calls. In our architecture, the
mesh Internet gateway registers as an end-client with the SIP
gateway and routes messages between the mesh and the phones
in the PSTN. We do not make any changes to SIP, therefore
our protocol integrates with already deployed SIP gateways
without any changes.1

Figure 2 illustrates the software architecture of our PTT
system. It includes the interface with the mobile client, the
mesh PTT session manager for the mobile client, and the mesh
PTT controller for each PTT session in the wireless mesh
network. Various multicast groups, over which communica-
tion takes place, are shown. An underlying routing daemon,
Spines [19], manages the routes in the mesh and provides us
with overlay group management to effectively communicate
on a group-based abstraction. Multicast trees are calculated in
a way similar to MOSPF [20]. Each of these components is
described in detail in the next sections.

IV. INTERFACE WITH MOBILE CLIENTS

Our architecture interacts with clients by using well es-
tablished VoIP protocols. VoIP applications use the Session
Initiation Protocol (SIP [21]), to establish, modify, and termi-
nate a VoIP session. During the SIP session establishment, the
Session Description Protocol (SDP [22]) is used to describe
the content of the session (i.e., voice), the underlying transport
protocol (i.e., RTP), the media format, and how to send the
data to the client (address, port, etc). Data is then sent using
the designated transport protocol between the parties.

A third party call control (3pcc) server is normally used to
inter-connect multiple parties together through a rendezvous
point. Conference call managers are one type of 3pcc. Good
practices for SIP-based VoIP 3pcc servers are specified in
RFC 3725 [23]. In essence, from an end-client point of view,
the 3pcc server looks exactly the same as another end-client.

1For the SIP gateway we used a service provided by Vitelity
(http://vitelity.com), which redirects the packets from the telephone network
to our mesh gateway.

In our architecture, all mesh nodes act as a single, virtual
3pcc server and share the state of the SIP connection with
every other mesh node in the vicinity of the client (between
mesh nodes that can hear the client). This is key for the system
to scale as it efficiently shares information only between nodes
that potentially need the state of the SIP connection as the
client moves throughout the mesh, or in case the client’s mesh
node crashes.

To participate in the mesh PTT session, the user specifies in
his VoIP application the IP address of our virtual SIP server
(i.e., “sip:ptt@192.168.1.10”). This IP is the same throughout
the mesh. Every mesh node intercepts packets sent to this
address and follows the SIP protocol to connect the client to
the mesh. Therefore, the mesh network provides the illusion
of a single 3pcc to the client.

Once a SIP connection is established, the user can start
using the mesh PTT service by simply dialing the PTT group
that it wishes to join. Each dialed key generates a Dial-Tone
Multi-Frequency (DTMF [24]) signal that is sent over the RTP
channel (by default, this signal is repeatedly sent over multiple
RTP packets to ensure that the end-node receives it). In our
approach, we intercept DTMF signals for control purposes
between the end-client and the mesh. For example, a client
dials “#12#” to join PTT group 12. In the same way, every
time a user wishes to speak, pressing “5” or any pre-defined
key combination will be interpreted as a “Request-To-Speak”
control message. Once the system determines that it is the
user’s turn, it sends an audio signal (“beep-beep”) to let the
user know that he can start to speak. While other means for
signaling control information are possible, DTMF is supported
by most communication networks such as PSTN, allowing us
to seamlessly support users from these networks.

RTP data is then sent from the client to the 3pcc virtual IP
address through the client’s access point (mesh node), which
forwards the packets to every mesh node that has a PTT client
on that group using a source-based multicast tree. Finally, each
receiving mesh node forwards the packets to its corresponding
end-clients.

V. PUSH-TO-TALK PROTOCOL

Providing a robust and scalable way to coordinate client
communication is the essence of the Push-to-Talk protocol.
There are several ways to approach it. One possibility is to
have a unique point of management in the network that every
mesh node needs to contact in order to register a request and
get permission to speak. Such a protocol is easy to design
and implement and is appropriate for deployment in some
environments. However, this approach is not a good choice
for networks that require high availability. For example, if
a partition occurs in the mesh, all the clients connected to
nodes that cannot reach the arbitration point will be left
out of service. At the opposite extreme is the approach
of total decentralization in which there is no unique entity
that arbitrates the communication. Instead, the nodes in the
mesh must coordinate and collectively decide on the order
of serving the clients. While more complex, such a protocol
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Fig. 3. Multicast groups for managing the client (Client Control Group),
and for managing each PTT session (PTT Controller Group, PTT Controller
Monitoring Group, PTT Data Group).

is very resilient to infrastructure failures, at the expense of
a continuous communication overhead in order to maintain a
consistent view between the mesh nodes in the network.

