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Introduction

The Seventh Conference on Machine Translation (WMT 2022) took place on Wednesday, December 7
and Thursday, December 8, 2022 immediately preceding the 2022 Conference on Empirical Methods in
Natural Language Processing (EMNLP 2022).

This is the seventh time WMT has been held as a conference. The first time WMT was held as a
conference was at ACL 2016 in Berlin, Germany, the second time at EMNLP 2017 in Copenhagen,
Denmark, the third time at EMNLP 2028 in Brussels, Belgium, the fourth time at ACL 2019 in Florence,
Italy, the fifth time at EMNLP-2020, which was held as an online event due to the COVID-19 pandemic,
and the sixth time at EMNLP 2021 at Punta Cana, Dominican Republic. Prior to being a conference,
WMT was held 10 times as a workshop. WMT was held for the first time at HLT-NAACL 2006 in
New York City, USA. In the following years the Workshop on Statistical Machine Translation was
held at ACL 2007 in Prague, Czech Republic, ACL 2008, Columbus, Ohio, USA, EACL 2009 in
Athens, Greece, ACL 2010 in Uppsala, Sweden, EMNLP 2011 in Edinburgh, Scotland, NAACL 2012 in
Montreal, Canada, ACL 2013 in Sofia, Bulgaria, ACL 2014 in Baltimore, USA, EMNLP 2015 in Lisbon,
Portugal.

The focus of our conference is to bring together researchers from the area of machine translation and
invite selected research papers to be presented at the conference.

Prior to the conference, in addition to soliciting relevant papers for review and possible presentation,
we conducted 13 shared tasks. These consisted of 10 translation tasks: General Machine Translation
of News, Similar Language Translation, Biomedical Translation, Large-Scale Machine Translation
Evaluation for African Languages, Translation Efficiency, Sign Language Translation, Code-mixed
Machine Translation, Chat Translation Task, Unsupervised MT and Very Low Resource Supervised
Machine Translation, Metrics for Machine Translation, Quality Estimation of Translation, Word-Level
Auto-Completion, Translation Suggestion, and the Automatic Post-Editing task.

The results of all shared tasks were announced at the conference, and these proceedings also include
overview papers for the shared tasks, summarizing the results, as well as providing information about the
data used and any procedures that were followed in conducting or scoring the tasks. In addition, there
are short papers from each participating team that describe their underlying system in greater detail.

Like in previous years, we have received a far larger number of submissions than we could accept for
presentation. WMT 2022 has received 46 full research paper submissions (not counting withdrawn
submissions). In total, WMT 2022 featured 14 full research paper presentations and 99 shared task
presentations.

The invited talk entitled was given by Ondřej Bojar from Charles University, Prague, Czech Republic

We would like to thank the members of the Program Committee for their timely reviews. We also
would like to thank the participants of the shared task and all the other volunteers who helped with the
evaluations.

Loïc Barrault, Rachel Bawden, Ondřej Bojar, Fethi Bougares, Rajen Chatterjee, Marta R. Costa-
jussà, Anton Dvorkovich, Christian Federmann, Mark Fishel, Alexander Fraser, Markus Freitag, Yvette
Graham, Roman Grundkiewicz, Paco Guzman, Barry Haddow, Matthias Huck, Antonio Jimeno Yepes,
Rebecca Knowles, Tom Kocmi, Philipp Koehn, André Martins, Christof Monz, Makoto Morishita,
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Maja Popović (ADAPT, Dublin City University)
Vikas Raunak (Microsoft)
Matı̄ss Rikters (National Institute of Advanced Industrial Science and Technology)
Annette Rios (University of Zurich)
Safiyyah Saleem (Meta AI)
Elizabeth Salesky (Johns Hopkins University)
Hassan Sawaf (aixplain, inc.)
Carolina Scarton (University of Sheffield)
Holger Schwenk (Facebook Artificial Intelligence Research)
Rico Sennrich (University of Zurich)
Patrick Simianer (Lilt)
Felix Stahlberg (Google Research)
David Stap (University of Amsterdam)
Katsuhito Sudoh (Nara Institute of Science and Technology (NAIST))
Víctor M. Sánchez-Cartagena (Universitat d’Alacant)
Felipe Sánchez-Martínez (Universitat d’Alacant)
Aleš Tamchyna (Memsource)
Gongbo Tang (Beijing Language and Culture University; Uppsala University)
Brian Thompson (Amazon)
Jörg Tiedemann (University of Helsinki)
Antonio Toral (University of Groningen)
Ke Tran (Amazon)
Ferhan Ture (Comcast Applied AI Research)
Masao Utiyama (NICT)
David Vilar (Google)
Ekaterina Vylomova (University of Melbourne)
Wei Wang (Apple AI/ML)
Weiyue Wang (RWTH Aachen University)
Taro Watanabe (Nara Institute of Science and Technology)
Marion Weller-Di Marco (Ludwig-Maximilians-Universität München)
Guillaume Wenzek (Meta AI)
Hua Wu (Baidu)
Tong Xiao (Northeastern University)

viii



Jinan Xu (Beijing Jiaotong University)
Jitao Xu (LISN, CNRS, Paris-Saclay University)
Yinfei Yang (Google)
Hyeongu Yun (LG AI Research)
François Yvon (LISN CNRS & Univ. Paris Saclay)
Xianfeng Zeng (Pattern Recognition Center, WeChat AI, Tencent)
Dakun Zhang (SYSTRAN)
Zhong Zhou (Carnegie Mellon University)

ix





Table of Contents

Findings of the 2022 Conference on Machine Translation (WMT22)
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and Lucia Specia . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

Findings of the WMT 2022 Shared Task on Efficient Translation
Kenneth Heafield, Biao Zhang, Graeme Nail, Jelmer van der Linde and Nikolay Bogoychev . . 100

Findings of the WMT 2022 Shared Task on Automatic Post-Editing
Pushpak Bhattacharyya, Rajen Chatterjee, Markus Freitag, Diptesh Kanojia, Matteo Negri and

Marco Turchi . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

Embarrassingly Easy Document-Level MT Metrics: How to Convert Any Pretrained Metric into a
Document-Level Metric

Giorgos Vernikos, Brian Thompson, Prashant Mathur and Marcello Federico . . . . . . . . . . . . . . . . 118

Searching for a Higher Power in the Human Evaluation of MT
Johnny Wei, Tom Kocmi and Christian Federmann . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129

Test Set Sampling Affects System Rankings: Expanded Human Evaluation of WMT20 English-Inuktitut
Systems

Rebecca Knowles and Chi-kiu Lo . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140

Continuous Rating as Reliable Human Evaluation of Simultaneous Speech Translation
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Kornelia Szypuła, Paweł Przewłocki and Paweł Przybysz . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 251

Tencent AI Lab - Shanghai Jiao Tong University Low-Resource Translation System for the WMT22 Trans-
lation Task

Zhiwei He, Xing Wang, Zhaopeng Tu, Shuming Shi and Rui Wang . . . . . . . . . . . . . . . . . . . . . . . . . 260

Lan-Bridge MT’s Participation in the WMT 2022 General Translation Shared Task
Bing Han, Yangjian Wu, Gang Hu and Qiulin Chen . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 268

Manifold’s English-Chinese System at WMT22 General MT Task
Chang Jin, Tingxun Shi, Zhengshan Xue and Xiaodong Lin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 275

CUNI-Bergamot Submission at WMT22 General Translation Task
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14:00–15:30 Session 3: Research Papers on Multilingual, Multimodal, Multidomain Trans-
lation

14:00–14:20 Exploring the Benefits and Limitations of Multilinguality for Non-autoregressive
Machine Translation
Sweta Agrawal, Julia Kreutzer and Colin Cherry

14:20–14:40 Learning an Artificial Language for Knowledge-Sharing in Multilingual Translation
Danni Liu and Jan Niehues

14:40–15:00 Don’t Discard Fixed-Window Audio Segmentation in Speech-to-Text Translation
Chantal Amrhein and Barry Haddow

15:00–15:20 Additive Interventions Yield Robust Multi-Domain Machine Translation Models
Elijah Rippeth and Matt Post
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15:20–16:00 Coffee Break

16:00–17:30 Session 4: Shared Task System Description Posters I

16:00–17:30 News Translation Task

16:00–17:30 Inria-ALMAnaCH at WMT 2022: Does Transcription Help Cross-Script Machine
Translation?
Jesujoba Alabi, Lydia Nishimwe, Benjamin Muller, Camille Rey, Benoît Sagot and
Rachel Bawden

16:00–17:30 NAIST-NICT-TIT WMT22 General MT Task Submission
Hiroyuki Deguchi, Kenji Imamura, Masahiro Kaneko, Yuto Nishida, Yusuke Sakai,
Justin Vasselli, Huy Hien Vu and Taro Watanabe

16:00–17:30 Samsung R&D Institute Poland Participation in WMT 2022
Adam Dobrowolski, Mateusz Klimaszewski, Adam Myśliwy, Marcin Szymański,
Jakub Kowalski, Kornelia Szypuła, Paweł Przewłocki and Paweł Przybysz

16:00–17:30 Tencent AI Lab - Shanghai Jiao Tong University Low-Resource Translation System
for the WMT22 Translation Task
Zhiwei He, Xing Wang, Zhaopeng Tu, Shuming Shi and Rui Wang

16:00–17:30 Lan-Bridge MT’s Participation in the WMT 2022 General Translation Shared Task
Bing Han, Yangjian Wu, Gang Hu and Qiulin Chen

16:00–17:30 Manifold’s English-Chinese System at WMT22 General MT Task
Chang Jin, Tingxun Shi, Zhengshan Xue and Xiaodong Lin

16:00–17:30 CUNI-Bergamot Submission at WMT22 General Translation Task
Josef Jon, Martin Popel and Ondřej Bojar

16:00–17:30 KYB General Machine Translation Systems for WMT22
Shivam Kalkar, Yoko Matsuzaki and Ben LI

16:00–17:30 Analyzing the Use of Influence Functions for Instance-Specific Data Filtering in
Neural Machine Translation
Tsz Kin Lam, Eva Hasler and Felix Hieber
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16:00–17:30 The AISP-SJTU Translation System for WMT 2022
Guangfeng Liu, Qinpei Zhu, Xingyu Chen, Renjie Feng, Jianxin Ren, Renshou Wu,
Qingliang Miao, Rui Wang and Kai Yu

16:00–17:30 NT5 at WMT 2022 General Translation Task
Makoto Morishita, Keito Kudo, Yui Oka, Katsuki Chousa, Shun Kiyono, Sho
Takase and Jun Suzuki

16:00–17:30 Adam Mickiewicz University at WMT 2022: NER-Assisted and Quality-Aware Neu-
ral Machine Translation
Artur Nowakowski, Gabriela Pałka, Kamil Guttmann and Mikołaj Pokrywka

16:00–17:30 Evaluating Corpus Cleanup Methods in the WMT’22 News Translation Task
Marilena Malli and George Tambouratzis

16:00–17:30 PROMT Systems for WMT22 General Translation Task
Alexander Molchanov, Vladislav Kovalenko and Natalia Makhamalkina

16:00–17:30 eTranslation’s Submissions to the WMT22 General Machine Translation Task
Csaba Oravecz, Katina Bontcheva, David Kolovratnìk, Bogomil Kovachev and
Christopher Scott

16:00–17:30 CUNI Systems for the WMT 22 Czech-Ukrainian Translation Task
Martin Popel, Jindřich Libovický and Jindřich Helcl

16:00–17:30 The ARC-NKUA Submission for the English-Ukrainian General Machine Transla-
tion Shared Task at WMT22
Dimitrios Roussis and Vassilis Papavassiliou

16:00–17:30 The NiuTrans Machine Translation Systems for WMT22
Weiqiao Shan, Zhiquan Cao, Yuchen Han, Siming Wu, Yimin Hu, jie wang, Yi
Zhang, Hou Baoyu, Hang Cao, Chenghao Gao, Xiaowen Liu, Tong Xiao, Anxiang
Ma and Jingbo Zhu

16:00–17:30 Teaching Unseen Low-resource Languages to Large Translation Models
Maali Tars, Taido Purason and Andre Tättar

16:00–17:30 Can Domains Be Transferred across Languages in Multi-Domain Multilingual Neu-
ral Machine Translation?
Thuy-Trang Vu, Shahram Khadivi, Xuanli He, Dinh Phung and Gholamreza Haffari

16:00–17:30 DUTNLP Machine Translation System for WMT22 General MT Task
Ting Wang, Huan Liu, Junpeng Liu and Degen Huang
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16:00–17:30 HW-TSC’s Submissions to the WMT 2022 General Machine Translation Shared Task
Daimeng Wei, Zhiqiang Rao, Zhanglin Wu, Shaojun Li, Yuanchang Luo, Yuhao
Xie, Xiaoyu Chen, Hengchao Shang, Zongyao Li, Zhengzhe Yu, Jinlong Yang,
Miaomiao Ma, Lizhi Lei, Hao Yang and Ying Qin

16:00–17:30 Vega-MT: The JD Explore Academy Machine Translation System for WMT22
Changtong Zan, keqin Peng, Liang Ding, Baopu Qiu, Boan Liu, Shwai He, Qingyu
Lu, Zheng Zhang, Chuang Liu, Weifeng Liu, Yibing Zhan and Dacheng Tao

16:00–17:30 No Domain Left behind
Hui Zeng

16:00–17:30 GTCOM Neural Machine Translation Systems for WMT22
Hao Zong and Chao Bei

16:00–17:30 Test Suites

16:00–17:30 Linguistically Motivated Evaluation of the 2022 State-of-the-art Machine Transla-
tion Systems for Three Language Directions
Vivien Macketanz, Shushen Manakhimova, Eleftherios Avramidis, Ekaterina
Lapshinova-Koltunski, Sergei Bagdasarov and Sebastian Möller

16:00–17:30 Automated Evaluation Metric for Terminology Consistency in MT
Kirill Semenov and Ondřej Bojar

16:00–17:30 Test Suite Evaluation: Morphological Challenges and Pronoun Translation
Marion Weller-Di Marco and Alexander Fraser

xxv
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16:00–17:30 Metrics Task

16:00–17:30 Robust MT Evaluation with Sentence-level Multilingual Augmentation
Duarte Alves, Ricardo Rei, Ana C Farinha, José G. C. de Souza and André F. T.
Martins

16:00–17:30 ACES: Translation Accuracy Challenge Sets for Evaluating Machine Translation
Metrics
Chantal Amrhein, Nikita Moghe and Liane Guillou

16:00–17:30 Linguistically Motivated Evaluation of Machine Translation Metrics Based on a
Challenge Set
Eleftherios Avramidis and Vivien Macketanz

16:00–17:30 Exploring Robustness of Machine Translation Metrics: A Study of Twenty-Two Au-
tomatic Metrics in the WMT22 Metric Task
Xiaoyu Chen, Daimeng Wei, Hengchao Shang, Zongyao Li, Zhanglin Wu,
Zhengzhe Yu, Ting Zhu, Mengli Zhu, Ning Xie, Lizhi Lei, Shimin Tao, Hao Yang
and Ying Qin

16:00–17:30 MS-COMET: More and Better Human Judgements Improve Metric Performance
Tom Kocmi, Hitokazu Matsushita and Christian Federmann

16:00–17:30 Partial Could Be Better than Whole. HW-TSC 2022 Submission for the Metrics
Shared Task
Yilun Liu, Xiaosong Qiao, Zhanglin Wu, Su Chang, Min Zhang, Yanqing Zhao,
Song Peng, shimin tao, Hao Yang, Ying Qin, Jiaxin Guo, Minghan Wang, Yinglu
Li, Peng Li and Xiaofeng Zhao

16:00–17:30 Unsupervised Embedding-based Metric for MT Evaluation with Improved Human
Correlation
Ananya Mukherjee and Manish Shrivastava

16:00–17:30 REUSE: REference-free UnSupervised Quality Estimation Metric
Ananya Mukherjee and Manish Shrivastava

16:00–17:30 MaTESe: Machine Translation Evaluation as a Sequence Tagging Problem
Stefano Perrella, Lorenzo Proietti, Alessandro Scirè, Niccolò Campolungo and
Roberto Navigli

16:00–17:30 COMET-22: Unbabel-IST 2022 Submission for the Metrics Shared Task
Ricardo Rei, José G. C. de Souza, Duarte Alves, Chrysoula Zerva, Ana C Farinha,
Taisiya Glushkova, Alon Lavie, Luisa Coheur and André F. T. Martins

16:00–17:30 Alibaba-Translate China’s Submission for WMT2022 Metrics Shared Task
Yu Wan, Keqin Bao, Dayiheng Liu, Baosong Yang, Derek F. Wong, Lidia S. Chao,
Wenqiang Lei and Jun Xie
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16:00–17:30 Quality Estimation Task

16:00–17:30 Quality Estimation via Backtranslation at the WMT 2022 Quality Estimation Task
Sweta Agrawal, Nikita Mehandru, Niloufar Salehi and Marine Carpuat

16:00–17:30 Alibaba-Translate China’s Submission for WMT 2022 Quality Estimation Shared
Task
Keqin Bao, Yu Wan, Dayiheng Liu, Baosong Yang, Wenqiang Lei, Xiangnan He,
Derek F. Wong and Jun Xie

16:00–17:30 KU X Upstage’s Submission for the WMT22 Quality Estimation: Critical Error
Detection Shared Task
Sugyeong Eo, Chanjun Park, Hyeonseok Moon, Jaehyung Seo and Heuiseok Lim

16:00–17:30 NJUNLP’s Participation for the WMT2022 Quality Estimation Shared Task
Xiang Geng, Yu Zhang, Shujian Huang, shimin tao, Hao Yang and Jiajun CHEN

16:00–17:30 BJTU-Toshiba’s Submission to WMT22 Quality Estimation Shared Task
Hui Huang, Hui Di, Chunyou Li, Hanming Wu, Kazushige Ouchi, Yufeng Chen,
Jian Liu and Jinan Xu

16:00–17:30 Papago’s Submission to the WMT22 Quality Estimation Shared Task
Seunghyun Lim and Jeonghyeok Park

16:00–17:30 CometKiwi: IST-Unbabel 2022 Submission for the Quality Estimation Shared Task
Ricardo Rei, Marcos Treviso, Nuno M. Guerreiro, Chrysoula Zerva, Ana C Farinha,
Christine Maroti, José G. C. de Souza, Taisiya Glushkova, Duarte Alves, Luisa
Coheur, Alon Lavie and André F. T. Martins

16:00–17:30 CrossQE: HW-TSC 2022 Submission for the Quality Estimation Shared Task
shimin tao, Su Chang, Ma Miaomiao, Hao Yang, Xiang Geng, Shujian Huang, Min
Zhang, Jiaxin Guo, Minghan Wang and Yinglu Li

16:00–17:30 Welocalize-ARC/NKUA’s Submission to the WMT 2022 Quality Estimation Shared
Task
Eirini Zafeiridou and Sokratis Sofianopoulos
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16:00–17:30 Efficient Translation Task

16:00–17:30 Edinburgh’s Submission to the WMT 2022 Efficiency Task
Nikolay Bogoychev, Maximiliana Behnke, Jelmer van der Linde, Graeme Nail,
Kenneth Heafield, Biao Zhang and Sidharth Kashyap

16:00–17:30 CUNI Non-Autoregressive System for the WMT 22 Efficient Translation Shared Task
Jindřich Helcl

16:00–17:30 The RoyalFlush System for the WMT 2022 Efficiency Task
Bo Qin, Aixin Jia, Qiang Wang, Jianning Lu, Shuqin Pan, Haibo Wang and Ming
Chen

16:00–17:30 HW-TSC’s Submission for the WMT22 Efficiency Task
Hengchao Shang, Ting Hu, Daimeng Wei, Zongyao Li, Xianzhi Yu, Jianfei Feng,
Ting Zhu, Lizhi Lei, Shimin Tao, Hao Yang, Ying Qin, Jinlong Yang, Zhiqiang Rao
and Zhengzhe Yu

16:00–17:30 Automatic Post-Editing Task

16:00–17:30 IIT Bombay’s WMT22 Automatic Post-Editing Shared Task Submission
Sourabh Deoghare and Pushpak Bhattacharyya

16:00–17:30 LUL’s WMT22 Automatic Post-Editing Shared Task Submission
Xiaoying Huang, Xingrui Lou, Fan Zhang and Tu Mei
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9:00–10:30 Session 5: Shared Task Overview Papers I

9:00–9:10 Findings of the WMT 2022 Biomedical Translation Shared Task: Monolingual Clin-
ical Case Reports
Mariana Neves, Antonio Jimeno Yepes, Amy Siu, Roland Roller, Philippe Thomas,
Maika Vicente Navarro, Lana Yeganova, Dina Wiemann, Giorgio Maria Di Nunzio,
Federica Vezzani, Christel Gerardin, Rachel Bawden, Darryl Johan Estrada, Sal-
vador Lima-Lopez, Eulalia Farre-Maduel, Martin Krallinger, Cristian Grozea and
Aurelie Neveol

9:10–9:20 Findings of the WMT 2022 Shared Task on Chat Translation
Ana C Farinha, M. Amin Farajian, Marianna Buchicchio, Patrick Fernandes, José
G. C. de Souza, Helena Moniz and André F. T. Martins

9:20–9:35 Findings of the First WMT Shared Task on Sign Language Translation (WMT-
SLT22)
Mathias Müller, Sarah Ebling, Eleftherios Avramidis, Alessia Battisti, Michèle
Berger, Richard Bowden, Annelies Braffort, Necati Cihan Camgöz, Cristina
España-Bonet, Roman Grundkiewicz, Zifan Jiang, Oscar Koller, Amit Moryossef,
Regula Perrollaz, Sabine Reinhard, Annette Rios, Dimitar Shterionov, Sandra
Sidler-Miserez, Katja Tissi and Davy Van Landuyt

9:35–9:50 Findings of the WMT’22 Shared Task on Large-Scale Machine Translation Evalua-
tion for African Languages
David Adelani, Md Mahfuz Ibn Alam, Antonios Anastasopoulos, Akshita Bhagia,
Marta R. Costa-jussà, Jesse Dodge, Fahim Faisal, Christian Federmann, Natalia
Fedorova, Francisco Guzmán, Sergey Koshelev, Jean Maillard, Vukosi Marivate,
Jonathan Mbuya, Alexandre Mourachko, Safiyyah Saleem, Holger Schwenk and
Guillaume Wenzek

9:50–10:00 Findings of the WMT 2022 Shared Tasks in Unsupervised MT and Very Low Re-
source Supervised MT
Marion Weller-Di Marco and Alexander Fraser

10:00–10:10 Overview and Results of MixMT Shared-Task at WMT 2022
Vivek Srivastava and Mayank Singh

10:10–10:20 Findings of the Word-Level AutoCompletion Shared Task in WMT 2022
Francisco Casacuberta, George Foster, Guoping Huang, Philipp Koehn, Geza Ko-
vacs, Lemao Liu, Shuming Shi, Taro Watanabe and Chengqing Zong

10:20–10:30 Findings of the WMT 2022 Shared Task on Translation Suggestion
Zhen Yang, Fandong Meng, Yingxue Zhang, Ernan Li and Jie Zhou

10:30–11:00 Coffee Break
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11:00–11:40 Session 6: Research Papers on Practical Aspect of Machine Translation

11:00–11:20 Focused Concatenation for Context-Aware Neural Machine Translation
Lorenzo Lupo, Marco Dinarelli and Laurent Besacier

11:20–11:40 Does Sentence Segmentation Matter for Machine Translation?
Rachel Wicks and Matt Post

11:40–12:00 Revisiting Locality Sensitive Hashing for Vocabulary Selection in Fast Neural Ma-
chine Translation
Hieu Hoang, Marcin Junczys-Dowmunt, Roman Grundkiewicz and Huda Khayral-
lah

12:00–12:20 Too Brittle to Touch: Comparing the Stability of Quantization and Distillation to-
wards Developing Low-Resource MT Models
Harshita Diddee, Sandipan Dandapat, Monojit Choudhury, Tanuja Ganu and Kalika
Bali

12:20–12:40 Data Augmentation for Inline Tag-Aware Neural Machine Translation
Yonghyun Ryu, Yoonjung Choi and Sangha Kim

12:40–14:00 Lunch Break

14:00–15:30 Session 7: Invited Talk by Ondrej Bojar on "Speech Translation: When Two
Superhuman Technologies Combined Fail"

15:30–16:00 Coffee Break

xxx



Thursday, December 8, 2022 (continued)

16:00–17:30 Session 8: Shared Task System Description Posters II

16:00–17:30 Biomedical Translation Task

16:00–17:30 The SPECTRANS System Description for the WMT22 Biomedical Task
Nicolas Ballier, Jean-Baptiste Yunès, Guillaume Wisniewski, Lichao Zhu and Maria
Zimina

16:00–17:30 SRT’s Neural Machine Translation System for WMT22 Biomedical Translation Task
Yoonjung Choi, jiho shin, Yonghyun Ryu and Sangha Kim

16:00–17:30 Examining Large Pre-Trained Language Models for Machine Translation: What
You Don’t Know about It
Lifeng Han, Gleb Erofeev, Irina Sorokina, Serge Gladkoff and Goran Nenadic

16:00–17:30 Summer: WeChat Neural Machine Translation Systems for the WMT22 Biomedical
Translation Task
Ernan Li, Fandong Meng and Jie Zhou

16:00–17:30 Optum’s Submission to WMT22 Biomedical Translation Tasks
Sahil Manchanda and Saurabh Bhagwat

16:00–17:30 Huawei BabelTar NMT at WMT22 Biomedical Translation Task: How We Further
Improve Domain-specific NMT
Weixuan Wang, Xupeng Meng, Suqing Yan, Ye TIAN and Wei Peng

16:00–17:30 HW-TSC Translation Systems for the WMT22 Biomedical Translation Task
Zhanglin Wu, Jinlong Yang, Zhiqiang Rao, Zhengzhe Yu, Daimeng Wei, Xiaoyu
Chen, Zongyao Li, Hengchao Shang, Shaojun Li, Ming Zhu, Yuanchang Luo,
Yuhao Xie, Miaomiao Ma, Ting Zhu, Lizhi Lei, Song Peng, Hao Yang and Ying
Qin

xxxi
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16:00–17:30 Chat Translation Task

16:00–17:30 Unbabel-IST at the WMT Chat Translation Shared Task
João Alves, Pedro Henrique Martins, José G. C. de Souza, M. Amin Farajian and
André F. T. Martins

16:00–17:30 Investigating Effectiveness of Multi-Encoder for Conversational Neural Machine
Translation
Baban Gain, Ramakrishna Appicharla, Soumya Chennabasavaraj, Nikesh Garera,
Asif Ekbal and Muthusamy Chelliah

16:00–17:30 BJTU-WeChat’s Systems for the WMT22 Chat Translation Task
Yunlong Liang, Fandong Meng, Jinan Xu, Yufeng Chen and Jie Zhou

16:00–17:30 HW-TSC Translation Systems for the WMT22 Chat Translation Task
Jinlong Yang, Zongyao Li, Daimeng Wei, Hengchao Shang, Xiaoyu Chen,
Zhengzhe Yu, Zhiqiang Rao, Shaojun Li, Zhanglin Wu, Yuhao Xie, YUanchang
Luo, Ting Zhu, Yanqing Zhao, Lizhi Lei, Hao Yang and Ying Qin

16:00–17:30 Sign Language Translation Task

16:00–17:30 Clean Text and Full-Body Transformer: Microsoft’s Submission to the WMT22
Shared Task on Sign Language Translation
Subhadeep Dey, Abhilash Pal, Cyrine Chaabani and Oscar Koller

16:00–17:30 Spatio-temporal Sign Language Representation and Translation
Yasser HAMIDULLAH, Josef van Genabith and Cristina España-Bonet

16:00–17:30 Experimental Machine Translation of the Swiss German Sign Language via 3D Aug-
mentation of Body Keypoints
Lorenz Hufe and Eleftherios Avramidis

16:00–17:30 TTIC’s WMT-SLT 22 Sign Language Translation System
Bowen Shi, Diane Brentari, Gregory Shakhnarovich and Karen Livescu

16:00–17:30 Tackling Low-Resourced Sign Language Translation: UPC at WMT-SLT 22
Laia Tarres, Gerard I. Gállego, Xavier Giro-i-Nieto and Jordi Torres

xxxii
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16:00–17:30 African Languages Translation Task

16:00–17:30 Separating Grains from the Chaff: Using Data Filtering to Improve Multilingual
Translation for Low-Resourced African Languages
Idris Abdulmumin, Michael Beukman, Jesujoba Alabi, Chris Chinenye Emezue,
Everlyn Chimoto, Tosin Adewumi, Shamsuddeen Muhammad, Mofetoluwa
Adeyemi, Oreen Yousuf, Sahib Singh and Tajuddeen Gwadabe

16:00–17:30 Language Adapters for Large-Scale MT: The GMU System for the WMT 2022
Large-Scale Machine Translation Evaluation for African Languages Shared Task
Md Mahfuz Ibn Alam and Antonios Anastasopoulos

16:00–17:30 Samsung Research Philippines - Datasaur AI’s Submission for the WMT22 Large
Scale Multilingual Translation Task
Jan Christian Blaise Cruz and Lintang Sutawika

16:00–17:30 University of Cape Town’s WMT22 System: Multilingual Machine Translation for
Southern African Languages
Khalid N. Elmadani, Francois Meyer and Jan Buys

16:00–17:30 Tencent’s Multilingual Machine Translation System for WMT22 Large-Scale
African Languages
Wenxiang Jiao, Zhaopeng Tu, Jiarui Li, Wenxuan Wang, Jen-tse Huang and Shum-
ing Shi

16:00–17:30 DENTRA: Denoising and Translation Pre-training for Multilingual Machine Trans-
lation
Samta Kamboj, Sunil Kumar Sahu and Neha Sengupta

16:00–17:30 The VolcTrans System for WMT22 Multilingual Machine Translation Task
Xian Qian, Kai Hu, Jiaqiang Wang, Yifeng Liu, Xingyuan Pan, Jun Cao and Mingx-
uan Wang

16:00–17:30 WebCrawl African : A Multilingual Parallel Corpora for African Languages
Pavanpankaj Vegi, Sivabhavani J, Biswajit Paul, Abhinav Mishra, Prashant Banjare,
Prasanna Kumar K R and Chitra Viswanathan

16:00–17:30 ANVITA-African: A Multilingual Neural Machine Translation System for African
Languages
Pavanpankaj Vegi, Sivabhavani J, Biswajit Paul, Prasanna Kumar K R and Chitra
Viswanathan
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16:00–17:30 Unsupervised and Very Low Resource Translation Task

16:00–17:30 HW-TSC Systems for WMT22 Very Low Resource Supervised MT Task
Shaojun Li, Yuanchang Luo, Daimeng Wei, Zongyao Li, Hengchao Shang, Xiaoyu
Chen, Zhanglin Wu, Jinlong Yang, Zhiqiang Rao, Zhengzhe Yu, Yuhao Xie, Lizhi
Lei, Hao Yang and Ying Qin

16:00–17:30 Unsupervised and Very-Low Resource Supervised Translation on German and Sor-
bian Variant Languages
Rahul Tangsali, Aditya Jagdish Vyawahare, Aditya Vyankatesh Mandke, Onkar
Rupesh Litake and Dipali Dattatray Kadam

16:00–17:30 MUNI-NLP Systems for Lower Sorbian-German and Lower Sorbian-Upper Sorbian
Machine Translation @ WMT22
Edoardo Signoroni and Pavel Rychlý

16:00–17:30 The AIC System for the WMT 2022 Unsupervised MT and Very Low Resource Su-
pervised MT Task
Ahmad Shapiro, Mahmoud Tarek Salama, Omar Khaled Abdelhakim, Mohamed
Essam Fayed, Ayman Khalafallah and Noha Adly

16:00–17:30 Code-Mixed Translation Task

16:00–17:30 NICT at MixMT 2022: Synthetic Code-Mixed Pre-training and Multi-way Fine-
tuning for Hinglish–English Translation
Raj Dabre

16:00–17:30 Gui at MixMT 2022 : English-Hinglish : An MT Approach for Translation of Code
Mixed Data
Akshat Gahoi, Jayant Duneja, Anshul Padhi, Shivam Mangale, Saransh Rajput,
Tanvi Kamble, Dipti Misra Sharma and Vasudev Varma

16:00–17:30 MUCS@MixMT: IndicTrans-based Machine Translation for Hinglish Text
Asha Hegde and Shashirekha Hosahalli Lakshmaiah

16:00–17:30 SIT at MixMT 2022: Fluent Translation Built on Giant Pre-trained Models
Abdul Khan, Hrishikesh Dinkar Kanade, Girish Amar Budhrani, Preet Jhanglani
and Jia Xu

16:00–17:30 The University of Edinburgh’s Submission to the WMT22 Code-Mixing Shared Task
(MixMT)
Faheem Kirefu, Vivek Iyer, Pinzhen Chen and Laurie Burchell

16:00–17:30 CNLP-NITS-PP at MixMT 2022: Hinglish-English Code-Mixed Machine Transla-
tion
Sahinur Rahman Laskar, Rahul Singh, Shyambabu Pandey, Riyanka Manna, Partha
Pakray and Sivaji Bandyopadhyay
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16:00–17:30 Domain Curricula for Code-Switched MT at MixMT 2022
Lekan Raheem, Maab Elrashid, Melvin Johnson and Julia Kreutzer

16:00–17:30 Word-Level Autocompletion Task

16:00–17:30 Lingua Custodia’s Participation at the WMT 2022 Word-Level Auto-completion
Shared Task
Melissa Ailem, Jingshu Liu, Jean-Gabriel Barthelemy and Raheel Qader

16:00–17:30 Translation Word-Level Auto-Completion: What Can We Achieve Out of the Box?
Yasmin Moslem, Rejwanul Haque and Andy Way

16:00–17:30 PRHLT’s Submission to WLAC 2022
Angel Navarro, Miguel Domingo and Francisco Casacuberta

16:00–17:30 IIGROUP Submissions for WMT22 Word-Level AutoCompletion Task
Cheng Yang, Siheng Li, Chufan Shi and Yujiu Yang

16:00–17:30 HW-TSC’s Submissions to the WMT22 Word-Level Auto Completion Task
Hao Yang, Hengchao Shang, Zongyao Li, Daimeng Wei, Xianghui He, Xiaoyu
Chen, Zhengzhe Yu, Jiaxin Guo, Jinlong Yang, Shaojun Li, Yuanchang Luo, Yuhao
Xie, Lizhi Lei and Ying Qin

16:00–17:30 Translation Suggestion Task

16:00–17:30 TSMind: Alibaba and Soochow University’s Submission to the WMT22 Translation
Suggestion Task
Xin Ge, Ke Wang, Jiayi Wang, Nini Xiao, Xiangyu Duan, Yu Zhao and Yuqi Zhang

16:00–17:30 Transn’s Submissions to the WMT22 Translation Suggestion Task
Mao Hongbao, Zhang Wenbo, Cai Jie and Cheng Jianwei

16:00–17:30 Improved Data Augmentation for Translation Suggestion
Hongxiao Zhang, Siyu Lai, Songming Zhang, Hui Huang, Yufeng Chen, Jinan Xu
and Jian Liu
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Abstract

This paper presents the results of the General
Machine Translation Task organised as part of
the Conference on Machine Translation (WMT)
2022. In the general MT task, participants were
asked to build machine translation systems for
any of 11 language pairs, to be evaluated on test
sets consisting of four different domains. We
evaluate system outputs with human annotators
using two different techniques: reference-based
direct assessment and (DA) and a combination
of DA and scalar quality metric (DA+SQM).

1 Introduction

The Seventh Conference on Machine Translation
(WMT22)1 was held online with EMNLP 2022
and hosted a number of shared tasks on various
aspects of machine translation. This conference
built on 15 previous editions of WMT as workshops
and conferences (Callison-Burch et al., 2007, 2008,
2009, 2010, 2011, 2012; Bojar et al., 2013, 2014,
2015, 2016, 2017, 2018; Barrault et al., 2019, 2020;
Akhbardeh et al., 2021).

For more than a decade, the machine translation
(MT) community has focused on the news domain,
which has many desirable features for MT evalu-
ation, such as sufficiently long and grammatically

1http://www.statmt.org/wmt22/

correct sentences that are easy for both profession-
als to translate (to produce references) and for hu-
man raters to evaluate without specific in-domain
knowledge. However, with recent advances in MT
and potential overfitting on the news domain (with
methods such as fine-tuning on past WMT testsets),
we decided to open a fresh research direction of
testing the “General Machine Translation” capabil-
ities.

How to test general MT capabilities is a research
question in itself. Countless phenomena could be
evaluated, the most important being:

• various domains (news, medicine, IT, patents,
legal, social, gaming, etc.)

• style of text (formal or spoken language, fic-
tion, technical reports, etc.)

• noisy or robust user-generated content (gram-
matical errors, code-switching, abbreviations,
etc.)

Evaluating all possible phenomena is near im-
possible and creates many unforeseen problems.
Therefore, we decided to simplify the problem
and start with an evaluation of different domains.
We select the following four domains: news, e-
commerce, social, and conversational, chosen to
represent various topics with different content
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styles. Additionally, these domains are understand-
able for humans without special in-domain knowl-
edge, thus not requiring specialized translators or
human raters for evaluation.

Another significant change for this year is the
redesign of our human evaluation procedure for
English→X and non-English language pairs. We
introduce SQM-style DA rating, improved sam-
pling of sentences for human judgements, and we
opt in for using professional raters.

In addition to language pairs evaluated yearly,
we introduce several new language pairs that
have never been evaluated at WMT or other
venues: Ukrainian↔English, Ukrainian↔Czech,
Livonian↔English, Yakut↔Russian and
English→Croatian.

Lastly, with multiple different shared tasks run
at WMT evaluating different phenomena over the
same language pairs, we proposed to aggregate
test sets and ask participants of different shared
tasks to also translate test sets from other shared
tasks (for shared language pairs), allowing cross-
task evaluation of systems on various phenomena.
More details are in Section 4.2.

General MT task submissions and human judge-
ments are available at https://github.com/
wmt-conference/wmt22-news-systems. The
interactive visualization and comparison of differ-
ences between systems is at http://wmt.ufal.
cz using MT-ComparEval (Sudarikov et al., 2016).

The structure of the findings is as follows. We
describe process of collecting, cleaning and trans-
lating of test sets in Section 2 followed by sum-
mary of allowed training data for constrained track
Section 3. We list all submitted systems in Sec-
tion 4. We use two different techniques for human
evaluation. Reference-based DA is used to evalu-
ate languages into English and described in Sec-
tion 5. DA+SQM technique used for non-English
and from English translation directions is described
in Section 6. In Section 7, we describe our analysis
of English→Croatian, translation direction contain-
ing professional and student produced references.
We conclude the findings in Section 8.

2 Test Data

In this section, we describe the process of collect-
ing data in Section 2.1, followed by the explanation
of preprocessing steps in Section 2.2. Producing
human references is summarized in Section 2.3 and
test set analysis is conducted in Section 2.5. Lastly,

Section 2.4 describes specific language pairs that
are prepared differently.

2.1 Collecting test data

As in the news shared tasks in previous years, the
test sets consist of unseen translations prepared
specially for the task. However, in contrast, we
introduce several domains instead of only the news
domain. The test sets are publicly released to be
used as translation benchmarks. Here we describe
the production and composition of the test sets.

With the new direction towards testing general
MT capabilities, we redesign the content of the test
sets. We decided to collect data from four domains
(news, social, e-commerce, and conversation). For
all language pairs, we aimed for a test set size of
2000 sentences and to ensure that the test sets were
“source-original”, namely that the source text is
written in the source language, and the target text
is the human translation. This is to avoid “trans-
lationese” effects on the source language, which
can have a detrimental impact on the accuracy of
evaluation (Freitag et al., 2019; Läubli et al., 2020;
Graham et al., 2020). We collected roughly the
same number of sentences (around 500 sentences
with document context) for each domain. For some
languages, we could not locate high-quality data
and therefore selected more sentences from other
domains.

News domain - This domain contains data
prepared in the same way as in previous years
(Akhbardeh et al., 2021). We collect news arti-
cles from the second half of 2021 extracted from
online news sites, keeping document information.
The news domain is mainly of the highest quality.

Social domain - For most languages (Czech,
English, French, German, and Japanese), we ex-
tract data from public Reddit discussions, keeping
separate posts as a single document. We target sub-
reddits that come from countries speaking a given
language. We remove all posts marked by Reddit
as inappropriate.

We use different data source for Chinese and
Russian social domain as there is not enough Red-
dit content. For Chinese, we collected posts from
various social media webpages used in China, a list
provided by our Chinese colleague. For Russian,
we took data from Zen, one of the most popular
blog platforms among Russian-speaking users.

E-commerce domain - Contains product de-
scriptions donated by individual companies.
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#segments
Source / Domain conversation ecommerce news social other total

Chinese 349 518 505 503 - 1875
Czech - - 957 491 - 1448
Czech (to Ukrainian) - - - - 1930 1930
English 484 530 511 512 - 2037
English (to Croatian) - 1015 656 - - 1671
French 501 524 504 477 - 2006
German 462 501 506 515 - 1984
Japanese 502 503 505 498 - 2008
Livonian - - - - 420 420
Russian - 508 1004 - 504 2016
Russian (to Yakut) - - - - 1123.0 1123
Ukrainian - - - - 2018 2018
Ukrainian (to Czech) - - - - 2812 2812
Yakut - - - - 1123 1123

Table 1: Number of segments for individual source languages used in the general translation test sets.

For Japanese e-commerce domain, we used
search advertising text ads provided by an adver-
tising company with their client’s prior consent.
Defining documents and sentences in search ads is
tricky. Clients define multiple titles and multiple
descriptions, called assets. We defined a document
as the longest possible combination of assets. We
also defined a sentence as either an asset or a unit
separated by sentence-ending punctuations within
an asset. Since the diversity of Japanese ad sen-
tences is small, we chose the test sentences greedily
to minimize the test set’s self-BLEU.

Conversational domain - data for English, Ger-
man, French, and Chinese are provided by the
Chat Shared Task organizers (Farinha et al., 2022).
These data contain a discussion between an agent,
talking in English, and a customer, each of them
talking in a different language. To avoid the ef-
fects of translationese, we split conversations into
individual messages and handled each as a sepa-
rate document, only using messages written in the
original language (therefore, the English side only
contains messages from agents) resulting in often
short documents.

For Japanese conversational domain, We used
question-answer pairs from a community question-
answering website, Oshiete!goo2. The operator
provided us with a dump as of March 2022. Top-
ics are diverse, ranging from life advice to enter-
tainment. Since there were usually many answers
to a question, we extracted question-answer pairs
whose answers were marked as the best answer. We
considered a question-answer pair as a document
and randomly sampled test data from question-
answer pairs with a total length of 180 characters or

2https://oshiete.goo.ne.jp

fewer. We did not indicate the boundary between
them.

After collecting all data, we applied several steps
to filter out documents of lower-quality, see Sec-
tion 2.2. Specifically paying attention to short docu-
ments. Whenever we had enough data, we removed
the shortest documents, usually a single or two sen-
tences. We advised linguists who were checking
the data to further remove short documents. This
helped us to add document context to the test set.

2.2 Human preprocessing of test data

In the News task of previous years, we asked hu-
mans to check collected data and carry out minor
corrections (mainly checking sentence splits and
discarding similar or repeated content), which was
sufficient for the news domain because is often
clean and without serious problems. However, with
the expansion towards general MT, we run into an
issue of source data being noisier and not well for-
matted that needs to be handled before translation.

Although testing of robustness of MT is an im-
portant task, the noisy data introduces problems
for human translators and annotators. Therefore,
we decided to discard data that are considered too
noisy. Furthermore, publicly available data often
contains inappropriate content, which can stress
either human translators or human annotators, lead-
ing to a decrease in the quality (for example, trans-
lators refuse to translate political content consid-
ered censored in their countries).

Therefore, the source data for test sets3 goes

3Except for sources from the following transla-
tion directions: English→Croatian, Livonian↔English,
Yakut↔Russian, Ukrainian→English, Ukrainian↔Czech.
Data for these directions have been checked differently and
should not contain noisy or inappropriate content.
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through human validation checks involving lin-
guists discarding inappropriate content altogether
or carrying out minor textual corrections to the data.
You can find the linguistic brief for prepossessing
in Appendix C.

2.3 Test set translation

The translation of the test sets was performed
by professional translation agencies, accord-
ing to the brief in Appendix D. Different
partners sponsored each language pair and
various translation agencies were therefore used,
which may affect the quality of the transla-
tion. The exception is that Chinese↔English,
German↔English, Ukrainian↔English and
reference-B for Czech↔English were translated
by the same agency. These languages also received
a special treatment of being translated by one
translator and checked by a second different
translator.

Several language pairs received special atten-
tion. For Chinese↔English, Czech↔English,
German↔English, and English→Croatian, we ob-
tained a second reference in each direction from
different translators.

For Czech↔English, our partner paid profes-
sional agency to provide high-quality translations.
However, as it turned out, the quality is rather low.
We fixed manually the reference with grammar cor-
rection tools, however, that isn’t sufficient. We
provide this reference as reference–C. There is no
issue with reference-B as that was provided by dif-
ferent partner.

Human translations would not be possible with-
out the sponsorship of our partners. We are thank-
ful for the support from: Microsoft, Charles Univer-
sity, LinguaCustodia, NTT, Dublin City University,
Google, and Phrase.

2.4 Language pairs prepared differently

English→Croatian The English-Croatian test
data is a sub-corpus of the DiHuTra corpus4

(Lapshinova-Koltunski et al., 2022). The English
source texts include Amazon product reviews and
news articles. The document information is avail-
able for both domains.

The reviews were selected from the publicly
available Amazon product reviews5,6 containing

4https://github.com/katjakaterina/dihutra
5https://s3.amazonaws.com/

amazon-reviews-pds/readme.html
6http://jmcauley.ucsd.edu/data/amazon/

reviews divided into 24 categories (topics). The
selected corpus covers fourteen categories, pay-
ing attention to the data balance: an equal number
of positive and negative reviews and a balanced
distribution of categories (topics). In total, 196
reviews (1015 sentences) were included, fourteen
from each of the fourteen selected topics: ‘Beauty’,
‘Books’, ‘CDs and Vinyl’, ‘Cell Phones and Acces-
sories’, ‘Grocery and Gourmet Food’, ‘Health and
Personal Care’, ‘Home and Kitchen’, ‘Movies and
TV’, ‘Musical Instruments’, ‘Patio, Lawn and Gar-
den’, ‘Pet Supplies’, ‘Sports and Outdoors’, ‘Toys
and Games’ and ‘Video Games’.

The news articles were selected from the News
test corpus of the WMT (2019 and 2020) shared
task.7 In total, 68 news articles (656 sentences)
from different sources are included.

These English texts were then translated into
Croatian by professional translators and by trans-
lation students, thus providing two reference trans-
lations. Both professional and student translations
were produced in cooperation with the University
of Zagreb and the University of Rijeka in Croatia.
In total, four professional translators and twenty
translation students participated, all native speak-
ers of Croatian and fluent in English. Translation
experience of professional translators ranges be-
tween five and ten years, while for students the
range is from zero to five years, the majority being
in the range between two and four years. The two
students who indicated no experience (zero years)
also indicated that they had no real professional
experience yet, only work in the framework of their
studies. All students were in their first or second
year of master’s studies.

The translators were asked too keep the sentence
(segment) alignment (not to merge or to split seg-
ments so that each English segment corresponds
to one translated segment) and not to use any kind
of machine translation in the process. No further
restrictions were given to the translators.

Yakut↔Russian Source texts for
Yakut↔Russian translation were selected
from Ulus media, which is Yakutia’s official news
aggregator. The majority of the data are local
news.8 The professional translators were asked
to translate 42 news texts for the test set. Yakut
is one of the minor languages spoken by around

7http://www.statmt.org/wmt20/
translation-task.html

8https://ulus.media/
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450,000 native speakers. It is one of the official
languages of Sakha (Yakutia), a federal republic in
the Russian Federation.

Livonian↔English The source language for
Livonian↔English was English, since the amount
of Livonian monolingual and parallel data is
severely limited. The source texts were selected
from various news articles published in 2022; po-
litically neutral topics were selected. One addi-
tion to the set was the text describing the addition
of WMT’22 Livonian↔English shared task itself.
Translations were done by two professionals. Livo-
nian is a critically endangered language spoken in
Latvia but belonging to the Finno-ugric language
family. Its last native speaker passed in 2013 and
currently there are about 20 near-native speakers;
however, there is an Institute of the Livonian Lan-
guage at the University of Latvia that leads efforts
on collecting and preserving Livonian texts as well
as other materials (audio, video, hand-written, etc).

Ukrainian↔Czech and Ukrainian→English
Source texts for Ukrainian↔Czech and
Ukrainian→English translation were selected
from the inputs collected through the Charles
Translator for Ukraine.9 Charles Translator for
Ukraine is an online translation service that has
been developed by the team from the Charles
University, Prague10 as a response to the wave of
Ukrainian refugees coming to the Czech Republic
after the 2022 Russian invasion of Ukraine.11 The
service is powered by a model trained with Block
Backtranslation (Popel et al., 2020b). With users’
consent, the service can log their inputs for the
purpose of creating a dataset of real use cases. The
datasets are extracted from the inputs collected in
March and April 2022.

After automatic filtering,12 we asked
linguistically-educated annotators to filter
and preprocess the source data manually. The
filtering aimed at obtaining a data sample with di-
verse examples. The preprocessing was performed
according to the brief in Appendix C with the

9http://translate.cuni.cz
10http://ufal.mff.cuni.cz/u4u
11At that time, the most popular online MT services ei-

ther did not support translation between Czech and Ukrainian
(e.g. DeepL) or they seemed to pivot the translation for the
language pair via English (e.g. Google Translate, Microsoft
Translator).

12This includes the removal of intermediate inputs, HTML-
tagged inputs, inputs identified as written in a language other
than the source language, and backtranslated inputs.

following modifications. First, as the content is
closely related to the war, someone may always
find it polarizing or controversial. We did not
filter out texts based on this criterion. Second,
we asked the annotators not to delete or fix noisy
inputs as long as they are comprehensible. This
concerns, for instance, errors in casing, punctua-
tion, diacritics, grammar and typos. Furthermore,
all emojis are kept. Third, our annotators were
instructed to join multiple related sentences to the
same line whenever they found them too short
compared to the rest of the dataset. The dataset
thus does not satisfy the rule that each line contains
a single sentence. Finally, any personal data
related to people other than well-known people
was pseudonymized.

The user inputs cover three broader domains:
(1) personal communication, (2) news, and (3) for-
mal communication. Our annotators assigned these
categories (often accompanied by a finer subcate-
gory) to every data example. If none of the above
categories fit, they labeled the example with the
“other” tag.

The source texts were translated by profes-
sional translation agencies principally following
the brief in Appendix D. A sample of translated
sentences were checked by native speakers of
the target language. It revealed that post-edited
MT had allegedly been used for parts of the
Ukrainian→Czech test set, although this was de-
nied by the translator. Therefore, we decided to
add additional data to the test set for this direc-
tion translated by a different translation agency.
This extra data consists of about 600 segments
downloaded from the web (news, example CV)
and about 200 segments from the Charles Transla-
tor inputs logs. It was pre-processed similarly as
described above except for the domain annotation
(all segments have the “unknown” tag assigned).

2.5 Test set analysis

As described previously, the aim was for the test
sets to be composed of approximately 500 sen-
tences per domain, although this depended on the
language pair. The number of segments for each
domain (including unspecified domain ‘other’) is
given in Table 1 per source language, with the tar-
get language being specified where the composi-
tion differs. All four domains are available for Chi-
nese, English, French, German and Japanese source
texts, whereas only certain domains are available
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for Czech, Russian and English into Croatian.

Document context Document context is avail-
able for most language pairs (the exception be-
ing Livonian↔English). The length of documents
varies considerably by domain but also by language
pair. As can be see in Table 2, e-commerce doc-
uments tend to be longest, followed by news and
social (together), with conversational documents
being shortest, although this does not hold for all
languages. For example, the Ukrainian test set
has short documents (2.28 segments on average),
whereas Yakut↔Russian has very long ones (26.12
segments on average).

Lexical diversity We can compare the type-
token ratio (TTR) to get an idea of the relative
lexical diversity of (i) domains and (ii) original
vs. translated sentences.13,14 Raw TTRs for each
language pair and domain are given in Table 28 in
Appendix E. Regarding domains, the TTR is gener-
ally lowest for conversations, whereas e-commerce
and news are most diverse, followed by social.
Translated texts appear to show a lower lexical
diversity than original texts. If we look at the ratio
between the TTRs of a language A and a language
B (i.e. the diversity of A with respect to B), this
ratio is higher when A is the source and B the target
than when B is the source and A the target. For
example, given the language pair Czech↔English,
the ratio of the TTRs of Czech and English (i.e.
TTRcs
TTRen

is higher when Czech is the original text and
lower when it is the translation. This can be seen
in Table 3 comparing for individual domains.

Anonymisation One characteristic that stands
out is the presence of placeholders for anonymised
elements in the conversation and social domains.
There are a total of 17 difference placeholders,
indicated by the entity type surrounded by #,
e.g. #NAME#, #EMAIL#, #Product1#, #Prod-
uct2#, etc. The entities are identical in the ref-
erence translation (where there is a direct trans-
lation), rather than the entity being translated
(e.g. #NAME# and not #NOM# for French). Man-
ual corrections were carried out to homogenise

13The TTR is the ratio of unique tokens to total tokens,
and it is higher the diverse the vocabulary of a text is. It is
dependent on the morphological complexity of a language,
but can also vary due to other factors.

14Texts are tokenised using the language-specific Spacy
models (Honnibal and Montani, 2017) where available. For
Czech, Livonian and Yakut, for which Spacy models are not
available, we took as a rough approximation models for Croa-
tian, Finnish and Russian respectively.

variants in terms of capitals, space issues and place-
holders that were translated rather than copied by
the professional translators.

Translation quality As mentioned previously,
the quality of the human references differed ac-
cording to the agency used. A few translations
were erroneous due to problems with anonymi-
sation, where some overzealous anonymisation
added entity tags within non-entity words, therefore
making the source sentence non-sensical. How-
ever this affected only one or two sentences, and
some minor corrections were introduced. There
were some particular problems with the quality
of Czech→English translations, including wrong
quote marks, grammatical and spelling mistakes
and unnatural translations as mentioned in Sec-
tion 2.3.

3 Training Data

Similar to previous years, we provide a selection
of parallel and monolingual corpora for model
training. The provenance and statistics of the
selected parallel datasets are provided in Ap-
pendix in Table 20 and Table 19. Specifically,
our parallel data selection include large multi-
lingual corpora such as Europarl-v10 (Koehn,
2005), Paracrawl-v9 (Bañón et al., 2020), Com-
monCrawl, NewsCommentary-v16, WikiTitles-v3,
WikiMatrix (Schwenk et al., 2021), TildeCor-
pus (Rozis and Skadin, š, 2017), OPUS (Tiede-
mann, 2012), UN Parallel Corpus (Ziemski et al.,
2016), and language specific corpora such as
CzEng-v2.0 (Kocmi et al., 2020), YandexCorpus,15

ELRC EU Acts, YakutCorpus 16, JParaCrawl (Mor-
ishita et al., 2020), Japanese-English Subtitle Cor-
pus (Pryzant et al., 2018), Livonian multipar-
allel corpus Liv4ever (Rikters et al., 2022),17

KFTT(Neubig, 2011), TED (Cettolo et al., 2012),
CCMT, and back-translated news. Similar to pre-
vious years, we provided links to these datasets on
the task web page.18 However, new to this year,
we automate the data preparation pipeline using
a tool named MTDATA (Gowda et al., 2021).19

MTDATA downloads all available datasets, except

15https://github.com/mashashma/WMT2022-data
16https://github.com/mashashma/WMT2022-data/

tree/main/yakut
17https://huggingface.co/datasets/tartuNLP/liv4ever
18https://statmt.org/wmt22/translation-task.

html
19https://statmt.org/wmt22/mtdata
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#segments per doc
Source / Domain conversation ecommerce news social other all

Chinese 2.13 17.86 13.29 20.12 - 7.32
Czech - - 14.07 7.12 - 10.57
Czech (to Ukrainian) - - - - 1.86 1.86
French 2.61 22.78 14.00 14.03 - 7.04
German 2.87 17.28 11.50 13.92 - 7.32
English 5.20 23.04 16.48 15.06 - 11.25
English (to Croatian) - 5.18 9.65 - - 6.33
Japanese 4.40 4.49 15.30 8.03 - 6.26
Livonian - - - - 1.00 1.00
Russian - 10.58 12.55 - 5.09 8.88
Russian (to Yakut) - - - - 26.12 26.12
Ukrainian - - - - 2.28 2.28
Ukrainian (to Czech) - - - - 2.98 2.98
Yakut (to Russian) - - - - 26.12 26.12

Table 2: Average document length (in # segments) for individual source languages used in the general translation test sets.

conversation ecommerce news social other
Lang. pair → ← → ← → ← → ← → ←
Czech–English - - 1.9 1.58 1.73 1.57 -
Czech–Ukrainian - - - - 1.06 0.93
German–English 1.39 1.00 1.50 1.13 1.35 1.15 1.38 1.13 -
German–French 1.25 0.95 1.50 1.15 1.35 1.15 1.26 1.08 -
English–Czech - - 0.63 0.52 0.64 0.58 -
English–German 1.00 0.72 0.89 0.67 0.87 0.74 0.88 0.72 -
English–Japanese 1.50 1.00 1.41 1.20 1.44 1.13 1.28 1.00 -
English–Livonian - - - - 0.74 0.74
English–Russian - 0.69 0.59 0.67 0.57 - -
English–Chinese 1.15 0.71 1.09 0.70 1.00 0.68 0.92 0.74 -
French–German 1.06 0.80 0.87 0.67 0.87 0.74 0.93 0.79 -
Japanese–English 1.00 0.67 0.83 0.71 0.88 0.69 1.00 0.78 -
Livonian–English - - - - 1.36 1.36
Russian–English - 1.69 1.46 1.75 1.50 - -
Russian–Yakut - - - - 0.89 0.89
Yakut–Russian - - - - 1.12 1.12
Ukrainian–Czech - - - - 1.08 0.94
Chinese–English 1.41 0.87 1.43 0.92 1.47 1.00 1.35 1.09 -

Table 3: For each language pair A–B, the ratio of the TTRs of A and B, for the A→B test set (→; i.e. A is the original text) and
for the B→A test set (←, i.e. A is the translated text).

the two which required user authentication: CCMT
and CzEng-v2.0.

4 System submissions

In 2022, we received a total of 107 primary submis-
sions20 and 82 online systems. The participating
institutions are listed in Table 4 and detailed in the
rest of this section. Each system did not necessarily
appear in all translation tasks. We also included
online MT systems (originating from 5 services),
which we anonymized as ONLINE-A,B,G,W,Y. All
submissions, sources and references are made avail-
able via github.

For presentation of the results, systems are
treated as either constrained or unconstrained.
When the system submitters report that they were

20GTCOM was removed from human evaluation, however,
we calculate automatic scores in Appendix G.

only trained on our provided data, we class them
as constrained. The online systems are treated
as unconstrained during the automatic and human
evaluations, since we do not know how they were
built. In Appendix F, we provide brief details of
the submitted systems, for those where the authors
provided such details.

4.1 OCELoT

To collect submissions, we used the open-
source OCELoT platform21 again, which pro-
vides anonymized public leaderboards for several
WMT22 shared tasks.22 Similarly to the setup
from the previous year, only registered and ver-
ified teams with correct contact information were
allowed to submit their system outputs and each

21https://github.com/AppraiseDev/OCELoT
22https://ocelot-wmt22.mteval.org
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Team Language Pairs System Description
AISP-SJTU en-ja, en-zh, ja-en, zh-en Liu et al. (2022)
AIST ja-en (no associated paper)
ALMANACH-INRIA cs-en, cs-uk, ru-en, uk-cs, uk-en Alabi et al. (2022)
AMU cs-uk, uk-cs Nowakowski et al. (2022)
ARC-NKUA en-uk, uk-en Roussis and Papavassiliou (2022)
CUNI-BERGAMOT en-cs Jon et al. (2022)
CUNI-DOCTRANSFORMER cs-en, en-cs Jon et al. (2022)
CUNI-TRANSFORMER cs-en, cs-uk, en-cs, uk-cs Jon et al. (2022)
CHARLESTRANSLATOR cs-uk, uk-cs Popel et al. (2022)
DLUT en-ja, en-zh, ja-en, zh-en (no associated paper)
GTCOM cs-uk, en-hr, en-uk, en-zh, uk-cs, uk-

en
Zong and Bei (2022)

HUAWEITSC cs-uk, en-hr, en-liv, en-ru, en-uk, en-
zh, liv-en, ru-en, uk-cs, uk-en, zh-en

Wei et al. (2022)

JDEXPLOREACADEMY cs-en, de-en, en-cs, en-de, en-ja, en-
ru, en-zh, ja-en, ru-en, zh-en

Zan et al. (2022)

KYB en-ja, ja-en Kalkar et al. (2022)
LT22 de-en, de-fr Malli and Tambouratzis (2022)
LAN-BRIDGE cs-en, cs-uk, de-en, en-cs, en-de, en-

hr, en-ja, en-ru, en-uk, en-zh, fr-de,
ja-en, ru-en, ru-sah, sah-ru, uk-cs, uk-
en, zh-en

Han et al. (2022)

LANGUAGEX en-ja, en-zh, ja-en, zh-en Zeng (2022)
LIV4EVER en-liv, liv-en Rikters et al. (2022)
NAIST-NICT-TIT en-ja, ja-en Deguchi et al. (2022)
NT5 en-ja, ja-en Morishita et al. (2022)
NIUTRANS en-hr, en-liv, liv-en, zh-en Shan et al. (2022)
OPENNMT en-de (no associated paper)
PROMT de-en, en-de, en-ru, uk-en Molchanov et al. (2022)
SRPOL en-hr, en-ru, ru-en Dobrowolski et al. (2022)
TAL-SJTU en-liv, liv-en He et al. (2022)
TARTUNLP en-liv, liv-en Tars et al. (2022)
ETRANSLATION en-ru, en-uk, fr-de Oravecz et al. (2022)
MANIFOLD en-zh Jin et al. (2022)
SHOPLINE-PL cs-en (no associated paper)

Table 4: Participants in the shared translation task. The translations from the online systems were not submitted by their
respective companies but were obtained by us, and are therefore anonymized in a fashion consistent with previous years of the
workshop.
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verified team was limited to 7 submissions per test
set. Submissions on leaderboards with BLEU and
CHRF scores from SacreBLEU (Post, 2018) were
displayed anonymously to avoid publishing rank-
ings based on automatic scores during the submis-
sion period. Until one week after the submission
period, teams could select a single primary submis-
sion per test set, specify if the primary submission
followed a constrained or unconstrained setting,
and submit a system description paper abstract. All
entries were mandatory for a system submission to
be included in the human evaluation campaign.

OCELoT has helped to simplify the submission
process—from collecting submissions to gathering
system information—and it supported the multi-
domain shift introduced in the general task this year.
The platform was also used for the Biomedical
Shared Task (Neves et al., 2022). This made it
easier to include the biomedical test set as another
domain data in the test sets of the general task for
languages that overlapped between the two tasks,
which made it possible to collect outputs from the
general domain systems for the biomedical domain.

4.2 Collaboration across WMT shared tasks

There are various shared tasks at WMT evaluating
same language pairs but with different participants.
This leads into inability to compare systems spe-
cialized for a particular task with participants of
other tasks.

Therefore, we decided to open a collaboration
across WMT shared tasks by asking participants
to translate test sets from other shared tasks as
well. This open the possibility to see how general
MT systems compete for example in biomedical
domain, or what is the general translation quality
of specialized systems.

We set up a collaboration with Biomedical
Shared Task (Neves et al., 2022) on all shared
language pairs (Chinese-English, German-English,
Russian-English).

This effort did not increase the number of partici-
pants for General MT Task because all participants
of Biomedical Shared Task also participated in Gen-
eral MT. However, other participants of General
MT have been evaluated on biomedical domain,
too. For details, see Neves et al. (2022).

Language Pair Sys. Assess. Assess/Sys

Czech→English 12 20,094 1,674.5
German→English 10 21,006 2,100.6
Japanese→English 14 28,638 2,045.6
Livonian→English 5 4,638 927.6
Russian→English 10 27,651 2,765.1
Ukrainian→English 9 20,305 2,256.1
Chinese→English 13 28,120 2,163.1

Total to-English 73 150,452 2,061

Table 5: Amount of data collected in the WMT22 manual
evaluation campaign for evaluation into-English; after removal
of quality control items.

(A) (A)
Sig. Diff. & No Sig. Diff.

All Bad Ref. Exact Rep.

Czech→English 373 91 (24%) 78 (86%)
German→English 365 92 (25%) 84 (91%)

Japanese→English 538 129 (24%) 113 (88%)
Livonian→English 101 15 (15%) 15 (100%)
Russian→English 601 140 (23%) 125 (89%)

Ukrainian→English 395 88 (22%) 83 (94%)
Chinese→English 395 98 (25%) 79 (81%)

Total 1,422 428 (30%) 388 (91%)

Table 6: Number of crowd-sourced workers taking part in the
reference-based SR+DC campaign; (A) those whose scores
for bad reference items were significantly lower than corre-
sponding MT outputs; those of (A) whose scores also showed
no significant difference for exact repeats of the same transla-
tion; note: many workers evaluated more than one language
pair.

5 Human Evaluation of Translation into
English

As in previous years, reference-based Direct As-
sessment (DA, Graham et al., 2013, 2014, 2016)
was employed as the primary method of evaluation
for translation into English. DA human evalua-
tion has several important features including accu-
rate quality control of crowd-sourcing and standard
methods of significance testing differences in rat-
ings for systems. Human assessors are asked to
rate a given translation by how adequately it ex-
presses the meaning of the corresponding reference
translation or source language input on an analogue
scale, which corresponds to an underlying absolute
0–100 rating scale.23 Direct Assessment is also
employed for evaluation of video captioning sys-
tems at TRECvid (Graham et al., 2018; Awad et al.,
2019) and multilingual surface realisation (Mille
et al., 2018, 2019, 2020).

For evaluation of translation into-English, we

23No sentence or document length restriction is applied
during manual evaluation.
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use the monolingual configuration of DA, where
the human evaluator reads and rates the system
output translation and compares its meaning to an
English reference translation, which was manually
translated by a human translator. As recommended
in Graham et al. (2020), we only employ forward-
created test data to avoid potential bias. Since eval-
uating segments without their context (i.e. the sur-
rounding document) can cause further bias (Läubli
et al., 2018; Toral et al., 2018), we evaluate sen-
tences in turn taken from a single document and
system (described as “SR+DC” in previous WMT
reports).24 Similarly to last year, for all language
pairs for which document context was available,
we include it when evaluating translations. Note
that the ratings are nevertheless collected on the
segment level, motivated by the power analysis
described in Graham et al. (2020), as well as bet-
ter inter-annotator agreement and lower effort de-
scribed in Castilho (2020).

In terms of the manual evaluation for the trans-
lation task for into-English language pairs, a total
of 428 Turker accounts were involved.25 510,451
translation assessment scores were submitted in to-
tal by the crowd, of which 187,922 were provided
by workers who passed quality control.26

System rankings are produced from a large set of
human assessments of translations, each of which
indicates the absolute quality of the output of a
system. Table 5 shows total numbers of human
assessments collected in WMT22 for into-English
language pairs contributing to final scores for sys-
tems.27

Quality control was carried out exactly as de-
scribed in last year’s WMT for crowd-sourcing
into-English translation assessments on Amazon
Mechanical Turk (see Akhbardeh et al. (2021) for
full details). Table 6 shows results of workers
who passed quality control (by showing signifi-
cant differences in scores attributed to translations
of known to be of distinct qualities) and numbers
of workers who also showed no significant differ-
ence for ratings of identical pairs of translations
judged separately in repeat tests. Data from the
non-reliable workers in all language pairs were re-

24The implementation still has the limitation that the asses-
sors cannot go back to the previous segment.

25Numbers do not include the 988 workers on Mechanical
Turk who did not pass quality control.

26Both numbers include quality control segments.
27Number of systems for WMT22 includes “human” sys-

tems comprising human-generated reference translations used
to provide human performance estimates.

moved prior to calculation of results.
Similar to last year, all rankings for to-English

translation were reached through segment ratings
presented one at a time in their original document
order (SR+DC). As is usual with DA assessments,
human assessment scores for translations were first
standardized according to each individual human
assessor’s overall mean and standard deviation
score. Average standardized scores for individual
segments belonging to a given system were then
computed, before the final overall DA score for
a given system is computed as the average of its
segment scores (Ave z in Table 7). Results are also
reported for average scores for systems, computed
in the same way but without any score standardiza-
tion applied (Ave % in Table 7).

Human performance estimates calculated
through the evaluation of human-produced
reference translations are denoted by “HU-
MAN” in all tables. Translations HUMAN-C in
Czech→English are known to be of lower quality
than usual for manual translations.

Clusters are identified by grouping systems to-
gether according to which systems significantly
outperform all others in lower ranking clusters, ac-
cording to Wilcoxon rank-sum test.

All data collected during the human evaluation is
available at http://www.statmt.org/wmt22/results.
html. Appendix B shows the official results for the
underlying head-to-head significance test for all
pairs of systems.

6 Human Evaluation of Translation out of
English and without English

Human evaluation for out-of-English and non-
English translation directions28 was performed
with source-based (“bilingual”) direct assessment
of individual segments in context similar to the ap-
proach described in Akhbardeh et al. (2021). We
use open-source framework Appraise for the evalu-
ation (Federmann, 2018).

This year, several changes were made to the an-
notation procedure, the data sampling, and the inter-
face display. In contrast to the standard DA (sliding
scale from 0-100) used in 2021, this year annotators
performed DA+SQM (Direct Assessment + Scalar
Quality Metric). In DA+SQM, the annotators still
provide a raw score between 0 and 100, but also

28We decided not to run human evaluation for
French↔German due to the small number of system
submissions this year.
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Czech→English
Rank Ave. Ave. z System

1 74.0 0.133 Online-W
2 75.3 0.055 CUNI-DocTformer
2 69.8 0.050 Lan-Bridge
2 70.7 0.037 Online-B
2 72.5 −0.004 JDExploreAcad
2 70.5 −0.014 Online-A
2 71.2 −0.015 CUNI-Transformer
2 71.4 −0.028 Online-G
2 71.9 −0.086 SHOPLINE-PL
10 67.7 −0.145 Online-Y
11 61.2 −0.290 HUMAN-C
11 64.0 −0.301 ALMAnaCH-Inria

Japanese→English
Rank Ave. Ave. z System

1 66.7 0.069 DLUT
1 66.1 0.068 NT5
1 66.3 0.059 JDExploreAcademy
1 67.0 0.054 LanguageX
1 68.2 0.049 Online-B
1 66.1 0.046 Online-W
1 68.5 0.016 Lan-Bridge
1 67.1 0.006 Online-G
1 64.8 0.006 Online-A
1 63.8 −0.018 AISP-SJTU
1 66.5 −0.021 NAIST-NICT-TIT
1 66.6 −0.035 Online-Y
1 62.5 −0.056 KYB

14 26.2 −1.285 AIST

Russian→English
Rank Ave. Ave. z System

1 77.5 0.055 JDExploreAcademy
1 77.5 0.040 HuaweiTSC
1 75.0 0.033 Online-G
1 76.7 0.008 Lan-Bridge
1 75.2 0.005 Online-Y
1 74.6 −0.003 SRPOL
1 74.3 −0.011 Online-B
1 74.7 −0.021 Online-A
1 76.1 −0.039 Online-W

10 69.8 −0.238 ALMAnaCH-Inria

German→English
Rank Ave. Ave. z System

1 68.8 0.004 Lan-Bridge
2 70.8 −0.023 Online-W
2 68.1 −0.038 JDExploreAcademy
2 64.1 −0.057 Online-G
2 67.3 −0.070 Online-A
2 68.3 −0.086 HUMAN-B
2 66.5 −0.089 Online-Y
2 66.3 −0.092 Online-B
2 64.8 −0.126 LT22
2 66.2 −0.127 PROMT

Ukrainian→English
Rank Ave. Ave. z System

1 73.5 0.048 Lan-Bridge
1 74.8 0.047 Online-B
3 69.8 0.039 HuaweiTSC
3 69.8 0.007 Online-A
3 73.6 −0.010 PROMT
3 73.4 −0.023 Online-G
7 71.0 −0.071 Online-Y
7 70.2 −0.082 ARC-NKUA
9 68.8 −0.246 ALMAnaCH-Inria

Livonian→English
Rank Ave. Ave. z System

1 67.7 0.024 TartuNLP
1 66.0 −0.014 TAL-SJTU
1 64.0 −0.035 HuaweiTSC
1 63.5 −0.079 Liv4ever
5 60.4 −0.346 NiuTrans

Chinese→English
Rank Ave. Ave. z System
− 73.4 0.134 HUMAN-B
1 69.8 −0.026 JDExploreAcademy
1 69.0 −0.034 HuaweiTSC
1 69.1 −0.063 AISP-SJTU
1 69.2 −0.079 LanguageX
1 69.7 −0.083 Online-A
1 68.6 −0.083 DLUT
1 67.4 −0.089 Online-B
1 69.9 −0.098 Online-G
1 66.5 −0.109 Online-W
1 65.3 −0.117 Lan-Bridge
1 66.5 −0.122 Online-Y
1 66.3 −0.164 NiuTrans

Table 7: Official results of WMT22 General Translation Task for translation into-English (SR+DC). Systems ordered by DA
score z-score; systems within a cluster are considered tied; lines indicate clusters according to Wilcoxon rank-sum test p < 0.05;
rank ranges are based on the same test; grayed entry indicates resources that fall outside the constraints provided.
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are presented with seven labeled tick marks, as vis-
ible in Figure 1. Discrete SQM (0-6) was found to
correlate well with MQM (Multidimensional Qual-
ity Metrics) annotations by Freitag et al. (2021),
while internal preliminary experiments suggested
that DA+SQM helps to stabilize scores across anno-
tators (as compared to DA). Annotators performing
DA+SQM annotations at IWSLT 2022 human eval-
uation campaign (Anastasopoulos et al., 2022) also
provided positive feedback about the annotation
format. In previous years, full documents were
sampled for annotation. This year we sampled
a maximum of 10 consecutive segments from a
document (a document “snippet”) for annotation.
This provides the potential to annotate segments
from a more diverse range of documents while still
maintaining a similar number of total annotations.
Up to 10 source segments preceding and follow-
ing the snippet being evaluated are displayed as
static extra context for the annotator in the inter-
face, as presented in Figure 1. As in past years,
annotators provide both segment-level scores and
document-level scores (in this case it is more ac-
curate to call them snippet-level scores), however
only the segment-level scores were used to com-
pute the official rankings. As the English–Livonian
data was not document-level, those annotations
are run with segment-level-only DA+SQM. HITs
(using the Amazon terminology of “Human Intel-
ligence Task” to describe an annotation task) con-
tained quality control segments, as described in
Section 6.2. Rankings are computed as described
in Section 6.4 based on segment-level scores.

6.1 Human Annotators

All annotations in the bilingual human evaluation
campaign were carried out by hired professional
annotators. This year, for the first time, we did not
ask participants of the general task to contribute
to human evaluation, but instead made it volun-
tary. The main motivations for this change were
the attempt to increase the reliability and consis-
tency of the judgements and the immense amount
of time that was needed to be devoted to the pro-
cess of collecting annotations from participating
teams. Annotations for different language pairs
were provided by different parties with their pool
of annotators of distinct profiles as summarized in
Table 8.

Charles University provided annotators for
language pairs involving the Czech language,

i.e. English→Czech and Ukrainian↔Czech. Their
annotators were linguists, translators, researchers
and students who are native speakers of the tar-
get language29 with high proficiency in the source
language.

University of Tartu provided the annotations
for Livonian↔English, with 15% of the Livonian-
speaking population participating in the annota-
tion efforts. All three participants were near-native
speakers of Livonian and participated in source-
based Livonian-English and English-Livonian an-
notations, as well as reference-based Livonian an-
notation.

The second annotator group was provided
by Toloka AI,30 who collected annotations for
English→Russian and Russian↔Yakut. Toloka
AI is a global data labeling company that helps
its customers to generate machine learning data at
scale by harnessing the wisdom of the crowd from
around the world. It relies on a geographically di-
verse crowd of several million registered users31

(Pavlichenko et al., 2021). Toloka tests proficiency
of their annotator crowd and excludes from future
annotations anyone who does not pass quality con-
trol in the Appraise tool.

The last part of annotations was sponsored by
Microsoft, who contributed with their pool of qual-
ified paid bilingual speakers experienced in the MT
evaluation process. Microsoft provided annotations
for English into Chinese, Croatian, German, and
Japanese, as well as Chinese→English as a com-
parison for reference-based evaluation described
above and MQM evaluated in Metrics shared task
(Freitag et al., 2022). For this pool of annotators,
their performance is tracked over time, and those
who fail quality control are permanently removed
from the pool. This process increases the overall
quality of the human assessment.

6.2 Sampling and Quality Control

In past WMT annotations, document-system pairs
were sampled randomly for annotation, resulting
in different subsets of the test set being annotated
for each system. This year we first randomly sam-
ple a subset of document snippets from each of
the domains for annotations, sampling the domains

29Some of Ukrainian→Czech annotators were not native
Czechs, but native Ukrainians with near-native knowledge of
Czech.

30https://toloka.ai
31https://hackernoon.com/

evolution-of-the-data-production-paradigm-in-ai
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(a) Top part of the screen with segment-level scoring. (b) Bottom part of the screen with document-level scoring.

Figure 1: Screen shot of the document-level DA+SQM configuration in the Appraise interface for an example assessment from
the human evaluation campaign for out of English language pairs. The annotator is presented with the entire translated document
snippet randomly selected from competing systems (anonymized) with preceding and following contexts and is asked to rate the
translation of individual segments and then the entire document on sliding scales.

Language pairs Annotators’ profile

English→Chinese/Croatian/German/Japanese Microsoft annotators: bilingual target-language native speakers, professional
translators or linguists, experienced in MT evaluation

English→Czech Czech paid linguists, annotators, researchers, students with high proficiency
in English

English→Livonian Livonian speakers
English→Russian/Ukrainian, Russian↔Yakut Toloka paid crowd: bilingual target-language native speakers
Ukrainian↔Czech Paid translators and target-language native speakers

Table 8: Human annotator types for each language pair in bilingual human evaluation.

with approximately the same number of segments
per domain. We use document snippets with 10
consecutive segments, or fewer in the case of short
documents. In this way, all systems are annotated
over almost exactly the same subset of document
snippets.32 All HITs consists of exactly 100 seg-
ments and are generated as in the past: (1) first
snippet-system pairs are randomly sampled (from
the restricted set of pre-sampled snippets) with up
to 80 segments; (2) then random snippets with the

32For English→{Czech, German, Japanese, Russian,
Ukrainian, Chinese} and the additional Chinese→English
collection, all systems received annotations for all the sam-
pled snippets. For Czech→Ukrainian, Ukrainian→Czech,
English→Croatian, Yakut→Russian, and pairs including Livo-
nian, annotation coverage of sampled snippets was incomplete;
not all systems were scored over exactly the same set of seg-
ments.

remaining 20 (or more) segments are duplicated
to serve as quality control items; (3) BAD refer-
ences are introduced to the random segments in
the duplicated snippets to have about 12-14% of
quality control segments per HIT.33 BAD refer-
ences consist of segments in which an embedded
sequences of tokens is replaced from a randomly
placed phrase of the same length, sampled from a
different reference segment.

We perform quality control by measuring an an-
notator’s ability to reliably score BAD translations
significantly lower than corresponding original sys-
tem outputs using a paired significance test with
p < 0.05. We pair two HITs into a single annota-

33For full details, see the HIT and batch gener-
ation code: https://github.com/wmt-conference/
wmt22-news-systems
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Language Pair Sys. Assess. Assess/Sys

Chinese→English 14 26,800 1,914.3
Czech→Ukrainian 12 21,285 1,773.8
English→Czech 12 24,000 2,000.0
English→German 11 21,800 1,981.8
English→Croatian 10 19,046 1,904.6
English→Japanese 14 27,600 1,971.4
English→Livonian 6 3,903 650.5
English→Russian 12 46,675 3,889.6
English→Ukrainian 9 35,048 3,894.2
English→Chinese 14 27,800 1,985.7
Yakut→Russian 3 4,200 1,400.0
Ukrainian→Czech 12 14,622 1,218.5

Table 9: Amount of data collected in the WMT22 manual
evaluation campaign for evaluation out-of-English; including
human references as systems; after removal of quality control
items.

Language Pair Ann. HITs HITs/Ann.

Chinese→English 12 134 11.2
English→Czech 16 120 7.5
English→German 14 109 7.8
English→Croatian 13 96 7.4
English→Japanese 17 138 8.1
English→Chinese 8 139 17.4

Table 10: Numbers of individual annotators taking part in the
WMT22 human evaluation campaign and the average number
of HITs collected per annotator.

tion task with about 24-28 quality control segments
to ensure a sufficient sample size for the statisti-
cal test. If an annotator is not able to demonstrate
reliability on BAD references, they are excluded
from further annotations, the HITs are reset and
annotated from scratch by another annotator.34

In addition to the quality control items, because
this annotation is performed bilingually, reference
translations are also evaluated as though they were
submitted systems.

For language pairs where there was a concern
about having sufficient annotations, two smaller
batches of HITs were generated (such that at least
all segments in the first batch could be covered for
all systems, with the second campaign completed if
possible; in the case of translation between Czech
and Ukrainian, due to a large number of single-
sentence documents, larger documents were sam-
pled first).

6.3 Calibration HITs
For several language pairs (English→{Chinese,
Croatian, Czech, German, Japanese} and

34The quality control in bilingual human evalua-
tion excluded 17 HITs in total: 1 Yakut→Russian,
2 English→Russian, 3 English→Ukrainian, 7
English→Livonian, 4 Czech↔Ukrainian.

Language Pair Min. Max. Med.

Chinese→English 0.03 0.77 0.40
English→Czech 0.15 0.81 0.49
English→German -0.18 0.47 0.21
English→Croatian 0.23 0.65 0.41
English→Japanese -0.11 0.68 0.24
English→Chinese -0.13 0.56 0.16

Table 11: Minimum, maximum, and median Spearman’s
rank correlation coefficients between pairs of annotators on
calibration HIT segments.

Source-Based English→Livonian
(Official WMT22 ranking)

Rank Ave. Ave. z System
1 74.4 1.255 HUMAN-A
2 46.2 0.215 TAL-SJTU

3-4 36.9 -0.147 HuaweiTSC
3-4 36.3 -0.175 TartuNLP
5 33.8 -0.262 Liv4ever
6 17.9 -0.853 NiuTrans

Ref.-Based English→Livonian
Rank Ave. Ave. z System

1 39.5 0.499 TAL-SJTU
2-4 31.8 0.077 TartuNLP
2-4 31.5 0.051 Liv4ever
2-4 31.0 0.037 HuaweiTSC
5 18.3 -0.656 NiuTrans

Source-Based Livonian→English
Rank Ave. Ave. z System

1 81.7 1.009 HUMAN-A
2-3 60.3 0.257 TartuNLP
2-3 60.2 0.252 TAL-SJTU
4 50.4 -0.084 HuaweiTSC
5 41.3 -0.406 Liv4ever
6 23.1 -1.052 NiuTrans

Table 12: Three rankings for systems translating between
English and Livonian.

Chinese→English), we collect calibration HITs
in the DA+SQM interface: one identical HIT
with 100 randomly selected segments completed
by all annotators, in addition to their regular
annotation HITs. By providing a small set of
sentences annotated by all annotators, we are better
able to examine questions about inter-annotator
consistency. We release these alongside the other
annotations and the anonymized mapping between
annotators and HITs in order to enable additional
analysis.

Table 10 shows the number of unique annotators
for these languages, along with the total number
of HITs and average number of HITs per annota-
tor. For all pairs of annotators who completed both
a calibration HIT and additional HIT(s) within a
given language pair, we compute the Spearman’s
rank correlation coefficient between the two an-
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notators’ scores of the segments in the calibration
HIT. Table 11 shows the minimum, maximum, and
median correlations obtained by pairs of annotators
for each language. These vary quite widely be-
tween languages, and we also note that across the
calibration HITs, annotators vary widely in their
use of the scoring space and the shape of their score
distributions. Even within the same language pair
(i.e., scoring the exact same set of segments in the
calibration HIT), some annotators’ scores are dis-
tributed across most of the 0-100 scoring space,
some only produce scores above a certain thresh-
old, and some treat the scale as though it were
discretized according to the numerical scale shown
in the interface (clustering most of their scores at
the numerical marks the one can see in Figure 1).

6.4 Human Ranking Computation

The official rankings shown in Table 13 are gener-
ated on the basis of the segment-level DA+SQM
scores that are collected within document snippet
context for all language pairs.35 The quality con-
trol (BAD) segments and any HITs that failed to
pass quality control are removed prior to comput-
ing the rankings. Means and standard deviations
for computing z-scores are computed at the HIT
level. To compute system-level averages (both raw
and z-score), any instances of multiple scores for
the same segment are first averaged together, then
all segment-level scores are averaged per system
to compute the system-level scores. The clusters
are computed using the Wilcoxon rank-sum test
with p < 0.05. Rank ranges indicate the number
of systems a particular system underperforms or
outperforms (i.e., the top end of the rank range is
l + 1 where l is the number of losses, while the
bottom is n − w where n is the total number of
systems and w is the number of systems that the
system in questions significantly wins against).

The rankings for translation between Livonian
and English shown in Table 12 are computed in the
same manner described above, but because the test
set does not include document boundaries the data
was collected without document context and some
of the data collection was source-based while other
portions were reference-based. As the official rank-
ing for English→Livonian we consider the ranking
computed from source-based human evaluation.

35The code used to generate the rankings in Ta-
ble 13 can be found here: https://github.com/
AppraiseDev/Appraise/blob/main/Campaign/
management/commands/ComputeWMT21Results.py

6.5 Comparison of Human Evaluation
Methods

In collaboration with the metrics shared task (Fre-
itag et al., 2022), human annotation data for the
Chinese→English direction was collected using
three different approaches: the official monolingual
reference-based SR+DC DA (Section 5, Table 7),
the source-based fully document-level DA+SQM
approach used for out-of-English and non-English
directions (Section 6), and the Multidimensional
Quality Metrics (MQM) framework (Freitag et al.,
2021, 2022). We present the rankings produced by
the three approaches in Table 14.

The DA rankings produced large clusters only
for this language pair; that is, it was not possible to
separate the performance into many system clusters
with statistical significance. It is also important to
note that the set of data over which each of these
rankings was produced may have differed (e.g., the
distribution over topic domains or the amount of
coverage of the full test set), making it difficult to
determine whether these differences in rankings
represent differences due to data or due to different
annotation methods.

7 Manual Error Analysis of
English→Croatian translations

In addition to the official human evaluation by
assigning DA scores, an analysis of errors in
English→Croatian translations was carried out by
an MT researcher with experience in human trans-
lation. The evaluation was carried out bilingually,
while looking at the original English segment and
all of its translations, both machine and human, all
mixed together in a random order. The segments
were presented in the natural order in the document,
and the entire document (news article or review)
was available by scrolling down or up.

The analysis was performed on the first 100
documents (80 reviews and 20 news articles),
containing 603 segments (416 in reviews and
187 in news). All 14 review topics mentioned in
Section 2.4 are included, although not uniformly
distributed. The annotations are publicly available
at https://github.com/wmt-conference/
wmt22-news-systems/humaneval/en-hr/.

The errors were not coupled to any quality crite-
rion (adequacy, fluency, readability) – all problem-
atic words found in the translations were tagged
as errors, no matter whether they are related to the
source language, or are specific to the target lan-
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English→Czech
Range Ave. Ave. z System

1 91.2 0.335 HUMAN–C
2 90.9 0.279 Online-W
3 88.6 0.158 JDExploreAcad.

4-6 85.3 0.045 Online-B
4-6 87.1 0.041 Lan-Bridge
4-6 85.1 0.029 HUMAN-B

7-10 84.2 −0.059 CUNI-Bergamot
7-10 83.7 −0.074 CUNI-DocTransf.
7-10 84.0 −0.087 Online-A
7-10 83.2 −0.128 CUNI-Transf.

11-12 83.3 −0.258 Online-G
11-12 80.8 −0.310 Online-Y

Czech→Ukrainian
Range Ave. Ave. z System

1 85.6 0.295 HUMAN-A
2-5 84.6 0.225 Online-B
2-3 84.1 0.151 AMU
3-6 82.5 0.125 Lan-Bridge
3-6 81.1 0.065 HuaweiTSC
4-8 81.9 0.062 CharlesTranslator
6-8 80.2 0.026 CUNI-JL-JH
6-8 80.2 −0.002 CUNI-Transf.

9-10 79.8 −0.008 Online-G
9-10 79.2 −0.075 Online-A
11 76.0 −0.257 Online-Y
12 68.4 −0.669 ALMAnaCH-Inria

Ukrainian→Czech
Range Ave. Ave. z System

1 89.6 0.417 HUMAN-A
2-3 85.6 0.182 AMU
2-4 83.5 0.148 HuaweiTSC
4-8 83.5 0.127 Lan-Bridge
3-8 82.0 0.110 CUNI-Transf.
4-8 82.5 0.082 CharlesTranslator
4-8 81.4 0.052 CUNI-JL-JH
4-8 81.9 0.042 Online-B
9-10 80.0 -0.101 Online-A
9-10 77.5 -0.138 Online-G
11 73.9 -0.351 Online-Y
12 69.2 -0.617 ALMAnaCH-Inria

Yakut→Russian
Range Ave. Ave. z System

1 71.3 0.708 HUMAN-A
2 54.6 0.178 Online-G
3 16.0 −0.873 Lan-Bridge

English→Chinese
Range Ave. Ave. z System

1 81.7 0.154 HUMAN-A
2-5 81.9 0.099 Online-W
2-5 80.9 0.074 HUMAN-B
2-9 80.3 0.073 JDExploreAcad.
2-7 79.7 0.026 Online-Y

4-11 80.0 0.020 Lan-Bridge
4-11 78.5 0.019 Manifold
5-12 79.4 −0.012 LanguageX
5-12 79.4 −0.019 Online-B
6-12 78.7 −0.020 Online-A
8-12 79.6 −0.043 HuaweiTSC
6-12 79.0 −0.045 AISP-SJTU

13-14 77.5 −0.150 DLUT
13-14 77.2 −0.153 Online-G

English→German
Range Ave. Ave. z System

1-6 93.9 0.116 HUMAN-A
1-4 93.6 0.106 Online-B
1-4 93.4 0.106 Online-W
1-5 92.4 0.071 JDExploreAcad.
3-7 93.8 0.051 HUMAN-B
5-9 93.6 0.015 Lan-Bridge
4-9 91.1 −0.019 Online-A

6-11 92.2 −0.054 Online-Y
6-11 93.2 −0.066 Online-G
8-11 90.8 −0.110 PROMT
8-11 89.9 −0.189 OpenNMT

English→Japanese
Range Ave. Ave. z System

1 86.3 0.218 HUMAN-A
2-11 84.1 0.103 NT5
2-9 83.6 0.099 LanguageX
2-9 84.3 0.093 JDExploreAcad.
2-8 84.3 0.087 Online-B
2-9 83.9 0.078 DLUT
2-11 83.2 0.058 Online-Y
3-11 82.9 0.022 Lan-Bridge
6-11 82.9 0.018 Online-A
2-11 83.3 0.004 NAIST-NICT-TIT

11-12 81.9 −0.027 AISP-SJTU
6-12 83.0 −0.029 Online-W
13 79.5 −0.311 Online-G
14 76.9 −0.434 KYB

English→Russian
Range Ave. Ave. z System

1-2 87.3 0.222 Online-W
1-2 86.6 0.194 HUMAN-A
3-5 86.0 0.136 Online-G
3-5 84.4 0.131 Online-B
3-5 84.2 0.096 JDExploreAcad.
6-7 84.3 0.046 Lan-Bridge
6-7 82.5 0.005 Online-Y

8-10 80.7 −0.086 Online-A
8-11 81.0 −0.123 PROMT
8-11 79.5 −0.159 SRPOL
9-12 79.6 −0.203 HuaweiTSC

11-12 79.4 −0.220 eTranslation

English→Croatian
Range Ave. Ave. z System

1 93.7 0.327 HUMAN-A
2-3 92.6 0.264 HUMAN-st.
2-3 92.0 0.232 Online-B
4 91.2 0.155 Lan-Bridge

5-8 88.5 −0.018 Online-A
5-8 87.3 −0.057 HuaweiTSC
5-8 88.5 −0.068 SRPOL
5-8 87.0 −0.094 NiuTrans
9 84.5 −0.333 Online-G

10 82.3 −0.414 Online-Y

English→Ukrainian
Range Ave. Ave. z System

1 87.1 0.319 HUMAN-A
2-4 84.0 0.124 Online-B
2-4 84.3 0.118 Lan-Bridge
2-4 83.5 0.092 Online-G
5-6 82.8 −0.018 Online-A
5-7 82.0 −0.037 HuaweiTSC
6-7 80.5 −0.105 eTranslation
8-9 79.6 −0.185 Online-Y
8-9 79.8 −0.233 ARC-NKUA

English→Livonian
Range Ave. Ave. z System

1 74.4 1.255 HUMAN-A
2 46.2 0.215 TAL-SJTU

3-4 36.9 -0.147 HuaweiTSC
3-4 36.3 -0.175 TartuNLP
5 33.8 -0.262 Liv4ever
6 17.9 -0.853 NiuTrans

Table 13: Official results of WMT22 General Translation Task for translation out of English or without English. Systems
ordered by DA score z-score; systems within a cluster are considered tied; lines indicate clusters according to Wilcoxon rank-sum
test p < 0.05; rank ranges indicate the number of systems a system significantly underperforms or outperforms; grayed entry
indicates resources that fall outside the constraints provided. All language pairs except English→Livonian used document-level
evaluation.
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guage, or both. There was no distinction of error
severity (“major”, “minor” or similar).

All identified errors (issues) were tagged by their
possible causes and/or plausible explanations of
their origin, as in (Popovic, 2021). Some of the
identified “issue types" are equivalent to the typical
error classes that can be found in MQM or similar
schemes (such as “mistranslation”, “gender”, etc.),
while some go beyond that, often including several
different intertwining types of errors. Some of them
involve single words, while others might involve
a large group of words. The main difference be-
tween such tags in comparison to MQM or similar
tags is that they are related to (linguistically mo-
tivated) causes of errors, also taking into account
differences between source and target language as
well as the translation process, and not only to the
“symptoms” manifested in the MT output.

For example, the most frequent issue is related
to “rephrasing”, and refers to a sequence of words
that is not translated properly for some of the fol-
lowing reasons: 1) the translation of the source
words follows the structure of the source language
although it should be expressed differently in the
target language (rephrasing is needed); 2) rephras-
ing is needed but incorrectly applied; 3) rephrasing
is not needed but is applied, and/or 4) the choice of
target words is related to source words but seems
random, both in lexical as well as grammatical
terms. The issue is manifested by several consecu-
tive different but intertwined types of errors such
as case, gender, verb form, mistranslation, function
word, omission, addition, word order, etc. Incorrect
translation of multi-word expressions and colloca-
tions falls under this type.

Overall error rates Table 15 presents the aggre-
gated error rates for each translation, calculated
as the number of words which were tagged as any
type of error divided by the total number of words
in the text. Thus, the interpretation of, for example,
the overall error rate of 12.76% for the MT sys-
tem ONLINE-B is that about 12-13 incorrect words
were found in each group of 100 words. The error
rates are presented for the entire analysed text, as
well as separately for the two domains. The trans-
lations are ranked from the lowest to the highest
overall error rate.

The ranking is similar to the official direct as-
sessment results presented in Table 13, however
there are some different tendencies. The main dif-
ference is the preference for human translations

– error rates exhibit a clear preference for human
translations over MT outputs. While both scores
agree on the four best translations (two human and
two MT outputs), error rates clearly distinguish
the two human translations with about 10% less er-
rors than in the best MT output. Direct assessment
scores, however, are all close, ranging from 93.7 to
91.2, and even put student translations at the same
rank as the best MT output. The same tendency
has been reported in Freitag et al. (2021), where
the MQM error annotation on English→German
and Chinese→English translations clearly distin-
guished human translations from MT outputs, con-
trary to direct assessment scores. These findings
indicate that for evaluating human translations in
any context (comparing different human transla-
tions, comparing with MT outputs), some kind of
error annotation should be performed.

Another potentially interesting difference is the
system ONLINE-G, which is clearly ranked as sec-
ond worst by direct assessment, but less clearly as
third worst by error annotation. A potential reason
is the different nature of errors in different MT sys-
tems discussed below. Other differences between
the two rankings affect only the mid-range systems
which have very close scores in both set-ups.

It can be seen that errors were detected both in
human and in machine translations, although the
error rates are notably lower in human translations.
Overall error rate is lower than 1% for professional
translations and lower than 3% for students’ trans-
lations, while in MT outputs, the overall error rates
range from 12 to 22%.

In human translations, error rates are similar for
both domains. In MT outputs, however, the error
rates are notably higher for reviews than for news,
which is not surprising given that there are much
less training resources for reviews. Furthermore,
it can be noted that the rankings would be slightly
different if only one of the domains were used: NI-
UTRANS would be ranked higher on news while
ONLINE-G would be ranked higher on reviews and
HUAWEITSC would be ranked lower. Neverthe-
less, those variations in rankings can be observed
only for the mid-ranged systems where differences
in error rates are small anyway.

Comparing machine and human translations
Table 16 presents issue types identified in machine
and in human translations and their corresponding
error rates. In addition, the distribution between
the two domains is presented for each, meaning
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SR+DC DA DA+SQM MQM
Rank Ave. Ave. z Order Range Ave. Ave. z Order MQM score Order

HUMAN-A - - - - 1-3 82.4 0.137 1 1.223 1
HUMAN-B 1 73.4 0.134 1 8-12 80 -0.029 9 1.997 2
JDExploreAcademy 2 69.8 -0.026 2 3-7 81.5 0.048 6 2.827 6
HuaweiTSC 2 69 -0.034 3 3-7 80.7 0.056 5 3.089 8
AISP-SJTU 2 69.1 -0.063 4 8-10 80.8 -0.013 8 3.187 9
LanguageX 2 69.2 -0.079 5 1-6 82 0.109 2 2.738 5
Online-A 2 69.7 -0.083 6 9-14 79.1 -0.078 10 3.731 11
DLUT 2 68.6 -0.083 7 11-14 79 -0.181 14 - -
Online-B 2 67.4 -0.089 8 1-3 81.9 0.1 3 2.714 4
Online-G 2 69.9 -0.098 9 3-7 81.4 0.065 4 2.933 7
Online-W 2 66.5 -0.109 10 9-14 78.4 -0.098 12 3.953 12
Lan-Bridge 2 65.3 -0.117 11 4-7 81 0.041 7 2.471 3
Online-Y 2 66.5 -0.122 12 8-12 79.6 -0.086 11 3.281 10
NiuTrans 2 66.3 -0.164 13 11-14 79 -0.107 13 - -

Table 14: Comparison of three methods of generating human annotations and rankings. Note that each method used different
subsets of the test data, and the DA approaches only produced weak clusterings.

en→hr error rate (%) ↓
translation overall news reviews

HT professionals 0.71 0.86 0.60
students 2.43 2.23 2.59

MT online-B 12.76 11.19 13.98
Lan-Bridge 13.42 11.46 14.95
HuaweiTSC 17.39 12.87 20.83
online-A 17.69 14.30 20.29
SRPOL 17.96 14.55 20.56
online-G 18.43 16.60 19.80
NiuTrans 18.99 13.51 23.15
online-Y 21.51 18.48 23.82

Table 15: Percentage of words marked as errors (error rate)
in all translations: two human translations (by professional
translators and by students) and eight machine translation hy-
potheses. The percentages are presented for the entire text
(overall) and separately for news and for reviews. The trans-
lations are ranked from best to worst according to the overall
error rate. Bold values indicate domain-specific ranks which
are different from the overall rank.

that, for example, 32.2% of all rephrasing errors
are found in news and 67.8% in reviews. Issue
types are ranked according to their percentage in
MT outputs.

The most prominent issues in MT outputs are
similar to those reported in in (Popovic, 2021):
rephrasing (described at the beginning of the sec-
tion), ambiguity (different meanings of a word in
different contexts), noun phrases (sequences of
nouns and possibly adjectives) and omissions (ei-
ther a part of the source text is omitted or something
is missing in the target language), with the error
rates ranging from 1% to 5%. Interestingly, the
same issue types are the most frequent issues in hu-
man translations, too, although with much smaller
error rates (less than 0.4%).

The majority of issue types in MT outputs is
found more frequently in reviews than in news, al-
though the differences vary. From the most promi-

nent issues, only noun phrase errors are slightly
more frequent in news. In human translations, the
distribution of issue types between the two domains
is more even, although the most prominent four are
more frequent in reviews.

Somewhat surprisingly, hallucination errors
were identified in the human translation of news.
Further manual inspection revealed that in one
sentence, a phrase not related to any part of the
source text indeed appears in the professional trans-
lation. The probable reason is a somewhat specific
financial term “like-for-like" meaning “financial
growth". The source sentence “Drink-led pubs
and bars performed by far the strongest with like-
for-likes up more than restaurants were down."
ended up translated as “Drink-led pubs and bars
performed by far the strongest, while pubs and
bars selling both drinks and food had more up
than restaurants were down". The translator proba-
bly did not recognise the term and assumed that it
refers to something similar to the previously men-
tioned “drink-led pubs and bars", so they added
the phrase about ‘pubs and bars selling both drinks
and food’ which were not mentioned whatsoever
in the source. Without this hallucination, all error
rates (overall, news and reviews) for professional
translations presented in Table 15 would be 0.60%.

Comparing MT systems Table 17 presents the
most frequent issue types (with error rate greater
than 1%, or, in other words, which were found at
least once in each 100 words) in each of the eight
MT outputs. The outputs are ranked from best to
worst according to the overall error rate (Table 15).
For each issue type, its overall error rate together
with the separated error rates in news and reviews
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en→hr MT outputs human translations
error % of the issue type error % of the issue type

issue type rate % in news in reviews rate % in news in reviews
rephrasing 5.12 32.2 67.8 0.27 47.9 52.1
ambiguity 3.38 32.8 67.2 0.21 27.0 73.0

noun phrase 2.55 53.6 46.4 0.14 20.8 79.2
omission 1.22 48.0 52.0 0.37 46.9 53.1

named entity 0.86 47.4 52.6 0.05 50.0 50.0
verb form 0.86 31.3 68.7 0.06 80.0 20.0

gender 0.85 27.3 72.7 0.05 0 100
pron/det 0.64 12.7 87.3 0.02 0 100

preposition 0.54 42.0 58.0 0.07 69.2 30.8
untranslated 0.52 17.0 83.0 0.07 15.4 84.6

case 0.50 37.9 62.1 0.11 73.7 26.3
mistranslation 0.48 38.1 61.9 0.07 61.5 38.5

addition 0.43 14.8 85.2 0.01 0 100
source 0.34 2.6 97.4 0.02 0 100

order 0.28 33.7 66.3 0.03 66.7 33.3
non-existing 0.25 35.6 64.4 0.04 0 100

passive 0.19 53.4 46.6 0.01 0 100
number 0.17 24.1 75.9 0.01 0 100

-ing 0.16 59.5 40.5 0.01 0 100
rel. phrase 0.09 66.7 33.3 0 0 0

POS ambiguity 0.08 3.4 96.6 0 0 0
hallucination 0.07 30.8 69.2 0.06 100 0

negation 0.06 0 100 0 0 0
repetition 0.02 43.8 56.2 0.01 100 0

Table 16: Identified issues in all MT hypotheses and in both HT references: error rate together with the distribution between
news and reviews. The issue types are ordered by their percentage in MT hypotheses. Bold values indicate the domain with the
higher amount of a particular issue type.

is shown.

First, it can be noted that in the two best-ranked
systems, there are three clearly predominant issue
types for both domains: rephrasing, ambiguity and
noun phrase. These three issue types are predom-
inant in other systems, too, however with higher
error rates.

Furthermore, for all systems, rephrasing errors
and ambiguity problems are more frequent in re-
views, whereas noun phrase errors are more fre-
quent in news. Also in all systems, there are slightly
more omissions in news than in reviews.

When looking at lower ranked systems, it can be
noted that not only the error rates for the generally
most prominent issue types increase, but also more
error types emerge: incorrect verb forms, incorrect
gender and problems with pronouns or determiners
in reviews.

The most interesting system is ONLINE-G: while
the rephrasing error rate is only slightly worse than
the two best-ranked systems, and ambiguity and
noun phrase errors are also not much worse than
some of the higher-ranked systems, it is the only
system with notable problems with named entities
(more than 2%) and mistranslations (more than 1%)
in both domains, as well as generating non-existing
words in reviews (more than 1%). This specific

distribution of error types could be the reason that
this system was clearly ranked as the second worst
by direct assessment, although it has similar error
rate as some other systems.

In the lowest-ranked systems, apart from the
higher error rates for all common issue types, the
appearance of untranslated words in reviews can
be noted in NIUTRANS, and problems with named
entities in news in ONLINE-Y.

Apart from the described quantitative analysis, a
qualitative inspection of the translation showed, as
can be expected, that the MT outputs generally are
close to the source language, without divergences.
Nevertheless, some very creative and very nice
machine translations were found, too.

Comparing human translations Table 18
presents the most frequent issue types (with error
rate greater than 0.1%, or in other words, that were
found at least once in each 1000 words) in each of
the two human translations. The translations are
ranked from best to worst according to the overall
error rate (Table 15). For each issue type, its overall
error rate together with the separated error rates in
news and reviews is shown.

First, it can be noted that the most frequent error
in both human translations in omission, being more
frequent in student translations. The second issue
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en→hr: MT hypotheses
most frequent error rate ↓

MT system issue types overall news reviews
online-B rephrasing 4.14 2.87 5.13

ambiguity 2.52 1.95 2.96
noun phrase 1.86 2.77 1.15

Lan-Bridge rephrasing 4.33 2.98 5.38
ambiguity 2.62 2.03 3.08

noun phrase 2.01 2.90 1.31
HuaweiTSC rephrasing 5.49 3.97 6.65

ambiguity 3.43 2.43 4.19
noun phrase 2.64 2.77 2.54

omission 1.04 1.23 <1
verb form <1 <1 1.04

gender <1 <1 1.10
online-A rephrasing 5.06 3.68 6.12

ambiguity 3.85 2.99 4.50
noun phrase 2.88 3.20 2.63

omission 1.11 1.38 <1
gender <1 <1 1.18

SRPOL rephrasing 5.33 4.12 6.25
ambiguity 3.82 2.69 4.68

noun phrase 2.69 3.25 2.26
omission 1.44 1.52 1.38

verb form <1 <1 1.00
pron/det <1 <1 1.08

online-G rephrasing 4.59 3.54 5.38
ambiguity 3.06 2.33 3.61

noun phrase 2.17 3.28 1.33
named entity 2.11 2.59 1.75

omission 1.41 1.61 1.26
mistranslation 1.37 1.11 1.57

non-existing 1.06 <1 1.32
verb form <1 <1 1.22

gender <1 <1 1.04
pron/det <1 <1 1.16

NiuTrans rephrasing 5.76 4.14 6.99
ambiguity 3.30 2.29 4.08

noun phrase 2.84 2.93 2.77
omission 1.69 1.78 1.63

gender 1.03 <1 1.45
verb form <1 <1 1.24

untranslated <1 <1 1.14
pron/det <1 <1 1.18

online-Y rephrasing 6.26 5.08 7.16
ambiguity 4.43 3.75 4.95

noun phrase 3.29 4.07 2.70
omission 1.32 1.49 1.20

verb form 1.15 <1 1.32
named entity 1.14 1.38 <1

gender 1.13 <1 1.42
pron/det <1 <1 1.18

Table 17: The most frequent issue types (error rate ≥ 1%)
in each of the eight MT hypotheses separately, overall as
well as separately for news and reviews. The hypotheses are
ranked from best to worst according to the overall error rate
(Table 15).

en→hr: human translations
most frequent error rate ↓

issue types overall news reviews
prof. omission 0.20 0.13 0.25

rephrasing 0.14 0.18 0.10
hallucination 0.11 0.26 0

stud. omission 0.54 0.64 0.45
rephrasing 0.41 0.41 0.41
ambiguity 0.37 0.23 0.47

noun phrase 0.25 0.13 0.35
case 0.14 0.18 0.10

untranslated 0.14 <0.1 0.21
mistranslation 0.13 0.15 0.10

preposition 0.11 0.15 <0.1
verb form <0.1 0.18 <0.1

order <0.1 0.10 <0.1
named entity <0.1 0.10 <0.1
non-existing <0.1 0 0.14

gender <0.1 <0.1 0.14
Table 18: The most frequent issue types (error rate ≥ 0.1%)
in each of the two human reference translations separately,
overall as well as separately for news and reviews. The trans-
lations are ranked from best to worst according to the overall
error rate (Table 15).

type is rephrasing, also more frequent in student
translations. The third ranked issue in professional
translations are hallucinations, which is discussed
in one of the previous paragraphs. For students, the
third ranked issue are ambiguous words, apparently
more problematic in reviews.

Furthermore, a number of issue types with error
rate larger than 0.1% in student translations are less
frequent or even not appearing at all in professional
translations.

Apart from the described quantitative analysis, a
qualitative inspection of the translation showed that
students generally diverged more from the source
language than professionals, which is the opposite
of what could be intuitively expected. This is the
probable reason that for all MT outputs, both auto-
matic metrics, COMET and CHRF, are lower when
calculated using student references.

8 Conclusions

The General Machine Translation Task at WMT
2022 covered 21 translation pairs, 15 of which had
English on the source or target side and 6 were
without English. Direct assessment (DA) was the
main golden truth, although the style varied across
language pairs. Into-English translation was evalu-
ated against human reference translation, preserv-
ing the order of sentences in a document but not
presenting the whole document at once (SR+DC).
Out-of-English and non-English pairs offered the
context to the annotators and allowed them to re-
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visit the scores assigned to individual segments
(DA+SQM), evaluating against the source.

9 Limitations

We opened a research question of testing general
capabilities of MT systems. However, we have
simplified this approach. Firstly, we only used four
domains that are not specialized. Secondly, we
used only cleaner sentences avoiding noisy in the
source sentences.

Although we accept human judgement as a gold
standard, giving us more reliable signal than au-
tomatic metrics, we should mention that human
annotations are noisy (Wei and Jia, 2021) and their
performance is affected by quality of other eval-
uated systems (Mathur et al., 2020). Moreover,
reference-based human judgements are biased by
the quality of references.

The error analysis of Croatian translations was
carried out by one evaluator. Also, the selected
sample is different than the one used for direct
assessment.

10 Ethical consideration

Several of the domains contained texts that in-
cluded personal data, for example the conver-
sational data (See Section 2.5 for more de-
tails). Entities were replaced by anonymisation
tags (e.g. #NAME#, #EMAIL#) to preserve the
anonymity of the users behind the content.

The sentences in Ukrainian datasets (as de-
scribed in Section 2.4) were collected with users’
opt-in consent and any personal data related
to people other than well-known people was
pseudonymized (using random first names and
surnames). Sentences where such pseudonymiza-
tion would not be enough to preserve reasonable
anonymity of the users (e.g. describing events
uniquely identifying the persons involved) were
not included in the test set.

As described in Section 2.2 and in the linguis-
tic brief (Appendix Section C), inappropriate, con-
troversial and/or explicit content was filtered out
prior to translation, particularly keeping in mind the
translators and not exposing them to such content
or obliging them to translate it. A few sentences
containing explicit content managed to escape the
filter, and we removed these sentences from the test
sets without translation.

Human evaluation using Appraise for collecting
human judgements was fully anonymous. Auto-

matically generated accounts associated with an-
notation tasks with single-sign-on URLs were dis-
tributed randomly among pools of annotators and
did not allow for storing personal information. For
language pairs for which we used calibration HITs,
we received lists of tasks completed by an individ-
ual anonymous annotator.
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Monz, Makoto Morishita, Masaaki Nagata, Toshi-
aki Nakazawa, Santanu Pal, Matt Post, and Marcos
Zampieri. 2020. Findings of the 2020 conference on
machine translation (WMT20). In Proceedings of
the Fifth Conference on Machine Translation, pages
1–55, Online. Association for Computational Linguis-
tics.
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Ondřej Bojar, Christian Buck, Chris Callison-Burch,
Christian Federmann, Barry Haddow, Philipp Koehn,
Christof Monz, Matt Post, Radu Soricut, and Lucia
Specia. 2013. Findings of the 2013 Workshop on
Statistical Machine Translation. In Proceedings of
the Eighth Workshop on Statistical Machine Trans-
lation, pages 1–44, Sofia, Bulgaria. Association for
Computational Linguistics.
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Žabokrtský. 2020a. Transforming machine transla-
tion: a deep learning system reaches news translation
quality comparable to human professionals. Nature
Communications, 11(4381):1–15.

Martin Popel, Marketa Tomkova, Jakub Tomek, Łukasz
Kaiser, Jakob Uszkoreit, Ondřej Bojar, and Zdeněk
Žabokrtský. 2020b. Transforming machine transla-
tion: a deep learning system reaches news translation
quality comparable to human professionals. Nature
Communications, 11(4381):1–15.
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A Statistics of training data

This section describes statistics of the training corpora.

ja-en Segments en Toks en Types

JParacrawl-v3 25.74M 682.78M 2.84M
NewsComm-v16 1.84k 45.28k 6.28k
WikiTitles-v3 757.04k 2.02M 281.88k
WikiMatrix 3.90M 72.32M 1.11M
JESC 2.80M 23.90M 161.38k
KFTT 440.29k 11.54M 190.88k
TED 241.74k 4.95M 64.04k
Total 33.88M 797.55M 3.75M

zh-en Segments en Toks en Types

ParaCrawl(bonus) 14.17M 253.78M 1.87M
NewsComm-v16 313.67k 7.98M 76.36k
WikiTitles-v3 921.96k 2.55M 380.23k
UNPC 17.45M 479.54M 939.62k
CCMT
WikiMatrix 2.60M 58.62M 1.06M
BackTrans News 19.76M 416.57M 1.19M
Total 55.22M 1.22B 4.01M

Table 19: Training data statistics for ja-en and zh-en. Only the English side statistics are reported, which are obtained after
running MosesDecoder’s tokenizer.perl, similar to Table 20.
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Corpus Name Segments Tokens Types
cs-en cs en cs en
Europarl-v10 644.43k 14.95M 17.38M 172.47k 63.27k
ParaCrawl-v9 50.63M 738.33M 805.54M 4.77M 4.53M
CommonCrawl 161.84k 3.53M 3.93M 210.48k 128.39k
NewsCommentary-v16 253.27k 5.67M 6.27M 176.38k 70.77k
WikiTitles-v3 410.94k 985.54k 1.07M 219.38k 186.37k
WikiMatrix 2.09M 34.82M 39.20M 1.07M 798.09k
Tilde Corpus 2.09M 44.03M 47.83M 349.78k 210.28k
CzEng 2.0 60.98M 757.32M 848.02M 3.68M 2.49M
BackTrans News 126.83M 2.35B 2.66B 5.75M 3.84M
Total 244.10M 3.95B 4.42B

de-en de en de en
Europarl-v10 1.82M 48.10M 50.47M 371.70k 113.91k
ParaCrawl-v9 278.31M 4.63B 4.90B 31.91M 15.99M
NewsCommentary-v16 388.48k 9.92M 9.83M 215.04k 86.50k
CommonCrawl 2.40M 54.68M 58.90M 1.64M 823.89k
WikiTitles-v3 1.47M 3.23M 3.76M 674.95k 573.28k
WikiMatrix 6.23M 114.22M 118.08M 2.86M 1.83M
Tilde Corpus 5.19M 118.11M 120.82M 986.37k 379.92k
Total 295.81M 4.98B 5.26B

fr-de fr de fr de
Europarl-v10 1.79M 55.33M 47.49M 144.80k 368.53k
ParaCrawl-v9 7.22M 145.20M 123.51M 1.53M 2.37M
CommonCrawl 622.29k 16.59M 14.23M 332.24k 578.30k
WikiTitles-v3 1.01M 2.54M 2.15M 449.70k 503.34k
NewsCommentary-v16 295.65k 9.34M 7.67M 92.30k 185.28k
Tilde Corpus 4.31M 118.15M 96.00M 391.10k 954.49k
WikiMatrix 3.35M 68.26M 59.85M 1.10M 1.85M
Total 18.60M 415.42M 350.90M

hr-en hr en hr en
ParaCrawl-v9 3.24M 80.75M 90.83M 1.05M 690.15k
Tilde Corpus 745.62k 14.38M 15.49M 196.78k 109.23k
OPUS 85.56M 928.96M 1.06B 5.26M 4.06M
Total 89.55M 1.02B 1.17B

ru-en ru en ru en
ParaCrawl-(bonus) 5.38M 99.01M 120.02M 1.73M 1.22M
BackTranslation enru 36.77M 799.38M 839.92M 3.78M 1.92M
Yandex Corpus 1.00M 22.26M 24.30M 697.02k 377.83k
CommonCrawl 878.39k 20.61M 21.54M 712.81k 432.62k
UN Parallel Corpus 985.72k 887.11k 893.73k 5.68k 5.54k
WikiTitles-v3 1.19M 3.24M 3.26M 534.43k 457.93k
NewsCommentary-v16 331.51k 8.37M 8.82M 206.54k 82.93k
WikiMatrix 5.20M 94.00M 102.94M 2.24M 1.59M
Tilde Corpus 34.27k 813.70k 855.68k 62.61k 28.93k
Total 51.77M 1.05B 1.12B

uk-en uk en uk en
ParaCrawl-(bonus) 13.35M 706.98M 721.28M 1.89M 1.26M
WikiMatrix 2.58M 43.76M 49.06M 1.40M 981.85k
Tilde 1.63k 39.93k 41.15k 8.38k 4.70k
ELRC EU Acts 129.94k 3.20M 3.46M 71.46k 33.52k
OPUS Corpus 48.94M 629.35M 704.32M 4.17M 2.89M
Total 65.01M 1.38B 1.48B

cs-uk cs uk cs uk
WikiMatirx 848.96k 12.30M 12.28M 586.14k 641.72k
OPUS 11.65M 124.21M 125.84M 1.44M 1.68M
ELRC EU Acts 130.00k 2.86M 3.14M 69.58k 71.67k
Total 12.63M 139.38M 141.26M

liv-en liv en liv en
Total (from OPUS) 0.77k 23.13k 14.21k 2.51k 2.43k

sah-ru sah ru sah ru
Total (from Yakut corpus) 30.15k 199.94k 225.95k 40.60k 40.64k

Table 20: Statistics for parallel training set provided for General/News Translation Task. All numbers are obtained after
running MosesDecoder’s tokenizer.perl. Tokens are the total number of words, whereas Types are total number of distinct
case-insensitive words. Suffixes, k, M, and B, are short for thousands, millions, and billions, respectively.
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B Differences in Human Scores

Tables 23–27 show differences in average standardized human scores for all pairs of competing to-English
systems for each language pair. The numbers in each of the tables’ cells indicate the difference in average
standardized human scores for the system in that column and the system in that row.

Because there were so many systems and data conditions the significance of each pairwise comparison
needs to be quantified. We applied Wilcoxon rank-sum test to measure the likelihood that such differences
could occur simply by chance. In the following tables ⋆ indicates statistical significance at p < 0.05,
† indicates statistical significance at p < 0.01, and ‡ indicates statistical significance at p < 0.001,
according to Wilcoxon rank-sum test.

Each table contains final rows showing the average score achieved by that system and the rank range
according to Wilcoxon rank-sum test (p < 0.05). Gray lines separate clusters based on non-overlapping
rank ranges.
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ONLINE-W - 0.08⋆ 0.08‡ 0.10‡ 0.14‡ 0.15‡ 0.15‡ 0.16‡ 0.22‡ 0.28‡ 0.42‡ 0.43‡
CUNI-DOCTRANSFORMER -0.08 - 0.01 0.02⋆ 0.06 0.07† 0.07† 0.08‡ 0.14‡ 0.20‡ 0.35‡ 0.36‡

LAN-BRIDGE -0.08 -0.01 - 0.01 0.05 0.06 0.07 0.08⋆ 0.14† 0.20‡ 0.34‡ 0.35‡
ONLINE-B -0.10 -0.02 -0.01 - 0.04 0.05 0.05 0.07 0.12† 0.18‡ 0.33‡ 0.34‡

JDEXPLOREACADEMY -0.14 -0.06 -0.05 -0.04 - 0.01 0.01 0.02 0.08† 0.14‡ 0.29‡ 0.30‡
ONLINE-A -0.15 -0.07 -0.06 -0.05 -0.01 - 0.00 0.01 0.07 0.13‡ 0.28‡ 0.29‡

CUNI-TRANSFORMER -0.15 -0.07 -0.07 -0.05 -0.01 0.00 - 0.01 0.07⋆ 0.13‡ 0.27‡ 0.29‡
ONLINE-G -0.16 -0.08 -0.08 -0.07 -0.02 -0.01 -0.01 - 0.06 0.12‡ 0.26‡ 0.27‡

SHOPLINE-PL -0.22 -0.14 -0.14 -0.12 -0.08 -0.07 -0.07 -0.06 - 0.06† 0.20‡ 0.21‡
ONLINE-Y -0.28 -0.20 -0.20 -0.18 -0.14 -0.13 -0.13 -0.12 -0.06 - 0.14‡ 0.16‡
HUMAN- -0.42 -0.35 -0.34 -0.33 -0.29 -0.28 -0.27 -0.26 -0.20 -0.14 - 0.01

ALMANACH-INRIA -0.43 -0.36 -0.35 -0.34 -0.30 -0.29 -0.29 -0.27 -0.21 -0.16 -0.01 -

score 0.13 0.06 0.05 0.04 -0.00 -0.01 -0.01 -0.03 -0.09 -0.14 -0.29 -0.30
rank 1 2–3 2–7 3–8 2–8 3–9 3–8 4–9 7–9 10 11–12 11–12

Table 21: Head to head comparison for Czech→English systems
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HUMAN-B - 0.16‡ 0.17‡ 0.20‡ 0.21‡ 0.22‡ 0.22‡ 0.22‡ 0.23‡ 0.24‡ 0.25‡ 0.26‡ 0.30‡
JDEXPLOREACADEMY -0.16 - 0.01 0.04 0.05 0.06⋆ 0.06⋆ 0.06 0.07† 0.08‡ 0.09‡ 0.10‡ 0.14‡

HUAWEITSC -0.17 -0.01 - 0.03 0.05 0.05 0.05⋆ 0.06 0.06† 0.08‡ 0.08‡ 0.09‡ 0.13‡
AISP-SJTU -0.20 -0.04 -0.03 - 0.02 0.02 0.02 0.03 0.04 0.05⋆ 0.05⋆ 0.06† 0.10‡

LANGUAGEX -0.21 -0.05 -0.05 -0.02 - 0.00 0.00 0.01 0.02 0.03⋆ 0.04⋆ 0.04† 0.09‡
ONLINE-A -0.22 -0.06 -0.05 -0.02 0.00 - 0.00 0.01 0.02 0.03⋆ 0.03⋆ 0.04† 0.08‡

DLUT -0.22 -0.06 -0.05 -0.02 0.00 0.00 - 0.01 0.02 0.03 0.03 0.04⋆ 0.08‡
ONLINE-B -0.22 -0.06 -0.06 -0.03 -0.01 -0.01 -0.01 - 0.01 0.02⋆ 0.03⋆ 0.03† 0.08‡
ONLINE-G -0.23 -0.07 -0.06 -0.04 -0.02 -0.02 -0.02 -0.01 - 0.01 0.02 0.02⋆ 0.07‡
ONLINE-W -0.24 -0.08 -0.08 -0.05 -0.03 -0.03 -0.03 -0.02 -0.01 - 0.01 0.01 0.06⋆

LAN-BRIDGE -0.25 -0.09 -0.08 -0.05 -0.04 -0.03 -0.03 -0.03 -0.02 -0.01 - 0.00 0.05⋆
ONLINE-Y -0.26 -0.10 -0.09 -0.06 -0.04 -0.04 -0.04 -0.03 -0.02 -0.01 0.00 - 0.04
NIUTRANS -0.30 -0.14 -0.13 -0.10 -0.09 -0.08 -0.08 -0.08 -0.07 -0.06 -0.05 -0.04 -

score 0.13 -0.03 -0.03 -0.06 -0.08 -0.08 -0.08 -0.09 -0.10 -0.11 -0.12 -0.12 -0.16
rank 1 2–6 2–7 2–9 2–9 3–9 4–11 2–9 4–11 8–12 8–12 10–13 12–13

Table 22: Head to head comparison for Chinese→English systems
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LAN-BRIDGE - 0.03⋆ 0.04† 0.06† 0.07‡ 0.09‡ 0.09‡ 0.10‡ 0.13‡ 0.13‡
ONLINE-W -0.03 - 0.02 0.03 0.05 0.06 0.07† 0.07⋆ 0.10‡ 0.10‡

JDEXPLOREACADEMY -0.04 -0.02 - 0.02 0.03 0.05 0.05† 0.05⋆ 0.09‡ 0.09†
ONLINE-G -0.06 -0.03 -0.02 - 0.01 0.03 0.03⋆ 0.03 0.07† 0.07⋆
ONLINE-A -0.07 -0.05 -0.03 -0.01 - 0.02 0.02 0.02 0.06† 0.06
HUMAN- -0.09 -0.06 -0.05 -0.03 -0.02 - 0.00 0.01 0.04† 0.04⋆
ONLINE-Y -0.09 -0.07 -0.05 -0.03 -0.02 0.00 - 0.00 0.04 0.04
ONLINE-B -0.10 -0.07 -0.05 -0.03 -0.02 -0.01 0.00 - 0.03⋆ 0.04

LT22 -0.13 -0.10 -0.09 -0.07 -0.06 -0.04 -0.04 -0.03 - 0.00
PROMT -0.13 -0.10 -0.09 -0.07 -0.06 -0.04 -0.04 -0.04 0.00 -

score 0.00 -0.02 -0.04 -0.06 -0.07 -0.09 -0.09 -0.09 -0.13 -0.13
rank 1 2–6 2–6 2–7 2–9 2–8 5–10 4–9 8–10 6–10

Table 23: Head to head comparison for German→English systems
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JDEXPLOREACADEMY - 0.01 0.02 0.05⋆ 0.05⋆ 0.06⋆ 0.07† 0.08† 0.09‡ 0.29‡
HUAWEITSC -0.01 - 0.01 0.03⋆ 0.04⋆ 0.04⋆ 0.05† 0.06† 0.08‡ 0.28‡

ONLINE-G -0.02 -0.01 - 0.02 0.03 0.04 0.04 0.05 0.07⋆ 0.27‡
LAN-BRIDGE -0.05 -0.03 -0.02 - 0.00 0.01 0.02 0.03 0.05⋆ 0.25‡

ONLINE-Y -0.05 -0.04 -0.03 0.00 - 0.01 0.02 0.03 0.04 0.24‡
SRPOL -0.06 -0.04 -0.04 -0.01 -0.01 - 0.01 0.02 0.04 0.23‡

ONLINE-B -0.07 -0.05 -0.04 -0.02 -0.02 -0.01 - 0.01 0.03 0.23‡
ONLINE-A -0.08 -0.06 -0.05 -0.03 -0.03 -0.02 -0.01 - 0.02 0.22‡
ONLINE-W -0.09 -0.08 -0.07 -0.05 -0.04 -0.04 -0.03 -0.02 - 0.20‡

ALMANACH-INRIA -0.29 -0.28 -0.27 -0.25 -0.24 -0.23 -0.23 -0.22 -0.20 -

score 0.06 0.04 0.03 0.01 0.01 -0.00 -0.01 -0.02 -0.04 -0.24
rank 1–3 1–3 1–8 3–8 3–9 3–9 3–9 3–9 5–9 10

Table 24: Head to head comparison for Russian→English systems
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DLUT - 0.00 0.01 0.02 0.02 0.02 0.05⋆ 0.06† 0.06† 0.09‡ 0.09‡ 0.10‡ 0.13‡ 1.35‡
NT5 0.00 - 0.01 0.01 0.02 0.02 0.05⋆ 0.06⋆ 0.06⋆ 0.09‡ 0.09† 0.10† 0.12‡ 1.35‡

JDEXPLOREACADEMY -0.01 -0.01 - 0.00 0.01 0.01 0.04 0.05 0.05 0.08† 0.08⋆ 0.09† 0.11‡ 1.34‡
LANGUAGEX -0.02 -0.01 0.00 - 0.01 0.01 0.04 0.05 0.05 0.07† 0.07⋆ 0.09† 0.11‡ 1.34‡

ONLINE-B -0.02 -0.02 -0.01 -0.01 - 0.00 0.03 0.04⋆ 0.04⋆ 0.07† 0.07⋆ 0.08† 0.10‡ 1.33‡
ONLINE-W -0.02 -0.02 -0.01 -0.01 0.00 - 0.03 0.04 0.04 0.06† 0.07⋆ 0.08† 0.10‡ 1.33‡

LAN-BRIDGE -0.05 -0.05 -0.04 -0.04 -0.03 -0.03 - 0.01 0.01 0.03 0.04 0.05 0.07† 1.30‡
ONLINE-G -0.06 -0.06 -0.05 -0.05 -0.04 -0.04 -0.01 - 0.00 0.02 0.03 0.04 0.06† 1.29‡
ONLINE-A -0.06 -0.06 -0.05 -0.05 -0.04 -0.04 -0.01 0.00 - 0.02 0.03 0.04 0.06† 1.29‡

AISP-SJTU -0.09 -0.09 -0.08 -0.07 -0.07 -0.06 -0.03 -0.02 -0.02 - 0.00 0.02 0.04 1.27‡
NAIST-NICT-TIT -0.09 -0.09 -0.08 -0.07 -0.07 -0.07 -0.04 -0.03 -0.03 0.00 - 0.01 0.04⋆ 1.26‡

ONLINE-Y -0.10 -0.10 -0.09 -0.09 -0.08 -0.08 -0.05 -0.04 -0.04 -0.02 -0.01 - 0.02 1.25‡
KYB -0.13 -0.12 -0.11 -0.11 -0.10 -0.10 -0.07 -0.06 -0.06 -0.04 -0.04 -0.02 - 1.23‡
AIST -1.35 -1.35 -1.34 -1.34 -1.33 -1.33 -1.30 -1.29 -1.29 -1.27 -1.26 -1.25 -1.23 -

score 0.07 0.07 0.06 0.05 0.05 0.05 0.02 0.01 0.01 -0.02 -0.02 -0.04 -0.06 -1.28
rank 1–6 1–6 1–9 1–9 1–7 1–9 3–12 4–12 4–12 7–13 7–12 7–13 11–13 14

Table 25: Head to head comparison for Japanese→English systems
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TARTUNLP - 0.04 0.06⋆ 0.10† 0.37‡
TAL-SJTU -0.04 - 0.02 0.07 0.33‡

HUAWEITSC -0.06 -0.02 - 0.04 0.31‡
LIV4EVER -0.10 -0.07 -0.04 - 0.27‡

NIUTRANS -0.37 -0.33 -0.31 -0.27 -

score 0.02 -0.01 -0.04 -0.08 -0.35
rank 1–2 1–4 2–4 2–4 5

Table 26: Head to head comparison for Livonian→English systems
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LAN-BRIDGE - 0.00 0.01⋆ 0.04⋆ 0.06† 0.07† 0.12‡ 0.13‡ 0.29‡
ONLINE-B 0.00 - 0.01† 0.04⋆ 0.06‡ 0.07‡ 0.12‡ 0.13‡ 0.29‡

HUAWEITSC -0.01 -0.01 - 0.03 0.05 0.06 0.11† 0.12† 0.28‡
ONLINE-A -0.04 -0.04 -0.03 - 0.02 0.03 0.08† 0.09† 0.25‡

PROMT -0.06 -0.06 -0.05 -0.02 - 0.01 0.06⋆ 0.07⋆ 0.24‡
ONLINE-G -0.07 -0.07 -0.06 -0.03 -0.01 - 0.05⋆ 0.06⋆ 0.22‡
ONLINE-Y -0.12 -0.12 -0.11 -0.08 -0.06 -0.05 - 0.01 0.17‡

ARC-NKUA -0.13 -0.13 -0.12 -0.09 -0.07 -0.06 -0.01 - 0.16‡
ALMANACH-INRIA -0.29 -0.29 -0.28 -0.25 -0.24 -0.22 -0.17 -0.16 -

score 0.05 0.05 0.04 0.01 -0.01 -0.02 -0.07 -0.08 -0.25
rank 1–2 1–2 3–6 3–6 3–6 3–6 7–8 7–8 9

Table 27: Head to head comparison for Ukrainian→English systems
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C Preprocessing cleanup brief for linguists

In this task, we wish to check the data to remove all inappropriate content, remove repetitive content, or
correct minor problems with the text.

The data is automatically broken down into individual sentences, which may be wrong sentence splitting.
Each document is separated by empty lines. Keep the document-separators intact, split long documents
into several by adding empty lines if necessary based on the context (some documents may be merged).
In general, documents should be under 30 sentences long.

In the first step, check if a document shouldn’t be removed (delete sentences from document) based on
the following conditions, be on the save side, rather remove documents where you are uncertain. The
conditions for removal of documents are as follows:

• Remove inappropriate content (such as sexually explicit, vulgar, or otherwise inappropriate)

• Remove controversial content (propagandist, controversial political topics, etc.)

• Remove content that is too noisy or doesn’t resemble natural text (such as documents badly for-
matted, hard to understand, containing unusual language, lists or other structured data generated
automatically)

• Remove repeated/similar content already part of previous documents

For documents that are not removed, do minor corrections (do not try reformulating the content). The
main goal is to make sure each line contains a single sentence (or is empty line which represent document
boundaries). The result should be documents that are fluent when reading. Here is a non-complete list of
phenomena to pay attention to:

• Each line must be a single sentence, remove anything that dangles around or doesn’t fit the context.
Also reconnect sentences that have been accidentally split (for example trailing words or punctuation
should be appended to the previous line).

• You may do small corrections to make the text cleaner (adding punctuation, correcting small typos,
etc.). If text would need more correction, remove whole document. Also, do not polish everything.

• Sentences containing a short phrase or single words that are not necessary for the context (like
"Description:" or emoticons like ":)") can be removed.
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D Translator Brief for General MT

Translator Brief  

In this project we wish to translate online news articles for use in evaluation of Machine 

Translation (MT). The translations produced by you will be compared against the translations 

produced by a variety of different MT systems.  They will be released to the research 

community to provide a benchmark, or “gold-standard” measure for translation quality. The 

translation therefore needs to be a high-quality rendering of the source text into the target 

language, as if it was news written directly in the target language. However, there are some 

constraints imposed by the intended usage:  

● All translations should be “from scratch”, without post-editing from MT. Using 

post-editing would bias the evaluation, so we need to avoid it. We can detect post-

editing so will reject translations that are post-edited.   

● Translation should preserve the sentence boundaries. The source texts are  

provided with exactly one sentence per line, and the translations should be the 

same, one sentence per line. Blank lines should be preserved in the translation.  

● Translators should avoid inserting parenthetical explanations into the translated 

text and obviously avoid losing any pieces of information from the source text.  

We will check a sample of the translations for quality, and we will check the entire set 

for evidence of post-editing.   

● Please do not translate the anonymization tags (e.g. #NAME#), but use the same 

form as in the source text. These tags are used to de-identify names and various 

other sensitive data. In other words, translation must contain given tag #NAME# on a 

position where it would naturally be placed before anonymization. 

  

The source files will be delivered as text files (sometimes known as “notepad” files), with one 
sentence per line. We need the translations to be returned in the same format. If you prefer 

to receive the text in a different format, then please let us know as we may be able to 

accommodate it.   
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E Additional statistics of the test sets

Table 28 shows the type-token ratios for the source and target side of each of the test sets, shown for each
available domain. As mentioned previously, texts are tokenised using the language-specific Spacy models
(Honnibal and Montani, 2017) where available. For Czech, Livonian and Yakut, for which Spacy models
are not available, we took as a rough approximation models for Croatian, Finnish and Russian respectively.
The type-token ratio is calculated as the number of unique tokens divided by the total number of tokens.
The absolute value depends not only on the lexical diversity of the text but also on the morphological
complexity of the language in question.

Type-token ratio (source) Type-token ratio (target)
conversation ecommerce news social other conversation ecommerce news social other

cs-en - - 0.40 0.38 - - - 0.21 0.22 -
cs-uk - - - - 0.34 - - - - 0.32
de-en 0.25 0.36 0.35 0.29 - 0.18 0.24 0.26 0.21 -
de-fr 0.25 0.36 0.35 0.29 - 0.20 0.24 0.26 0.23 -
en-cs 0.15 0.24 0.26 0.23 - 0.23 0.36 0.41 0.36 -
en-de 0.15 0.24 0.26 0.23 - 0.15 0.27 0.3 0.26 -
en-hr - 0.20 0.24 - - - 0.31 0.36 - -
en-ja 0.15 0.24 0.26 0.23 - 0.10 0.17 0.18 0.18 -
en-liv - - - - 0.25 - - - - 0.34
en-ru 0.15 0.24 0.26 0.23 - 0.21 0.35 0.39 0.33 -
en-uk 0.15 0.24 0.26 0.23 - 0.20 0.34 0.37 0.34 -
en-zh 0.15 0.24 0.26 0.23 - 0.13 0.22 0.26 0.25 -
fr-de 0.19 0.26 0.27 0.26 - 0.18 0.30 0.31 0.28 -
ja-en 0.24 0.20 0.23 0.24 - 0.24 0.24 0.26 0.24 -
liv-en - - - - 0.34 - - - - 0.25
ru-en - 0.44 0.35 - 0.43 - 0.26 0.20 - 0.27
ru-sah - - - - 0.34 - - - - 0.38
sah-ru - - - - 0.38 - - - - 0.34
uk-cs - - - - 0.28 - - - - 0.26
uk-en - - - - 0.28 - - - - 0.13
zh-en 0.24 0.30 0.25 0.27 - 0.17 0.21 0.17 0.20 -

Table 28: Type-token ratio for individual source languages used in the general translation test sets.

F News Task System Submission Summaries

F.1 AISP-SJTU (Liu et al., 2022)
This paper describes AISP-SJTU’s participation in WMT 2022 shared general mt task on English-
>Chinese, Chinese->English, English->Japanese and Japanese->English with constrained training data.
Our systems are based on the Transformer architecture with several novel and effective variants, including
network depth and internal structure. In our experiments, we employ data filtering, large-scale back-
translation, knowledge distillation, forward-translation, iterative in-domain knowledge finetune and model
ensemble.

F.2 AIST (no associated paper)
The model was trained similarly to Optimus (Li et al., 2020) with the difference of using BERT (Devlin
et al., 2019) for both encoding and decoding instead of BERT for encoding and GPT-2 for decoding as in
Optimus, therefore enabling non-autoregressive sequence-to-sequence modeling. We used the pre-trained
"bert-base-cased" configuration for English and the "bert-base-japanese" from CL Tohoku for Japanese.

F.3 ALMAnaCH-Inria (Alabi et al., 2022)
ALMAnaCH-Inria’s primary submissions are multilingual transformer models between English, Russian,
Ukrainian and Russian. The models exploit a dedicated Latin-script transcription convention designed
to represent the Slavic languages in a way that maximises character- and word-level correspondences
between them as well as with English. For directions where the target language is not English, this
involves a final translation step into the original script. Our hypothesis was that bringing the languages
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closer together could boost vocabulary sharing and have a positive impact on machine translation results.
Initial results indicate that the transcription strategy was not successful, resulting in lower results than
baselines. We nevertheless submit these models as our primary systems.

F.4 AMU (Nowakowski et al., 2022)
AMU submission is a weighted ensemble of 4 models based on the transformer-big architecture. Models
use source factors to utilize the information about named entities present in the input. Each of the
models in the ensemble was trained using only the data provided by the shared task organizers. A noisy
back-translation technique was used to augment the training corpora. One of the models in the ensemble
is a document-level model, trained on parallel and synthetic longer sequences. During the sentence-level
decoding process, the ensemble generated the n-best list (n=200). The n-best list was merged with the
n-best list (n=50) generated by a single document-level model which translated multiple sentences at a
time. Finally, existing quality estimation models and minimum Bayes risk decoding were used to rerank
the n-best list so that the best hypothesis is chosen according to the COMET evaluation metric.

F.5 ARC-NKUA (Roussis and Papavassiliou, 2022)
The ARC-NKUA submission to the WMT22 General Machine Translation shared task concerns the
unconstrained tracks of the English-Ukrainian and Ukrainian-English translation directions. The 2
Neural Machine Translation systems are based on Transformer models and our primary submissions were
determined through experimentation with (a) checkpoint averaging, (b) ensemble decoding, (c) continued
training with a subset of the training data, (d) data augmentation with back-translated monolingual data,
and (e) post-processing of the translation outputs. We used various techniques to clean and filter the data
provided by the organizers, as well as the additional parallel and monolingual data which we acquired
from various sources.

F.6 CUNI-Bergamot (Jon et al., 2022)
CUNI-Bergamot submission is based on block-backtranslation method and MBR decoding using neural
metrics. Block-BT is a method which switches between blocks of authentic parallel and backtranslated
data during training based on a predefined pattern. The paper compares various parameters of the block-
BT method: block size, checkpoint averaging methods, using only BT or also forward translation. The
authors also show that MBR decoding can profit from more diverse checkpoints created by this method,
as opposed to traditional mixed data training.

F.7 CUNI-DocTransformer (Jon et al., 2022)
Exactly the same as submitted in WMT20 (Popel, 2020), document-level Transformer trained with Block
Backtranslation.

F.8 CUNI-Transformer (Jon et al., 2022)
The English↔Czech sentence-level models are exactly the same as submitted in WMT20 (Popel,
2020). The Ukrainian↔Czech models are very similar, also trained with Block Backtranslation. The
Czech→Ukrainian system uses in addition special preprocessing (romanization of the Ukrainian side and
a novel vocabulary-based inline casing on both sides).

F.9 CharlesTranslator (Popel et al., 2022)
Charles Translator for Ukraine is a free Czech-Ukrainian online translation service available for the public
at https://translator.cuni.cz and as an Android app. It was developed at Charles University in
March 2022 to help refugees from Ukraine by narrowing the communication gap between them and other
people in the Czech Republic. It is based on Transformer and Block Backtranslation (Popel et al., 2020a).

F.10 DLUT (no associated paper)
We participate in the WMT 2022 general translation task in 2 language pairs and four language directions,
English-Chinese and English-Japanese. Our submission use standard Transformer bilingual models.
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We mainly improve performance by data filtering, large-scale data generation (i.e., back-translation,
forward-translation, knowledge distillation, R2L training), domain finetuning, model ensemble and
post-editing.

F.11 GTCOM (Zong and Bei, 2022)

This submission is based on Transformer architecture and involves data augmentation techniques.

F.12 HuaweiTSC (Wei et al., 2022)

This paper describes the submission of huawei translation services center (HW-TSC) to WMT22 general
MT translation task.

F.13 JDExploreAcademy (Zan et al., 2022)

We push the limit of our previous work – bidirectional training (Ding et al., 2021) for machine translation
by scaling up two main factors, i.e. language pairs and model sizes, namely the Vega-MT system.
As for language pairs, we scale the “bidirectional” up to the “multidirectional” settings, covering all
competitive high-resource languages, including en-de, en-cs, en-ru, en-zh, and en-ja, to exploit the
common knowledge across languages, and transfer them to the downstream bilingual tasks. As for model
size, we scale the transformer-big up to the extremely large model that owns nearly 4.7 Billion parameters,
to fully enhance the model capacity for our Vega-MT. Also, we adopt the widely-used data augmentation
strategies, e.g. back translation, knowledge distillation, cycle translation, and bidirectional self-training
to comprehensively exploit the bilingual and monolingual data. To adapt our Vega-MT to the general
domain test set, the noisy channel reranking and generalization tuning are employed.

F.14 KYB (Kalkar et al., 2022)

KYB team participated in the WMT22 general machine translation task on English-to-Japanese and
Japanese-to-English directions. Our submissions are based on the transformer model with base setting.
We employed several techniques to improve system’s performance, such as data cleaning and selection,
model ensembling/averaging, beam search, fine-tuning, and post-processing.

F.15 LT22 (Malli and Tambouratzis, 2022)

Our submission consists of translations produced from a series of NMT models of the following two
language pairs: german-to-english and german-to-french. All the models are trained using only the
parallel training data specified by WMT22. The models follow the transformer architecture employing
eight attention heads and six layers in both the encoder and decoder. It is also worth mentioning that, in
order to limit the computational resources that we would use during the training process, we decided to
train the majority of models by limiting the training to 21 epochs. Moreover, the translations submitted at
WMT22 have been produced using the test data released by the WMT22. The aim of our experiments has
been to evaluate methods for cleaning-up a parallel corpus to determine if this will lead to a translation
model producing more accurate translations. For each language pair, the base NMT models have been
trained from raw parallel training corpora, while the additional NMT models have been trained with
corpora subjected to a special cleaning process with the following tools: Bifixer and Bicleaner. It should
be mentioned that the Bicleaner repository doesn’t provide pre-trained classifiers for the above language
pairs, consequently we trained probabilistic dictionaries in order to produce new models. The fundamental
differences between these NMT models produced are mainly related to the quality and the quantity of the
training data, while there are very few differences in the training parameters. To complete this work, we
used the following three tools:(i) MARIAN NMT (Version: v1.11.5), which was used for the training of
the NMT models and (ii) Bifixer and (iii) Bicleaner, which were used in order to correct and clean the
parallel training data. Concerning the Bifixer and Bicleaner tools, we followed all the steps as described
meticulously in the relevant article.
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F.16 Lan-Bridge (Han et al., 2022)
Team Lan-Bridge’s submission are transformer base models. For non-Chinese language pairs, we trained
some multilingual models. For Chinese-English and English-Chinese, we train seperated models for each
direction.

F.17 LanguageX (Zeng, 2022)
LanguageX submission is an ensemble model equipped with our recent technique of fast domain adaptation
and data selection.

F.18 Liv4ever (Rikters et al., 2022)
The submitted translations were generated by an ensemble of three different iterations of multi-lingual
transformer models trained on Latvian, Estonian, English and Livonian data from the constrained track.
All parallel data were filtered (?) before training. After initial training the models were further improved
by performing iterative back-translation of batches of 200,000 sentences from each language to the other
languages (Livonian monolingual data was upscaled) for four iterations. The ensemble was composed of
the single best checkpoint from the last three iterations of the back-translation process.

F.19 NAIST-NICT-TIT (Deguchi et al., 2022)
This paper describes the NAIST-NICT-TIT submission to the WMT22 general machine translation task.
We participated in this task in the English-Japanese language pair. Our system is built on an ensemble of
Transformer big models, k-nearest-neighbor machine translation (kNN-MT) (Khandelwal et al., 2021),
and reranking.

Our base translation system is a combination of kNN-MT and an ensemble of four Transformer big
models. Each of the Transformer model instances is trained using a different random seed, and we reuse
one of the models for kNN-MT. A notable point of our system is that we construct the datastore for
kNN-MT from back-translated monolingual data. We find that using the back-translated data improves
translation performance when compared to using a parallel training corpus for the datastore.

We designed a reranking system to select a sentence from among the n-best sentences generated by
the base translation system. For each translation hypothesis, the reranker computes a weighted sum
of multiple model scores. It then selects the hypothesis with the highest score. We used k-best batch
MIRA (Cherry and Foster) to select the weights for the model scores that maximize the BLEU score of
the development set. We use context-aware model scores to improve the document-level consistency of
the translation.

F.20 NT5 (Morishita et al., 2022)
The NT5 team submission is standard ensemble Transformer models equipped with several extensions,
including our recent techniques, followed by a reranking module based on source-to-target, target-to-
source, and masked language models. We also applied data augmentation and selection techniques to
training data of the Transformer models.

F.21 NiuTrans (Shan et al., 2022)
This paper describes NiuTrans neural machine translation systems of the WMT22 General MT task with
constrained data sets. We participated in Chinese to English, English to Croatian, and Livonian-English
total of three tasks. We mainly utilized iterative back-translation, iterative knowledge distillation, and
iterative fine-tuning. We also use various Transformer variants to improve the model’s performance further,
e.g., ODE-Transformer, UMST. Moreover, we tried some multi-domain methods, such as multi-domain
model structure and multi-domain data clustering method, to adapt to this year’s multi-domain test set.
We also tried some methods to build a machine translation system using pre-trained language models.

F.22 OpenNMT (no associated paper)
In this paper, we first benchmark the mainstream translators on the English-to-German task by making sure
we take into account: - The changes that occurred in the WMT test sets starting 2019 - The post-processing

38



differences between systems - The recent research in automatic metrics beyond BLEU Over the past 3
years, WMT has shown that both OnlineW and FacebookAI have a clear lead in the human evaluations.
When looking at various metrics, we make the assumptions that one reason comes from the very good
fluency which exposes a low perplexity when measuring with a GPT-2 language model.

We will therefore try 3 types of experiments: 1) filter various datasets with a GPT-2 model to retain
only sentences under a given threshold. 2) Use a noisy channel decoding reranking method (used by
FacebookAI) and maybe by OnlineW since their API is way slower then G/M/A. 3) Use a GPT-2 large
model distillation during NMT training.

Given the training time of the last experiment we were not able to submit this system, however we will
continue and report results in the paper.

F.23 PROMT (Molchanov et al., 2022)
The PROMT systems are trained with the MarianNMT toolkit. All systems use the transformer-big
configuration. We use BPE for text encoding, the vocabulary sizes vary from 24k to 32k for different
language pairs. All systems are unconstrained. We use all data provided by the WMT organizers, all
publicly available data and some private data.

F.24 SRPOL (Dobrowolski et al., 2022)
We present the work of Samsung R&D Institute Poland in WMT 2022 General MT solution for medium
to low resource languages: Russian and Croatian. Our approach combines iterative back-translation with
noise and iterative distillation. We investigated different monolingual resources and compared their effects
on the final translation. We used available BERT-like models to classify texts and to distinguish text
domains. We attempted to predict ensemble weight vectors based on BERT-like domain classification for
individual sentences. The final models achieved quality comparable to the best online translators using
only limited resources during training.

F.25 TAL-SJTU (He et al., 2022)
TAL-SJTU submission is based on M2M100 (Fan et al., 2021a) with novel techniques that adapt it to the
target language pair: (1) We propose a cross-model word embedding alignment method that transfers a
pre-trained word embedding to M2M100, enabling it to support Livonian. (2) We also utilize Estonian
and Latvian languages as auxiliary languages for training and pivot languages for data augmentation.
(3) Finally, the best result was achieved after fine-tuning the model using the validation set and online
back-translation. In model evaluation: (1) We find that previous work (Rikters et al., 2022) underestimated
the translation performance of Livonian due to inconsistency in Unicode normalization, which may cause
a discrepancy of up to 19 BLEU score. (2) In addition to the standard validation set, we also employ
round-trip BLEU to evaluate the models, which we find a more appropriate way for this task.

F.26 TartuNLP (Tars et al., 2022)
TartuNLP’s submission is a model based on Transformers. Our main approach was utilizing large pre-
trained multilingual neural machine translation models, specifically the M2M-100 model (Fan et al.,
2021b). In our systems we used the 1.2 billion parameter model. We fine-tuned the pre-trained model
(more specifically we performed cross-lingual transfer learning) to our data, which consisted of WMT22
liv-en, en-liv data and other data from the Finno-Ugric language family for support. The main pipeline
was the following: fine-tuning with original parallel data, then two iterations of back-translation and
finally fine-tuning on original parallel data again.

F.27 eTranslation (Oravecz et al., 2022)
eTranslations’s Fr-De system is an ensemble of 4 big transformers, trained from all available parallel
data and with additional tagged, back-translated data generated from a 30M subset of various German
monolingual corpora. The monolingual and original parallel data is cleaned up and filtered with heuristic
rules. In the model trainings, the original parallel data is upsampled to a 1:1 ratio. Each transformer
model is then fine tuned for 3 epochs on the original parallel data. The models use a 32k SentencePiece
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vocabulary. The SentencePiece module as built in the Marian toolkit is used for end-to-end text processing,
without the standard pre- and postprocessing steps of truecasing, or (de)tokenization.

The En-Uk system is an ensemble of 4 multilingual (En -> Uk, Ru) big transformers, trained from all
available parallel data. Each transformer model is then fine tuned only on the En-Uk data for about 50
epochs and the best checkpoint is used in the ensemble. Vocabulary and pre/postprocessing settings are
the same as the Fr-De system. The En-Ru system is built with the same setup as the En-Uk, except it is an
ensemble of 3 models.

F.28 manifold (Jin et al., 2022)
Manifold’s English-Chinese System at WMT22 is an ensemble of 4 models, each trained by one of four
different configurations and fine-tuned by applying scheduled-sampling. The four configurations are
DeepBig (Xenc), DeepLarger (Xenc), DeepBigTalkingHeads (Xenc) and DeepBig (LaBSE). DeepBig is
an extension to TransformerBig, the only difference is the former has 24 encoder layers. DeepLarger has
20 encoder layers and its FFN dimension is 8192. *TalkingHead applies talking-heads trick. For Xenc
configs, we selected monolingual and parallel data that is similar to the past newstest datasets using Xenc,
and for LaBSE, we cleaned the officially provided parallel data using LaBSE pretrained model.

F.29 shopline-pl
The model we submitted is based on the query results of the transformer and its variants, which includes
the integration effect of different models and incorporates the reserved word mechanism.
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G Automatic scores

This section contains automatic metric scores. While human judgement is the official ranking of systems
and their performance, we share automatic scores to show expected system performance for various
testsets.

We use COMET (Rei et al., 2020) as the primary metric and ChrF (Popović, 2015) as the sec-
ondary metric, following recommendation by (Kocmi et al., 2021). We present BLEU (Papineni et al.,
2002) scores as it is still widely used metric. The COMET scores are calculated with the default
model wmt20-comet-da. The ChrF and BLEU scores are calculated using SacreBLEU with signature
(Post, 2018) is chrF2|nrefs:all|case:mixed|eff:yes|nc:6|nw:0|space:no|version:2.0.0.
Scores are multiplied by 100.

The different suffix represents the name of reference used for calculation (A, B, C, stud), references has
been translated by different translators but with the same sponsor. A notable difference is Czech-English,
where we are missing reference "A" for it’s low quality, which was partly corrected and placed under
"C". The second exception is Croatian reference "stud" which was created by students in contrast to
"A" prepared by professionals. Lastly, testsets liv-en and ru-sah are reverse testsets to their opposite
counterparts (i. e. "en" and "sah" are original sources)

Table 29: Automatic metric scores for en-cs.

System COMETB ↑ COMETC ChrFB ChrFC BLEUB BLEUC

Online-W 97.8 79.3 68.2 51.8 45.8 25.0
Online-B 97.5 76.6 69.0 52.7 48.2 27.0
CUNI-Bergamot 96.0 79.0 63.2 50.3 38.6 24.4
JDExploreAcademy 95.3 77.8 65.1 51.8 41.4 25.5
Lan-Bridge 94.7 73.8 68.2 52.3 45.6 25.9
Online-A 92.2 71.1 65.8 50.8 41.8 24.5
CUNI-DocTransformer 91.7 72.2 63.9 50.8 39.8 25.2
CUNI-Transformer 86.6 68.6 62.1 50.1 37.7 24.5
Online-Y 83.7 62.3 62.9 49.0 37.8 22.8
Online-G 82.3 61.5 62.8 49.0 38.1 22.7

Table 30: Automatic metric scores for en-de.

System COMETA ↑ COMETB ChrFA ChrFB BLEUA BLEUB

Online-W 65.5 64.4 64.1 62.7 36.6 35.3
JDExploreAcademy 63.2 62.5 64.3 63.8 37.8 38.2
Online-B 62.3 61.9 64.6 64.1 38.4 38.3
Online-Y 61.1 60.9 63.7 63.5 37.0 37.2
Online-A 60.6 60.0 63.9 63.6 36.5 37.2
Online-G 60.2 59.3 63.4 63.1 36.4 36.6
Lan-Bridge 58.8 58.3 64.1 63.7 36.1 36.5
OpenNMT 57.2 57.0 62.1 61.5 35.7 35.7
PROMT 55.8 55.3 62.8 62.2 36.1 36.0

Table 31: Automatic metric scores for en-hr.

System COMETA ↑ COMETstud ChrFA ChrFstud BLEUA BLEUstud

Online-B 80.4 77.6 58.5 57.6 31.5 29.8
Lan-Bridge 79.6 76.7 58.5 57.4 31.5 29.7
GTCOM 77.4 74.7 58.1 57.0 30.7 28.6
Online-A 69.5 67.1 56.5 55.9 29.1 28.1
SRPOL 69.4 67.6 56.3 55.6 29.1 27.8
HuaweiTSC 67.6 66.3 56.8 56.1 29.9 28.6
NiuTrans 65.5 63.4 56.3 55.6 29.3 28.1
Online-G 64.2 63.0 53.2 52.5 25.7 24.3
Online-Y 56.7 55.1 54.3 53.6 26.6 25.1
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Table 32: Automatic metric scores for en-ja.

System COMETA ↑ ChrFA BLEUA

JDExploreAcademy 65.1 36.1 41.5
NT5 64.1 36.8 42.5
LanguageX 62.1 36.1 41.7
Online-B 60.8 35.5 41.2
DLUT 60.5 36.1 41.8
Online-W 59.8 35.2 40.8
Online-Y 56.8 34.4 39.9
Lan-Bridge 56.5 34.1 39.4
Online-A 53.6 34.1 38.8
NAIST-NICT-TIT 53.3 33.8 39.2
AISP-SJTU 52.4 33.9 39.3
KYB 31.8 28.6 33.1
Online-G 24.9 28.0 32.1

Table 33: Automatic metric scores for en-liv.

System COMETA ↑ ChrFA BLEUA

TAL-SJTU -29.5 43.8 17.0
TartuNLP -36.8 39.2 15.0
HuaweiTSC -38.9 37.7 12.8
Liv4ever -39.4 39.6 14.7
NiuTrans -81.9 30.5 12.3

Table 34: Automatic metric scores for en-ru.

System COMETA ↑ ChrFA BLEUA

Online-W 75.1 58.3 32.4
Online-G 73.1 59.5 32.8
Online-B 72.9 59.7 34.9
Online-Y 69.8 58.3 33.2
JDExploreAcademy 69.6 58.4 32.7
Lan-Bridge 67.3 59.0 32.6
Online-A 67.3 58.1 33.1
PROMT 60.3 56.1 30.6
SRPOL 59.7 56.4 30.4
HuaweiTSC 59.2 56.1 30.8
eTranslation 57.9 55.8 29.8

Table 35: Automatic metric scores for en-uk.

System COMETA ↑ ChrFA BLEUA

Online-B 73.2 59.3 32.5
GTCOM 72.0 59.0 30.8
Online-G 69.9 57.2 27.2
Lan-Bridge 65.7 58.8 29.5
Online-A 60.9 56.0 28.0
eTranslation 54.5 54.8 26.2
HuaweiTSC 54.4 54.8 26.5
Online-Y 51.9 54.9 26.9
ARC-NKUA 49.2 54.0 25.2
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Table 36: Automatic metric scores for en-zh.

System COMETA ↑ COMETB ChrFA ChrFB BLEUA BLEUB

GTCOM 64.7 69.4 44.1 45.7 47.7 50.5
LanguageX 63.8 71.5 49.1 53.1 54.3 59.8
Online-B 61.8 80.4 44.4 68.6 49.1 73.7
JDExploreAcademy 61.7 70.6 44.6 51.1 49.7 57.6
Lan-Bridge 61.4 69.4 42.8 49.2 48.3 56.0
Online-W 61.0 69.5 41.1 47.7 44.8 52.6
Manifold 60.1 71.2 44.2 54.3 48.7 59.6
Online-Y 59.7 71.7 42.3 54.0 46.8 59.9
HuaweiTSC 59.5 73.1 44.5 58.1 49.7 64.4
Online-A 57.3 70.1 42.5 55.5 46.4 60.7
AISP-SJTU 56.5 66.6 43.9 50.9 48.8 57.3
DLUT 52.1 63.0 41.3 50.1 45.2 55.4
Online-G 51.2 62.5 39.4 49.8 43.9 55.2

Table 37: Automatic metric scores for cs-en.

System COMETB ↑ COMETC ChrFB ChrFC BLEUB BLEUC

Online-W 77.5 45.6 79.3 52.0 64.2 23.8
JDExploreAcademy 74.7 49.0 74.4 53.7 54.9 25.1
Lan-Bridge 71.8 47.2 74.0 54.0 54.5 25.5
Online-B 71.8 47.4 73.8 54.0 54.3 25.5
CUNI-DocTransformer 70.6 45.3 72.2 53.0 51.9 24.8
Online-A 69.8 44.3 73.4 53.4 53.3 25.0
CUNI-Transformer 69.2 43.2 71.7 52.0 51.6 23.9
Online-G 63.0 38.8 70.3 52.1 48.5 23.0
SHOPLINE-PL 61.1 39.6 69.2 53.2 46.8 24.6
Online-Y 58.6 35.2 67.9 51.5 44.6 23.1
ALMAnaCH-Inria 19.3 4.9 56.9 48.3 29.9 19.7

Table 38: Automatic metric scores for de-en.

System COMETA ↑ COMETB ChrFA ChrFB BLEUA BLEUB

JDExploreAcademy 58.0 63.5 58.5 61.8 33.7 35.8
Online-B 56.9 63.6 58.3 61.9 33.3 36.6
Lan-Bridge 56.5 63.6 58.5 62.3 33.4 37.0
Online-G 55.2 61.7 58.7 62.5 33.7 36.5
Online-Y 54.6 61.4 58.0 61.9 32.9 36.3
Online-A 54.5 62.2 58.4 62.7 33.3 37.2
Online-W 54.3 61.7 57.7 61.7 32.6 36.0
PROMT 51.8 59.4 57.8 62.1 32.5 36.6
LT22 25.6 33.3 51.3 55.7 26.0 30.9

Table 39: Automatic metric scores for ja-en.

System COMETA ↑ ChrFA BLEUA

NT5 42.0 51.3 26.6
Online-W 41.2 51.7 27.8
JDExploreAcademy 40.6 50.1 25.6
Online-B 39.6 49.9 24.7
DLUT 37.2 49.8 24.8
NAIST-NICT-TIT 33.4 48.3 22.7
Online-A 32.9 48.4 22.8
LanguageX 32.9 49.1 22.4
Online-Y 32.3 48.2 21.5
Lan-Bridge 31.9 48.7 22.8
AISP-SJTU 30.1 48.0 22.0
Online-G 22.3 45.7 19.7
KYB 17.3 43.4 18.1
AIST -152.7 11.4 0.1
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Table 40: Automatic metric scores for liv-en.

System COMETA ↑ ChrFA BLEUA

TartuNLP -5.8 53.5 29.9
TAL-SJTU -8.4 53.2 30.4
HuaweiTSC -27.3 48.4 23.4
Liv4ever -44.0 46.7 23.3
NiuTrans -88.3 35.6 13.0

Table 41: Automatic metric scores for ru-en.

System COMETA ↑ ChrFA BLEUA

Online-G 65.1 70.0 46.7
JDExploreAcademy 64.9 68.9 45.1
Online-Y 64.1 68.2 43.8
Lan-Bridge 63.1 68.5 45.2
Online-B 63.1 68.3 45.0
Online-A 62.2 68.3 43.9
Online-W 61.6 66.3 42.6
HuaweiTSC 60.9 68.5 45.1
SRPOL 59.5 67.2 43.6
ALMAnaCH-Inria 26.8 57.9 30.3

Table 42: Automatic metric scores for uk-en.

System COMETA ↑ ChrFA BLEUA

Online-B 62.5 67.2 44.4
Lan-Bridge 62.4 67.3 44.6
GTCOM 61.9 67.1 43.9
Online-G 57.4 66.0 43.2
Online-A 52.1 65.2 42.3
HuaweiTSC 50.1 63.9 41.6
Online-Y 49.8 64.6 41.8
PROMT 49.6 64.7 42.1
ARC-NKUA 49.6 64.6 41.9
ALMAnaCH-Inria 21.8 55.6 30.0

Table 43: Automatic metric scores for zh-en.

System COMETA ↑ COMETB ChrFA ChrFB BLEUA BLEUB

Online-G 45.6 36.2 59.7 54.1 29.6 21.7
JDExploreAcademy 45.1 35.2 61.1 54.1 33.5 22.3
LanguageX 44.9 35.3 60.5 54.2 31.9 22.1
Lan-Bridge 43.0 34.0 57.8 52.7 28.1 20.9
HuaweiTSC 42.8 33.5 58.5 52.8 29.8 21.7
Online-B 42.1 32.8 58.2 52.9 28.8 21.1
AISP-SJTU 41.6 32.8 59.2 53.8 29.7 21.4
Online-Y 40.8 31.0 57.6 52.1 27.1 19.8
Online-A 35.2 26.0 57.3 52.1 27.3 19.9
Online-W 31.6 23.1 54.5 49.9 24.0 18.0
NiuTrans 31.3 22.3 56.0 51.2 26.2 19.5
DLUT 30.6 22.0 55.2 50.5 25.0 18.6
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Table 44: Automatic metric scores for cs-uk.

System COMETA ↑ ChrFA BLEUA

AMU 99.4 61.5 34.7
Online-B 94.3 64.0 38.3
GTCOM 93.4 63.9 36.8
Lan-Bridge 91.8 64.0 38.3
CharlesTranslator 90.8 61.5 34.3
HuaweiTSC 90.7 62.6 36.0
CUNI-JL-JH 90.0 61.6 34.8
Online-G 88.3 60.8 32.5
Online-A 87.8 62.2 35.9
CUNI-Transformer 87.3 61.6 35.0
Online-Y 78.4 59.6 32.1
ALMAnaCH-Inria 61.3 54.5 26.8

Table 45: Automatic metric scores for de-fr.

System COMETA ↑ ChrFA BLEUA

Online-B 70.5 74.6 58.4
Online-W 63.6 65.5 43.6
Online-Y 57.8 66.8 46.2
Online-A 52.2 64.5 41.3
Online-G 44.8 62.7 39.0
LT22 10.4 54.4 28.3

Table 46: Automatic metric scores for fr-de.

System COMETA ↑ ChrFA BLEUA

Online-W 77.9 81.2 64.8
Online-B 63.7 68.7 46.6
Online-Y 61.6 67.5 45.0
Online-A 59.2 67.2 44.4
eTranslation 55.4 68.4 46.5
Lan-Bridge 51.1 65.0 41.8
Online-G 48.2 66.0 41.1

Table 47: Automatic metric scores for ru-sah.

System COMETA ↑ ChrFA BLEUA

Online-G -17.1 47.0 14.7
Lan-Bridge -124.3 11.3 0.0

Table 48: Automatic metric scores for sah-ru.

System COMETA ↑ ChrFA BLEUA

Online-G 31.1 55.5 29.6
Lan-Bridge -75.9 28.3 7.1

Table 49: Automatic metric scores for uk-cs.

System COMETA ↑ ChrFA BLEUA

AMU 104.8 60.7 37.0
Online-B 96.5 60.3 36.4
Lan-Bridge 94.5 60.4 36.5
HuaweiTSC 91.4 59.6 36.0
CharlesTranslator 90.2 59.0 35.9
CUNI-JL-JH 89.0 58.7 35.1
CUNI-Transformer 88.5 59.0 35.8
Online-A 85.4 57.5 33.3
Online-G 84.2 56.3 31.5
GTCOM 80.2 55.8 31.3
Online-Y 78.6 55.3 29.6
ALMAnaCH-Inria 62.4 50.7 25.3
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Abstract

This paper presents the results of the WMT22
Metrics Shared Task. Participants submitting
automatic MT evaluation metrics were asked
to score the outputs of the translation systems
competing in the WMT22 News Translation
Task on four different domains: news, social,
e-commerce, and chat. All metrics were eval-
uated on how well they correlate with human
ratings at the system and segment level. Similar
to last year, we acquired our own human rat-
ings based on expert-based human evaluation
via Multidimensional Quality Metrics (MQM).
This setup had several advantages, among other
things: (i) expert-based evaluation is more reli-
able, (ii) we extended the pool of translations
by 5 additional translations based on MBR de-
coding or rescoring which are challenging for
current metrics.

In addition, we initiated a challenge set subtask,
where participants had to create contrastive test
suites for evaluating metrics’ ability to capture
and penalise specific types of translation errors.

Finally, we present an extensive analysis on
how well metrics perform on three language
pairs: English→German, English→Russian
and Chinese→English. The results demon-
strate the superiority of neural-based learned
metrics and demonstrate again that overlap met-
rics like BLEU, SPBLEU or CHRF correlate
poorly with human ratings. The results also
reveal that neural-based metrics are significant
better than non-neural metrics across different
domains and challenges.

1 Introduction

The metrics shared task1 has been a key component
of WMT since 2008, serving as a way to validate
the use of automatic MT evaluation metrics and
drive the development of new metrics. We eval-
uate reference-based automatic metrics that score
MT output by comparing the translations with a

1https://wmt-metrics-task.github.io/

reference translation generated by human transla-
tors, who are instructed to translate “from scratch”
without post-editing from MT. In addition, we also
invited submissions of reference-free metrics (qual-
ity estimation metrics or QE metrics) that compare
MT outputs directly with the source segments. All
metrics are evaluated based on their agreement with
human rating when scoring MT systems and hu-
man translations at the system or sentence level.
The final ranking of this year’s submitted primary
metrics is shown in Table 1. We provide details in
the remainder of the paper.

Metric avg rank

METRICX XXL 1.20
COMET-22 1.32
UNITE 1.86
BLEURT-20 1.91
COMET-20 2.36
MATESE 2.57
COMETKIWI* 2.70
MS-COMET-22 2.84
UNITE-SRC* 3.03
YISI-1 3.27
COMET-QE* 3.33
MATESE-QE* 3.85
MEE4 3.87
BERTSCORE 3.88
MS-COMET-QE-22* 4.06
CHRF 4.70
F101SPBLEU 4.97
HWTSC-TEACHER-SIM* 5.17
BLEU 5.31
REUSE* 6.69

Table 1: Official ranking of all primary submissions of
the WMT22 Metric Task. The final score is the weighted
average ranking over 201 different scenarios. Metrics
with * are reference-free metrics.

We implemented several changes to the method-
ology that was followed in previous years’ editions:

• Expert-based human evaluation: Like last year,
we collected our own human ratings for select
language pairs (en→de, en→ru, zh→en) from
professional translators via MQM (Lommel et al.,
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2014). Freitag et al. (2021a) showed that expert-
based MQM evaluations produce more reliable2

scores when compared to the DA-based human
ratings acquired by the WMT Translation task.
This step was necessary as Freitag et al. (2021a)
showed that the DA-based ground-truth is already
of lower quality than some of our submissions
(Section 3).

• Additional Training Data: We encouraged the
participants to make use of existing MQM anno-
tations for newstest2020 (Freitag et al., 2021a)3,
and the MQM annotations from the WMT21 Met-
rics Task (Freitag et al., 2021b) to improve and/or
test their metrics.

• Additional MT systems: The primary use case
for automatic metrics is guiding research to trans-
lations that are better than what we can generate
right now. To address this scenario, we not only
want to evaluate metrics on MT output that we
are currently capable of generating, but also on
translations that are better than the current WMT
submissions. For that we need to add alternative
translations that cover a wider space of possible
translations. To address this, we added MT sys-
tems that were generated with MBR decoding or
reranking (Section 2.2).

• Challenge sets subtask: In the main metrics task,
the metrics are evaluated on MT systems translat-
ing test sets drawn from large sources of continu-
ous text. In an effort to have a more fine-grained
analysis on the strengths and weaknesses of the
metrics, we introduced the concept of challenge
sets. A challenge set consists of contrasting MT
outputs, which have been deliberately devised or
selected to include correct and incorrect transla-
tions of particular phenomena, along with their
respective reference translation. The evaluation
of every metric in this setup depends on its ability
to rank the correct translations higher than their
corresponding incorrect ones. Whereas a first
version of challenge sets appeared in last year’s
metrics shared task (Freitag et al., 2021b), this
year they appear for the first time as a subtask in a
decentralized manner. Inspired by the Build it or

2DA is unreliable for high-quality MT output; ranks human
translations lower than MT; correlates poorly with metrics.
Expert-based MQM ranks human translations higher than MT
and correlates generally much better with automatic metrics.

3https://github.com/google/
wmt-mqm-human-evaluation

break it: The Language Edition shared task (Et-
tinger et al., 2017), participants (the Breakers)
had to submit their own test suites to test the ro-
bustness of MT metrics to particular phenomena
that they choose. Our first edition of this subtask
(Section 8) received four challenge set submis-
sions covering a wide range of phenomena and
languages.

• Meta Evaluation: A main aim of the metrics
task is to rank the overall performance of various
metrics. This requires some way of aggregating
scores across different settings (language pair, do-
main, granularity etc.), in order to provide a bal-
anced picture. Correlations with human scores
have different ranges in different settings, so aver-
aging them is not a good solution. Last year, we
adopted a proposal by Kocmi et al. (2021) that
involves taking the microaverage of a metric’s
accuracy in making pairwise system-ranking de-
cisions across different settings. This is easy to
interpret and reflects a common use-case for met-
rics, but because we have only three language
pairs, and thus relatively few pairwise compar-
isons, it tends to place many metrics into large
significance clusters (eg, 8 metrics in the top
cluster last year, including CHRF but excluding
COMET). In an effort to better discriminate, and
to represent a broader set of use-cases, this year
we computed the average rank of each metric
across a large set of tasks (Section 5). This statis-
tic has a clear interpretation, is justified by social
choice theory (Colombo et al., 2022), and makes
it easy to zoom into different subsets of tasks to
provide finer-grained characterizations. To re-
flect the importance of the accuracy metric from
last year, we define it as a single highly-important
task (out of 201 tasks in total), with an overall
weight of 25%.

• MTME: Similar to last year, all results in this
paper are calculated with MTME4. We want to
encourage every metric developer to use this tool
to calculate scores for consistency and compara-
bility going forward.

Our main findings are:

• Out of 13 reference-based metrics BLEU is
ranked last, followed by F200SPBLEU and
CHRF.

4https://github.com/google-research/
mt-metrics-eval
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• Neural fine-tuned metrics are not only bet-
ter, but also robust to different domains.
Furthermore, based on the results from the
four submitted challenge sets, neural fine-
tuned metrics exhibit superior performance
when compared to lexical and embedding sim-
ilarity metrics.

• Top performing metrics from previous years
are still top-performers, being only outper-
formed by model ensembles or metrics based
on considerably larger neural models.

• For the first time since 2008, there was no
new purely lexical metric submission, which
indicates that metric developers are moving
away from lexical metrics.

The rest of the paper is organized as follows: Sec-
tion 2 describes the additional MT systems. Sec-
tion 3 presents an overview of the conducted expert-
based human evaluation. Section 4 describes the
metrics evaluated this year (baselines and partici-
pants). Section 5 describes the conducted meta-
evaluation. Section 6 reports our main results.
Section 7 summarizes our results for additional
WMT22 Translation task language-pairs based on
their Direct Assessment human evaluation. Sec-
tion 8 presents a description of the submitted chal-
lenge sets along with their findings. Finally, Sec-
tion 9 presents our most relevant conclusions.

2 Translation Systems

Similar to the previous years’ editions, the source,
reference texts, and MT system outputs for the
metrics task are mainly derived from the WMT22
general MT Task. In addition to the MT system
outputs from the WMT evaluation campaign, we
added translations from six additional MT systems
which we deemed interesting for evaluation.

2.1 WMT Test Sets
The general MT 2022 test set contains around 2000
segments for each translation direction. This year,
the test sets cover 4 domains: news, social, con-
versational, and e-commerce. There are around
500 sentences for each domain resulting in rea-
sonably balanced test sets. English sources are
identical for both into-German and into-Chinese
translation directions. The reference translations
provided for the test sets are translated by profes-
sional translators. We have two reference transla-
tions for English→German and Chinese→English

sponsored by Microsoft and one reference trans-
lation for English→Russian sponsored by Google.
For more details regarding the news test sets, we
refer the reader to the WMT22 General MT task
findings paper (Kocmi et al., 2022a).

2.2 Additional MT Output
Similar to last year, we want to expand the pool of
translations beyond the WMT submissions, which
usually are quite similar to each other. We added
translations based on M2M100 and translations
generated with MBR decoding.

M2M100 1.2B As the field moves forward to
large multilingual pre-trained models, we are in-
terested in comparing such general-purpose large
multilingual MT systems against direct submis-
sions to the general MT task. Models such as
MBART50 (Tang et al., 2021) and M2M100 (Fan
et al., 2021) are publicly available, easy to use and
have recently been used as baselines and/or as a
backbone for new research. We tested both mod-
els on the newstest2021 and we decided to include
M2M100 1.2B as an additional MT output as it
yielded better automatic scores.

MBR Outputs Minimum Bayes Risk (MBR) de-
coding has recently gained attention in MT as a de-
cision rule, with the potential to overcome some of
the biases of MAP decoding in NMT (Eikema and
Aziz, 2020; Müller and Sennrich, 2021; Eikema
and Aziz, 2021; Freitag et al., 2022; Fernandes
et al., 2022). MBR decoding centrally relies on a
reference-based utility metric: its goal is to identify
a hypothesis with a high estimated utility (expecta-
tion under model distribution) with the hope that a
high estimated utility translates into a high actual
utility (with respect to a human reference). MBR
decoding is particularly interesting for reference-
based metrics as it stress tests the metric, using it
as a utility function.

This year, we added three different MBR
runs using three different utility functions (BLEU,
BLEURT-20, and COMET-20) as additional trans-
lations. Freitag et al. (2022) demonstrated that
the translations generated with a neural-based util-
ity (BLEURT-20, and COMET-20) generate trans-
lations that are not only better when compared
to MAP decoding, but the resulting translations
are also significantly different from both the beam
search decoding and the MBR decoding output us-
ing BLEU as a utility function. To make it even
more interesting for the metric task, for these MBR
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translation models we used a transformer-big base-
line trained only on WMT22 bilingual training data.
By not using the strongest NMT system, we hope to
see interesting new errors in the translation output.
To generate the candidate list for MBR decoding,
we sampled 256 times from the model using unbi-
ased ancestral sampling.

Reranking Outputs Complementary to MBR
outputs, we were also interested in comparing
and evaluating the quality produced by rerank-
ing approaches based on QE. Our hope is that
QE based reranking would lead to translations
that are lexically different than traditional beam
search output and thus lead to more diverse
translations for the same source sentences. For
English→German and English→Russian we used
the Fairseq WMT19 systems5 (Ng et al., 2019) with
Nucleus Sampling (Holtzman et al., 2019) to gen-
erate 200 candidate translations, from which we
choose the best translation according to the Tune
Reranker proposed in Fernandes et al. (2022). For
Chinese→English we used the same process but
replacing the NMT model with MBART50 (many-
to-one) and using only 50 samples.

3 MQM Human Evaluation

Automatic metrics are usually evaluated by measur-
ing correlations with human ratings. The quality of
the underlying human ratings is critical and recent
findings (Freitag et al., 2021a) have shown that
crowd-sourced human ratings are not reliable for
high quality MT output. Furthermore, an evalua-
tion schema based on MQM (Lommel et al., 2014),
which requires explicit error annotation, is prefer-
able to an evaluation schema that only asks raters
for a single scalar value per translation. Similar to
last year, we decided to not use the human ratings
from the WMT General MT task, and conducted
our own MQM-based human evaluation on a subset
of submissions and a subset of language pairs that
are most interesting for evaluating current metrics.
This not only had the advantage of more reliable
ratings for a subset of language pairs, but also gave
us the opportunity to add our own translations that
might be challenging for current metrics and are
not part of an WMT submission.

MQM is a general framework that provides a
hierarchy of translation errors which can be tai-
lored to specific applications. Google and Unba-

5https://github.com/facebookresearch/
fairseq/tree/main/examples/wmt19

bel sponsored the human evaluation for this year’s
metrics task for a subset of language pairs using
either professional translators (English→German,
Chinese→English) or trusted and trained raters
(English→Russian). The error annotation typology
and guidelines used by Google’s and Unbabel’s
annotators differ slightly and are described in the
following two sections.

3.1 English→German and Chinese→English

Annotations for English→German and
Chinese→English were sponsored and exe-
cuted by Google, using 11 professional translators
(7 for English→German, 4 for Chinese→English)
having access to the full document context. Each
segment gets annotated by a single rater. Instead
of assigning a scalar value to each translation, an-
notators were instructed to label error spans within
each segment in a document, paying particular
attention to document context. Each error was
highlighted in the text, and labeled with an error
category and a severity. To temper the effect of
long segments, we imposed a maximum of five
errors per segment, instructing raters to choose the
five most severe errors for segments containing
more errors. Segments that are too badly garbled
to permit reliable identification of individual errors
are assigned a special Non-translation error. Error
severities are assigned independent of category,
and consist of Major, Minor, and Neutral levels,
corresponding respectively to actual translation
or grammatical errors, smaller imperfections and
purely subjective opinions about the translation.
Since we are ultimately interested in scoring
segments, we adopt the weighting scheme shown
in Table 2, in which segment-level scores can
range from 0 (perfect) to 25 (worst). The final
segment-level score is an average over scores from
all annotators. For more details, exact annotator
instructions and a list of error categories, we refer
the reader to Freitag et al. (2021a) as the exact
same setup was used for the WMT21 metrics task.

Severity Category Weight

Major Non-translation 25
all others 5

Minor Fluency/Punctuation 0.1
all others 1

Neutral all 0

Table 2: Google’s MQM error weighting.
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3.2 English→Russian

The annotations for English→Russian were pro-
vided by Unbabel who utilized four professional,
native language annotators with ample translation
experience. Annotation was conducted using Un-
babel’s own proprietary variant of the MQM frame-
work (Lommel et al., 2014) which is fully compli-
ant with MQM 2.0, being the most recent iteration
of the framework6. Annotation was split along
the four domain boundaries with each of the an-
notators evaluating all of the systems for a single
content type. Similarly to Google, the annotators
were given the full document context (up to ten
segments) and were instructed to identify (by high-
lighting) and classify errors in accordance with the
MQM typology. Annotators were also asked to
classify error severity; in addition to Minor and
Major error severities used by Google, Unbabel
also uses a Critical error severity. However, in
the interest of maintaining consistency in evalua-
tion, we calculated the MQM score in a manner
compliant with the Google methodology outlined
above. Specifically all annotated Critical errors
were counted as Major and punctuation errors were
weighted using the weighting scheme in Table 2.