We chose a hybrid protocol that shares characteristics with
both approaches. As in the centralized approach, each PTT
session is managed by a controller node which is responsible
for keeping track of floor requests and for issuing Permission-
to-Speak after a participant releases the floor. However, each
PTT session has is own controller node and any of the mesh
nodes in the network can play the controlling role for any
session. The controller node is continuously monitored by
other nodes and rotated when a more suitable node (i.e., a node
with a better geographical position in the network) becomes
available. In addition, we separate floor control from data
dissemination. While the arbitration is left to the best node to
be the controller, the data is routed optimally to all participants
through source-based multicast trees. This allows the system
to be efficient and scalable.

A. Client management

For a PTT client, the entire mesh network behaves as a
single 3pcc server. This is achieved by maintaining the state
of the client on the mesh nodes in the vicinity of that client,
such that any node that becomes the client’s access point (the
client is mobile) has the appropriate SIP and PTT information.
A virtual IP is assigned to the 3pcc server, and is used by the
client VoIP application to connect to.

Specifically, in order to service a client, the system requires
information such as the SIP call identifier, SIP sequence
number, RTP port, PTT group, PTT state (e.g., the client
requests permission to speak, or has permission to speak).
We maintain client’s state in the vicinity of the client for
several reasons. First, there is no single node responsible for
the state. Instead, any node that can hear the client maintains a
state for it. Thus, the state is preserved even when the client’s
access point crashes. Second, as the state is maintained in the
vicinity of the client, the overhead is localized in the part of
the network where the client is located. Finally, the client state
is decoupled from the controller node, allowing the clients’
requests to be recovered when the controller node crashes (or
is partitioned away), as we discuss below.

Client Control Group. To share the client state between

mesh nodes that can reach a client, we associate with each
client an overlay multicast group. Specifically, any node that
can hear the client (that is, not only its current access point)
joins and periodically advertises the client state on the Client
Control Group (Figure 3). In our experiments, we share
this information every four seconds. Note that the system
is not synchronized and different nodes may see different
states for a client at a given time. We use a combination of
client timestamps (available in the SIP and RTP packets) and
controller logical timestamps to correctly identify the most
recent state of a client.

B. PTT session management

A client joins a PTT session by initiating a VoIP conversa-
tion with the virtual 3pcc server as described in Section IV,
independently of its network location. In our protocol a PTT
session is coordinated by a controller node, whose presence
is continuously monitored by other nodes. The controller
relinquishes its role to another mesh node upon determining
that this node is better situated (network-wise) to control the
PTT session, based on the current location of the clients
participating in the session. Three multicast groups are used
to manage a PTT session in a distributed manner.

PTT Controller Group (PTT_CONTROLLER). For each PTT
session, there is a single mesh node — the controller —
responsible for managing the floor at a given moment in time.
It receives and arbitrates requests and grants the right to speak.
In our architecture, when a node becomes the controller for
a PTT session, it joins an overlay multicast group associated
with that session. Maintaining an overlay multicast group with
the controller as the only member allows any mesh node
in the network to reach the controller node without actually
knowing its identity. All client floor requests are sent by their
access points (mesh nodes) to this group and are stored by the
controller in a FIFO queue.

PTT Controller Monitoring Group (PTT_CMONITOR). This
overlay multicast group is used to monitor the controller node.
A mesh node joins the monitoring group of a PTT session if it
is the access point of a client that participates in that session. In
addition, the controller joins this group to detect the presence
of another controller during a network merge. A ping message
is periodically sent by the controller to this group, allowing
its members to monitor controller’s presence and take action
if the controller is no longer available.

PTT Data Group (PTT_DATA). This multicast group is used
to deliver the actual voice data to the clients. A mesh node
joins the PTT Data Group of a session if it is the access point
of a client in that session. Thus, we completely separate floor
arbitration — coordinated by a single controller node — from
data dissemination. This allows us to optimally route data from
the sender node to all the participants in a PTT session.

To simplify the management of names for these three
multicast groups, we generate their IP multicast addresses
using a hash function of the PTT session identifier, such
that any mesh node in the network knows which groups
are associated with each PTT session without coordination.
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Similarly, the Client Control Group is generated as a hash of
the client IP address.

C. Floor control

1) Requests handling: When a PTT client requests the
floor, a REQUEST_FLOOR message is sent by its access point
to the PTT_CONTROLLER group. The controller queues the
request and sends back an acknowledgment. Release floor
requests are sent to the controller in a similar manner. When
a RELEASE_FLOOR is received, the controller node grants the
right to speak to the next client in the queue by sending a PTS
(Permission-to-Speak) message. This message is sent to the
client using the Client Control group. If the client is no longer
available, a simple timeout mechanism allows the controller
to move to the next request in its queue.

2) Migrating the controller: While there is a single con-
troller node for a PTT session at a given time, the system may
change the controller over time, depending on participants’
placement in the network. The idea is to avoid situations
such as when a majority of the clients in a PTT session are
localized in some part of the network while the controller
node is in another. Placing the controller closer to where most
participants are reduces the latency and the amount of control
traffic in the network. In addition to improved performance,
this migration increases the availability of the service in the
face of network partitions because it keeps the controller in
the “center of gravity” of the clients in the PTT session.
Specifically, the system computes the cost that each node
would incur if it was the controller as the sum of the costs to
reach each member of PTT_DATA group. In our experiments
we computed this cost every minute. By cost we refer to a
wireless metric that may incorporate latency or the number of
hops, for example2. Note that any node in the mesh network
can be chosen to be a controller, even if it does not services
PTT clients.

The sequence of steps performed for migrating the con-
troller are as follows: First, the current controller enters a
block state, in which it does not respond to any floor requests
or releases and does not grant the right to speak to any
client. Next, the controller sends an INVITE message to
the selected node — the one with the lowest cost to be a
controller — which includes the queue of the pending requests.
Upon receiving such a message, the invited node joins the
PTT_CMONITOR group — in case it was not already a member

2Additional functionality from that provided by SMesh was added to
retrieve topology and membership information from the link-state and group-
state updates in Spines [19], which in turn allows a controller to compute the
Euclidean distance from every node to a given PTT group.

— and also joins the PTT_CONTROLLER group. It now has the
queue of requests and can safely begin controlling the session,
queuing new requests and issuing PTS. An acknowledgment
is sent back to the initial controller so that it can leave the
PTT_CONTROLLER group. In case of a timeout during this
process, the original controller unblocks and continues to
manage the PTT session.

D. Protocol robustness

A PTT session requires a controller and a sending node
(that is, a node with a client with permission to speak). If
one of these is missing, either there is nobody to arbitrate
the floor or nobody is currently speaking as the system waits
for a node which is no longer available. Thus, we introduce
the following mechanisms to monitor the operation of each
of these two nodes (Figure 4). Note that asymmetric links are
eliminated by the routing protocol.

1) Controller node monitoring: The controller node pe-
riodically sends a keep-alive message (PING_CMON) to the
PTT_CMONITOR group, allowing other nodes that service PTT
clients for that session to monitor its presence. When the
controller crashes or is partitioned away, the node with the
lowest IP address on the PTT_CMONITOR group volunteers
to be the controller by joining the PTT_CONTROLLER group.
However, its queue of requests is empty. We use a special flag
in the subsequent PING_CMON messages to notify everybody
that a new controller was instantiated. All the nodes with
pending PTT requests must re-send their requests as if they
were new. Thus, the controller’s queue is reconstructed in a
best-effort way, with the requests from the current partition.
Note, however, that the order of the requests in the new queue
may be different than the one from the original controller. With
minimal changes, the protocol can be adapted to recover part
of the original order established by the previous controller.

Another situation from which we have to recover is when
there are multiple controllers in the network. This occurs after
a network merge but also when the controller is lost and
multiple nodes decide to control the session (unlikely but
possible, as the nodes can temporary have a different view
of the network’s topology). Since the controller node is the
only one sending keep-alive messages on the PTT_CMONITOR
group, receiving a keep-alive that is not its own indicates to
the controller that there is at least one additional controller
in the network. Once this situation is detected, the node with
the lowest IP address remains the controller, while the other(s)
must leave the controller’s group. A redundant controller sends
a LEAVE_REQUEST message to the PTT_CONTROLLER group
with the content of its queue as it leaves the group. Upon
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Type Sent by Sent to When