3.3 Human Evaluation Results

As discussed in Section 1, we decided to run our
own human evaluation in order to generate our
golden-truth ratings and come to stronger conclu-
sions about the quality of each automatic metric
across all domains. However, this also meant that
we were only able to evaluate a subset of the test
sets. In Table 3, you can see the number of seg-
ments for each language pair and test set that we
used for human evaluation. We followed a simple
and consistent approach to downsample the data:
we kept the first 10 sentences of each document.
By doing this, we did not need to discard any docu-
ments and only needed to crop longer documents.
An exception is Chinese→English where we evalu-
ated the full test set.

language news social ecomm. conv.

en→de 300/511 340/512 230/530 445/484
en→ru 300/511 340/512 230/530 445/484
zh→en 505/505 503/503 518/518 349/349

Table 3: Numbers of MQM-annotated segments per
domain.

6https://themqm.org/

The results of the MQM human evaluation
can be seen in Table 4. Most of the reference
translations are ranked first, except for refB for
English→German. Not ranking the human evalua-
tion on top of the MT output is usually a signal for
a corrupt human evaluation. We double checked
the annotation for refB and can confirm that the
reference translation indeed contained some errors.

4 Baselines and Primary Submissions

We computed scores for several baseline metrics
in order to compare submissions against previous
well-studied metrics. We will start by describing
those baselines and then we will describe the sub-
missions from participating teams. An overview of
the evaluated metrics can be seen in Table 5.

4.1 Baselines
SacreBLEU baselines We use the following met-
rics from the SacreBLEU (Post, 2018) as baselines:

• BLEU (Papineni et al., 2002) is based on the
precision of n-grams between the MT output
and its reference weighted by a brevity penalty.
Using SacreBLEU we obtained sentence-
BLEU values using the sentence_bleu
Python function and for corpus-level BLEU

we used corpus_bleu (both with default
arguments7).

• F101SPBLEU (Goyal et al., 2022) and
F200SPBLEU (NLLB Team et al., 2022) are
BLEU scores computed with subword tok-
enization done by standardized Sentencepiece
Models (Kudo and Richardson, 2018). We
used the command line SacreBLEU to com-
pute the sentence level F101SPBLEU8 and
F200SPBLEU9 and we average those scores
to obtain a corpus-level score.

• CHRF (Popović, 2015) uses character n-
grams instead of word n-grams to compare
the MT output with the reference. For CHRF
we used the SacreBLEU sentence_chrf
function (with default arguments10) for
segment-level scores and we average those
scores to obtain a corpus-level score.

7lnrefs.1|case.mixed|lang.LANGPAIR|tok.13a|smooth.exp
|version.1.5.0

8nrefs:1|case:mixed|eff:yes|tok:flores101|smooth:exp| ver-
sion:2.3.1

9nrefs:1|case:mixed|eff:yes|tok:flores200|smooth:exp| ver-
sion:2.3.1

10chrF2|lang.LANGPAIR|nchars.6|space.false|version.1.5.0
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English→German ↓
System all news social ecom. conv.

refA 0.64 0.97 0.68 0.56 0.42
Online-W 0.79 0.95 0.74 0.93 0.65
refB 0.91 1.38 0.93 1.17 0.46
MBR-bleu 0.96 1.29 1.14 0.82 0.67
Online-B 1.04 1.44 1.27 0.88 0.67
JDExploreAcademy 1.05 1.36 1.21 1.20 0.64
MBR-comet 1.08 1.40 1.33 1.01 0.71
MBR-bleurt 1.11 1.55 1.41 0.72 0.78
Online-A 1.21 1.40 1.55 1.35 0.76
Online-G 1.22 1.78 1.51 1.17 0.66
Online-Y 1.30 1.99 1.45 1.02 0.86
QUARTZ 1.34 1.85 1.59 1.10 0.94
Lan-Bridge 1.41 2.43 1.72 1.09 0.65
OpenNMT 1.68 1.98 2.14 1.73 1.09
PROMT 1.76 2.41 1.94 1.56 1.27
M2M100 2.82 3.46 2.99 2.94 2.19

Chinese→English ↓
System all news social ecom. conv.

refA 1.22 1.42 1.10 1.42 0.82
refB 2.00 2.18 1.83 1.69 0.96
Lan-Bridge 2.47 2.45 1.97 3.55 1.39
MBR-bleurt 2.51 2.52 2.06 3.68 1.55
Online-B 2.71 2.66 2.07 3.73 1.55
LanguageX 2.74 2.74 2.46 3.78 1.58
JDExploreAcademy 2.83 2.84 2.56 3.81 1.60
MBR-comet 2.87 2.88 2.63 3.98 1.61
Online-G 2.93 2.90 2.73 4.16 1.63
MBR-bleu 3.00 2.94 2.77 4.22 1.64
HuaweiTSC 3.09 2.96 2.80 4.30 1.68
AISP-SJTU 3.19 3.08 2.89 5.03 1.76
Online-Y 3.28 3.27 3.03 5.20 1.79
Online-A 3.73 3.49 3.48 5.39 2.04
Online-W 3.95 3.96 3.60 5.76 2.30
M2M100 6.82 7.47 5.78 9.37 3.61

English→Russian ↓
System all news social ecom. conv.

refA 1.13 0.43 2.17 1.95 0.39
Online-W 1.37 1.35 2.96 0.90 0.41
MBR-bleu 1.85 1.57 4.01 1.39 0.63
Online-B 1.94 1.59 4.29 1.37 0.68
Online-G 2.03 1.50 4.33 1.88 0.71
JDExploreAcademy 2.09 1.14 4.63 2.23 0.71
MBR-comet 2.10 2.01 4.74 1.26 0.57
Lan-Bridge 2.34 2.14 5.49 1.49 0.51
Online-Y 2.55 2.06 5.79 1.66 0.86
Online-A 2.85 1.83 6.56 2.62 0.83
PROMT 2.94 2.04 6.88 2.55 0.73
HuaweiTSC 3.40 1.72 8.07 3.02 1.17
SRPOL 3.68 2.02 8.19 3.53 1.43
eTranslation 3.79 2.30 8.54 3.49 1.32
QUARTZ 4.06 3.82 7.02 5.03 1.46
M2M100 4.56 3.74 9.27 4.42 1.58

Table 4: MQM human evaluations for generaltest2022. Lower average error counts represent higher MT quality.

BERTSCORE (Zhang et al., 2020) leverages
contextual embeddings from pre-trained transform-
ers to create soft-alignments between words in can-
didate and reference sentences using cosine similar-
ity. Based on the alignment matrix, BERTSCORE

returns a precision, recall and F1 score. We used
F1 without TF-IDF weighting.

YISI-1 (Lo, 2019) is a MT evaluation metric that
measures the semantic similarity between a ma-
chine translation and human references by aggre-
gating the IDF-weighted lexical semantic similari-
ties based on the contextual embeddings extracted
from pre-trained language models (e.g. RoBERTa,
CamemBERT, XLM-RoBERTa, etc.).

BLEURT (Sellam et al., 2020) is a learned met-
ric that is fine-tuned to produce a DA for a given
translation by encoding it jointly with its refer-
ence. We used the BLEURT20 checkpoint (Pu et al.,
2021) which was trained on top of RemBERT us-

ing DA from previous shared tasks ranging 2015
to 2019 and additional synthetic data created from
Wikipedia articles.

COMET (Rei et al., 2020) is a learnt metric that
is fine-tuned to produce a z-standardized DA for
a given translation by comparing its representa-
tion to source and reference embeddings. We used
the default model wmt20-comet-da provided
in version 1.1.2 which is trained on top of XLM-R
large using data from from previous shared tasks
ranging 2017 to 2019.

COMET-QE (Rei et al., 2021) is a reference-
free learnt metric similar to COMET. We used
the wmt21-comet-qe-mqm) model which was
a top-performing metric from last year’s shared
task. This metric is first trained on z-standardized
DA from 2017 to 2020 and then fine-tuned on z-
standardized MQM from (Freitag et al., 2021a).
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metric broad category sup-
erv.

ref.
free

citation availability (https://github.com/)
ba

se
lin

es

BLEU lexical overlap Papineni et al. (2002) mjpost/sacrebleu

F101SPBLEU lexical overlap Goyal et al. (2022) mjpost/sacrebleu

F200SPBLEU lexical overlap NLLB Team et al.
(2022)

mjpost/sacrebleu

CHRF lexical overlap Popović (2015) mjpost/sacrebleu

BERTSCORE embedding similarity Zhang et al. (2020) Tiiiger/bert_score

BLEURT fine-tuned metric ✓ Sellam et al. (2020) google-research/bleurt

COMET fine-tuned metric ✓ Rei et al. (2020) Unbabel/COMET

COMET-QE fine-tuned metric ✓ ✓ Rei et al. (2021) Unbabel/COMET

YISI-1 embedding similarity Lo (2019) chikiulo/yisi

pr
im

ar
y

su
bm

is
si

on
s

COMET-22 fine-tuned metric ✓ Rei et al. (2022) Unbabel/COMET

COMETKIWI fine-tuned metric ✓ ✓ Rei et al. (2022) Unbabel/COMET

EE-BERTSCORE embedding similarity Liu et al. (2022) (not available)
KG-BERTSCORE embedding similarity ✓ Liu et al. (2022) (not available)
MATESE fine-tuned metric ✓ Perrella et al. (2022) (not available)
MATESE-QE fine-tuned metric ✓ ✓ Perrella et al. (2022) (not available)
MEE4 lexical & embedding

similarity
Mukherjee and Shri-
vastava (2022b)

AnanyaCoder/WMT22Submission

METRICX XXL fine-tuned metric ✓ (not available)
MS-COMET fine-tuned metric ✓ Kocmi et al. (2022b) MicrosoftTranslator/MS-Comet

MS-COMET-QE fine-tuned metric ✓ ✓ Kocmi et al. (2022b) MicrosoftTranslator/MS-Comet

REUSE embedding similarity ✓ Mukherjee and Shri-
vastava (2022a)

AnanyaCoder/WMT22Submission_REUSE

TEACHER-SIM fine-tuned metric ✓ ✓ Liu et al. (2022) (not available)
SESCORE fine-tuned metric Xu et al. (2022) xu1998hz/SEScore

UNITE fine-tuned metric ✓ Wan et al. (2022b) NLP2CT/UniTE

Table 5: Baseline metrics and primary submissions for the metrics task. We categorize metrics into 3 major classes:
lexical, embedding similarity and fine-tuned metrics. Regarding fine-tuned metrics we have metrics that use human
quality scores such as DA or MQM and metrics that use synthetic labels for fine-tuning (3rd column).

4.2 Metric Submissions

The rest of this section summarizes participating
metrics. The ⋆ symbol indicates that the metric is
the primary submission of the research group.

COMET-22⋆ (Rei et al., 2022) is an ensemble
of two models; 1) COMET estimator model trained
with Direct Assessments and 2) a newly proposed
multitask model trained to predict sentence-level
MQM scores along with OK/BAD word-level tags
derived from annotation spans.

COMETKIWI⋆ ensembles 2 QE models simi-
larly to COMET-22; 1) classic Predictor-Estimator
QE model trained on DAs ranging 2017 to 2019
and then fine-tuned on DAs from MLQE-PE (the of-
ficial DA from the QE shared task) and 2) the same
multitask model used in the COMET-22 submis-
sion but without access to a reference translation.

MS-COMET-22⋆ and MS-COMET-QE-
22⋆ (Kocmi et al., 2022b) are built on top of
COMET by Microsoft Research using proprietary
data. This metric is trained on a several times
larger set of human judgements compared to
COMET-baseline, covering 113 languages and

15 domains. Furthermore, the authors propose
filtering of human judgement with potentially low
quality to further improve the model.

MS-COMET-22 evaluated source, MT hypoth-
esis and human reference from the input, while
MS-COMET-QE-22 calculated scores in quality es-
timation fashion with only source segment and MT
hypothesis.

EE-BERTSCORE⋆ (Liu et al., 2022) stands
for Entropy Enhanced BERTSCORE and aims at
achieving a more balanced system-level rating by
assigning weights to segment-level scores produced
by BERTSCORE. The weights are determined by
the difficulty of a segment determined by the en-
tropy between the hypothesis-reference pair.

KG-BERTSCORE (Liu et al., 2022) is a
reference-free machine translation (MT) evaluation
metric, which incorporates multilingual knowledge
graph into BERTScore by linearly combining the
results of BERTScore and bilingual named entity
matching.

CROSS-QE (Liu et al., 2022) is a reference-free
metric with a similar architecture to COMET-QE.
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HWTSC-TEACHER-SIM⋆ (Liu et al., 2022)
is a reference-free metric by fine-tuning the
multilingual Sentence BERT model paraphrase-
multilingual-mpnet-base-v2

HWTSC-TLM (Liu et al., 2022) is a reference-
free metric which only uses a target-side language
model to score the system translations as input.

MATESE⋆ (Perrella et al., 2022) and MATESE-
QE⋆ leverage transformer-based multilingual
encoders to identify error spans in translations, and
classify their severity between Minor and Major.
The quality score returned for a translation is com-
puted following the MQM error weighting used by
Google (see Section 3.1).

MEE (Mukherjee et al., 2020) is an automatic
evaluation metric that leverages the similarity be-
tween embeddings of words in candidate transla-
tion and the corresponding reference. Unigrams
are matched based on their surface forms, root
forms and meanings while semantic evaluation is
achieved by using pretrained fasttext embeddings.
MEE computes evaluation score using three mod-
ules namely exact match, root match and synonym
match. In each module, fmean-score is calculated
giving more weight to recall. Final score is the
average of the three individual modules.

MEE2 and MEE4⋆ (Mukherjee and Shrivas-
tava, 2022b) are improved versions of MEE

focusing on computing contextual and syntactic
equivalences along with lexical, morphological and
semantic similarity. The intent is to capture flu-
ency and context of the MT outputs along with
their adequacy. Fluency is captured using syntactic
similarity and context is captured using sentence
similarity leveraging sentence embeddings. The
final score is the weighted combination of three
similarity scores: a) syntactic similarity achieved
by modified BLEU score; b) lexical, morphological
and semantic similarity: measured by explicit uni-
gram matching; c) contextual similarity: sentence
similarity scores from Language-Agnostic BERT
model.

REUSE⋆ (Mukherjee and Shrivastava, 2022a)
is a bilingual, unsupervised reference-free metric.
It estimates the translation quality at chunk-level
and sentence-level. Source and target sentence
chunks are retrieved by using a multi-lingual chun-
ker. Chunk-level similarity is computed by lever-
aging BERT contextual word embeddings and sen-

tence similarity scores are calculated by leverag-
ing sentence embeddings of Language-Agnostic
BERT models. The final quality estimation score
is obtained by mean pooling the chunk-level and
sentence-level similarity scores.

METRICX XL and METRICX XXL⋆ are mas-
sive multi-task metrics, which fine-tune large lan-
guage model checkpoints such as mT5 on a variety
of human feedback data such as DA, MQM, QE,
NLI and Summarization Eval. The resulting pri-
mary submission uses the MQM score outputted
by a fine-tuned 30B mT5.

UNITE⋆ (Wan et al., 2022a,b) is a learnt metric
that can possess the ability of evaluating translation
outputs following all three evaluation scenarios, i.e.,
source-only, reference-only, and source-reference-
combined. Following their previous work, the
authors improve their models by pre-training on
pseudo-labeled data examples, and applying data
cropping and a ranking-based score normalization
during fine-tuning. The resulting submission is
an ensemble of two models trained with different
backbone models (XLM-R and InfoXLM).

SESCORE⋆ (Xu et al., 2022) is an unsupervised
reference-based evaluation metric, which takes
model output and reference to produce a quality
score. SESCORE is trained from a pre-trained lan-
guage model (Ex. Roberta) on synthetic triples
generated from raw text. The synthetic triples con-
sist of (raw text, synthetic error text, pseudo score),
corresponding to (reference, model output, human
rating). The data used for training the metric is
constructed by synthesising candidate sentences
y’ to mimic plausible errors by transforming raw
input sentences multiple times. At each step, a
random span of text is selected and new content
is inserted, deleted or replaced. All these errors
are non-overlapping. The authors name this data
construction process “stratified error synthesis”,
which randomly samples a set of potential errors
and stochastically applies them on a given sentence.
The score assigned to the perturbed sentences is a
raw count of the severities applied by each transfor-
mation. In the end, SESCORE is a regression qual-
ity prediction model trained on synthetic triples.
Since this process can be applied to raw data and
the resulting model can be developed for any text
generation domain.

53



5 Meta Evaluation

Our main goal in evaluating metrics is to establish
a ranking that reflects a metric’s accuracy across a
broad range of settings and applications. Combin-
ing results across different settings is challenging
because correlations with human gold scores have
different ranges and may be subject to differing
degrees of noise. There are also many ways of
measuring correlation, with different strengths and
weaknesses, and it is often not clear which is best
in a given setting.

This year, our overall ranking is just each met-
ric’s average rank across a large number of “tasks”.
Unlike raw correlation scores, ranks are compa-
rable across tasks. The resulting global ranking
approximates the “Kemeny consensus” – the rank-
ing with lowest aggregate Kendall distance to the
per-task rankings – which in turn satisfies several
criteria from social choice theory (Colombo et al.,
2022). Our version has the following features:

• We use a large number of tasks which may
contain overlapping information. For instance,
on each dataset, we compute both Pearson
and Kendall-Tau correlation, and treat these as
separate tasks. This makes the overall ranking
robust to quirks in particular correlations.

• To guard against inadvertent bias toward set-
tings that have more tasks than others, we use
a task weighting that reflects the relative im-
portance of various attributes (language pair,
domain, etc.).

• Within each task, we establish a ranking that
includes ties to reflect statistical significance.
This naturally up-weights tasks that are more
discriminative. For instance, a task that yields
the ranking 1, 1, 1, 1 will not affect the overall
ranking at all, while a ranking of 1, 2, 3, 4 is
a maximal vote.

• In order to indicate metric proximity, we re-
port raw averages over (weighted) per-task
ranks rather than the resulting ranking as advo-
cated by Colombo et al. (2022). For instance,
average ranks of 1.1, 1.2, 2.1, 3.9 indicate that
the top two metrics perform similarly and the
last metric is considerably worse; these details
is lost in the global ranking 1, 2, 3, 4.

• We also report rankings on selected subsets
of tasks to characterize metric behavior on
attributes such as language or domain.

5.1 Tasks

Tasks are identified by unique value assignments
for each of the following attributes: language, do-
main, level, include-human, averaging method, and
correlation. These are as follows:

Language (4 values)

Language pairs include those for which we
have MQM ratings – English→German,
English→Russian, and Chinese→English –
plus All, which indicates all pairs pooled together.

Domain (5 values)

We computed correlations on domain-specific por-
tions of each test-set as well as on each test-set as
a whole. All language pairs have the same set of
domains: conversation, e-commerce, news, and so-
cial. We use mixed to refer to all domains together,
i.e., the whole test set.

Level (2 values)

For each domain (including mixed), we computed
correlations at the system level and the segment
level. Human scores for each domain are averages
over the corresponding segments. For metric sub-
missions that did not include domain-level scores,
we computed similar averages.

Include-human (2 values)

We computed separate correlations over sets of
outputs that exclude human references (include-
human=false) and that include all available refer-
ences (include-human=true) except the standard
reference, which is never scored by metrics. The
first scenario reflects the standard use-case for
metrics; the second captures a future scenario in
which MT output quality approaches human qual-
ity. Since English→Russian has only a single refer-
ence, it participates only in the first condition. For
the other two language pairs we use the reference
that was judged best by the MQM raters. Table 6
summarizes the use of reference translations for
different language pairs.

language
best ref scored ref

en→de A B
en→ru A {}
zh→en A B

Table 6: Use of reference translations.
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language domain level +human averaging correlation tasks weight

all (1/4) mixed (1/1) sys (1/1) no (1/1) none (1/1) acc (1/1) 1 1/4
en-ru (1/4) * (1/5) sys (1/2) no (1/1) none (1/1) P,K (1/2) 10 1/80

seg (1/2) no (1/1) * (1/3) P,K (1/2) 30 1/240
en-de,zh-en (1/4) * (1/5) sys (1/2) * (1/2) none (1/1) P,K (1/2) 40 1/160

seg (1/2) * (1/2) * (1/3) P,K (1/2) 120 1/480

201

Table 7: Task weighting. Column entries are sets of values for the attribute in the heading, with * designating all
possible values. Numbers in brackets show the weight assigned to each value in the set. Each line corresponds to a
set of tasks that have the same weight: the product of all the per-attribute weights shown in brackets. P and K refer
to Pearson and Kendall correlation, respectively.

Averaging (3 values)

At the segment level, metric and human scores are
naturally represented as system × segment matri-
ces. However, correlations operate over pairs of
vectors rather than pairs of matrices. There are
three ways to resolve the problem: flatten the ma-
trices into single vectors, compute average correla-
tions over matching pairs of row vectors, or com-
pute average correlations over matching pairs of
column vectors. We designate these as none, sys-
tem, and segment averaging, respectively. They
measure a metric’s ability to rate an arbitrarily-
chosen (system, segment) pair, an arbitrary seg-
ment for a fixed system, and different system out-
puts for the same segment. Last year we used
only the first alternative; this year include all three.
System-level correlations do not require averaging,
since their inputs are vectors in the first place.

Correlation (3 values)

We computed three correlations: system-level pair-
wise ranking accuracy (as proposed by Kocmi et al.,
2021), Pearson and Kendall. Accuracy was used
only for a single task in which all language pairs
were pooled (language=All), while Pearson and
Kendall were used for all other tasks. Pearson
correlation tests linear fit with MQM scores, a
stringent but reasonable criterion since we expect
these scores to conform to a linear scale (for ex-
ample, a translation with two minor errors is twice
as bad as one with only a single error). Pearson
has well-known drawbacks (Mathur et al., 2020),
notably sensitivity to outliers, which we minimized
by choosing only relatively high-performing sys-
tems. Like accuracy, Kendall is based on pairwise
score comparisons, and thus reflects a common
ranking use-case. It is susceptible to noise in gold
pairwise rankings, for which a common strategy

is to discard pairs judged not to be significantly
different. We did not take this into account, relying
instead on our significance tests for metric (rather
than system) rankings.

5.2 Task Weighting

As explained in the previous section, attributes
are not independent. For instance, there are three
averaging methods for segment-level tasks, but
only one for system-level tasks. If all tasks were
weighted equally, this would have the undesirable
consequence of making segment-level correlations
count for 3× as much as system-level correlations
when determining the overall ranking.

To avoid this, we used a hierarchical weighting
scheme. We first ordered the attributes as listed
in the previous section, then distributed weights
evenly among all permissible values at each step
of the hierarchy. The results are shown in Table 7.
There are a total of 201 tasks, of which the accuracy
task for all language pairs receives a weight of 1/4,
with the remaining mass of 3/4 distributed among
tasks whose individual weights vary between 1/80
and 1/420.

In Figures 1 through 4, we show analyses of how
metric performance varies along different dimen-
sions (attributes) such as language, domain, etc..
To do this, we partition tasks according to the val-
ues of the selected attribute, re-normalizing their
global weights so they sum to 1 for each partition.
We then compute weighted average ranks for each
partition separately, in the same fashion as the over-
all ranking.

5.3 Per-task Ranking

For each task, we compare all pairs of metrics, and
determine whether the difference in their correla-
tion scores is significant according to the PERM-

55



BOTH hypothesis test of Deutsch et al. (2021),
using 1000 re-sampling runs, and setting p = 0.05.
For the averaging methods, sampling is performed
separately for each row or column vector prior to
averaging.

We then assign ranks as follows. Starting with
the highest-scoring metric, we move down the list
of metrics in descending order by score, and assign
rank 1 to all metrics until we encounter the first
metric that is significantly different from any that
have been visited so far. That metric is assigned
rank 2, and the process is repeated. This continues
until all metrics have been assigned a rank.

6 Main Results

As we have seen in Section 5, the main results are
defined across different settings including system-
level and segment-level tasks. Nonetheless, since
the main use case of automatic metrics is to rank
systems, system-level accuracy has a 1/4 weight on
the final score with the remaining 3/4 distributed
over 200 different settings.

Table 1 shows the official ranking of all primary
submissions over the 201 different settings. A key
observation is that neural metrics perform signifi-
cantly better than lexical metrics. Of the 20 evalu-
ated metrics, BLEU and SPBLEU are ranked 19th
and 17th respectively. On the other hand, fine-
tuned neural baseline metrics such as COMET-20
and BLEURT-20 are still ranked above several of
the new primary submissions. They are outper-
formed only by submissions based on models that
are considerably larger11. Figure 1 shows the rank-
ing split by the different language pairs. The trend
is very similar for all language pairs. While MET-
RICX XXL performs best for En→De and En→Ru,
COMET-22 performs best for Zh→En.

One open question about neural metrics has
been their ability to generalise to new domains,
since most training and testing data from previ-
ous years were based on News data. In Figure 2
we present the performance of each metric across
four domains: news, social, conversational, and e-
commerce. Similar to last year, we observe that the
neural metrics perform better than lexical overlap
metrics across all four domains.

Figure 3 shows the average rankings when
grouped separately by system-level and segment-

11Both UNITE and COMET-22 are ensembles of two mod-
els trained on XLM-R variants while METRICX XXL uses
mT5 XXL as a backbone

Figure 1: Weighted ranking of metrics’ correlation with
human grouped by translation directions.

level tasks. Many metrics fall into the same signifi-
cance cluster when evaluated on the system-level as
we only have a very limited number of MT systems.
Nevertheless, we observe that the metric rankings
are largely stable across both granularities and that
METRICX XXL and COMET-22 perform best on
both the segment-level and system-level tasks. The
differences are more prevalent in the segment-level
task, though.

In Figure 4, we compare the rankings when in-
cluding human translations as MT systems (with
human) or just considering MT submission (with-
out human). Overall, the majority of metrics show

Figure 2: Weighted ranking of metrics’ correlation with
human grouped by domains.
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Figure 3: Weighted ranking of metrics’ correlation with
human grouped by granularity levels.

lower correlation when we include human transla-
tions, except COMET-22 and MATESE.

7 Direct Assessment Human Evaluation

In addition to our MQM annotations and as a con-
trastive evaluation to cover more language pairs,
we look into the performance of metrics when
compared to the human evaluation campaign con-
ducted by the General MT shared task (Kocmi et al.,
2022a), who ran human evaluation for all 21 trans-
lation directions and WMT22 submissions. Last
year, we decided to exclude the human ratings by
the WMT main task as they were of lower qual-
ity than the best automatic metrics. However, the
GeneralMT task improved their evaluation method-
ology in particular for all from-English and non-
English translation directions and implemented
the Scalar Quality Metric (SQM) which has been
shown to have high correlation with MQM on at
least the system-level (Freitag et al., 2021a). The
GeneralMT task used two different human evalu-
ation methodologies depending on the language
pair: reference-based Direct Assessment (Ref. DA)
(Graham et al., 2013) and SQM style source-based
DA (DA+SQM) (Kocmi et al., 2022a).

Ref. DA has been used for all into-English trans-
lation directions and asks human raters to judge

Figure 4: Weighted ranking of metrics’ correlation with
human grouped by candidate pools (with or without
human translations).

each system translation against human reference
translation on a 0–100 scale. This technique does
not use bilingual speakers and is evaluated by non-
professional crowd workers. In order to increase
quality of assessment, there are several quality con-
trol items. Out of all collected human annotations,
63% have been removed due to failing quality con-
trol.

DA+SQM asks bilingual raters to annotate sys-
tem translations against original sources on a 0–
100 labeled scale. The scale is marked with seven
points representing expected quality. In this setting,
Kocmi et al. (2022a) evaluated all from-English
and non-English translation directions. They used
mainly professional raters.

We present system-level accuracy results in Ta-
ble 8. The ranking generated based on accuracy
scores when taking the DA+SQM annotation as
ground truths is comparable to the primary results
in Table 1, ranking METRICX XXL as the best per-
forming metric followed by UNITE and COMET-
22. Similarly, it ranks n-gram matching metrics
(BLEU, CHRF, F101SPBLEU) among worst per-
forming metrics. This confirms the main findings
from MQM evaluation.

On the other hand, accuracy scores taking ref.
DA as the ground truth, result in a very different
ranking of the metrics. It ranks n-gram matching
metrics as the top performing metrics. This suggest
that the technique does not evaluate systems well
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Number of languages 13 6
Number of system pairs 564 329
Human judgement style DA+SQM ref. DA

METRICX XXL 0.862 (1) 0.620 (11)
UNITE 0.849 (2) 0.623 (10)
COMET-22 0.842 (3) 0.626 (9)
COMETKIWI* 0.835 (4) 0.617 (12)
MS-COMET-22 0.833 (5) 0.626 (9)
BLEURT-20 0.830 (6) 0.650 (5)
COMET-20 0.826 (7) 0.635 (8)
MS-COMET-QE-22* 0.824 (8) 0.641 (7)
COMET-QE* 0.821 (9) 0.605 (13)
UNITE-SRC* 0.800 (10) 0.623 (10)
YISI-1 0.785 (11) 0.660 (3)
BERTSCORE 0.764 (12) 0.666 (2)
CHRF 0.762 (13) 0.666 (2)
EE_BERTScore 0.750 (14) 0.647 (6)
F101SPBLEU 0.748 (15) 0.669 (1)
HWTSC-TEACHER-SIM* 0.720 (16) 0.568 (15)
BLEU 0.707 (17) 0.653 (4)
REUSE* 0.344 (18) 0.584 (14)

Table 8: System-level pairwise accuracy for WMT style
human evaluation. Numbers in brackets show rank of
metrics given human judgement style. The highest score
is present bolded.

and instead human crowd workers are incentivized
to quickly compare the surface forms of translation
against reference without understanding. We would
advise metric developers and researchers running
human evaluations not to use reference-based DA,
especially when evaluated with non-professional
crowd workers.

8 Challenge Sets Subtask

The challenge sets subtask is inspired by the
Build it or break it: The Language Edition shared
task (Ettinger et al., 2017) which aimed at testing
the generalizability of NLP systems beyond the dis-
tributions of their training data. With that said, our
goal is to encourage researchers to build a set of
test sets that measure metrics’ ability to detect dif-
ferent targeted phenomena that might not be well
represented in traditional test sets used to evaluate
metrics.

This subtask is made of three consecutive phases;
1) the Breaking Round, 2) the Scoring Round and
3) the Analysis Round:

1. In the Breaking Round, the challenge set par-
ticipants (Breakers) submit their challenge
sets composed of contrastive examples for dif-

ferent phenomena with source sentences (s),
incorrect translations (t̂), correct translations
(t) and references (r).

2. In the Scoring Round the metrics participants
from the main task (the Builders) are asked to
score all translations with their metrics with-
out knowing which ones are correct or incor-
rect. Also, in this phase the organisers score
all data with the baseline metrics.

3. Finally, after gathering all metric scores, the
data is returned to the Breakers for the Anal-
ysis round, where they look at which metrics
are able to correctly rank the correct transla-
tions above the incorrect ones for the different
phenomena being tested.

We had a total of 4 submissions to this shared task,
covering a wide range of phenomena and 146 dif-
ferent language pairs. Table 9 provides an overview
of the submitted challenge sets. A short description
of every submission follows:

ACES The ACES (Translation Accuracy Chal-
lenge Sets; Amrhein et al., 2022) results from a col-
laboration between the University of Zurich with
the University of Edinburgh. This challenge set,
highly inspired by the MQM framework, consists
of 36,499 examples, covering 146 language pairs
and 68 phenomena, ranging from simple perturba-
tions at the word/character level to more complex
errors based on discourse and real-world knowl-
edge. The data was created artificially for some
error types and manually for others.

Their analysis aimed to reveal the extent to
which metrics take into account the source sentence
context and the surface-level overlap with the ref-
erence, and if they profit by using multilingual em-
beddings. Finally, they recommend that one consid-
ers a) combining metrics with different strengths
and b) explicitly modelling additional language-
specific information beyond what is available via
multilingual embeddings.

SMAUG The challenge set based on Sentence-
level Multilingual data Augmentation (SMAUG;
Alves et al., 2022), submitted by Unbabel and IST
evaluates the robustness of MT metrics to 5 differ-
ent types of translation errors; Named entity errors,
numerical errors, meaning errors, insertion of con-
tent and content missing. These errors are created
by perturbing reference translations and then cu-
rated by the authors. The challenge set covers 3
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challenge set method lang.
pairs

pheno-
mena

items citation availability (https://github.com/)

ACES automatic 146 68 36,499 Amrhein et al. (2022) EdinburghNLP/ACES

DFKI-CS semi-autom. 2 107 19,347 Avramidis and Mack-
etanz (2022)

DFKI-NLP/mt-testsuite

HWTSC-CS semi-autom. 1 5 721 Chen et al. (2022) HwTsc/Challenge-Set-for-MT-Metrics

SMAUG automatic 3 5 632 Alves et al. (2022) Unbabel/smaug

Table 9: Overview of the participations at the challenge sets task

language pairs and contains close to 50 high-quality
examples for each phenomenon.

In this challenge set the authors show that there
has been a promising progress in terms of detecting
these critical errors when compared to last year’s
metric submissions. Nevertheless, errors related to
named entities and numbers were found to pose
a challenge for several tested metrics. Also, due
to a high variance in the observed results across
all the error types it becomes hard to predict per-
formance of current methods with respect to
untested translation errors.

HWTSC Challenge Set The challenge set sub-
mitted by Huawei Translation Services Cen-
ter (Chen et al., 2022) aims at examining metrics
ability to handle synonyms and to discern criti-
cal errors in translations. This challenge set is
composed of 721 zh-en examples for 5 different
error types; Named entity errors, numerical er-
rors, time & date errors, wrong unit conversions
and Affirmation/Negation errors. The underlying
data is either WMT 21 or Flores 101 which cov-
ers two distinct domains, News and Wikipedia re-
spectively. To create alternative translations the
authors used in-house translators (performing post-
edit) and to create the adversarial translations they
used LIST (Alzantot et al., 2018).

The authors of this challenge set conclude that
although embedding-based metrics perform rel-
atively well on discerning sentence-level nega-
tion/affirmation errors, they perform poorly on
relating synonyms. Additionally they find that the
generalizability of some metrics is compromised,
as they are susceptible to different text styles.

DFKI Challenge Set The submission by DFKI
(Avramidis and Macketanz, 2022) employs a lin-
guistically motivated challenge set that includes
about 20,000 items extracted from 145 MT systems
for two language directions (German⇔English). It
is based on a test suite (Macketanz et al., 2022)
that covers more than 100 linguistically-motivated

phenomena organized in 14 categories.
The best performing metrics are YISI-1,

BERTSCORE and COMET-22 for German-
English, and UNITE, UNITE-REF, METRICX-
XL-DA-2019 and METRICX-XXL-DA-2019 for
English-German. Metrics in both directions are
performing worst when it comes to named-entities
& terminology and particularly measuring units.
Particularly in German-English they are weak at
detecting issues at punctuation, polar questions,
relative clauses, dates and idioms. In English-
German, they perform worst at present progres-
sive of transitive verbs, future II progressive of
intransitive verbs, simple present perfect of di-
transitive verbs and focus particles.

9 Conclusion

This paper summarizes the results of the WMT22
shared task on automated machine translation eval-
uation, the Metrics Shared Task. We presented an
extensive analysis on how well metrics perform on
our three main language pairs: English→German,
English→Russian and Chinese→English. The
results, based on 201 different tasks, demon-
strated the superiority of neural-based learned met-
rics over overlap-based metrics like BLEU, SP-
BLEU or CHRF. These results are confirmed with
DA+SQM human judgement. Although this was al-
ready the case in the previous years’ Metric Shared
Tasks, we further strengthened the case for neural-
based fine-tuned metrics by demonstrating their
superiority across four different domains. In ad-
dition, we initiated a challenge set subtask, where
participants had to create contrastive test suites for
evaluating metrics’ ability to capture and penalise
specific types of translation errors.

10 Ethical Considerations

MQM annotations and additional reference transla-
tions in this paper are done by professional transla-
tors. They are all paid at professional rates.

Organizers from the National Research Council
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Canada and Unbabel have submitted to this task
the frozen stable versions of their metrics (YiSi
and COMET) dated before this year’s shared task
and publicly available. Newer versions of COMET
were developed without using any of the test set,
test suite or challenge sets.
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Task Accuracy en-de en-de en-ru zh-en zh-en
Human Translation Included No Yes No No Yes No

metricx_xl_DA_2019 0.865 0.908 0.905 0.977 0.966 0.982
metricx_xxl_DA_2019 0.865 0.907 0.901 0.982 0.961 0.984
metricx_xxl_MQM_2020 0.850 0.862 0.847 0.949 0.924 0.920
BLEURT-20 0.847 0.691 0.719 0.959 0.909 0.938
metricx_xl_MQM_2020 0.843 0.848 0.832 0.927 0.920 0.914
COMET-22 0.839 0.761 0.771 0.900 0.947 0.942
COMET-20 0.836 0.812 0.876 0.936 0.964 0.970
UniTE 0.828 0.642 0.624 0.888 0.922 0.914
MS-COMET-22 0.828 0.634 0.695 0.809 0.918 0.909
UniTE-ref 0.818 0.652 0.632 0.831 0.902 0.892
MATESE 0.810 0.647 0.617 0.757 0.869 0.856
YiSi-1 0.792 0.506 0.626 0.881 0.867 0.935
MEE4 0.788 0.404 0.537 0.792 0.818 0.905
COMETKiwi* 0.788 0.592 0.674 0.763 0.795 0.866
HuaweiTSC_EE_BERTScore_0.8_With_Human 0.785 0.354 0.463 0.818 0.903 0.960
HuaweiTSC_EE_BERTScore_0.8_Without_Human 0.785 0.338 0.451 0.818 0.900 0.957
Cross-QE* 0.781 0.643 0.661 0.806 0.817 0.870
HuaweiTSC_EE_BERTScore_0.5_With_Human 0.781 0.287 0.400 0.792 0.938 0.953
COMET-QE* 0.781 0.480 0.502 0.468 0.544 0.569
HuaweiTSC_EE_BERTScore_0.5_Without_Human 0.774 0.246 0.370 0.795 0.930 0.942
BERTScore 0.774 0.338 0.428 0.811 0.843 0.924
HuaweiTSC_EE_BERTScore_0.3_With_Human 0.759 0.243 0.356 0.754 0.945 0.943
UniTE-src* 0.759 0.509 0.509 0.779 0.791 0.874
MEE2 0.759 0.360 0.479 0.811 0.753 0.872
MS-COMET-QE-22* 0.755 0.417 0.539 0.672 0.799 0.897
MATESE-QE* 0.748 0.363 0.337 0.637 0.741 0.767
MEE 0.748 0.358 0.445 0.823 0.727 0.824
f101spBLEU 0.745 0.210 0.298 0.816 0.613 0.718
f200spBLEU 0.741 0.230 0.283 0.819 0.614 0.728
HuaweiTSC_EE_BERTScore_0.3_Without_Human 0.737 0.189 0.316 0.761 0.931 0.926
chrF 0.734 0.159 0.346 0.815 0.647 0.630
BLEU 0.708 0.038 0.179 0.724 0.579 0.594
HWTSC-TLM* 0.697 0.311 0.428 0.597 0.368 0.460
HWTSC-Teacher-Sim* 0.686 0.290 0.385 0.675 0.294 0.356
KG-BERTScore* 0.664 0.369 0.400 0.612 0.617 0.743
REUSE* 0.347 -0.514 -0.465 -0.349 -0.330 -0.142

Table 10: Pearson correlation of all metrics with system-level MQM scores for the three main language pairs. Rows
are sorted by the system-level pairwise accuracy across the three language pairs. Primary submissions are bolded,
and baselines are underlined. Reference-free metrics are indicated using an asterisk.

A Language-Specific Results Tables

Language-specific results are given in Table 10 and Table 11. Each page contains results for scores over
all domains over a single granularity (system or segment).

For all tables, the correlations are calculated on metric scores comparing MT system translations with
Reference A, and any additional human reference translations are not included.

For segment level correlation, we report results on the “none” averaging method, where we flatten the
matrices into single vectors before computing the Kendall Tau correlation.

B Correlations with WMT Human Evaluation

Correlations with WMT Direct Assessment Human scores are given in the following tables, with results
for language pairs evaluated using reference-based Direct Assessment (Ref. DA) (Graham et al., 2013),
followed by results for language pairs evaluated using SQM style source-based DA (DA+SQM) (Kocmi
et al., 2022a). Since most language pairs contained only a single reference, we used reference A for all
pairs, and report results only for scoring MT output (omitting additional scored references for language
pairs where these were available). System-level correlations use Pearson and segment-level scores use
Kendall. For simplicity, both statistics are computed over raw rater scores, with no traditional difference-25

63



Task (sys) Accuracy en-de en-de en-ru zh-en zh-en
Human Translation Included No Yes No No Yes No

metricx_xl_DA_2019 0.865 0.356 0.362 0.393 0.383 0.392
metricx_xxl_DA_2019 0.865 0.355 0.361 0.405 0.377 0.386
metricx_xxl_MQM_2020 0.850 0.356 0.360 0.420 0.421 0.427
BLEURT-20 0.847 0.338 0.344 0.359 0.352 0.361
metricx_xl_MQM_2020 0.843 0.362 0.367 0.383 0.416 0.423
COMET-22 0.839 0.361 0.368 0.400 0.420 0.428
COMET-20 0.836 0.312 0.319 0.330 0.325 0.332
UniTE 0.828 0.362 0.369 0.378 0.351 0.357
MS-COMET-22 0.828 0.277 0.283 0.351 0.335 0.341
UniTE-ref 0.818 0.356 0.362 0.374 0.354 0.361
MATESE 0.810 0.323 0.323 0.279 0.382 0.389
YiSi-1 0.792 0.229 0.235 0.227 0.288 0.296
MEE4 0.788 0.236 0.243 0.210 0.189 0.194
COMETKiwi* 0.788 0.283 0.290 0.359 0.352 0.364
HuaweiTSC_EE_BERTScore_0.8_With_Human 0.785 – – – – –
HuaweiTSC_EE_BERTScore_0.8_Without_Human 0.785 – – – – –
Cross-QE* 0.781 0.259 0.263 0.310 0.368 0.378
HuaweiTSC_EE_BERTScore_0.5_With_Human 0.781 – – – – –
COMET-QE* 0.781 0.277 0.281 0.341 0.356 0.365
HuaweiTSC_EE_BERTScore_0.5_Without_Human 0.774 – – – – –
BERTScore 0.774 0.226 0.232 0.192 0.307 0.316
HuaweiTSC_EE_BERTScore_0.3_With_Human 0.759 – – – – –
UniTE-src* 0.759 0.283 0.287 0.342 0.332 0.343
MEE2 0.759 0.238 0.244 0.201 0.197 0.201
MS-COMET-QE-22* 0.755 0.226 0.233 0.305 0.277 0.287
MATESE-QE* 0.748 0.242 0.244 0.229 0.328 0.337
MEE 0.748 0.187 0.192 0.148 0.149 0.149
f101spBLEU 0.745 0.169 0.174 0.135 0.143 0.145
f200spBLEU 0.741 0.176 0.180 0.153 0.139 0.140
HuaweiTSC_EE_BERTScore_0.3_Without_Human 0.737 – – – – –
chrF 0.734 0.208 0.214 0.168 0.146 0.147
BLEU 0.708 0.164 0.169 0.140 0.143 0.145
HWTSC-TLM* 0.697 0.087 0.092 0.121 0.079 0.086
HWTSC-Teacher-Sim* 0.686 0.150 0.155 0.143 0.264 0.272
KG-BERTScore* 0.664 0.126 0.129 0.111 0.214 0.219
REUSE* 0.347 0.057 0.065 0.078 0.116 0.130

Table 11: Kendall Tau correlation of all metrics with segment-level MQM scores for the three main language pairs.
Rows are sorted by the system-level pairwise accuracy across the three language pairs. Primary submissions are
bolded, and baselines are underlined. Reference-free metrics are indicated using an asterisk.

filtering.12

12The traditional recipe made little difference in overall correlation patterns.
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Task Accuracy cs-en de-en ja-en ru-en uk-en zh-en
Incl. Human Translation False False False False False False False

f200spBLEU 0.669 0.812 0.405 0.949 0.831 0.714 0.517
chrF 0.666 0.806 0.354 0.983 0.827 0.688 0.568
BERTScore 0.666 0.825 0.440 0.988 0.851 0.717 0.396
YiSi-1 0.660 0.824 0.443 0.989 0.847 0.708 0.415
f101spBLEU 0.660 0.810 0.406 0.944 0.830 0.718 0.521
BLEU 0.653 0.801 0.352 0.934 0.843 0.648 0.563
BLEURT-20 0.650 0.833 0.458 0.990 0.849 0.733 0.266
HWTSC_EE_BERTScore_0.8_Without_Human 0.647 0.824 0.442 0.989 0.858 0.714 0.417
HWTSC_EE_BERTScore_0.3_Without_Human 0.647 0.808 0.391 0.987 0.876 0.678 0.437
HWTSC_EE_BERTScore_0.3_With_Human 0.647 0.799 0.390 0.987 0.876 0.680 0.412
HWTSC_EE_BERTScore_0.8_With_Human 0.644 0.820 0.440 0.989 0.858 0.715 0.411
HWTSC_EE_BERTScore_0.5_With_Human 0.644 0.808 0.410 0.988 0.870 0.696 0.416
HWTSC_EE_BERTScore_0.5_Without_Human 0.644 0.815 0.411 0.988 0.870 0.695 0.434
MS-COMET-QE-22* 0.641 0.769 0.395 0.990 0.867 0.699 0.312
COMET-20 0.635 0.827 0.424 0.989 0.847 0.723 0.330
metricx_xxl_DA_2019 0.635 0.831 0.469 0.987 0.850 0.730 0.148
UniTE-ref 0.629 0.822 0.440 0.982 0.855 0.727 0.167
MS-COMET-22 0.626 0.807 0.419 0.990 0.858 0.701 0.108
COMET-22 0.626 0.821 0.446 0.976 0.857 0.714 0.135
metricx_xl_DA_2019 0.623 0.833 0.468 0.987 0.851 0.730 0.157
Cross-QE* 0.623 0.791 0.415 0.989 0.863 0.719 0.129
UniTE 0.623 0.832 0.431 0.984 0.852 0.728 0.195
UniTE-src* 0.623 0.777 0.402 0.989 0.863 0.703 0.210
metricx_xl_MQM_2020 0.620 0.821 0.487 0.978 0.856 0.718 -0.039
metricx_xxl_MQM_2020 0.620 0.823 0.490 0.978 0.856 0.715 -0.061
COMETKiwi* 0.617 0.787 0.409 0.984 0.862 0.718 0.181
COMET-QE* 0.605 0.811 0.443 0.981 0.864 0.744 -0.006
REUSE* 0.584 0.200 0.194 0.990 0.683 0.150 0.531
HWTSC-TLM* 0.578 0.822 0.356 0.980 0.842 0.695 0.083
HWTSC-Teacher-Sim* 0.568 0.804 0.322 0.985 0.848 0.691 -0.011
KG-BERTScore* 0.568 0.539 0.052 0.989 0.805 0.516 0.264

Table 12: System-level Pearson correlation with crowdsourced Ref. DA scores. Rows are sorted by the system-level
pairwise accuracy across all language pairs. Primary submissions are bolded, and baselines are underlined.
Reference-free metrics are indicated using an asterisk.

System-level Metric accuracy and correlations with REFDA scores contradict the main results. We strongly
recommend against using Ref. DA scores to evaluate MT metrics.
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Task (sys) Accuracy cs-en de-en ja-en ru-en uk-en zh-en
Incl. Human Translation False False False False False False False

f200spBLEU 0.669 0.043 0.010 0.085 0.018 0.006 0.026
chrF 0.666 0.042 0.017 0.083 0.015 0.003 0.025
BERTScore 0.666 0.039 0.011 0.084 0.019 0.003 0.020
YiSi-1 0.660 0.037 0.012 0.087 0.018 0.004 0.020
f101spBLEU 0.660 0.042 0.010 0.085 0.020 0.008 0.026
BLEU 0.653 0.043 0.009 0.081 0.014 0.007 0.024
BLEURT-20 0.650 0.036 0.018 0.085 0.014 0.002 0.013
HWTSC_EE_BERTScore_0.8_Without_Human 0.647 – – – – – –
HWTSC_EE_BERTScore_0.3_Without_Human 0.647 – – – – – –
HWTSC_EE_BERTScore_0.3_With_Human 0.647 – – – – – –
HWTSC_EE_BERTScore_0.8_With_Human 0.644 – – – – – –
HWTSC_EE_BERTScore_0.5_With_Human 0.644 – – – – – –
HWTSC_EE_BERTScore_0.5_Without_Human 0.644 – – – – – –
MS-COMET-QE-22* 0.641 0.022 0.011 0.088 -0.002 0.003 0.001
COMET-20 0.635 0.034 0.018 0.084 0.014 -0.002 0.009
metricx_xxl_DA_2019 0.635 0.040 0.019 0.086 0.015 0.005 0.008
UniTE-ref 0.629 0.032 0.018 0.084 0.009 0.004 0.005
MS-COMET-22 0.626 0.030 0.013 0.081 0.007 -0.000 0.004
COMET-22 0.626 0.031 0.019 0.079 0.013 0.002 0.002
metricx_xl_DA_2019 0.623 0.036 0.016 0.085 0.014 0.002 0.007
Cross-QE* 0.623 0.015 0.011 0.087 0.003 0.001 -0.000
UniTE 0.623 0.036 0.019 0.084 0.012 0.004 0.006
UniTE-src* 0.623 0.026 0.018 0.087 0.001 0.003 0.007
metricx_xl_MQM_2020 0.620 0.025 0.013 0.079 0.010 0.004 -0.002
metricx_xxl_MQM_2020 0.620 0.026 0.014 0.079 0.011 0.002 -0.003
COMETKiwi* 0.617 0.028 0.011 0.091 0.001 0.004 0.002
COMET-QE* 0.605 0.010 0.020 0.076 -0.005 -0.002 0.003
REUSE* 0.584 0.002 0.009 0.091 -0.007 0.000 0.011
HWTSC-TLM* 0.578 0.030 0.011 0.097 0.013 0.001 0.013
HWTSC-Teacher-Sim* 0.568 0.018 0.016 0.098 0.007 0.007 0.001
KG-BERTScore* 0.568 0.010 0.007 0.087 -0.012 0.008 -0.002

Table 13: Segment-level Kendall-like correlation with crowdsourced Ref. DA scores. Rows are sorted by the
system-level pairwise accuracy across all language pairs. Primary submissions are bolded, and baselines are
underlined. Reference-free metrics are indicated using an asterisk.

The segment level Kendal-like correlations of all metrics with Ref. DA scores are all very close to zero,
and these numbers are completely meaningless. We strongly recommend against using Ref. DA scores to evaluate
MT metrics.
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Abstract

We report the results of the WMT 2022 shared
task on Quality Estimation, in which the chal-
lenge is to predict the quality of the output of
neural machine translation systems at the word
and sentence levels, without access to refer-
ence translations. This edition introduces a few
novel aspects and extensions that aim to enable
more fine-grained, and explainable quality esti-
mation approaches. We introduce an updated
quality annotation scheme using Multidimen-
sional Quality Metrics to obtain sentence- and
word-level quality scores for three language
pairs. We also extend the Direct Assessments
and post-edit data (MLQE-PE) to new language
pairs: we present a novel and large dataset on
English-Marathi, as well as a zero-shot test-set
on English-Yoruba. Further, we include an ex-
plainability sub-task for all language pairs and
present a new format of a critical error detection
task for two new language pairs. Participants
from 11 different teams submitted altogether
991 systems to different task variants and lan-
guage pairs.

1 Introduction

The 11th edition of the shared task on Quality Es-
timation (QE) builds on its previous editions and
findings to further benchmark methods for estimat-
ing the quality of neural machine translation (MT)
output at run-time, without the use of reference
translations. It includes (sub)tasks that consider
quality of machine translations at the word and
sentence levels.

Over the past years, the QE field has been mov-
ing towards trainable, large, multilingual models
that have been shown to achieve high performance,
especially at sentence-level (Specia et al., 2021).
In this edition, we further expand the provided re-
sources, introducing new low-resource language
pairs: a large dataset of English-Marathi, suit-
able for training, development and testing and a
smaller test-set on English-Yoruba for zero-shot

approaches. These, as well as previously published
datasets for QE, rely mainly on Direct Assessments
(DA)1 and post-edited translations, which provide
estimates of quality either by using the human qual-
ity score(s) for each segment or by estimating the
distance of a translation from a human-provided
correction. As these annotations can sometimes
obscure the exact location and/or significance of
a translation error, we wanted to investigate the
feasibility and efficiency of using a more fine-
grained annotation schema to obtain quality esti-
mations at word- and sentence- level, namely Mul-
tidimensional Quality Metrics (MQM) (Lommel
et al., 2014). MQM annotations have shown to be
more trustworthy for the metrics task (Freitag et al.,
2021a,b), motivating us to evaluate their suitability
for the QE task. We make available new develop-
ment and test data on three language pairs using
MQM annotations.

The aforementioned boost in performance of QE
systems frequently comes at the cost of efficiency
and interpretability, since they heavily rely on large
models with many parameters. As a result, the pre-
dicted quality estimates are hard to interpret. At
the same time, such high-performance, “black-box”
models are frequently susceptible to systematic
errors, such as negation omission (Kanojia et al.,
2021) and mistranslated entities (Amrhein and Sen-
nrich, 2022). Both phenomena are major concerns
for MT quality estimation since they can under-
mine users’ trust in new technologies and ham-
per the adoption of such models on a wide scale.
To motivate approaches that address these cases
we include an explainability subtask following its
first edition at Eval4NLP 2021 (Fomicheva et al.,
2021). In this subtask we ask participants to predict

1We note that the procedure followed for our data diverges
from that proposed by Graham et al. (2016) in three ways: (a)
we employ fewer but professional translators to score each
sentence, (b) scoring is done against the source segment (bilin-
gual annotation) and not the reference, and (c) we provide
translators with guidelines on the meaning of ranges of scores.
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the erroneous words as rationale extraction for a
sentence-level quality estimate, without any word-
level supervision. By framing error identification
as rationale extraction for sentence-level quality
estimation systems, this subtask offers an opportu-
nity to study whether such systems behave in the
same way as humans would do. We also reshape
the critical error detection task of last year and we
build a new corpus to test the ability of QE systems
to detect critical errors that simulate hallucinated
content with additions, deletions, named entities,
polarity changes and numbers. The corpus is cre-
ated using SMAUG (Alves et al., 2022) and we al-
low participation in constrained and unconstrained
settings. For the constrained setting, participants
have to build QE systems without having access
to data from SMAUG, whereas participants from
the unconstrained task can train their systems using
additional data from SMAUG.

In addition to advancing the state-of-the-art at
all prediction levels, our main goals are:

• To extend the languages covered in our
datasets;

• To further motivate fine-grained quality anno-
tation, informed at word and sentence level
using MQM;

• To encourage language-independent and even
unsupervised approaches especially for zero-
shot prediction;

• To study and promote explainable approaches
for MT evaluation; and

• To revisit critical error detection.

We thus have three tasks:

Task 1 The core QE task, consisting of separate
sentence-level and word-level subtasks. For
the sentence-level sub-tasks, the goal is to pre-
dict a quality score for each segment in the
test set, which can be a variant of DA (§2.1.1)
or MQM (§2.1.1). For the word-level sub-
tasks, participants have to predict translation
errors at word-level, via binary quality tags
(see §2.1.2).

Task 2 Explainable QE task, aiming to obtain word-
level rationales for sentence-level quality
scores (§2.2).

Task 3 The critical Error Detection task, aiming to
predict sentence-level binary scores indicating
whether or not a translation contains a critical
error (§2.3).

The tasks make use of large datasets annotated
by professional translators with either 0-100 DA
scoring, post-editing or MQM annotations. We up-
date the training and development datasets of pre-
vious editions and provide new test sets for Tasks
1 and 2. Additionally, we provide a novel setup
for Task 3, with novel train, development and test
data. The datasets and models released are publicly
available2. Participants are also allowed to explore
any additional data and resources deemed relevant,
across tasks.

The shared task uses CodaLab as submission
platform, where participants (Section 4) could sub-
mit up to 2 submissions a day for each task and
language pair (LP), up to a total of 10 submissions.
Results for all tasks evaluated according to standard
metrics are given in Section 5. Baseline systems
were trained by the task organisers and entered in
the platform to provide a basis for comparison (Sec-
tion 3). A discussion on the main goals and findings
from this year’s task is presented in Section 6.

2 Quality Estimation tasks

In what follows, we briefly describe each subtask,
including the datasets provided for them.

2.1 Task 1: Predicting translation quality
Being able to automatically predict the quality
of translations on sentence- or word-level with-
out access to human-references is the core goal
of the QE shared task. In this edition, we ex-
plored some new approaches towards quality anno-
tations for sentence- and word-level, and redefined
the word-level quality labelling scheme, in an at-
tempt to allow participants to employ multi-task
approaches and exploit fine-grained quality annota-
tions. Hence, the data was produced in two ways:

1. DA & Post-edit approach: The quality of each
source-translation pair is annotated by at least
3 independent expert annotators, using DA on
a scale 0-100. The translation is also post-
edited to obtain the closest possible, fully cor-
rect translation of the source. Using the post-
edited data, we generate Human-mediated

2https://github.com/WMT-QE-Task/
wmt-qe-2022-data
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Translation Edit Rate (HTER) (Snover et al.,
2006) scores, which are obtained by calculat-
ing the minimum edit distance between the
machine translation and its manually post-
edited version. By additionally considering
the alignment between the source and post-
edited sentence, we can propagate the errors to
the source sentence and annotate the segments
that were potentially mistranslated and/or not
translated at all. The HTER scores were made
available to participants as additional data, but
are not used as prediction targets.

2. MQM approach: Each source-translation pair
is evaluated by at least 1 expert annotator, and
errors identified in text are highlighted and
classified in terms of severity (minor, major,
critical) and type (omission, style, mistransla-
tion, etc).

The DA and MQM data was further processed
to a) obtain normalised quality scores that have
the same direction between high and low quality
and b) obtain word-level binary quality labels. We
provide more details on the required pre-processing
in §2.1.1 and §2.1.2.

DA & Post-edit data: For all language pairs
the data provided is selected from publicly avail-
able resources. Specifically for training we
used the following language pairs from the
MLQE-PE dataset (Fomicheva et al., 2022):
English-German (En-De), English-Chinese (En-
Zh), Russian-English (Ru-En), Romanian-English
(Ro-En), Nepalese-English (Ne-En), Esthonian-
English (Et-En) and Sinhala-English (Si-En),
which are all sampled from Wikipedia, except
for the Ru-En pair, which also contains sentences
from Reddit. Additionally, the language-pairs
used for development and testing also originate
from Wikipedia: English-Czech (En-Cs), English-
Japanese (En-Ja), Khmer-English (Km-En) and
Pashto-English (Ps-En).

Finally, the new English-Marathi (En-Mr) data
that is made available for train, development and
testing this year is sampled from a combination of
sources. More specifically the source side segments
of the English-Marathi data contain segments from
three different domains – healthcare, cultural, and
general/news. The general domain and cultural do-
main data were obtained from the English (source
side) segments in the IITB English-Hindi Parallel
Corpus (Kunchukuttan et al., 2018). However, the

healthcare domain data was obtained from publicly
available NHS monolingual corpus3.

All of the data was translated using large
transformer-based NMT models, with established
high performance for the languages in question.
Specifically, for the language pairs in the training
data (En-De, En-Zh, Et-En, Ne-En, Ru-En, Ro-
En, Si-En), all source sentences were translated
by a fairseq Transformer (Ott et al., 2019) bilin-
gual model. The exception is the English-Marathi
which was translated by the multilingual IndicTrans
(En-X) Transformer-based NMT model, which was
trained on the Samanantar parallel corpus (Ramesh
et al., 2022).

For the languages provided in the development
and test set, namely: En-Cz, En-Ja, Km-En and
Ps-En we maintain the same we use the MBART50
(Tang et al., 2020),4 to translate the source sentence
of the other languages pairs, since it has been found
to perform well, especially for low-resource lan-
guages (Tang et al., 2020). The En-Mr portion of
the development and test data is translated similarly
to the training data for this language pair.

Zero-shot language pair: This year we intro-
duced a “surprise” language-pair, English-Yoruba
(En-Yo), which represents a low-resource language
pair. The Yoruba language is the third most spoken
language in Africa, and it is native to southwest-
ern Nigeria and the Republic of Benin (Eberhard
et al., 2020). We extracted 1010 sentences in En-
glish from Wikipedia across 7 topics and translated
them to Yoruba using Google Translate. Using
adjusted guidelines from Fomicheva et al. (2021),
we trained annotators to indicate sentence-level
DA scores and to highlight erroneous words as
word-level explanations for the DA scores.5 On
the 1010 sentences, they obtained agreements of
0.487 Pearson on sentence-level and 0.380 kappa
on word-level. Note that in order to further en-
courage multilingual and unsupervised approaches,
the setup for this zero-shot approach was slightly
different to the previous edition, since we did not
reveal the language pair before the release of the
test data, and the zero-shot pair was included only
in the multilingual sub-tasks for quality estimation

3The NHS corpus source sentences were crawled from
the health directory of NHS available here: https://www.
nhs.uk/conditions/

4https://github.com/pytorch/fairseq/
tree/master/examples/multilingual

5Annotators were graduate students and native speakers of
Yoruba and fluent in English.
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(as opposed to a standalone subtask for this lan-
guage pair only).

MQM data: As training data, we used annota-
tions released for the Metrics shared task namely,
the concatenation of the annotations released from
Freitag et al. (2021a) with the annotations from
last year Metrics task (Freitag et al., 2021b). To-
gether, these annotations, cover 3 high-resource
language pairs, namely: Chinese-English (Zh-En),
English-German (En-De) and English-Russian (En-
Ru), and span across two domains (News and Ted
Talks). In contrast to DA, instead of one transla-
tion for each source, we have multiple translations
coming from system participation’s in the 2020
and 2021 News translation tasks (Barrault et al.,
2020; Akhbardeh et al., 2021). For development
set however, we follow an approach that is similar
to the one use for the DA data: we translated the
Newstest 2019 using a single NMT system, namely
MBART50. Subsequently, for each language pair
we asked an expert translator to provide MQM an-
notations. The test set was created similarly to the
development, but instead of using Newstest 2019
we used the Newstest 2022 (the News data from
this year’s General MT shared task).

Overall, the released data for Task 1covers a total
of 9 language pairs for training, 4 language pairs
for development and 6 language pairs for testing
including 1 zero-shot language pair. Statistics and
details for each language pair are provided in Table
1.

2.1.1 Sentence-level quality prediction
There were two competition instances for the
sentence-level sub-task. The first one focuses on
DA- and the second one on MQM-derived annota-
tions, both including a separate multilingual track.
In the future, we aim to consolidate the competition
instances into a single one for sentence-level, using
our findings from this edition to align the annota-
tion schemes in a better manner. We provide below
the details for each annotation scheme and a com-
prehensive table with statistics for all annotations
(Table 1).

DA annotations: For DA annotations, we fol-
lowed the annotation and scoring conventions of
previous editions. We provided MLQE-PE data
(Fomicheva et al., 2022) used in previous years for
training, which includes seven language pairs with
≈ 8,000 segments each. We also provided 26,000
segments of En-Mr which were annotated using the

same annotation conventions. All translations were
manually annotated for perceived quality, with a
quality label ranging from 0 to 100, following the
FLORES guidelines (Guzmán et al., 2019). Ac-
cording to the guidelines given to annotators, the
0-10 range represents an incorrect translation; 11-
29, a translation with few correct keywords, but the
overall meaning is different from the source; 30-50,
a translation with major mistakes; 51-69, a trans-
lation which is understandable and conveys the
overall meaning of the source but contains typos or
grammatical errors; 70-90, a translation that closely
preserves the semantics of the source sentence; and
91-100, a perfect translation. For each segment,
there were at least three scores from independent
raters (four in the case of En-Mr). DA scores were
standardised using the z-score by rater, and the
z-scores were provided as training targets. Par-
ticipating systems are required to score sentences
according to z-standardised DA scores.

MQM annotations: As we have seen (§2.1), for
the MQM annotations, we built on the available
Google MQM annotations (Freitag et al., 2021a)
that contain annotated data for the En-De and Zh-
En data of WMT 2020 News Translation Systems
(Barrault et al., 2020) as well as En-De, Zh-En and
En-Ru annotations from WMT Metrics 2021 (Fre-
itag et al., 2021b). These annotations, provided
as training data, amount to more than 30,000 seg-
ments in total (see Table 1 for details per language
pair). In addition, we provide newly annotated
development and test sets for all three language
pairs (En-De, En-Ru, Zh-En), amounting to ap-
proximately 1,000 segments per language pair.

Originally, MQM annotated segments include
annotated erroneous text-spans on the transla-
tion side that are assigned two types of labels:
(a) an error severity label {minor, major,
critical} and (b) an error category label such
as {grammar, style/awkward, omission,
mistranslation}, ...}. Each error sever-
ity is associated with a specific weight; hence a
sentence score can be calculated for each segment
based on these error weights. We demonstrate an
example of MQM annotations and scores in Figure
1.

MQM scores according to Google weight
scheme have the opposite direction of the DA
scores since larger MQM scores denote worse trans-
lation quality, i.e., a larger number of errors or more
severe errors. To address this inconsistency, we
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Language Sentences Tokens DA PE MQM CE Data Source
Pairs Train / Dev / Test22 Train / Dev / Test22

En-De 1 8,000 / 1,000 / – 131,499 / 16,545 / – ✓ ✓ Wikipedia
En-Zh 8,000 / 1,000 / – 131,892 / 16,637 / – ✓ ✓ Wikipedia
Ru-En 8,000 / 1,000 / – 94,221 / 11,650 / – ✓ ✓ Reddit
Ro-En 8,000 / 1,000 / – 137,466 / 17,359 / – ✓ ✓ Wikipedia
Et-En 8,000 / 1,000 / – 112,503 / 14,044 / – ✓ ✓ Wikipedia
Ne-En 8,000 / 1,000 / – 120,078 / 15,017 / – ✓ ✓ Wikipedia
Si-En 8,000 / 1,000 / – 125,223 / 15,709 / – ✓ ✓ Wikipedia
En-Mr 26,000 / 1,000 / 1,000 690,532 / 27,049 / 26,253 ✓ ✓
Ps-En – / 1,000 / 1,000 – / 27,045 / 27,414 ✓ ✓ Wikipedia
Km-En – / 1,000 / 1,000 – / 21,981 / 22,048 ✓ ✓ Wikipedia
En-Ja – / 1,000 / 1,000 – / 20,626 / 20,646 ✓ ✓ Wikipedia
En-Cs – / 1,000 / 1,000 – / 20,394 /20,244 ✓ ✓ Wikipedia
En-Yo – / – / 1,010 – / – / 21,238 ✓ ✓
En-De 2 28,909 / 1,005 / 511 839,473 / 24,373 / 13,220 ✓ WMT-newstest
En-Ru 15,628 / 1,005 / 511 357,452 / 24,373 / 13,220 ✓ WMT-newstest
Zh-En 35,327 / 1,019 / 505 1,586,883 / 51,969 / 15,602 ✓ WMT-newstest

En-De 155,511 / 17,280 / 500 8,193,693 / 915,061 / 27,771 ✓ News-Commentary
Pt-En 39,926 / 4,437 / 500 2,281,515 / 253,594 / 29,794 ✓ News-Commentary

Table 1: Statistics of the data used for Task 1 (DA), Task 2 (PE) and Task 3 (CE) (last four rows). The number of
tokens is computed based on the source sentences.

Figure 1: Example of MQM annotations on the target (translation) side, on a English–German (En-De) sentence
pair.

invert the MQM scores and standardise per anno-
tator. For training data we had access to multiple
annotations per segment and calculated an aver-
age score after standardisation, keeping also the
original MQM scores per annotator, to allow the
participants to take full advantage of the different
annotations (Basile et al., 2021). For the same
reasons, we opted not to aggregate the annotated
text-spans.

Regarding evaluation, systems in this task (both
for DA and MQM) are evaluated against the true
z-normalised sentence scores using Spearman’s
rank correlation coefficient ρ as the primary
metric. This is what was used for ranking sys-
tem submissions. Pearson’s correlation coefficient,
r, Mean Absolute Error (MAE), and Root Mean
Squared Error (RMSE) were also computed as sec-
ondary metrics but not used for the final ranking
between systems.

2.1.2 Word-level quality prediction

This sub-task focuses on detecting word-level er-
rors in the MT output. The goal is to automatically
predict the quality of each token using a binary
decision, i.e., using OK as a label for tokens trans-
lated correctly and BAD otherwise. We deviate
from the annotation pattern of previous years in
that, we do not consider annotations of the gaps
between tokens or source-side annotations. Instead,
to account for omission errors, we consider the fol-
lowing convention: the token on the right side of
the omitted text in the translation is annotated as
“BAD”. An additional <EOS> token is appended
at the end of every translation segment to account
for omissions at the end of each sentence. This al-
lows the provision of a unified framework for both
the post-edit originated annotations and the MQM
annotations.

We thus use the same source-translation pairs
used for the sentence-level tasks and obtain the
binary tags as follows:
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• For post-edited data, we use TER (Snover
et al., 2006) to obtain alignments between
translation and post-edit and annotate the mis-
aligned tokens as BAD.

• For MQM data, the tokens that fall within the
text-spans annotated as errors (or any sever-
ity or category) are annotated as BAD. If the
whitespace between two words is annotated as
an error, then this is considered an omission,
and the next token is annotated as BAD.

Participants were encouraged to submit for each
language pair and also for the multilingual vari-
ants of each sub-task. For the DA-based sentence-
level competition, as well as the word-level sub-
task, there was an additional multilingual variant
that included the zero-shot language pair (En-Yo).
The latter aimed at fostering work on language-
independent models, as well as models that are
truly multilingual.

For word-level task, submissions are ranked us-
ing the Matthews correlation coefficient (MCC)
as the primary metric, while F1-scores are pro-
vided as complementary information.

2.2 Task 2: Explainable Quality Estimation
Following the success of the shared task on Ex-
plainable Quality Estimation organized by the
Eval4NLP workshop in 2021 (Fomicheva et al.,
2021), in this sub-task we aim to address trans-
lation error identification as rationale extraction
from sentence-level quality estimation systems. If
a QE system reasonably estimates the quality of a
translated sentence, an explanation extracted from
the system should indicate word-level translation
errors in the input (if any) as reasons for imper-
fect sentence-level scores. Particularly, for each
input pair of source and target sentences, participat-
ing teams are asked to provide (i) a sentence-level
score estimating the translation quality and (ii) a list
of continuous word-level scores where the tokens
with the highest scores are expected to correspond
to translation errors considered relevant by human
annotators.

In this explainable QE task, we use all the nine
language pairs and their word-level test sets from
Task 1 (see §2.1.2) with En-Yo being a separate
language pair (rather than blending it in the mul-
tilingual test set). Therefore, the participants are
allowed to use the sentence-level scores from the
datasets in Task 1 to train their sentence-level mod-
els in Task 2. However, as Task 2 aims to promote

the research on the explainability of QE systems,
we encourage the participants to use or develop
explanation methods to identify contributions of
words or tokens in the input. Unlike Task 1, the
participants of Task 2 are not allowed to super-
vise their models with any token-level or word-
level labels or signals (whether they are from
natural or synthetic data) in order to directly
predict word-level errors. Consequently, we do
not require the participants to convert their word-
level scores into predicted binary labels (OK/BAD)
since this process usually requires a word-level QE
dataset to search for an optimum score threshold.

Concerning the evaluation of this task, we fo-
cus on assessing the quality of explanations (i.e.,
the submitted word-level scores), not the sentence-
level predictions. Specifically, we measure how
well the word-level scores provided by the partici-
pants correspond with human word-level error an-
notations, which are binary ground truth labels. Un-
like the Eval4NLP 2021 shared task, which ranked
participating systems by a combination of three
metrics (Fomicheva et al., 2021), we use Recall at
Top-K, also known as R-precision in information
retrieval literature (Manning et al., 2008, chap-
ter 8), as the primary metric this year due to
two reasons. First, it is preferable to have a single
main metric to avoid confusion and also some po-
tential side effects that combining the three metrics
might produce. Second, Recall at Top-K seemed
to help discriminate best between the participating
submissions in the Eval4NLP shared task. Assume
that, for a given pair of source and target sentences,
there are K words annotated as translation errors
by humans. Recall at Top-K equals r

K when there
are r out of the K error words appearing in the list
of top-K words ranked by the submitted word-level
scores descendingly. In addition, AUC (an area un-
der the receiver operating characteristic curve) and
AP (average precision) are used as secondary met-
rics. Considering the word level, AUC summarises
the curve between true positive rate and false posi-
tive rate, while AP summarises the curve between
precision and recall. For both of the secondary
metrics, higher values are the better. Although we
report metrics for sentence-level predictions, in-
cluding Pearson’s correlation and Spearman’s cor-
relation, as additional information, we do not use
them for ranking the participants or determining
the winner in this explainability task.

74



2.3 Task 3: Critical Error Detection

In this sub-task, we reshape the binary classifica-
tion task introduced in last year’s edition (Specia
et al., 2021) to predict whether the translated sen-
tence contains (at least) one critical error.

Following Specia et al. (2021), we consider that
a translation contains a critical error if it deviates
from the meaning of the source sentence in such a
way that it is misleading and may lead to several
implications. As noted by Specia et al. (2021), de-
viations in meaning can happen in three ways: mis-
translation errors have critical content translated
incorrectly into a different meaning; hallucination
errors introduce critical content in the translation
that is not in the source; and deletion errors re-
move critical content that is in the source from the
translation.

In this task, we focus on five critical error cate-
gories:

• Additions: The content of the translation is
only partially supported by the source.

• Deletions: Part of the source sentence is ig-
nored by the MT engine.

• Named Entities: A named entity (people, or-
ganization, location, etc.) is mistranslated into
another incorrect named entity.

• Meaning: The translated sentence either intro-
duces or removes a negation and the sentence
meaning is completely reversed.

• Numbers: The MT system translates a num-
ber/date/time or unit incorrectly.

For this task, we introduce a new dataset ob-
tained by perturbing a corpus of News articles with
SMAUG (Alves et al., 2022) and using humans to
validate perturbation on the test set. The original
data for this task is composed of the News arti-
cles from OPUS News-Commentary (Tiedemann,
2012) for the language pairs English-German and
Portuguese-English.

For the English-German language pairs, there
are no Deviation in Meaning errors, as the pertur-
bation is only available for into English language
pairs. The new dataset is purposefully unbalanced,
as these phenomena are rare, containing approxi-
mately 5% of translations with critical errors. Table
1 presents the number of records for each language
pair.

Since the dataset for this task is artificially gen-
erated, the participants were encouraged to submit
systems that did not rely on the provided training
data. As such, submissions were split into two
groups: unconstrained and constrained. In the first
group, the participants have access to the training
data. In the second, the systems should only be
trained on quality scores such as DA, HTER and
MQM annotations. With this setting, we aim to
evaluate whether systems can identify critical er-
rors while maintaining correlations with human
judgements.

In the evaluation of this task, the participants
were not required to submit any classification
threshold for their systems. For the unconstrained
setting, the systems are specifically trained to detect
errors and should output high scores for translations
containing these errors. As such, for each language-
pair, we considered as positive predictions the K
records with highest scores, where K is the num-
ber of positive records for that language-pair in the
test set. Regarding the constrained setting, these
systems are only trained on quality scores and are
expected to assign lower scores to translations with
critical errors. Therefore, we considered the K
records with lowest scores as positive predictions.
From here, we measured the MCC, Recall and Pre-
cision for each submission.

3 Baseline systems

Task 1: Quality Estimation baseline systems:
For Task 1, both for word and sentence-level, we
used a multilingual transformer-based Predictor-
Estimator approach (Kim et al., 2017), which is de-
scribed in detail in Fomicheva et al. (2022). For the
implementation and training we use the OpenKiwi
(Kepler et al., 2019) framework. We trained the
baseline model using a multilingual and multitask
setting and training jointly on the sentence-level
scores and word-level tags. For the word-level loss,
Lword, the weight of BAD tags is multiplied by a
factor of λBAD = 3.0, but the sentence- and word-
level loss have equal weight in the overall joint
loss estimation: L = Lword + Lsent. We trained
different baselines for the DA/post-edit originated
language pairs and the MQM originated language-
pairs.

For the DA/post-edit baseline, the model was
trained using the DA scores as sentence targets and
the OK/BAD tags as word targets. For training we
used the concatenated data for all language pairs
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available under training data and used the concate-
nation of the additional language pairs that were
made available in the development set as valida-
tion. We trained two baselines with this setup, us-
ing different encoders for the encoding (predictor)
part of the architecture: (a) XLM-R transformer
with the xlm-roberta-large model and (b)
RemBERT model which has been pre-trained on
additional languages that include Yoruba and can
hence account for the zero-shot language.

For the MQM baseline, the model was trained
using the normalised and inverted MQM scores
as sentence targets and the OK/BAD tags as word
targets. The baseline model was trained using the
concatenated training data for all three language
pairs and used the concatenated development data
for the same pairs as the validation set. The XLM-
R transformer with the xlm-roberta-large
model was used as an encoder.

Task 2: Explainability baseline systems: We
provide two baseline systems for Task 2. One is
a random baseline where we sampled scores uni-
formly at random from a continuous [0..1) range
for each target token and for a sentence-level score.
The other one is a combination of a supervised
quality annotation model, OpenKiwi (Kepler et al.,
2019) and LIME (Ribeiro et al., 2016) where
OpenKiwi is used to predict sentence-level quality
scores while LIME is used to compute, for every
token in the target sentence, its importance for the
sentence-level quality score returned by OpenKiwi.
For the OpenKiwi implementation we used a sim-
ilar setup described for the baselines of Task 1,
but we trained the OpenKiwi model using only
sentence-level supervision, to align with the task re-
quirements. We trained two multilingual instances,
one on DA- and one on MQM-derived data, using
XLM-R large encoder in both cases.

LIME is a model-agnostic post-hoc explanation
method which trains a linear model to estimate the
behavior of a target model (i.e., OpenKiwi in our
case) around an input example to be explained so
the weights of the linear model correspond to the
importance of individual input tokens. Because
higher sentence-level scores in our gold standard
mean better translation quality, we invert token-
level scores generated by LIME so that higher val-
ues correspond to errors as required by the task
description.

Task 3: Critical Error Detection baseline sys-
tems: For task 3, we consider a baseline system
for each setting.

In the constrained setting, we considered
COMET-QE (Rei et al., 2021)6, which was a top-
performing QE-as-a-Metric system in last years
Metrics shared task (Freitag et al., 2021b).

Regarding the unconstrained setting, we fine-
tune an xlm-roberta-large model using the
COMET framework (Rei et al., 2020). Both the
source and translation are jointly encoded into a
vector representation which is the input of a final
estimator that predicts the probability of the transla-
tion containing a critical error. Here, the estimator
weights are randomly initialised. We fine-tune the
model on the provided training data for a maximum
of 5 epochs. At the end of each epoch, we perform
a validation step by measuring the MCC on the
validation set considering a classification threshold
of 0.5. We select the model with the highest MCC
on the validation data.

4 Participants

Alibaba-Translate (T1-DA): For the DA subtask,
the team participated in all language pairs
except the zero-shot LP. The implemented
system (Wang et al., 2021), uses glass-box
QE features to estimate the uncertainty of ma-
chine translation segments and incorporates
the features into the transfer learning from the
large-scale pre-trained model, XLM-R. The
participants used exclusively the DA data pro-
vided for this edition of the QE shared task. Of
the provided data, the 7 language pairs except
for English-Marathi, were combined to train
a multilingual model. For English-Marathi, a
separate bilingual model was trained. For the
final submission the participants ensembled
multiple checkpoints.

(T1-MQM): The submission for sentence-
level MQM task is based on a multilingual
unified framework for translation evaluation.
The applied framework UniTE (Wan et al.,
2022) considers three input formats – source-
only (QE or reference-free metric), reference-
only and source-reference-combined. The par-
ticipants used synthetic datasets with pseudo
labels during continuous pre-training phase,
and fine-tuned with DA and MQM training

6More precisely we used the wmt21-comet-qe-mqm
model
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datasets from the year 2017 to 2021. To
obtain the final model predictions they use
the source-only evaluation. For multilingual
phase, they ensembled predictions using two
different backbones – one using XLM-R en-
coder and the other using InfoXLM. For the
ensembling, they picked the best 2 check-
points on the development dataset.

BJTU-Toshiba (T1-MQM): BJTU-Toshiba par-
ticipation focused on ensembling different
models and using external data. They ensem-
ble multiple pre-trained models, both mono-
lingual and bilingual. The monolingual mod-
els are trained only on the text of the target
language. Specifically, they use monolingual
BERT, Roberta, and Electra-discriminator as
the monolingual extractor, and XLM-R as the
bilingual extractor. They also use in-domain
parallel data to fine-tune and adapt the pre-
trained models to the target language and do-
main. The in-domain data is selected by a
BERT-classifier from the parallel data pro-
vided by the news translation task, and for
each direction, they end up using roughly 1
million sentence pairs for fine-tuning. They
explore two styles of fine-tuning, namely
Translation Language Model and Replaced
Token Detection. For Replaced Token Detec-
tion, they use the first 1/3 layers of the model
as generator, and after the training they drop
the generator and only use the discriminator
as the feature extractor.

HW-TSC (T1): HW-TSC’s submission follows
Predictor-Estimator framework with a pre-
trained XLM-R Predictor, a feed-forward Es-
timator for sentence-level QE subtask and a
binary classifier Estimator for word-level QE
subtask. Specially, the Predictor is a cross-
lingual language model that receives source
and target tokens concatenated and returns
representations that attend to both languages.
WMT 2022’s news translation task training
data is been used to train the Predictor us-
ing a cross-lingual masked language model
objective. All of the WMT QE 2022 DA and
MQM training data are used to train two differ-
ent multilingual QE models, one for sentence-
level and another one for word-level.

(T2:) The language encoder trained for Task
1 is being used to get source and target token

embeddings. After computing cosine similar-
ity between target and source token embed-
dings, the max cosine similarity of each target
token to all the source tokens is selected as
quality score. Intuitively, a low score means
the target token is more likely to be an error
(lack of good alignment), so every target word
quality score is multiplied by a negative value.

HyperMT - aiXplain (T1-all): The system is
trained with AutoML functionalities in
FLAML framework using lightgbm estimator.
It utilizes COMET-QE score as feature
along-side with many other linguistic features
extracted with Stanza from source texts and
their translations: the number of tokens,
characters, and the average word length of
sentences; the frequency of Part-of-Speech
and Named Entity Recognition labels, and
the frequency of morphological features. The
differences in values of linguistic features
between source texts and translations are also
included as features. This allows the system
to work in multilingual settings as well.

IST-Unbabel (T1-all): IST-Unbabel team pro-
posed an extension of COMET, dubbed
COMET-Kiwi, which includes a word-level
layer and can be trained on both sentence-
level scores and word-level labels in a multi-
tasking fashion. Their final submission for
task 1 is a weighted ensemble between mod-
els trained using InfoXLM (Chi et al., 2021)
and RemBERT (Chung et al., 2021). All
these models are pretrained on the data from
the metrics shared tasks and, for word-level,
they pretrained on both QT21 and APE-Quest
datasets.

(T2) For the second task they use the
COMET-Kiwi framework as the backbone of
a sentence-level QE model and added layer
and headwise parameters to the QE model: for
each layer and for each head, they train indi-
vidual parameters to construct a sparse distri-
bution over the layers/heads to better leverage
these representations. They leveraged differ-
ent encoders – InfoXLM and RemBERT – and
used them individually as the backbone of our
QE sentence-level models. The models used
to extract explanations were multilingual ones
trained for DA and MQM separately. The ex-
plainability weights were obtained from the at-
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tention weights scaled by the norm of the gra-
dient of the value vectors (Chrysostomou and
Aletras, 2022). No word supervision was used
and all explanations were extracted relying
solely on models that produced the sentence-
level scores. The final submissions are ensem-
bles of explanations from different attention
layers/heads according to the validation data.
For the zero-shot language pair (En-Yo), they
created an ensemble with the attention lay-
ers/heads that were among the top-performing
ensembles for other language pairs.

(T3) For task 3 a single model from task 1
using InfoXLM encoder and trained on DA
annotations was submitted.

KU X Upstage (T3): KU X Upstage employs an
XLM-R large model without leveraging any
additional parallel corpus. Instead, they at-
tempt to maximise its capability by adopting
prompt-based fine-tuning, which reformulates
the Critical Error Detection task as a masked
language modelling objective (a pre-training
strategy of this model) before training. They
generate hard prompts suitable for QE task
through prompt engineering, and templates
consist largely of three types according to
the information utilised: naive template, tem-
plate with a contrastive demo, and template
with Google Translate. The final score is ob-
tained by extracting the probability of a word
mapped to BAD among verbalizers. They
gain an additional performance boost from
the template ensemble by adding the values
from multiple templates.

NJUNLP (T1-all): NJUNLP submission makes
use of pseudo data and multi-task learning.
Inspired by DirectQE (Cui et al., 2021), they
experiment with several novel methods to gen-
erate pseudo data for all three subtasks (MQM,
DA, and PE) using the conditional masked lan-
guage model and the NMT model to generate
high quality synthetic data and pseudo labels.
The proposed methods control the decoding
process to generate more fluent pseudo trans-
lations close to the actual distribution of the
gold data. They pre-train the XLM-R large
model with the generated pseudo data and
then fine-tune this model with the real QE task
data, using multi-task learning in both stages.
They jointly learn sentence-level scores (with

regression and rank tasks) and word-level tags
(with a sequence tagging task). For the fi-
nal submissions they ensemble sentence-level
results by averaging all valid output scores
and ensemble word-level results using a vot-
ing mechanism. For the pseudo label genera-
tion they use publicly available parallel data,
specifically: the data provided by the WMT
translation task for En-De (9M), En-Ru (3M),
and Zh-En (3M) language pairs. The 660K
parallel sentences from OPUS7 for the Km-
En language pair. They also use 3.6M parallel
data from the target translation model8 for the
En-Mr language pair, as well as WMT2017,
WMT2019, and WMT2020 En-De PE data
for the En-De language pair.

Papago (T1-full): Papago submitted a multilin-
gual and multi-task model, trained to predict
jointly both sentence and word level. The
system’s architecture consists of Pretrained
Language Model with task independent layers
optimized for both sentence and word level
quality prediction. They propose an auxiliary
loss function to the final objective function to
further improve performance. They also aug-
ment training data by either generating (i.e.
pseudo data) or collecting open source data
that is deemed to be relevant to QE task. Fi-
nally, they train and select the checkpoints for
the final submission with cross-validation for
better generalization and ensemble multiple
models for their final submission.

UCBerkeley-UMD (T1:DA): UCBerkeley-
UMD used a large-scale multilingual model
to back translate from Czech to English. They
compared the quality of the Czech translation
by examining the translation from Czech back
to English with the original source text in
English. This is motivated by literature that
humans tend to perform quality checks on
translations when they do not understand the
target language.

UT-QE (T2): The UT-QE team used XLMR-
Score (Azadi et al., 2022) as an unsupervised
sentence-level metric, which is computed as
BERTScore but in a cross-lingual manner
while using the XLM-R model. The matched

7https://opus.nlpl.eu/
8https://indicnlp.ai4bharat.org/

indic-trans/
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ID Affiliations

Alibaba Translate DAMO Academy, Alibaba Group & University of Sci-
ence and Technology of China & CT Lab, University
of Macau, China & National University of Singapore,
Republic of Singapore

(Bao et al., 2022)

BJTU-Toshiba Beijing Jiaotong University, China & Toshiba Co., Ltd. (Huang et al., 2022)
HW-TSC Huawei Translation Services Center & Nanjing Univer-

sity, China
(Su et al., 2022)

HyperMT - aiXplain aiXplain –
IST-Unbabel INESC-ID & Instituto de Telecomunicações & Instituto

Superior Técnico & Unbabel, Portugal
(Rei et al., 2022)

KU X Upstage Korea University, Korea & Upstage (Eo et al., 2022)
NJUNLP Huawei Translation Services Center, China (Geng et al., 2022)

Papago Papago, Naver Corp (Lim and Park, 2022)
UCBerkeley-UMD University of California, Berkeley & University of Mary-

land
(Mehandru et al., 2022)

UT-QE University of Tehran, Iran (Azadi et al., 2022)
Welocalize-ARC/NKUA Welocalize Inc, USA & National Kapodistrian Univer-

sity & Athena RC, Greece
(Zafeiridou and Sofianopoulos, 2022)

Table 2: Participants to the WMT22 Quality Estimation shared task.

tokens distances in this metric were used
as token-level scores. In order to alleviate
the mismatching issues, they also try to fine-
tune the XLM-R model on word alignments
from parallel corpora to make it represent the
aligned words in different languages closer
to each other, and use the fine-tuned model
instead of XLM-R for scoring sentences and
tokens.

Welocalize-ARC/NKUA (T1-DA): Welocalize-
ARC/NKUA’s submission for the Task 1
follows the Predictor-Estimator framework
(Kim et al., 2017) with a regression head
on top to estimate the z-standardised DA.
More specifically, they use a pre-trained
Transformer for feature extraction and then
concatenate the extracted features with
additional glass-box features. The glass-box
features are also produced using pre-trained
models and by applying multiple techniques
to estimate different types of uncertainty for
each translated sentence. The final features
are then used as input for the QE regression
model, which is a simple sequential Neural
Network with a linear output layer. Finally,
the performance of the model is optimised
by employing Monte Carlo Dropout during
both training and inference. Regarding the
data, they use only the provided datasets
(the MLQE-PE train/dev sets along with
the additional dataset for Marathi language)
as well as some of the provided additional

training resources of the Metrics shared task.

Table 2 lists all participating teams submitting
systems to any of the tasks, and Table 3 report
the number of successful submissions to each of
the sub-tasks and language pairs. Each team was
allowed up to ten submissions for each task variant
and language pair (with a limit of two submissions
per day). In the descriptions below, participation in
specific tasks is denoted by a task identifier (T1 =
Task 1, T2 = Task 2, T3 = Task 3).

5 Results

In this section, we present and discuss the results
of our shared task. Please note that for all the
three subtasks we used statistical significance test-
ing with p = 0.05.

5.1 Task 1
As we have seen in Task 1 description (§2.1.1),
submissions are evaluated against the true z-
normalised sentence scores using Spearman’s rank
correlation coefficient ρ along with the following
secondary metrics: Pearson’s correlation coeffi-
cient, r, Mean Absolute Error (MAE), and Root
Mean Squared Error (RMSE). Nonetheless, the fi-
nal ranking between systems is calculated us-
ing the primary metric only (Spearman’s ρ).
Also, statistical significance was computed using
William’s test.9

For the Task 1 word-level task, the submissions
are ranked using the Matthews correlation coeffi-

9https://github.com/ygraham/mt-qe-eval
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Task/LP # submission

Task 1 – Sent-level Direct Assessment 161
Multilingual w/o En-Yo 21
Multilingual w En-Yo 23
English-Marathi 24
English-Czech 33
English-Japanese 22
Pashto-English 16
Khmer-English 22

Task 1 – Sent-level MQM 402
Multilingual 38
English-German 65
English-Russian 62
Chinese-English 76

Task 1 – Word-level 247
Multilingual w/o En-Yo 18
Multilingual w En-Yo 17
English-Czech 32
English-Japanese 27
English-Marathi 24
Pashto-English 13
Khmer-English 28
English-German 28
English-Russian 18
Chinese-English 27

Task 2 – Explainable QE 161
English-Czech 14
English-Japanese 14
English-Marathi 13
Pashto-English 30
Khmer-English 25
English-German 17
English-Russian 12
Chinese-English 12
English-Yoruba 12

Task 3 – Sent-Level Critical Error Det. 20
Constrained

English-German 2
Portuguese-English 2

Unconstrained
English-German 10
Portuguese-English 6

Total 991

Table 3: Number of submissions to each sub-task and
language-pair at the WMT22 Quality Estimation shared
task.

cient (MCC). F1-scores are provided as comple-
mentary information only and statistical signif-
icance was computed using randomisation tests
(Yeh, 2000) with Bonferroni correction (Abdi,
2007) for each language pair.

The majority of participants implemented mul-
tilingual models and the top performing sys-
tems adopted a multi-tasking approach, learning
the sentence- and word-level targets jointly (IST-
Unbabel, Papago, NJUNLP). It is important to note
that all participants relied on large pre-trained en-
coders (XLM-R, RemBERT, BERT, ELECTRA),
which seems to be the norm for high-performance

in quality estimation, but can constitute a limita-
tion for performance in truly multi-lingual scenar-
ios where the target languages are not seen during
pre-training. Additionally, many final submissions
consisted of ensembles combining different large
pretrained models increasing even further the total
number of model parameters.

Another trend that seems to carry on from pre-
vious editions of the task is the incorporation of
additional features in QE models (glass-box fea-
tures were incorporated in Alibaba’s DA systems
while linguistic features were incorporated in aiX-
plain QE system), however in this edition such ap-
proaches were outperformed by models that put
more emphasis on pre-training, using auxiliary
tasks and external data.

For the sentence-level sub-tasks, participants
managed to achieve high correlations for the major-
ity of language pairs, especially for the DA origi-
nated data, with the exception of En-Ja. The results
show an improvement compared to the last edition,
although it is hard to draw a direct comparison due
to changes in the available train/development data.
However, it is interesting to note that performance
for En-Mr, for which we provided considerable
more data than for the other language pairs is still
in the same range as results for the other language
pairs. It would thus be interesting to investigate fur-
ther which properties render a language pair harder
to evaluate.

For the MQM data the overall correlations
achieved were lower in comparison to the DA ones
although still meaningful. Note that compared to
the DA data, the MQM language pairs were high-
resource ones, which could also influence perfor-
mance. Additionally, small discrepancies between
the annotation guidelines in the train set and the
dev/test sets could have further complicated the
task. We intend to further investigate the MQM
potential in future editions, with the addition of
new language pairs and more annotated data.

For the word-level subtask, IST-Unbabel,
NJUNLP and Papago tied at the top for most lan-
guage pairs, and we can observe that correlations
are moderate across language pairs (both DA and
MQM originated ones). It is important to note that
no team seems to have submitted predictions us-
ing a word-level only supervision; instead all the
participants of this task used a multi-task approach,
learning jointly word and sentence level scores.
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Model Multi Multi (w/o En-Yo) En-Cs En-Ja En-Mr Km-En Ps-En
IST-Unbabel 0.572 0.605 0.655 0.385 0.592 0.669 0.722
Papago 0.502 0.571 0.636 0.327 0.604 0.653 0.671
Alibaba Translate – 0.585 0.635 0.348 0.597 0.657 0.697
Welocalize-ARC/NKUA 0.448 0.506 0.563 0.276 0.444 0.623 –
BASELINE 0.415 0.497 0.560 0.272 0.436 0.579 0.641
lp_sunny‡ 0.414 0.485 0.511 0.290 0.395 0.611 0.637
HW-TSC – – 0.626 0.341 0.567 0.509 0.661
aiXplain – – 0.477 0.274 0.493 – –
NJUNLP – – – – 0.585 – –
UCBerkeley-UMD* – – 0.285 – – – –

Table 4: Spearman correlation with Direct Assessments for the submissions to WMT22 Quality Estimation Task 1.
For each language pair, results marked in bold correspond to the winning submissions, as they are not significantly
outperformed by any other system according to the Williams Significance Test (Williams, 1959). Baseline systems
are highlighted in grey; ‡ indicates Codalab username of participants from whom we have not received further
information and * indicates late submissions that were not considered for the official ranking of participating systems

Model Multi En-
De

En-
Ru

Zh-En

IST-Unbabel 0.474 0.561 0.519 0.348
NJUNLP 0.468 0.635 0.474 0.296
Alibaba-Translate 0.456 0.550 0.505 0.347
Papago 0.449 0.582 0.496 0.325
lp_sunny ‡ 0.415 0.495 0.453 0.298
BASELINE 0.317 0.455 0.333 0.164
BJTU-Toshiba – 0.621 0.434 0.299
HW-TSC – 0.494 0.433 0.369
aiXplain – 0.376 0.338 0.194
pu_nlp ‡ – 0.611 – –

Table 5: Spearman correlation with MQM for the sub-
missions to WMT22 Quality Estimation Task 1. For
each language pair, results marked in bold correspond
to the winning submissions, as they are not significantly
outperformed by any other system according to the
Williams Significance Test (Williams, 1959). Baseline
systems are highlighted in grey; ‡ indicates Codalab
username of participants from whom we have not re-
ceived further information.

Best performers The scores in Tables 4 - 6 show
the participant scores for the main metric, ordered
by the best performance in the multilingual sub-
tasks. IST-Unbabel is the clear winner for the mul-
tilingual subtasks, but for the individual language
pairs results vary and multiple participants are tied
at the top. All top-performing approaches (IST-
Unbabel, Papago, NJUNLP and Alibaba) share
some common characteristics: (1) they constitute
multilingual and multi-task approaches; (2) they
use external data during pre-training, either adapted
from other tasks (such as the Metrics task (Freitag
et al., 2022)) or generated artificially (pseudo data);
and (3) they use ensembling for the final submis-
sion.

5.2 Task 2

Three teams participated in Task 2, IST-Unbabel,
HW-TSC and UT-QE. IST-Unbabel participated
in all 9 language pairs, HW-TSC in all languages
pairs except English-Yoruba, and UT-QE only in
Khmer-English and Pashto-English. As shown in
Table 7, IST-Unbabel wins 7 of 9 LPs according to
the metric Recall at Top-K, HW-TSC the remaining
2. With Bonferroni correction, IST-Unbabel wins
4 LPs, HW-TSC wins 2, and both are indistinguish-
able on the remaining 3 LPs. Average precision
(AP) yields identical results as Recall at Top-K in
terms of ranking of the teams. There is one dif-
ference according to the metric AUC in terms of
winners: HW-TSC wins English-Japanese. Finally,
all participating teams beat both baselines in all
cases.

For sentence-level performance (see Appendix
D), IST-Unbabel wins all LPs according to Pear-
son’s correlation and all LPs according to Spear-
man’s correlation except for Khmer-English, which
HW-TSC wins. Not all teams beat all baselines in
terms of sentence-level performance.

The winning teams obtain the lowest sentence-
level correlations for English-Chinese, English-
Japanese and English-Yoruba and the highest cor-
relations for Khmer-English and English-German.
This may be related to the quality of annotations
and the quality of MT systems involved. For word-
level explainability scores, the lowest Recall at
Top-K scores are obtained for English-Yoruba and
English-Marathi, whereas the highest scores are ob-
tained for Pashto-English and Khmer-English. The
fact that the winning systems obtain low sentence
and word-level scores for English-Yoruba and high
scores for Khmer-English may indicate that the
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Model Multi Multi (w/o En-Yo) En-Cs En-Ja En-Mr Kh-En Ps-En En-De En-Ru Zh-En
IST-Unbabel 0.341 0.361 0.436 0.238 0.392 0.425 0.424 0.303 0.427 0.360
Papago 0.317 0.343 0.396 0.257 0.418 0.429 0.374 0.319 0.421 0.351
BASELINE 0.235 0.257 0.325 0.175 0.306 0.402 0.359 0.182 0.203 0.104
HW-TSC – 0.218 0.424 0.258 0.351 0.353 0.358 0.274 0.343 0.246
NJUNLP – – – – 0.412 0.421 – 0.352 0.390 0.308

Table 6: Matthew Correlation Coefficient (MCC) for the submissions to WMT22 Quality Estimation Task 1
(word-level). For each language pair, results marked in bold correspond to the winning submissions, as they are
not significantly outperformed by any other system based on randomisation tests with Bonferroni correction (Yeh,
2000). Baseline systems are highlighted in grey.

Model En-Cs En-Ja En-Mr En-Ru En-De En-Yo Km-En Ps-En Zh-En
IST-Unbabel 0.561 0.466 0.317 0.390 0.365 0.234 0.665 0.672 0.379
HW-TSC 0.536 0.462 0.280 0.313 0.252 – 0.686 0.715 0.220
BASELINE (OpenKiwi+LIME) 0.417 0.367 0.194 0.135 0.074 0.111 0.580 0.615 0.048
BASELINE (Random) 0.363 0.336 0.167 0.148 0.124 0.144 0.565 0.614 0.093
UT-QE – – – – – – 0.622 0.668 –

Table 7: Recall at Top-K for the submissions to the WMT22 Quality Estimation Task 2 (Explainable QE). For
each language pair, results marked in bold correspond to the winning submissions, as they are not significantly
outperformed by any other system based on randomisation tests with Bonferroni correction (Yeh, 2000). Baseline
systems are highlighted in grey.

Model En-De
(Cons)

En-De
(UN-
cons)

Pt-En
(Cons)

Pt-En
(UN-
cons)

KU X Upstage – 0.964 – 0.984
IST-Unbabel 0.564 – 0.721 –
BASELINE 0.074 0.855 -0.001 0.934
aiXplain – 0.219 – 0.179

Table 8: Matthews Correlation Coefficient (MCC) for
the submissions to WMT21 Quality Estimation Task
3 (Critical Error Detection). For each language pair,
results marked in bold correspond to the winning sub-
missions, as they are not significantly outperformed
by any other system based on randomisation tests with
Bonferroni correction (Yeh, 2000). Baseline systems
are highlighted in grey.

tasks are correlated (as one may intuitively expect):
a QE system that yields better sentence-level scores
also highlights word-level errors more correctly.

5.3 Task 3

In this task, we divide participants into uncon-
strained and constrained settings, and address each
group in separate. As in the last year, this task at-
tracted few participants, which we attribute to the
recentness of the task.

In the unconstrained setting, there are two par-
ticipants: KU X Upstage and HyperMT - aiXplain.
The first achieved very high values for the mea-
sured metrics, and is the best performer for this
setting for both language pairs. The second ob-
tained lower values, falling below the baseline on
both language pairs.

In the constrained setting, a single submission
was received: IST-Unbabel. Their system outper-
formed the baseline on both language pairs.

6 Discussion

In what follows, we discuss the main findings of
this year’s shared task based on the goals we had
previously identified for it.

General progress Participating systems
achieved very promising results for most
languages, including the newly introduced
language-pairs as well as the new annotation
style (MQM). The best performing submissions
showed moderate to strong correlation for
sentence-level DA and MQM prediction tasks.
While it is hard to draw direct comparisons with
the previous editions, the overall correlation scores
obtained are similar or improved for the common
language-pairs. In combination with the outcomes
of previous editions, it seems that multi-lingual and
multi-task systems that are able to take advantage
of multiple resources, are showing better and more
robust results. However, the word-level quality
prediction is still a challenging task and there
is ample room for improvement. Along the
same lines, further exploring explainability tasks,
that support the sentence level predictions with
word level scores seems a promising path to
motivate finer-grained approaches to word-level
quality annotations.
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DA vs MQM annotations To further understand
the observed discrepancies between top perfor-
mances in the DA and MQM sub-tasks for sentence-
level quality estimation, we analyse the distribu-
tions of predicted scores vs gold scores for each
language pair, as presented in Figure 2.

We can see in the scatter plots that there are mul-
tiple test-segments which are annotated as perfect
translations (maximum possible normalised MQM
score), which fail to be classified accordingly as
indicated by the top parts of the MQM scatter plots
in Figure 2. Overall, even with DA annotations we
can see that language pairs with more balanced
distribution between high and low quality seg-
ments (Km-En, Ps-En) are those for which QE
systems obtain better correlations, compare to
more skewed language pairs (En-Mr, En-Ja).

Additionally, we can see that the MQM scores
are significantly skewed towards higher scores,
with long-tails of few very low quality instances.
This provides motivation to revisit the quantifica-
tion of MQM annotations to generate sentence level
scores and further experiments into consolidating
MQM annotations from different annotators. Fur-
thermore, perhaps providing access to finer-grained
MQM annotations (using the category or severity
labels as targets) could aid in obtaining more mean-
ingful outcomes. In future editions we intend to
further expand the coverage of languages for MQM
annotations that will allow us to draw further con-
clusions and push the state-of-the-art further in this
track.

Zero shot predictions We found that even with-
out development data or prior knowledge about
the language pair, the systems that submitted
predictions for En-Yo still achieved meaning-
ful correlations. For the quality assessment and
explainability tasks, the achieved correlations are
lower compared to the “seen” language pairs, but
still comparable. We can also observe the scatter
plot distributions that show the correlation obtained
by the top performing system that is comparable
with the other DA distributions.

However, we noticed that the availability of
the zero-shot languages in the frequently used
pretrained encoders posed an additional chal-
lenge for the participants as the performance on
En-Yo seemed dependent on whether the pretrained
language model had seen Yoruba text during pre-
training. In future editions, we hope that mixing
different zero-shot languages will further motivate

unsupervised approaches.

Explainable quality estimation The perfor-
mance of the baselines in Task 2 suggests that ap-
plying a model-agnostic explanation method (i.e.,
LIME) to a relatively good sentence-level QE sys-
tem (i.e., OpenKiwi) straightforwardly may not re-
sult in plausible explanations. In particular, the
OpenKiwi+LIME baseline got higher Recall at
Top-K than the random baseline for only 5 LPs.
Using randomisation tests with Bonferroni correc-
tion, we found that the OpenKiwi+LIME base-
line can significantly outperform the random base-
line for only 2 LPs (En-Cs and En-Ja). Despite
its higher Pearson’s correlation at the sentence
level, OpenKiwi+LIME yielded random-like (or
even worse) explanations for MQM language pairs.
This also calls for a stronger baseline for the fu-
ture edition of the QE shared task. Additional sig-
nals/heuristics might be added to the future shared
task’s baselines such as sparsity of the rationales
(as used by IST-Unbabel) and alignments between
source and target sentences (as used by HW-TSC
and UT-QE).

Critical error detection. By comparing the per-
formance of the submitted systems, in particular
the baselines, we see that the difficulty of the con-
strained setting is much higher. We attribute this
discrepancy to the fact that the artificially generated
data follows a specific set of patterns, which can be
captured by current methods when given enough
examples. The HyperMT - aiXplain submission
seems to be an exception. However, although this
system is unconstrained, it is composed of fine-
tuned decision trees where the base features are
constrained. We consider that these features are
unable to provide sufficient information for the
decision trees to be able to identify critical errors,
even when fine-tuned on the provided training data.

Due to the scarcity of annotated data containing
critical errors, we argue that the constrained setting
presents a much more realist challenge, where sys-
tems are trained for correlating with human judge-
ments but are tested for robustness to critical errors.

For a future edition of this task, we envision a
design that simultaneously considers both corre-
lations with human judgements and robustness to
critical errors when evaluating a QE system. This
can be combined with Task 1, where besides the
current evaluation method, participants would also
receive a robustness score for their systems, mea-
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Figure 2: Scatter plots for the predictions against true DA/MQM scores for the top-performing system for each
language pair. The histograms show the corresponding marginal distributions of predicted and true scores.
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sured on a test set with critical errors. We hope that
this configuration would both attract more partici-
pants to this task (as it would not required training
a specific system for critical error detection) and
further motivate the treatment of critical errors in
the development of QE systems.

7 Conclusions

This year’s edition of the QE Shared Task in-
troduced a number of new elements: new low-
resource language pairs (Marathi and Yoruba), new
annotation conventions for sentence and word level
quality (MQM), new test sets, and new versions of
explainability and critical error detection subtasks.
The tasks attracted a steady number of participating
teams and we believe the overall results are a great
reflection of the state-of-the-art in QE.

We have made the gold labels and all submis-
sions to all tasks available for those interested in
further analysing the results, while newly inter-
ested participants can still access the competition
instances on codalab and directly compare their
performance to other models. We aspire for the
future editions to continue the efforts set in this
and previous years and expand the resources and
coverage of QE, while further exploring recent and
more challenging subtasks such as fine-grained QE,
explainable QE and critical error detection.
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A Official Results of the WMT22 Quality Estimation Task 1 (Direct Assessment)

Tables 9, 10, 11, 12, 13, 14 and 15 show the results for all language pairs and the multilingual variants,
ranking participating systems best to worst using Spearman correlation as primary key for each of these
cases.

Model Spearman RMSE MAE Disk footprint (B) # Model params
• IST-Unbabel 0.572 0.689 0.539 2,260,735,089 583,891,109
Papago 0.502 2.404 2.077 2,243,044,839 560,713,447
Welocalize-ARC/NKUA 0.448 0.794 0.632 2,307,101,417 576,733,248
BASELINE 0.415 0.979 0.820 2,280,011,066 564,527,011
lp_sunny ‡ 0.414 1.054 0.898 2,356,736,392 580,792,183

Table 9: Official results of the WMT22 Quality Estimation Task 1 Direct Assessment for the Multilingual variant.
Teams marked with "•" are the winners, as they are not significantly outperformed by any other system according to
the Williams Significance Test (Williams, 1959). Baseline systems are highlighted in grey. ‡ indicates Codalab
usernames of participants from whom we have not received further information.

Model Spearman RMSE MAE Disk footprint (B) # Model params
• IST-Unbabel 0.605 0.671 0.521 2,260,735,089 583,891,109
Alibaba Translate 0.587 0.675 0.533 2,191,440 560,981,507
Papago 0.571 1.793 1.451 2,243,044,839 560,713,447
Welocalize-ARC/NKUA 0.506 0.733 0.571 2,307,068,585 576,725,041
BASELINE 0.497 0.748 0.585 2,280,011,066 564,527,011
lp_sunny ‡ 0.485 0.757 0.596 2,356,736,392 580,792,183

Table 10: Official results of the WMT22 Quality Estimation Task 1 Direct Assessment for the Multilingual (w/o
English-Yoruba) variant. Teams marked with "•" are the winners, as they are not significantly outperformed by any
other system according to the Williams Significance Test (Williams, 1959). Baseline systems are highlighted in
grey. ‡ indicates Codalab usernames of participants from whom we have not received further information.

Model Spearman RMSE MAE Disk footprint (B) # Model params
• IST-Unbabel 0.655 0.720 0.545 2,260,735,089 583,891,109
• Papago 0.636 1.371 1.081 2,243,044,839 560,713,447
Alibaba Translate 0.635 0.746 0.607 2,191,440 560,981,507
HW-TSC 0.626 0.712 0.545 540,868,112 222,353,517
Welocalize-ARC/NKUA 0.563 0.785 0.610 2,307,068,585 576,725,041
BASELINE 0.560 0.804 0.608 2,280,011,066 564,527,011
lp_sunny ‡ 0.511 0.786 0.614 2,356,736,392 580,792,183
aiXplain 0.477 0.825 0.679 745,679,835 12,345
UCBerkeley-UMD* 0.285 1.252 0.961 – 177,853,440

Table 11: Official results of the WMT22 Quality Estimation Task 1 Direct Assessment for the English-Czech
dataset. Teams marked with "•" are the winners, as they are not significantly outperformed by any other system
according to the Williams Significance Test (Williams, 1959). Baseline systems are highlighted in grey. ‡ indicates
Codalab usernames of participants from whom we have not received further information and * indicates late
submissions that were not considered for the official ranking of participating systems
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Model Spearman RMSE MAE Disk footprint (B) # Model params
• IST-Unbabel 0.385 0.689 0.528 2,260,735,089 583,891,109
Alibaba Translate 0.348 0.673 0.522 2,191,440 560,981,507
HW-TSC 0.341 0.726 0.555 540,868,112 222,353,517
Papago 0.327 2.253 1.957 2,243,044,839 560,713,447
lp_sunny ‡ 0.290 0.718 0.556 2,356,736,392 580,792,183
Welocalize-ARC/NKUA 0.276 0.755 0.579 2,307,068,585 576,725,041
aiXplain 0.274 0.704 0.547 745,679,835 12,345
BASELINE 0.272 0.747 0.576 2,280,011,066 564,527,011

Table 12: Official results of the WMT22 Quality Estimation Task 1 Direct Assessment for the English-Japanese
dataset. Teams marked with "•" are the winners, as they are not significantly outperformed by any other system
according to the Williams Significance Test (Williams, 1959). Baseline systems are highlighted in grey. ‡ indicates
Codalab usernames of participants from whom we have not received further information.

Model Spearman RMSE MAE Disk footprint (B) # Model params
• Papago 0.604 0.658 0.514 2,243,044,839 560,713,447
• Alibaba Translate 0.597 0.456 0.349 2,191,440 560,981,507
• IST-Unbabel 0.592 0.498 0.365 6,932,353,559 583,891,109
• NJUNLP 0.585 0.617 0.414 3,264,730,349 560,145,557
HW-TSC 0.567 0.506 0.372 222,353,517 540,868,112
aiXplain 0.493 0.540 0.396 745,679,835 12,345
Welocalize-ARC/NKUA 0.444 0.534 0.401 2,307,068,585 576,725,041
BASELINE 0.436 0.628 0.461 2,280,011,066 564,527,011
lp_sunny ‡ 0.395 0.570 0.443 2,356,736,392 580,792,183

Table 13: Official results of the WMT22 Quality Estimation Task 1 Direct Assessment for the English-Marathi
dataset. Teams marked with "•" are the winners, as they are not significantly outperformed by any other system
according to the Williams Significance Test (Williams, 1959). Baseline systems are highlighted in grey. ‡ indicates
Codalab usernames of participants from whom we have not received further information.

Model Spearman RMSE MAE Disk footprint (B) # Model params
• IST-Unbabel 0.669 0.714 0.569 2,260,735,089 583,891,109
Alibaba Translate 0.657 0.778 0.596 2,191,440 560,981,507
Papago 0.653 2.786 2.291 2,243,044,839 560,713,447
Welocalize-ARC/NKUA 0.623 0.794 0.619 2,307,068,585 576,725,041
lp_sunny ‡ 0.611 0.784 0.621 2,356,736,392 580,792,183
BASELINE 0.579 0.774 0.616 2,280,011,066 564,527,011
HW-TSC 0.509 1.043 0.804 222,353,517 540,868,112

Table 14: Official results of the WMT22 Quality Estimation Task 1 Direct Assessment for the Khmer-English
dataset. Teams marked with "•" are the winners, as they are not significantly outperformed by any other system
according to the Williams Significance Test (Williams, 1959). Baseline systems are highlighted in grey. ‡ indicates
Codalab usernames of participants from whom we have not received further information.
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Model Spearman RMSE MAE Disk footprint (B) # Model params
• IST-Unbabel 0.722 0.719 0.575 2,260,735,089 583,891,109
Alibaba Translate 0.697 0.720 0.594 2,191,440 560,981,507
Papago 0.671 0.763 0.646 2,243,044,839 560,713,447
HW-TSC 0.661 0.729 0.592 540,868,112 222,353,517
BASELINE 0.641 0.788 0.663 2,280,011,066 564,527,011
lp_sunny ‡ 0.637 0.954 0.775 2,356,736,392 580,792,183

Table 15: Official results of the WMT22 Quality Estimation Task 1 Direct Assessment for the Pashto-English
dataset. Teams marked with "•" are the winners, as they are not significantly outperformed by any other system
according to the Williams Significance Test (Williams, 1959). Baseline systems are highlighted in grey. ‡ indicates
Codalab usernames of participants from whom we have not received further information.
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B Official Results of the WMT22 Quality Estimation Task 1 (MQM)

Tables 16, 17, 18 and 19 show the results for all language pairs and the multilingual variant, ranking
participating systems best to worst using Spearman correlation as primary key for each of these cases.

Model Spearman RMSE MAE Disk footprint (B) # Model params
• IST-Unbabel 0.474 0.973 0.559 2,260,735,089 583,891,109
NJUNLP 0.468 0.945 0.579 3,264,730,349 560,145,557
Alibaba Translate 0.456 0.855 0.493 2,260,733,079 565,137,999
Papago 0.449 1.332 0.990 2,243,044,839 560,713,447
lp_sunny ‡ 0.415 0.952 0.536 2,356,736,392 580,792,183
BASELINE 0.317 1.041 0.575 2,280,011,066 564,527,011

Table 16: Official results of the WMT22 Quality Estimation Task 1 MQM for the Multilingual variant. Baseline
systems are highlighted in grey. ‡ indicates Codalab usernames of participants from whom we have not received
further information.

Model Spearman RMSE MAE Disk footprint (B) # Model params
• NJUNLP 0.635 0.838 0.594 3,264,730,349 560,145,557
• BJTU-Toshiba 0.621 0.818 0.545 2,239,711,849 559,893,507
pu_nlp ‡ 0.611 0.997 0.716 1,326,455,799 237,846,178
Papago 0.582 0.906 0.556 2,243,044,839 560,713,447
IST-Unbabel 0.561 0.854 0.521 2,260,743,851 565,139,485
Alibaba Translate 0.550 0.769 0.466 2,260,733,079 565,137,999
lp_sunny ‡ 0.495 0.875 0.534 2,356,736,392 580,792,183
HW-TSC 0.494 0.953 0.612 470,693,617 117,653,760
BASELINE 0.455 0.970 0.576 2,280,011,066 564,527,011
aiXplain 0.376 0.995 0.747 368,857,948 12,345

Table 17: Official results of the WMT22 Quality Estimation Task 1 MQM for the English-German dataset. Teams
marked with "•" are the winners, as they are not significantly outperformed by any other system according to
the Williams Significance Test (Williams, 1959). Baseline systems are highlighted in grey. ‡ indicates Codalab
usernames of participants from whom we have not received further information.

Model Spearman RMSE MAE Disk footprint (B) # Model params
• IST-Unbabel 0.519 0.963 0.531 2,260,743,915 565,139,485
• Alibaba Translate 0.505 0.961 0.590 2,260,733,079 565,137,999
• Papago 0.496 1.428 1.126 2,243,044,839 560,713,447
• NJUNLP 0.474 0.997 0.666 3,264,730,349 560,145,557
lp_sunny ‡ 0.453 0.915 0.548 2,356,736,392 580,792,183
BJTU-Toshiba 0.434 1.011 0.659 2,239,711,849 559,893,507
HW-TSC 0.433 1.257 0.809 2,260,780,823 565,137,436
aiXplain 0.338 1.116 0.785 368,857,948 12,345
BASELINE 0.333 1.051 0.606 2,280,011,066 564,527,011

Table 18: Official results of the WMT22 Quality Estimation Task 1 MQM for the English-Russian dataset. Teams
marked with "•" are the winners, as they are not significantly outperformed by any other system according to
the Williams Significance Test (Williams, 1959). Baseline systems are highlighted in grey. ‡ indicates Codalab
usernames of participants from whom we have not received further information.
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Model Spearman RMSE MAE Disk footprint (B) # Model params
• HW-TSC 0.369 1.163 0.770 2,260,780,823 565,137,436
• IST-Unbabel 0.348 1.073 0.559 2,260,735,089 583,891,109
• Alibaba Translate 0.347 0.989 0.490 2,260,733,079 565,137,999
• Papago 0.325 0.980 0.397 2,243,044,839 560,095,633
• BJTU-Toshiba 0.299 1.128 0.612 1,736,199,083 434,015,235
lp_sunny ‡ 0.298 1.064 0.525 2,356,736,392 580,792,183
NJUNLP 0.296 0.999 0.476 3,264,730,349 560,145,557
aiXplain 0.194 1.481 1.079 368,857,948 12,345
BASELINE 0.164 1.102 0.543 2,280,011,066 564,527,011

Table 19: Official results of the WMT22 Quality Estimation Task 1 MQM for the Chinese-English dataset. Teams
marked with "•" are the winners, as they are not significantly outperformed by any other system according to
the Williams Significance Test (Williams, 1959). Baseline systems are highlighted in grey. ‡ indicates Codalab
usernames of participants from whom we have not received further information.
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C Official Results of the WMT22 Quality Estimation Task 1 (Word-level)

Tables 20, 21, 22, 23, 24, 25, 26, 27, 28 and 29 show the results for all language pairs and the multilingual
variants, ranking participating systems best to worst using Matthews correlation coefficient (MCC) as
primary key for each of these cases.

Model MCC Recall Precision Disk footprint (B) # Model params
• IST-Unbabel 0.341 0.466 0.810 2,260,744,555 565,139,485
Papago 0.317 0.422 0.787 2,241,394,304 560,301,035
BASELINE 0.235 0.356 0.765 2,280,011,066 564,527,011

Table 20: Official results of the WMT22 Quality Estimation Task 1 (word-level) for the Multilingual task. Teams
marked with "•" are the winners, as they are not significantly outperformed by any other system according to the
Williams Significance Test (Williams, 1959). Baseline systems are highlighted in grey.

Model MCC Recall Precision Disk footprint (B) # Model params
• IST-Unbabel 0.361 0.494 0.830 2,260,744,555 565,139,485
• Papago 0.343 0.451 0.858 2,241,394,304 560,301,035
BASELINE 0.257 0.378 0.838 2,280,011,066 564,527,011
HW-TSC 0.218 0.404 0.628 2,336,352,552 612,368,384

Table 21: Official results of the WMT22 Quality Estimation Task 1 (word-level) for the Multilingual w/o English-
Yoruba task. Teams marked with "•" are the winners, as they are not significantly outperformed by any other
system according to the Williams Significance Test (Williams, 1959). Baseline systems are highlighted in grey.

Model MCC Recall Precision Disk footprint (B) # Model params
• IST-Unbabel 0.436 0.578 0.852 2,260,744,555 565,139,485
• HW-TSC 0.424 0.570 0.848 2,260,780,823 565,137,436
• Papago 0.396 0.549 0.739 2,240,570,795 560,095,834
BASELINE 0.325 0.426 0.870 2,280,011,066 564,527,011

Table 22: Official results of the WMT22 Quality Estimation Task 1 (word-level) for the English-Czech dataset.
Teams marked with "•" are the winners, as they are not significantly outperformed by any other system based on
randomisation tests with Bonferroni correction (Yeh, 2000). Baseline systems are highlighted in grey.

Model MCC Recall Precision Disk footprint (B) # Model params
• HW-TSC 0.258 0.497 0.728 2,260,780,823 565,137,436
• Papago 0.257 0.502 0.699 2,241,394,304 560,301,035
• IST-Unbabel 0.238 0.491 0.687 2,260,743,979 565,139,485
BASELINE 0.175 0.375 0.795 2,280,011,066 564,527,011

Table 23: Official results of the WMT22 Quality Estimation Task 1 (word-level) for the English-Japanese dataset.
Teams marked with "•" are the winners, as they are not significantly outperformed by any other system based
on randomisation tests with Bonferroni correction (Yeh, 2000). Baseline systems are highlighted in grey. “Rank”
indicates the averaged ranking of participants with regards to all metrics (including memory print and number of
parameters) and not the final shared task ranking which is decided according to MCC.
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Model MCC Recall Precision Disk footprint (B) # Model params
• Papago 0.418 0.420 0.951 2,241,394,304 560,301,035
• NJUNLP 0.412 0.472 0.939 3,264,730,349 560,145,557
• IST-Unbabel 0.392 0.414 0.947 2,260,744,107 565,139,485
HW-TSC 0.351 0.428 0.917 2,260,780,823 565,137,436
BASELINE 0.306 0.282 0.946 2,280,011,066 564,527,011

Table 24: Official results of the WMT22 Quality Estimation Task 1 (word-level) for the English-Marathi dataset.
Teams marked with "•" are the winners, as they are not significantly outperformed by any other system based on
randomisation tests with Bonferroni correction (Yeh, 2000). Baseline systems are highlighted in grey.

Model MCC Recall Precision Disk footprint (B) # Model params
• Papago 0.429 0.762 0.660 2,241,394,304 560,301,035
• IST-Unbabel 0.425 0.779 0.555 2,260,744,107 565,139,485
• NJUNLP 0.421 0.744 0.677 3,264,730,349 560,145,557
BASELINE 0.402 0.769 0.567 2,280,011,066 564,527,011
HW-TSC 0.353 0.759 0.395 2,260,780,823 565,137,436

Table 25: Official results of the WMT22 Quality Estimation Task 1 (word-level) for the Khmer-English dataset.
Teams marked with "•" are the winners, as they are not significantly outperformed by any other system based on
randomisation tests with Bonferroni correction (Yeh, 2000). Baseline systems are highlighted in grey.

Model MCC Recall Precision Disk footprint (B) # Model params
• IST-Unbabel 0.424 0.691 0.733 2,260,744,107 565,139,485
Papago 0.374 0.646 0.723 2,241,394,304 560,301,035
BASELINE 0.359 0.695 0.628 2,280,011,066 564,527,011
HW-TSC 0.358 0.699 0.597 2,260,780,823 565,137,436

Table 26: Official results of the WMT22 Quality Estimation Task 1 (word-level) for the Pashto-English dataset.
Teams marked with "•" are the winners, as they are not significantly outperformed by any other system based on
randomisation tests with Bonferroni correction (Yeh, 2000). Baseline systems are highlighted in grey.

Model MCC Recall Precision Disk footprint (B) # Model params
• NJUNLP 0.352 0.351 0.980 3,264,730,349 560,145,557
• Papago 0.319 0.336 0.960 2,241,394,304 560,301,035
• IST-Unbabel 0.303 0.317 0.956 2,260,744,107 565,139,485
HW-TSC 0.274 0.292 0.954 2,260,780,823 565,137,436
BASELINE 0.182 0.213 0.970 2,280,011,066 564,527,011

Table 27: Official results of the WMT22 Quality Estimation Task 1 (word-level) for the English-German dataset.
Teams marked with "•" are the winners, as they are not significantly outperformed by any other system based on
randomisation tests with Bonferroni correction (Yeh, 2000). Baseline systems are highlighted in grey.

Model MCC Recall Precision Disk footprint (B) # Model params
• IST-Unbabel 0.427 0.468 0.958 2,260,743,915 565,139,485
• Papago 0.421 0.381 0.966 2,241,394,304 560,713,447
• NJUNLP 0.390 0.440 0.949 3,264,730,349 560,145,557
HW-TSC 0.343 0.396 0.945 2,260,780,823 565,137,436
BASELINE 0.203 0.144 0.960 2,280,011,066 564,527,011

Table 28: Official results of the WMT22 Quality Estimation Task 1 (word-level) for the English-Russian dataset.
Teams marked with "•" are the winners, as they are not significantly outperformed by any other system based on
randomisation tests with Bonferroni correction (Yeh, 2000). Baseline systems are highlighted in grey.
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Model MCC Recall Precision Disk footprint (B) # Model params
• IST-Unbabel 0.360 0.327 0.966 2,260,743,915 565,139,485
• Papago 0.351 0.338 0.973 2,241,394,304 560,713,447
• NJUNLP 0.308 0.303 0.988 3,264,730,349 560,145,557
HW-TSC 0.246 0.181 0.910 2,260,780,823 565,137,436
BASELINE 0.104 0.123 0.965 2,280,011,066 564,527,011

Table 29: Official results of the WMT22 Quality Estimation Task 1 (word-level) for the Chinese-English dataset.
Teams marked with "•" are the winners, as they are not significantly outperformed by any other system based on
randomisation tests with Bonferroni correction (Yeh, 2000). Baseline systems are highlighted in grey.
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D Official Results of the WMT22 Quality Estimation Task 2 (Explainable QE)

Tables 30, 31, 32, 33, 34, 35, 36, 37 and 38 show the results for all language pairs, ranking participating
systems best to worst using “Recall at Top-K” on target sentences as primary key for each of these cases.

Model Word-level (Target sentence) Sentence-level
Recall at Top-K AUC AP Pearson’s Spearman’s

• IST-Unbabel 0.561 0.725 0.659 0.548 0.511
• HW-TSC 0.536 0.709 0.632 0.314 0.323
BASELINE (OpenKiwi+LIME) 0.417 0.537 0.500 0.342 0.352
BASELINE (Random) 0.363 0.493 0.453 0.011 0.016

Table 30: Official results of the WMT22 Quality Estimation Task 2 for the English-Czech dataset. Teams marked
with "•" correspond to the winning submissions, as they are not significantly outperformed by any other system
based on randomisation tests with Bonferroni correction (Yeh, 2000). Baseline systems are highlighted in grey.

Model Word-level (Target sentence) Sentence-level
Recall at Top-K AUC AP Pearson’s Spearman’s

• IST-Unbabel 0.466 0.641 0.557 0.252 0.243
• HW-TSC 0.462 0.651 0.547 0.132 0.148
BASELINE (OpenKiwi+LIME) 0.367 0.509 0.451 0.202 0.217
BASELINE (Random) 0.336 0.503 0.418 0.028 0.019

Table 31: Official results of the WMT22 Quality Estimation Task 2 for the English-Japanese dataset. Teams
marked with "•" correspond to the winning submissions, as they are not significantly outperformed by any other
system based on randomisation tests with Bonferroni correction (Yeh, 2000). Baseline systems are highlighted in
grey.

Model Word-level (Target sentence) Sentence-level
Recall at Top-K AUC AP Pearson’s Spearman’s

• IST-Unbabel 0.317 0.667 0.448 0.585 0.467
• HW-TSC 0.280 0.625 0.412 0.317 0.426
BASELINE (OpenKiwi+LIME) 0.194 0.479 0.310 0.336 0.372
BASELINE (Random) 0.167 0.489 0.296 0.043 0.017

Table 32: Official results of the WMT22 Quality Estimation Task 2 for the English-Marathi dataset. Teams marked
with "•" correspond to the winning submissions, as they are not significantly outperformed by any other system
based on randomisation tests with Bonferroni correction (Yeh, 2000). Baseline systems are highlighted in grey.

Model Word-level (Target sentence) Sentence-level
Recall at Top-K AUC AP Pearson’s Spearman’s

• IST-Unbabel 0.390 0.747 0.511 0.416 0.459
HW-TSC 0.313 0.686 0.422 0.369 0.426
BASELINE (Random) 0.148 0.527 0.256 0.022 0.015
BASELINE (OpenKiwi+LIME) 0.135 0.428 0.230 0.252 0.330

Table 33: Official results of the WMT22 Quality Estimation Task 2 for the English-Russian dataset. Teams marked
with "•" correspond to the winning submissions, as they are not significantly outperformed by any other system
based on randomisation tests with Bonferroni correction (Yeh, 2000). Baseline systems are highlighted in grey.
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Model Word-level (Target sentence) Sentence-level
Recall at Top-K AUC AP Pearson’s Spearman’s

• IST-Unbabel 0.365 0.776 0.490 0.559 0.553
HW-TSC 0.252 0.689 0.361 0.375 0.435
BASELINE (Random) 0.124 0.504 0.212 -0.049 -0.043
BASELINE (OpenKiwi+LIME) 0.074 0.442 0.172 0.370 0.414

Table 34: Official results of the WMT22 Quality Estimation Task 2 for the English-German dataset. Teams marked
with "•" correspond to the winning submissions, as they are not significantly outperformed by any other system
based on randomisation tests with Bonferroni correction (Yeh, 2000). Baseline systems are highlighted in grey.

Model Word-level (Target sentence) Sentence-level
Recall at Top-K AUC AP Pearson’s Spearman’s

• IST-Unbabel 0.234 0.671 0.359 0.309 0.321
BASELINE (Random) 0.144 0.514 0.246 -0.086 -0.101
BASELINE (OpenKiwi+LIME) 0.111 0.442 0.218 0.085 0.160

Table 35: Official results of the WMT22 Quality Estimation Task 2 for the English-Yoruba dataset. Teams marked
with "•" correspond to the winning submissions, as they are not significantly outperformed by any other system
based on randomisation tests with Bonferroni correction (Yeh, 2000). Baseline systems are highlighted in grey.

Model Word-level (Target sentence) Sentence-level
Recall at Top-K AUC AP Pearson’s Spearman’s

• HW-TSC 0.686 0.720 0.751 0.601 0.610
IST-Unbabel 0.665 0.660 0.751 0.617 0.598
UT-QE 0.622 0.628 0.694 0.222 0.190
BASELINE (OpenKiwi+LIME) 0.580 0.520 0.653 0.417 0.430
BASELINE (Random) 0.565 0.498 0.633 -0.048 -0.045

Table 36: Official results of the WMT22 Quality Estimation Task 2 for the Khmer-English dataset. Teams marked
with "•" correspond to the winning submissions, as they are not significantly outperformed by any other system
based on randomisation tests with Bonferroni correction (Yeh, 2000). Baseline systems are highlighted in grey.

Model Word-level (Target sentence) Sentence-level
Recall at Top-K AUC AP Pearson’s Spearman’s

• HW-TSC 0.715 0.716 0.777 0.393 0.418
IST-Unbabel 0.672 0.612 0.740 0.593 0.601
UT-QE 0.668 0.643 0.727 0.409 0.402
BASELINE (OpenKiwi+LIME) 0.615 0.503 0.676 0.378 0.403
BASELINE (Random) 0.614 0.497 0.662 -0.002 0.002

Table 37: Official results of the WMT22 Quality Estimation Task 2 for the Pashto-English dataset. Teams marked
with "•" correspond to the winning submissions, as they are not significantly outperformed by any other system
based on randomisation tests with Bonferroni correction (Yeh, 2000). Baseline systems are highlighted in grey.

Model Word-level (Target sentence) Sentence-level
Recall at Top-K AUC AP Pearson’s Spearman’s

• IST-Unbabel 0.379 0.785 0.475 0.103 0.190
HW-TSC 0.220 0.652 0.315 0.097 0.159
BASELINE (Random) 0.093 0.463 0.162 0.041 -0.010
BASELINE (OpenKiwi+LIME) 0.048 0.388 0.126 -0.007 0.159

Table 38: Official results of the WMT22 Quality Estimation Task 2 for the Chinese-English dataset. Teams marked
with "•" correspond to the winning submissions, as they are not significantly outperformed by any other system
based on randomisation tests with Bonferroni correction (Yeh, 2000). Baseline systems are highlighted in grey.
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E Official Results of the WMT22 Quality Estimation Task 3 (Critical Error Detection)

Tables 39, 40, 41 and 42 show the results for all language pairs and the multilingual variants, ranking
participating systems best to worst using Matthews correlation coefficient (MCC) as primary key for each
of these cases.

Model MCC Recall Precision Disk footprint (B) # Model params
• IST-Unbabel 0.564 0.619 0.619 2,260,735,025 565,137,435
BASELINE 0.074 0.191 0.191 2,277,430,785 569,330,715

Table 39: Official results of the WMT22 Quality Estimation Task 3 (Critical Error Detection) for the English-
German (Constrained) dataset. Teams marked with "•" are the winners, as they are not significantly outperformed
by any other system based on randomisation tests with Bonferroni correction (Yeh, 2000). Baseline systems are
highlighted in grey.

Model MCC Recall Precision Disk footprint (B) # Model params
• KU X Upstage 0.964 0.968 0.968 2,244,861,551 559,890,432
BASELINE 0.855 0.873 0.873 2,260,734,129 565,137,435
aiXplain 0.219 0.318 0.318 2,052,963,739 12,345

Table 40: Official results of the WMT22 Quality Estimation Task 3 (Critical Error Detection) for the English-
German (UNconstrained) dataset. Teams marked with "•" are the winners, as they are not significantly outper-
formed by any other system based on randomisation tests with Bonferroni correction (Yeh, 2000). Baseline systems
are highlighted in grey.

Model MCC Recall Precision Disk footprint (B) # Model params
• IST-Unbabel 0.721 0.761 0.761 2,260,735,025 565,137,435
BASELINE -0.001 0.141 0.141 2,277,430,785 569,330,715

Table 41: Official results of the WMT22 Quality Estimation Task 3 (Critical Error Detection) for the Portuguese-
English (Constrained) dataset. Teams marked with "•" are the winners, as they are not significantly outperformed
by any other system based on randomisation tests with Bonferroni correction (Yeh, 2000). Baseline systems are
highlighted in grey.

Model MCC Recall Precision Disk footprint (B) # Model params
• KU X Upstage 0.984 0.986 0.986 2,244,861,551 559,890,432
BASELINE 0.934 0.944 0.944 2,260,734,129 565,137,435
aiXplain 0.179 0.296 0.296 9,395,107 12,345

Table 42: Official results of the WMT22 Quality Estimation Task 3 (Critical Error Detection) for the Portuguese-
English (UNconstrained) dataset. Teams marked with "•" are the winners, as they are not significantly outperformed
by any other system based on randomisation tests with Bonferroni correction (Yeh, 2000). Baseline systems are
highlighted in grey.
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Abstract

The machine translation efficiency task chal-
lenges participants to make their systems faster
and smaller with minimal impact on transla-
tion quality. How much quality to sacrifice
for efficiency depends upon the application, so
participants were encouraged to make multi-
ple submissions covering the space of trade-
offs. In total, there were 76 submissions from 5
teams. The task covers GPU, single-core CPU,
and multi-core CPU hardware tracks as well as
batched throughput or single-sentence latency
conditions. Submissions showed hundreds of
millions of words can be translated for a dollar,
average latency is 3.5–25 ms, and models fit in
7.5–900 MB.

1 Introduction

The efficiency task complements the collocated
news task by challenging participants to make their
machine translation systems computationally effi-
cient. This is the fifth edition of the task, expanding
upon previous editions (Heafield et al., 2021, 2020;
Hayashi et al., 2019; Birch et al., 2018).

Participants built English→German machine
translation systems following a constrained data
condition. The data condition follows the con-
strained 2021 Workshop on Machine Translation
news translation task. This year, to reduce the
barrier to entry, organisers provided an ensemble
of teacher systems, as well as cleaned data and
distilled output from the teacher ensemble. Partic-
ipants were required to use the provided teacher
systems, but were free to distil additional data from
the constrained condition. The SentencePiece vo-
cabulary used by the teachers was also made avail-
able.

For translation quality measurement, we use the
news-focused WMT22 dataset, and the systems are
ranked according to the COMET (Rei et al., 2020)
automatic metric. We also evaluate systems on
BLEU and chrF for additional reference.

Throughput Latency
CPU-ALL GPU CPU-1 GPU

CUNI 1 1 1 1
ECNU 1 1 1 1
Edinburgh 15 11 15 11
HuaweiTSC 5 5
RoyalFlush 6

Table 1: Number of systems submitted by each partici-
pant for the different hardware and batching conditions.
CPU-ALL refers to the 36-core hardware setting.

Submissions are made as Docker containers so
we can consistently measure their performance in
terms of quality, speed, memory usage, and disk
space. We run the containers in three different
hardware environments: one GPU, one CPU core,
and multiple CPU cores. Systems were tested for
throughput by providing 1 million sentences up-
front to allow batching and parallelization. We also
tested for latency with a program that drip-feeds
one input sentence, waits for the translation, and
then provides the next input sentence. There were
four conditions in total: GPU throughput, GPU
Latency, 1 CPU Core Latency, and 36 CPU cores
throughput. We did not measure latency in a multi-
core CPU setting because the test hardware has 36
cores and overhead for 36 threads is larger than the
cost of arithmetic for the small tensors in optimized
models. We also did not measure throughput on a
single CPU core as we found that setting to be a
somewhat unrealistic real world scenario.

Participants were free to choose which condi-
tions to participate in. The condition was passed to
the Docker container as command line arguments.
Table 1 shows the five participants and the number
of systems they submitted to each of the conditions.

Machine translation is used in a range of settings
where users might choose different trade-offs be-
tween quality and efficiency. For example, a high-
frequency trading system might prefer the lowest
latency at the expense of quality given that the out-
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put will only be read by a machine. Conversely,
in a post-editing scenario the personnel costs out-
weigh many computational costs. Therefore there
is not a single best system, but a range of options
that trade between quality and efficiency.

We emphasize the Pareto frontier: the fastest
systems at each level of quality, or the smallest
systems at each level of quality. To explore the
Pareto frontier, participants were encouraged to
make multiple submissions covering the range of
trade-offs. In total, 76 combinations of models,
hardware, and batching were benchmarked.

2 Hardware

We chose modern hardware to encourage exploit-
ing new hardware features. The GPU is an NVidia
A100 from the Oracle Cloud BM.GPU4.8 in-
stance. The instance has eight GPUs and we limited
Docker to using only one GPU. The GPU machine
has an AMD EPYC 7542 CPU with all cores al-
lowed.

The CPU-only condition used a dual-socket
Intel Xeon Gold 6354 from Oracle Cloud
BM.Optimized3.36 with a total of 36 cores.
For the single-core CPU track, we reserved
the entire machine then ran Docker with
-cpuset-cpus=0. In the 36-core CPU track,
participants were free to configure their own CPU
sets and affinities.

The Oracle Cloud machines are bare metal
servers, meaning there was no shared tenancy, no
virtualization, and the test machines were otherwise
quiescent.

3 Input Text

To amortize loading time, avoid starving highly par-
allel submissions, and reduce the ability to cheat,
we benchmark systems on 1 million sentences of
input. The test set is hidden inside these 1 mil-
lion sentences, shuffled with filler sentences. Many
filler sentences are drawn from parallel corpora to
check that systems are in fact translating all sen-
tences, though we do not consider scores on noisy
corpora reliable enough to report. The composition
of this set changes each year and is decided after
the submission deadline.

The filler data was gathered from parallel cor-
pora and gender bias challenge sets: WMT news
test sets from 2008 through 2022 (Akhbardeh et al.,
2021), the additional test inputs in WMT 2021,
Khresmoi summary test v2 (Dušek et al., 2017),

Corpus Sentences

WMT 08–19 32,477
WMT 20 under 150 tokens 1,416
WMT 20 sentence split 2,048
WMT 21 sentence split 1,096
WMT 21 inc. additional tests 14,938
WMT 22 2,037
Khresmoi Summary Test v2 1,000
IWSLT 2019 2,278
SimpleGen 2,664
WinoMT 3,888
TED 2020 v1 293,562
Tilde RAPID 2019 663,922

Total 1,021,326
Deduplicated 1,000,000

Table 2: Summary of corpora used for the input text.

IWSLT 2019 (Jan et al., 2019), SimpleGen (Ren-
duchintala et al., 2021), WinoMT (Stanovsky et al.,
2019), TED 2020 (Reimers and Gurevych, 2020),
and Tilde RAPID 2019 (Rozis and Skadin, š, 2017).
We limit sentence lengths to 150 space-separated
tokens. Because WMT 2020 includes excessively
long segments that are actually concatenated sen-
tences, we also added sentence split versions of
WMT 2020 and WMT 2021, though the differ-
ence on WMT 2021 was minor. Source sentences
were concatenated, deduplicated, and shuffled. The
Tilde RAPID corpus was clipped to make a total of
1 million deduplicated lines. Counts are shown in
Table 2.

Input text and tools to extract test sets from
system outputs are available at https://data.
statmt.org/wmt22/efficiency-task/
wmt22-testdata.tar.xz.

The input file is 1,000,000 lines, consisting of
19,926,744 space-separated words, or 124,186,772
bytes of English text in UTF-8. This is a mean
of 19.9 words per sentence and is comparable to
the previous year (Heafield et al., 2021). Teams
were responsible for their own tokenization and
detokenization; for this they were permitted to use
the SentencePiece vocabulary provided with the
teacher system, or to implement an alternative. We
provided raw UTF-8 English input text with one
sentence per line.
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4 Metrics

4.1 Resources
Time was measured with wall (real) time reported
by time and CPU time reported by the kernel for
the process group. We do not measure loading
time because it is small compared to translating 1
million sentences, some tools load lazily, and it is
easily gamed by padding loading time.

Peak RAM consumption was measured using
memory.max_usage in bytes from the kernel
for the CPU and by polling nvidia-smi for the
GPU. Swap was disabled.

Participants were instructed to separate their
Docker images into model and code files so that
models could be measured separately from the rel-
atively noisy size of code and libraries. A model
was defined as “everything derived from data: all
model parameters, vocabulary files, BPE config-
uration if applicable, quantization parameters or
lookup tables where applicable, and hyperparam-
eters like embedding sizes.” Code could include
“simple rule-based tokenizer scripts and hard-coded
model structure that could plausibly be used for an-
other language pair.” They were also permitted to
use standard compression tools such as xz to com-
press models; decompression time was excluded in
results. We report size of the model directory cap-
tured before the model ran. We also measured the
total size of the Docker image (after compressing
with xz).

4.2 Quality
Translation quality is measured on the WMT
2022 news test set. The automatic met-
rics are COMET (Rei et al., 2020) from
unbabel-comet version 1.1.3 with
the pretrained model wmt20-comet-da,
BLEU from sacrebleu (Post, 2018)
nrefs:1|case:mixed|eff:no|tok:13a
|smooth:exp|version:2.3.1, and chrF
also from sacrebleu.

5 Results

The results of the task evaluation for the latency
scenario are presented in Table 3, and those for
throughput are presented in Table 4. Results are
separated by the different hardware conditions and
within each hardware setting the results are ordered
by their COMET score, which is shown to have
closer correspondence to human evaluation as com-
pared to BLEU and ChrF (Freitag et al., 2021).

Figure 1 shows the trade-off between quality and
speed of batched translation submissions separated
by hardware environment. Each plot shows the
Pareto frontier as a black staircase to highlight the
best combinations of quality and speed. While
GPU systems (Figure 1a) achieve higher through-
put compared to CPU systems (Figure 1b), this
ignores pricing differences between these compute
options. In Figure 2, we combine GPU and 36 Core
CPU speed by using Oracle Cloud pricing. Despite
the less expensive per-hour pricing of CPU, GPU
is cheaper for throughput-oriented tasks that allow
batching.

The all-hardware latency Pareto frontier is
shown in Figure 3. This year all participants sub-
mitted systems to the latency task. This year, for
the first time, the semi-autoregressive GPU system
by RoyalFlush dominates the lower quality settings
of the latency Pareto frontier, with Edinburgh GPU
systems having won on some higher quality sys-
tems.

Model sizes at rest on disk appear in Figures 4a.
Participants were allowed to compress their mod-
els using their own tools and standard tools like
xz. The Pareto frontier consists of almost entirely
Edinburgh submissions, with HuaweiTSC produc-
ing several systems on the lower quality settings,
due to their 4-bit compression models. Docker
image sizes, which include model and software,
appear in Figure 4b, where the Pareto frontier is
dominated by Edinburgh submissions. Conversely,
some others opted to optimize other metrics and
included large Linux installations. We compressed
all docker images with xz before measuring.

Memory (RAM) consumption appears in Fig-
ure 5. GPU memory consumption reflects batch
size and some participants set a large batch size
to maximize speed. Optimizing speed for multi-
socket CPU machines implies having a copy of the
model in RAM close to each socket, so memory
consumption is larger beyond simply having tempo-
rary space for more batches. Finally, participants
may have sorted the entire 118 MB input file in
RAM to form batches of equal length sentences.
RoyalFlush is the clear winner on the GPU latency
RAM consumption, and HuaweiTSC is the winner
of CPU latency RAM consumption.

6 Conclusion

Using the highest quality system in this evalua-
tion, translating 124,186,772 characters took 283
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NVIDIA A100 GPU Latency
Automatic Seconds Disk MB RAM MB

Team Variant COMET BLEU chrF Wall CPU Model Docker GPU

Edinburgh 6-1.base.wide-gpu 0.542 34.50 61.90 15051 15141 900 2316 37961
Edinburgh 12_1.large-gpu 0.541 34.10 61.60 14116 14186 624 2039 37555
Edinburgh 6-2.base-gpu 0.528 33.80 61.50 16548 16584 171 1587 37181
Edinburgh 12_1.base-gpu 0.518 33.90 61.40 13081 13118 225 1641 37211
RoyalFlush royalflush_hrt_e20d1_k2 0.512 33.80 61.50 6008 6051 345 869 2021
Edinburgh 6-1.base-gpu 0.507 33.50 61.10 12665 12698 159 1574 37175
RoyalFlush royalflush_hrt_e12d1_k2 0.498 33.90 61.40 5437 5472 259 781 1973
Edinburgh 8-4.tied.tiny-gpu 0.462 32.40 60.10 24126 24157 84 1500 37133
RoyalFlush royalflush_hrt_e20d1_k3 0.458 33.40 61.10 4706 4752 345 870 2021
Edinburgh 6-2.micro.4h-gpu 0.454 31.70 59.80 15003 15031 74 1489 37129
Edinburgh 6-2.tied.tiny-gpu 0.443 31.50 59.50 15236 15261 77 1492 37129
ECNU ecnu-mt 0.432 33.20 60.70 25306 25338 492 15680 4989
Edinburgh 6-2.micro.1h-gpu 0.432 31.30 59.20 14789 14817 73 1489 37129
RoyalFlush royalflush_hrt_e12d1_k3 0.430 33.30 60.90 4093 4129 257 783 1973
Edinburgh ib-6-2-tiny-gpu 0.388 31.10 59.40 12624 12653 81 1496 37133
RoyalFlush royalflush_hrt_e20d1_k4 0.376 33.00 60.80 4024 4064 343 866 2021
Edinburgh ib-12_1-tiny-gpu 0.373 31.90 59.80 10763 10793 99 1515 37141
RoyalFlush royalflush_hrt_e12d1_k4 0.342 32.60 60.30 3409 3443 259 783 1973
CUNI cuni-large-ende 0.250 30.80 59.10 8327 8410 856 1676 1875

1 Core Ice Lake CPU Latency
Automatic Seconds Disk MB RAM MB

Team Variant COMET BLEU chrF Wall CPU Model Docker CPU

Edinburgh 6-1.base.wide-cpu 0.517 33.90 61.50 79230 79234 162 212 2487
Edinburgh 12_1.large-cpu 0.516 33.70 61.30 51991 51995 121 171 1537
Edinburgh 12_1.base_efh_0.05 0.513 33.80 61.40 37183 37190 176 1176 1337
Edinburgh 6-2.base-cpu 0.509 33.30 61.00 18101 18102 32 82 542
Edinburgh 12_1.base_efh_0.05_ft8 0.507 33.50 61.20 14669 14679 156 217 1256
Edinburgh 6-1.base-cpu 0.496 33.10 60.90 13383 13385 29 79 533
Edinburgh 12_1.base-cpu 0.494 33.70 61.20 19100 19102 44 94 640
HuaweiTSC huawei.cpu.base.docker 0.485 34.00 61.10 15743 15741 40 112 254
HuaweiTSC huawei.cpu.sm.docker 0.455 32.90 60.30 9955 9954 22 94 162
Edinburgh 8-4.tied.tiny_efh_0.3_ft8 0.444 31.80 59.70 13360 13361 36 97 459
Edinburgh ib-12-4-micro-cpu 0.442 31.90 59.90 12071 12072 18 68 328
Edinburgh 8-4.tied.tiny-cpu 0.439 31.60 59.60 14090 14090 15 65 270
ECNU ecnu-mt 0.434 33.20 60.70 327823 327764 492 14469 4900
Edinburgh 6-2.micro.4h-cpu 0.418 30.90 59.20 8916 8917 13 63 247
HuaweiTSC huawei.cpu.t12.docker 0.417 32.20 59.70 7591 7590 15 87 122
Edinburgh 6-2.micro.1h-cpu 0.383 29.90 58.40 8632 8632 13 63 256
Edinburgh 6-2.tied.tiny-cpu 0.378 30.00 58.50 9371 9372 13 63 257
Edinburgh ib-6-3-tiny-cpu 0.372 30.40 58.80 9258 9258 15 65 302
Edinburgh 12_1.tiny_efh_0.5_ft8 0.371 30.00 58.50 6590 6592 30 91 374
HuaweiTSC huawei.cpu.t6.docker 0.315 30.20 58.30 5871 5870 11 84 100
CUNI cuni-large-ende 0.250 30.80 59.10 335787 335806 856 1676 4857
HuaweiTSC huawei.cpu.ex.docker 0.128 26.30 55.10 6286 6285 7 80 70

Table 3: Results of system evaluation on the latency task. Total time measured in seconds is equivalent to
microseconds/sentence because the input is 1 million sentences.
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NVIDIA A100 GPU Batch
Automatic Seconds Disk MB RAM MB

Team Variant COMET BLEU chrF Wall CPU Model Docker GPU

Edinburgh 6-1.base.wide-gpu 0.543 34.60 61.90 283 349 900 2316 37961
Edinburgh 12_1.large-gpu 0.540 34.10 61.60 217 262 624 2039 37555
Edinburgh 6-2.base-gpu 0.529 33.80 61.50 158 169 171 1587 37181
Edinburgh 12_1.base-gpu 0.517 33.90 61.50 156 172 225 1641 37211
Edinburgh 6-1.base-gpu 0.509 33.40 61.10 136 146 159 1574 37175
Edinburgh 8-4.tied.tiny-gpu 0.468 32.50 60.20 156 161 84 1500 37133
Edinburgh 6-2.micro.4h-gpu 0.456 31.90 59.90 125 128 74 1489 37129
Edinburgh 6-2.tied.tiny-gpu 0.443 31.50 59.50 130 134 77 1492 37129
ECNU ecnu-mt 0.432 33.20 60.70 23600 23643 492 15680 5719
Edinburgh 6-2.micro.1h-gpu 0.431 31.30 59.20 124 128 73 1489 37129
Edinburgh ib-6-2-tiny-gpu 0.392 31.10 59.50 127 132 81 1496 37133
Edinburgh ib-12_1-tiny-gpu 0.376 32.10 59.90 128 134 99 1515 37141
CUNI cuni-large-ende 0.237 30.80 59.10 1029 1115 856 1676 4179

36 Core Ice Lake CPU Batch
Automatic Seconds Disk MB RAM MB

Team Variant COMET BLEU chrF Wall CPU Model Docker CPU

Edinburgh 12_1.large-cpu 0.531 33.90 61.40 1864 65214 121 171 57879
Edinburgh 6-1.base.wide-cpu 0.529 34.10 61.60 3121 108057 162 212 77379
Edinburgh 12_1.base_efh_0.05 0.521 34.00 61.50 972 34532 176 1176 32754
Edinburgh 6-2.base-cpu 0.516 33.50 61.20 535 18982 32 82 24467
Edinburgh 12_1.base_efh_0.05_ft8 0.514 33.70 61.40 445 15571 156 217 22373
Edinburgh 12_1.base-cpu 0.510 34.00 61.40 656 23159 44 94 33434
Edinburgh 6-1.base-cpu 0.506 33.30 61.00 450 15795 29 79 23520
HuaweiTSC huawei.cpu.base.docker 0.496 34.10 61.30 562 36577 40 112 17513
Edinburgh 8-4.tied.tiny_efh_0.3_ft8 0.460 31.90 59.80 254 8909 36 97 16473
HuaweiTSC huawei.cpu.sm.docker 0.459 32.90 60.30 351 21437 22 94 12461
Edinburgh 8-4.tied.tiny-cpu 0.450 31.90 59.80 319 11041 15 65 13880
Edinburgh ib-12-4-micro-cpu 0.446 32.00 60.00 337 11781 18 68 16707
ECNU ecnu-mt 0.434 33.20 60.70 88463 2059785 492 14469 2103
Edinburgh 6-2.micro.4h-cpu 0.423 30.90 59.30 227 7925 13 63 11154
HuaweiTSC huawei.cpu.t12.docker 0.406 31.80 59.60 238 13532 15 87 5797
Edinburgh 6-2.micro.1h-cpu 0.394 30.00 58.50 223 7671 13 63 10526
Edinburgh 6-2.tied.tiny-cpu 0.390 30.30 58.50 244 8559 13 63 12804
Edinburgh ib-6-3-tiny-cpu 0.381 30.50 58.90 266 9280 15 65 13464
Edinburgh 12_1.tiny_efh_0.5_ft8 0.376 30.20 58.60 161 5531 30 91 11843
HuaweiTSC huawei.cpu.t6.docker 0.312 30.20 58.40 205 11147 11 84 7166
CUNI cuni-large-ende 0.237 30.80 59.10 8243 295751 856 1676 138539
HuaweiTSC huawei.cpu.ex.docker 0.131 26.20 55.20 211 11495 7 80 7458

Table 4: Results of system evaluation on the throughput task. Total time measured in seconds is equivalent to
microseconds/sentence because the input is 1 million sentences.
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Figure 1: Speed and quality of batched submissions. The staircase shows the Pareto frontier.
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For readability, we omit systems with a COMET score less than 0.2.
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Figure 4: COMET score of systems as a function of model size, and Docker image size. Sizes are reported after
compression with xz, and are shown on a logarithmic scale. Some participants did not seek to prune image size and
included large Linux installations.
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Figure 5: RAM consumption of all submissions on a logarithmic scale. Some participants used large batches to
favor speed over memory consumption.
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seconds on an A100 GPU that costs $3.05/hr in
a cloud. That is $0.002/million characters. By
comparison, Google Translate’s cost is $20/million
characters.1

In terms of translation throughput cost per $
spent, the GPU submissions are better value for
money, provided that enough sentences can be fed
to the GPU continuously.

The GPU latency track had been intended to
attract non-autoregressive machine translation sub-
missions in their ideal condition with a large GPU
and no batch to parallelize. For the first time
this year, we had a mix of autoregressive, semi-
autoregressive and non-autoregressive systems:

• CUNI submitted a fully non-autoregressive
system based on connectionist-temporal-
classification (CTC) networks (Helcl et al.,
2022).

• Edinburgh submitted bidirectional decoder
based semi-autoregressive system (Zhang
et al., 2020). This system generates two to-
kens at an autoregressive step at a time from
both sides of the sentences.

• RoyalFlush submitted a semi-autoregressive
system based on their novel hybrid regressive
translation framework (HRT). They first per-
form a coarse-grained autoregressive pass that
generates some words in the target sentence,
with gaps of up to several words in between.
Afterwards a second, non-autoregressive pass
fills in all the missing words.

The RoyalFlush system proves extremely well
suited to the GPU latency task, dominating the
pareto frontier in the lower quality setting, even
outperforming CPU systems, which have tradition-
ally won this task.

Finally, we note that in semi-autoregressive mod-
els and non-autoregressive models, a small drop
in BLEU results in a large drop in COMET com-
pared to an autoregressive system, as evidenced
by all teams who submitted any form of non-
autoregressive MT to the task. This corroborates
the findings of (Helcl et al., 2022) where the large
discrepancies between BLEU and COMET were
noted. We urge participants in future editions of
the task to examine manually the output of their
non-autoregressive systems.

1https://cloud.google.com/translate/
pricing

7 Future tasks

This year’s shared task had an increased number
of participants, likely due to the organisers provid-
ing the distilled data and therefore substantially
decreasing the computational cost to participants.
We intend to keep this format of the task for fu-
ture years, in the hopes of attracting even more
participants.

German is a high-resource language, which
raises the computational cost of participation. We
would be interested in also potentially includ-
ing a medium resource language for distillation
so that we can see if the methods that work on
high-resource languages generalize well to lower-
resource languages, or languages with more mor-
phological complexity.

Last year (Heafield et al., 2021) the organis-
ers suggested that an efficient training shared task
would be an interesting natural extension to the effi-
cient translation shared task, however it has proven
difficult to set up in practice: we are conscious
that the validity of such a task can be easily under-
mined by participants finding a favorable random
seed that fits the training data, or more egregiously
by including evaluation data in their training data.
We are looking for potential solutions to these prob-
lems and we are open to suggestions for next year’s
edition of the task.
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Abstract

We present the results from the 8th round of
the WMT shared task on MT Automatic Post-
Editing, which consists in automatically cor-
recting the output of a “black-box” machine
translation system by learning from human
corrections. This year, the task focused on a
new language pair (English→Marathi) and on
data coming from multiple domains (health-
care, tourism, and general/news). Although
according to several indicators this round was
of medium-high difficulty compared to the past,
the best submission from the three participating
teams managed to significantly improve (with
an error reduction of 3.49 TER points) the orig-
inal translations produced by a generic neural
MT system.

1 Introduction

This paper presents the results of the 8th round
of the WMT task on MT Automatic Post-Editing
(APE). The task consists in automatically correct-
ing the output of a “black-box” machine translation
system by learning from human-revised machine-
translated output supplied as training material. The
overall task formulation (see Section 2) remained
the same as in all previous rounds, where the chal-
lenge consisted in fixing the errors present in En-
glish documents automatically translated by state-
of-the-art, not domain-adapted neural MT (NMT)
systems unknown to participants. However, two
main factors of novelty characterized the APE 2022
evaluation setting:

• Language Pair: This year, we focus on
English→Marathi. Marathi is an Indo-Aryan
language predominantly spoken by Marathi
people in the Indian state of Maharashtra (see
Section 3).

• Data Domain: Instead of covering one sin-
gle domain as in previous rounds (either
news, medical, or information technology of

Wikipedia documents), training/dev/test data
were selected from a mix of domains, namely:
healthcare, tourism, and general/news.

This year, we had three teams submitting a total
of five systems for final evaluation (see Section 5).
While the difficulty (Section 4) of this round falls
in a medium-high range attested by relatively high
baseline results on the test data (20.28 TER / 67.55
BLEU), final results indicate the overall good qual-
ity of the submitted runs. Two teams were indeed
able to significantly improve over the baseline in
terms of the official automatic evaluation metrics
(Section 6). In particular, according to the primary
metric (i.e., the TER score computed between auto-
matic and human post-edits), the top-ranked system
(16.79 TER / 72.92 BLEU) achieved an error re-
duction of 3.49 TER points. Also, this year, the
standard automatic evaluation was complemented
by a human evaluation based on direct assessment.
However, some problems in the procedure1 were
later discovered, which make it unreliable to draw
insights except for the confirmation that two of
the three submitted systems were able to improve
over the baseline significantly. Specifically, both
of them achieved a mean direct assessment score
that drastically reduces the gap between the base-
line and human post-editing quality. However, due
to the mentioned problems in the human evalua-
tion procedure, further details about it will not be
included in the discussion below.

Although the different language/domain testing
conditions prevent from drawing precise conclu-
sions about the progress of APE technology with
respect to last year, the overall positive results con-
firm its viability for downstream improvements of
“black-box” MT systems whose inner workings are
not accessible.

1Basically, due to an error in assigning the direct assess-
ment tasks, the scores collected can be used to compare sys-
tems to the baseline but cannot be used to compare them to
each other.
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2 Task Description

MT Automatic Post-Editing (APE) is the task
of automatically correcting errors in a machine-
translated text. As pointed out by (Chatterjee et al.,
2015), from the application point of view, the task
is motivated by its possible uses to:

• Improve MT output by exploiting information
unavailable to the decoder, or by performing
deeper text analysis that is too expensive at
the decoding stage;

• Cope with systematic errors of an MT system
whose decoding process is not accessible;

• Provide professional translators with im-
proved MT output quality to reduce (human)
post-editing effort;

• Adapt the output of a general-purpose MT sys-
tem to the lexicon/style requested in a specific
application domain.

This 8th round of the WMT APE shared task
kept the same overall evaluation setting of the pre-
vious seven rounds. Specifically, the participating
systems had to automatically correct the output of
an unknown “black-box” MT system (a generic
NMT system not adapted to the target domain) by
learning from training data containing human revi-
sions of translations produced by the same system.
The selected language pair and the data domain,
however, were totally new to the task. Different
from previous rounds covering more language pairs
(or directions), this year focused only on English-
Marathi, presenting participants with the traditional
source language and, for the third time in a row, an
Eastern language as the target. Moreover, while
the training, development and test data released
in previous rounds were always drawn from a sin-
gle domain, this year, they covered three domains:
healthcare, tourism, and general/news.

3 Data, Metrics, Baseline

3.1 Data
In this round of the APE task, we introduce a new
language pair - English-Marathi. Marathi is one of
the most spoken Indian languages, with approxi-
mately 83 million native speakers and 16 million
speakers as a second/third language2. Marathi

2Ethnologue-2022 - Ethnologue has been an active re-
search project since 1951 which maintains online archives
of recognized languages list, and their statistics.

is a known agglutinative language and presents
various challenges to machine translation when
compared to its other Indian counterparts (Kha-
tri et al., 2021; Banerjee et al., 2021). Moreover,
the English-Marathi language pair is considered a
low-resource language pair compared to English-
Hindi/Bengali/Malayalam (Ramesh et al., 2022) de-
spite having more native speakers around the world.
An automatic post-editing approach which helps
correct the issues posed by NMT systems is crucial
for a low-resource language such as Marathi.

As in all previous rounds, participants were
provided with training and development data
consisting of (source, target, human post-edit)
triplets. This year, the two sets respectively com-
prise 18,000 and 1,000 instances, in which:

• The source (SRC) is an English sentence;

• The target (TGT) is a Marathi translation
of the source produced by a generic, black-
box NMT system unknown to participants.
This multilingual NMT system (Ramesh et al.,
2022) is based on the Transformer architec-
ture (Vaswani et al., 2017) and is trained on
a total of 49 million sentence pairs where the
En-Mr parallel corpus is 4.5 million sentence
pairs. This parallel data is generic and covers
many domains, including the three domains
covered by the evaluation setting of this year:
healthcare, tourism/culture and general/news.

• The human post-edit (PE) is a manually-
revised version of the target, which was pro-
duced by native Marathi speakers.

Also this year, a corpus of artificially-generated
data has been released as additional training mate-
rial. It consists of 2 million triplets derived from the
Anuvaad en-mr parallel corpus3. The Anuvaad par-
allel corpus consists of data for 12 language pairs
en-X, where X is 12 Indian languages, including
Marathi. The English-Marathi data consists of 2.5
million parallel sentences. Specifically, the source,
target, post-edit instances of this synthetic corpus
are respectively obtained by combining: i) the orig-
inal English source sentence from the Anuvaad
corpus, ii) its automatic translation in Marathi4,
iii) the original Marathi target sentence from the
Anuvaad corpus.

3https://github.com/project-anuvaad/
anuvaad-parallel-corpus

4from IndicTrans En-X Model (Ramesh et al., 2022)
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Test data consisted of 1,000 (source, target)
pairs, similar in nature to the corresponding el-
ements in the train/dev sets (i.e., same domains,
same NMT system). The human post-edits of the
target elements were left apart to measure APE
systems’ performance both with automatic metrics
(TER, BLEU) and via manual assessments.

3.2 Metrics
In line with the previous rounds, also this year the
plan was to evaluate the participating systems both
by means of automatic metrics and, manually, via
source-based direct human assessment (Graham
et al., 2013). However, as discussed in Section 1,
some issues in the manual evaluation procedure
were later discovered. For this reason, the discus-
sion of the evaluation results in Section 6 will only
concentrate on the automatic metrics. Automatic
evaluation was carried out after tokenizing the data
using sacremoses5 and then computing the distance
between the automatic post-edits produced by each
system for the target elements of the test set, and
the human corrections of the same test items. Case-
sensitive TER (Snover et al., 2006) and BLEU (Pap-
ineni et al., 2002) were respectively used as primary
and secondary evaluation metrics. The official sys-
tems’ ranking is hence based on the average TER
calculated on the test set by using the TERcom6

software: lower average TER scores correspond to
higher ranks. BLEU was computed using the multi-
bleu.perl package7 available in MOSES. Automatic
evaluation results are presented in Section 6.1.

3.3 Baseline
Also this year, the official baseline results were the
TER and BLEU scores calculated by comparing
the raw MT output with human post-edits. This
corresponds to the score achieved by a “do-nothing”
APE system that leaves all the test targets unmod-
ified. For each submitted run, the statistical sig-
nificance of performance differences with respect
to the baseline was calculated with the bootstrap
test (Koehn, 2004).

4 Complexity Indicators

To get an idea of the difficulty of the task, in pre-
vious rounds, we focused on three aspects of the
released data, which provided us with information

5https://pypi.org/project/sacremoses/
6http://www.cs.umd.edu/~snover/tercom/
7https://github.com/moses-smt/mosesdecoder/

blob/master/scripts/generic/multi-bleu.perl

about the possibility of learning useful correction
patterns during training and successfully applying
them at test time. These are: i) repetition rate, ii)
MT quality, and iii) TER distribution in the test set.
For the sake of comparison across the eight rounds
of the APE task (2015–2022), Table 1 reports, for
each dataset, information about the first two as-
pects. The third one, instead, will be discussed by
referring to Figure 1.

4.1 Repetition Rate

The repetition rate (RR), measures the repetitive-
ness inside a text by looking at the rate of non-
singleton n-gram types (n=1...4) and combining
them using the geometric mean. Larger values in-
dicate a higher text repetitiveness that may suggest
a higher chance of learning from the training set
correction patterns that are also applicable to the
test set. However, over the years, the influence of
repetition rate in the data on system performance
was found to be marginal.8

Looking at the data released this year, the very
low RR values (i.e., 1.46, 0.89, and 0.72 respec-
tively for the SRC, TGT and PE elements) seem
to confirm that repetition rate is a scarcely reliable
complexity indicator. On one side, these values
are close to those observed in rounds were the top-
ranked submissions achieved both very large (2020)
and very small (2021) gains over the baseline. On
the other side, the best result for this year is close
to the best results obtained, in previous rounds, on
data featuring considerably higher repetition rates
(2016, 2017). This suggests that other complexity
factors may provide more reliable insights about
the difficulty of the task, possibly with an addi-
tive effect, still to be fully understood, given by
repetition rate.

4.2 MT Quality

Another possible complexity indicator is MT qual-
ity, that is the initial quality of the machine-
translated (TGT) texts to be corrected. We measure
it by computing, the TER (↓) and BLEU (↑) scores
(Basel. TER/BLEU rows in Table 1) using the hu-
man post-edits as reference. In principle, higher
quality of the original translations leaves the APE
systems with smaller room for improvement since
they have, at the same time, less to learn during

8The analyses carried out over the years produced mixed
outcomes, with impressive final results obtained in spite of low
repetition rates (Chatterjee et al., 2020) and vice-versa (Chat-
terjee et al., 2018, 2019; Akhbardeh et al., 2021).
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Lang. Domain MT type RR_SRC RR_TGT RR_PE Basel. BLEU Basel. TER δ TER
2015 en-es News PBSMT 2.9 3.31 3.08 n/a 23.84 +0.31
2016 en-de IT PBSMT 6.62 8.84 8.24 62.11 24.76 -3.24
2017 en-de IT PBSMT 7.22 9.53 8.95 62.49 24.48 -4.88
2017 de-en Medical PBSMT 5.22 6.84 6.29 79.54 15.55 -0.26
2018 en-de IT PBSMT 7.14 9.47 8.93 62.99 24.24 -6.24
2018 en-de IT NMT 7.11 9.44 8.94 74.73 16.84 -0.38
2019 en-de IT NMT 7.11 9.44 8.94 74.73 16.84 -0.78
2019 en-ru IT NMT 18.25 14.78 13.24 76.20 16.16 +0.43
2020 en-de Wiki NMT 0.65 0.82 0.66 50.21 31.56 -11.35
2020 en-zh Wiki NMT 0.81 1.27 1.2 23.12 59.49 -12.13
2021 en-de Wiki NMT 0.73 0.78 0.76 71.07 18.05 -0.77

2022 en-mr healthcare/
tourism/news NMT 1.46 0.89 0.72 67.55 20.28 -3.49

Table 1: Basic information about the APE shared task data released since 2015: languages, domain, type of MT technology,
repetition rate and initial translation quality (TER/BLEU of TGT). The last column (δ TER) indicates, for each evaluation round,
the difference in TER between the baseline (i.e., the “do-nothing” system) and the top-ranked submission.

training and less to correct at the test stage. On
one side, training on good (or near-perfect) auto-
matic translations can drastically reduce the num-
ber of learned correction patterns. On the other
side, testing on similarly good translations can i)
drastically reduce the number of corrections re-
quired and the applicability of the learned patterns,
and ii) increase the chance of introducing errors,
especially when post-editing near-perfect TGTs.
The findings of all previous rounds of the task sup-
port this observation, which is corroborated by the
high correlation (>0.83) between the initial MT
quality (“Basel. TER” in Table 1) and the TER
difference between the baseline and the top-ranked
submission (“δ TER” in Table 1).

As discussed in Section 6, this year seems to
confirm the trends observed in the past, albeit with
a less evident match. The quality of the initial
translations (20.28 TER / 67.55 BLEU) places
this round among those of medium-high difficulty
(20.0<TER<25.0) for which, except in one case
(20159), the performance gains obtained by the
top-ranked submissions fall in the range -3.2<δ
TER<-6.2. The δ TER of this year (-3.49) also falls
in this range, confirming the correlation between
the quality of the initial translations and the actual
potential of APE.

4.3 TER Distribution
A third complexity indicator is the TER distribution
(computed against human references) for the trans-
lations present in the test sets. Although TER dis-

9The 2015 round is the one in which the APE task was
launched. It is somehow an exception being one of the two
cases in which none of the participants managed to beat the
do-nothing baseline (the other one was the 2019 sub-task on
English-Russian, also exceptional in the choice of the target
language).

Figure 1: TER distribution in the APE 2022 English-Marathi
test set.

tribution and MT quality can be seen as two sides
of the same coin, it’s worth remarking that, even at
the same level of overall quality, more/less peaked
distributions can result in very different testing con-
ditions. Indeed, as shown by previous analyses,
harder rounds of the task were typically charac-
terized by TER distributions particularly skewed
towards low values (i.e., a larger percentage of test
items having a TER between 0 and 10). On one
side, the higher the proportion of (near-)perfect test
instances requiring few edits or no corrections at
all, the higher the probability that APE systems will
perform unnecessary corrections penalized by au-
tomatic evaluation metrics. On the other side, less
skewed distributions can be expected to be easier to
handle as they give automatic systems larger room
for improvement (i.e., more test items requiring -
at least minimal - revision). In the lack of more fo-
cused analyses on this aspect, we can hypothesize
that in ideal conditions from the APE standpoint,
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ID Participating team
IITB Computation for Indian Language Technology - IIT Bombay, India

(Deoghare and Bhattacharyya, 2022)
IIIT-Lucknow IDIAP Research Institute, Switzerland
LUL Samsung Research and Communication University of China, China

(Xiaoying et al., 2022)

Table 2: Participants in the WMT22 Automatic Post-Editing task.

the peak of the distribution would be observed for
“post-editable” translations containing enough er-
rors that leave some margin for focused corrections
but not too many errors to be so unintelligible to
require a whole re-translation from scratch.10

Also, with respect to this complexity indicator,
the APE 2022 test set can be considered of medium-
high difficulty compared to the past rounds. As
shown in Figure 1, the TER distribution is quite
skewed towards lower values (about 45% of the
samples fall in the 15<TER<45 interval) but only
10% of the items can be considered as perfect or
near-perfect translations (i.e., 0<TER<5). These
values are lower compared to those observed in the
test data of harder rounds and higher compared to
those observed in the test data of easier rounds.11

All in all, the improvements over the baseline ob-
served this year for two of the three participating
systems (respectively -3.49 and -1.22 TER for the
top-ranked and the second-best one) seem to con-
firm the correlation between TER distribution and
task difficulty. However, weighing and understand-
ing the actual contribution of TER distribution and
MT quality, together with the possible additive ef-
fect of RR, remains a topic for more focused future
research.

10For instance, based on the empirical findings reported
in (Turchi et al., 2013), TER=0.4 is the threshold that, for
human post-editors, separates the “post-editable” translations
from those that require complete rewriting from scratch.

11Although the final results are not comparable due to the
different evaluation settings (i.e., different target languages
and data domains), the findings from the last two rounds of the
APE task provide good examples. In the 2021 round (English-
German), where the top submission achieved a small TER
reduction compared to the baseline (-0.77), more than 35%
of the test instances featured a TER between 0 and 5 and
almost 50% of them had 0<TER<10. In contrast, in the 2020
round (English-Chinese) where the top submission achieved
the largest baseline improvement ever observed (-12.13), less
than 1% of the test samples had 0<TER<5 and ∼89% of
them had 40<TER<85.

5 Submissions

As shown in Table 2, this year we received sub-
missions from three teams. Two of them (IIIT-
Lucknow and LUL) submitted two runs, while the
third one (IITB) participated with only one submis-
sion. The main characteristics of two of the three
participating systems are summarized below.12

Samsung Research and Communication Univer-
sity of China (LUL). This team participated with
a Transformer-based system built using fairseq (Ott
et al., 2019). Their submissions are characterized
by two main aspects: data augmentation and the
use of a mixture of experts’ approach (Jacobs et al.,
1991). Data augmentation is pursued by generat-
ing synthetic triplets by means of both an in-house
MT system and an external system (Google Trans-
late). The former is used to translate text drawn
from several resources, while the latter is used to
back-translate the post-edits in the APE training
set. The resulting material is combined in different
ways so as to obtain different data sets for model
fine-tuning. The mixture of experts’ approach ex-
ploits three domain-specific adapters (Bapna and
Firat, 2019; Pham et al., 2020), which are added to
the decoder of the base APE model. At inference
time, a classifier (added after the encoder) is used
to decide which adapter has to be activated.

Computation for Indian Language Technology -
IIT Bombay (IITB). This team participated with
a Transformer-based system. It exploits a multi-
source approach similar to the one in (Chatterjee
et al., 2017), with two separate encoders to gener-
ate representations for SRC, MT and one decoder.
The model is trained with a curriculum learning
strategy similar to the one applied by the 2021 win-
ning system (Oh et al., 2021). This is done by first
incrementally using out-/in-domain synthetic data
(i.e., those released to participants and additional

12The IIIT-Lucknow did not produce a system description
paper and is left out of our analysis.
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ones generated via MT) and then by fine-tuning the
model on the real APE data. To ensure the qual-
ity of the training material, the LaBSE technique
(Language-agnostic BERT sentence embedding) by
Feng et al. (2022) is used to filter out low-quality
synthetic triplets. To reduce over-correction, a
sentence-level quality estimation system trained
on the WMT-22 QE English-Marathi sub-task is
used to select the final output between an origi-
nal translation and the corresponding (corrected)
version generated by the APE model.

6 Results

6.1 Automatic Evaluation

Participants’ results are shown in Table 3. The
submitted runs are ranked based on the average
TER (case-sensitive) computed using human post-
edits of the MT segments as a reference, which
is the APE task’s primary evaluation metric. We
also report the BLEU score, computed using the
same references, which represents our secondary
evaluation metric.

As it can be seen from the table, the two rank-
ings are coherent: the top submission (16.79 TER,
72.92 BLEU) is the same, and the top three sys-
tems outperform by a large margin (∼1 TER and
∼2 BLEU scores) the do nothing baseline, both
in term of BLEU and TER score. These systems
are statistically better than the baseline. This is in-
deed an interesting result showing the effectiveness
of the APE systems and confirming their capabil-
ity of profitably leveraging additional and external
resources compared to the MT system.

Looking at relationships between the primary
and contrastive submissions (IIT and LUL), the
contrastive system shows slightly better perfor-
mance of the primary submission in one case
(LUL). This highlights the difficulty to select the
best configuration during system development and
indirectly confirms the difficulty to handle APE
data characterized by high MT quality, and TER
distribution skewed towards perfect/near-perfect
translations.

6.2 Systems’ Behaviour

Modified, improved and deteriorated sentences.
To better understand the behaviour of each APE
system, we now turn an eye toward the changes
made by each system to the test instances. To this
aim, Table 4 shows, for each submitted run, the
number of modified, improved and deteriorated

sentences, as well as the overall system’s precision
(i.e., the proportion of improved sentences out of
the total number of modified instances for which
improvement/deterioration is observed). It’s worth
noting that, as in the previous rounds, the number
of sentences modified by each system is higher
than the sum of the improved and the deteriorated
ones. This difference is represented by modified
sentences for which the corrections do not yield any
TER variations. This grey area, for which quality
improvement/degradation can not be automatically
assessed, would contribute to motivating the inte-
gration of human assessments, as done previously.

As it can be seen from the table and similarly to
last year’s edition, the top systems have been quite
conservative in applying their edits by modifying a
limited percentage of sentences (∼50% on average,
45.2 for the top submission). Considering the TER
distribution where a large number of samples lay in
the 15<TER<45 interval, there is the possibility of
substantially changing the MT outputs to achieve
better performance. This limited number of ed-
its is unexpected and similar to more difficult test
sets with more skewed TER distributions toward
near-perfect translations. However, systems’ final
scores are inversely proportional to their aggres-
siveness showing that limiting the APE edits and
carefully selecting them is the right strategy toward
significant improvements in quality.

Precision-wise, this year’s systems reached 63.9
(in 2021 it was 51.12 and 58.0 in 2020) on average
with the best run peaking at 69.49 (vs 53.96 in 2021
and 69.0 in 2020). It is important to note that the
average value is significantly affected by the low-
performing systems having a precision close to 0.
Looking at the percentage of improved (55.6 on
average, 63.49 for the top submission) and deterio-
rated (31.2 on average, 27.87 for the winning sys-
tem) sentences, the results confirm the capability
of the top systems to minimize the wrong changes.
Compared to the last editions, the percentage of
the improved sentences is among the largest ones
achieved by the all-time submitted APE systems.

Edit operations. Similar to previous rounds, we
analysed systems’ behaviour also in terms of the
distribution of edit operations (insertions, deletions,
substitutions and shifts) done by each system. This
fine-grained analysis of how systems corrected the
test set instances is obtained by computing the TER
between the original MT output and the output of
each primary submission taken as a reference. Sim-
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TER BLEU

en-mr IITB_APE_QE_combined_PRIMARY.tsv 16.79 72.92
LUL_HyperAug_Adaptor_CONTRASTIVE 19.06 69.96
LUL_HyperAug_Finetune_PRIMARY 19.36 69.66
baseline (MT) 20.28 67.55
IIIT-Lucknow_adversia-machine-translation_PRIMARY.txt 57.14 23.43
IIIT-Lucknow_adversia-machine-translation_CONTRASTIVE.txt 99.81 3.16

Table 3: Results for the WMT22 APE English-Marathi shared task – average TER (↓), BLEU score (↑) Statistically significant
improvements over the baseline are marked in bold.

Systems Modified Improved Deteriorated Prec.
IITB_APE_QE_combined_PRIMARY 452 (45.2%) 287 (63.49%) 126 (27.87%) 69.49
LUL_HyperAug_Adaptor_CONTRASTIVE 491 (49.1%) 261 (53.15%) 150 (30.54%) 63.5
LUL_HyperAug_Finetune_PRIMARY 537 (53.7%) 269 (50.09%) 189 (35.19%) 58.73
IIIT-Lucknow_adversia-machine-translation_PRIMARY 999 (99.9%) 46 (0.46%) 929 (92.99%) 0.47
IIIT-Lucknow_adversia-machine-translation_CONTRAS. 1000 (100%) 9 (0.09%) 987 (98.7%) 0.09
Average 69.6 (49.3) 31.4 (55.6) 57.0 (31.2) 38.4 (63.9)

Table 4: Number (raw and proportion) of test sentences modified, improved and deteriorated by each run submitted to the APE
2022 English-Marathi sub-task. The “Prec.” column shows systems’ precision as the ratio between the number of improved
sentences and the number of modified instances for which improvement/deterioration is observed (i.e., Improved + Deteriorated).

Figure 2: Distribution of edit operations (insertions, deletions,
substitutions and shifts) performed by the three primary sub-
missions to the WMT22 APE English-Marathi shared task.

ilar to last year, differences in systems’ behaviour
are minimal. All of them are characterised by a
large number of deletions (∼55.0% on average),
followed by insertions (∼30%), shifts (∼10%) and
substitutions (∼6%). The system that seems to
have a slightly different distribution is IIT-Lucknow
resulting in more shifts and substitutions, but these
differences are barely visible. Although this year’s
test set turned out to be simpler than last year (less
shewed TER distribution and higher TER), the edit
operations are very similar to last year’s with a
small difference in the number of deletions (65%
last year, 55% this year) and insertions (19.2% vs
30%). These variations may depend on the new
data, target language and MT system. More thor-
ough future investigations would be needed to find
clear explanations for these observations.