REQUEST_FLOOR mesh node PTT_CONTROLLER group client requests floor
RELEASE_FLOOR mesh node PTT_CONTROLLER group client releases floor
REQ_REL_ACK controller mesh node
PTS controller CLIENT_CONTROL group
PTS_ACK node controller
INVITE controller mesh node controller changes
INVITE_ACK node controller
LEAVE_REQUEST controller controller multiple controllers
LEAVE_REQUEST_ACK controller controller multiple controllers
REVOKE controller node multiple speakers
PING_CMON controller PTT_CMONITOR group every second
PTS_PING node PTT_CONTROLLER group every second when client

has PTS

TABLE I
TYPES OF MESSAGES HANDLED BY THE CONTROLLER NODE.

receiving such a message, the controller with the lowest IP
appends the queue to its own, removing duplicate requests if
necessary, and acknowledges the leave.

2) Sending node monitoring: While the members of
PTT_CMONITOR group monitor the controller, the controller
in turn is responsible for monitoring the sending node (Fig-
ure 4). The sending node periodically issues a keep-alive
message (PTS_PING - Permission-to-Speak Ping) on the
PTT_CONTROLLER group. This allows the controller to quickly
move to the next client in the queue in case of a timeout. An
alternative to this approach would be to simply wait for the
maximum allotted time per speaker to expire; however, system
responsiveness is important in emergency situations, ruling this
option out.

When two or more network partitions merge, there will
be multiple controllers, but also multiple sending nodes in
the network. The controller of the newly established network
withdraws the right to speak to all additional clients by sending
a REVOKE message to their access points (mesh nodes), which
in turn notify their associated clients.

Table I summarizes the messages exchanged in our proto-
col.

VI. EXPERIMENTAL RESULTS

A. Setup

We implemented our protocol within the open source SMesh
wireless mesh system [6] and evaluated it in a testbed of 14
Linksys WRT54G wireless routers deployed across several
floors in three buildings. Other than our PTT system exe-
cutables that implement the protocol described throughout this
paper, no other changes were made to SMesh.

Each of the mesh nodes is equipped with one radio con-
figured in ad-hoc mode. The data rate was set to 18 Mbps,
the transmission power to 50 mW, and the 802.11 link-layer
retransmission limit to 7. Unless specified, the topology of the
mesh, depicted in Figure 5, was stable.

In all experiments, when a client is granted permission to
speak it transmits a 64 Kbps VoIP stream as 160 bytes UDP
packets every 20 ms.

Some experiments require a large number of simultaneous
clients. To support such experiments, we implemented a client
emulator that generated the appropriate control and data traffic
associated with the emulated client. From the 802.11 network
and from the PTT system perspective, there was no difference
between an emulated client and a real client in terms of control
and data traffic. Each client is instantiated on a mesh node,

Fig. 5. Wireless mesh network testbed.

and packets between the emulated client and its access point
are always transmitted over the wireless medium. In spite of
generating the appropriate amount of traffic in the network,
our metrics (such as latency and loss rate) are reported from
the mesh nodes perspective. A real client should perceive
slightly higher values. Despite this shortcoming, we resort to
this method in order to evaluate our system in a real testbed,
with a large number of users.

B. Measurements

We present four types of experiments. First, we demonstrate
the PTT system’s normal operation with a small number of
clients. Second, we demonstrate the ability of the system to
scale with the number of clients in a PTT group. Third, we
demonstrate the ability of the system to scale with the number
of PTT groups. Last, we demonstrate the robustness of the
system through its ability to handle network partitions and
merges correctly while PTT sessions are in progress.

1) Normal operation: This experiment involves four mobile
clients, each of them connected to a different mesh node in
the network (nodes 1, 2, 12, and 14 in Figure 5). All four
clients join a PTT session and continuously request to talk.
When a client is granted the floor, it immediately speaks for
20 seconds, releases the floor, and then renews its request.
Thus, the PTT session’s queue of requests is never empty.

Figure 6 depicts the VoIP data throughput and our protocol
overhead, as seen by Node 1. The overhead includes the
control traffic of the PTT protocol as well as the SMesh traffic
associated with maintaining the mesh and the multicast groups.
This overhead ranges between 1.5 Kbps and 5.8 Kbps, with an
average of 3.4 Kbps, which is reasonable considering that each
VoIP session is 64 Kbps. Detailed analysis shows that it takes
a few tens of milliseconds from the moment the last packet
from a client is received to the moment the first packet from
the next client’s voice stream arrives. This demonstrates that
only a small part of the time is consumed for synchronizing
the PTT clients.