7 Conclusion

The 8th round of the shared task on Automatic
Post-Editing at WMT was characterized by two
main factors of novelty: the language pair (English-
Marathi) and the domain of the released data (a mix
covering healthcare, tourism, and general/news).
Apart from this, the overall setting was the same
as in previous recent rounds, in which participat-
ing systems had to automatically correct the output
of a generic neural MT system, being evaluated
with the TER (primary) and BLEU (secondary) au-
tomatic metrics. In continuity with the past, also
human evaluation via source-based direct assess-
ment was carried out, but it is not discussed in this
report due to its unreliable outcomes. In terms of
the three complexity indicators discussed in Sec-
tion 4 (repetition rate, original MT quality and TER
distribution), the difficulty of this round falls in a
medium-high range. This is reflected by the perfor-
mance of the systems submitted by the three par-
ticipating teams: two of them were indeed able to
improve over the do-nothing baseline with (statisti-
cally significant) error reductions up to -3.49 TER
points (+5.37 BLEU). Although these results are
not comparable with those from previous years due
to the different language/domain testing conditions,
the observed improvements in the new language
direction confirm the viability of APE for down-
stream improvements of “black-box” MT systems
whose inner workings are not accessible.
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Abstract
We present a very simple method for extending
pretrained machine translation metrics to incor-
porate document-level context. We apply our
method to four popular metrics: BERTScore,
Prism, COMET, and the reference-free met-
ric COMET-QE. We evaluate our document-
level metrics on the MQM annotations from the
WMT 2021 metrics shared task and find that
the document-level metrics outperform their
sentence-level counterparts in about 85% of the
tested conditions, when excluding results on
low-quality human references. Additionally,
we show that our document-level extension of
COMET-QE dramatically improves accuracy
on discourse phenomena tasks, supporting our
hypothesis that our document-level metrics are
resolving ambiguities in the reference sentence
by using additional context.

1 Introduction

Automatic evaluation is crucial to the machine
translation (MT) community for tracking progress,
evaluating new ideas and making modeling choices.
While human evaluation is the gold standard for
MT evaluation, it is very expensive, and thus most
research groups must rely on automatic metrics.
Current State-of-the-art (SOTA) metrics are pre-
trained (Kocmi et al., 2021; Freitag et al., 2021b),
leveraging existing language models (LMs) or
sequence-to-sequence models to judge how well
a hypothesis (i.e. MT system output) conveys the
same meaning as a human reference translation.

Sentences are often ambiguous, and many re-
cent works have demonstrated that incorporating
inter-sentential (i.e. document-level) context is ben-
eficial in both MT (Lopes et al., 2020; Fernandes
et al., 2021) and human evaluation of MT (Läubli
et al., 2018; Toral, 2020; Freitag et al., 2021a).

A human reference translation is (at least ideally)
created taking the entire source document into ac-
count. However, just as source sentences are often

∗Work conducted during an internship at Amazon.

ambiguous, we hypothesize that human reference
sentences also contain ambiguities. Thus, when a
system output deviates from the human reference,
we may need to look at additional context to de-
termine if those deviations are acceptable, in the
context of the full document translation.

In this study, we present a simple procedure for
extending pretrained MT metrics to the document
level. Prior work has used pretrained models mod-
els like BERT (Devlin et al., 2019) to embed a sin-
gle human reference sentence and hypothesis (e.g.
an MT output) sentence. We instead argue that a
better representation of the reference or hypothesis
sentence can be obtained by providing several sen-
tences of context to the pretrained model, allowing
the pretrained model to use surrounding context
when embedding each sentence of interest. Once
the embeddings of the reference or hypothesis sen-
tence have been computed (taking into account sur-
rounding sentence context), the metric is computed
in the same manner as the sentence-level metric.1,2

We apply this method to extend four popular
pretrained metrics to the document level:3

• BERTScore (Zhang et al., 2020), a text gener-
ation metric that uses the alignments from to-
ken embeddings of a pretrained BERT model
to score the similarity of a hypothesis and ref-
erence.

• Prism (Thompson and Post, 2020a), a text
generation metric which utilizes a sequence-
to-sequence paraphrase model to score how
well a hypothesis paraphrases the reference.

• COMET (Rei et al., 2020), an MT metric
which fine-tunes a multilingual LM, namely

1In the case of Prism (Thompson and Post, 2020a), we
modify this logic slightly to retain only the probabilities of the
sentence of interest (see § 3.2).

2In the case of COMET/COMET-QE (Rei et al., 2020),
which incorporates the source sentence, we provide additional
source context in the same manner (see § 3.3 and § 3.4).

3We release our code at https://github.com/
amazon-research/doc-mt-metrics.
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XLM-R (Conneau et al., 2020), to predict
translation quality given a hypothesis, source,
and reference.

• COMET-QE (Rei et al., 2020), the reference-
free (i.e. “quality estimation as a metric”)
version of COMET.

To test the effectiveness of our document-level
metrics, we measure system-level correlation with
human judgments. We select the so-called "plat-
inum" Multidimensional Quality Metrics (MQM)
judgments collected for the WMT 2021 metrics
task (Freitag et al., 2021b). We believe MQM judg-
ments are the best available to test document-level
MT metrics as these judgments are made by expert
translators that have access to—and are strongly
advised to consider—source-side document-level
context when judging each target sentence. We
perform evaluation on all the WMT 2021 language
pairs (En→De, Zh→En, En→Ru) and domains
(TED talks and news) for which MQM judgments
are available.

We find that our document-level extensions of
these four metrics outperform their sentence-level
counterparts in 75% of cases considered. Exclud-
ing Zh→En news, where the human reference is
of low quality (see § 4.1), we see improvements in
85% of cases. This provides strong evidence that
document-level context is useful in the automatic
evaluation of MT.

We also conduct analysis to better understand
the performance improvement that we observe.
We demonstrate that our document-level exten-
sion of COMET-QE significantly improves over its
sentence-level counterpart on targeted tasks evalu-
ating discourse phenomena, namely pronoun reso-
lution and Word Sense Disambiguation (WSD).4

This finding provides further evidence that our
document-level metrics are using context to resolve
ambiguities in the reference sentence. We also
show that using reference context is better than us-
ing context from the MT output, likely because the
MT output contains more errors than the reference.

In summary, our contributions are:
1. We present a simple but effective method to

extend pretrained sentence-level metris to the
document level, and apply it to four popular
metrics.

2. We show that the proposed document-level
metrics tend to have better correlation with

4The use of a reference would make these tasks trivial, so
we limit our analysis to the reference-free COMET-QE.

human judgments than their sentence-level
counterparts.

3. We improve over both COMET and COMET-
QE, which appear to be the previous SOTA
automatic metric and reference-free metric, re-
spectively (Freitag et al., 2021b; Kocmi et al.,
2021).

4. We conduct analysis to show that the improve-
ments observed using our approach can be at-
tributed to better context utilization, and also
show that using reference context is better
than using context from the hypothesis.

2 Related Work

Our work has parallels in human MT evaluation,
where document-level judgments are required to
distinguish human translation quality from MT
system quality (Läubli et al., 2018; Toral, 2020).
Castilho et al. (2020) showed that many source sen-
tences are ambiguous, but that ambiguities are of-
ten resolved using only a few additional sentences
of context. This suggests that we do not need to
incorporate very many additional sentences of con-
text into a document-level metric in order to see an
improvement in quality.

Pretrained metrics are metrics which leverage
large existing pretrained LMs or sequence-to-
sequence models, and include YiSi (Lo, 2019),
COMET (Rei et al., 2020), BERTscore (Zhang
et al., 2020), Prism (Thompson and Post, 2020a),
BLEURT (Sellam et al., 2020), and others. Pre-
trained metrics have been shown to consistently out-
perform surface-level metrics such as BLEU (Pap-
ineni et al., 2002), TER (Snover et al., 2006), and
chrF (Popović, 2015) – see Mathur et al. (2020);
Kocmi et al. (2021); Freitag et al. (2021b).

Prior to the rise of pretrained metrics, sev-
eral works targeted discourse-level phenomena in
MT metrics such as pronominal anaphora (Hard-
meier and Federico, 2010; Miculicich Werlen and
Popescu-Belis, 2017; Jwalapuram et al., 2019)
and lexical cohesion (Wong and Kit, 2012; Gong
et al., 2015). For a detailed overview of evalua-
tion of discourse-level phenomena, we direct the
reader to Maruf et al. (2021). Recently, Jiang
et al. (2022) proposed BlonDe, a document-level
metric that focuses on discourse phenomena in or-
der to score a translated document. However, we
find that BlonDe substantially under-performs mod-
ern pretrained metrics, despite taking advantage of
document-level context (see § 5.1).
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Take your heavy jacket + The weather is cold today

Take your heavy jacket + It is freezing today

Contextual
Embedding

...

Pairwise Cosine Similarity 
(excludes Reference Context)

Reference Context

Reference Context

Maximum Similarity

Reference Context

Reference Context
…

Hypothesis

Reference

Figure 1: To extend BERTScore to the document level, we add reference context (e.g. “Take your heavy jacket”) to
both the reference sentence (e.g. “It is freezing today”) and hypothesis sentence (e.g. “The weather is cold today”).
This context is used to improve the embeddings of the reference and hypothesis sentences (e.g. helping the model
understand that “it” is likely referring to weather). However, the additional context is not used when performing
alignment and scoring, which follows standard sentence-level BERTScore. The same methodology is applied to
Prism and COMET/COMET-QE (not shown). Image adapted from Zhang et al. (2020).

3 Method

At a high level, we propose a very simple procedure
for extending pretrained MT metrics to the docu-
ment level: As in standard sentence-level metrics,
we produce a score for a single hypothesis sentence
compared to a single human reference translation
sentence. However, we use additional context5,6

from the reference translation when computing the
contextual embeddings for both the hypothesis sen-
tence and reference sentence. Once the hypothesis
and reference sentence have been embedded, we
discard the extra context sentences before comput-
ing metric scores following the same process as the
corresponding sentence-level metric. Additional
details are provided for each metric below.

For the following discussion, let s refer to the
source sentence, h refer to the hypothesis (i.e. MT
system output) sentence, r refer to the human ref-
erence translation sentence, and let cs, ch and cr
refer to the source, hypothesis, and reference con-
text, respectively.

3.1 Document-level BERTScore

BERTScore (Zhang et al., 2020) is an unsupervised
text generation metric that leverages the power
of a pretrained large LM to score generated text.
BERTScore encodes tokens of both the reference
and the hypothesis with a pretrained LM and com-

5We use two preceding sentences from the reference as
context, but our method could be applied to additional previous
and/or subsequent sentences.

6We only use valid context. For example, when using
a nominal value of two prior sentences as context, the first
sentence in a document gets no context sentences and the
second sentence gets one context sentence.

putes soft alignments based on token similarities.
The alignment matrix is then used to calculate the
precision, recall and F1 scores of the hypothesis
compared to the reference.

To extend BERTScore to the document level, we
use the reference context ⟨cr⟩ while encoding the
hypothesis or the reference with the LM. However,
we align only the tokens of the reference/hypothesis
sentence being scored (see Figure 1 for an illustra-
tion).

For BERTScore we use the default LM option
for each language pair, which is the multilingual
BERT-base (Devlin et al., 2019) for all En→* pairs
and RoBERTa-large (Liu et al., 2019) for *→En
pairs. BERT and RoBERTa are naively document-
level; specifically, the LMs are trained on up to
512 tokens at a time, which is significantly longer
than the average sentence length. Thus no changes
to the underlying model were required to extend
BERTscore to the document level.

3.2 Document-level Prism

Prism (Thompson and Post, 2020a,b) is an unsuper-
vised text generation metric that uses a sequence-
to-sequence paraphraser to evaluate how well a
hypothesis paraphrases a human reference trans-
lation. Specifically, to score a translation the ref-
erence is fed to the encoder and the hypothesis is
force-decoded in the decoder via teacher forcing.
The token-level probabilities of the reference are
aggregated to produce a score and the process is
repeated with the hypothesis in the encoder side
and the reference in the decoder. The final score is
the average of the two scores.

In order to generalize Prism for document-level
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evaluation we concatenate the reference context cr
to both the reference and hypothesis ⟨cr; r, cr;h⟩.
The context is used as a prompt; that is, we only
aggregate token-level probabilities for the sentence
being evaluated. The authors of Prism release the
sentence-level multilingual MT model that they
zero-shot paraphrase model. However, we require
a document-level model to extend Prism to the doc-
ument level. One option for extending Prism to the
document level is to train a document-level, mul-
tilingual MT model. While document-level data
collection methods and datasets do exist (Guo et al.,
2019; Thompson and Koehn, 2020; Cettolo et al.,
2012; Lison et al., 2018), document-level data is
not currently available in nearly as many language
pairs as sentence-level data. To extend Prism to the
document level, we instead use mBART-50 (Tang
et al., 2020), a multilingual encoder-decoder LM.
mBART-50 is trained on document fragments of
up to 512 tokens, in 50 languages, resulting in a
multilingual document-level paraphraser. Note that
while an mBART model fine-tuned on (sentence-
level) translations is available, we do not use it
because we require a document-level model. As a
result, although the mBART model we use is mul-
tilingual, it is not a translation model so we cannot
use it for the reference-free version of Prism.

3.3 Document-level COMET

COMET (Rei et al., 2020) is a supervised metric
that is trained on human judgments. COMET en-
codes the source, hypothesis and reference via a
multilingual pretrained LM and the representation
of each sentence is the average of its output to-
ken embeddings. The encoded representations are
further combined via subtraction and multiplica-
tion and fed to a regressor that predicts a score
for each translated sentence. We use COMET-
MQM_2021 (Rei et al., 2021), which is built on
top of XLM-RoBERTa-large (Conneau et al., 2020).
The COMET models are pretrained on direct as-
sessment judgements from WMT 2015 to WMT
2020 and fine-tuned on MQM z-scores from Fre-
itag et al. (2021a).

To extend COMET to the document level, we
integrate source context cs and reference context
cr by concatenating them with the source and hy-
pothesis/reference in the encoder. We obtain sen-
tence representations by averaging the output em-
beddings of the tokens of the current sentence only
before passing them to the regressor.

As with BERTscore, the model underlying
COMET is inherently document-level. However,
the underlying LM is fine-tuned for a few epochs
on human judgments from previous WMT cam-
paigns that consist of a single (source, reference,
and hypothesis) sentence and the corresponding
score. As the amount of fine-tuning is quite limited,
we hypothesize that the model has still retained its
ability to handle text beyond sentence level, and
this assumption appears to be confirmed by experi-
mental results (see § 5.1).

3.4 Document-level COMET-QE

COMET-QE (Rei et al., 2021) is the reference-free
version of COMET. We use the latest COMET-
MQM-QE_2021, trained similarly to the COMET-
MQM_2021 discussed above. Although COMET-
QE does not does not have access to the reference
it has been shown to perform reasonably well com-
pared to strong reference-based metrics (Kocmi
et al., 2021).

Similar to reference-based COMET, to extend
COMET-QE to the document level, for each source
s and hypothesis h, we concatenate the previ-
ous source and hypothesis sentences as context
⟨cs; s, ch;h⟩ and score the hypothesis h in ques-
tion.

The pretrained model for COMET-QE is the
same as the one used in COMET, therefore no fur-
ther modifications are required to extend COMET
to the document level.

4 Experiments

Motivated by the finding of Scherrer et al. (2019);
Kim et al. (2019); Castilho et al. (2020) that two
previous sentences are sufficient context to cor-
rectly resolve ambiguities in the majority of sen-
tences, we use two previous reference sentences as
context unless otherwise noted. Sentences are sep-
arated using the separator token of each model:
[SEP] for RoBERTa and <\s> for XLM-R and
mBART-50. We use reference context cr as ref-
erence for the hypothesis, as opposed to hypothesis
context ch. This is done in order to avoid propaga-
tion of translation errors (see § 6.1 for an ablation
using hypothesis context instead of reference con-
text).

4.1 Human Judgment Experiments

We compare our document-level metrics judgments
of MT outputs with those of the human-generated
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Model Input TED talks News
En→De En→Ru Zh→En En→De En→Ru Zh→En

BlonDe ⟨ch, h, cr, r⟩ - - -0.232 - - 0.212
Prism (m39v1) ⟨h, r⟩ 0.656 0.867 0.272 0.841 0.799 0.558
Prism (mBART-50) ⟨h, r⟩ 0.486 0.845 0.240 0.661 0.710 0.363
Doc-Prism (mBART-50) ⟨cr;h, cr; r⟩ 0.692 0.852 0.372 0.825* 0.777 0.374
BERTScore ⟨h, r⟩ 0.506 0.831 0.293 0.930 0.629 0.575*

Doc-BERTScore ⟨cr;h, cr; r⟩ 0.613* 0.836 0.344* 0.948* 0.622 0.535
COMET ⟨s, h, r⟩ 0.818 0.841 0.266 0.772 0.659 0.628
Doc-COMET ⟨cs; s, cr;h, cr; r⟩ 0.816 0.849 0.297 0.802* 0.676 0.513
COMET-QE ⟨s, h⟩ 0.694 0.818 -0.209 0.711 0.688 0.529
Doc-COMET-QE ⟨cs; s, ch;h⟩ 0.724 0.830 -0.255 0.733 0.733* 0.462

Table 1: System-level correlation with WMT 2021 MQM annotations for Prism, BERTScore, COMET and COMET-
QE and their generalization for document-level evaluation (Doc-*, this work). Within each document/sentence-level
pair, bold denotes the best correlation and “*” denotes a statistically significant (p < 0.05) difference. Excluding
Zh→En news data, which has a very low-quality human reference (see § 4.1), our document-level metrics outperform
their sentence-level counterparts in 17 of 20 (85%) of cases, and 6 of 6 (100%) of statistically significantly different
cases.

MQM annotations from the 2021 WMT metrics
shared task (Freitag et al., 2021a). We select MQM
for several reasons: They are produced by profes-
sional translators (compared to crowd workers or
translation researchers) and require explicit error
annotations that are believed to lead to higher qual-
ity annotations. Also, MQM annotators are specifi-
cally instructed to "identify all errors within each
segment in a document, paying particular attention
to document context." In 2021, in addition to the
news domain, annotations were also produced for
translations of TED talks in three language pairs:
En→De, Zh→En and En→Ru.

One potential problem with the metrics dataset
is the quality of the Zh→En news human reference.
The WMT metrics shared task organizers acquired
MQM scores for the human references, in addition
to MT system outputs. The Zh→En reference re-
ceived an MQM score of just 4.27, only slightly
better than the best MT system at 4.42 (Freitag
et al., 2021b). For reference, 0.0 is a perfect score
and a score of 5.0 corresponds to one major error
(or many minor errors) per sentence. In contrast,
for the same language pair, the TED reference has
an MQM score of 0.42 vs the best MT system at
1.65.

4.2 Discourse Phenomena Experiments

In order to confirm that any gains we see from
document-level metrics are in fact due to their abil-
ity to correctly handle ambiguities in the reference
which can be resolved using document-level con-
text, we also perform targeted evaluation of dis-

course phenomena using contrastive sets. These
testsets are common in the evaluation of document-
level MT systems where a context-aware model
should ideally assign the highest probability to the
correct translation; all translations are plausible
and only the use of context can reveal the correct
translations. For our case, since we are evaluating
MT metrics, we treat each sentence as a differ-
ent hypothesis and calculate how often our metric
ranks the correct translation the highest. Since
the use of a reference would make this task triv-
ial for reference-based metrics, we only evaluate
on COMET-QE. We use ContraPro (Müller et al.,
2018), a selection of sentences from OpenSubti-
tles2018 (Lison et al., 2018) that contain the En-
glish anaphoric pronoun it in the source side. Start-
ing from the correct translation in German, con-
trastive translations are automatically created to
contain the German pronouns er, sie and es. In
order to identify the correct translation the model
must look into previous context. We also evaluate
on a similar dataset for En→Fr created by Lopes
et al. (2020) for the translation of it and they into
il, elle, ils, elles in French. Finally, we evaluate on
DiscEvalMT (Bawden et al., 2018), a contrastive
test which consists of 200 examples of anaphoric
pronoun translation for En→Fr and 200 examples
of WSD.

4.3 Baseline Methods

For correlation with human MT quality judg-
ments, in addition to the sentence-level version
of each metric we extend, we also compare to
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Model En→De En→Fr
Intra Inter Total Intra Inter Total Anaphora WSD

Lopes et al. (2020) - - 70.8 - - 83.2 82.5 55.0
COMET-QE 78.2 40.9 48.4 76.3 76.6 76.5 50.0 50.0
Doc-COMET-QE (this work) 80.5 72.6 74.2 88.7 88.0 88.3 83.5 68.0

Table 2: Accuracy (percentage correct) for targeted evaluation of contextual phenomena. Our document-level
version of COMET-QE substantially outperforms the sentence-level COMET-QE, and also outperforms the best
methods proposed by Lopes et al. (2020), demonstrating that it is successfully incorporating contextual information.

BlonDe (Jiang et al., 2022), an overlap-based
document-level metric that focuses on discourse
phenomena.7 We also compare to Prism using the
m39v1 model released by the authors of Prism.

For discourse phenomena, we compare our
document-level COMET-QE model to the sentence-
level COMET-QE as well as the best reported re-
sults of Lopes et al. (2020).

5 Results

5.1 Correlation with Human Judgments

We present the system-level Pearson correlation
with the human annotations of the 2021 WMT met-
rics task for all metrics (sentence- and document-
level) in Table 1. Statistical significance (p <
0.05) is computed for each sentence- vs document-
level metric pair following Freitag et al. (2021b)
using the PERM-BOTH hypothesis test (Deutsch
et al., 2021). We also provide the results of BlonDe
(only for *→En since this metric relies on entity
taggers and discourse markers that are only trained
in English) and Prism with the original model
(m39v1) for comparison.

Overall, adding document-level context leads to
improved correlation with human judgments for all
metrics. Our document-level metrics outperform
their sentence-level counterparts in 18 of 24 (75%)
of cases considered. Excluding Zh→En news data,
which has a very low-quality human reference (see
§ 4.1), our document-level metrics outperform their
sentence-level counterparts in 17 of 20 (85%) of
cases. Looking at only pairs with statistically sig-
nificant differences, our document-level metrics
outperform their sentence-level counterparts in 6
of 7 cases (86%), and 6 of 6 (100%) of cases ex-
cluding Zh→En news.

We see that document-level metrics outperform

7We report BlonDe results in English only, as BlonDe uses
a discourse marker script from Sileo et al. (2019) which was
trained only in English. BlonDe could likely be extended to
other languages but we did not attempt to do so.

sentence-level metrics in only 1 of 4 cases on
Zh→En news This suggests that the document-
level metrics are sensitive to errors in the reference
context. This hypothesis is further supported by
analysis in § 6.1.

For Prism, we observe that the sentence-level
results with the original m39v1 model are bet-
ter than the sentence-level results with mBART-
50. However, by using document-level context we
are able to improve over the sentence-level Prism
with mBART-50 in every language pair/domain.
This narrows the gap between Prism with mBART
and Prism with m39v1, outperforming the stronger
m39v1 model in two TED language pairs.

Although the COMET models are fine-tuned
on single sentences, experimental results suggest
they are able to retain their ability to handle inter-
sentential dependencies. We considered retraining
COMET excluding older direct assessment judg-
ments which did not take document-level context
into account; however this would have severely lim-
ited the amount of (already very limited!) training
data.

Finally, we observe that BlonDe performs signif-
icantly worse than the pretrained metrics as well as
our document-level extensions, underperforming
everything except document-level COMET-QE in
TED Zh→En.

5.2 Discourse Phenomena Improvements

We provide the results of targeted evaluation on
contrastive datasets for COMET-QE and Doc-
COMET-QE in Table 2. We also provide the scores
of the best-performing document-MT model for
each dataset from Lopes et al. (2020) for compar-
ison. The reference-based metrics are not consid-
ered in this section as the use of a reference would
make the task trivial.

We observe that the document-level COMET-
QE substantially outperforms the sentence-level
COMET-QE, and even outperforms document-
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Context Doc-Prism Doc-BERTScore Doc-COMET
hypothesis ⟨cs; s, cr; r, ch;h⟩ 0.595 0.624 0.630
reference ⟨cs; s, cr; r, cr;h⟩ 0.649 0.650 0.659

Table 3: Average correlation with MQM human judgments of our document-level metrics using previous hypothesis
sentences as context vs. previous reference sentence as context. COMET-QE is excluded because it does not depend
on the reference. For all three methods, we see better correlation using the reference for hypothesis context. We
hypothesize that this is because using previous hypothesis sentences allows for propagation of errors (i.e. an error in
a previous sentence can impair the judgment of the current sentence).

level translation models optimized for discourse
tasks. Surprisingly, we observe improvements in
the evaluation of pronoun translation not only when
the necessary information is located in a previous
sentence (Inter) but even in the case where the an-
tecedent can be found in the same sentence (Intra),
suggesting additional context is helpful in these
cases as well. Apart from pronoun translation, our
approach also improves over both the sentence-
level metric and the document-level MT of Lopes
et al. (2020) at WSD. These findings all support
our hypothesis that our document-level metrics are
resolving ambiguities in the reference sentence by
using additional context.

6 Ablations

6.1 Hypothesis vs Reference Context

For our document-level MT metrics described prior
to this point, we use the reference context cr (as
opposed to the hypothesis context ch) as context
for the hypothesis. Our reasoning behind this de-
cision is that previous translations could contain
errors that might bias the document-level metric
into rewarding erroneous translations. To test this,
we conduct an ablation experiment in which we
concatenate the hypothesis context to the hypoth-
esis while the context of the remaining inputs (i.e.
the reference and the source sentence) remains un-
changed. Table 3 shows the average correlation
across all language pairs and domains using either
the hypothesis context or the reference context. We
do not provide these scores for COMET-QE as it
does not have access to the reference.

We observe that the use of the hypothesis context
degrades performance for all metrics, which is in
line with the findings of Fernandes et al. (2021)
for document-level MT. We suspect that this is
because the previous hypothesis sentences contain
more errors than previous reference sentences, and
thus using previous hypothesis sentences allows
for more propagation of errors (i.e. an error in a

previous sentence can impair the judgment of the
current sentence).

One disadvantage of using reference context for
the hypothesis is that we cannot measure document-
level fluency, that is, how well a document flows
from one sentence to the next. Our analysis sug-
gests that either document level fluency is of less
concern than error propagation, and/or that MQM
judgments are not adequately capturing document-
level fluency.

6.2 Amount of Context

In our experiments so far we have used the previous
two sentences as context, motivated by the finding
of Scherrer et al. (2019); Kim et al. (2019); Castilho
et al. (2020) that two previous sentences are suffi-
cient context to resolve ambiguities in the majority
of sentences. Figure 2 shows the results for [0, 1,
2] previous sentences as context for news articles
and TED talks. In the news domain we observe
that for En→De and En→Ru), adding more con-
text helps. On the other hand, for Zh→En, adding
context appears to be harmful. We believe this is
likely explained by the relatively low-quality hu-
man references in Zh→En (see § 4.1). For TED
talks, although the results are somewhat noisy, we
also observe that more context tends to improve
correlation across all three language pairs.

7 Conclusion

We proposed a simple and effective approach to
generalize pretrained MT metrics to the document
level. We apply our approach to BERTScore, Prism,
COMET-QE, and COMET-QE, and we believe
that it could easily be extended to other pretrained
sentence-level metrics. To the best of our knowl-
edge, our work is the first example of pretrained
document-level MT metrics.

We demonstrate that the use of document-level
context in pretrained metrics improves correlation
with human judgments, and that the improvements
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Figure 2: System-level Pearson correlation with human correlation vs. number of sentences of context for News
(upper) and TED talks (lower). Although the results are noisy, in general we observe that correlation improves as
the amount of context increases. The one exception is Zh→En News, which we attribute to poor human references
(see § 4.1).

are likely due to fact that the document-level met-
rics can resolving ambiguities in the reference sen-
tence by using additional context. We present re-
sults on MT evaluation but our approach may also
be beneficial in other Natural Language Genera-
tion (NLG) tasks where discourse phenomena are
present (e.g paraphrasing, data to text generation,
chatbots, etc).

In conclusion, we argue that the MT commu-
nity (and possibly the greater NLG community)
should adopt metrics—such as those presented in
this work—which take document-level context into
account. This would better align automatic met-
rics with human evaluation, where document-level
judgements have been shown to be more discrim-
inative than sentence-level judgements. We also
recommend that future research in metrics explore
novel ways to incorporate context.
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Abstract
In MT evaluation, pairwise comparisons are
conducted to identify the better system. In con-
ducting the comparison, the experimenter must
allocate a budget to collect Direct Assessment
(DA) judgments. We provide a cost effective
way to spend the budget, but show that typi-
cal budget sizes often do not allow for solid
comparison. Taking the perspective that the
basis of solid comparison is in achieving statis-
tical significance, we study the power (rate of
achieving significance) on a large collection of
pairwise DA comparisons. Due to the nature of
statistical estimation, power is low for differen-
tiating less than 1-2 DA points, and to achieve
a notable increase in power requires at least 2-
3x more samples. Applying variance reduction
alone will not yield these gains, so we must
face the reality of undetectable differences and
spending increases. In this context, we propose
interim testing, an “early stopping” collection
procedure that yields more power per judgment
collected, which adaptively focuses the budget
on pairs that are borderline significant. Interim
testing can achieve up to a 27% efficiency gain
when spending 3x the current budget, or 18%
savings at the current evaluation power.

1 Introduction

In machine translation (MT), pairwise evaluations
are conducted to identify the better system over
a test domain. MT has long taken intrinsic qual-
ity as an object of interest, and assumes it can be
determined directly from the output (Gatt and Krah-
mer, 2018). Most practitioners accept that human
judgments reflect such quality, and take human
evaluation as the gold standard (Bojar et al., 2016).
In conducting an evaluation, the experimenter must
allocate a budget to collect human judgments, and
so evaluation can be an expensive endeavor. No
one in the history of MT research has ever been
satisfied with the cost or reliability of human evalu-
ation (Graham et al., 2017; Chaganty et al., 2018;

∗ Work done at Microsoft.
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Figure 1: A graphical representation of evaluation with
different testing procedures. Currently, our evaluation
uses fixed testing, and our current budgets (depicted)
often result in underpowered comparison (§5). To get a
notable increase in power, we will need to spend more
(§6), and interim testing is a way to spend efficiently.
Interim testing allows for early stopping by trading off
power for additional peeks. In MT, such a tradeoff is a
favorable and can yield more power per judgment (§7).

Saldías Fuentes et al., 2022, inter alia). Likewise,
we were keen to find savings, upon the foundation
of statistically rigorous inference.

Evaluation is a noisy process, and we may not
expect a repeat experiment to declare the same win-
ners. For one, we may want a holistic answer of
the best system over the entire test domain, but we
can only evaluate on a small and finite set of input
source sentences (Koehn, 2004; Dror et al., 2018).
This introduces a sample bias that our conclusion
must be wary of. For another, human judgments
on the same output may diverge, so we assume that
humans are only a noisy reflection of the true intrin-
sic quality (Graham et al., 2015). This introduces
additional noise when drawing a conclusion from
our observations. Intuitively, using a larger test set
or averaging over more human judgments should
yield more consistency in pairwise comparison.

Inferential statistics is necessary in MT evalua-
tion to declare “winning” MT systems under un-
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certainty. Basic usage of statistical testing covers
the use case of pairwise MT system comparison
(Mathur et al., 2020). After data collection is com-
plete, we can declare significance by computing
a p-value (statistical primer in §3). When the p-
value is low, a real effect is likely to exist. When
the p-value is high, repeat experiments will be in-
consistent (effectively tossing a coin), and no good
decisions can be made even if you used the gold
standard Direct Assessment (DA; Graham et al.,
2015) annotation. Significance is the meta-analysis
that guards against falsely declaring winners due
to noise, with some level of guarantee.

Our work takes the perspective that the basis of
solid comparison is in achieving significance. The
rate/likelihood an experiment will observe signif-
icance is the power, and we would like it to be
high. At the same time, we would like to minimize
human effort and keep costs low. This paper inves-
tigates several aspects of the relationship between
power and cost in human evaluation:

1. How can we reason about the power of an
evaluation? We recommend a sensitivity per-
spective to evaluation, where we characterize
an evaluation by its minimum detectable effect
(MDE), or the smallest pairwise difference the
evaluation will reliably yield significance on.
By retrospectively analyzing significance in
pairwise comparisons, we can derive an em-
pirical MDE. Our evaluations can reliably
detect up to 2-3 point of DA difference, but
comparisons often exhibit even smaller dif-
ferences.

2. How can we notably increase the sensitivity
of an evaluation? With the appropriate power
analysis, we can get a rough estimate of the
number of samples required to achieve an ac-
ceptable sensitivity. To increase the sensitivity
to the desired level, we might hope variance
reduction techniques can give us the necessary
sample efficiency. If we wanted half of the
past comparisons to reliably achieve signifi-
cance, we needed at least 2x more samples,
far beyond the ~1.2x sample efficiency vari-
ance reduction offers.

3. How can we spend more money efficiently?
If we are not satisfied with the power of our
current evaluation, increasing the budget and
collecting more judgments is necessary. Cru-
cially, if we accept that small differences can’t

be known, our evaluation can be more effi-
cient by focusing the budget elsewhere. We
verify that an “early stopping” procedure
(interim testing) can can achieve up to a
27% efficiency gain when spending 3x our
current budget, or 18% savings at our cur-
rent evaluation power.

2 Related work

There is a tradition of using test sets to estimate
system performance over the general domain in
machine learning (Hastie et al., 2001). There have
been calls for statistically rigorous evaluation in
natural language processing using significance test-
ing (Dror et al., 2018), however its adoption in
reporting has been mixed. For a classic task such
as part-of-speech tagging, evaluation is generally
significant/consistent even for small gains (Gor-
man and Bedrick, 2019). In MT, even moderate
differences in metric gains (e.g. DA, MQM) may
not be consistent, so there is a stronger need for
significance testing. Historically, MT evaluation
has been heavily based on statistical significance
(Koehn, 2004).

MDEs have been used to describe the power of
experiments in contexts such as education (which
program results in increased test scores?) and so-
ciology (Bloom, 1995). Berg-Kirkpatrick et al.
(2012) empirically investigate the conventional wis-
dom that a certain metric gain corresponds to sig-
nificance (e.g. 0.5 for BLEU). This threshold is ex-
actly an evaluation’s MDE. They find that a thresh-
old has strong empirical backing, but a few exper-
imental parameters affect this threshold. In our
work, we propose taking a sensitivity perspective
to evaluation, and reporting the expected MDE of
an experiment instead of the other experimental
parameters.

Any statistical technique that reduces the cost of
human evaluation is, in another view, improving
the power offered by some fixed budget. Chaganty
et al. (2018) first proposed applying control vari-
ates to human evaluation. Control variates increase
the sensitivity of an evaluation by leveraging in-
formation from a metric. This formulation con-
veniently allows us to analytically understand its
performance based on the experimental conditions.
In realistic experimental conditions, they found that
the sample efficiency gain is at most 20%, which is
in line with results reported in MT (Saldías Fuentes
et al., 2022). Mendonça et al. (2021) propose using
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online learning to adaptively spend the evaluation
budget on determining the best MT systems. How-
ever, their technique lacks in statistical rigor for
decision making.

Knowing when to “early stop” an evaluation al-
lows us to adaptively spend the budget on difficult
pairs and save on easily distinguished pairs. It is
known that peeking at the p-value while data collec-
tion is ongoing is problematic. Peeking inflates the
chance of observing significance and the chance
that such significant observation is incorrect (Al-
bers, 2019). While always valid p-values can be
calculated that adjust for this error and can be re-
ported at any time, they are mathematically difficult
to apply (Johari et al., 2015). Interim testing has
been used in medical trials, where experimenters
have an ethical consideration in stopping the ex-
periment early (O’Brien and Fleming, 1979). By
planning the number of peeks in advance, interim
testing can offer rigorous statistical inference while
potentially saving time and effort, packaged in an
easy to understand technique (Lakens et al., 2021).
Our work investigates whether the tradeoff between
power and savings is favorable for MT evaluation.

3 A primer on inferential statistics

We consider pairwise comparisons as the basic
unit of evaluation echoing calls from Mathur et al.
(2020) and Kocmi et al. (2021). Pairwise compar-
isons are more interpretable than correlations, and
more practical for production deployment scenar-
ios. In a pairwise comparison we test the difference
between two systems A and B. If you were just to
collect a number of DA judgments for each system
and declare a winner, a repeat experiment could
yield different results due to experimental noise.

A statistical test guards against making an in-
correct conclusion due to experimental noise. To
do this, we assume a null hypothesis (that A is
better than B) and examine how likely we could
have made observed our data under this assumption.
There are two outcomes of conducting a test:

(i) there is evidence of a significant difference
which rejects the null hypothesis, or

(ii) the evidence is insufficient and we are unable
to reject the null hypothesis.

In the case of (i), a significance test usually guar-
antees a false detection rate of at most α, where
usually α = 0.05. Therefore, the best outcome

of statistical testing is the presence of significance,
where our inferences enjoy a low false detection
rate. The rate at which we can declare significance
is called an experiment’s power (typically denoted
as 1−β, where β is the false negative rate). In pair-
wise comparison, our evaluation should have an
accuracy (1− α)(1− β) against the true, pairwise
judgment.1

Intuitively, statistical testing can be loosely
thought of as reducing the width of two confidence
intervals, spaced by the true system difference of A
and B (Krzywinski and Altman, 2013). The power
of an experiment is then a function of these three
aspects:

(a) First, the true system difference plays a role in
the power. When the distance between the true
scores is large relative to the noise, noise is
unlikely to obfuscate the true pairwise ranking
of the systems.

(b) Second, the variance of human judgment. The
larger the variance in a single judgment, the
more judgments that will be needed in an av-
erage to get a consistent estimate.

(c) Finally, the sample size or the budget. The
number of judgments you collect shrinks the
confidence intervals by a factor of

√
N from

the single judgment variance.

The more judgements you can collect the smaller
these confidence intervals will be. When the con-
fidence intervals don’t overlap, the comparison is
likely to achieve significance. These three factors
all play a role in whether the intervals will be nar-
row enough.

If we know two of (a), (b), or (c), we can use
the appropriate power analysis to deduce the third.
Typically, we will observe the (b) human judgment
variance, and make a guess at what the true differ-
ence (a) would be, to compute what (c) the budget
we would have to spend is. When providing esti-
mates for the budget, we would provide estimates
under a range of guesses at what the true difference
is (Card et al., 2020). Alternatively, we may also
ask what the minimum detectable effect is for some
fixed budget. Wei and Jia (2021) conducted power
analysis in MT and found that small differences

1This pairwise accuracy holds if you assume that different
MT systems always have different quality. By randomizing
the systems, the null hypothesis will be true exactly half of
the time.
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Figure 2: The minimum detectable effect (MDE) is il-
lustrated in the ENU→ FRA language pair. Each point
represents a pairwise comparison conducted for this
language pair. When evaluating pairs exhibiting differ-
ences larger than the MDE, 95% of pairs will achieve
significance at the α = .05 level, which totals to a pair-
wise accuracy of 90%. Unfortunately, most pairs are on
the left hand side of this line. This is also the case for
many other language pairs in the ShipData.

require an infeasible amount of budget. This gives
a hint that most of our MT evaluation is under-
powered. Consistently conducting underpowered
experiments run the risk of inflating the error rate
in significant observations (Ioannidis, 2005).

4 Dataset

MT evaluation has an established tradition of con-
ducting human evaluation and releasing public
datasets. At the time of writing, the current an-
notation method of choice in MT is Direct Assess-
ment (DA; Graham et al., 2015; Akhbardeh et al.,
2021). Direct Assessment asks annotators to rate a
translation’s quality on a sliding point scale from
0-100. We study the ShipData presented in Kocmi
et al. (2021), which is the largest human evaluation
dataset of pairwise comparisons, accumulated over
two years from internal evaluation campaigns at Mi-
crosoft Translator. No text is contained i.e. source,
references, or outputs, but the raw DA scores are
sufficient for our purposes. We focus on this dataset
because it is large and often contain comparisons
between state-of-the-art systems. It contains 4004
pairwise comparisons between two systems, where
each system pair contains about 600 human judg-
ments per system (1200 for both systems).

5 The sensitivity approach to evaluation

The basis of solid comparison is significance.
Therefore, we need a way to reason about the power
of an experiment. In this section, we recommend

Significant / Obs. Median
insignificant MDE difference

ENU→ FRA 30 / 153 3.8 1.2
ENU→ DEU 19 / 151 3.5 0.7
FRA→ ENU 3 / 140 2.4 0.6
DEU→ ENU 27 / 130 1.9 0.6
JPN→ ENU 78 / 127 2.9 3.2
ENU→ JPN 40 / 94 3.8 1.8
ITA→ ENU 2 / 81 2.8 0.5

CHS→ ENU 30 / 78 2.6 1.5
ENU→ PTB 28 / 74 1.0 0.6
ENU→ SVE 31 / 73 4.4 1.4

Table 1: Significance and MDE results in the top-10
language pairs (by number of comparisons). Signifi-
cance is calculated at the α = 0.05 level. Observed
MDEs are calculated for 90% pairwise accuracy. The
median system difference is observed from the data. For
most language pairs, less than half of the pairs had a
significant observation. MDEs are small but most of the
system differences appear to be even smaller.

a sensitivity approach to evaluation, and retrospec-
tively deduce the power of previous evaluations.
By looking at the observed effect sizes we can also
set a meaningful target power.

5.1 Minimum detectable effects (MDEs)

The pairwise evaluation of two MT systems is not
a one-size fits all procedure, even though the MT
literature uses a consistent annotation method (Fe-
dermann, 2018). Rather, an evaluation is our best
attempt to answer which MT system is better with
the evaluation annotation budget at hand. How
much budget to allocate should depend on the cir-
cumstantial factors. Statistical inference can give
us a probabilistic answer to this question with what-
ever evidence we are able to collect.

In the best case scenario, a significant result is
observed and a winner is declared after the data is
collected. However, significance depends on the
conditions of the experiment (see §3), where the
size of the pairwise difference, annotation variance,
and number of samples all play a role. The pairwise
difference and annotation variance are determined
by the annotation method. Since most prefer to use
a widely accepted annotation such as Direct Assess-
ment (DA; Graham et al., 2015), these are factors
we may not be able to change. However, we can
increase the budget, and the larger the budget, the
more likely we will be able to achieve significance
for some fixed difference.
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Figure 3: Power analysis for the total number of judg-
ments required to achieve an MDE with 90% inference
accuracy. These figures are calculated through simu-
lation with distributional assumptions on the human
scoring function (see §6.1). Compared to the observed
MDEs, figures here serve as a lower bound. As the
differences decrease linearly, the number of samples
required increases exponentially.

We recommend to think about an MT eval-
uation in terms of its sensitivity. With a fixed
budget and annotation method, there is some
deducible minimum detectable effect (MDE;
Bloom, 1995), where evaluating differences larger
than the MDE will enjoy a comfortable level of
power (rate of significance). Alternatively, if we
did not observe significance for some experiment,
we may suspect that the true difference is likely
to be lower than the experiment’s MDE. With a
sensitivity perspective, our consideration is now to
conduct DA evaluations with a budget large enough
to exhibit an appropriate MDE. Ideally, our eval-
uation exhibits an MDE small enough where we
believe any smaller differences are not practically
meaningful (more in §6.1). Realistically, we would
set up an evaluation with MDEs as small as our
budgets allow.

5.2 Observed MDEs

In this section, we attempt to retrospectively un-
derstand the MDEs/sensitivity of our past evalu-
ations. Refer to Figure 2 for graphical intuition.
We can empirically estimate (as opposed to mak-
ing assumptions and simulating, see Card et al.,
2020) an (observed) minimum detectable effect by
sorting all the pairs by their observed absolute sys-
tem difference, and choosing the difference where
comparisons with a larger system difference (effect
size) will have at least 95% of experiments showing
significance (corresponding to experimental power
1− β = 0.95) at a level of α = 0.05 by the Mann

Variance Reducible
(std. dev.) variance

WMT21 *-en 866.2 (29.4) 23.1%
pSQM zh-en 683.2 (26.1) 9.8%
pSQM en-de 705.4 (26.5) 53.4%

Table 2: Total annotation variance and the reducible pro-
portion of that variance. pSQM scores are provided
by Freitag et al. (2021) and are collected from pro-
fessional annotators. WMT21 scores are provided by
Akhbardeh et al. (2021) and are collected from crowd-
workers. pSQM scores are normalized from 0-100 for
ease of interpretation. At least half of the variance is
irreducible.

ρ WMT21 pSQM(zh-en) pSQM (en-de)

1.0 1.30 1.20 4.33
0.5 1.06 1.12 3.09
0.2 1.01 1.11 2.94

Table 3: Data efficiencies for the control variates estima-
tor under different conditions. Each column represents
a different condition of reducible variance, instantiated
from observed statistics from Table 2. ρ is the corre-
lation of the metric that would be used in the control
variates estimator. With the exception in pSQM en-de,
variance reduction is far from giving us the 2x-10x mul-
tiplier we need.

Whitney U (MWU) test. This ensures that at least
(1− α)(1− β) ≈ 0.9 of the pairs should be accu-
rate (Wei and Jia, 2021). We can interpret this as
the threshold at which our experiments will stop
being accurate at the 90% level.

The minimum detectable effects (MDE) are
small, but differences between systems are even
smaller. Refer to Table 1. Our evaluations have
been able to detect up 1 or 2 points of system-level
DA difference, but often a third of the comparisons
are still not significant. Looking at the density of
the differences (see the x-axis in Figure 2) we see
that most of the pairs exhibit small differences. An
immediate consequence is that most of the budget
is being spent to declare ties. Most of our compar-
isons are underpowered, and where the p-value is
high the experiments are not much better than a
coin toss. The median difference provides a target
MDE if we want half of our evaluations to show
significance (alternatively, declaring ties in half of
the evaluations is acceptable).
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6 Known unknowns

Now that we have established a way to reason about
experimental power, we conduct power analysis to
understand how much more gain we need to im-
prove our power to a desired sensitivity. We inves-
tigate whether variance reduction techniques are
sufficient, and conclude that the only way forward
is to increase the annotation budget.

6.1 Power analysis for the desired sensitivity
As suggested in Card et al. (2020), we can roughly
determine the number of samples for a fixed power
using simulation. As with any power analysis, we
must make some assumptions to estimate the num-
ber of samples needed. Here we assume that the
judgments for a given system’s translation is dis-
tributed as s ∼ 100−Gamma(k, θ) where k = µ2

σ2

and θ = σ2

µ are fit to match the average mean and
variance of a system for that language pair. We
choose the use of the Gamma distribution because
the resulting scoring distribution is such that most
of the scores are high, and the more severe the
translation error the more rare it is, which matches
what we observe in Kocmi et al. (2021). We then
use the bisection method to determine the integer
whose power has the closest match to our desired
β value. We find that the simulation reasonably
matches empirically observed MDEs.

Power analysis shows that most pairs needs
not a little, but a lot more judgments. Refer
to Figure 3. Comparing to the observed MDEs,
the power analysis is optimistic, where the figures
we provide can be seen as a lower bound. Even
a reduction of our MDE to 1 point can require
up to 2x times more judgments (than originally
used in the ShipData). We highlight the fact that
as differences get linearly smaller, the number of
samples is an exponential growth. The nature of
statistical estimation is that smaller differences are
increasingly elusive.

In the search for higher power, we must also keep
in mind that arbitrarily small differences require
arbitrarily large budgets. Therefore, for modern
state-of-the-art comparisons, some differences will
be left unknown. We can not fantasize about de-
tecting every single small difference out there just
by spending more budget or applying some strong
statistical technique (see §6.2). Perhaps this may
be taken in stride, as mathematicians learned to
accept the existence of unprovable theorems nearly
a century ago (Gödel, 1934). Many other important

fields such as domain adaption also grapple with
their unknowns (Ben-David et al., 2010).

6.2 Variance reduction is inadequate
Generally, we assume that a human evaluator
scores a segment with the true segment level qual-
ity score, plus some noise. If H(x) is the human
scoring function on system translations x, there are
2 parts to the scoring variance. We can decompose
the variance of H to

Var(H(x)) = E[Var(H(x)|x)] (1)

+ Var(E[H(x)|x])
by the law of total variance. The first part is the
variance of the true translation quality scores, cap-
turing the real difference in quality across output
translations, and the second part is the rest of the
variance. The second term, which we broadly term
annotator noise, can include annotator biases, pref-
erences, and even mood.

Using repeat judgments we can estimate the sec-
ond term (annotator noise), which is similar to
an inter-annotator agreement (Wei and Jia, 2021).
Since the ShipData doesn’t contain any repeat judg-
ments, we provide estimate of the second term from
a few similar datasets (Akhbardeh et al., 2021; Fre-
itag et al., 2021). Refer to Table 2. In designing
variance reduction techniques, we usually leverage
metric scores to reduce the first term, but not an-
notator information to reduce the annotator noise
(second term), as it is too difficult (Saldías Fuentes
et al., 2022).

With variance reduction (VR) techniques, we
can achieve a higher power with the current bud-
get by leveraging side information (Owen, 2013).
However, VR is not arbitrarily powerful, and its
effectiveness is constrained by the amount of re-
ducible variance present, and how much of the
reducible variance you can actually reduce. Here,
we look at the control variates technique2 which
leverages the linear information in a metric for the
estimation of system quality. The data efficiency in
Chaganty et al. (2018) describes how many times a
control variates estimator improves over the regular
sample mean estimate, and is characterized by

DE :=
Var(µ̂mean)

Var(µ̂cv)
=

1 + γ

1− ρ2 + γ
(2)

2Equal proportion stratified sampling is a special case of
control variates, so these results also apply (Owen, 2013). Any
technique which uses a metric to bin outputs, where the same
number of outputs are sampled for scoring within each bin,
are constrained by these results as well.
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Figure 4: The average power of each pairwise compari-
son for fixed testing at 1200 against interim-futility test-
ing at 2300. Each point represents a pairwise compari-
son. When planning for 2300 judgments with interim-
futility, the actual amount of judgments collected in our
simulation is about 1200. For the same budget, we see
that interim-futility testing boosts the power of moder-
ate to high-powered pairs, but drops that of the lower
powered pairs.

where ρ is the sentence-level Pearson correlation
of the metric and

γ =
σ2a
σ2f

=
E[Var(H(x)|x)]
Var(E[H(x)|x]) (3)

Refer to Table 3. With the optimistic assumption
of a perfect metric, we often only get a ~1.2x
efficiency gain from VR, far from the 2-10x mul-
tiplier we need to obtain significant comparisons.
The gains we predict for VR is consistent with the
practical results presented in Saldias et al. (2022).
These reduction techniques work, but is far from
achieving what we need, echoing the narrative of
Chaganty et al. (2018).

7 Spending effectively

To have a notable gain in sensitivity, variance re-
duction alone is inadequate. Therefore, spending
is necessary in the search for higher power. This
section describes a simple yet statistically rigor-
ous way of “early stopping” in a human evaluation
campaign. Interim testing adaptively allocates the
budget to borderline significant pairs, and can be
seen as an efficient way to spend.

7.1 Peek-a-boo! Planning interim peeks

Savings can be achieved if we can stop data col-
lection as soon as a result can be concluded. If the
experimenter runs the preferred statistical test (at
false detection rate α = 0.05) periodically while
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Figure 5: The average number of judgments collected by
each sampling method. For interim and interim-futility,
1200 judgments were planned, and the actual judgments
collected are strictly less. As the system differences
grow larger, both methods have the potential to stop
early. For interim-futility, pairs with small differences
also incurred less judgments.

data collection is on-going, the final process will
have a false detection far higher than the α intended
(Albers, 2019). There are a class of sequential
sampling techniques, which allow you to test after
every single sample while maintaining the false
detection rate constant, but are mathematically dif-
ficult to apply (Johari et al., 2015).

A simpler solution is to use interim sampling
and apply a correction for multiple testing (Lakens
et al., 2021). For instance, the Pocock correction
(Pocock et al., 1987) is appropriate when multiple
comparisons are made, but we want a false detec-
tion to be maintained at a desired α.3 Refer to Fig-
ure 1. For interim testing, we can plan in advance
to collect batches of data, and test between each
batch. To maintain a final false detection rate to the
fixed procedure, your interim tests must have an α0

appropriately adjusted with the Pocock correction.
The downside is that this correction is conservative,
and each test has less power.

At each interim point, we can also stop for fu-
tility, or when we see that even in completion of
the data collection, we are unable to achieve signif-
icance. Practically, there are many ways to set up
this stopping rule (Lakens et al., 2021), but in our
simulation we find that a simple heuristic (checking
if the p > 0.5) works well for our purposes. An
alternative view of futility stopping is that we are
unwilling to conduct the analysis of the original

3Here’s why we need a correction: imagine 20 compar-
isons made at α = 0.05 where the null hypothesis is true, then
the probability of getting at least 1 significant result is actually
1− 0.9520 ≈ 0.63.

135



experiment with the corresponding MDE.

7.2 Experimental setup

We compare three different kinds of testing meth-
ods. Refer to Figure 1.

• Fixed testing is most commonly used in eval-
uation. In fixed testing, the annotation bud-
get is spent all at once, and the statistical test
is performed at the end. The advantage of
fixed testing is that only statistical test is per-
formed with the highest (least conservative)
alpha threshold (e.g. is p < 0.05?).

• Interim testing plans to spend the budget
in equal sized steps, with an interim analy-
sis between each step. If significance is ob-
served at any point, the data collection is ter-
minated. We always plan for 3 peeks, and use
the Pocock correction (e.g. is p < 0.0221?
at each peek). While the testing threshold
is lower (more conservative), the savings ob-
tained from some pairs can be used on others,
by planning more judgments for all pairs.

• Interim-futility is the same as interim testing
but also applies a futility stopping rule at each
analysis. If p > 0.5 then the experiment is
terminated early. Futility stopping does not
affect the false detection rate so it does not
need to be adjusted. Futility stopping results
in strictly less power, but the savings can be
used elsewhere, by planning more judgments.

To benchmark these testing procedures against
each other, we simulate data collection from the
pairs in the ShipData by sampling with replace-
ment. For each pair we simulate each testing proce-
dure 1000 times and record the number of times the
procedure is able to achieve significance. For all
tests we use the Mann Whitney U test (standard to
machine translation; Akhbardeh et al., 2021) with
a testing threshold of α = 0.05. Within the Ship-
Data, each pair only has about 1200 judgments,
from which we often oversample. We note that
this is our best faith attempt to study these test-
ing methods in the large budget regime, and actual
benchmarking would require infeasible cost, so the
simulation can serve as our best synthetic testbed.

7.3 Results

Refer to Figure 5. For a fixed sampling procedure,
the number of samples collected is constant for

every effect size. This can be inefficient as pairs
with large differences do not need as many judg-
ments to declare significance. Interim testing is
adaptive; as the differences get larger, interim test-
ing can declare significance at an early step. For
interim-futility, less judgments are also collected
for the pairs with the smallest differences, where
early steps may declare futility. We will later see
that the interim-futility behavior is most favorable.

Refer to Figure 4. When comparing fixed and
interim-futility, we compare two procedures that
spend the same budget. Since interim sampling
spends more on borderline pairs, the power for
pairs with moderate to high differences increases.
Savings are made on pairs with both large and small
differences, with small difference pairs having a de-
crease in power. We highlight that interim-futility
is a different kind of testing. While the use of fixed
testing seeks to best detect every difference no
matter how small, the use of interim-futility pri-
oritizes the pairs that have borderline significant
differences.

Refer to Figure 6(a). The main metric we bench-
mark these methods is by the average power, or
the number of significant comparisons over all the
ShipData. When comparing over all pairs, interim
testing has slightly better performance, but interim-
futility gives considerable gains even at current
budget sizes. Our results show that to attain the
fixed testing power at 1200, interim testing only
needed to spend 990 judgments per comparison,
which is an 18% saving4. The advantage of interim
sampling over fixed sampling is even more pro-
nounced when we are spending large budget sizes,
where we can gain 28% savings at 3600 judgments
(3x). Refer to Figure 6(b). When testing small
differences interim sampling is worse than fixed
sampling, as it has a stricter significance threshold.
However, interim-futility is able to stop on pairs
with little hope and prioritize the borderline signifi-
cant pairs. Refer to Figure 6(c). On pairs with large
differences interim sampling is best, with interim-
futility achieving similar performance. For large
differences futility stopping should rarely trigger,
so the two methods should be similar.

We want to highlight that the distribution
of the differences is key to the success of the
interim-futility testing procedure. Since most
of the pairs are concentrated either in the dense

4All the results in this paragraph are derived using linear
interpolation, akin to using a ruler on Figure 6.
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Figure 6: (Top) The average power of each testing procedure across the ShipData for different sized budgets. (a)
Shows the average power across all data, and (b) shows it over pairs with large differences and (c) shows it for small
differences. (Bottom) The histogram of the true differences in each pairwise comparison. These are true differences
due to the simulation we used to test these procedures. Interim-futility is most favorable by average power in (a), (b)
and (c). Interim testing is weaker in (c) due to its stricter significance threshold.

region of small differences or in the long tail of
large differences, these are areas where interim-
futility can early stop. Compared to fixed testing,
interim-futility will be able to make savings here
to spend elsewhere. Crucially, the application of
futility stopping also requires a change in our eval-
uation mindset, as we must be willing to accept
that some small differences are not worth detecting.
If we can make this change, then interim-futility is
most favorable in terms of average power.

8 Limitations

The most important assumption of our work is
in the use of Direct Assessment (DA). While our
methods can generalize to any real valued judg-
ment, we analyzed DA because of its widely recog-
nized, gold standard status in MT evaluation. DA is
a particularly noisy judgment, and so the power and
variance reduction results are pessimistic. However,
we believe that the study of annotation will be the
most important direction in MT evaluation.

Let’s take Hassan et al. (2018), where one of the
first claims of MT-human parity was made. By their
evaluation, which was conducted according to the

community standard, no significant difference was
found between human and machine translations
with a reasonable budget, and so a tie was declared.
Toral et al. (2018) reassesses this claim, and essen-
tially presents a series of alternative evaluations
and observe significant differences that contradict
with Hassan et al. (2018). This is just one of many
studies which compels an alternative evaluation
with qualitative insight (Läubli et al., 2018, 2020;
Freitag et al., 2021).

Our perspective is that significance is only one
pillar of MT evaluation. It is our hope that the anal-
yses in this work will further our understanding of
significance and evaluation power. However, the
second pillar of MT evaluation is in the annotation
method. While power is quantitative, the study
of annotation methods will be qualitative. Going
forward, understanding how we can change the
annotation method to increase the power will be
crucial. We will need good qualitative understand-
ing to be able to move away from DA and establish
new gold standards.

In addition, we showed that interim testing is
only effective for pairwise comparison. Future
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work should look to make savings in the leader-
board styled evaluation of WMT. This may come in
the form of generalizing interim sampling for mul-
tiple comparisons or formalizing the bandit results
from Mendonça et al. (2021) in terms of statistical
inference.

9 Conclusion

Our work is motivated by the cost of human eval-
uation in machine translation. Before searching
for a higher power from our current budget, we
determined how much more power was necessary.
In doing so, we recommend taking a sensitivity
approach to evaluation. From here we came to
the conclusion that to achieve the power/sensitivity
necessary, variance reduction alone would be in-
sufficient, and spending is our only option. If we
decide to allocate larger budgets, interim testing
is a more effective way to spend, which can yield
18% savings at the current evaluation power, or
27% savings at 3x the original budget.
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Abstract
We present a collection of expanded human
annotations of the WMT20 English–Inuktitut
machine translation shared task, covering the
Nunavut Hansard portion of the dataset. Addi-
tionally, we recompute News rankings to take
into account the completed set of human anno-
tations and certain irregularities in the annota-
tion task construction. We show the effect of
these changes on the downstream task of the
evaluation of automatic metrics. Finally, we
demonstrate that character-level metrics corre-
late well with human judgments for the task
of automatically evaluating translation into this
polysynthetic language.

1 Introduction

Translation between Inuktitut1 and English was fea-
tured as part of the 2020 News Translation task at
WMT (Barrault et al., 2020). The English–Inuktitut
machine translation system rankings published in
Barrault et al. (2020) were incomplete, due to the
delay in the 2020 annotation campaign and because
they only cover the out-of-domain portion of the
test set. In this work, we present:

• an expanded dataset of human annotations that
covers the in-domain portion of the test set,2

• an analysis of both the existing (out-of-
domain) human annotations and the new (in-
domain) annotations,

• revised system rankings based on the new an-
notations and controlling for irregularities in
the original data collection process,

• and correlations of automatic MT evaluation
metrics with the revised system rankings and
the newly collected human annotations.

1We use the term Inuktitut here because the website of the
Legislative Assembly of Nunavut lists Inuktitut, Inuinnaqtun,
and English (along with French) as the languages spoken
in the House (https://assembly.nu.ca/faq#n113)
and the version of the Hansard released as training data is the
Inuktitut version, written in syllabics. See Appendix A.

2Dataset and code: https://github.com/
nrc-cnrc/Reranking-WMT20-IKU

Dataset Segments
Hansard-A (H-A) 11404
Hansard-B (H-B) 7801
All Hansard 19205
WMT20-DA (N-1) 8000
WMT20-DA2 (N-2) 12002
WMT20-DACrowd (N-C) 9728
All News 29730
Total 48935

Table 1: Number of segments annotated in each dataset,
without any data filtering. We use names corresponding
to the dataset files, with short forms in parentheses.

Our aim with this work is to release a broader set
of human annotations, for continued research on
translation between English and Inuktitut, as well
as to demonstrate the downstream impacts of irreg-
ularities in WMT data collection and publication.
In particular, we draw attention to how errors in
human annotation setup (not errors in the work of
the annotators, but errors in the way that organizers
constructed the annotation tasks) and the failure to
account for their effects impact both the validity
of the rankings themselves and the shared task on
automatic metrics which relies on the rankings. In
this way, the 2020 WMT task on Inuktitut serves
as a case study of a broader issue in the field. We
provide suggestions for how to account for irregu-
larities in existing annotation task construction and
release the code and data to replicate our results.

2 Data

The test set for the WMT 2020 English–Inuktitut
shared task consisted of data from the Nunavut
Hansard as well as from Nunatsiaq News, collected
and shared with permission. The News test data
consisted of documents collected from Nunatsiaq
News between September and November, 2020, as
was standard for the shared task. The Hansard data
in the test set, however, was collected from earlier
dates. The main training data available for building
constrained systems was the Nunavut Hansard 3.0
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H-A H-B N-1 N-2 N-C Total
A - - 2800 - - 2800
B - - - 3200 - 3200
C - 3801 - 200 - 4001
D 5600 4000 4600 2000 - 16200
E - - 600 6602 - 7202
F 2403 - - - - 2403
G 3401 - - - - 3401
Un. - - - - 9728 9728

Table 2: Number of segments annotated by annotator
(anonymous annotator ID shown in the first column,
with Un. representing all unknown annotators who an-
notated the crowd data) and dataset.

(Joanis et al., 2020), consisting of aligned proceed-
ings of the Legislative Assembly of Nunavut. As a
consequence, the Nunavut Hansard test data could
be considered “in-domain”, while the News data
was “out-of-domain” (the development data was
similarly divided between the two domains).

The annotators who did the work of human eval-
uation discussed here were fluent language experts
at the Pirurvik Centre,3 paid at professional rates.
All the human annotations were collected in the
segment rating with document context (SR+DC)
style of direct assessment (DA; Graham et al. 2013,
2014, 2016) using the Appraise interface (see Bar-
rault et al. 2020 for additional interface details). For
each segment, annotators viewed the source sen-
tence and a candidate translation, and scored the
translation on a pseudo-continuous sliding scale
from 0-100. These segments were displayed in
document context, and annotators also provided
document scores (we omit those from this work).

Each News story had a unique document ID, but
the Hansard data was treated as a single document
containing 1566 lines. This had two main conse-
quences with respect to human annotation of sys-
tem outputs. The first and most obvious is that the
annotations collected at WMT (on which the Find-
ings paper’s rankings (Barrault et al., 2020) were
at least partially based) only included annotations
of the News data (out-of-domain). The reason for
this is that the code used to generate sessions of an-
notations in the SR+DC DA human annotation task
structures pooled all documents and then sampled
documents “at random (without replacement) and
assigned [them] to the current HIT [human intelli-
gence task] until the current HIT comprise[d] no
more than 70 segments in total”; since the Hansard
data was treated as one document with more than

3https://www.pirurvik.ca/

70 segments, it was never sampled.4 The second
is that the News documents were longer on aver-
age than News documents for other language pairs.
English–Inuktitut News documents ranged from 12
to 137 lines in length, with a mean of 39.0 (stan-
dard deviation 20.5) and a median of 36. Docu-
ments for other language pairs that were evaluated
in the SR+DC format ranged from 2 to 32 lines in
length, with a mean of 12.0 lines (standard devia-
tion 6.2) and a median of 11. As a consequence,
each annotation session of English–Inuktitut News
data is less likely to contain documents translated
by the full set of submitted systems (12 submit-
ted systems and human reference), which has the
potential to cause problems when scores are nor-
malized per-annotation session (Knowles, 2021).5

Additionally, a portion of the source and reference
data News segments contained spurious quotation
marks (see Appendix B). We now discuss the News
and Hansard annotation processes.

2.1 News Annotations

There are several other noteworthy issues about
the News data collection. As shown in Table 1,
there are three direct assessment datasets collected
at WMT that contain News-only annotations of
English–Inuktitut translations. The first, N-1, con-
sists of 8000 segments and does not contain any
annotations of reference segments. The second,
N-2, contains 12002 segments and does contain
annotations of reference segments. Both of these
were annotated by fluent language experts at the
Pirurvik Centre. There is a third set of data, N-C,
which was annotated by other annotators (the Find-
ings paper does not clarify who those annotators
were, so we will focus our analysis on the first two
datasets, known to be collected through Pirurvik).
The fact that one set of data was collected with
reference segments included and the other was not

4Note that we will use HIT and annotation session inter-
changeably in this paper. An annotation session that received
a single ID and thus was used as the basic chunk of data for
computing z-scores typically (but not always) consisted of two
HITs, each containing 100 segments. However, the way the
data is released, the two HITs are not distinguishable from one
another, hence our reference instead to the annotation session.
Note that an individual annotator may have completed many
such sessions.

5The use of z-score carries with it an implicit assumption
that the annotation session, HIT, or set of data annotated by
one annotator is representative of the whole. The raw scores
for human references tended to be near-perfect, while one
system’s scores were zero, meaning that whether an individual
annotation session contained one, both, or neither of these
would unduly influence the z-score computation.
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also has the potential to cause problems in gener-
ating system rankings. Because system rankings
from SR+DC run through Appraise are typically
calculated based on z-scores computed at the an-
notation session level, and because these sessions
are not representative of the distribution of sys-
tems, they will be erroneously standardizing out
real differences in quality. Even if they did com-
pute z-scores over annotators, we can see in Table 2
that not all annotators completed annotation ses-
sions in each dataset, meaning that some annotated
reference segments and some did not; again, this
means that it is inappropriate to calculate z-scores
in the standard WMT fashion (even over annotators
instead of over sessions). The data collection also
contained quality assurance segments (these are
called “BAD” segments, and quality assurance is
described in more detail in Appendix C).

The system submitted under the name zlabs-nlp
(no corresponding paper submitted) consisted of
the exact source (English) data, but was neverthe-
less included in the annotation tasks. The annota-
tors from Pirurvik received instructions to give a
score of 0 to output that was not in the target lan-
guage (i.e., Inuktitut) and this is reflected in their
scores (almost all 0 for zlabs-nlp segments),6 while
the scores for the Crowd annotation set are much
more wide-ranging (indicating that those annota-
tors may not have received the same instructions).

2.2 Hansard Annotations

Following the completion of WMT 2020, we col-
lected annotations of the Nunavut Hansard portion
of the test set. Like the News annotations, flu-
ent Inuktitut-language experts from Pirurvik Cen-
tre performed these segment rating with document
context (SR+DC) annotations using the Appraise
interface; with the help of the shared task organiz-
ers, we collected data using the same web interface
as was used for the News data, allowing us to keep
that portion of the annotation process consistent.

The data was processed and collected with
the following noteworthy changes.7 First, data
from zlabs-nlp (exact copies of the source text)
were omitted from annotation, as those scores
are not representative of translation. Second,
the Hansard was manually divided into pseudo-

6The 7 scores of 1 may be simply due to slider operation.
7This data collection was completed prior to the publica-

tion of Knowles (2021), and as such only addresses a portion
of the concerns raised in that paper. We seek to address other
concerns from that paper in our analysis of the data.

documents, ranging in length from 8 lines to 26
lines, with an average of 14.6 (standard deviation
3.7) and median 15. This is closer to the average
document length for other language pairs, and en-
ables annotation sessions to contain a more diverse
set of system/document pairs. Third, in this set of
annotations, references – and all systems – were
more evenly distributed across annotators, improv-
ing validity of the z-score assumptions (Knowles,
2021). Finally, as shown in Table 1, the Hansard
annotations were split into two parts. Wishing to
ensure that all systems were annotated on consis-
tent sets of documents, but unsure as to whether
annotator time and budget would cover the full
Hansard test set, we first randomly split the set of
documents in two, and then generated annotation
sessions by sampling from one half (Hansard-A)
or the other (Hansard-B). Fortunately, annotators
completed all sessions. We did not include quality
assurance segments in this task, as all annotators
were known to be qualified (see Appendix C).

2.3 Systems
Twelve systems were submitted to the English–
Inuktitut task. In alphabetical order by team
name, they were: CUNI-Transfer (Kocmi,
2020), Facebook_AI (Chen et al., 2020), Gronin-
gen (Roest et al., 2020), Helsinki (Scherrer
et al., 2020), NICT_Kyoto (no corresponding
paper),8 NRC (Knowles et al., 2020), OPPO
(Shi et al., 2020), SRPOL (Krubiński et al.,
2020), MultiLingual_Engine_Ubiqus (Hernandez
and Nguyen, 2020), UEDIN (Bawden et al., 2020),
UQAM_TanLe (no corresponding paper), and
zlabs-nlp (no corresponding paper). Of these
twelve, Barrault et al. (2020) listed MultiLin-
gual_Engine_Ubiqus and UQAM_TanLe as uncon-
strained entries (meaning that they chose to use
additional data outside of those provided for the
constrained version of the shared task). All systems
for which we have a description used Transformer
models (Vaswani et al., 2017).

3 Approaches to Rankings

In this work, we will generate two sets of rank-
ings: system rankings over the Hansard data and
system rankings over the News data. While there
would be reason to desire a single ranking that cov-
ers both in-domain (Hansard) and out-of-domain

8The Findings paper cites Marie et al. (2020) for
NICT_Kyoto, but that paper does not describe an English–
Inuktitut MT system.
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(News), that would raise the question of how to
balance the two, and would also be a challenge to
produce given the differences in the data collection
processes. Having two rankings also highlights
differences in performance across those domains.

The Hansard rankings come from the annota-
tions that will be released alongside this paper,
while the News rankings are a reranking based on
the data collected at the WMT shared task. Here
we discuss how the rankings computed for this pa-
per differ from those produced at WMT. A partial
description of the WMT rankings can be found in
Barrault et al. (2020). The main issues we try to
address in our new rankings are those raised in
Knowles (2021) around the instability of rankings,
particularly when the annotation sessions contain
distributional issues that make the usual z-score
computation inappropriate. We attempt to handle
these issues both in proactive ways (through modi-
fications to the “document” lengths and system dis-
tributions in the setup of the annotation of Hansard
data) and in reparative ways (when we make use of
the existing WMT News annotations).

3.1 Hansard Ranking Approach

Ave. Ave.z System
89.9 0.249 SRPOL
87.5 0.201 Groningen
88.6 0.192 NICT_Kyoto
88.8 0.170 NRC
88.1 0.160 Human-A
87.1 0.133 CUNI-Transfer
85.9 0.120 Facebook_AI
85.6 0.046 UEDIN
83.6 -0.055 Helsinki
78.0 -0.127 MultiLingual_Engine_Ubiqus
76.5 -0.360 UQAM_TanLe
65.6 -0.789 OPPO

Table 3: Hansard ranking, computed using the standard
WMT approach. Unconstrained systems in grey. Hori-
zontal lines separate significance clusters.

For the Hansard rankings (Table 3), we com-
pute them as follows. We have a mapping between
annotators and annotation sessions, so for each an-
notator, we collect all of the data from all of their
annotation sessions. Given one annotator’s full set
of annotations, we compute the mean ma and stan-
dard deviation sa (where a is the annotator). These
are then used to compute the z-scores for every
segment that they annotated. Given a raw score x
produced by annotator a, its z-score is:

z =
x−ma

sa
(1)

After z-scores have been computed for all segments
annotated by all annotators, system scores can be
computed. The first step is to average any instances
of scores that share the same system ID, the same
document ID, and the same sentence ID (regardless
of whether they are annotated by the same or differ-
ent annotators). Then, all segments produced by a
particular system are averaged into the final system
score. These last two steps are performed on both
raw scores and z-scores, but the ranking is com-
puted using z-scores. Clusters of systems are indi-
cated by horizontal lines in the ranking (Tables 3
and 4), with such a horizontal line drawn below a
system if and only if its z-scores are significantly
better than all systems ranked below it according
to a Wilcoxon ranked sum test (p < 0.05). The dif-
ferences between this and the standard WMT data
collection are the choice to compute z-scores over
annotators rather than over annotator sessions and
the fact that we did not collect any “BAD” quality
assurance annotations.

3.2 News Ranking Approach

Ave. Ave.z System Findings Ranking
90.3 0.652 Human-A (1-2, 90.5, 0.574)
76.4 0.219 CUNI-Transfer (3-9, 77.4, 0.409)
77.7 0.102 NICT_Kyoto (3-9, 79.2, 0.364)
71.6 0.096 NRC (3-9, 71.9 0.369)
76.2 0.053 Ubiqus (1-2, 75.3, 0.425)
74.1 0.041 Helsinki (3-9, 75.2, 0.296)
73.6 0.025 Facebook_AI (3-9, 74.6, 0.368)
72.7 0.012 SRPOL (3-9, 72.8, 0.282)
72.8 -0.052 Groningen (3-9, 71.6, 0.339)
67.6 -0.305 UQAM_TanLe (10-11, 68.9, 0.084)
65.0 -0.427 UEDIN (10-11, 66.4, 0.081)
46.8 -1.223 OPPO (12, 48.2, -0.384)

0.0 -3.181 zlabs-nlp (not shown)

Table 4: News Rankings, with mean and standard de-
viation for z-score computed using only SRPOL (all
annotators scored output from that system). The last
column shows the systems’ original rankings in the
2020 Findings paper: cluster range, raw average, and
z-average.

For the News task (Table 4), we had the N-1
and N-2 datasets along with a mapping between
annotators and annotation sessions. Starting from
this, we modified the ranking computation process
to attempt to account for the known concerns with
the dataset. We were unable to replicate the Find-
ings rankings (Barrault et al., 2020), nor the listed
number of annotations for Inuktitut from the data
released.9 The Findings rankings may have been

9
https://www.statmt.org/wmt20/results.html
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computed from earlier, incomplete data.

Due to the high average document length (39.0
lines) and the extreme range of system quality
(from human reference near 100 to zlabs at 0), we
cannot expect annotation sessions to be comparable
to one another and certainly not representative of
the whole test data and systems. For this reason,
it is already not appropriate to compute z-scores
at the annotation session level. Additionally, it is
not appropriate to compare z-scores that are com-
puted in the standard way between the N-1 and
N-2 datasets, since the former does not contain hu-
man references while the latter does. Adding to the
challenges, not all annotators completed annotation
sessions in both of the datasets, and not all anno-
tators annotated data from all systems (or across
systems in the same proportions). Thus, simply
switching to the annotator-level z-score computa-
tion does not solve the problem. For this reason,
we chose to compute the mean and standard devia-
tion for each annotator based only on the SRPOL
system segments that they had annotated. SRPOL
and CUNI were at the intersection of all annotators’
sets of annotated systems, but in different ratios,
so we selected SRPOL because the annotator who
had annotated the smallest number of segments
had annotated more SRPOL than CUNI segments.
We do not include “BAD” segments in the z-score
calculations (as different annotators had different
proportions of quality assurance data) and we also
do not eliminate any data based on quality assur-
ance measures. This does not guarantee that this
is a perfectly fair comparison, as the specific doc-
uments and segments annotated are not consistent
across annotators, but it does limit the influence of
extreme outliers on the z-score computations. We
then use those means and standard deviations to
compute z-scores for all data across all systems.

In conjunction with these justifications, we note
the following as additional support for our chosen
approach to ranking the News data. The stated goal
of using z-scores (rather than raw scores) in the
official ranking is “to iron out differences in scor-
ing strategies of distinct human assessors” (Bar-
rault et al., 2020). If we had perfectly consistent
annotators and were computing z-scores in such
a way that they were standardizing annotator dif-
ference rather than other information in the data,
z-scores and raw scores would produce matching
orderings of systems. If all annotators were per-
fectly consistent but the z-scores did not correlate

with the raw scores, then we would know that there
was a problem with the z-score calculations or an-
notation setup. We simulate this by replacing all
News human annotation scores with CHRF scores
as pseudo-annotations and then calculate rankings
in approximately the style of WMT20 by comput-
ing z-scores at the annotation session level10 and
then computing them using our approach. We find
z-scores and raw scores produce identical system
orderings under our approach, but produce less-
correlated (i.e., non-identical) orderings using the
WMT20 approach. Computing means and standard
deviations for CHRF scores at the annotator level
(but across all systems) does improve the most ex-
treme differences between raw and z-scores, but
the complete ordering is still not as well-correlated
as with our new approach. While this does not
guarantee that our approach fully solves the prob-
lem, it does demonstrate that our approach does not
introduce the same error as the WMT20 approach.

If we were to use only SRPOL data for comput-
ing the annotator means and standard deviations
for the Hansard ranking, we would obtain the same
ordering of systems that we obtained via the ap-
proach described in Section 3.1 (though of course
with different z-scores), with the only difference
being that using SRPOL only would put UEdin and
Helsinki in the same significance cluster.

4 Rankings

We observe several similarities and differences be-
tween the Hansard (Table 3) and News (Table 4)
rankings. As expected, the authentic Human trans-
lations consistently score highly (with raw scores of
90.3 for News and 88.1 for Hansard) and are in the
top cluster of the rankings. In the case of News, the
authentic human translations are in a cluster of their
own, while in the case of the Hansard data, they
are in a cluster alongside the four top-performing
MT systems. The raw scores for the News rankings
are consistently lower than those for the Hansard
rankings (both overall and on a system-by-system
basis). This reflects the fact that there is less data
in the News domain and the fact that the Hansard
domain is highly repetitive. We will explore both
of these topics in Section 5.3.

10This is intended to be closer to what we believe was
done at WMT20; however, the WMT20 calculation for means
and standard deviations likely included “BAD” reference seg-
ments, which we must omit because we do not have the “BAD”
reference text to be able to compute CHRF scores against the
reference.
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The system that shows the smallest gap in raw
scores between Hansard and News and the greatest
improvement in clustering, moving from the fifth
cluster for Hansard to the second for News was
Ubiqus, which saw a difference of just 1.8. In
comparison, the systems with the greatest drops
in rankings (UEdin from third cluster to sixth, and
Groningen from one to four) saw raw score average
drops between 14.7 and 20.6. The OPPO and NRC
systems also saw large drops in raw average scores
(18.8 and 17.2, respectively) but with smaller or
no corresponding ranking drops (in the case of
OPPO, it was ranked last in Hansard so no drop
was possible).

5 Discussion

5.1 System Performance

Here we discuss system performance across the
different test sets. Table 5 summarizes some of the
features of the approaches used in different submis-
sions, while Figure 1 visualizes our two rankings
and the published Findings ranking from Barrault
et al. (2020). All submitted systems for which we
have information used Transformer models, imple-
mented in a range of toolkits.

System Toolkit BT Tag News Dev
CUNI tensor2tensor Y - -
Facebook fairseq Y Y 75%
Groningen Marian Y Y 76%
Helsinki OpenNMT-py Y - -
NICT
NRC Sockeye Y Y 100%
OPPO fairseq Y - -
SRPOL Marian Y - -
Ubiqus OpenNMT-py Y - -
UEdin Marian Y - -
UQAM
zlabs

Table 5: Table summarizing system features (where
known), including toolkit used, use of backtranslation
(BT), use of tags for domain and/or backtranslation
(Tag), and whether News development data was used in
training. For systems without a corresponding system
description, unknown information is left blank. Uncon-
strained systems are marked in grey.

Two systems participated as “unconstrained” sys-
tems (incorporating additional data), with differing
levels of success. Multilingual_Engine_Ubiqus
moves from the bottom half of the systems when
ranked on Hansard to the top half when ranked
on News, and their system incorporated additional
data from news and magazine domains. This may

Figure 1: Summary of differences in clusterings and
rankings. Black x marks indicate the demarcation be-
tween clusters and the systems are listed from best per-
forming (top) to worst performance (bottom) across our
Hansard ranking, our News ranking, and the ranking
from the Findings paper (which used only News data).

account for some of the performance improvement
they observed, though we cannot say with certainty
if this is the main or only factor. On the other end,
UQAM’s system was also unconstrained but did
not perform as well on News data. While examin-
ing the annotation data, we observed that despite
its relatively low ranking, the UQAM system had
a high number of segments with perfect automatic
metric scores (CHRF of 100.0), meaning they were
identical to the reference. Upon closer inspection,
we found that 24.6% (295 of 1201) of UQAM seg-
ments annotated and labeled TGT (target) in the
human annotation were identical to the reference.
This compares to just 1.2% (183 of 14772) of all
other systems’ TGT annotated segments (excluding
Human, which is itself the reference). The UQAM
segments that were identical to the reference re-
ceived very high scores, in line with the general
trend for human translations. While there was not
a paper submitted with the UQAM submission, the
fact that it was marked as unconstrained suggests
that their approach included additional data collec-
tion, and it appears that this included some of the
test data.

All systems that had corresponding papers in-
corporated backtranslation. Three systems incor-
porated training on News development data (in
various quantities) and these same three used tags
to indicate domain and backtranslation. While this
may have benefited the systems that incorporated it,
it’s clear that it was neither necessary nor sufficient
to guarantee that a system placed in the top cluster.
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Other techniques that systems used included pre-
training, monolingual tasks, BPE dropout, ensem-
bling, transfer learning, and more. There remains
work to be done to identify which approaches pro-
duce the most positive impacts on translation qual-
ity. As it stands, a major challenge is that the devel-
opment of the systems relied on automatic metrics,
without knowing for sure which automatic metrics
might be best suited to this language pair (several
papers note the use of character-level metrics due
to their prior results on morphologically complex
languages). In Section 6 we will discuss the cor-
relation between automatic metric scores and the
human annotation results, in the hopes that this will
be useful for future work on this language pair.

In addition to the rankings, we take a closer look
at the performance of systems in Figures 2 and 3,
which show raw human annotations averaged by
document. These provide a rough visualization of
system performance across different documents, as
well as highlighting differences between the do-
mains. The visualization shows both the lower
overall scores assigned to the News data, as well
as the greater coverage of the annotations in the
Hansard data. We also see that certain documents
are easy for most systems to translate, while others
are consistently more difficult across systems. For
example, the two documents with the highest me-
dian segment level scores, Hansard sub-documents
106 and 107, both consist of lists of names and po-
sitions, as well as standard parliamentary text about
the house adjourning. Those documents with the
lowest median segment scores contain longer sen-
tences of members’ speeches across varied topics
like the Indspire awards, Red Seal program trades,
and so on. We can also see how some systems
perform relatively consistently across documents,
while others exhibit more anomalous behaviour.
For example we can see that the UQAM system
exhibits some extremes (and the high-scored News
document from 2019-11-12 is one where we note
that the system output is identical to the reference,
likely due to the system being unconstrained).11

5.2 Annotation Data Coverage

For the Hansard data collection, all systems were
annotated over at least 97% of test segments,
whereas for News data, coverage ranged from 47%

11The other systems that do see particularly high-
performing documents do not have those as exact matches
to the references, and in one case it is likely due to the fact that
the news article is about a bill in the Legislative Assembly.

Figure 2: Raw annotation scores, averaged per docu-
ment, for Hansard data. Lighter/brighter colors indicate
higher scores; systems are ordered according to the
rankings, while documents are ordered according to me-
dian segment score across all systems for that document.
Blank spaces indicate no annotation for that document-
system pair.

Figure 3: Raw annotation scores, averaged per docu-
ment, for News data.
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to 73% of test segments (with the human refer-
ence translations the least annotated).12 This means
that most Hansard “documents” were annotated for
most systems (101 out of 107 had annotations for
every system), while there were no News docu-
ments (out of 36) annotated for all systems. As
we observe that some documents may be easier or
more difficult for most systems, annotating all sys-
tems over nearly the same set of documents aims
to alleviate this potential source of error.

5.3 Repetition and Novelty

Of the approximately 1.3 million sentence pairs
in the Hansard training data, 59.8% of these are
unique pairs, while the remainder are duplicates.
The 2971 lines of the test set are all unique, and
of these 15 sentence pairs were observed in the
Hansard training data. If we consider only the
source side, there are 155 source (English) sen-
tences that appear in the test set that also appeared
in the English side of the training data. Even though
the target side of 140 of these segments is not iden-
tical to the target reference in the test set, systems
still performed better on these previously observed
segments than they did on segments that were pre-
viously unobserved. In fact, for all but the three
lowest-performing systems, the raw scores on seg-
ments where the source had been observed in train-
ing averaged over 90.

In addition to the exact matches, the Hansard
contains much boilerplate text, with small differ-
ences between what has been observed in training
and the data in the test set. This includes segments
like those at the start of a session, that indicate the
date and time, as well as formulaic parliamentary
speech (such as addressing the Speaker). All in
all, the Hansard test data is more similar to the
Hansard training data than the News test data is
to the Hansard training data. Within each domain,
there is not a strong correlation between source
side similarity to training data and raw direct as-
sessment scores, but across domains this may con-
tribute to the differences we observe. This is also
an imperfect analysis, as some systems used ad-
ditional data and some incorporated development
News data into their training. Nevertheless, we
expect that the domain differences, compounded
by the difference in data sizes, explain much of the
difference in raw scores between the two domains.

12Adding in the Crowd annotations does not increase cov-
erage, it simply increases the number of annotations for the
sentences already annotated.

6 Automated MT evaluation

Another important area of research on English–
Inuktitut machine translation is accurate automated
MT evaluation metrics for a polysynthetic language.
Language model based metrics usually correlate
better with human judgments when evaluating
translation in non-polysynthetic languages but they
suffer from a training resource scarcity problem
when evaluating polysynthetic languages. Char-
acter based metrics are more commonly used for
evaluating translation in low resource and polysyn-
thetic languages (Mager et al., 2021) but there is
not enough study on their correlation with human
judgments. A complete collection of human anno-
tations on both domains of the English–Inuktitut
test set with translation output from diverse MT
systems enables further studies on automated MT
evaluation metrics, with the caveat that caution
should be taken with News, due to the issues in the
data collection described above and in Appendix B.

6.1 Setup

We rerun the correlation analysis of the WMT20
Metrics shared task (Mathur et al., 2020b) at system
level and segment level with the updated system
rankings on News and the newly-collected annota-
tions on the Hansard data. Following the Metrics
shared task setup, we use mt-metrics-eval13

to conduct the correlation analysis.
The correlation analysis includes all the systems,

except Human-A and zlabs-nlp. Human-A is ex-
cluded because a second reference was not avail-
able for the reference based metrics to score against
and zlabs-nlp is excluded because this system was
not included in the WMT20 Metrics shared task
test set and thus none of the participants provided
scores for it.

Following the official results in WMT20 Met-
rics shared task, we use Pearson’s coefficient to
examine system level correlations of metrics with
and without outlier systems. The outlier sys-
tems14 (Mathur et al., 2020a) for the News Rank-
ings are OPPO, UEDIN and UQAM_TanLe while
those for the Hansard Rankings are OPPO and
UQAM_TanLe. It is important to note that for
both domains, the outlier systems are all on the
lower quality side.

13https://github.com/google-research/
mt-metrics-eval

14Systems that are greater than 2.5 median average devia-
tion from the median.
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Human annotations Findings News News Hansard
Metrics \ Systems all all-out all all-out all all-out

Character

characTER 0.515 (14) 0.121 (13) 0.504 (15) -0.358 (20) 0.491 (11) 0.844 (2)
chrF 0.336 (19) 0.091 (18) 0.355 (19) -0.339 (17) 0.398 (14) 0.557 (12)
chrF++ 0.315 (20) 0.098 (15) 0.326 (20) -0.323 (16) 0.344 (15) 0.566 (11)
EED 0.483 (16) 0.122 (12) 0.495 (16) -0.290 (15) 0.472 (12) 0.738 (6)
YiSi-0 0.505 (15) 0.095 (16) 0.511 (14) -0.346 (18) 0.451 (13) 0.784 (3)

Word
parbleu 0.126 (22) 0.306 (4) 0.181 (22) -0.022 (5) 0.146 (20) 0.352 (21)
sentBLEU 0.075 (23) 0.172 (8) 0.128 (23) -0.152 (9) 0.048 (22) 0.503 (16)
TER 0.357 (18) 0.083 (20) 0.441 (17) -0.225 (12) 0.238 (18) -0.106 (23)

Pretrn. LM

BLEURT-extended 0.762 (9) 0.155 (10) 0.759 (9) -0.350 (19) 0.794 (7) 0.406 (19)
COMET 0.858 (6) 0.152 (11) 0.853 (6) -0.384 (23) 0.839 (2) 0.615 (9)
COMET-2R 0.867 (4) 0.177 (7) 0.875 (4) -0.152 (9) 0.725 (9) 0.735 (7)
COMET-HTER 0.888 (3) 0.092 (17) 0.896 (3) -0.228 (13) 0.818 (4) 0.355 (20)
COMET-MQM 0.867 (4) 0.172 (8) 0.854 (5) -0.368 (21) 0.825 (3) 0.463 (17)
COMET-Rank 0.392 (17) 0.252 (5) 0.420 (18) -0.061 (6) 0.069 (21) 0.651 (8)
MEE 0.242 (21) 0.113 (14) 0.260 (21) -0.285 (14) 0.219 (19) 0.579 (10)

Custom LM YiSi-1 0.523 (13) -0.014 (22) 0.529 (13) -0.377 (22) 0.584 (10) 0.852 (1)

Others
esim 0.760 (10) 0.418 (2) 0.740 (11) -0.148 (7) 0.818 (4) 0.547 (13)
paresim 0.760 (10) 0.418 (2) 0.740 (11) -0.148 (7) 0.818 (4) 0.547 (13)
prism 0.945 (1) 0.088 (19) 0.960 (1) 0.140 (3) 0.974 (1) 0.775 (4)

Ref.-less

COMET-QE 0.928 (2) 0.651 (1) 0.934 (2) 0.534 (1) 0.298 (16) 0.237 (22)
OpenKiwi-Bert 0.808 (8) 0.194 (6) 0.826 (8) 0.285 (2) -0.170 (23) 0.455 (18)
OpenKiwi-XLMR 0.680 (12) -0.358 (23) 0.748 (10) 0.022 (4) 0.280 (17) 0.741 (5)
YiSi-2 0.830 (7) 0.065 (21) 0.840 (7) -0.217 (11) 0.746 (8) 0.540 (15)

Table 6: System-level Pearson’s correlation of WMT20 Metrics shared task participants with z-score reported in
WMT20, table 4 and 3. For WMT20 News and table 4 rankings, the outlier systems are UQAM_TanLe, UEdin and
OPPO. For Hansard, the outlier systems are UQAM_TanLe and OPPO.

6.2 System-level correlation

Table 6 shows system-level Pearson’s correlations
of metrics with revised rankings on the News do-
main and new rankings on the Hansard domain.

When the outliers are included, the system-level
correlations with the revised rankings are similar to
those reported in the WMT20 Metrics shared task,
based on the Findings rankings. However, we have
several striking observations on the correlation with
the revised rankings excluding the outlier systems:

• Most metrics show negative correlations with
the revised rankings on the News domain.

• Reference-less metrics correlate better with
revised rankings than reference based ones do.

• The rankings of the automated metrics change
drastically when comparing against those ob-
tained by correlating with the rankings in Bar-
rault et al. (2020).

– prism (Thompson and Post, 2020) and
OpenKiwi-XLMR (Kepler et al., 2019)
change from having the lowest correla-
tion with the Findings rankings to being
some of the very few metrics with a posi-
tive correlation with the revised rankings.

– Similar changes can also be observed in
YiSi-2 (Lo and Larkin, 2020) and TER
(Snover et al., 2006) where they change

from having the lowest correlation to the
middle of the pack.

– On the contrary, BLEURT-extended (Sel-
lam et al., 2020), COMET (Rei et al.,
2020), COMET-MQM and characTER
(Wang et al., 2016) demote from the mid-
dle of the pack to having the lowest cor-
relation with the revised rankings.

As we have established in section 3.2 that we be-
lieve the revised News rankings to be more accu-
rate, the negative correlations with human achieved
by the majority of the metrics reflect the difficulty
in evaluating translation quality of low-resource
polysynthetic languages for out-of-domain settings.
It is important to note that the range of z-scores in
the revised News rankings is [-0.052, 0.219]. It is
a noticeably smaller range as compared against the
range of z-scores in the Hansard rankings, which is
[-0.127, 0.249]. The small variation of MT system
performance in the News domain also increases the
difficulty of the automated evaluation task.

Prism performs consistently well across domains
with and without outliers. This is perhaps because
it is one of the very few metrics that used the con-
strained English–Inuktitut data to train their metrics
to evaluate translation quality in Inuktitut.

For the Hansard domain, it is not surprising to
see YiSi-1 (Lo, 2020) correlating very well with hu-
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Metrics \ Annotations Findings News News Hansard News+Hansard

Character

characTER 0.309 (11) 0.333 (11) 0.265 (6) 0.289 (6)
chrF 0.344 (5) 0.373 (5) 0.293 (2) 0.321 (2)
chrF++ 0.338 (6) 0.368 (6) 0.288 (3) 0.317 (4)
EED 0.361 (3) 0.395 (3) 0.277 (4) 0.319 (3)
YiSi-0 0.362 (2) 0.396 (2) 0.268 (5) 0.313 (5)

Word
parbleu 0.212 (14) 0.232 (15) -0.043 (19) 0.054 (18)
sentBLEU 0.206 (15) 0.233 (14) -0.004 (18) 0.080 (15)
TER -0.071 (21) -0.051 (21) -0.284 (23) -0.201 (23)

Pretrained LM

BLEURT-extended 0.359 (4) 0.387 (4) 0.226 (7) 0.283 (7)
COMET 0.322 (9) 0.342 (9) 0.147 (11) 0.216 (9)
COMET-2R 0.326 (8) 0.344 (8) 0.143 (12) 0.214 (11)
COMET-HTER 0.331 (7) 0.348 (7) 0.135 (13) 0.211 (12)
COMET-MQM 0.313 (10) 0.337 (10) 0.127 (14) 0.202 (13)
COMET-Rank 0.297 (12) 0.312 (12) 0.174 (10) 0.223 (8)
MEE -0.074 (22) -0.054 (22) -0.212 (22) -0.156 (22)

Custom LM YiSi-1 0.251 (13) 0.269 (13) 0.186 (9) 0.215 (10)

Others
esim 0.122 (17) 0.142 (17) 0.039 (15) 0.075 (16)
paresim 0.122 (17) 0.142 (17) 0.039 (15) 0.075 (16)
prism 0.452 (1) 0.475 (1) 0.326 (1) 0.379 (1)

Reference-less

COMET-QE -0.040 (20) -0.036 (20) -0.084 (20) -0.067 (20)
OpenKiwi-Bert -0.115 (23) -0.098 (23) -0.169 (21) -0.143 (21)
OpenKiwi-XLMR 0.060 (19) 0.062 (19) 0.036 (17) 0.045 (19)
YiSi-2 0.146 (16) 0.147 (16) 0.189 (8) 0.174 (14)

Table 7: Segment-level Kendall’s correlation of WMT20 Metrics shared task participants with raw scores collected
in News (N-1 and N-2), Hansard (H-A and H-B) and News+Hansard.

mans when the outliers are excluded. It is because
YiSi-1 is based on XLM (Lample and Conneau,
2019) trained on the constrained English–Inuktitut
parallel training data in Hansard domain. An-
other observation is that for evaluating in-domain
systems, character-based metrics, characTER and
YiSi-0, correlate very well with humans. This is
the first scientific evidence that character-based MT
evaluation metrics are a better choice for evaluating
translation quality in low-resource polysynthetic
languages.

6.3 Segment-level correlation

Table 7 shows the segment-level Kendall’s corre-
lations of metrics. We observe much more consis-
tency in metrics’ correlation with humans at seg-
ment level than that at system level across domains.
This is possibly due to the fact that there are more
data points used for correlation analysis at the seg-
ment level than the system level. Similar to correla-
tions at system level, prism consistently correlates
the best with humans at segment level.

We see even stronger evidence here at segment
level that all character-based metrics (Wang et al.,
2016; Popović, 2015, 2017; Stanchev et al., 2019;
Lo, 2019) correlate very well with humans for
evaluating translation quality in polysynthetic lan-
guages across domains. This is a particularly im-
portant finding because these character-based met-
rics are resource-free. That means we now have

strong confidence in using character-based metrics
for evaluating translation quality in a low-resource
polysynthetic language.

7 Conclusion

In this work we present additional human annota-
tions for the Hansard portion of the WMT 2020
English–Inuktitut machine translation shared task
test set. We provide new system rankings on this
portion of the data and present revised rankings
on the News portion. We demonstrate that these
changes in rankings have downstream effects on the
evaluation of automatic metrics for the shared task,
and examine the difficulty of performing automatic
evaluation on out-of-domain text in a polysynthetic
language. When it comes to automatic metrics, we
find that the top-performing system incorporated
training data in the low-resource target language.
However, character-level automatic metrics (which
did not require training) also performed amongst
the top systems, demonstrating their appropriate-
ness for evaluating translation into Inuktitut. While
additional research will be required to confirm that
this finding generalizes to other polysynthetic lan-
guages, we release this expanded dataset to enable
more study of automatic metrics for low-resource
and polysynthetic languages.
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jar, Marta R. Costa-jussà, Christian Federmann,
Yvette Graham, Roman Grundkiewicz, Barry Had-
dow, Matthias Huck, Eric Joanis, Tom Kocmi,
Philipp Koehn, Chi-kiu Lo, Nikola Ljubešić, Christof
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A Context and Related Work

There is a dialect continuum of Inuit languages,
including Inuktitut, that spans Arctic communities
from Alaska to Greenland. The term Inuktut is
often used to refer to parts of that dialect contin-
uum, including Inuktitut.15 There are two main
orthographies used to write these languages: Ro-
man orthography (Latin alphabet, qaliujaaqpait)
and syllabics (qaniujaaqpait).16 The language is
morphologically complex – individual words are
constructed of multiple morphemes – and a word
may correspond to a whole phrase or more when
translated into English.

There has been a range of computational work
on Inuktitut over the past decades. This includes
early work on alignment and the Nunavut Hansard
(Martin et al., 2003, 2005) and the recent release
of a new version of the aligned Nunavut Hansard,
used as training data in this task (Joanis et al., 2020).
Morphological analysis and segmentation have also
been areas of interest (Farley, 2009; Micher, 2017).
There is also prior work on machine translation
(Micher, 2018; Schwartz et al., 2020; Joanis et al.,
2020; Le and Sadat, 2020).

There has been limited to no work on human and
automatic evaluation of machine translation into
Inuktitut prior to this work. Prior work has shown
that character-based automatic metrics demonstrate
promising performance on morphologically rich
languages, at least in part because they do not pe-
nalize morphological variation as much as word-
level exact-match metrics do (Stanojević et al.,
2015; Popović, 2016). Put another way, they
award “partial credit” when a system produces
some but not all of the morphemes of a word cor-
rectly. This is particularly important when translat-
ing into polysynthetic or morphologically complex
languages. While our results in this paper show
the promise of character-level metrics, it would be
useful for future work to provide a more in-depth
examination of their performance to better under-
stand their success, perhaps with analysis at the
word level and not simply the sentence level.

15https://tusaalanga.ca/about-Inuktut
16https://tusaalanga.ca/node/2505
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B Quotation Marks

During the test set submission period at WMT20, it
was noted that a number of segments in the test set
were wrapped in ASCII quotes. This was specif-
ically an issue with the News portion of the test
set; 844 News segments exhibited this ASCII quote
wrapping on source, target, or both, while just 561
of the News segments were unaffected by this. As
the submission period was already underway, the
task organizers made the decision not to change
the test set and indicated that the annotators would
be told not to take the quotation mark issues into
account during their evaluation.

There remain, however, several ways that this
problem may have impacted the task and its results.
The first is that it may have altered the behavior
of MT systems, as different systems may be more
or less robust to this kind of variation in input. As
we do not have access to most of the MT systems,
we cannot test this. The second is that teams may
have handled this differently, with some adding
specialized preprocessing to deal with the wrapped
quotation marks and others not, and not all system
description papers indicate whether or not there
was special handling of this issue. Lastly, it can
have an effect on automatic metric behavior. We
explore that briefly below.

If we examine just the set of segments with these
spurious quotations on the target side, and compute
BLEU using the segments with quotes as the ref-
erence, and identical segments but with the quotes
removed as the hypothesis, we see the BLEU score
drop more than 10 points (from a perfect score).
Since there are so many segments with these quota-
tion marks, we still see drop of more than 5 points
when we expand to the full news portion of the test
data. The impact on CHRF scores is smaller.

These spurious quotation marks, while not se-
mantically meaningful, have varied impacts on au-
tomatic metric scores, and may have also had varied
impacts on translation performance across MT sys-
tems. Unfortunately, because they make up such
a large portion of the News portion of the test set,
omitting them dramatically shrinks the pool of data
available for computing rankings and correlations.
Thus, we present this work with them included, and
provide these caveats about the data.

C Quality Assurance

The quality control task used in out-of-English
translation directions at WMT 2020 was “BAD

reference pairs”, which are segments where a short
segment of a translation is randomly replaced with
an equal length segment randomly selected from
a different reference segment. For more details on
their construction see (Barrault et al., 2020). The
theory is that an annotator should score the “BAD”
version of a segment lower than the original version
of the same segment. If an annotator does not do
so over the course of an annotation session, that
session would be removed.

We note that there is a reason to not fully trust
this particular approach to quality control for the
News dataset. The system submitted under the
name zlabs-nlp (no corresponding paper submitted)
consistently received scores of 0 because it was
identical to the English source. In most cases, the
“BAD” references paired with zlabs-nlp segments
also received scores of zero, but in a few cases they
received low but non-zero scores. Unfortunately,
because the text of the “BAD references” were not
released by the organizers, we cannot examine this
more closely, or determine whether this problem
may also extend to other systems.

The quality assurance tasks typically used at
WMT are included in order to exclude annotators’
data from the final evaluation; in particular this
would include annotators who are not adequately
familiar with the language pair, who are not per-
forming careful analyses, or who might be attempt-
ing to game a crowdsourcing task. While it may be
easy to simply replace annotators for certain lan-
guage pairs with very large bilingual populations,
there is a much smaller number of fluent bilingual
speakers of English and Inuktitut. This, combined
with the very high demand for their language skills
(e.g., in translation), meant that we chose to work
with the Pirurvik Centre, who recruited a small
number of highly-skilled fluent speakers to partici-
pate in this work. Thus, the annotators’ language
skills and quality of work (in different language-
related tasks) are known to be high (unlike in a
crowdsourcing scenario, where little information is
typically known about participants).

In future work and under less tight constraints as
regards annotator time and budget, we would en-
courage the collection of repeated annotation data.
This could include repeated annotations performed
by the same annotator (intra-annotator agreement)
as well as repeated annotations across annotators
(such as a calibration HIT that all annotators com-
plete to examine inter-annotator agreement).
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Dávid Javorský Dominik Macháček
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Abstract

Simultaneous speech translation (SST) can be
evaluated on simulated online events where hu-
man evaluators watch subtitled videos and con-
tinuously express their satisfaction by pressing
buttons (so called Continuous Rating). Continu-
ous Rating is easy to collect, but little is known
about its reliability, or relation to comprehen-
sion of foreign language document by SST
users. In this paper, we contrast Continuous
Rating with factual questionnaires on judges
with different levels of source language knowl-
edge. Our results show that Continuous Rating
is easy and reliable SST quality assessment if
the judges have at least limited knowledge of
the source language. Our study indicates users’
preferences on subtitle layout and presentation
style and, most importantly, provides a signifi-
cant evidence that users with advanced source
language knowledge prefer low latency over
fewer re-translations.

1 Introduction

Simultaneous speech translation (SST) is a technol-
ogy that assists users to understand and follow a
speech in a foreign language in real-time. The users
may need such an assistance because of limited
knowledge of the source language, the speaker’s
non-native accent, or the topic and vocabulary. The
technology can be used for the target languages,
for which human interpretation is unavailable, e.g.
due to capacity reasons.

Candidate systems for simultaneous speech
translation differ in quality of translation, latency
and the approach to stability. Some are streaming,
only adding more words (Grissom II et al., 2014;
Gu et al., 2017; Arivazhagan et al., 2019; Press and
Smith, 2018; Xiong et al., 2019; Ma et al., 2019;
Zheng et al., 2019; Iranzo Sanchez et al., 2022),
some allow re-translation as more input arrives
(Müller et al., 2016b; Niehues et al., 2016; Dess-
loch et al., 2018; Niehues et al., 2018; Arivazhagan
et al., 2020). Finally, subtitle presentation options

Figure 1: A detail of the default layout with the video
document “Dinge Erklärt: Impfen...”.1 The video is
at the top, overlaid by two lines of subtitles in Czech,
followed by buttons for Continuous Rating. The button
labels are: 1: Worse; 2: Average; 3: Good; 0: I do not
understand at all.

(size of subtitling window, layout, allowed reading
time, font size, etc.) also affect users’ impression.
The combination of the re-translating approach and
limited space for subtitles is challenging because of
“flicker”, i.e. the updates to the text that the user is
reading at the moment, has already read, or that has
been scrolled away. The subtitling options impact
the amount of flicker, reading comfort and delay
and may affect the general usability.

The evaluation of the traditional, text-to-text
machine translation (MT) has been researched
for many years (see e.g. Han, 2018 or develop-
ments and discussion within the series of WMT,
Akhbardeh et al., 2021). It targets only the transla-
tion quality. SST evaluation faces new challenges:
simultaneity, latency, and readability to humans.
Evaluating only selected aspects in isolation is rea-
sonable (as MT quality in Elbayad et al., 2020, la-
tency in Ma et al., 2018; Cherry and Foster, 2019),
however, a complete evaluation must be end-to-end,
from sound acquisition to subtitling, and take into

1https://youtu.be/4E0dwFS72gk
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account the intent of communication. We general-
ize the intent to passing pieces of information from
the speaker (sender) to a participant in an online
session (receiver).

Our Contributions In this paper, we run an ex-
perimental evaluation campaign on 2 hours of doc-
uments with German-Czech SST using 32 judges
with different levels of source language proficiency.
(i) We contrast two methods of SST evaluation:
Continuous Rating and factual questionnaires. We
find out that Continuous Rating by bilinguals is
easy and reliable for assessing the comprehension.
(ii) We measure how much comprehension is lost
by simultaneity, flicker and presentation options.
(iii) We evaluate different presentation options and
layouts and find the most preferred one. (iv) We
find a statistically significant evidence that the users
with an advanced, but limited knowledge of the
source language reach higher comprehension with
low latency subtitles than with large latency and
low flicker. (v) We publish our implementation of
the subtitling tool, web application for simulating
live events with SST subtitling, and SST human
evaluation framework.

Since Continuous Rating is easily applicable to
any speech documents, even to those without tran-
scripts and reference translations, and requires min-
imal time overhead for both preparation and user
evaluation, we believe it is suitable to become a
standardized way for human manual evaluation of
SST.

2 Related Work

Hamon et al. (2009) propose user evaluation of
speech-to-speech simultaneous translation. To test
the adequacy and intelligibility, they prepared ques-
tionnaires with factual questions from the source
speech. The judges listened either to the interpreter,
or the machine, and answered the questions. They
evaluated the offline mode, the judges were allowed
to stop and replay the audio while answering. This
way the authors measured the comprehension loss
caused by the automatic translation or interpre-
tation. Each sample was processed by multiple
judges, to eliminate human errors. Fluency was
assessed by the judges on a scale.

Macháček and Bojar (2020) propose a technique
for collecting continuous user rating while the user
watches video and simultaneous subtitles. The user
is asked to express the satisfaction with the subtitles
at any moment by pressing one of four buttons as

the rating changes.
Müller et al. (2016a) analyzed the feedback

from foreign students using KIT Lecture Translator
within two semesters. Such a long-term and infor-
mal evaluation differs considerably from judging
in controlled conditions. On one hand, it summa-
rizes the real-life situation with all the variables
and corner cases that a lab test could only approx-
imate or omit. On the other hand, the users may
not be motivated to give the feedback, and can give
only personal opinions that may be biased. This
way it is also difficult to compare multiple system
candidates.

3 Evaluation Campaign

In our evaluation, we simulate live events on which
participants need assistance with understanding the
spoken language. The source and target languages
in our study are German and Czech, respectively.
This is an interesting example of two neighbour-
ing countries, distinct language families and yet a
relatively well studied pair with sufficient direct
training data.

3.1 Translation System

We use the ASR system originally prepared for
German lectures (Cho et al., 2013). It is a hybrid
HMM-DNN model emitting partial hypotheses in
real time and correcting them as more context is be-
coming available. The same system was used also
by KIT Lecture Translator (Müller et al., 2016b).

The system is connected in a cascade with a tool
for removing disfluencies and inserting punctua-
tions (Cho et al., 2012), and with a German–Czech
NMT system.

The machine translation is trained on 8M sen-
tence pairs from Europarl and Open Subtitles
(Koehn, 2005; Lison and Tiedemann, 2016), and
validated on newstest. The Transformer-based
(Vaswani et al., 2017) system runs in Marian
(Junczys-Dowmunt et al., 2018) and reaches 18.8
cased BLEU on WMT newstest-2019.

Despite the translations are pre-recorded and
only played back in our simulated setup, we en-
sured we keep the original timing as emitted by the
online speech translation system.

3.2 Selection of Documents

We selected German videos or audio resources that
fulfilled the following four conditions: 1) Length
5 to 10 minutes (with some exceptions). 2) The
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Type # Length Description
TP 3 18:08 European Parliament

TP 3 17:34 DG SCIC, Repository for interpreta-
tion training

A 3 27:52 A mock interpreted conference at in-
terpretation school

V 2 14:43 Maus, Educative videos for children
A 2 18:48 DW, For learners of German
V 2 16:09 Dinge, Educative videos for teens
All 15 114:52

Table 1: Summary of domains of selected documents.
Type distinguishes audio only (A), talking person only
(TP) and video (V) with illustrative or informative con-
tent. Length is reported in minutes and seconds.

translations had to be of a sufficient quality. Based
on a manual check, we discarded several candidate
documents: a math lecture and broadcast news due
to many mistranslated technical terms and named
entities. Another group of documents was mis-
translated and discarded because they were not
long-form speeches, but isolated utterances with
long pauses. 3) Informative content. We intend to
measure adequacy and comprehension by asking
the judges complementary questions. We thus ex-
cluded the documents where the speaker is not giv-
ing information by speech, but uses mostly paralin-
guistic means, e.g. singing, poetry, or non-verbal
communication. 4) Non-technicality. We expect
the judges answer in several plain words in their
mother tongue. They may lack knowledge of any
specialized vocabulary.

We selected audios, videos with informative or
illustrative content, and videos of talking persons,
to compare user feedback for these types of docu-
ments. Table 1 summarizes the selected documents.

3.3 Subtitler: Subtitle Presentation

Subtitler is our implementation of the algorithm
by Macháček and Bojar (2020) extended by au-
tomatic adaptive reading speed in addition to the
“flicker” parameter as defined in Macháček and Bo-
jar (2020). The speed varies between 10 and 25
characters per second depending on the current size
of the incoming buffer. The default font size is 4.8
mm. The default subtitling window is 2 lines high
and 163 mm wide.2 By default, we use the max-
imum flicker and the lowest delay (presenting all
translation hypotheses, not filtering out the partial
and possibly unstable ones), no colour highlight-
ing, and smooth slide-up animation while scrolling.

2All typographical properties follow https://bbc.
github.io/subtitle-guidelines/

The example of the setup can be seen in Figure 1.
With the default subtitling window, 90% of the

words in the test documents are finalized in sub-
titles at most 3 seconds after translation. In 99%,
it is at most 7 seconds. More details and the com-
parison to fixed reading speed are provided in Ap-
pendix A.1.3

3.4 Web Application as Simulation
Environment

We implemented a web application for presenting
video and audio documents with embedded Sub-
titler. We use it for simulation of live subtitled
events. The application is equipped with a tool
for collecting users’ feedback. It also allows ad-
ministrators to design experiments with different
variables (document, subtitling layout, subtitling
option) and distribute them to individual judges.4

3.5 Types of Feedback

Continuous Rating Inspired by Macháček and
Bojar (2020), we add 4 buttons below the au-
dio/video document. While watching, the parti-
cipants are asked to press the buttons to indicate
their current satisfaction with the subtitles. We
let participants decide the frequency of rating but
we suggest clicking each 5-10 seconds or when
their assessment has changed. We encourage them
to provide feedback as often as possible even if
their assessment has not changed. The scores of
the rating range between 0 (the worst) and 3 (the
best). The order 1, 2, 3, 0 matches the keyboard
layout; participants are encouraged to use keyboard
shortcuts. The layout is illustrated in Figure 1.

Questionnaires Answering questions as an eval-
uation approach has been already used (Hamon
et al., 2009; Berka et al., 2011). Our questionnaires
were composed of two parts: factual questions and
general questions.

For factual questions we used the open style,
i.e. asking for a short response, instead of yes/no
or multiple choice to exclude guessing. We asked
a Czech teacher of German to prepare the ques-
tions and an answer key from the original German
documents, regardless of the machine translation.
The teacher wrote the questions in Czech, and was
instructed to prepare one question from every 30

3The source code of Subtitler is available at https://
github.com/ufal/subtitler

4The source code of the application is available at https:
//github.com/ufal/continuous-rating
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Layout Experiments
CEFR 0 A1 A2 B1 B2 C1 C2 all
Count 5 5 1 2 1 - - 14

Flicker Experiments
Z Begin. Advanced

CEFR 0 A1 A2 B1 B2 C1 C2 all
Count 3 1 3 - 2 8 1 18

All 8 6 4 2 3 8 1 32

Table 2: The judges by their German proficiency levels
on CEFR scale and their assignment to experiments.
In Flicker experiment, the distribution to groups: Zero
level, Beginners, Advanced.

seconds of the stream and distribute them evenly, if
possible. The questions had to be answerable only
after listening to the document, and not from the
general knowledge. The complexity of the ques-
tions was targeted on the level that an ordinary
high-school student could answer after listening to
the source document once, if the student would not
have any obstacles in understanding German. To
reduce the effect of limited memory, the judges had
an option in the questionnaire to indicate they knew
the answer but forgot it. Furthermore, they had to
fill, from which source they knew the answer: from
the subtitles, from the speech, from an image on
the video, or from their previous knowledge.

Finally, we evaluated the factual questions man-
ually against the key, rating them at three levels:
correct, incorrect, and partially correct.

After the factual questions, all the questionnaires
had a common part with general questions where
we asked the judges on their impression of transla-
tion fluency, adequacy, stability and latency, overall
quality, video watching comfort, and a summary
comment.

3.6 Judges

We have conducted two groups of experiments,
each with different and distinct groups of judges.

In Comprehension and Layout experiments (Sec-
tions 4.1 and 4.2), we examined distinct subtitling
features. We selected 14 native Czech speakers as
judges. Their self-reported knowledge of German
had to be between zero and B2 on the CEFR5 scale,
to ensure they need some level of assistance with
understanding German. We also ensured they do
not have knowledge of any other language which
could help them understanding German.

5Common European Framework of Reference for Lan-
guages

Type w. avg±std t-test
Offline+voting 0.81±0.11
Offline 0.59±0.16 ∗∗∗

Online, without flicker 0.36±0.16 ∗∗∗

Online, flicker, top layout 0.33±0.13
Online, flicker, least preferred 0.31±0.16

Table 3: Comprehension scores on all documents and
judges. The average weighted by number of questions
in document. ∗∗∗ denote the statistically significant
difference (p-value< 0.01) between the current and
previous line.

For Flicker experiments (Section 4.3), we found
other 18 native Czech speakers with an unrestricted
German proficiency, to contrast their feedback and
level of German. For further analyses, we divided
them into three groups. For brevity further in the
paper, we denote the judges with no proficiency
of German as “Zero” level group, with proficiency
between A1 and A2 as “Beginners”, and the others
as “Advanced”. See summary of the judges in
Table 2.

The judges were paid for participation in the
study. Each judge spent in total 2 hours on watch-
ing and 3 hours on the questionnaires. They
watched the videos at their homes on their own
devices. They were asked to customize their screen
resolution and eye-screen distance to suit their com-
fort.

4 Results

First, we analyzed the comprehension levels (Sec-
tion 4.1) and presentation layouts (Section 4.2).
Then, we selected the most preferred layout and
used it for examining the impact of flicker on com-
prehension in Flicker experiments (Section 4.3).6

4.1 Comprehension Levels

In our study, we assume comprehension can be as-
sessed as a proportion of correctly answered ques-
tions. We assume the following model: A per-
son without any language barrier and with non-
restricted access to the document during answering
the questionnaire can answer all questions correctly.
With a language barrier and offline MT (unlimited
perusal of the document while answering), some in-
formation may be lost in machine translation. More
information is lost with one-shot access to online
machine translation because of forgetting and tem-
poral inattention. Some more information may be

6The collected data are available at http://hdl.
handle.net/11234/1-4913
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lost because of flicker, and some more because of
suboptimal subtitling layout.

Our results confirm the assumed hierarchy of
comprehension levels. Moreover, we notice that
even the judges with offline MT give inconsistent
answers. Combining them and counting answers as
correct if at least one judge is correct leads to higher
scores. We explain it by insufficient attention.

Table 3 summarizes the results on all documents.
We measured that on average, 81% of informa-
tion was preserved by machine translation (Of-
fline+voting, i.e. one of two judges answered cor-
rectly). A single judge could find 59% of infor-
mation (Offline). In an oracle experiment without
flicker, when the machine translation gives the final
hypotheses with the timing of the partial ones (i.e.
as if it knew the best translation of the upcoming
sentence), a single judge could answer 36%. In real
setup with flicker and the most preferred subtitling
layout (Online, flicker, top layout), 33% informa-
tion was found, and 31% with less preferred. The
standard deviation is between 11 and 16%.

We found statistically significant difference (two-
sided t-test) between offline MT with voting and
without it, and between offline and online MT.

4.2 Layout Preference

We analyzed effects of distinct subtitling features
by contrastive experiments differing only at one
feature, see the paragraphs in this section. We
distributed them randomly among the judges, re-
gardless of their German skills. After watching
each document, the judge fills the questionnaire.

In all cases, the results show a slight insignificant
preference towards one variant of the feature in all
three types of feedback that we collect: “Compre-
hension” is the proportion of correctly answered
factual questions, “Averaged Continuous Rating” is
an averaged feedback from button clicks, and “Fi-
nal rating” summarizes the responses in the general
section of questionnaires.

For visually informative videos, we separately
report the scores of “Watching comfort” which we
collected in the general section of questionnaires.
Some judges provided also textual feedback, exam-
ples are in Appendix B.2.

Side vs Below For videos and videos with a talk-
ing person, we consider two locations for the subti-
tle window: on the left side of the video, or below.
The side window can be high but narrow (17 lines
of 60 mm width, to match the height of the video),

while the window underneath is short and wide (2
lines of 163 mm width). The first is more comfort-
able for reading, the latter for watching the video.

The results are in Table 4 on the left. There is a
preference for the layout “below” when the video
is informative, and for “side” otherwise.

Below vs Overlay The subtitling window can
be placed over the video, as in films, or below. In
the first case, the subtitles possibly hide an infor-
mative image content, in the latter case, there is a
larger distance between the image and the subtitles.
The results on non-German speaking judges are
insignificantly in favor of overlay, see the middle
of Table 4.

Highlighting Flicker Status The underlying
rewriting speech translation system distinguishes
three levels of status for segments (automatically
identified sentences): “Finalized” segments no
longer change. “Completed” segments are sen-
tences which received a punctuation mark. They
can be changed by a new update and the predic-
tion of the punctuation may also change or dis-
appear. They usually flicker once in several sec-
onds. “Expected” segments are incomplete sen-
tences, to which new translated words are still ap-
pended. They flicker several times per second.

It is a user interface question if the status of the
segments should be indicated by highlighting, or
if this piece of information would be rather dis-
turbing. We experimented only with colouring text
background in large and medium subtitling window
for audio-only documents.

Our experiments show that the judges prefer high-
lighting flicker status in the large window. For the
medium window, this inclination is less clear, see
Table 5.

Size of Subtitling Window The subtitling win-
dow can be of any size. If the window is short
and narrow, there is a short gap between an image
and subtitles, which simplifies focus switching. On
the other hand, a small window contains short his-
tory, so the user can miss translation content if it
disappears while paying attention to the video. A
small window may also accidentally cause a long
subtitling delay if the translation was updated in
the scrolled-away part of text. In this situation,
Subtitler has to “reset” the subtitles and repeat the
part. With a large window, the distance between
the growing end of the subtitles and the image is
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Side vs Below Below vs Overlay Size of subtitling window
Side Below Below Overlay 2 l.×163mm 5 l.×200mm

Final rating

audio 10 1.80 ±0.87 8 2.75 ±0.97
talking 5 2.80 ±1.33 7 2.43 ±1.05 9 2.33 ±1.05 9 2.78 ±1.13 9 2.33 ±1.05 5 2.80 ±1.60
video 1 1.00 ±0.00 3 1.67 ±0.94 5 1.40 ±0.80 8 2.38 ±0.86 5 1.40 ±0.80 3 2.33 ±0.47
sum, avg 6 2.50 ±1.38 10 2.20 ±1.08 14 2.00 ±1.07 17 2.59 ±1.03 24 1.92 ±1.00 16 2.69 ±1.16

Compre-
hension

audio 10 0.25 ±0.15 8 0.31 ±0.15
talking 5 0.34 ±0.25 7 0.28 ±0.27 9 0.29 ±0.25 9 0.39 ±0.20 9 0.29 ±0.25 5 0.40 ±0.21
video 1 0.18 ±0.00 3 0.36 ±0.04 5 0.26 ±0.14 8 0.37 ±0.11 5 0.26 ±0.14 3 0.28 ±0.05
sum, avg 6 0.31 ±0.24 10 0.30 ±0.23 14 0.28 ±0.21 17 0.38 ±0.17 24 0.26 ±0.19 16 0.33 ±0.16

Avg. Cont.
Rating

audio 10 0.90 ±0.71 8 1.66 ±0.95
talking 5 1.56 ±1.00 7 1.78 ±0.35 9 1.65 ±0.52 9 1.65 ±0.99 9 1.65 ±0.52 5 1.09 ±0.78
video 1 0.23 ±0.00 3 1.21 ±0.45 5 1.11 ±0.50 8 1.15 ±0.77 5 1.11 ±0.50 3 1.35 ±0.31
sum, avg 6 1.33 ±1.04 10 1.64 ±0.45 14 1.47 ±0.57 17 1.42 ±0.93 22 1.21 ±0.70 16 1.42 ±0.85

Watching
comfort

talking 5 2.80 ±0.75 7 3.33 ±0.75 9 3.43 ±0.73 9 4.11 ±0.74 7 3.43 ±0.73 5 2.80 ±0.98
video 1 2.00 ±0.00 3 3.00 ±1.63 5 2.20 ±1.60 8 3.00 ±1.00 5 2.20 ±1.60 3 2.33 ±1.25
sum, avg 6 2.67 ±0.75 10 3.22 ±1.13 14 2.92 ±1.32 17 3.59 ±1.03 12 2.92 ±1.32 8 2.62 ±1.11

Table 4: Results of the contrastive experiments for Side vs Below, Below vs Overlay and Subtitling window size:
2 lines height × 163 mm width vs 5 lines height × 200 mm width. The three numbers in each row and cell are
the number of experiments, average and standard deviation. The higher score, the better. Comprehension rate is
between 0 and 1, average continuous rating is between 0 and 3, the others on a discrete scale 1 to 5. Higher score in
each experiment is bolded. The last row of each section summarizes the scores across document types.

Highlighting No Yes No Yes No No
Size [lines,mm width] 18×250 (“Large”) 5×200 (“Medium”) 18×250 5×200
Final rating 14 2.93 ±0.80 13 3.31 ±1.14 2 2.50 ±0.50 1 4.00 ±0.00 11 2.91 ±0.79 8 2.75 ±0.97
Comprehension 14 0.25 ±0.15 13 0.30 ±0.12 2 0.44 ±0.18 1 0.39 ±0.00 11 0.23 ±0.14 8 0.31 ±0.15
Avg. Cont. Rating 14 1.32 ±0.82 13 1.42 ±0.74 2 2.19 ±0.50 1 2.12 ±0.00 11 1.50 ±0.79 8 1.66 ±0.95

Table 5: Results of highlighting experiments on audio documents and subtitling window size 5 lines × 200 mm vs
18 lines × 250 mm. Description of numbers as in Table 4.

larger. The content stays longer, but it is more
complicated to find a place where the user stopped
reading before the last focus switch.

Depending on spatial constraints, it is always rec-
ommended to use as large window as possible, es-
pecially for documents without visual information,
where focus switching between an image and subti-
tles is not expected. We tested two pairs of sizes on
the same documents. The results are in Table 4 on
the right. As we expected, the window with 5 lines
was rated insignificantly better than with 2 lines
in most scales and setups, but the 2-line reached
a higher average watching comfort (2.92) that the
5-line setup (2.62).

For an audio-only document, we also tested the
large (18 lines) vs. medium (5 lines) window, ob-
serving users’ reported preference for the large one
but slightly higher comprehension and continuous
feedback for the medium one, see the right part of
Table 4.

4.3 Flicker Experiments

We assume that the user behaviour differs by knowl-
edge of the source language. We hypothesize that

the Zero group of users and Beginners read all the
subtitles all the time and do not pay attention to
the speech. They do not mind large latency, but
demand high quality translation, and comfortable
reading without flicker. On the other hand, the
users with an advanced knowledge of the source
language may listen to the speech, try to under-
stand on their own, and look at the subtitles only
occasionally, when they are temporarily uncertain
or need assistance with an unfamiliar word. They
need low latency, and do not mind slightly lower
quality.

To empirically test our hypothesis, we prepared
two realistic setups: With flicker, the subtitles are
presented immediately as available, but with fre-
quent rewriting which discomforts the reader. With-
out flicker, the translations are delayed until the
SST system confirms they will not change, and that
usually happens during uttering the next sentence.
We selected two videos for this experiment and dis-
tributed these setups uniformly between all groups
of judges.

The results of comprehension are in Table 6. It
shows that Advanced users achieve higher compre-
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Zero level Beginners Advanced
flic. 27 0.34 ±0.16 33 0.33 ±0.16 91 0.58 ±0.19
no f. 29 0.30 ±0.15 38 0.31 ±0.12 81 0.49 ±0.20

insignificant insignificant p < 0.01

Table 6: Comprehension scores on a setup with flicker
and no flicker, as rated by judges with different source
language proficiency. The three numbers in each row
and cell are the number of samples, average and stan-
dard deviation. Higher scores bolded. The difference
between setups within Advanced group is statistically
significant with p < 0.01.

χ2-test p-values
Zero level Beginners Advanced

OK/OK- 0.24 1.8 · 10−5 5.6 · 10−5

unknown 0.033 1.7 · 10−4 9.1 · 10−4

wrong 0.59 0.45 2.9 · 10−3

forgot 0.9 0.48 0.019

Table 7: The results of χ2-test for independence of
Continuous Rating and answer correctness. Bolded
values are where the two variables are dependent with
statistical significance p < 0.01.

hension with flicker (58%) than without (49%). We
found the difference statistically significant, which
confirms the second part of our hypothesis.

The Zero level speakers and Beginners also re-
port higher comprehension with flicker (Zero: 30%
vs 34% and Beginners: 31% vs 33%), but this dif-
ference is statistically insignificant. Even though
the preference inclines towards flicker, it is less
noticeable compared to the Advanced group, and
we consider this difference negligible. The other
types of feedback (Average Continuous Rating and
Overall rating from the end of questionnaire; not
shown) confirm the trend of Comprehension for all
groups.

4.4 Comprehension vs Continuous Rating

We collected Continuous Rating of the overall qual-
ity of subtitles at given times. For every comprehen-
sion question, we know the time span when the an-
swer appears in the source speech document. Based
on this timing information, we can relate compre-
hension and Continuous Rating. For a given time
span answering a particular question, we find the
most frequent Continuous Rating (button clicked
most often) for every annotator. This gives us a
histogram of Continuous Rating scores reported by
different judges. In Figure 2 top, we show the cor-
rect (“OK”) or partially correct answers (“OK-”)
and the histogram of Continuous Ratings by judges
of distinct German proficiency levels. For a more

detailed plot including all evaluation classes see
Appendix B.1. This data aggregates observations
for all documents and all setups excluding the of-
fline SST and the oracle online SST without flicker.

For the judges with zero knowledge of German,
we can not see any dependency of their compre-
hension to their Continuous Rating. On the other
hand, the more the judges are proficient in German,
the more their Continuous Rating reflects their
comprehension. For example, for the C1 judges
(Advanced) we can estimate their comprehension
(and thus subtitle quality) from their clicking well:
When they understand the content, the most proba-
ble given rating is 3 or 2. A less probable rating is 1,
and they almost never rate 0 when they understand
the content.

Listening while Rating In Figure 2 bottom, we
show, from which source the judges knew the cor-
rect answer, either from the subtitles, or from sound.
We can observe that indeed, the judges with Ger-
man proficiency level B1 and higher listen to the
source sound and understand, while the Zero level
judges and Beginners rely only on subtitles.

Statistical Test To test the relation rigorously, we
divide the judges into three groups by proficiency
levels, their counts (see Table 2), their relation of
Continuous Rating to correct answers and approach
to listening versus reading (Figure 2). We run χ2-
test for statistical independence of Continuous Rat-
ing and answer results on the three groups. Test
results are in Table 7. It shows that for the judges
with Zero level of German, their Continuous Rating
is independent on answer results. They do not fol-
low the sound at all because they do not understand
it, and rate only the readability and flicker. In case
of the Beginners (A1 and A2, recall Table 2), we
observe the dependency of their Continuous Rating
on correct answers (“OK/OK-”) and on cases when
they did not answer (“unknown”). Their wrong an-
swers and forgetting is independent of Continuous
Rating, they probably make random mistakes uni-
formly. The Advanced group of judges give their
correct, unknown or wrong answers consistently
with their Continuous Rating. We therefore assume
that they follow and understand the source speech
and include the adequacy in their Continuous Rat-
ing.

We can also see that in all the three groups, the
forgotten answers are independent on Continuous
Rating. We assume that random and uniform out-
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ages may be characteristic for human memory.

Practical Conclusions We conclude that Contin-
uous Rating is a suitable for manual evaluation of
simultaneous machine translation. The judges who
speak the source language on at least B2 level on
CEFR scale have an ability to assess SST quality re-
liably only by Continuous Rating, without the need
for questionnaires which are laborious to prepare,
answer and evaluate.

5 Conclusion

We proposed a novel and effective method for
end-to-end user evaluation of simultaneous speech
translation SST called Continuous Rating, publish-
ing an open source evaluation tool for the future use.
We showed that this method can be used for measur-
ing comprehension and evaluating subtitling param-
eters. We demonstrated how user comprehension
differs from offline MT to online MT. We showed
that the users with a knowledge of the source lan-
guage prefer low latency despite higher instability.
We demonstrated that Continuous Rating can be
used as a time-efficient human evaluation metric
when employing judges with at least B2 (or, pre-
ferrably, C1) level of source language proficiency.

Limitations

This work is limited to only one direction of SST
and lacks the comparison of multiple SST variants.

Additionally, due to the number of investigated sub-
titling features and the smaller sample of judges,
the results of layout experiments show only statisti-
cally insignificant preference towards one variant.
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Thomas Zenkel, and Alexander Waibel. 2018. KIT
lecture translator: Multilingual speech translation
with one-shot learning. In Proceedings of the 27th
International Conference on Computational Linguis-
tics: System Demonstrations, pages 89–93, Santa
Fe, New Mexico. Association for Computational Lin-
guistics.

Maha Elbayad, Michael Ustaszewski, Emmanuelle
Esperança-Rodier, Francis Brunet-Manquat, Jakob
Verbeek, and Laurent Besacier. 2020. Online ver-
sus offline NMT quality: An in-depth analysis on
English-German and German-English. In Proceed-
ings of the 28th International Conference on Com-
putational Linguistics, pages 5047–5058, Barcelona,
Spain (Online). International Committee on Compu-
tational Linguistics.

Alvin Grissom II, He He, Jordan Boyd-Graber, John
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Delay
70% 80% 90% 95% 99% max resets

ARS 0.01 1.44 3.06 4.51 7.05 12.06 8.80
FRS 1.74 3.54 5.18 7.52 10.65 16.78 5.47

Table 8: The adaptive reading speed (ARS) in compari-
son to the fixed reading speed (FRS), set to 18 char/sec.
Percentages denote the proportion of words that have a
delay less than the given number. The delay is in sec-
onds, resets in the average count per document.

A Subtitler

A.1 Adaptive Reading Speed: Delay
We compared adaptive to fixed reading speed, aver-
aging over all documents. We set the value of fixed
reading speed to 18 characters per seconds, which
we obtained by averaging all delays in the setting
without adaptive reading speed.

The comparison is in Table 8. The delay was
measured for all presented words. We used a subti-
tling window of 2 lines ×163 mm because it repre-
sents an upper bound for the delay of bigger subti-
tling windows.

B Results

B.1 Comprehensions vs Continuous Rating
In Figure 3, we show the average count of answers
per judge for each proficiency level. Note two
observations: 1) The number of already known an-
swers is negligible, which proves that the questions
were selected based on the content of documents.
2) The number of answers whose source was not
given is high for all answers (Figure 3, right col-
umn), whereas it is low when correct and partially
correct answers were selected (Figure 3, middle
column). It means that judges provided the source
when they answered a question.

B.2 Textual Feedback
In Table 9, we depict several textual ratings from
Flicker Experiment. We select judges with C1
source language proficiency and contrast their feed-
back for flicker and no flicker.

The judges report higher satisfaction with flicker.
They notice increased latency when the presenta-
tion mitigate flicker. This is consistent with our
findings in Flicker experiment for Advanced group.
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Feedback
Setting C1 proficiency, Overlay layout

Flicker

The subtitles weren’t so bad in terms of content or latency.
The subtitles were very good, they just got stuck in the middle of the video, but after a short pause they
worked again without any problems.
The subtitles were relatively good, but despite their intelligibility and relative linguistic accuracy, they seemed
very chaotic and very uncomfortable to read.

No flicker

A big delay of subtitles was sometimes inconvenient. If the subtitles are very delayed, it is almost impossible
to follow them.
The subtitles were small and dense, it was hard to orientate, especially when they were even delayed.
At first, the delay was small. Then, at one point the subtitles got stuck and there was a lot of delay behind the
sound.

Table 9: The selection of textual feedback from judges.
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Figure 3: The average count of answers per judge for each proficiency level. Left: OK, OK-, wrong, unknown
and forgotten answers vs Continuous Rating at the time when the answer was disclosed in the original document
(x-axis, 0 means worst, 3 the best), distributed by source language proficiency level of the judges: from zero through
beginners (A1, A2) and intermediate (B1, B2) to advanced (C1, C2). Middle: From which source the judges learned
the correct (OK) or partially correct (OK-) answer. Right: From which source the judges learned all answers,
regardless of their evaluation.
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Abstract

It has been found that NMT systems have a
strong preference towards social defaults and
biases when translating certain occupations,
which due to their widespread use, can unin-
tentionally contribute to amplifying and perpet-
uating these patterns. In that sense, this work
focuses on sentence-level gender agreement be-
tween gendered entities and occupations when
translating from genderless languages to lan-
guages with grammatical gender. Specifically,
we address the Basque to Spanish translation di-
rection for which bias mitigation has not been
addressed. Gender information in Basque is
explicit in neither the grammar nor the mor-
phology. It is only present in a limited number
of gender specific common nouns and person
proper names. We propose a template-based
fine-tuning strategy with explicit gender tags to
provide a stronger gender signal for the proper
inflection of occupations. This strategy is com-
pared against systems fine-tuned on real data
extracted from Wikipedia biographies. We pro-
vide a detailed gender bias assessment analysis
and perform a template ablation study to deter-
mine the optimal set of templates. We report a
substantial gender bias mitigation (up to 50%
on gender bias scores) while keeping the origi-
nal translation quality.

1 Introduction

As the neural machine translation (NMT) field
becomes more mature, there is a growing con-
cern about the gender fairness of these systems
(Stanovsky et al., 2019; Prates et al., 2020; Hovy
et al., 2020; Savoldi et al., 2021). These data-driven
approaches are trained on large real-world textual
corpora which often exhibit implicit social gender
stereotypes and biases. For example, Bolukbasi
et al. (2016) noted that systems associate certain
neutral occupations with males, such as doctor or
programmer, and others with females, such as nurse
or housekeeper. As a consequence, although not

being required by the task, systems tend to inherit
and amplify these social biases.

Several different solutions have been proposed
to solve, or at least reduce, gender bias during
the translation process: providing alternative mas-
culine and feminine translations for some neutral
words (Johnson, 2018); adding explicit gender in-
formation during training (Vanmassenhove et al.,
2018; Stafanovičs et al., 2020; Saunders et al.,
2020); removing bias from word embeddings (Font
and Costa-Jussa, 2019); or fine-tuning on a small
gender-balanced data set (Costa-jussà and de Jorge,
2020; Saunders et al., 2020). There have also been
some efforts to construct some challenge sets to
systematically assess gender bias (Stanovsky et al.,
2019; Bentivogli et al., 2020).

Most of the previous work has focused on En-
glish as the source language which is then trans-
lated to languages with grammatical gender such
as Spanish, French, German, etc. English is a no-
tional gender language which encodes gender in
a pronominal system (he/she, his/her...) (Savoldi
et al., 2021). Consolidated evaluation benchmarks
such as WinoMT (Stanovsky et al., 2019) or MuST-
SHE (Bentivogli et al., 2020) are specially designed
for English. However, for genderless languages
such as Basque, existing previous work and bench-
marks do not fully satisfy the requirements. For
example, WinoMT uses pronominal references as
a disambiguation signal for the correct inflection
of occupations, which do not exist in Basque.

Gender information in Basque is explicit in nei-
ther the grammar nor the morphology. This fact
implies that gender can only be determined when
nouns correspond unequivocally to a female or
a male, that is, person proper names or a lim-
ited number of gender-specific common nouns
(e.g., emakumea/gizona, aita/ama...1), hereinafter
referred to as gendered entities. Therefore, existing
approaches and evaluation benchmarks need to be

1English translation: woman/man, father/mother...
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Figure 1: An illustrative example for the task of
sentence-level agreement between gendered entities and
occupations when translating from genderless languages
to gendered languages. English translation: Mikel wants
to be a nurse.

adapted to meet the requirements of a genderless
language.

In this work we address the specific task of
sentence-level gender agreement between gendered
entities and occupations when translating from gen-
derless languages to gendered languages (see ex-
ample in Figure 1). We focus on the Basque to
Spanish translation direction, a translation direc-
tion that presents the peculiarities described above
and that has not been studied in the literature. The
main contributions of the paper are the following:

• A template-based fine-tuning method with ex-
plicit gender signals to debias pre-trained sys-
tems involving genderless languages.

• A detailed experimentation to determine the
source of gender bias for the task, including an
in-depth ablation study of the template-based
method and a comparison against fine-tuning
on a gender-balanced Wikipedia biographies
set.

2 Related work

A wide variety of publications warn about the lack
of fairness some of the commercial MT systems
have and how they might contribute to amplify
and perpetuate social gender stereotypes due to
their widespread use (Stanovsky et al., 2019; Prates
et al., 2020; Hovy et al., 2020). In the case of
the Basque-Spanish language pair, Salaberria et al.
(2021) found a preference for the stereotyped trans-
lation of occupations according to their historically
assigned role.

Ideally, system bias could be mitigated by re-
moving all the bias present in the training data. For
example, by augmenting data samples with their
corresponding counterfactual forms (Zhao et al.,

2018; Zmigrod et al., 2019). Nevertheless, this task
still poses some challenges for grammatical gender
languages as it involves preserving the morpho-
syntactic agreement of the whole sentence by gen-
der swapping pronouns, adjectives, verbs, entities,
etc., (Stafanovičs et al., 2020).

As a result, several alternative methods have
been proposed to alleviate gender bias from MT
systems. Vanmassenhove et al. (2018) add a spe-
cial gender token to source sentences in order to
improve morphological agreement between the
uttered sentence and the gender of the speaker.
Stafanovičs et al. (2020) annotate source words
with the grammatical gender information of their
corresponding target words. Basta et al. (2020) pro-
vide the system with discourse context by adding
the previous sentence, and in the same direction,
Moryossef et al. (2019) propose a method to guide
a black-box model by appending some contex-
tual gender unambiguous hints to source sentences,
such as "... she told them". Other more complex
approaches have targeted gender bias effects by
directly equalizing genders in word embeddings
(Escudé Font and Costa-jussà, 2019).

Another promising line of research addresses
gender bias as a domain adaptation problem by fine-
tuning a pre-trained biased system with a gender-
balanced data set. Costa-jussà and de Jorge (2020)
automatically collect gender-balanced parallel data
from Wikipedia biographies by selecting an equal
amount of examples for each gender. Choubey
et al. (2021) generate gender filtered parallel data
by forward-translating a monolingual corpus. Saun-
ders and Byrne (2020) generate a small, trivial,
gender-balanced set of synthetic examples by in-
flecting a single handcrafted template with an equal
number of masculine and feminine entities. In
Saunders et al. (2020) they further improve the
method by adding explicit word-level gender tags.

Our proposed method uses a controlled gender-
balanced set of examples (Section 3) to fine-tune
a pre-trained model (Section 4.1). We further
provide the system with explicit gender tags for
proper gender inflections (Section 4.2). We assume
that providing a stronger gender signal is better
than letting the system infer the proper gender of
each gendered entity. In order to annotate source
words, Stafanovičs et al. (2020) propose a complex
method involving morphological tagging and au-
tomatic alignment, and Saunders et al. (2020) rely
on the proper coreference resolution. In contrast,
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we directly annotate gendered entities and leave
gender agreement to the system instead of directly
providing gender inflection information for all the
affected words. This assumption simplifies the an-
notation effort as only gendered entities lists are
necessary to annotate the data.

3 Gender-balanced corpora

Existing previous work on gender bias has focused
on high resource translation directions (English
to Spanish, French, German, etc.). While consol-
idated benchmarks and data exist for these lan-
guages, they strongly rely on gendered pronouns
which makes them difficult to adapt for Basque.
Thus, we analyzed two different strategies to build
gender-balanced corpora for the Basque to Span-
ish translation direction: a syntactically diverse
set of handcrafted templates (Section 3.1), and real
data extracted from Wikipedia biographies (Section
3.2).

3.1 Handcrafted templates

A Basque and Spanish native speaker manually
designed a set of task-specific templates for the
correct treatment of gender agreement at sentence-
level between gendered entities and occupations.
We argue that a single tiny template does not
provide sufficient syntactic diversity, so we hand-
crafted a syntactically diverse set of 33 templates.
Each of the templates has placeholders for an occu-
pation and a gendered entity to help in the proper
disambiguation of that occupation.

Saunders et al. (2020) reported that systems
trained on single-entity templates tend to overgen-
eralize gender signals on multi-entity examples by
indiscriminately applying the same gender to all the
occupations regardless of the other entities’ gen-
ders. For instance, the Basque source sentence
“Josean iragarlea zen eta Leirek idazkaria izan
nahi zuen.” 2 would be translated to “Josean era
adivino y Leire quería ser secretario.” instead of
producing the correct feminine form “secretaria”.
To address this issue, we also construct a set of 13
multi-entity templates with two gendered entities
and their corresponding occupations.

We use an occupations list and a gendered en-
tities list to automatically populate the templates.
We slightly adapted the list of occupations from
Salaberria et al. (2021) to obtain a set of 83 oc-

2English translation: Josean was a fortune-teller and Leire
wanted to be a secretary.

cupations in Basque and their respective trans-
lations for both genders in Spanish. The gen-
dered entities list contains a set of 200 common
Basque and Spanish person proper names. We
further complemented that list with 14 gendered
common nouns referring to humans in Basque
(e.g., emakumea/gizona, aita/ama...3) by query-
ing Basque WordNet (Pociello et al., 2011). We
collected the same amount of gendered entities for
each gender.

We randomly divided the handcrafted templates4

into disjoint training and test sets, keeping 6 sin-
gle entity templates and 3 multi-entity templates
for testing purposes. For each gender, 20 proper
names and 4 gendered terms are used to inject
these test templates. A total amount of 3,120 single
entity examples and 1,800 multi-entity examples
were created, hereinafter referred to as Templ_test
and Multi_test test sets. The rest, 27 and 10 tem-
plates respectively, are kept to create training data
(Templ_train and Multi_train) and were injected in
different ways as explained in Section 4.1. Some
examples of the handcrafted templates are shown
in Table 1.

3.2 Back-translated Wikipedia biographies

In order to generate a gender-balanced set of real
data, we turned to Wikipedia biographies. We fo-
cused on the extraction of examples that present
gender agreement between people and occupations
for the Basque-Spanish language pair. Unlike the
strategy proposed by Costa-jussà et al. (2019), we
extract task specific examples from Spanish mono-
lingual biographies which are then back-translated
to Basque, instead of directly extracting parallel
data. The reason behind this decision was that
more task specific examples could be gathered
from leveraging Spanish monolingual data only,
as Basque biographies constrained the amount of
examples that could be gathered.

We searched the Spanish Wikipedia (extracted
using WikiExtractor5) for biographies of living per-
sons using Petscan6. We found 160,641 biogra-
phies matching this criteria. Using the Wikidata
API, we automatically detected the gender of these
persons. We only extracted the first sentence from
each biography, which generally includes examples

3English translation: woman/man, father/mother...
4All the handcrafted templates and occupations and gen-

dered entities lists are included in the supplementary material.
5https://github.com/attardi/wikiextractor
6https://petscan.wmflabs.org/
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SINGLE-ENTITY TEMPLATE
eu: {entity}k {occupation} izan nahi du.
→ Mikelek erizain izan nahi du.
es: {entity} quiere ser {occupation}.
→ Mikel quiere ser enfermero
en: {entity} wants to be a {occupation}.
→ Mikel wants to be a nurse.

SINGLE-ENTITY TEMPLATE
eu: Nire lagun {entity} {occupation}a zela esan nizunean haserratu egin zinen.
→ Nire lagun Ainara errementaria zela esan nizunean haserratu egin zinen.
es: Cuando te dije que mi amigo|a {entity} era {occupation} te enfadaste.
→ Cuando te dije que mi amiga Ainara era herrera te enfadaste.
en: When I told you my friend {entity} was a {occupation} you got angry.
→ When I told you my friend Ainara was a blacksmith you got angry.

MULTI-ENTITY TEMPLATE
eu: {entity}k {occupation} izatea gustuko du, baina {entity2}k {occupation2} izatea gorroto du.
→ Mikelek erizain izatea gustuko du, baina Ainarak errementari izatea gorroto du.
es: A {entity} le gusta ser {occupation}, pero {entity2} odia ser {occupation2}.
→ A Mikel le gusta ser enfermero, pero Ainara odia ser herrera.
en: {entity} loves being a {occupation} while {entity2} hates being a {occupation2}.
→ Mikel loves being a nurse while Ainara hates being a blacksmith.

Table 1: Examples of the handcrafted templates for the gender agreement task between gendered entities and
occupations. Along with the templates we provide an injected example and the corresponding English translation.

of gender agreement between persons and occupa-
tions. For example:

Elisabeth Rynell es una escritora sueca que ha
incursionado principalmente en los géneros de la
novela y poesía.7

Finally, the extracted examples were automati-
cally back-translated to Basque with the baseline
system described in Section 4. This process guar-
antees gender agreement is not altered during the
translation process as Basque is a genderless lan-
guage.

We obtained a final set of approximately 42,000
examples per gender with the required gender
agreement (Wiki_train).

In addition, in order to have an in-domain test
from Wikipedia, we manually created a disjoint
test set by selecting 100 examples for each gender.
In this case, translations were manually corrected
to ensure their final quality. Hereinafter referred to
as Wiki_test test set.

7English translation: Elisabeth Rynell is a Swedish writer
who has mainly dabbled in the genres of novels and poetry.

4 Experimentation

All the systems use the default configuration for the
Transformer architecture (Vaswani et al., 2017) as
implemented in the PyTorch version of the Open-
NMT toolkit (Klein et al., 2017). We apply BPE to-
kenization (Sennrich et al., 2016) trained on 32,000
operations on the joint training data. Sentences
larger than 100 tokens are discarded from the train-
ing set.

The baseline systems were trained on the
Basque-Spanish portion (1.77M examples) of the
Paracrawl (v8) data (Bañón et al., 2020). The
gender-balanced systems are trained by fine-tuning
the baseline system on the gender-balanced data
sets described in Section 3. As in Costa-jussà and
de Jorge (2020), to avoid catastrophic forgetting,
where systems tend to forget about previous knowl-
edge, we follow a mixed fine-tuning strategy (Chu
et al., 2017). A weighted combination (10:1 ratio8)
of general domain data from Paracrawl and task
specific data, such as Templ_train or Wiki_train,
is used during training and validation steps. For

8Initial experiments showed that 10:1 ratio for general
domain and task specific data respectively works well.
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validation purposes, we concatenate 5,000 general
domain examples and 1,000 task specific examples
randomly extracted from the training data.

The baseline and the fine-tuned systems have
been trained until convergence on the perplexity
results on the validation set, stopping the training
process if there was no improvement for 5 consec-
utive checkpoints. Validation is performed every
10,000 steps in the case of the baseline system
whereas fine-tuning validation is performed every
1,000 steps.

We evaluate our systems using BLEU and
chrF++ scores from the sacreBLEU tool (Post,
2018). Additionally, we also provide COMET
(Rei et al., 2020) scores9, a metric which focuses
on the semantic similarity by leveraging the re-
cent breakthroughs in neural language modeling.
These scores are computed on the test sets ex-
tracted from three publicly available corpora: EiTB
(Etchegoyhen and Gete, 2020) a news domain data
set, EhuHac (Sarasola et al., 2015) a collection of
classic books, and TED (Reimers and Gurevych,
2020) comprising TED talks transcriptions. From
each set, we randomly extracted 5,000 examples.
Although BLEU, chrF++ and COMET metrics
measure the overall translation quality of the sys-
tems, task specific metrics are required to evaluate
gender bias with more precision. To that end, we
measure the accuracy of the correctly translated
and gender inflected occupations and we propose
a new metric called swap. Swap is defined as the
percentage of the occupations which are inflected
with the opposite gender. Thus, errors are divided
into unrecoverable errors where occupations are
translated in a different way (errors) and gender
swapped occupations (swap). A higher swap score
means higher bias towards the opposite gender.
These scores are computed on the task specific
test sets mentioned in Section 3.

4.1 Gender bias assessment
We conducted a detailed experimentation to deter-
mine the source of gender bias in the agreement
between gendered entities and occupations. We
analyze four different strategies to inject different
subsets of the gendered entities and occupations
lists in the training templates in order to generate
gender-balanced data:

• Full system uses all the available gendered en-
9The recommended model wmt20-comet-da was used and

it already covers both Basque and Spanish.

tities and occupations, both training and test
subsets, to inflect training templates. There-
fore, the test subsets of the gendered entities
and occupations are seen during training. We
produce 772,896 training examples.

• Unknown entities (Unk_ent) system only
uses the training subset of the entities to in-
flect training templates. There is no overlap
between the entities used for fine-tuning the
system and those for the test set. 693,880
training examples are produced.

• Unknown occupations (Unk_occ) system
only uses the training subset of the occupa-
tions to inflect training templates, resulting in
633,216 training examples.

• Unknown pairs (Unk_prs) system only in-
flects templates with disjoint combinations
of entities and occupations. For instance,
if Mikel-doctor is present in the test, Mikel-
plumber and Jon-doctor are seen during train-
ing. A total of 758,616 training examples are
produced.

We remark that, in all the cases, training (27) and
test (6) template sets are disjoint, and only single
entity templates are used for fine-tuning.

In general terms, all the fine-tuned systems on
gender-balanced data keep the baseline’s transla-
tion quality on the general domains test sets (see
Table 2). Specially, Full system performs at par
with the baseline across all the test sets and metrics,
except for the chrF++ score on the EhuHac test set.

In order to analyze bias effects, in Table 3 we
report gender bias accuracy and swap scores. The
baseline model shows a clear bias towards the
masculine inflection of the occupations with sig-
nificantly higher swap scores and lower accuracy
scores for females. We note that a negative value
for the swap difference means there exists mascu-
line bias. Lower swap scores are obtained with the
baseline system on the Wiki_test, suggesting stereo-
typed occupations from Wikipedia (Wagner et al.,
2015) are being well inflected by the baseline.

Fine-tuning the baseline system on the Full
set significantly drops the swap score on the
Templ_test which indicates the fine-tuned system
is able to correctly inflect the gender of the occupa-
tions for seen entities. In contrast, Unk_ent system
shows higher swap scores. Despite the system is
clearly less biased than the baseline, it is having
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System EiTB EhuHac TED
BLEU chrF++ COMET BLEU chrF++ COMET BLEU chrF++ COMET

Baseline 37.9 57.8 0.732 14.1 37.0 -0.149 24.2 48.6 0.462
Full 37.8 57.9 0.730 14.0 36.8* -0.153 24.1 48.6 0.458
Unk_ent 37.8 57.7* 0.725* 14.0 36.9* -0.154 24.1 48.6 0.456*
Unk_occ 37.8* 57.8 0.725* 14.0 36.8* -0.152 24.0* 48.5* 0.456*
Unk_prs 37.7* 57.7* 0.727 14.0 36.9 -0.152 24.0 48.6 0.456*

Table 2: BLEU, chrF++ and COMET scores for systems fine-tuned on gender-balanced data. * indicates statistically
significant (p-value ≤ 0.05) differences by conducting paired bootstrap resampling with respect to the baseline.
Best scoring systems are highlighted in bold.

System Test Male Female
X̄ Swap ∆ SwapAcc Swap Acc Swap

Baseline
Templ_test 59.23 0.77 14.04 47.31 24.04 -46.54
Multi_test 61.78 6.17 17.72 50.67 28.42 -44.50
Wiki_test 95.15 0.61 65.82 25.95 13.00 -25.34

Full
Templ_test 98.27 0.96 96.15 2.82 1.44 -1.86
Multi_test 76.22 23.72 83.39 16.61 20.17 7.11
Wiki_test 93.94 1.21 67.09 24.68 12.69 -23.47

Unk_ent
Templ_test 93.72 5.51 83.33 15.71 10.61 -10.2
Multi_test 67.39 32.56 76.83 23.11 27.83 9.45
Wiki_test 93.33 0.61 67.09 24.05 12.07 -23.44

Unk_occ
Templ_test 62.95 0.45 58.91 6.41 3.43 -5.96
Multi_test 56.28 12.56 55.61 15.06 13.81 -2.50
Wiki_test 93.33 1.21 67.09 24.68 12.69 -23.47

Unk_prs
Templ_test 97.95 0.96 94.10 5.00 2.98 -4.04
Multi_test 76.56 23.22 81.00 18.94 21.08 4.28
Wiki_test 92.73 1.21 67.72 24.05 12.38 -22.84

Table 3: Accuracy and swap scores for systems fine-tuned on gender-balanced data. We report mean swap scores
and swap differences for a better picture of the bias. Best scoring systems are highlighted in bold.

more difficulties inferring the gender of unseen en-
tities. This behaviour is further corroborated on
the Wiki_test as all the experiments show similar
(slightly better) results of those obtained by the
baseline system. A manual inspection of the trans-
lations showed that most of the swap errors are
associated to foreign person names. In such cases,
systems tend to provide the default masculine.

With respect to the lower accuracy scores in
Unk_occ, most of the errors made were the result
of the system not being able to produce the correct
translation. Most of the time it produces correct but
alternative translations for the given occupations
such as lechero/vendedor de leche (milkman). In
any case, we remark that in these cases the correct
gender is generally inflected: lechera/vendedora
de leche (milkwoman) or camarógrafo/el cámara
(cameraman). This behavior blurs swap and accu-
racy results as the bias can not be automatically

computed for those occupations.
Remarkably, accuracy and swap scores in

Unk_prs obtains comparable enough results of
those obtained in Full, which suggests the system
does not require to see all the possible combina-
tions of entities and occupations during training.
Instead, in the light of the results obtained by the
Unk_ent and Unk_occ systems, providing the sys-
tem with all the gendered entities and occupations
is more relevant than producing all their combina-
tions.

In general terms, we can conclude that fine-
tuning a pre-trained system with a mixed combi-
nation of gender-balanced examples and general
domain data is useful to mitigate gender bias from
NMT systems without a substantial drop in general
domain translation quality.

Finally, we note that all the experiments show
higher swap scores on the Multi_test test. A man-
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ual inspection of the translations suggests that, as
stated in (Saunders et al., 2020), systems simply
learn to indiscriminately apply the same gender in-
flection to all the occupations when presented with
multi-entity templates. This issue is addressed in
Section 4.2.

4.2 Gender tagging entities

From the previous bias assessment section, we
conclude that gender disambiguation for unknown
entities is not obvious for the systems. Yet, it is
essential to correctly inflect occupations with the
corresponding gender. Therefore, in the line of
the previous work by Saunders et al. (2020) and
Stafanovičs et al. (2020), we propose using word
level annotations to provide a stronger gender sig-
nal for gender disambiguation of gendered entities.
(Stafanovičs et al., 2020) annotate all the source
words with the grammatical gender information of
their corresponding target words while (Saunders
et al., 2020) add explicit word-level gender tags
to the occupations that need to be inflected. In
contrast to these methods, we only apply gender
annotations to gendered entities and leave sentence-
level gender agreement to the system. The main
advantage of this approach is that it does not require
any complex annotation step. During inference, a
list of proper names and other gendered entities can
be used to properly annotate the entities. This list
can be dynamically updated without fine-tuning the
whole system again.

We annotate each word in the source side of the
Full set via source factors (Sennrich and Haddow,
2016) with three possible values (Full_tag): 1 for
male entities, 2 for female entities and 0 for the rest
of the words. For example,

Mikelek erizain izan nahi du.10 → 1 0 0 0 0
These tags are then appropriately mapped to

their corresponding subword tokens during the fine-
tuning step.

Additionally, as noted in Saunders et al. (2020)
and corroborated in Section 4.1, in cases where
multiple entities are present in a sentence, systems
tend to overgeneralize gender signals by applying
the same gender to all the occupations. Accord-
ingly, we add the Multi_train set (see Section 3.1)
during the fine-tuning step to help the Full_tag
system better handle these cases.

Likewise, we follow the same gender tag-
ging strategy on the Wikipedia biographies set

10English translation: Mikel wants to be a nurse.

(Wiki_train), described in Section 3.2, to assess
whether using real data extracted from Wikipedia
is a feasible approach. We remark that due to the
characteristics of the biographies it is not possible
to extract multiple entity examples. We fine-tune
the baseline system with (Wiki_tag) and without
gender tags (Wiki).

Overall, all the systems keep the baseline’s
translation quality in terms of BLEU, chrF++ and
COMET for the general domain test sets, either
fine-tuned with templates or with real Wikipedia
data (see Table 4).

Moreover, Table 5 shows gender bias accuracy
and swap scores for the gender tagged systems
along with their untagged version. Full_tag con-
siderably outperforms Full. Despite the swap dif-
ference on the Templ_test is slightly higher for
Full_tag, the total swap score is lower. Adding
unambiguous gender tags to the entities provides
a stronger signal that helps reducing gender bias
from the system. We report a substantial improve-
ment on the Multi_test, which further encourages
the use of a stronger gender signal via gender tags.
Remarkably, Full_tag obtains perfect scores on the
Multi_test, showing that providing multi-entity tem-
plates during training helps mitigating the gender
signal overgeneralization issue.

Fine-tuning on Wiki_train also helps improving
the baseline system and adding gender tags further
improves those results. As expected, Wiki_tag
obtains the best bias reduction results on the in-
domain Wiki_test, as most of the occupations over-
lap between training and test data. Notice that the
Wikipedia occupations set is potentially small and
closed. As reported by Costa-jussà and de Jorge
(2020) using real gender-balanced data instead of
manually created templates can also contribute to
reduce bias, although the results we achieved are
not as good as those obtained with the template-
based version. However, we note that systems fine-
tuned on Wiki_train still perform poorly when mul-
tiple entities are present, showing a clear tendency
towards masculine overgeneralization.

4.3 Templates ablation study

In this section we report the results of the template
ablation experiments conducted to determine the
optimal amount of templates needed in order to
reduce the manual effort to build them. We focused
on their complexity too, as generating simpler tem-
plates might be easier without a strong knowledge
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System EiTB EhuHac TED
BLEU chrF++ COMET BLEU chrF++ COMET BLEU chrF++ COMET

Baseline 37.9 57.8 0.732 14.1 37.0 -0.149 24.2 48.6 0.462
Full 37.8 57.9 0.730 14.0 36.9* -0.153 24.1 48.6 0.458
Full_tag 37.8 57.8 0.729 14.0 36.9* -0.150 24.1 48.6 0.457
Wiki 38.0 57.9 0.733 14.2* 37.0 -0.143 24.1 48.6 0.461
Wiki_tag 37.9 57.8 0.731 14.1 36.9 -0.147 24.1 48.6 0.461

Table 4: BLEU, chrF++ and COMET scores for the gender tagging systems compared to their untagged versions.
* indicates statistically significant (p-value ≤ 0.05) differences by conducting paired bootstrap resampling with
respect to the baseline. Best scoring systems are highlighted in bold.

System Test Male Female
X̄ Swap ∆ SwapAcc Swap Acc Swap

Baseline
Templ_test 59.23 0.77 14.04 47.31 24.04 -46.54
Multi_test 61.78 6.17 17.72 50.67 28.42 -44.5
Wiki_test 95.15 0.61 65.82 25.95 13.00 -25.34

Full
Templ_test 98.27 0.96 96.15 2.82 1.44 -1.86
Multi_test 76.22 23.72 83.39 16.61 20.17 7.11
Wiki_test 93.94 1.21 67.09 24.68 12.69 -23.47

Full_tag
Templ_test 99.49 0.06 96.86 2.12 1.09 -2.06
Multi_test 100.00 0.00 100.00 0.00 0.00 0.00
Wiki_test 95.15 0.00 84.81 5.70 2.79 -5.70

Wiki
Templ_test 57.37 2.24 20.38 40.13 21.19 -37.89
Multi_test 60.11 7.00 19.78 49.22 28.11 -42.22
Wiki_test 95.76 0.00 76.58 15.82 7.74 -15.82

Wiki_tag
Templ_test 62.95 0.32 37.50 25.32 12.82 -25.00
Multi_test 60.39 4.56 17.67 50.00 27.28 -45.44
Wiki_test 95.76 0.00 92.41 1.90 0.93 -1.90

Table 5: Accuracy and swap scores for the gender tagged systems compared to their untagged versions on the task
specific test sets. We report mean swap scores and swap differences for a better picture of the bias. Best scoring
systems are highlighted in bold.

about the language.
We sorted all the training templates, both single

entity templates and multi-entity templates, accord-
ing to their complexity. Word counts are used as
an indicator of their complexity. We wanted to
analyze the simplest scenario with just one sin-
gle entity template and one multi-entity template
(1_1), as this is the case in (Saunders and Byrne,
2020). Additionally, we analyzed scenarios with
different numbers of single entity templates and
multi-entity templates, hereinafter referred to as
2_2, 5_5, 10_10, 20_1011. To analyze the influ-
ence of the complexity, for all the combinations we
produced a simple version (S), which comprises
the less complex templates and a complex version
(C) including the most complex ones. All these

11Names indicate the number of single entity and multi-
entity templates respectively

ablation experiments were compared against the
baseline system and the Full_tag system fine-tuned
with all the handcrafted templates possible (27 sin-
gle entity and 10 multi-entity templates). All the
experiments use gender tags.

In general terms, all the systems comply with the
requirement of keeping the baseline’s translation
quality for the general domain test sets (see Table
6). We therefore focus on the task specific metrics
as shown in Figure 2.

All the systems, even for S_1_1, significantly im-
prove swap scores when compared to the baseline.
Mean swap curves show a clear descending trend
which suggests that having a more syntactically
diverse set helps generalizing gender signals. Re-
markably, from S_10_10 and C_10_10 systems on,
the curve tends to converge, showing little improve-
ment with more templates. This is an interesting
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System EiTB EhuHac TED
BLEU chrF++ COMET BLEU chrF++ COMET BLEU chrF++ COMET

Baseline 37.7 57.8 0.732 14.1 37.0 -0.149 24.2 48.6 0.462
S_1_1 37.8 57.8 0.728 14.0 36.9* -0.148 23.9* 48.5* 0.458
C_1_1 37.7* 57.7 0.728 13.9* 36.8* -0.154 24.1 48.7 0.462
S_2_2 37.8 57.8 0.727 14.0 36.9 -0.152 24.0 48.5* 0.459
C_2_2 37.7* 57.7* 0.727 14.0 36.8* -0.155 23.9* 48.5* 0.456*
S_5_5 37.7* 57.7* 0.725* 14.0 36.9 -0.152 24.0* 48.5* 0.456*
C_5_5 37.8 57.8 0.731 14.0 36.8* -0.149 23.9* 48.4 0.454*
S_10_10 37.8 57.8 0.727 14.0 36.9 -0.153 24.2 48.7 0.461
C_10_10 37.8 57.8 0.729 14.0 36.8* -0.152 24.0 48.5* 0.456*
S_20_10 37.8 57.7 0.727 14.0 36.8* -0.153 24.0* 48.6 0.461
C_20_10 37.8 57.7* 0.726 14.0 36.8* -0.150 23.9* 48.5* 0.455*
Full_tag 37.8 57.8 0.729 14.0 36.9* -0.150 24.1 48.6 0.457

Table 6: BLEU, chrF++ and COMET scores for the template ablation experiments. * indicates statistically significant
(p-value ≤ 0.05) differences by conducting paired bootstrap resampling with respect to the baseline. Best scoring
systems are highlighted in bold.

Figure 2: Total swap scores for the template ablation
experiments. Dashed and doted lines represent the mean
swap values for the three test sets (Templ_test, Multi_test
and Multi_test).

insight, as there seems to be a limit in the amount of
templates, which considerably reduces the manual
effort to create templates.

In general terms, systems fine-tuned on simpler
templates perform at par or even better than the
ones trained on more complex templates. This
indicates that generating complex and syntactically
rich templates is not worth the effort. Also, results
suggest that multi-entity templates present a strong
signal which solves the overgeneralization issue
for systems with 10 or more templates. Thus, it
emphasizes the hypothesis that templates can be
easily adapted to small specific tasks with little
effort.

System Templ Multi Multi
S_1_1 7.72 1.22 5.88
S_10_10 1.44 0.03 2.79
S_10_10_limit 1.70 0.25 3.41

Table 7: Mean swap scores for the S_10_10_limit sys-
tem compared against its complete version (S_10_10)
and S_1_1. The system was fine-tuned on only 32,200
examples as S_1_1. Best scoring systems are high-
lighted in bold.

Finally, we tested whether having more tem-
plates improves the results because of the syntacti-
cally diverse templates or just because of the mere
fact that more training examples are generated. To
that end, as we observed some convergence with 10
templates, we fine-tuned the baseline on randomly
selected 32,200 examples, namely S_10_10_limit,
that is, the same amount of templates used in S_1_1
(Table 7). S_10_10_limit performs slightly worse
than S_10_10 and it clearly outperforms S_1_1.
This suggests that the improvement comes to a
greater extent from syntactic diversity rather than
from a higher amount of templates.

5 Conclusions

In this work we addressed gender bias mitigation
from an already pre-trained system. In particular,
we focused on the specific task of sentence-level
gender agreement between gendered entities and
occupations when translating from genderless lan-
guages to gendered languages.
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The proposed template-based fine-tuning strat-
egy with explicit gender tags helps mitigating gen-
der bias from NMT systems. We proved that the
mixed fine-tuning strategy using a weighted combi-
nation of general domain and task specific data is
beneficial to overcome catastrophic forgetting and
keep the original translation quality.

We demonstrated that adding explicit gender
tags to gendered entities provides a stronger gen-
der signal and helps the system to gender inflect
occupations correctly. At inference, entities can be
easily annotated by using a list of proper names and
other gendered entities, which can be dynamically
updated without fine-tuning the system again.

Our results on the Basque to Spanish translation
direction showed substantial bias mitigation and
confirmed that handcrafted templates are suitable to
create task specific training examples, to the point
of improving the results obtained by using gender-
balanced real examples extracted from Wikipedia.
The ablation study showed that with little manual
effort a set of useful templates can be created for
gender bias mitigation. Therefore, the proposed
method can be applied to other language pairs.

Limitations

The ablation study in Section 4.3 showed that with
little manual effort a set of useful templates could
be created for gender bias mitigation. In this sense,
the proposed method still requires some linguistic
knowledge about the languages involved in order
to manually create the templates. Some of the
entities and the occupations list should be adapted
to the new language pair too. We acknowledge
that this requirement can be a limiting factor for
a massive deployment of our method. However,
we believe that some challenges in NMT require a
prior linguistic knowledge of the languages at hand
in order to detect the possible errors and flaws and
to provide a solution or mitigation response.

Furthermore, our work focuses on the Basque to
Spanish translation direction as an example of the
translation direction from a genderless language to
a language with explicit grammatical gender. Al-
though, the proposed gender tagging method does
not rely on Basque or Spanish exclusive linguis-
tic features, we believe that adding additional lan-
guage pairs would have shown a broader picture of
our method’s potential. We leave this discussion
for future work where different language families
could be analyzed.

Finally, it must be noted that we approach the
task using a binary gender representation schema.
This decision should not be interpreted as a denial
of a more complex reality.
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Abstract

Non-autoregressive (NAR) machine transla-
tion has recently received significant devel-
opments, and now achieves comparable qual-
ity with autoregressive (AR) models on some
benchmarks, while providing an efficient alter-
native to AR inference. However, while AR
translation is often used to implement multi-
lingual models that benefit from transfer be-
tween languages and from improved serving
efficiency, multilingual NAR models remain
relatively unexplored. Taking Connectionist
Temporal Classification (CTC) as an example
NAR model and IMPUTER as a semi-NAR
model, we present a comprehensive empirical
study of multilingual NAR. We test its capabil-
ities with respect to positive transfer between
related languages and negative transfer under
capacity constraints. As NAR models require
distilled training sets, we carefully study the
impact of bilingual versus multilingual teach-
ers. Finally, we fit a scaling law for multilin-
gual NAR to determine capacity bottlenecks,
which quantifies its performance relative to the
AR model as the model scale increases.

1 Introduction

Non-autoregressive (NAR) models generate output
tokens in parallel instead of sequentially, reduc-
ing potentially expensive inference dependencies.
They rely on sequence-level knowledge distillation
to reach the quality of autoregressive (AR) models
(Gu et al., 2018). As the notion of NAR has ex-
panded to include semi-NAR models that generate
their outputs in multiple steps, with each step gen-
erating several tokens non-autoregressively (Lee
et al., 2018; Ghazvininejad et al., 2019), we have
begun to see NAR matching the quality of AR (Sa-
haria et al., 2020). Prior works have benchmarked
NAR models for machine translation (MT) on a
number of language pairs, but with very few ex-
ceptions, the NAR models under test have been
bilingual as opposed to multilingual.

Multilingual MT models (Dong et al., 2015; Fi-
rat et al., 2017; Johnson et al., 2017), translating
between multiple languages, have two major advan-
tages. First, they offer better parameter efficiency
than bilingual models via multi-tasking. Second,
they are able to transfer knowledge from high-
resource languages to low-resource ones. There-
fore they have become an attractive solution for
expanding the language coverage of AR MT (Aha-
roni et al., 2019; Fan et al., 2021; Siddhant et al.,
2022). The capability of multilingual modeling is
a major feature of the AR regime, and it is one that
we should seek to maintain in NAR models.

However, it is unclear to what extent the benefits
of multilingual AR models transfer to NAR model-
ing (Caruana, 1997; Arivazhagan et al., 2019). Do
related languages help each other as easily (pos-
itive transfer)? Do unrelated languages interfere
with one another more (negative transfer)? Fur-
thermore, NAR modeling raises a new issue of
multilingual distillation. To retain the training-time
efficiency of multilingual modeling, it is crucial
that NAR works well with multilingual teachers;
otherwise, the prospect of training many bilingual
teachers would greatly increase the effective train-
ing cost. It may actually be the case that multilin-
gual teachers are better suited than bilingual ones,
as the effective capacity reduction may result in less
complex (Zhou et al., 2019) and less multi-modal
outputs (Gu et al., 2018).

We present an empirical study of multilingual
NAR modeling. Taking CTC (Libovický and
Helcl, 2018) as our canonical NAR method, and
IMPUTER (Saharia et al., 2020) as our canonical
semi-NAR model, we study how they respond to
multilinguality through a series of “stress-tests”,
first in a six-language scenario designed to em-
phasize negative transfer (§4), and then in two-
language scenarios designed to emphasize posi-
tive transfer under data resource constraints (§5).
Lastly, we fit a scaling law for our six-language sce-
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nario to measure the potential of increasing model
sizes (§6). The main findings can be summarized
as follows:

1. Multilingual NAR models work equally well
whether datasets are distilled from bilingual
or multilingual teachers.

2. Multilingual NAR models do benefit from
positive transfer in scenarios that encourage
it; however, in comparison to AR models, they
suffer more from negative transfer and benefit
less from positive transfer.

3. The scaling law demonstrates that this trend
continues as model size increases.

Our extensive analysis on outputs from the NAR
models suggest that they still struggle to generate
“valid” tokens with desired output length. Further-
more, our results indicate that scaling up the NAR
models is not going to close the gap to multilingual
AR, but our analysis points to promising directions
for future work throughout the paper.

2 Non-Autoregressive Multilingual NMT

Let, Dl = (x, y) ∈X × Y denote the bilingual cor-
pus of a language pair, l. Given an input sequence x
of length T ′, an AR model (Bahdanau et al., 2015;
Vaswani et al., 2017) predicts the target y with
length T sequentially based on the conditional dis-
tribution p(yt ∣ y<t, x1∶T ′ ; θ). NAR models assume
conditional independence in the output token space;
that is, they model p(yt ∣ x1∶T ′ ;φ). Due to this con-
ditional independence assumption, training NAR
models directly on the true target distribution leads
to degraded performance (Gu et al., 2018). Hence,
NAR models are typically trained with sequence-
level knowledge distillation (Kim and Rush, 2016)
to reduce the modeling difficulty.

2.1 Non-Autoregressive NMT with CTC
In this work, we focus on NAR modelling via
CTC (Graves et al., 2006) due to its superior per-
formance on NAR generation and the flexibility
of variable length prediction (Libovický and Helcl,
2018; Saharia et al., 2020; Gu and Kong, 2021).

CTC models an alignment a that provides a map-
ping between a sequence of predicted and target
tokens. Alignments can be constructed by inserting
special blank tokens ("_") and token repetitions into
the target sequence. The alignment is monotonic
with respect to the target sequence and is always

the same length as the source sequence x. How-
ever, in MT, the target sequence y can be longer
than the source sequence x. This is handled via
upsampling the source sequence x, to s times its
original length. An alignment is valid only if when
collapsed, i.e., merging repeated tokens and remov-
ing blank tokens, it results in the original target
sequence. The CTC loss marginalizes over all pos-
sible valid alignments Γ(y) compatible with the
target y and is defined as:

p(y ∣ x) = ∑
a∈Γ(y) ∏1≤t′≤T ′ p(at′ ∣ x1∶T ′ ;φ).

Note that each alignment token at′ is modeled inde-
pendently. This conditional independence allows
CTC to predict the single most likely alignment
non-autoregressively at inference time, which can
then be efficiently collapsed to an output sequence.
This same independence assumption enables effi-
cient minimization of the CTC loss via dynamic
programming (Graves et al., 2006). While CTC
enforces monotonicity between the target and the
predictions, it does not require any cross- or self-
attention layers inside the model to be monotonic.
Hence, CTC should still be able to model language
pairs with different word orders between the source
and the target sequence. Following Saharia et al.
(2020), we train encoder-only CTC models, using
a stack of self-attention layers to map the source
sequence directly to the alignments.

2.2 Iterative Decoding with Imputer
IMPUTER (Saharia et al., 2020) extends NAR
CTC modeling by iterative refinement (Lee et al.,
2018). At each inference step, it conditions on
a previous partially generated alignment to emit
a new alignment. While IMPUTER, like CTC,
generates all tokens at each inference step, only
a subset of these tokens is selected to generate
a partial alignment, similar to iterative masking
approaches (Ghazvininejad et al., 2019). This is
achieved during training via marginalizing over
partial alignments as follows:

p(y ∣ x) = ∑
a∈Γ(a)p(a ∣ aMask, x;φ),

where aMask is a partially masked input-alignment.
At training time, the aMask alignment is generated
using a CTC model trained on the same dataset,
and its masked positions are selected randomly.
This training procedure enables IMPUTER to it-
eratively refine a partial alignment over multiple
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TGT WORD ORDER SIZE SCRIPT DIFFERENCE WHITE SPACE AVG. SRC LENGTH AVG. TGT LENGTH

EN-KK SOV 150K 3 3 26.7 20.0

EN-DE SVO/SOV 4.6M 7 3 25.7 24.3
EN-PL SVO 5M 7 3 16.2 14.6
EN-HI SOV 8.6M 3 3 18.3 19.8

EN-JA SOV 17.9M 3 7 21.4 25.9
EN-RU Free 33.5M 3 3 23.2 21.5
EN-FR SVO 38.1M 7 3 29.2 32.8

Table 1: Details on training data used. Target word orders are the ones that are dominating within the language
according to (Dryer and Haspelmath, 2013), but there may be sentence-specific variations. English follows pre-
dominantly SVO (Subject-Verb-Object) order. Size is measured as the number of parallel sentences in the training
data. Source (Src) and Target (Tgt) length are averaged across sentences after word-based tokenization.

decoding steps at inference time — consuming its
own alignments as input to the next iteration. With
k > 1 decoding steps, the IMPUTER becomes semi-
autoregressive, requiring k times more inference
passes than pure CTC models.

IMPUTER differs from Conditional Masked Lan-
guage Modeling (CMLM) (Ghazvininejad et al.,
2019) in that it uses the CTC loss instead of the
standard cross-entropy loss, removing the need for
explicit output length prediction. Also, IMPUTER

is an encoder-only model that makes one predic-
tion per source token, just like CTC. The cross-
attention component from encoder-decoder is re-
placed by a simple sum between the embeddings
of the source sequence and the input alignment
(aMask) before the first self-attention layer.1

2.3 Multilingual Modeling

Multilingual AR and NAR models are trained on
datasets from multiple language pairs, {Dl}Ll=1. We
prepend each source sequence with the desired tar-
get language tag (<2tgt>) and generate a shared
vocabulary across all languages (Johnson et al.,
2017). The models encode this tag as any other
token, and uses it to guide the generation of the
output sequence in the desired target language.

2.4 Efficiency

Inference We refrain from wallclock inference
time measurements since these are dependent on
implementation, low-level optimization and ma-
chines (Dehghani et al., 2021). We instead com-
pare generation speed in terms of the number of to-
kens that get generated per iterationNgen (Kreutzer
et al., 2020), which is < 1 for AR models,2 T for

1We experimented with an encoder-decoder variant of IM-
PUTER but it did not change the overall output quality in
multilingual scenarios or otherwise.

21 for greedy search, < 1 to account for scoring and expan-
sion of multiple hypotheses in beam search.

fully non-autoregressive models like CTC and T
k

for iterative semi-autoregressive models like IM-
PUTER. While the potential for faster inference
motivates our interest in NAR, our core contri-
bution is a comparison of multilingual modeling
capabilities; therefore, we do not measure infer-
ence speed experimentally.

Training At training time, NAR models are less
efficient than AR models because their quality de-
pends on distillation (Gu and Kong, 2021). Extra
cost is incurred to train a teacher model (usually
AR) and to use it to decode the training set.

Multilinguality Multilingual models multi-task
over language pairs, so that a single multilin-
gual model can replace several bilingual models.
Thanks to transfer across languages, model size
needs to be increased less than m-fold for model-
ing m language pairs.

Considering all of the above factors, an ideal
model needs only a few iterations (decoder passes
or steps), requires no teacher or a cheap teacher,
and covers several languages, while incurring the
smallest drop in quality compared to less efficient
models. CTC is desirable as it uses only one pass,
while IMPUTER gives up some efficiency to im-
prove quality. Both require a teacher, but we can
try to reduce the cost by training fewer teachers.

3 Experimental Setup

Data We perform our main experiments on six
language pairs, translating from English into WMT-
14 German (DE) (Bojar et al., 2014), WMT-15
French (FR) (Bojar et al., 2015), WMT-19 Russian
(RU) (Barrault et al., 2019), WMT-20 Japanese
(JA), WMT-20 Polish (PL) (Barrault et al., 2020)
and Samanantar Hindi (HI) (Ramesh et al., 2021).
The lower-resourced WMT-19 English-Kazakh
(KK) (Barrault et al., 2019) is used for an additional
transfer experiment in Section 5. The properties
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of the datasets are listed in Table 1. Target word
order and writing script notably differ across these
languages, so we focus on translating into these
languages as this is a more challenging direction.
A shared sub-word vocabulary of 32k is trained
with SentencePiece (Kudo and Richardson, 2018),
with the number of sub-words allocated for each
language being proportional to its data size.

Evaluation Metrics Translation quality is evalu-
ated with BLEU (Papineni et al., 2002) as calcu-
lated by Sacrebleu (Post, 2018) with default tok-
enization (“13a”) except for EN-JA, where we use
character-level tokenization. 3

Architecture We train the IMPUTER model us-
ing the same setup as described in Saharia et al.
(2020): We follow their base model with dmodel =
512, dhidden = 2048, nheads = 8, nlayers = 12, and
pdropout = 0.1. AR models follow Transformer-
base (Vaswani et al., 2017) and have similar pa-
rameter counts. We train both models using Adam
with learning rate of 0.0001. We train CTC mod-
els with a batch size of 2048 and 8192 sentences
for 300K steps for the bilingual and multilingual
models respectively. We train the IMPUTER us-
ing CTC loss using a Bernoulli masking policy for
next 300K steps with a batch size of 1024 and 2048
sentences for the bilingual and multilingual models
respectively. We upsample the source sequence
by a factor of 2 for all our experiments.4 We pick
the best checkpoint based on validation BLEU
for bilingual models, and the last checkpoint for
multilingual models, following Arivazhagan et al.
(2019).