2) Scaling with the number of clients in a PTT session: To
test the scalability of our system, we gradually increase the
number of clients participating in a single PTT session. Each
client connects to one of the 14 mesh nodes in the network
according to a round-robin order of their identifiers (i.e., the
first client connects to Node 1, the second to Node 2, . . . ,
the 14th to Node 14, the 15th to Node 1, etc.) and requests
to speak. Upon acquiring the floor, each client speaks for
10 seconds, releases the floor, waits for another 10 seconds,
and requests to speak again. Therefore, at any point, some
client is authorized to speak.
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Fig. 6. Normal operation of the system, running in the 14-nodes testbed,
with 4 clients on one PTT group.

We consider three scenarios: (1) Each mesh node is
equipped with a single radio. (2) Each mesh node is equipped
with dual radios such that the mesh traffic does not interfere
with the mesh-to-client traffic, as the radios can be set on
non-interfering channels. We emulated this dual-radio scenario
in our single-radio environment by generating the client’s
messages locally on the corresponding mesh nodes and by
avoiding sending data packets from the mesh nodes towards
the clients. (3) Each mesh node is equipped with a single radio
and the mobile clients have no PTT support3.

For the case where clients have no PTT support, there are
two main disadvantages that considerably affect performance.
First, such clients continuously send VoIP packets, even when
not having the floor. These packets are dropped by the mesh
node serving the client, except for the durations when the client
has acquired the floor. This case incurs considerable overhead
as clients send unnecessary packets in their vicinity. The
second disadvantage is that a node needs to send individual
packets to all the clients directly connected to it, even if they
are on the same PTT session. In contrast, with PTT support
clients can use the same multicast address and local port,
allowing a single stream of multicast packets to be sent by
the mesh node to all of them.

Figure 7 and 8 present the latency and loss rate of the VoIP
packets received by the mesh nodes, in each of the above three
scenarios, averaged over 10-minute tests. With 42 clients (three
clients connected to each mesh node), the average latency
of the received packets was 28.42 ms for a single radio and
25.52 ms for dual radio. For the third scenario the system can
scale only up to 28 clients (114 ms latency) before the loss
rate goes above 0.5%. The experiment shows how the system
scales and demonstrates that when utilizing a PTT enabled
phone or a dual-radio configuration, the system can scale to
at least 42 clients in the mesh network with minimal impact
on latency and loss rate.

Figure 9 presents the overhead traffic, as seen by a single
mesh node (Node 1 in Figure 5). This overhead depends
on the distribution and the density of the clients in the
network. For better analysis, we separate the overhead into
three distinct components: (1) mesh control traffic (i.e., link
state updates generated by topology changes and control traffic
for managing multicast groups). The amount of this traffic is
very small, less than 1 Kbps. (2) Control traffic generated
by our PTT protocol (e.g., requests, releases, ping messages,
acknowledgments, etc.) Since the size of these messages is

3In our system, one can simply participate in a PTT session using a standard
VoIP phone or application.
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Fig. 9. Average overhead of the protocol, while increasing the number of
clients on a single PTT group.

very small, this overhead is also low, less than 1 Kbps on
average in our experiments. (3) Traffic required to locally share
clients’ PTT state (i.e., traffic on the Client Control groups).
This represents the majority of the overhead, increasing from
1.3 Kbps for 2 clients to 27 Kbps for 42. This overhead
depends on the density of the mesh (how many mesh nodes
can hear a client) and the number of clients. The experiment
shows that the overhead of the system as the number of clients
grows is minimal, below 1 Kbps per client.

To test the scalability of our system in another dimension,
we gradually increased the number of simultaneous PTT
sessions in the system. Each PTT session includes four clients
connected to random mesh nodes in the network. Each PTT
session contributes a single VoIP stream (50 packets per
second, total of 64 Kbps).

Figures 10 and 11 show the latency and loss rate as the
number of PTT groups increases. With a single radio, the
system scales to 6 PTT groups, while with dual-radio, the
system scales to 8 PTT groups. Noting that the scalability of
the system was impaired by the high overhead associated with
sending small packets in 802.11 networks, we tested the same
two scenarios with packing 160 ms of VoIP packets into one
network packet at the mesh node. This approach allows us to
trade some latency (20 ms x 7 packets = 140 ms) for an 8 fold
reduction in the number of packets in the mesh. Note that PTT
systems used by first-responders [13] employ a slightly higher
packing scheme of 180 ms. Packet aggregation allowed us to
support up to 18 PTT sessions before the latency jumped to
over 500 ms. The experiment shows that it pays to trade some
latency with scalability.