Distillation We apply sequence-level knowledge
distillation (Kim and Rush, 2016) from AR teacher
models as widely used in NAR generation (Gu
et al., 2018). Specifically, when training the NAR
models, we replace the reference sequences during
training with translation outputs from Transformer-
Big AR teacher model with a beam width of four.
We also report the quality of the AR teacher mod-
els, both bilingual and multilingual. The configura-
tions for training the big AR teacher models also
follow Vaswani et al. (2017).

3SacreBLEU (short) signatures: nrefs:1∣case:mixed∣eff:no∣
tok:13a,char∣smooth:exp∣version:2.0.0

4We do not vary the upsampling ratio due to small differ-
ence in the performance of the resulting NAR models (see
Table 6, Gu and Kong (2021)).

4 Negative Transfer Scenario

Our main experiment compares bilingual, multi-
lingual, AR and NAR models for the six high-
resource languages from Table 1. These lan-
guages are typologically diverse, and they each
have enough data so that we do not expect them to
benefit substantially from joint modeling. We use
this challenging scenario to test the impact of mul-
tilingual teachers, and to measure each paradigm’s
ability to model several unrelated languages. Re-
sults are shown in Table 2.

4.1 Multilingual Teacher Comparison
Inspecting the AR teacher models (rows 1 and 2
of Table 2) confirms the negative transfer that we
aimed to design: multilingual teachers have sub-
stantially reduced BLEU compared to bilingual
teachers. How much is this drop in quality affecting
NAR students? First of all, we see that bilingual
CTC models trained from the multilingual teacher
(5) do not reflect the entirety of this drop when
compared to training with the bilingual teacher (4):
An average teacher gap of −1.8 BLEU is causing−1.1 drop for the corresponding students.5 The
comparison becomes more interesting as we shift
to multilingual students: multilingual CTC (8, 9)
does not suffer at all from having a multilingual
teacher (average BLEU gap of −0.1), and mul-
tilingual IMPUTER (10, 11) likewise suffers very
little (−0.3). These three results taken together
suggest that datasets distilled from multilingual
models are likely simpler, but easier to model non-
autoregressively by the multilingual NAR models,
which makes up for the teacher’s lower BLEU. Our
analysis in Section 4.3 supports this hypothesis.

We hope that highly multilingual models, trained
with similar target language pairs to enhance posi-
tive transfer (Tan et al., 2019), are even better suited
to serve as teachers for multilingual NAR models,
which we leave to future work.

4.2 Multilingual Student Comparison
Returning to the “Bilingual Models” section of Ta-
ble 2 with AR-big teachers, we can see that we
have reproduced the results of Saharia et al. (2020):
Bilingual CTC (4) performs well for a fully NAR
method, but does not reach AR quality (3). IM-
PUTER (6) ably closes the gap with AR, surpassing

5As the quality of CTC generated alignments from the
multi-AR-big is worse than the alignments generated from the
CTC with the AR-big teacher, we do not train IMPUTER on
CTC-generated alignments from the multi-AR-big models.
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MODEL TEACHER Ngen EN-FR EN-DE EN-PL EN-RU EN-HI EN-JA AVG.

Teachers
(1) AR-big < 1 38.8 29.0 21.4 27.2 34.6 35.4 31.1
(2) multi-AR-big 38.5 27.0 21.6 25.3 32.6 33.6 29.3

Bilingual Models

(3) AR-base < 1 38.2 27.6 21.2 26.2 33.8 34.8 30.3

(4)
CTC

AR-big
T

35.7 25.2 18.0 21.4 31.6 31.6 27.3
(5) multi-AR-big 35.1 24.0 17.7 20.8 30.8 28.9 26.2

(6) IMPUTER AR-big T
8 38.5 27.2 21.2 25.6 32.0 32.0 29.4

Multilingual Models

(7) multi-AR-base < 1 35.2 24.8 19.7 23.2 30.8 31.2 27.5

(8)
CTC

AR-big
T

31.6 20.5 13.0 17.7 28.2 28.1 23.2
(9) multi-AR-big 31.2 20.5 13.7 18.0 27.8 27.5 23.1

(10)
IMPUTER

AR-big T
8

34.4 22.8 14.9 21.3 29.9 29.6 25.5
(11) multi-AR-big 34.1 21.2 16.4 21.7 29.9 27.9 25.2

Table 2: Test BLEU scores for multilingual and bilingual AR and NAR models and their teachers.

or coming within 0.4 BLEU of the AR-base mod-
els on 3/6 language pairs, with the largest gap in
performance for the distant EN-JA. Does this story
hold as we move to multilingual NAR students?

To understand each model’s multilingual capa-
bilities, we can compare its bilingual performance
to its multilingual performance. Comparing bilin-
gual AR-base (3) to its multilingual counterparts
(7) gives us a baseline average drop of −2.8 BLEU,
confirming that this is indeed a difficult multilin-
gual scenario that leads to negative transfer. Com-
paring bilingual CTC (4) to multilingual CTC (8)
with AR-big teachers, we see an average drop of−4.1. This larger drop indicates that CTC suffers
more from negative interference than its AR coun-
terpart. We hypothesize that CTC models need
more capacity than AR models to achieve similar
multilingual performance, motivating our scaling
law experiments in Section 6.

Performing the same bilingual-to-multilingual
comparison for IMPUTER (6 vs. 10) shows a similar−3.9 average drop due to negative transfer. So
although IMPUTER is indeed better than CTC (2
BLEU), it does not seem to be better suited for
multilingual modeling in this difficult scenario.

4.3 How do the bilingual and the
multilingual distilled datasets differ?

Table 3 summarizes different statistics for the orig-
inal (R) and distilled datasets from both multilin-
gual (M ) and bilingual (B) AR teacher models.

We report the number of types and average se-
quence length (in tokens) for the target side of
the dataset. We compute the complexity of the
dataset based on probabilities from a statistical
word aligner (Zhou et al., 2019). The FRS (Talbot
et al., 2011) score represents the average fuzzy re-
ordering score over all the sentence pairs for the
respective language pair as measured in Xu et al.
(2021), with higher values suggesting that the target
is more monotonic with the source sequence. We
also report BLEU for the distilled datasets relative
to the original training references.

The datasets distilled from the bilingual AR
models (B) are shorter, less complex, have reduced
lexical diversity (in number of types) and are more
monotonic compared to the original corpora (R),
which corroborates findings from prior work (Zhou
et al., 2019; Xu et al., 2021). One exception is EN-
JA, where the distilled translations are slightly less
monotonic than the original references. Moving to
multilingual teachers (M ), the resulting datasets
have further reduced types, are shorter and less
complex than those distilled from bilingual teach-
ers. In particular, their monotonicity increased
(FRS) for the more distant language pairs, EN-
JA and EN-HI. As shown in Xu et al. (2021) and
Voita et al. (2021), reduced lexical diversity and re-
ordering complexity can help bilingual NAR mod-
els to learn better alignments between source and
target, improving the translation quality of the out-
puts. More work is needed to better understand
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PROPERTY R B M

EN-FR

# TYPES 522K 430K 396K
AVG. LENGTH 32.8 31.2 29.2
COMPLEXITY 1.529 1.167 0.944
FRS 0.463 0.541 0.536
BLEU (Train) - 40.8 37.8

EN-DE

# TYPES 812K 616K 573K
AVG. LENGTH 24.3 23.4 22.2
COMPLEXITY 1.243 0.819 0.709
FRS 0.490 0.606 0.605
BLEU (Train) - 35.0 26.4

EN-PL

# TYPES 636K 516K 503K
AVG. LENGTH 14.6 13.4 12.7
COMPLEXITY 1.435 0.942 0.591
FRS 0.590 0.678 0.695
BLEU (Train) - 26.3 22.0

EN-RU

# TYPES 636K 516K 503K
AVG. LENGTH 21.5 20.5 19.5
COMPLEXITY 1.083 0.882 0.819
FRS 0.640 0.719 0.716
BLEU (Train) - 43.2 40.0

EN-HI

# TYPES 346K 200K 185K
AVG. LENGTH 19.8 18.8 17.8
COMPLEXITY 1.438 1.256 1.138
FRS 0.347 0.363 0.366
BLEU (Train) - 34.6 28.0

EN-JA

# TYPES 547K 440K 402K
AVG. LENGTH 25.9 23.5 22.2
COMPLEXITY 1.541 1.369 1.338
FRS 0.344 0.337 0.340
BLEU (Train) - 35.9 30.6

Table 3: Comparison of datasets (1M samples) distilled
from bilingual (B) or multilingual (M ) AR models

the sweet-spot between the quality and complexity
trade-off of the multilingual and bilingual distilled
datasets for multilingual NAR modeling.

4.4 Which translation errors are made?

In this section, we analyze quantitatively how the
output quality of NAR models differs across lan-
guage pairs when trained in isolation (bilingual) or
with other language pairs (multilingual).

Figure 1: Brevity penalty scores for bilingual (-B) and
multilingual (-M) models, the closer to 1 the better.

Effect of Length Figure 1 shows the brevity
penalty (BP) scores (Papineni et al., 2002) for
all languages. EN-PL and EN-JA have lowest BP
scores across the board, meaning that their trans-
lations are shorter than the references. Manual
inspection reveals that this could be attributed to
the subject pronouns being dropped in both of these
target languages. Multilingual modeling results in
shorter outputs relative to bilingual models for both
AR and NAR models and most language pairs.
While IMPUTER models tend to have fewer issues
with output length compared to CTC models, they
still lag behind AR models, suggesting that the
length might need to be controlled explicitly for
these language pairs (Gu and Kong, 2021).

Invalid Words CTC frequently generates in-
valid words, i.e. tokens that are not present in
the target side of the bitext but are being composed
from multiple sub-words. These sub-words repre-
sent alternative translations that the model fails to
distinguish. In the Hindi example below, the in-
valid (or made-up) word in the sentence is marked
in red. The correct word should be jhrFl� as the
dependent vowel “ F” can only be used once.

Hindi: iss� g}AmFZ mEhlAao\ ko jhrFFl�
D� e\ s� m� EÄ EmlF h{\।
English: This has relieved the rural women
from the poisonous smoke.

Figure 2 reports the percentage of sequences
that include at least one invalid word in the test set.
CTC generates many invalid words compared to
both AR and IMPUTER, with multilingual model-
ing leading to an average increase in invalid words
by 37%. The shared vocabulary of the multilingual
model results in shorter sub-words, hence longer
sequences, and the conditionally independent gen-
eration leads to more clashing adjacent sub-words.6

6One might hope to alleviate this by increasing vocabulary
size, but preliminary experiments showed that an increased
vocabulary was less efficient in improving quality than increas-
ing overall model size, which is explored in Section 6.
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IMPUTER’s iterative decoding alleviates this for
some languages. Increasing the number of itera-
tions could help, but would also erode the efficiency
arguments that make NAR models attractive. As
pointed out by Xiao et al. (2022), better modeling
of target token dependencies is crucial to closing
the gap in translation quality to AR models.

Figure 2: % of outputs with invalid words for bilingual
(-B) and multilingual (-M) models, the lower the better.

5 Positive Transfer Scenario

In this section we present two experimental setups
designed to emphasize positive transfer, where lan-
guages are related and training data is limited.

English→{German, French} To isolate the ef-
fect of transfer via multilingual modelling, we relax
the capacity bottleneck and competition for param-
eters: We combine the two most related languages
(DE, FR) (Kudugunta et al., 2019, Figure 2) and
give them smaller, balanced training sets (1M sen-
tences). We compare bilingual and multilingual
AR and NAR models trained on this reduced data.

Table 4 shows that NAR models benefit from
training with multiple language pairs in this re-
laxed scenario — all models exhibit positive trans-
fer (in green). IMPUTER achieves higher positive
transfer than CTC for both languages, but lags be-
hind the AR multilingual model in EN-FR. How-
ever, for EN-FR the bilingual IMPUTER is already
ahead of the bilingual AR model by 0.4 BLEU.

MODEL EN-DE EN-FR

Bilingual Models

AR 22.8 27.7
CTC 21.5 26.5
IMPUTER 22.8 28.1

Multilingual Models
AR 24.3 +1.5 29.0 +1.3
CTC 22.1 +0.6 26.9 +0.4
IMPUTER 23.7 +1.3 28.5 +0.4

Table 4: Results on subsampled (1M) training data.

English→{Russian, Kazakh} Does this positive
transfer survive data imbalance? We test the perfor-
mance of the multilingual NAR model on the low-
resource task of translating English into Kazakh,
for which the size of clean training data is insuffi-
cient to train a bilingual AR model from scratch.
We instead distill translations from the publicly
available multilingual AR model, PRISM (Thomp-
son and Post, 2020). We then pair it with the higher-
resource but related language Russian to encourage
positive transfer to Kazakh. Given the huge dif-
ference in data sizes for Russian and Kazakh (see
Table 1), we sample training data from the two
languages based on the data size scaled by a tem-
perature value τ , p1/τ

l (Arivazhagan et al., 2019),
where, pl = Dl∑kDk

. We experiment with multiple
temperature values (1, 3, 5, 10, 20) and pick the
best value (τ = 5;p

1/τ
RU = 0.75, p

1/τ
KK = 0.25) based

on the performance on the validation set.

MODEL TEACHER EN-KK EN-RU

PRISM - 8.9 27.0

Bilingual Models
AR

PRISM
4.4 -

CTC 1.2 -
Multilingual Models
AR

PRISM
7.1 +2.7 26.0

CTC 2.8 +1.6 20.4

Table 5: Results on English→ Kazakh, Russian.

As can be seen in Table 5, both AR and
CTC show positive transfer when translating into
Kazakh when trained in combination with Rus-
sian. The multilingual CTC model is able to im-
prove over the bilingual CTC model, but the over-
all quality of the outputs is very low compared to
the teacher model (BLEU: -5.3). This experiment
showcases that current NAR models do not per-
form well on very low-resource language pairs and
might need further data augmentation (Song et al.,
2022) or transfer from other similar languages.7

6 Impact of Model Scale

We hypothesized in Section 4 that CTC might re-
quire more capacity than AR models. If we in-
crease the parameters for NAR models sufficiently,
could we reach AR quality? Scaling laws can char-
acterize the relationship between MT quality, the
cross-entropy loss and the number of parameters

7We do not train IMPUTER for KK as the quality of the
distilled dataset and alignments from CTC is very low.
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used for training the model (Ghorbani et al., 2021;
Gordon et al., 2021).

We derive the relationship between BLEU and
the number of parameters for our AR and CTC
models directly from the scaling laws proposed by
Gordon et al. (2021) and Ghorbani et al. (2021) as
follows:

L(N) ≈ L0 + αn(1/N)αk (Ghorbani et al., 2021)

BLEU(L) ≈ Ce−kL (Gordon et al., 2021)

BLEU(N) ≈ ae−b(1/N)c (this work)

where L is the test loss, {αn, αk, L0,C, k} are
fitted parameters from previous power laws, and{a, b, c} are the collapsed fitted parameters of our
power law. Ghorbani et al. (2021)’s L0 corresponds
to the irreducible loss of the data (here: a).

Setup We train seven models with varying capac-
ity for AR and CTC models. The number of layers
and model sizes are varied as: (6, 128), (6, 256),
(12, 256), (12, 512),8 (24, 512), (12, 1024), (24,
1024). The feed-forward size is 4× the model size.
AR models have equal numbers of encoder and
decoder layers. The number of attention heads is
given by (8/(512/Model Size)). For a fair com-
parison, we train both AR and CTC models on dis-
tilled outputs from AR-big in Table 2. The evalu-
ation is conducted in the challenging six-language
negative-transfer scenario from Section 4, where ca-
pacity bottlenecks are likely to be most pronounced.
We report BLEU averaged across six languages.

Results Figure 3 shows the fitted parameters us-
ing the scaling law, which can almost perfectly
describe the relationship between the number of
parameters and the development BLEU (R2: 0.99).
We can see that CTC, even with many more param-
eters, do not come even close to the performance of
AR models and plateaus early at a BLEU of 26.7,
while AR models plateau at 30.8. By projecting
the curves out to 1 billion parameters, we show that
increasing the capacity of NAR is insufficient to
reach the quality of AR models.

7 Related Work

Multiple approaches with varying architectures
(Gu et al., 2018, 2019; Chan et al., 2020; Xu and
Carpuat, 2021), custom loss functions (Ghazvinine-
jad et al., 2020; Du et al., 2021) and training strate-
gies (Ghazvininejad et al., 2019; Qian et al., 2021)

8Size for experiments in Section 4.

Figure 3: BLEU versus number of parameters and fit-
ted power-law curves (R2 AR: 0.99, R2 CTC: 0.99).

have been used to enable parallel generation of
output tokens for MT with sequence-level knowl-
edge distillation as one of the key ingredient in the
training of NAR models. Both supervised, and
unsupervised (Sun et al., 2020) MT have benefitted
from training with multiple languages, especially
those that have tiny (Siddhant et al., 2020) to no
training data (Zhang et al., 2020). However, multi-
lingual modeling has not yet received any attention
in the NAR literature, which we explore in this
work. One limitation of our study is that we choose
one representative system for NAR and semi-NAR
modeling over the full breadth of NAR options.

8 Conclusion

Multilingual translation is a valuable feature of AR
models, therefore, we have tested NAR models
for that same capability. We focus on challenging
scenarios to discover potential weaknesses and to
identify areas for future work. In a relaxed set-
ting with little interference between languages and
balanced data, multilingual NAR models nicely
exhibit positive transfer, practically closing the gap
to AR models with a few decoding iterations. How-
ever, we do not see the same positive transfer in a
true low-resource scenario. Experiments in a six-
language scenario reveal that multilingual NAR
models suffer proportionally more from negative
interference than AR models. Our derived scaling
laws show that scaling up CTC model parameters
is not a sufficient remedy. Our analysis identified
two issues that hurt translation quality and worsen
with multilinguality, namely output length control
and the generation of invalid words. We have also
shown beneficial properties of using multilingual
teachers for distillation. We hope that this work
will serve as a call for increased focus on multilin-
gual modeling in NAR research.
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Loïc Barrault, Ondřej Bojar, Marta R Costa-Jussa,
Christian Federmann, Mark Fishel, Yvette Gra-
ham, Barry Haddow, Matthias Huck, Philipp Koehn,
Shervin Malmasi, et al. 2019. Findings of the 2019
conference on machine translation (wmt19). In
Proceedings of the Fourth Conference on Machine
Translation (Volume 2: Shared Task Papers, Day 1),
pages 1–61.
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Abstract
The cornerstone of multilingual neural transla-
tion is shared representations across languages.
Given the theoretically infinite representation
power of neural networks, semantically identi-
cal sentences are likely represented differently.
While representing sentences in the continuous
latent space ensures expressiveness, it intro-
duces the risk of capturing of irrelevant features
which hinders the learning of a common rep-
resentation. In this work, we discretize the en-
coder output latent space of multilingual mod-
els by assigning encoder states to entries in a
codebook, which in effect represents source
sentences in a new artificial language. This
discretization process not only offers a new
way to interpret the otherwise black-box model
representations, but, more importantly, gives
potential for increasing robustness in unseen
testing conditions. We validate our approach
on large-scale experiments with realistic data
volumes and domains. When tested in zero-
shot conditions, our approach is competitive
with two strong alternatives from the literature.
We also use the learned artificial language to an-
alyze model behavior, and discover that using
a similar bridge language increases knowledge-
sharing among the remaining languages.

1 Introduction

A promising potential of multilingual (Dong et al.,
2015; Firat et al., 2016; Ha et al., 2016; Johnson
et al., 2017) neural machine translation (NMT) is
knowledge-sharing between languages. To enable
knowledge-sharing, a prerequisite is the ability to
capture common features of languages, especially
between related ones. Constructed languages such
as Interlingua and Esperanto are excellent exam-
ples of human-designed structures based on the
commonalities of a wide range of related languages.
For data-driven models, however, it is difficult to
leverage such resources due to data scarcity: There
is little parallel data to these constructed languages,
and creating new translation heavily depends on

source sentence learning a new language
(English) ↓ ↓ ↓ ↓

discrete codes 3 609 57 1042

source sentence belajar bahasa baru
(Indonesian) ↓ ↓ ↓

discrete codes 3 57 258

Table 1: We aim to learn a sequence of discrete codes to
represent source sentences in multilingual NMT models.
Our goal is to 1) improve inference-time robustness, 2)
have more interpretable intermediate representations.

expert curation. Instead of relying on manually-
created data, we aim to learn an artificial language
in a more unsupervised fashion in parallel with
training the NMT model. Specifically, our goal
is to learn a sequence of tokens to represent the
source sentences, which then serves as context for
the NMT decoder. Table 1 illustrates this idea.

A potential advantage of representing inputs in
discrete tokens is robustness, a property especially
relevant when NMT systems must cope with un-
expected testing conditions. By discretization, we
restrict the continuous latent space to a finite size,
providing the possibility for model intermediate
representations to fall back to a position seen in
training. For instance, in zero-shot translation,
where the model translates directions never seen in
training, the inference-time behavior is often unsta-
ble (Gu et al., 2019; Al-Shedivat and Parikh, 2019;
Rios et al., 2020; Raganato et al., 2021). In practice,
pivoting through an intermediate language typically
gives a strong performance upper bound difficult to
surpass by direct zero-shot translation (Al-Shedivat
and Parikh, 2019; Arivazhagan et al., 2019a; Zhu
et al., 2020; Yang et al., 2021b). Mapping the
source sentences to discrete codes could act as a
pseudo-pivoting step, which we hope to make the
model more robust under zero-shot conditions.

The discrete codes also provide a new way to
interpret model representations. While there are a
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wealth of methods to analyze knowledge-sharing
in multilingual NMT (Aji et al., 2020; Mueller
et al., 2020; Chiang et al., 2022), they mostly ei-
ther measure translation performance as a proxy, or
involve sophisticated post-processing after model
training, e.g. correlation scores between model hid-
den states (Kudugunta et al., 2019; Chiang et al.,
2022), training classifiers to probe linguistic fea-
tures (Liu et al., 2021a), or pruning model submod-
ules (Kim et al., 2021). In contrast, when the model
hidden states are directly associated with discrete
tokens, they are directly more interpretable. This
characteristic is especially relevant in unseen test-
ing conditions, where it is important to pinpoint the
underlying cause of model behavior.

Despite the advantages, discretizing the latent
space of NMT models makes them inherently less
expressive than their fully continuous counterparts.
Maintaining translation performance relative to the
continuous models is therefore a challenge. To
strike a balance between expressiveness and dis-
cretization, we propose a soft discretization ap-
proach: In training, we assign each encoder hidden
state to an entry in a fixed-size codebook. This step
in effect clusters encoder hidden states to one of
the many cluster centers in the latent space. The
codebook where the cluster centers come from is
then trained along with the translation model. To
ensure that the decoder receives sufficient context
information, we make it access both the discretized
or continuous context, as illustrated in Figure 1. In
our experiments on data from the Large-Scale Mul-
tilingual Translation Shared Task (Wenzek et al.,
2021) from WMT21 (Akhbardeh et al., 2021), our
approach is able to learn meaningful discrete codes
and achieve translation performance competitive
with models with continuous latent spaces. Our
main contributions are:

• We propose a framework to learn discrete to-
kens as intermediate representations of multi-
lingual NMT models (§3).

• On large-scale multilingual translation ex-
periments, our approach is competitive with
strong alternatives while offering more inter-
pretable intermediate representations (§5.1).

• We use the learned discrete codes to study
the role of bridging languages. Using two
novel analyses, namely code overlap and code
translation, we discover that using a similar
bridge language facilitates knowledge-sharing
in all languages covered by the model (§5.2).

encoder

decoder

x1 x2 x3 x4 x5

h1 h2 h3 h4 h5

e1 e2 ... eK

h1' h2' h3' h4' h5'
Discretized

context:

Continuous 
context:

Codebook (K entries)

Nearest-neighbor lookup

Decoder sees discretized/continous context based on p

Input
tokens:

1-p
p

Figure 1: An illustration of our approach, which intro-
duces a codebook for discretizing the encoder output la-
tent space. During training, the decoder sees discretized
and continuous context based on probability p. For in-
ference, we use the continuous context, which have been
well-clustered into a set of cluster centers after training.

2 Related Work

Multilingual Machine Translation Multilingual
translation models are able to multitask over many
language pairs. For this large-scale multi-task
learning problem, training data plays a critical role.
Low-resource directions often need upsampling to
perform well (Arivazhagan et al., 2019b; Tang et al.,
2021), which, meanwhile, brings capacity bottle-
necks (Aharoni et al., 2019) to high-resource lan-
guages. This capacity bottleneck can be eliminated
by dedicated language-specific capacity (Bapna
and Firat, 2019; Philip et al., 2020; Shazeer et al.,
2017; Zhang et al., 2021). When scaling up trans-
lation coverage (Aharoni et al., 2019; Zhang et al.,
2020; Fan et al., 2021), zero-shot directions that
have not seen any parallel training data is more
likely to get encountered. While many dedicated
models or objectives have been proposed to im-
prove the zero-shot performance (Al-Shedivat and
Parikh, 2019; Arivazhagan et al., 2019a; Pham
et al., 2019; Zhu et al., 2020; Son and Lyu, 2020;
Liu et al., 2021a; Yang et al., 2021b; Raganato
et al., 2021), there is in general a tradeoff between
supervised and zero-shot performance.

Robustness in Zero-Shot Conditions Zero-shot
generalization is a widely-discussed direction in
machine learning research (Socher et al., 2013;
Norouzi et al., 2014; Romera-Paredes and Torr,
2015; Xian et al., 2017). In the context of NMT,
early multilingual models already possess some
capability of zero-shot translation of directions un-
seen in training (Ha et al., 2016; Johnson et al.,
2017). However, zero-shot performance has been
shown highly sensitive to, among other factors,
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training data diversity (Rios et al., 2020), language
token strategies (Wu et al., 2021; ElNokrashy et al.,
2022), and dropout configurations (Arivazhagan
et al., 2019a; Liu et al., 2021b). A main cause
of the degraded quality is that the zero-shot infer-
ence generates off-target translation (Zhang et al.,
2020) into a language other than the desired one.
In recent shared tasks (Anastasopoulos et al., 2021;
Libovický and Fraser, 2021a), generating synthetic
data by back-translation (Sennrich et al., 2016) to
eliminate zero-shot conditions has been a dominant
approach for improving upon pure unsupervised
settings (Pham et al., 2021; Zhang and Sennrich,
2021; Liu and Niehues, 2021; Knowles and Larkin,
2021; Libovický and Fraser, 2021b). A main mo-
tivating factor for converting zero-shot conditions
to semi-supervised ones is that the latter provides
more robust and consistent inference-time behav-
ior. In this light, to fully realize the potential of
knowledge-sharing in multilingual NMT, improv-
ing zero-shot robustness is an essential task.

Discrete Representations Vector Quantized
Variational Autoencoder (VQ-VAE; van den Oord
et al. 2017) learns discrete tokens for continuous
inputs such as images and audio, and showed its
effectiveness in creating discrete representations
for speech representations on practical tasks (Tjan-
dra et al., 2020; Baevski et al., 2020). Kaiser et al.
(2018) proposed an improvement to VQ-VAE by
slicing, i.e. decomposing to quantization input and
output into several subspaces. The sliced variant
was used in auto-encoding for learning shorter se-
quences, which allows to accelerate the target gen-
eration in auto-regressive decoders. The most re-
lated work to ours is probably that of Escolano
et al. (2021), who used sliced VQ-VAE (Kaiser
et al., 2018) on translation tasks. The main dif-
ference is that our focus is fully parameter shared
multilingual systems while Escolano et al. (2021)
focused on auto-encoding and bilingual systems
using language-specific encoders and decoders.
Therefore, in Escolano et al. (2021) zero-shot trans-
lation only occurs after a subsequent training step
on dedicated encoder for the new language. More-
over, our approach extends sliced VQ-VAE (Kaiser
et al., 2018) by soft codes that utilizes both contin-
uous and quantized encoder hidden states.

3 Learning Discrete Codes

As motivated in §1, we aim to learn to represent
sources sentences with a sequence of discrete codes

encoder

Continuous 
context:

Input
tokens:

K entries

Codebook (size: K × D) 
 

hi' = q(enc(xi))

... ... xi ... ...

hi

Discretized
context:

...      ... ...      ... K entries

D/4

Quantization module

entry 853

entry 279

entry     3

entry 106

Discrete codes for xi:  
3    853   279  106

(example with 4 slices)

Figure 2: Illustration of the generation of the discrete
codes based on a sliced (Kaiser et al., 2018) codebook.

out of a codebook. To this end, alongisde the trans-
lation objective, we also train our model to par-
tition the continuous latent space of the encoder
output into discrete subspaces. Each of the discrete
subspaces is represented by one of the k entries
(cluster centers) from a trainable codebook, and the
encoder hidden states are assigned to these entries.
To learn a meaningful discretization, the learned
cluster centers must fulfill some requirements: 1)
avoid trivial solutions where all points are assigned
to one or a few codebook entries, 2) carry sufficient
context information for the decoder for the trans-
lation task, despite being less expressive than the
encoder output prior to the discretization step.

3.1 Discretizing Encoder Latent Space

Compared to a standard Transformer (Vaswani
et al., 2017), our model includes a quantization
module between the encoder and decoder. We de-
note the quantization operation as q(·). Before be-
ing passed to the decoder, the encoder hidden states
enc(X) for input sequenceX first goes through the
quantization module, which runs a nearest neighbor
lookup in an embedding table, i.e. the codebook.
Following the notations from van den Oord et al.
(2017), the codebook e ∈ RK×D has K entries,
each with dimensionality D. In our case, D is
the same as the embedding dimension of the en-
coder, resulting in q(enc(X)) with the same shape
as enc(X).
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For an input token Xi, its quantized represen-
tation is one of the K entries from the codebook
ek∈[1,K], where k is determined by a nearest neigh-
bor search in the embedding space, using the en-
coder output enc(Xi) as query:

k = argmin
j∈[k]

∥enc(Xi)− ej∥2, (1)

where ∥ · ∥2 indicates the Euclidean distance.
The quantization step above is vulnerable to in-

dex collapse (Kaiser et al., 2018), where only few
entries from the embedding table are actively used.
On auto-encoding tasks, Kaiser et al. (2018) pro-
posed a countermeasure by breaking down the hid-
den dimension into multiple slices and quantizing
each of them. Specifically, for input token Xi, its
encoder hidden state enc(Xi) is split into S slices:

enc(Xi)1 ⊕ enc(Xi)2 · · · ⊕ enc(Xi)S , (2)

where each slice enc(Xi)j∈[S] is of D/S dimen-
sions. A nearest neighbor search is conducted for
each slice on the corresponding dimensions in the
embedding table. The results are then concatenated
and form the quantized representation:

q(enc(Xi)1)⊕ q(enc(Xi)2) · · · ⊕ q(enc(Xi)S),
(3)

and passed to the decoder as context. Figure 2
illustrates this process.

The slicing mechanism resembles multi-head
attention (Vaswani et al., 2017) in that both split
the embedding dimension into subspaces for richer
representation. Therefore, we will use the same
number of slices as the number of attention heads.

3.2 Soft Discrete Codes

Training Compared to encoder outputs in a con-
tinuous space, the quantization module is an infor-
mation bottleneck. In practice, limiting the amount
of context information passed to the decoder will
likely degrade translation quality. To strike a bal-
ance between discretization and performance, we
make the discrete codes soft, in that the decoder
can still access to the richer information prior to
quantization by a probability. Specifically, during
training, the encoder gives the quantized context
q(enc(X)) by probability p, and the raw context
enc(X) by probability 1 − p. This procedure is
illustrated in Figure 1.

In Equation 1, the lookup of index k is a non-
differentiable operation. When the encoder passes

on the quantized context, in order to train the pa-
rameters below the quantization module, we use
the straight-through estimator (Bengio et al., 2013)
to copy gradients onto the pre-quantization encoder
outputs. For the copied gradients to be useful
for training, the difference between enc(Xi) and
q(enc(Xi)) should be limited. To achieve this, we
use the codebook loss and commitment loss from
VQ-VAE (van den Oord et al., 2017):

Lcodebook = ∥sg[enc(X)]− q(enc(X))∥2 (4)

and

Lcommitment = ∥enc(X)− sg[q(enc(X))]∥2, (5)

where sg[·] denotes the stop gradient operation. In-
tuitively, Equation 4 pushes the codebook entries
closer to the points assigned to them, while Equa-
tion 5 limits the growth of the encoder hidden states
by clipping them to the codebook entries. Each of
the terms has weights αcodebook and αcommitment to
control their importance relative to the main trans-
lation objective.

Inference After training with this mechanism,
one can expect that the encoder hidden states are
well-clustered around a set of codebook entries.
At test time, we use the continuous context enc(X)
which still carries more information than the cluster
centers represented by the codebook entries. We
will verify this property in later experiments (§6).

4 Experimental Setup

To experiment on realistic data volumes, we use the
parallel data1 from the Large-Scale Multilingual
Machine Translation Shared Task (Wenzek et al.,
2021) from WMT 2021 (Akhbardeh et al., 2021).
We focus on small-task-2 on Southeast Asian lan-
guages. To study model robustness in zero-shot
conditions and the role of language relatedness, we
select parallel data between the two high-resource
languages: Indonesian (id) and English (en) and
three other languages in the Austronesian family:
Javanese (jv), Malay (ms), and Filipino/Tagalog
(tl). This leads to two data conditions:

• Indonesian-bridge (ID-BRIDGE)
• English-bridge (EN-BRIDGE)

As pretrained initialization has been shown ben-
eficial in many submissions last year (Yang et al.,

1https://data.statmt.org/wmt21/
multilingual-task/small_task2_filt_v2.tar.gz
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jv ms tl id en
jv 340K 662K 644K 2,556K
ms 2M 1,174K 4,060K 12,023K
tl 3M 16M 2,356K 12,348K
en 18M 230M 158M
id 5M 65M 30M

Table 2: Number of sentence pairs (above diagonal)
and target tokens (below diagonal) from bitext for each
languages pair after preprocessing. Data marked with
light gray are used in the main experiments.

2021a; Liao et al., 2021; Xie et al., 2021), we initial-
ize the models with the pretrained M2M-124 model
provided in the shared task (Wenzek et al., 2021). It
is worth noting that M2M-124 has seen parallel data
for our zero-shot directions, hence zero-shot only
describes the condition in our finetuning step. This
setup is motivated by the observation that exist-
ing pretrained models are often trained on massive
amounts of data, which are not always feasible to
access or store. We therefore treat the pretrained
M2M-124 as a given resource, without relying on
all its training parallel data. We use this setup to
especially study if the models can retain the pre-
trained knowledge on directions that are zero-shot
in finetuning.

4.1 Data

The training parallel data (Wenzek et al., 2021) are
compiled from the OPUS platform (Tiedemann,
2012). The specific datasets are listed in Ap-
pendix B. As parts of the training data are crawled
and therefore rather noisy, we follow the filter-
ing steps opened sourced by Fan et al. (2021), in-
cluding length filtering, bitext de-duplication, and
histogram filtering. An overview of the training
data after filtering is in Table 2. Following the
evaluation protocol of the shared task (Wenzek
et al., 2021), we report spBLEU on the FLoRes-
101 (Goyal et al., 2022) devtest set. We additionally
report chrF++ (Popović, 2017) as another metric.

4.2 Baselines

Besides comparing to directly training on our base-
line model, we also compare to two existing ap-
proaches that encourage language-independent rep-
resentations, both of which have been shown effec-
tive in zero-shot translation:
Language-Independent Objective (Pham et al.,
2019; Arivazhagan et al., 2019a) applies an ad-
ditional loss function that enforces the represen-
tations for the source and target sentences to be

similar. The loss function minimizes the difference
between encoded source and target sentences after
pooling. Details about the implementation are in
Appendix C.1.
Adversarial Language Classifier (Arivazhagan
et al., 2019a) aims to remove source language sig-
nals from the encoder hidden states, and thereby
create more language-independent representations.
A language classifier is trained on top of the en-
coder, and its classification performance is used
adversarially on the encoder through a gradient re-
versal layer (Ganin et al., 2016). Details about the
implementation are in Appendix C.2.

4.3 Training and Inference Details

As motivated in §4, we finetune from the small vari-
ant of M2M-124 with 175M parameters. This model
has a vocabulary size of 256K, 6 layers in both
the encoder and decoder, 16 attention heads, em-
bedding dimension of 512 and inner dimension of
2048. As the training data for different languages
are very unbalanced, we use temperature-based
sampling (Arivazhagan et al., 2019b) with coeffi-
cient 5.0, which heavily upsamples low-resource
directions and is recommended for unbalanced data
conditions (Arivazhagan et al., 2019b; Tang et al.,
2021). Additional details are in Appendix A.

For our codebook approach, we use 10K code-
book entries. Initial trials with a size of 1K gave
worse performance, while 40K heavily reduced
training speed. We choose 16 slices2 for the code-
book, the same value as the number of attention
heads. We keep these two values identical as both
slicing and multi-head attention breaks the embed-
ding dimension into multiple subspaces of lower
dimensionality. The scale on the codebook loss
and commitment loss (αcodebook and αcommitment)
are 1.0 and 1.001. We found the model sensitive to
increasing αcommitment, where higher values leads
to index collapse3. After exponentially decreasing
it to approach 1.0, we settled at 1.001. For the prob-
ability of seeing the continuous encoder context,
with a search among {0.1, 0.5, 0.7 0.9}, we found
0.9 and 0.5 the best parameters for ID-BRIDGE and
EN-BRIDGE respectively.

We implement our approach and the two base-
lines (§4.2) with FAIRSEQ (Ott et al., 2019)4.

2Initial experiments on smaller datasets showed weaker
translation performance with 2 and 4 slices.

3A potential reason is the encoder parameters are updated
too aggressively by the commitment loss in these cases.

4Code available at: https://github.com/dannigt/
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ID Model Avg. spBLEU(↑) (left) and chrF++(↑) (right)

{jv, ms, tl} →X X→ {jv, ms, tl} Y↔Z Avg. (all dir.)

ID-BRIDGE (X=id)
(1) random initialization 27.5 52.7 24.2 49.4 15.8 41.5 20.8 46.3
(2) M2M-124 (Fan et al., 2021; Goyal et al., 2022) 20.0 45.7 14.7 38.9 9.9 34.3 13.6 38.3
(3) ↪→ parallel data (no data for Y↔Z) 27.1 52.5 24.2 49.6 17.7 43.3 21.7 47.2
(3.1) + language-independent objective 27.1 52.4 24.2 49.6 18.4 43.8 22.0 47.4
(3.2) + adversarial language classifier 27.5 52.9 24.1 49.6 18.4 44.2 22.1 47.7
(3.3) + codebook (ours) 27.2 52.4 23.6 49.2 18.3 44.0 21.9 47.4

EN-BRIDGE (X=en)
(4) random initialization 27.0 51.1 27.8 51.6 6.8 24.5 17.1 37.9
(5) M2M-124 (Fan et al., 2021; Goyal et al., 2022) 19.6 43.6 14.0 37.5 9.9 34.3 13.3 37.4
(6) ↪→ parallel data (no data for Y↔Z) 28.1 51.8 27.6 51.8 5.1 20.3 16.5 36.1
(6.1) + language-independent objective 27.9 51.7 27.2 51.4 17.3 42.8 22.4 47.2
(6.2) + adversarial language classifier 27.6 51.5 27.1 51.5 17.2 42.8 22.3 47.2
(6.3) + codebook (ours) 26.8 50.6 26.3 50.9 15.2 39.3 20.9 45.0

Table 3: Translation quality in spBLEU(↑) and chrF++(↑). “↪→” indicates finetuning on the parallel data (ID-
BRIDGE or EN-BRIDGE; §4). Pivoting through the bridge language for Y↔Z directions scores 19.7, 17.5 spBLEU
and 44.9, 42.8 chrF++ for ID-BRIDGE and EN-BRIDGE respectively using the systems in rows (1) and (4).

5 Main Results

We first discuss the translation performance of
our multilingual systems (§5.1), and then use the
learned discrete codes to investigate cross-lingual
knowledge-sharing of the trained models (§5.2).

5.1 Translation Performance

Baseline Conditions To set the upcoming results
in context, we first present the performance of train-
ing without additional improvements in rows (1)-
(3) and (4)-(6) of Table 3. Rows (1) and (4) show
the performance of training with random initial-
ization. This corresponds to a condition where
we have parallel data but no pretrained resources.
On the other side of the spectrum, in row (2) and
(5), we report the results of directly running in-
ference on the pretrained M2M-124 model. This
corresponds to another extreme where we have ac-
cess to pretrained models but cannot additionally
train on parallel data. In rows (3) and (6), we com-
bine the best of two worlds: initializing with pre-
trained model and finetuning on parallel data. For
supervised directions, pretraining mainly improves
→English directions: In the EN-BRIDGE condition,
initializing with M2M-124 gains 1.1 spBLEU over
random initialization, from 27.0 to 28.1 spBLEU.
For other supervised directions, however, we do
not observe gains from pretraining. This could
be related to the pretrained model being particu-
larly strong at decoding English. For zero-shot
directions in our setup (these directions are seen

fairseq/tree/master/examples/quant

in training by the pretrained model), as they are
comparatively low-resource among all the direc-
tions covered in M2M-124, out-of-box translation
quality on these directions is relatively low, with an
average of 9.9 spBLEU. However, when finetuning,
we see a striking difference between ID-BRIDGE

and EN-BRIDGE: there is a large gain from 9.9 to
17.7 spBLEU with the former, but a degradation
from 9.9 to 5.1 spBLEU for the latter. We study
this phenomenon next.

Impact of Bridge Languages For EN-BRIDGE,
the finetuning step causes catastrophic forgetting
of the zero-shot directions (−4.8 spBLEU). On the
other hand, for the ID-BRIDGE condition, pure fine-
tuning leads to substantial improvements in both
supervised and zero-shot directions. The gain from
9.9 to 17.7 spBLEU in the Y↔Z directions is par-
ticularly noteworthy since the model has not seen
parallel data for these directions in finetuning. This
indicates that the growth in supervised directions
brings zero-shot directions forward too. Moreover,
on these directions, pretraining also gives large gain
of 1.9 spBLEU over random initialization. Over-
all, the observations suggest that incorporating a
similar language as bridge is beneficial to re-using
pretrained knowledge. Furthermore, given that the
amount of parallel data in the EN-BRIDGE condi-
tion is nearly 4 times of that in the ID-BRIDGE

condition, using a similar bridge language also ap-
pears to be more data-efficient. This likely related
to all translation directions being similar, therefore
easing the multilingual learning task.
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Impact of Using Codebooks Compared to pure
finetuning in rows (3) and (6), by incorporating the
codebook we improve zero-shot translation by 0.6
and 10.1 spBLEU for ID-BRIDGE andEN-BRIDGE

respectively. Compared to the two existing ap-
proaches, namely language-independent objective
and adversarial language classifier in rows (∗.1)
and (∗.2), our approach performs on par with them
for ID-BRIDGE, achieving 18.3 spBLEU for Y↔Z
directions and 21.9 spBLEU over all directions. In
the more challenging EN-BRIDGE condition, we
fall behind the two other approaches by around 2.0
spBLEU on zero-shot directions. Using a language
identifier5 (Costa-jussà et al., 2022), we found that
the culprit here is still off-target translation, where
some test sentences were translated to an incorrect
language. While our codebook approach reduces
the proportion of off-target sentences from 87.4%
to 13.1% compared to the pure finetuning base-
line in row (6), the figure is still higher than the
4.7% achieved by the two alternative models in
rows (6.1) and (6.2). Despite this gap, an advan-
tage of our approach is easier analyses of learned
representations, which we will now leverage to in-
vestigate why the two data conditions come with
very distinct zero-shot behavior.

5.2 Using Discrete Codes to Interpret Learned
Representations

Since our codebook approach allows easier inter-
pretation of model hidden representations, we take
advantage of this characteristic to answer the fol-
lowing question: why is the ID-BRIDGE data con-
dition more performant despite using less data?

Formalization To this end, we first extract the
discrete codes for all source languages on the test
set6. Given a total of S slices, a sentence with t
tokensX1,...,t is represented as S sets of discrete to-
kens T s

1,...,t for slice s, where s∈[S]. Between two
sets of semantically identical sentences (e.g. mul-
tiway test sets in two different languages), we can
compare the discrete codes by examining: 1) their
overlap and 2) the difficulty of transforming one
set to another. The results quantify the similarity
between the two sets of codes, and hence the model
representations for the two source languages.

5https://github.com/facebookresearch/fairseq/
tree/nllb#lid-model

6The FLoRes-101 test set is multiway. Therefore the se-
mantic meanings of the sentences are the same.
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Figure 3: KL divergence(↓) of code distribution for the
ID-BRIDGE (left) and EN-BRIDGE (right) setup. Lower
values indicate a higher degree of sharing. ID-BRIDGE
results in more sharing not only between itself and {ms,
jv, tl} but also among {ms, jv, tl}.

Discrete Code Distribution For each slice, we
normalize the code occurrences into a probability
distribution. The distribution P is defined by:

p(ci) =
frequency(ci)∑

cj∈[C] frequency(cj)
, (6)

where ci is a discrete code from the set [C]. For a
pair of languages i and j, we then compute the KL
divergence between their code distributions Pi and
Pj :

D
(i,j)
KL = (Pi||Pj). (7)

Figure 3 depicts the KL divergence of code dis-
tribution averaged over all slices. A comparison
of the En- and ID-BRIDGE setup exhibits several
major differences. First, the clearly prominent
first row and column in EN-BRIDGE shows that
its bridge-language is represented very differently
from all other languages ({ms, jv, tl}). For the
ID-BRIDGE counterpart, the difference between
the bridge language and the remaining languages
is much milder. Second, but perhaps more im-
portantly, among the languages used in zero-shot
directions ({ms, jv, tl}), the amount of sharing is
also higher under the ID-BRIDGE setup. This find-
ing is crucial as the raw tokens for {ms, jv, tl} are
identical between the ID-BRIDGE and EN-BRIDGE

setup. Therefore, the higher degree of sharing is
clearly an outcome of the model creating its repre-
sentations differently. Overall, these results show
that the choice of the bridge language not only im-
pacts the knowledge-sharing mechanism between
itself and the remaining languages, but also for the
remaining languages in the model.

Discrete Code Translation The code distribu-
tion analysis above makes a simplified assumption
by considering the discrete codes as a bag of words.
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To additionally assess the structural (dis)similarity
between the code representations for different lan-
guages, we consider the task of translating the
discrete codes of a language to another.

While a constructed language like Interlingua
would create the same representations for the
source sentences with identical meanings, our dis-
crete code representation is not yet invariant to the
source language. Nevertheless, we do expect them
to be more abstracted from the source sentences,
making the translation task easier than directly be-
tween the raw tokens. Here we train a translation
model on the discrete codes and use the test per-
formance to quantify how similarly the source lan-
guages are represented. When the representations
are more different from each other, i.e. language-
specific, the translation quality on the discrete is
expected to be lower.

Specifically, we randomly sample 100K sen-
tence pairs7 for each translation direction in the
experiments of Table 3 extract their discrete codes
assigned by the trained models (rows (3.3) and
(6.3) of Table 3), and train a new Transformer-
base (Vaswani et al., 2017) to translate between
the extracted codes of different languages. We flat-
ten the slices, therefore making each source token
represented by 16 discrete codes. After training
for 200K steps, we report BLEU scores on the test
set, which is also converted to discrete codes. The
results are shown in Figure 4. First, the translation
task is clearly easier on the discrete codes derived
from the ID-BRIDGE system. Second, the scores
differences are especially prominent when translat-
ing out of Malay (ms) and Javanese (jv), which are
more related to Indonesian than Filipino/Tagalog
(tl). Along with the results from the code over-
lap, our results show that using a similar bridge
language results in higher knowledge-sharing not
only syntactically but also structurally, especially
between related languages.

6 Analyses on Learned Discrete Codes

Next we further investigate the discrete codes re-
garding its usefulness for the learned representa-
tions (§6.1) as well as the translation task (§6.2).

6.1 How well-clustered are the hidden states?

As motivated in §3, although at inference time we
use the continuous encoder hidden states instead of

7The training data (Table 2) allow us to use 340K sen-
tences. We sampled 100K for faster experiment iteration.

id ms jv tl

id
m

s
jv

tl

43.3 49.8 42.8

49.8 43.8 43.3

35.9 38.1 51.9

21.4 34.6 23.8

en ms jv tl

en
m

s
jv

tl

37.7 30.8 44.1

34.8 34.7 28.6

27.1 25.2 42.8

22.2 32.6 19.9
0

10

20

30

40

50

Figure 4: BLEU(↑) scores of translating between dis-
crete codes for the ID-BRIDGE (left) and EN-BRIDGE
(right) setup. Higher values indicate a higher degree
of sharing. In general it is easier to translate the codes
for the ID-BRIDGE setup, indicating more structural
similarity between the representations.
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Figure 5: Our codebook approach creates better-
clustered encoder hidden states, as shown by a much
higher percentage of variance explained by PCA com-
pared to both the baseline and a strong alternative ap-
proach (adversarial language classifier).

the cluster centers, the soft discrete codes will still
enforce encoder hidden states into clusters, thereby
resembling a discrete structure. To verify whether
the encoder latent space indeed becomes more dis-
cretized with our approach, we analyze the encoder
hidden states on the test set using Principle Compo-
nent Analysis (PCA). If the data points representing
the encoder outputs are well-clustered, a larger per-
centage of their variance should be explained by
the learned principle components. As shown in Fig-
ure 5, our approach (marked with green line) con-
sistently leads to higher proportions of explained
variances compared to the baseline M2M-124, as
well as the strong alternative approach with the
adversarial language classifier. These results there-
fore confirm the effectiveness of our soft discrete
code approach in enforcing discrete structures in
the encoder latent space.

6.2 Meaningfulness of Clusters Centers

Recall that at inference time our soft discrete code
model uses the encoder hidden states prior to dis-
cretiztaion, although it does use both pre- and post-
discretization encoder context in training. A main
reason of doing so is that discretizing the encoder
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hidden states to cluster centers creates an infor-
mation bottleneck that limits model expressive-
ness. Despite the expected performance degrada-
tion, we are nonelessness interested in quantifying
how much information is lost by using the clus-
ter centers as context instead. In other words, the
question is how meaningful are the cluster centers
for the translation task? In Table 4, we report the
results of using the cluster centers as context for
the decoder at inference time. Compared to using
the encoder hidden states, we see a degradation
of 4.1 and 1.7 and spBLEU for ID-BRIDGE and
EN-BRIDGE respectively. This indicates that the
cluster centers are still relevant for the translation
task, although much less powerful than the encoder
hidden states prior to discretization. It also rules
out the possibility of the learned codes being triv-
ial repetitions, which would otherwise have been
detrimental to the translation performance.

Encoder States at Inference Avg. spBLEU(↑)
→X X→ Y↔Z Avg.

ID-BRIDGE (X=id)
encoder states (Tab. 3 row (3.3)) 27.2 23.6 18.3 21.9
cluster centers 22.8 20.0 14.3 17.8

EN-BRIDGE (X=en)
encoder states (Tab. 3 row (6.3)) 26.8 26.3 15.2 20.9
cluster centers 24.3 24.6 13.9 19.2

Table 4: At inference time, using cluster centers instead
of the clustered encoder states degrades performance
by 1.7-4.1 spBLEU. Despite the degradation, the scores
show that translation from the clusters centers is still
meaningful. This also rules out the possibility of the
learned codes collapsing to trivial repetitions.

7 Analyses on Zero-Shot Translation

Our experiments so far use single-bridge languages
and are evaluated in part on zero-shot directions.
We now study the impact when either of the two
conditions changes: 1) when parallel data is avail-
able for previously zero-shot directions; 2) when
using multiple bridge languages.

7.1 When does zero-shot translation match
the performance on parallel data?

Zero-shot conditions could be avoided by creat-
ing synthetic data from back-translation (Sennrich
et al., 2016; Zhang et al., 2020) or mining addi-
tional parallel data (Fan et al., 2021; Freitag and
Firat, 2020). Both approaches introduce additional
workflows into the pipeline of building translation

systems. We are therefore interested in the follow-
ing question: How much parallel data do we need
to perform better than direct zero-shot translation?

The training corpora from the shared task (§4.1)
provides an oracle condition to answer this ques-
tion. As shown in Table 2, the oracle parallel data
amounts to 2.2M sentences in total (340K for jv-
ms, 662K for jv-tl, and 1.2M sentences for ms-tl).
We take 100%, 10% and 1% of the oracle parallel
data and training systems together with the original
data and train multilingual systems with the same
configuration as rows (3) and (6) of Table 3. The
results are shown in Table 5.

To our surprise, adding 1% oracle bitext (22K
sentence pairs in total) of the previously zero-shot
directions already results in comparable perfor-
mance to the best zero-shot performance (18.4 and
17.3 spBLEU for ID-BRIDGE and EN-BRIDGE re-
spectively). However, this comes with some degra-
dation on supervised directions of 0.4 spBLEU
for ID-BRIDGE and 0.7 for EN-BRIDGE. This is
likely due to the temperature-based sampling ag-
gressively upsampling the extremely low-resource
directions, meanwhile causing the model to de-
prioritize other higher-resource directions. When
increasing oracle bitext to 10% (220K sentence
pairs in total), the system outperforms direct zero-
shot performance. Lastly, the additional gain ap-
pear to diminish when going from 10% to all oracle
data. For ID-BRIDGE, the performance appears
saturated at 10%: adding the remaining 90% par-
allel data does not give additional gain. On the
contrary, For EN-BRIDGE, the system appears to
still improve, especially on Y↔Z directions (+0.5
spBLEU). The performance on these directions
nevertheless still falls behind the ID-BRIDGE di-
rection by 0.8 spBLEU (18.9 vs 19.7 spBLEU).
An explanation is that the EN-BRIDGE system re-
quires more data to train as a result of the bridge
language being very distant to the rest, thereby
increasing the difficulty of multitasking over all
the translation directions. This echos with the pre-
vious finding that using related bridge languages
eases the multilingual translation task and increases
knowledge-sharing (§5.1).

7.2 Do multiple bridge languages bring
additional gains?

While the experiments so far are based on single
bridge languages, in practice we often have ac-
cess to multi-bridge parallel data. Indeed, recent
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Oracle Bitext Avg. spBLEU(↑)
→X X→ Y↔Z Avg.

ID-BRIDGE (X=id)
best zero-shot (Tab. 3 row (3.2)) 27.5 24.1 18.4 22.1
1% 26.9 23.9 18.4 21.9
10% 27.3 24.5 19.7 22.8
100% (2.2M bitext) 26.6 24.8 19.7 22.7

EN-BRIDGE (X=en)
best zero-shot (Tab. 3 row (6.1)) 27.9 27.2 17.3 22.4
1% 27.0 26.8 17.1 22.0
10% 27.5 27.4 18.4 22.9
100% (2.2M bitext) 27.7 27.5 18.9 23.2

Table 5: Impact of adding oracle parallel data for the
previously zero-shot directions. Adding 10% parallel
data (roughly 220K sentence pairs in our case) surpasses
the best performance on direct zero-shot translation.

Data Condition Avg. spBLEU(↑)
→X X→ Y↔Z Avg.

MULTI-BRIDGE
X= id 27.0 24.3 18.3 21.9
X= en 27.8 27.7 23.0

Only ID-BRIDGE (Tab. 3 row (3)) 27.1 24.2 17.7 21.7
Only EN-BRIDGE (Tab. 3 row (6)) 28.1 27.6 5.1 16.5

Table 6: Results of using multiple bridges (combin-
ing ID-BRIDGE and EN-BRIDGE). Despite substantial
gains over EN-BRIDGE, the multi-bridge system only
gives a mild improvement in zero-shot performance
(Y↔Z) over the ID-BRIDGE system.

works (Freitag and Firat, 2020; Fan et al., 2021)
have shown success on large-scale fully-connected
models, as well as evidence of multi-bridge outper-
forming the English-bridge condition (Rios et al.,
2020). What remains unclear is whether there is
a synergy when combining the parallel data from
several single-bridge conditions. We investigate
this hypothesis by training a multi-bridge system,
combing the data from our ID-BRIDGE and EN-
BRIDGE setup. As shown in Table 6, for supervised
directions of→X and X→, there is no clear differ-
ence between the performance of the multi-bridge
system and that of the single-bridge ones. For
zero-shot directions (Y↔Z), while multi-bridge
gains substantially over EN-BRIDGE (18.3 from
5.1 spBLEU), there is only a slight gain over ID-
BRIDGE. Given that the multi-bridge model more
than doubles the training time of ID-BRIDGE, the
little performance difference to the multi-bridge
system shows that choosing a bridge language re-
lated to the remaining languages is a data-efficient
way to achieve strong zero-shot performance.

8 Conclusion

In this work, we focus on learning to represent
source sentences of multilingual NMT models by
discrete codes. On multiple large-scale experi-
ments, we show that our approach not only increase
the model robustness in zero-shot conditions, but
also offers more interpretable intermediate repre-
sentations. We leverage the latter property to in-
vestigate the role of bridge languages, and show
that using a more related bridge language leads to
increased knowledge-sharing, not only between the
bridge language and remaining but also between
all other languages involved in training.

A limitation is that the discrete codes only give a
mechanism to compare hidden representations, but
are not directly interpretable by humans. A poten-
tial improvement would be to use an existing code-
book that corresponds to an actual human language.
Besides this, as next steps, we plan to improve the
generation process of the discrete codes. The first
direction is to make the code lookup conditionally-
dependent along the time dimension and learn to
shrink the sequence length of the discrete codes,
thereby creating a more compact representation.
Another direction is to explicitly incentivize more
shared codes between different, and especially re-
lated, languages during training. This would bring
the discrete codes closer to a language-independent
representation.
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A Additional Training and Inference
Details

When training, one optimization step happens after
16384 tokens. We use the Adam optimizer with be-
tas (0.9, 0.98). The learning rate is 0.0001 with the
inverse squared root schedule and 2500 warmup
steps. As for regularization parameters, we use
label smoothing of 0.1, dropout of 0.3, and at-
tention dropout 0.1. The models are trained for
500K updates in total. An exception is the MULTI-
BRIDGE experiment with more training data, where
we trained for 800K updates in total. For inference,
we decode with a beam size of 5.

B Dataset Details

The training parallel data include the following cor-
pora: bible-uedin (Christodoulopoulos and Steed-
man, 2015), (Multi)CCAligned (El-Kishky et al.,
2020), Gnome8, ELRC9, KDE410, GlobalVoices11,
OpenSubtitles12, QED (Abdelali et al., 2014), Mul-
tiParaCrawl13, TED202014, Tanzil15, Tatoeba16,
Ubuntu17, WikiMatrix (Schwenk et al., 2021),
wikimedia18, and TICO-19 (Anastasopoulos et al.,
2020).

C Implementation of Baselines

C.1 Language-Independent Objective
We chose meanpool and L2 distance for the similar-
ity loss since it gave better or more consistent per-
formance in initial experiments. As for the weight
of the language-independent objective, we used 1.0
following Pham et al. (2019).

8https://opus.nlpl.eu/GNOME.php
9https://opus.nlpl.eu/ELRC.php

10https://opus.nlpl.eu/KDE4.php
11https://opus.nlpl.eu/GlobalVoices.php
12https://opus.nlpl.eu/OpenSubtitles-v2018.php
13https://opus.nlpl.eu/MultiParaCrawl.php
14https://opus.nlpl.eu/TED2020.php
15https://opus.nlpl.eu/Tanzil.php
16https://opus.nlpl.eu/Tatoeba.php
17https://opus.nlpl.eu/Ubuntu.php
18https://opus.nlpl.eu/wikimedia.php

C.2 Adversarial Classifier
We extend the adversarial language classification
approach from Arivazhagan et al. (2019a) for ro-
bust training. Specifically, we use a modified loss
when adversarially training the encoder. Moreover,
we apply the language classification on the token
level to remove the need for selecting a pooling
method. The classifier minimizes the cross-entropy
loss when predicting the language labels:

Lclassifier = −
L∑

c=1

yclog(pc), (8)

where L is the number of classes to predict, yc
is a binary indicator whether the true language la-
bel is c, and pc is the predicted probability for the
instance belonging to language c.

Removing source language signals from the en-
coder representations can be achieved by a gradient
reversal layer (Ganin et al., 2016) from the lan-
guage classification. An issue with the standard
classification loss in Equation 8 is that, when the
classifier is performing well, the loss landscape
is rather flat, causing minimal gradient flow to
the encoder. In fact, when the classifier predicts
the source languages accurately, we instead need
large gradients to update the encoder representa-
tions as they contain high amounts of language
signals. Therefore, when updating the encoder pa-
rameters adversarially, we use the modified loss:

Ladv_classifier =

L∑

c=1

yclog(1− pc), (9)

which in effect mirrors Equation 8 by the horizontal
axis and the vertical line defined by x = 0.5. With
the modified loss, the optimization direction does
not change, but the gradient is larger when the
classifier is performing well.

The translation model is then trained with:

Lencoder_decoder = LMT + Ladv_classifier. (10)

For training stability, we alternate the optimiza-
tion of the classifier (Equation 8) and the main
encoder-decoder parameters (Equation 10). Opti-
mizing them jointly would otherwise lead to co-
adaptation of the parameters of the translation and
classification module and empirically causes train-
ing instability.
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Abstract

For real-life applications, it is crucial that end-
to-end spoken language translation models per-
form well on continuous audio, without rely-
ing on human-supplied segmentation. For on-
line spoken language translation, where models
need to start translating before the full utterance
is spoken, most previous work has ignored the
segmentation problem. In this paper, we com-
pare various methods for improving models’
robustness towards segmentation errors and dif-
ferent segmentation strategies in both offline
and online settings and report results on transla-
tion quality, flicker and delay. Our findings on
five different language pairs show that a simple
fixed-window audio segmentation can perform
surprisingly well given the right conditions.1

1 Introduction

End-to-end spoken language translation (SLT) has
seen considerable advances in recent years. To ap-
ply these findings to real online and offline SLT
settings, we need to be able to process continu-
ous audio input. However, most previous work
on end-to-end SLT makes use of human-annotated,
sentence-like gold segments both at training and
test time which are not available in real-life set-
tings. Unfortunately, SLT models that were trained
on such gold segments often suffer a noticeable
quality loss when applied to artificially split au-
dio segments (Zhang et al., 2021; Tsiamas et al.,
2022b). This also highlights that a good segmenta-
tion is more important for SLT than for automatic
speech recognition (ASR) because we need to split
the audio into “translatable units”. For a cascade
system, a segmenter/punctuator can be inserted
between the ASR and machine translation (MT)
model (Cho et al., 2017) in order to create suitable
segments for the MT model. However for end-to-

1We publicly release our code and model outputs
here: https://github.com/ZurichNLP/window_
audio_segmentation

gold
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fixed
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Figure 1: Visualisation of the different audio segmenta-
tion methods studied in this paper.

end SLT systems, it is still not clear how to best
translate continuous input.

Solving this problem is very much an active re-
search field that has mainly been tackled from two
sides: (1) improving SLT models to be more robust
towards segmentation errors (Gaido et al., 2020; Li
et al., 2021; Zhang et al., 2021) and (2) developing
strategies to split streaming audio into segments
that resemble the training data more closely (Gaido
et al., 2021; Tsiamas et al., 2022b). Both types of
approaches were successfully used in recent years
for the IWSLT offline SLT shared task (Ansari et al.,
2020; Anastasopoulos et al., 2021, 2022) to trans-
late audio without gold segmentations. However,
they have not yet been tested systematically in the
online SLT setup where translation starts before
the full utterance is spoken. Recent editions of
the IWSLT simultaneous speech translation shared
task focused more on evaluation using the gold seg-
mentation rather than unsegmented audio (Anasta-
sopoulos et al., 2021, 2022). Segmenting stream-
ing audio is especially interesting in online SLT
because aside from effects on translation quality,
different segmentations can also influence the delay
(or latency) of the generated translation.

In this paper, we aim to fill this gap and
focus on the end-to-end online SLT setup. We
suspect that there is an interplay between more
robust models and better segmentation strategies
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and that an isolated comparison may not be
informative enough. Consequently, we explore
different combinations of these two approaches
for two different SLT models and present results
in five language pairs. Figure 1 shows the four
segmentation methods we study in this work (see
also Section 3.3). Our experiments follow the
popular retranslation approach (Niehues et al.,
2016, 2018; Arivazhagan et al., 2020a,b) where
a partial segment is retranslated every time new
audio becomes available. Retranslation has the
advantage of being a simple approach to online
SLT, which can use a standard MT inference
engine. As a side-effect, the previous translation
can change in later retranslations and the resulting
“flicker” (i.e. sudden translation changes in the
output of previous time steps) is also considered in
our evaluation of different strategies.

Our main contributions are:

• We explore various combinations of segmen-
tation strategies and robustness-finetuning ap-
proaches for translating unsegmented audio in
an online SLT setup.

• We find that the advantage of dedicated au-
dio segmentation models over a fixed-window
approach becomes much smaller if the trans-
lation model is context-aware, and merging
translations of overlapping windows can per-
form comparatively to the gold segmentation.

• We discuss issues with the evaluation of delay
in an existing evaluation toolkit for retrans-
lation when different segmentations are used
and show how these can be mitigated.

2 Related Work

In recent years, the IWSLT shared task organisers
have stopped providing gold segmented test sets
for the offline speech translation task which has
lead to increased research focus on audio segmen-
tation (Ansari et al., 2020; Anastasopoulos et al.,
2021, 2022). One obvious strategy to segment au-
dio is to create fixed windows of the same duration,
but previous research has mostly relied on more
elaborate methods. Typically, methods with voice
activity detection (VAD) (Sohn et al., 1999) were
employed to identify natural breaks in the speech
signal. However, VAD models do not guarantee
breaks that align with complete utterances and can

produce segments that are too long or too short
which is why hybrid approaches that also consider
the length of the predicted utterance can be helpful
(Potapczyk and Przybysz, 2020; Gaido et al., 2021;
Shanbhogue et al., 2022). Most recently, Tsia-
mas et al. (2022b) finetune a wav2vec 2.0 model
(Baevski et al., 2020) to predict gold segmentation-
like utterance boundaries, an approach which out-
performs several alternative segmentation methods
and was widely adopted in the 2022 IWSLT offline
SLT shared task (Tsiamas et al., 2022a; Pham et al.,
2022; Gaido et al., 2022).

Apart from improving automatic audio segmen-
tation methods, previous research has also focused
on making SLT models more robust toward seg-
mentation errors. Gaido et al. (2020) and Zhang
et al. (2021) both explore context-aware end-to-
end SLT models and show that context can help to
better translate VAD-segmented utterances. Sim-
ilarly, training on artificially truncated data can
be beneficial to segmentation robustness in cas-
caded setups (Li et al., 2021) but also in end-to-end
models (Gaido et al., 2020). While this approach
can introduce misalignments between source audio
and target text, such misalignments in the training
data are not necessarily harmful to SLT models as
Ouyang et al. (2022) recently showed in an evalua-
tion of the MuST-C dataset (Di Gangi et al., 2019).

Both of these approaches – improving auto-
matic segmentation and making models more ro-
bust toward segmentation errors – can be combined.
For example, Papi et al. (2021) show that contin-
ued finetuning on artificial segmentation can help
narrow the gap between hybrid segmentation ap-
proaches and manual segmentation. However, a
combination of both methods is not always equally
beneficial. Gaido et al. (2022) repeat Papi et al.
(2021)’s analysis with the segmentation model pro-
posed by Tsiamas et al. (2022b) and show that for
this segmentation strategy, continued finetuning on
resegmented data does not lead to an improvement
in translation quality.

In our work, we aim to extend these efforts
and test various combinations of segmentation and
model finetuning strategies. We are especially inter-
ested in fixed-window segmentations which have
largely been ignored in SLT research but are attrac-
tive from a practical point of view because they
do not require an additional model to perform seg-
mentation. To the best of our knowledge, we are
the first to perform such an extensive segmentation-
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train test

# talks # segments # talks # segments

en-de 2,043 229,703 27 2,641

es-en 378 36,263 15 996
fr-en 250 30,171 11 1,041
it-en 221 24,576 11 979
pt-en 279 30,855 11 1,022

multi 1,128 121,865 48 4038

Table 1: Overview of dataset statistics. The last row
shows the total numbers for the multilingual model on
es-en, fr-en, it-en and pt-en combined.

focused analysis for online SLT, considering delay,
flicker and translation quality for the evaluation.

3 Experiment Setup

3.1 Data

We run experiments with TED talk data in five dif-
ferent language pairs where the task is to translate
a TED talk as an incoming stream without having
any gold sentence segmentation.

For English-to-German, we use the data from
the MuST-C corpus (Di Gangi et al., 2019) version
1.02. This dataset is built from TED talk audio with
human-annotated transcriptions and translations.
For testing, we use the “tst-COMMON” test set.
For Spanish-, French-, Italian- and Portuguese-to-
English, we use the data from the mTEDx corpus
(Salesky et al., 2021)3. This dataset is also based on
TED talks and provides human annotated transcrip-
tions and translations of the audio files. For testing,
we use the “iwslt2021” test set from the IWSLT
2021 multilingual speech translation shared task
(Anastasopoulos et al., 2021). The dataset statistics
can be seen in Table 1.

3.2 Spoken Language Translation Models

We base all our experiments on the joint speech-
and text-to-text model (Tang et al., 2021a,b,c) re-
leased by Meta AI. For the English-German ex-
periments, we use the model provided by Tang
et al. (2021b)4 and for the other language pairs, we
use the multilingual model provided by Tang et al.
(2021a)5. We refer to these models as the original

2https://ict.fbk.eu/must-c/
3http://www.openslr.org/100
4https://github.com/facebookresearch/

fairseq/blob/main/examples/speech_text_
joint_to_text/docs/ende-mustc.md

5https://github.com/facebookresearch/
fairseq/blob/main/examples/speech_text_
joint_to_text/docs/iwslt2021.md

models. These models are trained on full segments
that mostly comprise one sentence:

And like with all powerful technology, this brings
huge benefits, but also some risks.

To investigate the effects of different segmenta-
tion strategies combined with segmentation-robust
models, we finetune three different variants based
on each model. In each case, the finetuning data is
augmented with artificially segmented data, but no
segments cross the boundaries between the individ-
ual TED talks.

• prefix: This model is finetuned on a 50-50
mix of original segments and synthetically
created prefixes (i.e. sentences where the end
is arbitrarily chopped off). Finetuning on pre-
fixes should help for translating artificially
segmented audio where the segment stops in
the middle of an utterance. We create pre-
fixes of the original segments by randomly
sampling a new duration for an audio segment
and using the length ratio to extract the cor-
responding target text. An example for a pre-
fixed version of the original segment can be
seen here:

And like with all

• context: This model is finetuned on a mix
of original segments and synthetically created
longer segments. Context was already shown
to help with segmentation errors by Zhang
et al. (2021). This model should be able to
translate segments that consist of multiple ut-
terances. For each segment in the original
training set, we randomly either use the origi-
nal segment (50% of the time) or an extended
segment created by prepending the previous
segment (25% of the time) or the 2 previous
segments (also 25% of the time). We then add
context-prefixed segments for each of these
(possibly-extended) segments, by truncating
the last concatenated segment. An example
for a context-prefixed version of the original
segment can be seen here:

We work every day to generate those kinds of
technologies, safe and useful. And like with all
powerful technology, this brings huge benefits,

• windows: This model is finetuned on a 50-
50 mix of original segments and windows of
random duration. We split the audio into win-
dows by starting at the beginning of the audio
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and then sampling the duration of the first win-
dow. The end of this window then becomes
the start of the next window and we repeat this
process until we reach the end of a TED talk.
For every such window, we extract the cor-
responding target text from the time-aligned
gold segment(s) via length ratios. This mir-
rors the conditions at inference time with a
fixed-window segmentation where a segment
can start and end anywhere in an utterance and
can also comprise multiple utterances. The
segment durations are sampled uniformly be-
tween 10 and 30 seconds. Note that this model
will see the qualitatively poorest data out of all
finetuned models because both the end of the
segment and the beginning depend on length
ratios which can introduce alignment errors.
An example for a window version of the origi-
nal segment can be seen here:

or death diagnosis without the help of artificial
intelligence. We work every day to generate those
kinds of technologies, safe and useful. And like
with all powerful technology, this brings huge
benefits, but also some risks. I don’t know how
this debate ends, but what I’m sure of, is that the
game

All models are trained from the original check-
point for an additional 20k steps and the last two
checkpoints are averaged if more than one is saved.
We do this finetuning by continuing training with
the config file of the original model. For the
English→German MuST-C model, we train on the
audio as well as the corresponding phoneme se-
quences based on the transcript, however, we do
not use additional parallel text data during finetun-
ing. For the multilingual mTEDx model, we only
train on data for the selected language pairs and
only on audio (no phoneme sequences) because
this model was already finetuned on the spoken
language translation task. The validation sets only
contain gold segments and all models stop train-
ing due to the step limit before early stopping is
triggered.

3.3 Segmentation Strategies
We consider four different inference-time segmen-
tation strategies in our experiments, visualised in
Figure 1:

• gold: These are human annotated segmenta-
tion boundaries that are released as part of the
MuST-C and mTEDx data. This segmenta-
tion can be viewed as an oracle segmentation

even though it may not necessarily be the best
segmentation for all models. Using the gold
segmentation in practice is unrealistic, espe-
cially in the online setting where there would
be no time for a human to segment the audio
before translation.

• SHAS: This segmentation method was re-
cently proposed by Tsiamas et al. (2022b).
The authors finetune a pretrained wav2vec 2.0
model (Baevski et al., 2020) on the gold seg-
mentations and train it to predict probabilities
for segmentation boundaries. SHAS can be
used both in offline and online setups using
different algorithms to determine the segmen-
tation boundaries based on the model’s proba-
bilities. Since we perform our experiments
in an online setup, we use the pSTREAM
algorithm to identify segments with SHAS.
We set the maximum segment length to 18
seconds which the authors reported as best-
performing.

• fixed: This is a simple approach that splits the
audio stream into independent fixed windows
of a given duration. In our experiments, we
use durations of 26 seconds, which performed
best in experiments by Tsiamas et al. (2022b).

• merged: Similarly to above, we consider
fixed-size windows for this segmentation strat-
egy but here we construct overlapping win-
dows. We use a duration of 15 seconds6 and
shift the window with a stride of 2 seconds at
a time. The translations of these overlapping
windows are merged before the next window
is translated (see Section 3.5).

3.4 Retranslation
We employ a retranslation strategy (Niehues et al.,
2016, 2018; Arivazhagan et al., 2020a,b) for our
end-to-end SLT experiments. This means that we
retranslate the incoming audio at fixed time inter-
vals. In our experiments, we retranslate every 2
seconds to be consistent with the 2-second stride
from the merging windows approach. Because of
such retranslations of the full audio segment —
from the start of the segment up to the current time
step — the SLT model may correct translation mis-
takes from earlier time steps. This means that the

6We found empirically that this works better than a dura-
tion of 26 seconds as for fixed-windows, with both increased
translation quality and reduced flicker (see Appendix B).
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final translation of a complete segment reaches the
quality of offline translation. However, if these up-
dated partial translations are presented to users and
there are changes to previously translated text, this
may be hard to follow. Therefore, it is important
to not only evaluate the quality of the translations
and the delay but also how often previously trans-
lated words are changed which is termed “flicker”.
Typically, when delay improves there will be more
flicker because translating sooner means a higher
chance of errors that need to be corrected in the
next retranslation.

3.5 Window Merging Algorithm

One reason why a fixed-window segmentation
might underperform compared to other segmenta-
tions is that utterances are likely to be split up into
two or multiple segments which can introduce am-
biguities and result in disfluent translations. How-
ever, this problem can be reduced if the windows
are overlapping which is technically very easy to
do. With a retranslation approach, we can simply
shift the whole window by X seconds to obtain
overlapping translations.

To merge the resulting translations, we employ
a merging algorithm that was previously proposed
for a cascaded SLT setup (Sen et al., 2022). Their
merging window algorithm also works for end-to-
end SLT because it is not dependent on a tran-
script of the source audio. The algorithm identifies
the longest common substring (LCS) between the
growing translation of the output stream and the
translation of the current window. The current out-
put is formed by everything to the left of the LCS
coming from the output at the previous time step,
followed by the LCS and then everything to the
right of the LCS from the current translation out-
put. In this way, the translation of the input stream
is continuously extended.

The merging is controlled by a threshold that
defines the minimum required length of the LCS.
At every time step, this threshold is computed by:

threshold = |Tt| ∗ τ

Where Tt is the current window translation
length and τ is a ratio hyperparameter. If the LCS is
shorter than this minimum length, instead of merg-
ing the current translation with the output stream,
the window is backtracked to the left and a longer
window is translated. We backtrack 0.1 seconds at

a time for a maximum of three backtracks. Only
when a sufficiently long LCS is found or the maxi-
mum number of backtracks is reached, do we per-
form the merging operation. In our experiments,
we set the ratio τ to 0.4 which performed best in
the cascaded setup (Sen et al., 2022). If there are
multiple LCS (common substrings with the same
length), we merge at the last-occurring one.

3.6 Evaluation
For evaluation, we use SLTev7 (Ansari et al., 2021),
a toolkit that can evaluate translation quality, de-
lay and flicker in a retranslation SLT setup. We
explain below how the evaluation is adapted for
unsegmented input. Since we assume our input is
segmented at the talk level, we evaluate at the talk
level too.

For translation quality, SLTev internally reseg-
ments the translations and aligns the new segments
to the reference segments such that the word error
rate is minimised (Matusov et al., 2005). It is not
guaranteed that the new segments follow the sen-
tence boundaries and are perfectly aligned but, as
long as the introduced alignment errors are similar
for different segmentations, they can be compared.

For flicker, we cannot use the sentence-level
measure in SLTev because this is computed as an
average over all segment-level flicker scores, and
with different segmentations, this measure is not
comparable. However, the document-level measure
is evaluated independent of the segmentation and
this works well for our purpose.

For delay, we do not use the official implemen-
tation in SLTev because of the way it assigns times-
tamps to repeated tokens. To explain the problem,
consider the following example:

P 13.18 O
P 14.18 O horror,
P 15.18 O horror, terror, horror
C 16.18 O horror, horror, horror.

where we retranslate the newly available audio
every second and consequently get three partial
translations (P) and one final, complete translation
(C). In SLTev, every token is assigned the time
stamp of its type’s first occurrence. This results
in the following time stamp assignments with the
original implementation.

O horror , horror , horror .

13.18 14.18 14.18 14.18 14.18 14.18 16.18

7https://github.com/ELITR/SLTev
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All occurrences of “horror” and “,” are assigned
the timestamp 14.18 even though most of them
are not yet generated by that time. If we translate
longer segments that may be comprised of multiple
sentences, encountering tokens that were already
seen before becomes more and more likely. All of
those would be assigned the timestamp of the first
occurrence which favours longer segments (which
we take to the extreme with our merged windows
output stream). To solve this issue, we adapt the
delay computation and store the individual times-
tamps for all repeated tokens. For this, we also
need to be aware that previous content can change
with each retranslation (e.g. terror→ horror). We
solve this following Arivazhagan et al. (2020b)’s
notation of content delay and only assign times-
tamps once the previous context has finalised:

O horror , horror , horror .

13.18 14.18 14.18 16.18 16.18 16.18 16.18

With these new timestamps, all possible segmen-
tations will receive the same delay if the translated
text is identical and longer segments are no longer
favoured in the SLTev delay calculation. However,
since we wait until the context has finalised before
we assign the time stamps, the new delay measure
is now also affected by flicker.

4 Results

4.1 Translation Quality
We compare the different SLT models on different
segmentations of the test sets and show the result-
ing translation quality of the complete segments
in terms of BLEU in Table 2. Note that we would
reach the same translation quality in an offline set-
ting because the final retranslation is a translation
of the full window, and in common with previous
work, translation quality of online SLT is only mea-
sured on the final retranslation. We also evaluate
with COMET (Rei et al., 2020) and report even
better results with the merging windows approach
but also find that COMET might be less reliable in
a streaming SLT setup due to resegmentation errors
(see Section D.1).

Does SHAS perform best with the original
model (first column) as in previous work? When
the SLT model is just trained on gold data, SHAS
proves to be the best-performing segmentation out
of all automatic segmentations which is in line with
results by Tsiamas et al. (2022b) and Gaido et al.
(2022). As in previous studies, we also find that

original prefix context window

en-de

gold 25.4 25.5 25.2 25.5

SHAS 24.5 23.9 24.9 24.8
fixed 22.4 21.1 23.6 23.1

merged 24.8 23.8 25.3 22.8

es-en

gold 41.6 41.3 41.1 41.4

SHAS 40.2 40.3 40.7 41.0
fixed 35.0 36.9 39.6 38.4

merged 38.9 39.9 42.0 39.7

fr-en

gold 37.2 36.2 35.6 35.6

SHAS 36.2 36.1 35.8 36.1
fixed 31.0 32.0 34.5 32.9

merged 34.6 35.2 35.8 31.9

it-en

gold 27.0 28.7 28.8 29.0

SHAS 26.4 28.0 28.7 29.0
fixed 22.5 25.6 27.5 26.3

merged 25.3 27.4 29.2 27.6

pt-en

gold 30.6 29.5 28.7 29.1

SHAS 29.5 28.9 29.2 28.6
fixed 23.6 24.0 26.9 26.2

merged 26.6 27.4 28.1 24.3

Table 2: BLEU scores with different SLT models
(columns) and different audio segmentation methods
(rows). Best result for automatic segmentation scenario
marked in bold and green.

the original model shows a considerable drop in
BLEU when moving from the gold segmentation
to automatically split segments.

Is SHAS still the best-performing segmenta-
tion with the finetuned models? Finetuning with
alternative segmentations can offer strong improve-
ments for SHAS (+2.3) on it-en, with small im-
provements on es-en and en-de, but lower BLEU
on pt-en and fr-en. Similarly, Gaido et al. (2022)
found that SHAS did not benefit from finetuning on
resegmented data. However, for the two segmenta-
tion approaches based on fixed windows, finetuning
greatly reduces the gap to the gold segmentation.

This is especially noticeable when we finetune
on context and prefixes (third column). This con-
firms the finding by Zhang et al. (2021) that context-
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aware models can better translate artificially seg-
mented audio. When merging overlapping win-
dows, we consistently see an improvement over the
segmentation with non-overlapping fixed windows.
In three language pairs, this method outperforms
SHAS and in two the context-finetuned model even
improves over the gold segmentation.

Do training conditions need to match the seg-
mentation at inference time? Apart from the
context-aware finetuned model, we also finetuned
a model on fixed windows of random duration (last
column). This matches the fixed-window audio in-
put at inference time better because a segment can
start anywhere in an utterance, unlike the context-
based model where every training segment started
at the beginning of an utterance. Surprisingly, we
find that the model finetuned on windows of ran-
dom duration generally performs worse with the
merging window strategy than the context-based
model. This suggests that the training data for
this model contains more misalignments between
speech and translation because we extract both the
start and the end of the segment via length ratios.
This causes more flicker (see next Section) which
makes it harder to merge the translations at each
time step correctly. We leave extended experiments
where the alignments between speech and transla-
tion are computed via ASR or the SLT output of
the windows of random durations (as opposed to a
simple length ratio) to future work.

4.2 Flicker

As mentioned in the Introduction, translation qual-
ity is not the only important evaluation metric in an
online SLT scenario. When using a retranslation
approach, we also need to consider the flicker that
is caused by the model updating its translations
at every time step. We compute the flicker as de-
scribed in Section 3.6. The flicker scores for the
Spanish-to-English test set can be seen in Figure 2,
the same figures for the other language pairs are in
Appendix D. For the results shown here, we use an
output mask of 0. We show in Appendix C that our
findings also hold with larger output masks. We
show scores with and without biased beam search.

Biased beam search (Arivazhagan et al., 2020a)
is a modification to regular beam search that bi-
ases the probability distribution at the current time
step towards a token in a given prefix translation
at the same timestep. This can be used to stabilise
retranslation – the translation of the current prefix

is biased towards the translation of the previous
prefix, suppressing flicker. In our experiments, we
use the translation of the previous step as the prefix
with a beta parameter of 0.25 and mask the 5 last
tokens such that changes towards the end of the sen-
tence are still possible8. Biased beam search cannot
be applied directly to the merged window approach,
since it depends on an alignment between the trans-
lation of the current prefix and that of the previous
prefix. When translating using sliding windows,
the current and previous prefixes have different
start points, so their translations cannot be easily
aligned. We experimented with a way to reduce
flicker by merging on the last common substring
rather than the longest but this causes considerable
translation quality loss (see Appendix B).

Does the segmentation strategy matter for
flicker? From Figure 2, we can see that there are
big differences between the different segmentation
strategies. Fixed windows have the highest flicker
because there we translate the longest windows. If
something at the beginning of the window transla-
tion is changed, this will increase the flicker score
considerably. With biased beam search, the flicker
can be dramatically reduced. Merging overlapping
windows has a lower flicker than fixed windows
without biased beam search, both because the du-
ration of the windows is shorter and because the
merging algorithm prohibits changes to the left of
the longest common substring9. This segmentation
method even has lower flicker than SHAS when no
biased beam search is applied. With biased beam
search, SHAS performs mostly similar to the gold
segmentation which has the lowest flicker overall.

Does model finetuning help reduce flicker?
Prefix finetuning helps reduce flicker both with and
without biased beam search because the models see
incomplete sentences at training time and are less
likely to hallucinate to finish the sentence. Con-
text finetuning helps even more and we saw in the
outputs that this model has less of a tendency to
connect multiple sentences into a longer sentence
which can reduce flicker. The model finetuned on
windows shows an even higher flicker than the orig-
inal model for most segmentation strategies even
though it was designed to be able to translate seg-

8We do not show translation quality scores with biased
beam search because on average there is only a difference of
-0.006 BLEU.

9Reducing the window length to 15 seconds for the fixed
window segmentation reaches a flicker that is only slightly
higher than for merged windows but the translation quality
suffers considerably.
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Figure 2: Flicker values for the different segmentation strategies and SLT models on the Spanish-to-English test set.
The results are grouped by training strategy and each bar corresponds to a different segmentation strategy. We do
not apply biased beam search to the merged segmentation.
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Figure 3: Delay values for the different segmentation strategies and SLT models on the Spanish-to-English test set.
The results are grouped by training strategy and each bar corresponds to a different segmentation strategy.

ments that can start and end anywhere in a sentence.
As discussed in the previous section, we think this
increased flicker is an artefact of the automatically
generated training data which can be erroneous.

4.3 Delay

The final evaluation metric we consider is delay.
The results can be seen in Figure 3. Again, we show
results with and without biased beam search for the
gold, SHAS and fixed-window segmentation.

Does the segmentation strategy matter for de-
lay? Because our definition of delay is affected by
flicker as well (see Section 3.6), the fixed segmen-
tation without biased beam search not only has the
highest flicker but also the highest delay. In our
results, we can see that the high delay is caused
by the flicker because when we reduce flicker with
biased beam search the fixed segmentation has com-
parable delay to the gold and SHAS segmentations.
The merging windows approach has comparable
delay to the gold and SHAS segmentations with-

out biased beam search. Since we cannot apply
biased beam search reliably to the merging win-
dows approach without hurting translation quality,
the flicker cannot be reduced and therefore, the
merging windows approach has higher delay than
the other segmentation methods with biased beam
search. If delay could be defined independently of
flicker in a way that still works for comparing differ-
ent segmentations, the merging windows approach
would likely have similar delay also compared to
the outputs with biased beam search.

Does model finetuning help reduce delay? The
results are a bit mixed. For example, the context
model reduces delay for the gold segmentation but
increases it slightly for SHAS and more for the
fixed segmentation and the merging windows ap-
proach. In general, the choice of the model does
not seem to be as important for delay as for trans-
lation quality and to a lesser extent flicker. It is
possible that apparent effects only occur because
our definition of delay is affected by flicker.
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5 Discussion

Based on our results in Section 4, we believe that
fixed-window segmentation should not be disre-
garded in future SLT research on unsegmented au-
dio. Given the right setup with a context-aware
model and a merging window algorithm, this seg-
mentation can outperform current state-of-the-art
automatic segmentation models and in some cases
even the gold segmentation in terms of transla-
tion quality. Moreover, in an online SLT setup,
a fixed-window approach brings the additional ben-
efit that no dedicated segmentation model needs to
be loaded at inference time and run every time new
audio becomes available.

While there is currently no solution to bring
flicker down to biased beam search levels with-
out hurting quality (see Appendix B) or increasing
delay (see Appendix C), this should not be a reason
to disregard fixed-window segmentation as it opens
exciting opportunities for future research.

6 Conclusion

In this paper, we explored several combinations
of segmentation-robust finetuning and different au-
tomatic segmentation strategies in an online SLT
setup. We focus on a retranslation-based approach
to SLT and we run experiments on five different
language pairs based on two different SLT models.
Considering the evaluation of translation quality,
flicker and delay, we discuss several issues that
arise when comparing different segmentations and
propose a fix to an existing toolkit for evaluating
delay. Our results show that a simple fixed-window
segmentation can perform surprisingly well if an al-
gorithm is used for merging overlapping windows
and a context-aware SLT model is used. In terms
of translation quality, this segmentation performs
comparably to SHAS — the current state-of-the-art
segmentation method — and in some cases even
outperforms the gold segmentation, showing poten-
tial for future application to offline SLT. In terms
of flicker and delay, the results of the merging win-
dows approach are comparable to the other seg-
mentations if biased beam search is not enabled but
future work is needed to reduce flicker in the merg-
ing windows approach to similar levels as biased
beam search for other strategies without hurting
translation quality.

Ethical Considerations

In our work, we only use publicly available model
checkpoints, toolkits and datasets and do not collect
any additional data. Our experiments also do not
involve human annotators.

Limitations

While we aim to evaluate on a number of language
pairs and with different automatic metrics, there are
still some open questions that we could not answer
in this work. First, we did not perform a human
evaluation and, therefore, it remains unclear how
distracting the different flicker and delay values
with different setups would be for a user. How-
ever, previous work by Macháček and Bojar (2020)
shows that character erasure - a metric related to
flicker - correlates with usability scores in a human
evaluation which suggests that this would also be
true for flicker. Second, the current implementa-
tion of SHAS can be used to simulate an online
setting but it still expects the full audio as input.
Consequently, we could not empirically compare
how long translation takes with different segmen-
tation methods in a real online setup. Third, our
experiments are limited to SLT using a retransla-
tion strategy. We leave further experiments with
simultaneous SLT models that use a policy to de-
cide at each time step whether to wait for further
input or to translate for the future.
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Appendix

A Further Finetuning Specifications

We finetune all models and translate with a sin-
gle NVIDIA Tesla V100 GPU. For the multi-
lingual mTEDx model, the additional parame-
ter load-speech-only needs to be added
to the official training script10. We use the
restore-file parameter to specify the check-
points of the original models from which continued
training should be initialised.

We will release all code (training scripts, trans-
lation scripts and evaluation modifications), the
finetuned model checkpoints and the outputs upon
publication.

B Experiments with Last Common
Subsequence

As a possible way of reducing flicker for the merg-
ing windows approach, we try merging on the last
common subsequence (longer than two tokens)
instead of the longest common subsequence. In
this way, we can maximise the finalised part of
the growing output translation and reduce flicker.
Figure 4 shows how the flicker increases for both
merging strategies when the window size increases.
With the original implementation that merges on
the longest common subsequence, the flicker in-
creases dramatically when the window size is in-
creased. For the modified merging algorithm that
merges on the last subsequence (longer than two to-
kens) the flicker increases only moderately with in-
creased window size and is in general much lower.
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window size
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Figure 4: Flicker values with the original model on the
English-to-German test set for different window sizes
when merging on the longest common subsequence
(blue) and the last common subsequence (orange).