3) Robustness test: This experiment demonstrates the sys-
tem’s behavior when there is a partition and a merge in the
wireless mesh network.

We first present a small-scale scenario with 4 clients (A, B,
C and D) joining the network in 4 different places (Node 1,
Node 5, Node 9 and Node 10), with A and B in one “side”
of network, and C and D in the other side, as illustrated by
Figure 12. In the beginning, the controller of the PTT session
is Node 1 and client A is granted permission to speak. We then
partitioned the network, such that Node 9 and Node 10 became
unreachable from Node 1 and Node 5’s side of the network.
Figure 12 shows the voice traffic as received by client B in
the first partition and by client D in the second one. We can
see that in the first partition the data packets are generated
by client A, and this does not change, as expected, even after
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Fig. 12. Scenario showing a network partition with 4 clients in one PTT group. After the partition, the 14-nodes network is split into two independent PTT
systems.

the partition occurs (around second 60). However, the right
side of the partition lost the controller. After approximately
7 seconds, a new controller is generated (Node 9), the requests
are recovered, and client C is granted permission to speak,
as shown by the second partition’s view in Figure 12. When
the network merged (graph not shown), Clients’ voice traffic
was corrupted — due to multiple voice streams — for about
686 ms (35 packets), demonstrating that our system quickly
eliminates redundant controllers. This demonstrates that the
system gracefully handles network partitions and merges.

Finally, we benchmark the system in a large scale partition
and merge scenario, with 40 participants in 10 simultaneous
PTT sessions. Partition was performed by disconnecting one of
the routers. Similar to the scalability experiment, the sending
client in each group changes every 10 seconds. Figure 13
shows the overall traffic in the vicinity of Node 1 (as observed
by setting Node 1 in promiscuous mode and counting all the
packets in its vicinity). To better understand the system’s be-
havior, we present in Figure 13(a) both the data and overhead
traffic, and separately, in Figure 13(b), two components of the
overhead traffic: routing control traffic (link state, multicast
group management) and PTT protocol control traffic. For
clarity, we do not show the overhead traffic associated with

sharing the state of a client within his vicinity, as it was already
shown in Figure 9.

Following the overhead traffic, we can see the route updates
that are generated when clients join the network (point A),
as well as the overhead related to clients joining a PTT
group and asking for permission to speak (point B). The
system operates normally until second 265 (point D), when
the network partitions. Then, many of the sessions in Node
1’s partition lose their speaker or their ability to route to
some PTT members. When the connectivity stabilizes, new
speakers are granted permission to speak (point E). Note
that the amount of VoIP traffic is smaller, as some PTT
sessions no longer have members in the current partition, or
do not have to route through Node 1’s vicinity PTT session
messages. Around second 310 (point F), the network merges,
causing a spike in both data and overhead traffic. Shortly
after that, network routes stabilize and normal operation is
resumed. Lastly, around second 380 (point G), all the clients
stop speaking and the data rate drops to zero. Since clients
did not leave their PTT groups, the overhead associated with
maintaining PTT sessions remains constant through the end
of the experiment. This elaborate scenario demonstrates the
robustness of the system to network connectivity changes
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Fig. 13. Large case scenario showing a network partition and merge. 40 clients join the 14-nodes system on 10 PTT groups: (A) clients joins, (B) clients
request to speak, (C) regular operation, (D) network partitions, (E) network stabilizes after the partition, (F) network merges, (G) clients stop speaking. The
marks indicate approximately the middle of each stage.

while supporting a large number of distinct PTT sessions.

VII. CONCLUSION

In this paper we presented the design and implementation
of the first robust Push-to-Talk protocol for wireless mesh
networks. The architecture seamlessly integrates standard VoIP
phones as well as regular phones and cell phones from the
PSTN network to support heterogeneous environments. The
protocol provides high availability while efficiently arbitrating
the PTT sessions and efficiently disseminating voice traffic.
We implemented our protocol within an open source wireless
mesh system and evaluated it in a 14 node testbed. Experi-
mental results demonstrate the scalability of our system and
its operation in the presence of network connectivity changes
such as partitions and merges. This preliminary evaluation of
the system shows that PTT is a viable application for self-
organizing mesh networks.
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