10https://github.com/facebookresearch/
fairseq/blob/main/examples/speech_text_
joint_to_text/docs/iwslt2021.md

Based on these results, one might choose to
merge on the last sequence, however, this change
also affects the translation quality. Figure 5 shows
the BLEU scores of both merging methods with
different window sizes. Unfortunately, merging on
the last common subsequence performs continu-
ously worse than merging on the longest common
subsequence. If quality is the main focus, this
merging method is not advisable. These results
also show that a window size of 15 performs best
for the merging windows approach.
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Figure 5: BLEU scores with the original model on the
English-to-German test set for different window sizes
when merging on the longest common subsequence
(blue) and the last common subsequence (orange).

C Results with Output Mask

We also evaluate the four different segmentation
methods when an output mask is applied. This
means at every time step the output is truncated
from the right. The number of tokens that are re-
moved is defined by the mask size, i.e. a mask of
size 0 means no tokens are removed and a mask of
size 7 means seven tokens are removed. We com-
pute these results for Spanish-to-English without
biased beam search and the context-aware model
which showed the lowest flicker in general.
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Figure 6: Flicker with different output masks on the
Spanish-to-English test set. Results for all four segmen-
tation methods with the context-finetuned model.
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Figure 6 shows the flicker at different output
mask sizes. First of all, it can be noticed that
the fixed window segmentation has a continuously
higher flicker than all other segmentation methods
and that the flicker is still rather large even with
a mask of size 10. This suggests that most flicker
in the fixed-window segmentation does not occur
towards the end of the segments.

The merging windows approach consistently has
lower flicker than SHAS and with larger mask sizes
even lower flicker than the gold segmentation. With
a mask of size 10, the flicker is at 0.25 which is
comparable to the flicker of the original model with
fixed window segmentation where biased beam
search is enabled.
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Figure 7: Delay with different output masks on the
Spanish-to-English test set. Results for all four segmen-
tation methods with the context-finetuned model.

However, this reduced flicker comes at the cost
of a higher delay because the masked tokens will
not be available at the time they are actually pro-
duced. This flicker-delay trade-off is well-known.
Figure 7 shows the increase in delay with larger
output masks. For the merging windows approach,
we see that the delay increases more than for SHAS
and the gold segmentation. Since our definition of
the delay measure is affected by flicker, these re-
sults are hard to interpret. Nevertheless, using an
output mask is a way to reduce flicker for the merg-
ing windows approach without reducing translation
quality but we need to accept a higher delay.

D Additional Results

D.1 Translation Quality with COMET
For completeness, we present performance results
measured with COMET (Rei et al., 2020) in Table
3. This is evaluated outside of SLTev but we use the
same resegmentation tool (Matusov et al., 2005) to
align the translations with the reference segments.
The results show similar patterns as with BLEU and

original prefix context window

en-de

gold -0.0589 -0.0801 -0.0659 -0.0696

SHAS -0.1762 -0.1934 -0.0835 -0.1418
fixed -0.3080 -0.3655 -0.1846 -0.1671

merged -0.1821 -0.2169 -0.0683 -0.1133

es-en

gold 0.3175 0.2864 0.2776 0.2981

SHAS 0.2145 0.2291 0.2784 0.2638
fixed -0.0339 0.0448 0.2637 0.2633

merged 0.2658 0.2736 0.3962 0.3642

fr-en

gold 0.1702 0.1380 0.1123 0.1078

SHAS 0.1147 0.1421 0.1742 0.134
fixed -0.1696 -0.1115 0.0777 0.0316

merged 0.0978 0.1066 0.2170 0.1109

it-en

gold 0.0566 0.0583 0.0704 0.0886

SHAS -0.012 0.0215 0.0915 0.0709
fixed -0.305 -0.2072 0.0142 -0.0408

merged -0.0536 -0.0066 0.1255 0.0619

pt-en

gold 0.0662 0.0234 -0.0130 -0.0048

SHAS -0.0108 -0.0104 -0.0085 -0.0085
fixed -0.2939 -0.2853 -0.0854 -0.0937

merged -0.0581 -0.0784 0.0276 -0.0554

Table 3: COMET scores with different SLT models
(columns) and different audio segmentation methods
(rows). Best result for automatic segmentation scenario
marked in bold and green.

the context model paired with the merging window
approach performs best among the automatic seg-
mentation approaches on all language pairs. This
approach even outperforms the gold segmentation
on three language pairs. Note however that evaluat-
ing resegmented text with COMET may have some
undesirable side-effects because the translated text
is not always split at correct segmentation bound-
aries, e.g. the first token of a segment often is glued
to the end of the previous segment.

We tested this with 200 gold segments for en-de
and manually corrected the resegmentation of the
original model output. While the BLEU score does
not change much with these corrections (24.70 vs.
24.73), the COMET score jumps from -0.1128 to
0.0467 which is a larger improvement than some
differences in Table 3. Since it is unclear if such
resegmentation errors occur equally often in all
our experiment setups, we only include the results
with BLEU in the main body of the paper. We hy-
pothesise that COMET has only seen well-formed
sentences at training time and consequently is less
reliable on such resegmented data. In the future,
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document-level neural evaluation metrics could be
better suited for evaluating translations of unseg-
mented or automatically segmented audio in SLT.

D.2 Flicker Results for Other Language Pairs
We present the same plots as in Section 4.2 for
English-to-German in Figure 8, French-to-English
in Figure 9, Italian-to-English in Figure 10 and
Portuguese-to-English in Figure 11. The results
follow the same patterns as the results for Spanish-
English discussed in Section 4.2:

• Fixed windows without biased beam search
have the highest flicker.

• For the language pairs into English, the merg-
ing windows approach has lower flicker than
SHAS if no biased beam search is used.

• Finetuning on context reduces flicker.

D.3 Delay Results for Other Language Pairs
We present the same plots as in Section 4.3
for English-to-German in Figure 12, French-to-
English in Figure 13, Italian-to-English in Figure
14 and Portuguese-to-English in Figure 15. The
results follow the same patterns as the results for
Spanish-English discussed in Section 4.3:

• Fixed windows without biased beam search
have the highest delay.

• The merging windows approach has compara-
ble delay to SHAS if no biased beam search
is used.

• Finetuning has less of an effect on delay than
on flicker.
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Figure 8: Flicker values for the different segmentation strategies and SLT models on the English-to-German test set.
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Figure 9: Flicker values for the different segmentation strategies and SLT models on the French-to-English test set.
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Figure 10: Flicker values for the different segmentation strategies and SLT models on the Italian-to-English test set.
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Figure 11: Flicker values for the different segmentation strategies and SLT models on the Portuguese-to-English test
set.
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Figure 12: Delay values for the different segmentation strategies and SLT models on the English-to-German test set.
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Figure 13: Delay values for the different segmentation strategies and SLT models on the French-to-English test set.
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Figure 14: Delay values for the different segmentation strategies and SLT models on the Italian-to-English test set.
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Figure 15: Delay values for the different segmentation strategies and SLT models on the Portuguese-to-English test
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Abstract

Additive interventions are a recently-proposed
mechanism for controlling target-side attributes
in neural machine translation. In contrast to
tag-based approaches which manipulate the
raw source sequence, interventions work by
directly modulating the encoder representa-
tion of all tokens in the sequence. We ex-
amine the role of additive interventions in a
large-scale multi-domain machine translation
setting and compare its performance in vari-
ous inference scenarios. We find that while
the performance difference is small between
intervention-based systems and tag-based sys-
tems when the domain label matches the test do-
main, intervention-based systems are robust to
label error, making them an attractive choice un-
der label uncertainty. Further, we find that the
superiority of single-domain fine-tuning comes
under question when training data size is scaled,
contradicting previous findings.

1 Introduction

Multi-domain machine translation (MDMT) is the
paradigm in which a single model is trained to ser-
vice many domains by training on multiple corpora
covering disparate labeled domains. The goal of
MDMT is not only to provide high quality general
machine translation enabled by knowledge trans-
fer across domains, but also to enable high quality
domain-specific machine translation when a model
is provided cues about the target domain, used to
control the generation. Though an intuitive task,
the expectations surrounding the task were only
recently formalized by Pham et al. (2021) in which
the authors provided both a set of functional re-
quirements demanded of successful MDMT mod-
els and an experimental framework under which
those requirements can be tested.

Pham et al. (2021) explored several mechanisms
for controlling domain, ranging from simple tag-

∗ Work was done during an internship at Microsoft

based approaches to meta-learning based mecha-
nisms. According to the functional requirements
outlined by the authors, no method meets all the ex-
pectations demanded of effective multi-domain ma-
chine translators, though the experiments were run
on a relatively small dataset of only in-domain data.
The primary remaining expectations, according to
the authors, are the superiority of fine-tuning based
methods as compared to these methods which can
control the target domain, and the ability to accom-
modate fuzzy or uncertain domains.

This framework is useful, but the authors leave
open several other questions regarding the state of
MDMT. The first of these is data size. Previous
experiments focused only on relatively small, in-
domain data in an otherwise high-resource setting
of English-French and found that most models pale
in comparison to models fine-tuned on a single
domain. We wonder whether this fine-tuning su-
periority conclusion holds under a more realistic
paradigm in which models trained on large, out-of-
domain datasets are fine-tuned on in-domain data.
While pretraining and fine-tuning on in-domain
data can yield strong in-domain performance—as
observed by the authors—this is likely to be at the
cost of general domain performance, calling into
question the transferability under MDMT.

Next, we wonder if new methods might help with
the issue of domain control in MDMT. The authors
examine reasonable mechanisms for controlling the
domain which were known at the time. Since then,
new methods have been developed which we hope
to investigate under the prescribed framework. We
hypothesize that additive interventions (Schioppa
et al., 2021), which learn tag embeddings separately
from the encoder, may be harder to ignore, and that
the learned interventions may be able to absorb
target-side properties more easily, while freeing the
encoder to learn strong representations purely for
translation.

In this work we scale the original experimental
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framework presented in Pham et al. (2021) by in-
cluding a significantly larger, more realistic dataset.
We also experiment with additive interventions as
an alternative to domain tagging. We find that:

• additive interventions perform roughly equiv-
alently with tag-based approaches in the ideal
case where provided tags match the target do-
main.

• additive interventions are much more robust
in the face of incorrect and uncertain domain
labels.

• when the experiment is scaled, models fine-
tuned targeting a single domain are strong
translators, but are never unmatched by other
models which can service multiple domains
suggesting that MDMT models in a high-
resource setting are competitive with best-in-
class baselines.

2 Method

As a baseline, we inject domain metadata using the
tag-based approach. In this scheme, a token repre-
senting the target-side attribute, t, is prepended to
source segment x and fed to the encoder E whose
hidden representation is finally exposed to decoder
D in a “normal" fashion:

ŷ = D(E([t] + x))

where + indicates sequence concatenation. In tag-
based approaches, the expectation is that the do-
main tag as a prefix acts as a conditioning variable
which encourages target-side attributes to appear
as desired in the final translation.

While effective and architecturally non-invasive,
this method is not without downsides. Because the
target token’s contribution to the encoder represen-
tation is learned, there is a chance that the attribute
can be ignored. To address this and other weak-
nesses of tag-based approaches, Schioppa et al.
(2021) present the additive interventions method
which requires an encoder E, a decoder D, and a
separate attribute embedding layer Emb. Given
a source segment x and a sentence-level attribute
token t, we have

V = Emb(t)

ŷ = D(E(x)⊕ V )

where ⊕ is defined as addition broadcasted along
the token dimension. Importantly, this allows pro-
totypically discrete attributes to be represented and

Source Parallel sents (k) Source tokens (m)

ParaCrawl 229,340 4,190.0
BANK 190 6.3
IT 270 3.6
LAW 501 17.1
TALK 160 3.6
RELIG 130 3.2
MED 2,609 133.0
NEWS 254 5.6

Table 1: Effective training set sizes

controlled in a continuous fashion, allowing for in-
terpolation, scaling, and positionally invariant com-
binations, among other useful features. We note
that these are somewhat analogical to an “additive"
version of “source factors" approaches (Hoang
et al., 2016; Sennrich and Haddow, 2016) with one
major difference: additive interventions happen
after the encoder rather than before the encoder.

While the original work only introduces the in-
terventions to the top-most decoder layers in order
to allow for partially freezing pretrained networks,
we simplify by applying the intervention to the top
layer of the encoder, such that it affects all decoder
layers. Further, the authors report that improved
general performance can be promoted by randomly
inducing a zero-vector intervention. As such, we
can specify that t is randomly replaced by ⟨PAD⟩
with some probability with the same effect. We
report 20% masking in this paper, though we ex-
periment with 0% masking and find no significant
differences between the two.

3 Experimental Setup

3.1 Data

We follow the supervised data settings prescribed
by Pham et al. (2021) which includes splits from
seven domains of varying disparity: BANK, IT,
LAW, TALK, RELIG, MED, and NEWS. These
domains are drawn from various sources: the
European Central Bank corpus (BANK) (Tiede-
mann, 2012); the documentation for the KDE,
Ubuntu, GNOME, and PHP projects from Opus
(Tiedemann, 2009) combined to form IT; The JRC-
Acquis corpus (LAW) (Steinberger et al., 2006);
TED Talks (TALK) (Cettolo et al., 2012); the Tanzil
translation of the Koran (RELIG); the UFAL Medi-
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Method
BANK IT LAW TALK RELIG MED WMT15

BLEU COMET BLEU COMET BLEU COMET BLEU COMET BLEU COMET BLEU COMET BLEU COMET

general base 42.4 0.485 38.3 0.311 56.2 0.832 40.6 0.585 18.9 0.166 43.9 0.548 41.3 0.639

combined base 52.1 0.559 45.6 0.528 59.8 0.855 41.5 0.614 27.8 0.284 49.8 0.651 41.7 0.633
combined ints 51.9 0.573 44.7 0.512 59.9 0.859 41.3 0.610 27.6 0.268 50.1 0.647 41.6 0.638
combined tags 52.0 0.546 46.5 0.492 59.8 0.856 43.7 0.647 28.8 0.307 50.1 0.647 36.8 0.606

in-dom ints 58.5 0.615 51.9 0.615 66.6 0.891 39.2 0.494 88.7 0.872 55.4 0.695 30.1 0.289
in-dom tags 58.7 0.611 51.1 0.599 66.4 0.893 39.8 0.531 89.5 0.893 55.4 0.685 26.8 0.243

multi-dom FT ints 56.1 0.604 50.6 0.605 64.9 0.896 41.3 0.580 79.4 0.791 51.6 0.671 34.3 0.433
multi-dom FT tags 56.9 0.614 50.9 0.595 64.8 0.870 41.6 0.605 83.6 0.850 51.9 0.673 33.4 0.439

single-dom FT 58.2 0.637 50.8 0.629 67.0 0.917 45.1 0.653 39.0 0.402 52.6 0.679 − −

Table 2: MT quality scores per test set. Statistically significant differences between tags and ints at the 95%
confidence interval with 1000 bootstrapped samples bolded.
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Figure 1: COMET scores (×100) by domain and approach

cal corpus v1.0 (MED)1; and News Commentary
corpus v12 (NEWS) (Tiedemann, 2012). For sake
of consistency, we rely on roughly the same splits
as provided by the authors,2, though we remove
duplicates within each domain, which changes the
size of each training set slightly. Additionally we
include English-French ParaCrawl v9 (Bañón et al.,
2020) to serve as a large out-of-domain training
set for some experimental settings. The effective
training set sizes are summarized in Table 1.

3.2 Models

We consider several models falling into two cate-
gories: those trained with (control) and with-
out(no control) a method for selecting the tar-
get domain.

We use approximately the same architecture for
all settings, though note that all intervention-based

1https://ufal.mff.cuni.cz/ufal_
medical_corpus

2https://github.com/qmpham/experiments

models have an extra embedding layer with the
same embedding dimension as the encoder3. The
basic architecture follows a 12-layer encoder, 6-
layer decoder transformer with 8 attention heads
each (Vaswani et al., 2017), encoder and decoder
feedforward embedding dimensions of 4096, and
encoder and decoder embedding dimensions of
1024.

3.2.1 no control

We train three models with no training-time infor-
mation about the domain that the data comes from
and, as a consequence, have no ability to explicitly
control the target domain:

1. we have an out-of-domain baseline which is
trained only on ParaCrawl: general base.

2. we have a model which is trained on the
in-domain plus out-of-domain training sets:

3Adding |D| × 1024 parameters, where D is the set of
domain labels
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combined base.

3. we have six quasi-oracle fine-tuned mod-
els which are produced by fine-tuning the
general base model on each target do-
main’s training set; we collectively refer to
this set of models as single-domain fine-tuned
(single-dom FT).

3.2.2 control

As mechanisms for controlling the target domain
we consider:

1. prepending the domain tag to the source se-
quence, tags

2. additive interventions with 20% masking,
ints

We apply these two methods to three settings:

1. an in-domain plus out-of-domain setting,
combined

2. an in-domain-only setting, in-dom

3. a multi-domain fine-tuning setting,
multi-dom FT, where general base is
fine-tuned on all in-domain data with domain
information available at training time.

This results in six models:

• combined ints

• in-dom ints

• multi-dom FT ints

• combined tags

• in-dom tags

• multi-dom FT tags.

3.3 Training
We train a joint unigram segmentation model
(Kudo, 2018) using SentencePiece (Kudo and
Richardson, 2018) with a vocabulary of size 32k for
each setting in general base, combined, and
in-dom (reusing general base’s model for
multi-dom FT and single-dom FT). We
train each model by sampling 10M sentences
randomly, splitting on digits and enabling byte-
fallback. We add a special token for each domain
for which we have splits: ⟨BANK⟩, ⟨IT⟩, ⟨LAW⟩,
⟨TALK⟩, ⟨RELIG⟩, ⟨MED⟩, and ⟨NEWS⟩. We
use these models to segment the data as appropriate
in each setting.

We use dropout of 0.1 but disable attention
dropout and ReLU dropout. We optimize label
smoothed cross-entropy loss with a label smooth-
ing factor of 0.1 (Szegedy et al., 2016) using Adam
(Kingma and Ba, 2015). All models are built and
trained using fairseq (Ott et al., 2019).

For models trained with out-of-domain data, we
shard the effective dataset with each shard contain-
ing approximately 1b target tokens. For models
trained with in-domain data only, we consider the
entire combined in-domain dataset to be a single
shard. We train for 30 virtual epochs, where a vir-
tual epoch is defined as a single pass over one shard.
For models which are fine-tuned, we fine-tune for
10 additional virtual epochs.

Each in-domain training set is assigned a unique
special token which is included in the vocabulary
and examples drawn from these in-domain training
sets are provided the associated special token at
training time. Examples from ParaCrawl are as-
signed no special domain token (i.e., no token is
prepended in tags models and ⟨PAD⟩ is always
provided in ints models).

3.4 Evaluation

We evaluate in three settings to probe various as-
pects of MT quality:

• we evaluate in-domain performance with each
model from control and no control
to determine the relative effectiveness of the
methods of control against methods without
control.

• we evaluate on the WMT15 English-French
test set (Bojar et al., 2015) with no domain
label provided (i.e., as if the models were in
the no control setting) to test catastrophic
forgetting (Goodfellow et al., 2013) in a gen-
eral setting. Importantly, while the models
trained on in-domain data have been exposed
to newswire data, the labels are not provided
at test time in this setting.

• we evaluate the effect of providing the incor-
rect tag to each test set, as computed by Sacre-
BLEU (Post, 2018) and COMET (Rei et al.,
2020), to test the resilience of models to label
errors

4 Results

No clear winner in ideal case We evaluate the
setting in which the provided domain label matches
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Figure 2: Impact of domain label error on COMET per test set and approach

Figure 3: COMET of combined models under various domain labels. ints left, tags right. ints maintain
high quality translations under mismatching domain labels in all cases, unlike tags.

Figure 4: COMET of in-dom models under various domain labels. ints left, tags right. ints maintain high
quality translations under mismatching domain labels in all cases, unlike tags.

the target test domain, and the setting of WMT15
without a provided domain label, for each setting
apart from single-dom FT. The results can be
read in Table 2 and are visualized in Figure 1.

Table 2 shows that when comparing control

models within a training setting using bootstrap re-
sampling (sample sizes of 1000) (Koehn, 2004), the
difference in performance of tags and ints are
insignificant in the majority of cases. While there
are a few cases of statistically significant differ-
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Figure 5: COMET of multi-dom FT models under various domain labels. ints left, tags right. ints
maintain high quality translations under mismatching domain labels in all cases, unlike tags.

ences, neither tags nor ints are uniformly pre-
ferred in these cases. The opposite is observed on
the out-of-domain WMT15, where ints performs
uniformly better than tags, often significantly.

We observe that methods with control in the
combined setting perform approximately equally
to the combined base, showing that naive com-
bination of in-domain and out-of-domain with a
mechanism to control the domain does not improve
over approaches without control, though in-dom
and multi-dom FT models tend to perform bet-
ter on average than any model in the combined
setting.

ints are robust under domain label mismatch
Next, we perform an ablation study in which we
score each test across all domain label assignments
(including the correct label and no label), which
allows us to observe the effects of test-time label-
ing error. While we compute both BLEU and
COMET, we include only COMET here.4 We
include the full results in Tables 3–8, but summa-
rize the findings in Figures 2-5, which show the
robustness of various models and settings to misla-
beled domains.

Figures 3–5 show heatmaps resulting from this
ablation, but we refer interested readers to Tables 3–
8 for the long-form charts. We see that tags sys-
tems’ performances vary dramatically, incurring
severe degradation in the face of domain label er-
ror but performing strongest along the diagonal.
ints systems, on the other hand, see only small
performance changes when provided with incor-
rect domain labels and roughly equal performance
under all possible labels, as observed in Figure 2.
We see that in-dom tags have the highest aver-

4Similar results for BLEU are listed in Appendix A.2

age variation in performance, likely owing to the
small amount of data which suggests that in-dom
tags overfits to the training data. The variation
in performance of ints systems approaches that
of the general base, which by definition ig-
nores the domain label and therefore has 0 vari-
ance; however, ints has demonstrably stronger
performance than general base in all domains
and, indeed, stronger performance than tags in a
handful of domains and thus seems to learn strong
general representations for translation which disen-
tangles the representations of the encoder from the
representations of the attribute.

Additionally, through manual analysis we find
that tags systems are more prone to hallucinating
translation artifacts from the corpus associated with
the domain label being used, often causing quality
degradation. We refer to Table 15 for an example
of such artifacts, which includes topical and target
language mismatches along with tokens which ap-
pear as a result of the HTML-encoded nature of the
⟨IT⟩ dataset.5

Single-domain fine-tuning is not as competi-
tive in large-data settings We compare the per-
formance of models trained only with in-domain
data and out-of-domain data. From Table 2, we
see slightly stronger in-domain performance for
in-dom models as compared to models fine-tuned
with out-of-domain data at the cost of out-of-
domain performance on WMT15, suggesting that
multi-dom FT models generalize better and
may surpass in-dom models with more training
due to the relatively little fine-tuning budget of 10
epochs afforded to them comparatively.

5Escaping seems to be an artifact of Moses preprocessing
leakage of raw data; not germane to all domains in this work.
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Finally, we see that while single-dom FT
is typically among the highest performing sys-
tems for a given test set, it is never unmatched
by an alternative system in control. We observe
that single-dom FT is uniformly stronger than
general base and combined, in-dom and
multi-dom FT show competitive in-domain
performance. We note that because there is one
single-dom FT model per test set, the effec-
tive parameter budget is six times larger than any
of the individual models, providing support for
both its impracticality and untenability as com-
pared to any other setting. This suggests that single-
domain fine-tuning is not as effective as expected
in high-resource settings as a strong upper-bound
in MDMT.

5 Related Work

Incorporating extra-sentential information has a
rich history in NMT. Aside from controlling for
the domain, Sennrich et al. (2016) use a politeness
tag at training and inference time to accommodate
coarse politeness control in machine translation.
Additionally, Kuczmarski and Johnson (2018) use
tags to afford users the ability to vary binary gender
in the translations of gender-neutral inputs, hoping
to address gender bias in MT.

At the sub-sequence level, Hoang et al. (2016)
and Sennrich and Haddow (2016) included
linguistically-informed word-level “source fac-
tors”, such as part-of-speech tags and dependency
relations, as additional feature factors to be concate-
nated to form a full encoder representation with the
goal of reducing ambiguity and sparseness issues.

Perhaps more relatedly, several works have ex-
plored the impacts of incorporating domain infor-
mation into training using various methods. Kobus
et al. (2017) explore two methods: a tag-based ap-
proach which concatenates a special token to the
end of the source sequence, and a “source factors”-
style approach which concatenates domain-level
embeddings to each token embedding in the source.
Sharaf et al. (2020) explore few-shot domain adap-
tation, rather than domain control, through the lens
of meta-learning and show that a meta-learning
based approach is generally stronger than other
adaptation approaches, though we note that adap-
tation and control address different needs. Finally,
Stojanovski and Fraser (2021) frame machine trans-
lation with document-context as an unsupervised
domain adaptation problem and incorporate do-

main embeddings within the encoder, summed with
positional and word embeddings, yielding strong
improvements over competitive baseline models.

6 Conclusion

In this work we examined the relative impact of
additive interventions in a large-scale MDMT set-
ting. We find that typically there are no significant
differences between additive interventions and tag-
based approaches when the provided domain label
matches the test set, but find that additive inter-
ventions exhibit much more desirable degradation
properties when the domain label is unknown or
incorrectly provided. In addition, we find that mod-
els first trained on a large, general corpus and then
fine-tuned on a single-domain—a realistic base-
line in machine translation—rarely perform signif-
icantly better than approaches which are trained
or fine-tuned only on in-domain data, which is in
contrast to their generally superior performance in
low-resource settings.

In future work we consider developing exten-
sions to additive interventions which can further
improve their performance in MDMT settings. Ad-
ditionally, studying additive interventions in other
tasks where tag-based approaches are dominant,
such as multi-lingual machine translation, could be
an interesting avenue for exploration.
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A Raw scores

A.1 Ablation (COMET)

Test set
Provided label ⟨BANK⟩ ⟨IT⟩ ⟨LAW⟩ ⟨TALK⟩ ⟨RELIG⟩ ⟨MED⟩ ⟨NEWS⟩ None

BANK 0.573 0.566 0.570 0.570 0.570 0.569 0.561 0.569
IT 0.510 0.512 0.512 0.512 0.512 0.514 0.507 0.509
LAW 0.858 0.859 0.859 0.857 0.857 0.861 0.856 0.859
TALK 0.611 0.610 0.611 0.610 0.611 0.610 0.607 0.611
RELIG 0.269 0.270 0.274 0.273 0.268 0.276 0.269 0.274
MED 0.648 0.646 0.647 0.646 0.649 0.647 0.648 0.648

Table 3: COMET scores of combined ints under various domain labels

Test set
Provided label ⟨BANK⟩ ⟨IT⟩ ⟨LAW⟩ ⟨TALK⟩ ⟨RELIG⟩ ⟨MED⟩ ⟨NEWS⟩ None

BANK 0.546 0.489 0.476 0.484 0.381 0.511 -0.114 0.513
IT -0.111 0.492 0.310 0.398 -0.065 0.367 -0.715 0.374
LAW 0.606 0.791 0.856 0.785 0.699 0.815 0.126 0.829
TALK 0.237 0.547 0.568 0.647 0.364 0.576 -0.150 0.572
RELIG 0.112 0.194 0.238 0.139 0.307 0.132 -0.215 0.209
MED 0.359 0.598 0.597 0.591 0.472 0.647 0.214 0.607

Table 4: COMET scores of combined tags under various domain labels

Test set
Provided label ⟨BANK⟩ ⟨IT⟩ ⟨LAW⟩ ⟨TALK⟩ ⟨RELIG⟩ ⟨MED⟩ ⟨NEWS⟩ None

BANK 0.615 0.616 0.620 0.623 0.621 0.621 0.613 0.620
IT 0.615 0.615 0.610 0.609 0.615 0.613 0.610 0.610
LAW 0.889 0.891 0.891 0.889 0.889 0.890 0.891 0.890
TALK 0.494 0.494 0.495 0.494 0.490 0.498 0.474 0.496
RELIG 0.879 0.883 0.875 0.870 0.872 0.876 0.890 0.878
MED 0.685 0.694 0.695 0.696 0.695 0.695 0.692 0.696

Table 5: COMET scores of in-dom ints under various domain labels

Test set
Provided label ⟨BANK⟩ ⟨IT⟩ ⟨LAW⟩ ⟨TALK⟩ ⟨RELIG⟩ ⟨MED⟩ ⟨NEWS⟩ None

BANK 0.611 -0.089 -0.001 -0.074 -1.448 -0.009 -0.289 -0.073
IT -0.625 0.599 -0.557 -0.539 -1.520 -0.527 -1.043 -0.550
LAW 0.193 0.255 0.893 0.273 -1.226 0.368 0.104 0.282
TALK -0.443 -0.334 -0.292 0.531 -1.430 -0.247 -0.444 -0.287
RELIG -0.958 -0.977 -0.820 -0.801 0.893 -0.796 -0.941 -0.872
MED -0.150 -0.062 0.052 0.006 -1.443 0.685 -0.223 0.017

Table 6: COMET scores of in-dom tags under various domain labels

Test set
Provided label ⟨BANK⟩ ⟨IT⟩ ⟨LAW⟩ ⟨TALK⟩ ⟨RELIG⟩ ⟨MED⟩ ⟨NEWS⟩ None

BANK 0.604 0.611 0.611 0.611 0.610 0.610 0.610 0.611
IT 0.609 0.605 0.607 0.608 0.609 0.610 0.610 0.609
LAW 0.896 0.897 0.896 0.896 0.896 0.896 0.896 0.896
TALK 0.580 0.576 0.577 0.580 0.577 0.577 0.578 0.578
RELIG 0.816 0.819 0.817 0.816 0.791 0.820 0.816 0.817
MED 0.677 0.675 0.677 0.676 0.675 0.671 0.677 0.676

Table 7: COMET scores of multi-dom FT ints under various domain labels
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Test set
Provided label ⟨BANK⟩ ⟨IT⟩ ⟨LAW⟩ ⟨TALK⟩ ⟨RELIG⟩ ⟨MED⟩ ⟨NEWS⟩ None

BANK 0.614 0.576 0.580 0.573 0.231 0.578 0.293 0.505
IT 0.369 0.595 0.465 0.486 -0.773 0.496 -0.372 0.435
LAW 0.681 0.832 0.870 0.810 0.468 0.867 0.620 0.657
TALK 0.206 0.491 0.522 0.605 -0.965 0.514 0.061 0.504
RELIG 0.084 0.198 0.449 0.180 0.850 0.330 -0.162 0.313
MED 0.538 0.637 0.671 0.638 0.436 0.673 0.494 0.609

Table 8: COMET scores of multi-dom FT tags under various domain labels

A.2 Ablation (BLEU)
All scores reported are from SacreBLEU6 (Post, 2018).

Test set
Provided label ⟨BANK⟩ ⟨IT⟩ ⟨LAW⟩ ⟨TALK⟩ ⟨RELIG⟩ ⟨MED⟩ ⟨NEWS⟩ None

BANK 51.9 51.7 51.9 51.9 51.9 51.8 51.8 51.9
IT 44.6 44.7 44.8 44.8 44.6 44.7 44.7 44.6
LAW 59.8 59.8 59.9 59.8 59.7 59.8 59.7 59.9
TALK 41.3 41.3 41.4 41.3 41.4 41.3 41.1 41.5
RELIG 27.6 27.8 27.7 27.8 27.6 27.9 27.5 27.7
MED 50.0 50.0 50.0 50.0 49.9 50.1 50.0 50.0

Table 9: BLEU scores of combined ints under various domain labels

Test set
Provided label ⟨BANK⟩ ⟨IT⟩ ⟨LAW⟩ ⟨TALK⟩ ⟨RELIG⟩ ⟨MED⟩ ⟨NEWS⟩ None

BANK 52.0 43.5 43.0 40.4 39.0 45.2 30.2 44.2
IT 18.5 46.5 36.3 39.9 26.5 37.2 11.0 35.0
LAW 50.2 56.4 59.8 50.7 51.4 55.5 36.9 56.2
TALK 29.5 39.2 38.1 43.7 28.3 39.7 22.7 37.1
RELIG 21.6 24.4 25.5 16.3 28.8 18.9 14.5 22.6
MED 43.5 48.5 48.3 47.3 45.0 50.1 41.6 49.1

Table 10: BLEU scores of combined tags under various domain labels

Test set
Provided label ⟨BANK⟩ ⟨IT⟩ ⟨LAW⟩ ⟨TALK⟩ ⟨RELIG⟩ ⟨MED⟩ ⟨NEWS⟩ None

BANK 58.5 58.6 58.6 58.6 58.5 58.8 58.2 58.7
IT 52.0 51.9 51.4 51.4 51.8 51.6 51.4 51.8
LAW 66.1 66.2 66.1 66.0 65.9 66.1 66.0 66.1
TALK 39.0 39.1 39.1 39.2 39.1 39.2 38.8 39.0
RELIG 89.2 89.2 89.0 88.7 88.7 89.2 89.3 89.1
MED 55.4 55.5 55.3 55.4 55.4 55.4 55.4 55.5

Table 11: BLEU scores of in-dom ints under various domain labels

Test set
Provided label ⟨BANK⟩ ⟨IT⟩ ⟨LAW⟩ ⟨TALK⟩ ⟨RELIG⟩ ⟨MED⟩ ⟨NEWS⟩ None

BANK 58.7 31.2 36.0 34.3 3.9 36.1 27.3 34.4
IT 15.5 51.1 16.6 20.0 0.4 18.8 5.9 15.9
LAW 42.2 43.5 66.4 45.3 12.4 48.2 40.2 44.7
TALK 18.6 21.0 20.7 39.8 1.0 23.8 17.2 21.5
RELIG 6.2 6.1 8.2 8.7 89.5 9.0 5.5 7.6
MED 32.2 33.2 32.8 33.3 5.5 55.4 29.5 33.5

Table 12: BLEU scores of in-dom tags under various domain labels

6BLEU|nrefs:1|case:mixed|eff:no|tok:13a|smooth:exp|version:2.2.0
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Test set
Provided label ⟨BANK⟩ ⟨IT⟩ ⟨LAW⟩ ⟨TALK⟩ ⟨RELIG⟩ ⟨MED⟩ ⟨NEWS⟩ None

BANK 56.1 55.9 56.5 56 56.1 56.4 55.3 56.3
IT 50.6 50.6 50.0 50.4 50.3 50.6 49.8 50.9
LAW 64.8 64.7 64.9 64.9 64.8 65.2 64.5 65.0
TALK 41.2 40.8 41.1 41.3 41.3 41.2 40.4 41.5
RELIG 80.4 81.1 80.5 80.2 79.4 81.8 79.3 82.2
MED 51.7 51.3 51.6 51.7 51.7 51.6 51.3 51.7

Table 13: BLEU scores of multi-dom FT ints under various domain labels

Test set
Provided label ⟨BANK⟩ ⟨IT⟩ ⟨LAW⟩ ⟨TALK⟩ ⟨RELIG⟩ ⟨MED⟩ ⟨NEWS⟩ None

BANK 56.9 54.5 54.4 52.0 49.6 55.0 43.4 54.9
IT 43.1 50.9 47.4 46.9 28.0 46.9 17.3 40.8
LAW 55.7 63.7 64.8 61.2 59.4 64.2 55.9 60.3
TALK 28.0 37.4 36.1 41.6 8.4 36.1 23.1 36.2
RELIG 32.6 38.6 61.9 22.9 83.6 50.7 19.2 49.1
MED 49.6 51.4 51.8 50.4 49.4 51.9 49.7 51.2

Table 14: BLEU scores of multi-dom FT tags under various domain labels
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C Examples

Src Never; soon they will deny ever worshipping them, and will turn into their opponents.
Ref Bien au contraire! [ces divinités] renieront leur adoration et seront pour eux des adversaires.

multi-dom FT ints Bien au contraire! [ces divinités] renieront leur adoration et seront pour eux des adversaires.
multi-dom FT tags You are about to translate the ’None ’COMMAND, there are

some rules on how to translate it. Please see http: / / / /www.mysql.com /.
Src And the evil-doers say: Ye are but following a man bewitched.
Ref Les injustes disent: «Vous ne suivez qu’un homme ensorcelé».

in-dom ints Les injustes disent: «Vous ne suivez qu’un homme ensorcelé».
in-dom tags Et les « & #160; diaboliques & #160; » disent & #160;: « & #160; fired & #160; »

est le suivant d’un homme.

Table 15: Example translation artifacts from incorrect domain label; a translation of ⟨RELIG⟩ sentences with
⟨IT⟩ domain label under different models. We note that the HTML-encoded artifact “& #160;" appears with high
frequency in ⟨IT⟩.
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Abstract

This paper describes the Inria ALMAnaCH
team submission to the WMT 2022 general
translation shared task. Participating in the lan-
guage directions {cs,ru,uk}→en and cs↔uk,
we experiment with the use of a dedicated
Latin-script transcription convention aimed at
representing all Slavic languages involved in a
way that maximises character- and word-level
correspondences between them as well as with
the English language. Our hypothesis was
that bringing the source and target language
closer could have a positive impact on machine
translation results. We provide multiple com-
parisons, including bilingual and multilingual
baselines, with and without transcription. Ini-
tial results indicate that the transcription strat-
egy was not successful, resulting in lower re-
sults than baselines. We nevertheless submitted
our multilingual, transcribed models as our pri-
mary systems, and in this paper provide some
indications as to why we got these negative
results.

1 Introduction

This paper describes the Inria ALMAnaCH team
submission to the WMT 2022 general translation
shared task. We chose to explore the language
directions {cs,ru,uk}↔en and cs↔uk in order to
concentrate on the Slavic language family. Due to
some experimental problems that impacted the into-
Slavic directions most heavily, we only submitted
{cs,ru,uk}→en and cs↔uk language directions, but
we present all results we obtained here.

A major area of interest in machine translation
(MT) research is transfer between languages, par-
ticularly related ones and for lesser resourced lan-
guages (Zoph et al., 2016; Kocmi and Bojar, 2018).
One way of encouraging transfer is to train multilin-
gual models, whereby several language directions
are trained simultaneously, often sharing some (Fi-
rat et al., 2016) or all model parameters (Ha et al.,

∗Contributions made whilst at Inria.

2016; Johnson et al., 2017; Aharoni et al., 2019),
with the hope that similarities between the lan-
guages can boost performance, particularly for the
lower-resourced languages.

To encourage lexical sharing and therefore the
transfer capacity of such models, joint subword seg-
mentation models (Sennrich et al., 2016b) and MT
vocabularies are often used (Sennrich et al., 2016a),
and techniques such as phonetisation and translit-
eration/transcription can be applied to texts in a
bid to overcome differences in writing systems and
spelling (Nguyen and Chiang, 2017; Chakravarthi
et al., 2019; Goyal et al., 2020; Muller et al., 2021).

In our submission to the WMT 2022 general
translation shared task, we experimented with mul-
tilingual models and the use of customised tran-
scription into a common writing system designed
to maximise lexical sharing, similar to the one used
in (Muller et al., 2021). We choose to work with
the language directions involving Slavic languages,
that is {cs,ru,uk}↔en and cs↔uk. We find that
our transcription method unfortunately leads to de-
graded results, likely a consequence of errors be-
ing injected and notably the necessity to apply a
learned detranscription model as a post-processing
step for into-Slavic language directions. Our mul-
tilingual models achieved largely inferior results
to our bilingual baseline models for the same num-
ber of parameters, showing that multilingual trans-
fer cannot compensated for sharing the vocabulary
over a larger number of languages. Transcribing the
languages in the multilingual setup results narrows
the gap slightly, but the results remain lower than
the bilingual baselines. We nevertheless decided
to submit our multilingual models with common-
Slavic transcription rather than our superior base-
line results in the full knowledge that these results
would not achieve the best results in the shared
task.1

1We believe it was more interesting to submit these results
to test our hypothesis rather than to submit more standard
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cs original Sníh pokryl stromy vedle zámku.
cs transcribed Snig pokril stromi vedle zamku.

uk original Снiг вкрив дерева бiля замку.
uk transliterated Snih vkryv dereva bilja zamku.
uk transcribed Sneg vkriv dereva bela zamku.

ru original Снег покрыл деревья возле замка.
ru transliterated Sneg pokryl derev’ja vozle zamka.
ru transcribed Sneg pokril dereva vozle zamka.

en original The snow has covered the trees next to the castle.

Table 1: Constructed example illustrating the difference between standard transliteration and our linguistically
motivated transcription.

2 Related Work

There has been a considerable body of work in
MT dedicated to multilingual models, whereby
several language directions are trained simultane-
ously, with different degrees of parameter sharing,
ranging from separate encoders and decoders (Fi-
rat et al., 2016) to the sharing of a single encoder
and a single decoder for all languages with a sin-
gle shared vocabulary (Ha et al., 2016; Johnson
et al., 2017; Aharoni et al., 2019). As well as be-
ing practical by providing a single MT model that
can be used for multiple directions, the models
have the advantage of aiding the representations of
lower-resourced languages, particularly if related,
higher-resourced languages are also included in
training (Kudugunta et al., 2019; Aharoni et al.,
2019; Tchistiakova et al., 2021).

In addition to approaches such as joint subword
segmentation models (Sennrich et al., 2016b) and
the use of a joint vocabulary for all languages (John-
son et al., 2017), strategies to encourage more lex-
ical sharing have also been explored in order to
overcome surface differences introduced by ortho-
graphic conventions, notably phonetisation (Liu
et al., 2019; Rosales Núñez et al., 2019; Sun et al.,
2022) and transliteration (Nakov and Tiedemann,
2012; Nguyen and Chiang, 2017; Goyal et al.,
2020). These approaches can be particularly useful
for borrowings and for proper nouns, which can
be made to be identical (or near-identical) across
languages once transliteration has been applied.

Transliteration is the mapping of one writing
system to another, and therefore is relevant when
languages are written in different scripts (e.g. Latin,
Cyrillic, Devanagari, etc.). In particular for related
languages, it can be interesting to apply translitera-

baseline systems. Due to human error, these submitted models
perform less well than the results presented in this paper, as
described in Section 5.3.

tion in order to exploit the fact that many words can
be made to be similar on the surface once translit-
eration has been applied. Much of the work that
has explored transliteration for MT has focused
on Indian languages, for which the mapping be-
tween scripts is relatively straightforward (Bawden
et al., 2019; Goyal et al., 2020; Kunchukuttan and
Bhattacharyya, 2021; Sun et al., 2022), but there
has also been research on other language families
(Maimaiti et al., 2019; Sun et al., 2022), including
Slavic languages (Maimaiti et al., 2019). In our sys-
tems, we follow a similar approach to test whether a
form of transliteration that maximises lexical over-
lap between Slavic languages could help translation
in a multilingual setup, even in the relatively high-
resource scenario provided by the shared task.

3 Multilingual Slavic models with
transcription

Building on the previous work on multilingual MT
and on transliteration to encourage lexical sharing,
we propose multilingual models with a custom lin-
guistically motivated transcription scheme for trans-
lation between English and the Slavic languages
Czech (cs), Ukrainian (uk) and Russian (ru).

Multilingual Slavic translation models We
train multilingual Slavic translation models with a
single encoder-decoder architecture as in (Johnson
et al., 2017) over the following language directions:
{cs,uk,ru} from and into English and cs to and from
uk. Given that a single shared encoder and a sin-
gle shared decoder is used, the same vocabulary is
used across all languages, and we also share embed-
dings across the encoder and decoder. To further
encourage sharing, we train a joint subword seg-
mentation model. To test the performance of this
multilingual model, we compare against bilingual
baselines trained uniquely on parallel data for the
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specific language pair, which also share encoder
and decoding embeddings.

Linguistically motivated transcription We ex-
periment with the use of a customised common
Slavic writing system designed with the aim of
maximising lexical overlap between the Slavic lan-
guages we study. The underlying idea is that MT
models, both bilingual and multilingual, should
benefit from an increase in the similarity between
languages including in training. Since Slavic lan-
guages share a common ancestor, Proto-Slavic,
they display similarities in terms of phonetics,
grammar and vocabulary. Lexical overlap, though,
can be further improved in at least two ways:

• Whereas Czech uses the Latin script with a
number of diacritics, Russian and Ukrainian
use the Cyrillic script. Using a common script
would inevitably increase the lexical overlap
and make it more explicit. For instance, us-
ing a standard Latin transliteration scheme
for Russian,2 the Russian word рука ‘hand’
can be rendered as ruka, which is identical to
Czech ruka ‘hand’.

• Each Slavic language has undergone a num-
ber of changes from Proto-Slavic, including
regular sound changes. Examples such as
Ru. рука∼ruka vs. Cz. ruka, where translit-
eration alone is enough to create a perfect
lexical overlap, are therefore rare. However,
there are a large number of cognates (words in
related languages that share a common ances-
tor), which, independently of the script, are
still similar and only differ in partly system-
atic ways. For instance, Ru. корень ‘root’,
Uk. корiнь ‘id.’ and Cz. kořen ‘id.’ are cog-
nates. Using standard transliteration schemes,
the Russian and Ukrainian words can be ren-
dered as koren’ and korin’, respectively. This
is closer to Cz. kořen but is not identical. More
importantly, it fails to identify the fact that
Uk. i often corresponds to Cz. e and that Cz. ř
often corresponds to Ru. and Uk. р.

To further increase lexical overlap and with the
aim of encouraging more transfer between the lan-
guages than what is permitted by standard transliter-
ation schemes, we developed transformation rules

2Here and elsewhere in this paper, we use the so-called
“scientific transliteration” when we transliterate Russian and
Ukrainian. It is a standard, slightly language-dependent,
transliteration scheme.

for all three Slavic languages based on systematic
patterns, based on observations from cognate lists
in the three languages and knowledge about their
morphology, in order to lower the differences in-
troduced between them by sound changes and mor-
phological particularities, similarly to (Muller et al.,
2021). For Russian and Ukrainian, this involves a
script change, but Czech is also modified. We call
this transformation linguistically motivated tran-
scription.3 Going back to the example above, the
output of our transcription scripts for Ru. корень,
Uk. корiнь and Cz. kořen is the same, namely ko-
ren. Table 1 illustrates our linguistically motivated
transcription strategies on a constructed multilin-
gual example.

Transcription and detranscription Our com-
mon Slavic transcription is applied during pre-
processing to the training data. For into-English
language directions, no further processing is re-
quired following translation, because we only tran-
scribe the Slavic languages and not English. How-
ever for from-English directions and for cs↔uk,
the output of the MT model will require detran-
scription in order to transform the outputs into the
correct form for that language. We therefore also
train small transcription models, which are essen-
tially individual translation models trained to trans-
late from the transcribed text to the original writing
system. This step can be trained on large quantities
of monolingual data rather than being limited to
parallel data, which is important if error propaga-
tion is to be kept to a minimum.

4 Data

We developed systems for four of the several lan-
guage combinations taken into account for the gen-
eral translation task. They are {cs,ru,uk}↔en and
cs↔uk. We took part in the challenge under its
constrained track, using only a portion of the data
made available for the task. The following sections
describe the data we used and how we processed
and filtered it. We present the data sizes and their
corresponding sources in Table 8 in Appendix A.

3Transliteration is generally defined as a bijective script
change, a constraint that is too strict to allow for a significant
increase in lexical overlap. Relaxing the bijectivity constraint,
on the other hand, means that some information is lost. It is
no longer a transliteration stricto sensu. Contrarily to (Muller
et al., 2021), we therefore use the term transcription rather
than transliteration to denote a transformation process that
performs non-bijective changes.
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Figure 1: Illustration of our multilingual MT approach using common Slavic transcription.

4.1 Parallel Data
We used all of the parallel data provided for the
language pairs we selected, with the exception of
the back-translated news data, CzEng2.0 and two
more datasets released at a later stage of the chal-
lenge, ELRC-EU acts, and Yakut parallel data, for
the training of our NMT systems. We excluded
the back-translated news data4 and CzEng 2.0,5

which are both back-translated data sources, after
inspecting their respective content and discovering
a large proportion of poorly translated sentences.
To assess their quality and gauge the amount of
noise present, the other parallel data were carefully
examined. This was important especially for the
web-mined data such as CCAligned, Wikimatrix,
and CommonCrawl, which all contained a vari-
ety of quality issues identified in (Kreutzer et al.,
2022).

Parallel Data Filtering: Each parallel corpus
was subjected to a generic filtering pipeline in-
volving the removal of blank lines and sentences
without corresponding translations. We carried out
language identification on the web-mined paral-
lel corpora using FastText (Joulin et al., 2016a,
2017), thus removing sentence pairs where either
the source or target is not in the intended language.
Finally, the parallel corpora for each language pair
were combined, and duplicate translation pairs
were removed. Table 2 shows the original num-
ber of parallel sentences for the different language
pairs and their corresponding sizes after filtering.

Language pair Original Filtered

cs–en 56,289,558 54,495,258
cs–uk 3,163,969 2,490,622
en–ru 31,052,852 25,584,007
en–uk 23,355,100 22,322,394

Table 2: Number of parallel sentences.

4http://data.statmt.org/wmt20/
translation-task/back-translation/

5https://ufal.mff.cuni.cz/czeng/czeng20

4.2 Monolingual Data

We used monolingual data to train the detranscrip-
tion models. As with the parallel data, we removed
empty lines, duplicated lines and also sentences
that were not from the target language by doing
language identification with FastText (Joulin et al.,
2017, 2016b). This process was necessary since
most of these sentences were web-mined text. The
statistics of the monolingual data for each language
are shown in Table 9 in Appendix A, along with
their sizes before and after pre-processing.

For the transcription experiments, we randomly
selected 20M sentences from the pre-processed
monolingual texts for each of the Slavic languages.

4.3 Validation and Test Data

For each language pair, we chose 2000 and 3000
sentence pairs from the pre-processed parallel texts
as our internal validation and test sets respectively,
and the remaining sentences were used for train-
ing. In order to compare the various systems we
developed, we also used the development set pro-
vided for the shared task (the FLORES develop-
ment set and the WMT2018 test set depending on
the language pair). This was also done for the
systems with transcription. En↔uk and cs↔en
models were only evaluated on the in-house test
and the FLORES development sets because they
were not in covered by the WMT2018 test sets. We
also provide automatic scores on the WMT2022
test sets.

4.4 Subword Tokenisation

We tokenised all data using a joint SentencePiece
(Kudo and Richardson, 2018) unigram model with
a character coverage of 1.0 and a maximum sen-
tence length of 4, 096 tokens. Specifically, for
the bilingual systems, we uniformly sampled 5M
monolingual sentences from the parallel training
data of each language pair to have 10M sentences
in total over which we trained a SentencePiece to-
keniser. Similarly, for multilingual systems, we
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sampled a total of 10M monolingual sentences
evenly from all monolingual data available for each
language that the tokeniser was trained on.

5 Experiments and training

We submitted three categories of NMT systems:
(i) the baseline bilingual translation models for
each of the four language pairs in their original
scripts, (ii) a multilingual model with common-
Slavic transcription for {cs,uk,ru}→en, and (iii) a
bilingual model with common-Slavic transcription
for cs↔uk. Below, we provide details of these sub-
mitted systems, as well as the additional systems
developed before and after the task’s deadline.

5.1 NMT architecture and training
All models used the transformer-base architec-
ture (Vaswani et al., 2017) within the Fairseq6

toolkit (Ott et al., 2019). We use the
multilingual_translation architecture for all
models, except for those trained on a single lan-
guage pair. We used batch sizes of 10, 240 tokens, a
maximum sentence length of 1, 024, and a dropout
of 0.3. For optimisation, we used Adam (Kingma
and Ba, 2015) with β1 = 0.9 and β2 = 0.998, a
learning rate of 1 ∗ 5e−5 and a warm-up of 4, 000
updates. The optimiser uses a label-smoothed
cross-entropy loss function with a label-smoothing
value of 0.1. For multilingual models we use tem-
perature sampling with T = 1.5. All models were
trained until convergence based on the BLEU score
on the development set. We use BLEU (Papineni
et al., 2002) to evaluate our models and to choose
the best checkpoints, calculated using SacreBLEU7

(Post, 2018).

5.2 Baseline models
We trained a bilingual translation model for each
of the four language pairs we covered. We chose a
vocabulary size of 64k for all systems after exper-
imenting with different sizes (16k, 32k, and 64k).
We then fine-tuned each bilingual model to each of
the two directions in the language pair (taking the
best checkpoint of the bilingual model), resulting
in a baseline model for each of the 8 translation
directions.

We also trained a multilingual system for all of
the language pairs, i.e. a single model that can trans-
late in every direction, which was then finetuned to

6https://github.com/facebookresearch/fairseq
7With the following parameters: case:mixed|eff:no|

tok:13a|smooth:exp|version:2.3.1

each language direction. We chose to use a vocabu-
lary size of 64k based on the trends we found from
the bidirectional model experiments. We chose not
to go bigger in order to keep the model compact
and comparable to the bilingual baselines, at least
in terms of the number of parameters. Our compar-
ison therefore tests whether for a same number of
parameters multilingual models (and transcription)
can be beneficial, despite the fact that multilingual
vocabs are likely to result in a higher degree of
segmentation for the individual languages.

5.3 Common Slavic transcription

To assess the impact of transcription, we trained
bilingual and multilingual models on the tran-
scribed versions of the Slavic parallel data. We
follow the same setup as for the baseline models
(i.e. bilingual/multilingual training and then fine-
tuning on the specific language direction), simply
substituting the original Slavic text with the tran-
scribed versions.8 When presenting the results,
we refer to the transcribed version of Russian (ru),
Czech (cs) and Ukranian (uk) as rl, cl and ul re-
spectively.

Due to human error, our submitted multilingual
systems were trained with a vocabulary of 16k
rather than 64k, which severely penalised them
and resulted in very low official scores. We report
results with the intended vocabulary size of 64k in
this article.

5.4 Detranscription models

For each Slavic language, we trained a de-
transcription model on 20M parallel sentences
(transcribed→original), consisting of monolingual
sentences and their automatically transcribed ver-
sions. We used a joint SentencePiece model of
size 16k and used the same architecture as be-
fore. These models were applied after translation
to make sure that transcribed Slavic outputs were
in their original writing system.

6 Results

6.1 Baseline models (without transcription)

We first report results for our baseline models in
Table 3 (i.e. without transcription).

We provide results for our in-house test set (from
the same distribution as the training data), the
FLORES devtest subset and the WMT2018 test

8SentencePiece models were also retrained on the new
data, keeping a vocabulary size of 64k.
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en→cs cs→en cs→uk uk→cs en→ru ru→en en→uk uk→en

Bilingual
*In-house Test 43.11 45.38 39.16 40.20 42.66 47.07 33.32 38.16
FLORESdevtest 29.05 33.70 19.76 20.86 24.60 28.65 24.11 30.03
WMT 2018 20.81 29.03 – – 23.77 28.15 – –
WMT 2022 33.62 39.45 27.40 25.65 23.60 34.71 20.72 34.42

Multilingual
*In-house Test 36.02 39.42 27.08 28.50 35.71 40.74 34.19 38.97
FLORESdevtest 21.53 27.22 11.56 13.41 15.22 21.43 17.48 24.76
WMT 2018 15.36 21.18 – – 15.04 21.19 – –
WMT 2022 24.95 26.89 18.61 17.43 16.70 26.66 16.66 27.49

Table 3: BLEU score results for bilingual and multilingual baseline models (i.e. without transcription).

en→cs cs→en cs→uk uk→cs en→ru ru→en en→uk uk→en

Bilingual
In-house Test 41.72 44.94 35.80 38.04 38.67 46.50 28.89 37.69
FLORESdevtest 28.83 33.56 19.05 20.09 21.77 27.93 21.94 28.86
WMT 2018 20.66 27.64 – – 21.64 27.57 – –
WMT 2022 33.42 37.83 26.43 24.96 21.22 34.43 18.69 32.7

Multilingual
In-house test 36.75 40.08 30.64 32.99 34.57 41.19 29.73 38.71
FLORESdevtest 22.34 28.15 15.90 16.22 17.96 22.64 20.62 24.78
WMT 2018 15.85 22.39 – – 17.85 22.24 – –
WMT 2022 26.08 29.00 23.20 21.15 17.66 27.32 18.36 28.48

Table 4: BLEU score results for bilingual and multilingual models using transcription for all Slavic languages.

set (when available). Although the BLEU scores
are not directly comparable across test sets, the
baseline results are generally quite high. The high-
est results are seen for cs↔en and for all sets other
than the WMT2022 test set, the lowest are generally
seen for cs↔ul, which correspond to the highest
and lowest resourced language pairs respectively.
Interestingly, the en↔uk test set are comparatively
tougher than the other sets we evaluate with.

When we compare bilingual and multilingual re-
sults, it is clear that the bilingual models are largely
superior for all language directions, with very large
differences in BLEU scores across evaluate sets.
The only BLEU scores that are higher for the multi-
lingual model is for en↔uk, for which the in-house
test set gives slightly higher results. However, this
does not hold for the other test sets, indicating
overfitting of the models. These results are not
so surprising given the relatively small vocabulary
size of 64k for the four languages included in train-
ing. This is to compare with the bilingual models’
64k vocabulary sizes spread over two languages
only. The obligation to share a same vocabulary
size amongst more languages (and more scripts) is
certainly not compensated by any gain that could
possibly be had through multilingual transfer.

6.2 Results with transcription

In Table 4 we provide the results of bilingual and
multilingual models with transcription (and detran-
scription where necessary).

Although transcription should not help the bilin-
gual models that translate to and from English
since there is only one Slavic language involved,
we include these results for comparative purposes.
Ideally, these results (for {cs,uk,ru}↔en) should
be identical to the baseline results, showing that
transcription does not introduce noise into the pro-
cess. In reality, we see a systematic drop in results
when transcribing for into-English directions, and
a greater drop in BLEU score for into-Slavic direc-
tions, most likely due to errors introduced by the de-
transcription model. Interestingly, some directions
suffer much more than others (e.g. en→uk and
en→ru have a drop of over 2 BLEU vs. en→cs’s
drop of 0.20 BLEU on WMT2022). This could
well be a reflection of the fact that the transcrip-
tion scheme was centred around Czech, with fewer
modifications being made to this language than to
the others.

For the multilingual models, the scores are again
much lower than the bilingual models with translit-
eration for all directions, although some slight im-
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provements are seen for into-English directions, al-
though the performance is much closer for en→uk.
We do however see an improvements across the
board on the results of the baseline multilingual
models (i.e. without transcription), suggesting that
transcribing helps to marginally make up some of
the lost scores. Unfortunately, it is unclear whether
this is due to the vocabulary now being spread over
fewer different scripts or whether transcription does
help provide better transfer in some other ways.

7 Discussion

Given these disappointing results, it is important to
make a first step to understanding why transcription
does not help. We therefore look at some additional
results concerning the noise that the transcription
step might be introducing: (i) the translation results
for the detranscription step itself and (ii) compara-
tive results for cs↔uk when transcribing the source,
the target or both.

Detranscription quality We show the results for
the detranscription step itself in Table 5, where
we apply our detranscription models to the texts
to which our transcription rules have been applied.
The BLEU scores are very high, but not exactly
perfect, suggesting that errors are being introduced
in this step. The results are highest for Czech,
therefore confirming our earlier hypothesis that this
step is degrading less for this language given that
fewer changes are made.

We also provide results (Table 6) of the raw out-
put of the from-English bilingual models with tran-
scription (i.e. before applying detranscription). We
compare these to the results of the bilingual base-
lines (trained to produce the correct script) but with
automatic transcription applied to the outputs in
order to provide a point of comparison in terms
of the BLEU score. The results are lower for the
bilingual models with transcription for Russian and
Ukrainian, suggesting that the outputs of the MT
models are also far from perfect, and that transcrip-
tion may be introducing ambiguities and making it
harder for the models to learn. However, as can be
seen in previous results, the same cannot be said
for Czech, where the results are actually slightly
higher for the bilingual model with transcription
compared to the bilingual baseline with transcrip-
tion applied.

Comparative results for cs↔uk with different
combinations of transcription Table 7 shows

cl→cs rl→ru ul→uk

FLORESdevtest 97.49 94.74 96.29
WMT 2022 (src) 96.47 95.34 94.70
WMT 2022 (ref) 97.33 96.24 97.12

Table 5: BLEU score results for detranscription.

en→cl en→rl en→ul

Bilingual with transcription
FLORESdevtest 29.53 22.90 22.62
WMT 2022 34.06 22.56 19.27

Transcribing bilingual baseline’s output
FLORESdevtest 29.37 25.35 24.60
WMT 2022 33.87 23.75 20.94

Table 6: Comparison of bilingual models with transcrip-
tion and of baseline bilingual models with transcription
applied to the outputs. Results (BLEU scores) are pro-
vided on transliterated references.

the results for cs↔uk when transcribing the source,
target or both. The best results when using the
original scripts, as can be seen in previous results.
However, the results suggest that in some scenarios,
it could be better to transcribe just the source rather
than to transcribe both source and target. The ad-
vantage of this for uk→cs is that Ukrainian is being
made to look more like Czech, but without there
being extra errors added by the detranscription step.
(Muller et al., 2021) showed that transcribing could
be useful for lower-resource languages, so a pos-
sibility here is that the languages are sufficiently
high-resource for transcription not to help so much
and for the errors introduced in detranscription to
outweigh any potential benefits.

none source target both

cs→uk
FLORESdevtest 19.76 19.64 19.32 19.05
WMT 2022 27.40 27.01 26.82 26.43

uk→cs
FLORESdevtest 20.86 20.41 18.50 20.09
WMT 2022 25.65 25.15 25.41 24.96

Table 7: BLEU score results for bilingual cs↔uk mod-
els when transliterating neither source nor target (none),
just the source, just the target or both. Results are shown
after detranscription.

8 Conclusion

Setting aside the fact that multilingual models pro-
vide very inferior results to specific bilingual mod-
els for the same number of parameters, our results
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suggest that the answer to the question “Does tran-
scription help cross-script machine translation?” is
no. This is at least for the languages on which we
experimented and given the amount of training data
we had at our disposition. Our bilingual model re-
sults show that transcription harms performance,
whether it is done on the source side, the target
side or both sides. There are several possible ex-
planations for this: (i) the relatively high-resource
scenario we are working in, where baselines can al-
ready achieve good results and where little gain can
be achieved through this type of transfer, (ii) the
possibility that transcription introduced ambigui-
ties that could harm translation, and (iii) the detran-
scription step itself also introducing errors.
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A Data sources

Tables 8 and 9 give the amount of data for each
data source in the parallel and monolingual data
respectively.
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Source en-ru en-cs en-uk cs-uk

AirBaltic 1092
ECB 3100
CZECHTOURISM 7328
RAPID 263287
EMA 495234
EESC 1329010
UNCorpus4 23239280
NEWS Commentary 333899 253639
WorldBank 25849 1628
Paracrawl 5377911 50632492 13354365
WikiTitles 1189107 410978
WikiMatrix 2094650
EUROPARL 645330
Commoncrawl 878386 161838
Opus

Bible 15901 7953
Open Subtitles 877780 730804
EUBooks 1793 1506
TED2020 208141 115351
Wikimedia 348143 1959
MultiCCAligned 8547349 2306396
Dev set

FLORES (dev) 997 997
FLORES (devtest) 1012 1012
NEWSTEST2018 991

Table 8: Parallel data sources.

Source Cs En Ru Uk

News crawl 12203274 39361312 15441304 411439
Europarl v10 669676
News Commentary 282139 660667 404978
Common Crawl 333498145 - 1168529851
UberText Corpus -
fiction 1811548
news 31021650
ubercorpus 48620146
wikidump 15786948

Leipzig Corpora - - - -
ukr_mixed_2012 1000000
ukr_news_2020 1000000
ukr_newscrawl_2018 1000000
ukrua_web_2019 1000000
ukr_wikipedia_2021 1000000

Legal Ukrainian 7568246
Common Crawl (filt.) 275825036 - 1150607428 -

Total (concat.) 293980125 - 1170453710 110219977
Total (dedup.) 290477308 - 1155825622 53177077

Table 9: Monolingual data sources.
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Abstract

In this paper, we describe our NAIST-NICT-
TIT submission to the WMT22 general ma-
chine translation task. We participated in this
task for the English↔ Japanese language pair.
Our system is characterized as an ensemble of
Transformer big models, k-nearest-neighbor
machine translation (kNN-MT) (Khandelwal
et al., 2021), and reranking.

In our translation system, we construct the
datastore for kNN-MT from back-translated
monolingual data and integrate kNN-MT into
the ensemble model. We designed a reranking
system to select a translation from the n-best
translation candidates generated by the trans-
lation system. We also use a context-aware
model to improve the document-level consis-
tency of the translation.

1 Introduction

We participated in the WMT22 general ma-
chine translation task in two language direc-
tions, English-to-Japanese (En-Ja) and Japanese-
to-English (Ja-En). We built our system on an
ensemble of Transformer big models, k-nearest-
neighbor machine translation (kNN-MT) (Khan-
delwal et al., 2021), and reranking. Figure 1 shows
an overview of our system.

Our translation system is a combination of
kNN-MT and an ensemble of four Transformer
big models. We train each of the Transformer
NMT models using a different random seed, and
pick one model as kNN-MT. A notable point about
our system is that we construct the datastore for
kNN-MT from back-translated monolingual data
rather than reusing training data. We found that us-
ing back-translated data improves translation per-
formance compared with using a parallel training
corpus for the datastore.

Our reranker is designed to select the transla-
tion from the n-best translation candidates gener-
ated by the translation system. The reranker com-

Decoding
Training / Offline Process

Ensemble

kNN-MT

Reranking

Target-side
Monolingual Data

Test Data

System Output

Training
Parallel Data

Training
Parallel Data

Synthetic
Parallel Data

kNN-MT
DatastoreSource→Target

Target→Source

Source→Target
(L2R)

Source→Target
(R2L) Base MT Score

Target→Source
(L2R)

Target→Source
(R2L)

N-best Candidates…

Figure 1: System overview.

putes the weighted sum of each translation candi-
date across multiple models and selects the trans-
lation candidate with the highest score. We used
k-best batch MIRA (Cherry and Foster, 2012) to
select the weights for the model scores that maxi-
mize the BLEU score of the development set.

2 Corpora and Preprocessing

For the training data, we used all the provided
bilingual parallel data: JParaCrawl v3 (Morishita
et al., 2020), News Commentary v16 (Tiedemann,
2012), Wiki Titles v3, WikiMatrix, Japanese-
English Subtitle Corpus (Pryzant et al., 2018), The
Kyoto Free Translation Task Corpus, and TED
Talks. As the English translation of the Japanese-
English Subtitle Corpus is only available in lower-
case, we trained a Moses truecaser (Koehn et al.,
2007) using the other corpora to add capitalization
into the subtitle corpus. After truecasing, the first
letter of each sentence was capitalized using de-
truecasing to produce sentence-cased English text
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to match the casing in the other corpora. We
cleaned the data by removing duplicate lines and
applying language filtering. As much of the train-
ing data was crawled from the internet, we used
fasttext (Joulin et al., 2016a,b) to predict the lan-
guage of each sentence and removed the sentences
that were not predicted to be the correct language.
This has the effect of reducing the noise of the
dataset by removing sentences with garbage to-
kens. We tokenized the text into subword units
using a joint vocabulary size of 64,000, a char-
acter coverage of 99.98%, and byte fallback us-
ing sentencepiece (Kudo and Richardson, 2018).
After subword segmentation, all sentences shorter
than 1 token or longer than 250 tokens were re-
moved. We also removed all sentences where the
number of tokens in one language was more than
double the number of tokens in the translation, i.e
the ratio of tokens between the source and target
is >2.0. After filtering, 27,784,519 sentence pairs
remained for training.

3 Translation System

3.1 Base Model

Our translation model is based on the Transformer
big architecture (Vaswani et al., 2017) with an
FFN size of 8,192 implemented in FAIRSEQ (Ott
et al., 2019). The hyperparameters for our transla-
tion models are shown in Table 1.

3.2 kNN-MT

kNN-MT (Khandelwal et al., 2021) extends the
decoder of a trained machine translation model us-
ing the k-nearest-neighbor search algorithm, and
retrieves the cached translation examples. The
method consists of two steps, datastore creation,
which creates key-value translation memory, and
generation, which calculates an output probabil-
ity distribution based on the nearest neighbors of
cached translation memory.

Datastore creation The typical NMT model is
composed of an encoder that encodes the source
sentence X and a decoder that generates target
tokens Y = (y1, y2, . . . , yI). Each target to-
ken yi is generated based on its output probability
P (yi|X, y<i). kNN-MT caches parallel text D in
a datastore represented as key-value memory M.
The value is a token yi that comes from a target
sentence in a parallel corpus, and the key is its in-
termediate vector hi of each time step computed

Translation Model

Architecture Transformer big with FFN size
of 8,192

Optimizer Adam (β1 = 0.9, β2 =
0.98, ϵ = 1× 10−8)

Learning Rate Schedule Inverse square root decay
Warmup Steps 4,000
Max Learning Rate 0.001
Dropout 0.3
Gradient Clipping 1.0
Label Smoothing ϵls = 0.1
Mini-batch Size 512,000 tokens
Number of Updates 80,000 steps
Averaging Save checkpoint for every

1,000 steps and take an average
of last 10 checkpoints

Length Penalty 1.0
Beam Size 10

Reranker Model

Architecture Transformer big with FFN size
of 8,192

Optimizer Adam (β1 = 0.9, β2 = 0.98,
ϵ = 1× 10−8)

Learning Rate Schedule Inverse square root decay
Warmup Steps 4,000
Max Learning Rate 0.001
Dropout 0.3
Position Embeddings SHAPE (K = 512)
Gradient Clipping 1.0
Label Smoothing ϵls = 0.1
Mini-batch Size 512,000 tokens
Number of Updates 80,000 steps
Averaging Save checkpoint for every

2,000 steps and take an average
of last 10 checkpoints

Table 1: Hyperparameters of our translation and
reranker models.

by the decoder. The datastore is formulated as fol-
lows:

M = {(hi, yi), ∀yi ∈ Y | (X,Y ) ∈ D}. (1)

In our model, we use the 1024-dimensional vector
representation from the decoder before it is passed
to the final feed-forward network as the key hi.

We use FAISS (Johnson et al., 2019), which is
a toolkit for kNN search, to represent the datas-
tore and search for the nearest neighbors. We use
the OPQMatrix vector transform, IndexIVFPQ in-
dex, and IndexFlatL2 index as the coarse quan-
tizer. The hyperparameters of our search index are
shown in Table 2.

Generation During decoding, kNN-MT gener-
ates output probabilities by computing the linear
interpolation between the kNN and MT probabil-
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Type Value

Shape of OPQ matrix R1024×1024

Number of clusters (IVF) 65,536
Number of sub-vectors (PQ) 64
Number of clusters to search 64
Number of top-k neighbors 16

Table 2: Hyperparameters of our search index.

ity distributions,

P (yi|X, y<i, θ) = λpkNN(yi|X, y<i, θ)

+ (1− λ)pMT(yi|X, y<i, θ),
(2)

where λ is a hyperparameter for weighting each
probability and θ represents the trained weight pa-
rameters and we set λ = 0.4

The k-nearest-neighbor keys N are converted
into a distribution over the vocabulary pkNN by ap-
plying softmax function.

pkNN(yi|X, y<i, θ)

∝
∑

(kj ,vj)∈N
1yi=vj exp

(−||kj − hi||22
τ

)
, (3)

where kj and vj are the top-j neighbor key and
value respectively and τ is a hyperparameter that
represents the temperature of softmax and we set
τ = 100.

3.3 Back-Translated Monolingual Datastore
Our kNN-MT system uses back-translated mono-
lingual data for the datastore instead of bilingual
corpora. This method allows us to use mono-
lingual resources without any additional training.
First, we use the bilingual corpora to train a
target-to-source translation model, which is then
used to back-translate the monolingual corpora.
The back-translated synthetic source sentences are
then passed through the source-to-target model,
which generates the intermediate vectors for each
decoding time step to fill the datastore.

The monolingual data for English was taken
from News Commentary v16 (Tiedemann, 2012),
Europarl v10, Leipzig’s news corpora (2018-
2020), news-typical (2016), newscrawl and
newscrawl-public (2018), web and web-public
(2018-2020), and the largest available size of
wikipedia corpus from each year for a total of over
26 million sentences. The monolingual data for

Japanese English

# of sentences 15,051,874 26,237,110
# of tokens 396,647,042 690,734,548

Table 3: Monolingual data statistics.

Japanese includes News Commentary v16 (Tiede-
mann, 2012), and all Leipzig news, newscrawl,
web, web-public, and wikipedia corpora from
2014 to 2021, totaling over 15 million sentences.

We preprocessed the monolingual data much
the same way as the bilingual data, removing du-
plicate lines and using fasttext to filter out sen-
tences where the predicted language did not match
the target language. The text was tokenized into
subword units using the model trained on the bilin-
gual corpora. In order to reduce the time for the
back-translation, sentences with more than 200 to-
kens were removed from the monolingual data.
Table 3 shows the monolingual data statistics af-
ter preprocessing. Note that the number of tokens
is equal to the size of the resulting kNN datastore
for each target language.

3.4 kNN-MT with Ensemble Model

We integrate kNN-MT into the ensemble model.
We train Transformer big models with different
random seeds, just as we would build a normal
ensemble model. Because the kNN search is too
computationally expensive, we randomly pick a
model instance and use it for the search as follows:

P (yi|X, y<i, θ1, . . . , θM )

= λpkNN(yi|X, y<i, θ1)

+
1− λ

M

M∑

m=1

pMT(yi|X, y<i, θm), (4)

where M is the number of model instances for the
ensemble, and we set M = 4.

4 Reranker

Our reranker selects one of the n-best translation
candidates from the translation system. Similar to
other rerankers, it computes the weighted sum of
multiple model scores for each translation candi-
date and selects the candidate with the maximum
score. We used the average log-likelihoods of the
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Figure 2: Context-aware model (context length ℓ = 2).

words in each document as the model scores:

D̂ = argmax
Y T
t=1

{∑

k

wk

∑T
t=1

∑|Yt|
i=1 Lk(yt,i)∑
t |Yt|

}
,

(5)

where D denotes a set of document translations,
which consists of T translations (D = Y T

t=1), and
Yt is the t-th translation in the document. yt,i de-
notes the i-th token in the translation Yt, in which
the number of tokens is |Yt|. Lk(yt,i) denotes the
log-likelihood of the token yt,i scored by the k-th
model, and wk is the weight of the k-th model.

The weights of the model scores were trained to
maximize the BLEU score of the development set.
We used k-best batch MIRA (Cherry and Foster,
2012) to optimize the weights.

4.1 Reranking Models
A characteristic of our reranker is the use of
context-aware model scores, which are the log-
likelihoods calculated per document of the test (or
development) set. By taking the context into con-
sideration during scoring, we expected to improve
the consistency of the translation throughout each
document.

We use an N-to-N translation model of Tiede-
mann and Scherrer (2017) as the context-aware
model, which translates multiple concatenated
sentences. Figure 2 illustrates the context-aware
model in which the context length is two sentences
(ℓ = 2). The model computes the log-likelihood
of the target translation Yt using preceding ℓ sen-
tences; that is,

Lk(yt,i) = log pk(yt,i|Xt
t−ℓ, Y

t
t−ℓ), (6)

where pk(·) denotes the likelihood computed by
the k-th model, and Xt

t−ℓ and Y t
t−ℓ denote the

source sentences and their translations from t − ℓ
to t, respectively.

We used five models in total: the score from our
translation system, and a combination of source-

to-target and target-to-source translation and left-
to-right (L2R) and right-to-left (R2L) decoding di-
rections.

We trained the R2L models by reversing the or-
der of the target tokens. Although the order is the
same during scoring, we reversed the target tokens
after concatenating multiple sentences. Therefore,
the sentence order of the target side becomes (Yt,
Yt−1, Yt−2). Note that the scoring sentence is the
last sentence (Yt−2), and the R2L models score
sentences later than the L2R models.

4.2 Training and Reranking

We used only the parallel corpora described in
Section 2 and trained Transformer big models
(Vaswani et al., 2017) with an FFN size of 8,192
for reranking. However, the trained models were
sentence-wise models because we did not use doc-
ument information in the training corpora. To ap-
ply the sentence-wise models to the N-to-N trans-
lation, we modified it using the following tech-
niques.

• We did not use sentence separators (e.g.,
‘[SEP]’ between sentences) because the
sentence-wise models did not include such
separators.

In the reranking task, we know the target to-
kens in advance, and we can easily identify
the tokens for the target sentence, which we
are scoring, without the separators.

• In the N-to-N translation, we had to score
long translations because we simply concate-
nated multiple sentences during inference us-
ing a sentence-wise model which was not
aware of the concatenated sentences. To learn
appropriate models for long translations from
sentences, we used the shifted absolute po-
sition embeddings (SHAPE) (Kiyono et al.,
2021) to make a model invariant to absolute
positions. The maximum shift was 512.

For the hyperparameters for the reranking mod-
els, we used the same setting as Kiyono et al.
(2020) (Table 1).

To search for the best translations while consid-
ering context, we applied the beam search method
to search for the translations that satisfied Eq. (5).
We used a beam width of 10.
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En-Ja Ja-En

Single Model 23.17 24.67
+ Ensemble 23.82 25.41
+ kNN-MT 24.43 25.16
+ kNN-MT with Ensemble 24.72 25.84

Table 4: Ablation study of our translation system on
newstest 2020 (BLEU %).

Datastore En-Ja Ja-En

No Datastore (w/o kNN-MT) 23.17 24.67
Training Data 22.76 24.79
BT Monolingual Data 24.43 25.16

Table 5: Comparison of the kNN-MT datastore on new-
stest 2020 (BLEU %)

5 Results

5.1 Translation System

Ablation Study To validate the effectiveness of
our translation system, we performed an ablation
experiment. Table 4 shows the experimental result
on newstest 2020. Note that this experiment does
not use a reranker system, and we evaluated the
1-best translation. The result shows that both en-
semble and kNN-MT are effective, and combining
them further improves translation performance.

kNN-MT Datastore As noted in Section 3.3,
our kNN-MT datastore uses different data than
the training corpus. We evaluated the transla-
tion performance of kNN-MT on a single Trans-
former model without ensemble. Table 5 shows
the comparison of the kNN-MT datastore evalu-
ated on newstest 2020. In the table, ‘No Data-
store’ indicates that kNN-MT is not used, and
‘Training Data’ and ‘BT Monolingaul Data’ indi-
cate that the datastore is constructed from train-
ing data and back-translated monolingual data, re-
spectively. As shown in the table, our ‘BT Mono-
lingual Data’ datastore outperforms the datastore
constructed from the training data, despite its
smaller size.

5.2 Context Length at Reranking

Table 6 shows the BLEU scores according to the
reranking method. ‘No Reranking’ indicates the
best translations output from the translation sys-
tem. ’Oracle’ always chooses the translation with
the highest sentence BLEU score from the n-best

newstest
Direction Reranking 2020 2021

En-Ja No Reranking 24.7 26.8

ℓ = 0 24.8 27.3
ℓ = 2 (submission) 24.9 27.4
ℓ = 4 25.0 27.3

Oracle 29.6 31.8

Ja-En No Reranking 25.6 22.5

ℓ = 0 25.5 22.7
ℓ = 2 (submission) 25.5 22.8
ℓ = 4 25.5 22.7

Oracle 29.8 25.7

Table 6: BLEU scores according to the reranking
method.

translation candidates and represents the output of
a perfect reranking system. The other cases indi-
cate the BLEU scores of our reranker of varying
context lengths ℓ.

The results show that our reranker improved the
BLEU scores from the ‘No Reranking’ case, ex-
cept for the case of Ja-En in newstest2020. How-
ever, the context length did not affect the BLEU
scores. (We submitted the case of ℓ = 2.) The
BLEU scores of the reranker were still lower than
that of ‘Oracle’, and future work will include
studying the context-aware models to improve it
further.

5.3 Placeholders

This year, the test set for the General MT task con-
tained a set of placeholder tags, which should be
output without translation. However, the provided
parallel corpora for the task did not contain these
special tokens. To solve this problem, we built a
training set with placeholders using the existing
parallel corpora.

We focused on the WikiTitles corpus, which is
a subset of the parallel corpora provided for the
General MT task. Most bitexts in WikiTitles are
named entities because the corpus was extracted
from Wikipedia titles. We substituted the parts that
matched the WikiTitles entries with the placehold-
ers.

In detail, we only extracted WikiTitles entries of
five characters or more in Japanese and 10 char-
acters or more in English from the parallel cor-
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Translation
Direction Placeholder (PLH) Source Base PLH

En-Ja #NAME# 3 2 3
#NUMBER# 2 1 2
#PRS_ORG# 55 52 55
#URL# 4 3 4

BLEU - 39.2 38.5

Ja-En #Organization1# 1 0 1
#Person# 1 1 1
#Product1# 116 79 116
#Product2# 42 26 40
#Product3# 7 4 7
#Product4# 2 2 2
#Product5# 2 2 2
#Product6# 2 2 2
#URL# 5 5 5
#URL1# 1 0 1

BLEU - 22.7 22.7

Table 7: Results of placeholder translation.

pora using the longest match, and substituted the
matched parts with the placeholders. (We used
only one placeholder type: ‘#PLACEHOLDER#’.)
Note that we excluded parallel sentences in Wiki-
Titles from the parallel corpora in advance. As a
result, we obtained additional 1.7 million parallel
sentences that contained the placeholders and used
them for training and fine-tuning.

During fine-tuning the translation system, we
set an unused token in the vocabulary to the place-
holder tag, and fine-tuned our translation models
with a combination of data from the original train-
ing data (without placeholders) and the new data
with the placeholders for two additional epochs
from the averaged checkpoints.

Our placeholder corpus contained only a sin-
gle placeholder tag instead of the rich variety
of tags contained in the test set. We resolved
this during the translation of the test set by first
replacing all placeholder tags with our place-
holder (#PLACEHOLDER#) before translation. Af-
ter translation, we identified and replaced our
#PLACEHOLDER# tag with the original tag from the
source sentence. In the case of multiple place-
holder tags in the same sentence, we preserved the
original order when converting them back into the
test placeholder tag set.

Table 7 shows the results of placeholder trans-
lation; that is, the number of placeholders and the
BLEU score for the wmttest2022 test set. ‘Base’
and ‘PLH’ indicate translation using the model
without/with fine-tuning on the placeholder cor-

pus, respectively. The ‘Base’ model failed to
translate some placeholders because it processed
the placeholders as strings and translated them
after subword segmentation. By contrast, the
‘PLH’ model translated the placeholders almost
perfectly. However, the model fine-tuned on the
placeholder corpus did not improve the BLEU
scores, and we submitted the result of the ‘Base’
model.

6 Conclusions

In this paper, we described our submission of the
joint team of NAIST, NICT, and TIT (NAIST-
NICT-TIT) to the WMT22 general MT task. We
participated in this task for the En ↔ Ja transla-
tion. Our system is built on an ensemble of Trans-
former big models, kNN-MT with using monolin-
gual data, and k-best batch MIRA reranker. We
would like to investigate each method and further
improve translation performance.

References
Colin Cherry and George Foster. 2012. Batch tuning

strategies for statistical machine translation. In Pro-
ceedings of the 2012 Conference of the North Amer-
ican Chapter of the Association for Computational
Linguistics: Human Language Technologies, pages
427–436, Montréal, Canada. Association for Com-
putational Linguistics.

Jeff Johnson, Matthijs Douze, and Hervé Jégou. 2019.
Billion-scale similarity search with GPUs. IEEE
Transactions on Big Data, 7(3):535–547.

Armand Joulin, Edouard Grave, Piotr Bojanowski,
Matthijs Douze, Hérve Jégou, and Tomas Mikolov.
2016a. Fasttext.zip: Compressing text classification
models. arXiv preprint arXiv:1612.03651.

Armand Joulin, Edouard Grave, Piotr Bojanowski,
and Tomas Mikolov. 2016b. Bag of tricks
for efficient text classification. arXiv preprint
arXiv:1607.01759.

Urvashi Khandelwal, Angela Fan, Dan Jurafsky, Luke
Zettlemoyer, and Mike Lewis. 2021. Nearest neigh-
bor machine translation. In International Confer-
ence on Learning Representations (ICLR).

Shun Kiyono, Takumi Ito, Ryuto Konno, Makoto Mor-
ishita, and Jun Suzuki. 2020. Tohoku-AIP-NTT
at WMT 2020 news translation task. In Proceed-
ings of the Fifth Conference on Machine Translation,
pages 145–155, Online. Association for Computa-
tional Linguistics.

Shun Kiyono, Sosuke Kobayashi, Jun Suzuki, and Ken-
taro Inui. 2021. SHAPE: Shifted absolute position

249



embedding for transformers. In Proceedings of the
2021 Conference on Empirical Methods in Natural
Language Processing, pages 3309–3321, Online and
Punta Cana, Dominican Republic. Association for
Computational Linguistics.

Philipp Koehn, Hieu Hoang, Alexandra Birch, Chris
Callison-Burch, Marcello Federico, Nicola Bertoldi,
Brooke Cowan, Wade Shen, Christine Moran,
Richard Zens, Chris Dyer, Ondřej Bojar, Alexandra
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Abstract

This paper presents the system description of
Samsung R&D Institute Poland participation
in WMT 2022 for General MT solution for
medium and low resource languages: Russian
and Croatian. Our approach combines iterative
noised/tagged back-translation and iterative dis-
tillation. We investigated different monolingual
resources and compared their influence on fi-
nal translations. We used available BERT-like
models for text classification and for extract-
ing domains of texts. Then we prepared an
ensemble of NMT models adapted to multiple
domains. Finally we attempted to predict en-
semble weight vectors from the BERT-based
domain classifications for individual sentences.
Our final trained models reached quality com-
parable to best online translators using only
limited constrained resources during training.

1 Introduction

Samsung R&D Institute Poland (SRPOL) partic-
ipated in the WMT 2022 General MT task for
three translation directions: EN→RU, RU→EN
and EN→HR. All our systems were built using
only constrained datasets. In contrast to previous
years, where the task focused on news translation,
this year’s task was domain-independent. However,
MT models benefit a lot from domain adaptation.
Therefore, we decided to prepare an ensemble of
NMT models adapted to multiple domains to bene-
fit from domain adaptation and improve generaliza-
tion. We prepared a news profiled model but also
a general-purpose one. Additionally, we worked
on medical and legal domains; however, there was
very limited in-domain data in the constraint path
for this domains and we had to extract pseudo in-
domain data from monolingual corpora.

Our system was implemented using Marian
framework. The core of the submitted solution is
iterative back-translation and iterative distillation

∗Work done while at Samsung R&D Institute Poland.

combined with finetuning and ensembling. Besides,
we used BERT models for data filtering to prepare
corpora for training domain-adapted models. Fi-
nally, we created dynamic ensemble weighting to
choose the best combination of single models in the
final translations. All techniques combined allowed
us to improve baseline models by 3-6 BLEU (Pap-
ineni et al., 2002) and reach the quality comparable
with online translators (measured by BLEU).

2 System overview

2.1 MT model
Our models were trained with the Marian NMT
(Junczys-Dowmunt et al., 2018) toolkit. We used
Marian for training, back-translation, noise genera-
tion, language models and data filtering.

The training was performed on a transformer-big
model (embedding dimension of 1024 and a feed-
forward layer dimension of 4096) (Vaswani et al.,
2017). We experimented with different sizes of
models and different configurations of encoder-
decoder layers, but we achieved no significant im-
provement over the default transformer-big con-
figuration. Most models had a setup of either 7-5
or 8-4 encoder-decoder layers. Best single models
were trained with FF layer dimension 6144, but
the improvement was marginal – 0.1 BLEU better
than the default dimension of 4096.

Our training used batches of size 256GB
(8xGPU, 32GB workspace). The optimizer was
Adam (Kingma and Ba, 2015) with a learning rate
of 0.0003 and linear warm-up for the initial 40 000
updates with subsequent inverted squared decay.
A few initial EN↔RU training were regularized
with dropout 0.1, but the following did not use any
dropout. All training for EN→HR had the dropout
set to 0.1.

2.2 Iterative training process
Iterative back-translation (Hoang et al., 2018) is
a known technique of improving performance of
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MT models. Iterative distillation approach applied
by NiuTrans (Zhou et al., 2021) allowed them to
achieve impressive results in WMT21. During our
work we combined both techniques in parallel dur-
ing each iteration.

First baseline models were trained using only
provided parallel corpora. Further training itera-
tions were enriched with back-translation (iterative
back-translation). With each iteration we used new
back-translation prepared by best ensembles trans-
lating from target to source.

After a few iterations of iterative back-
translation we started iterative distillation. Training
corpus was enriched with corpora distilled from
best ensembles. (→ 3.3). As a result the whole
corpus consisted of parallel part, back-translated
part and distilled part.

After training iteration converged we finalized
the iteration with additional tuning using parallel
corpora or specialized tuning corpora (→ 3.4). Af-
ter the tuning we selected a new best ensemble
containing the new trained model. The best ensem-
ble was chosen by selecting the best performing on
Flores devtest (Goyal et al., 2022) and Newstest
2021. With this new ensemble we prepared new
back-translation and a new distilled corpus for next
iterations.

Algorithm 1 Iterative training process

1: procedure ITERATEDTRAININGS

2: Menru ←train(bitextenru)
3: Mruen ←train(bitextruen)
4: while models not converged do
5:

6: bktr ←translate(monoen,Menru)
7: dist←distill(bitextruen,Mruen)
8: corpus = bktr + dist+ bitextruen
9: modelruen ←train(corpus)

10: modelruen ←tune(tuning_corpusruen)
11: Mruen ←getBestEns(modelsruen)
12:

13: bktr ←translate(monoru,Mruen)
14: dist←distill(bitextenru,Menru)
15: corpus = bktr + dist+ bitextenru
16: modelenru ←train(corpus)
17: modelenru ←tune(tuning_corpusenru)
18: Menru ←getBestEns(modelsenru)
19:

20: end while
21: end procedure

2.3 Domain adaptation

WMT 2022, for the first time, allowed the usage of
pre-trained masked language models (MLM; exclu-
sively in BERT-based architecture). We leveraged
them to extract domain-specific subsets of mono
and parallel corpora to fine-tune our NMT models
in two chosen domains: legal and medical. We
divide our approach into three steps: 1) Rule-based
seed extraction, 2) Iterative Classifier training 3)
Domain corpora extraction. Domain adaptation
was performed only for the EN↔RU language pair.
Finally, we used corpora described in Section 2.3.4,
to adapt to the competition test sets.

2.3.1 Rule-based seed extraction

Our work focuses on two non-news domains: medi-
cal and law. We prepared initial monolingual (EN)
seed corpora based on handcrafted rules and man-
ual filtering. The datasets were too small to perform
fine-tuning of MLM; therefore, we added an in-
termediate step. We encoded the sentences using
general-purpose BERT (Devlin et al., 2019) and
applied a K Nearest Neighbours (KNN) classifier
to filter the extended version of the initial corpora.
The extended version was extracted using the same
rules but without manual filtering.

2.3.2 Iterative Classifier training

We base our approach on tri-training (Zhou and
Li, 2005; Ruder and Plank, 2018). Rule-based ex-
tracted seed serves as the training data, and the
manually filtered examples are the test set. In
contrast to the original tri-training, we enlarge our
training dataset after training the three classifiers
instead of continuously adding new examples dur-
ing training (we call this an iteration). Due to time
constraints, we performed two such iterations per
domain. The classifiers are fine-tuned BERT mod-
els, yet domain-specific ones: Lee et al. (2019) for
the medical domain and Chalkidis et al. (2020) –
legal.

2.3.3 Domain corpora extraction

With the final ensemble of classifiers, we scored
a subset of monolingual, English data (Common-
Crawl) and parallel corpora, which was not used
during the ensemble training. We raised a threshold
for the classifiers to 0.9 and included a sentence to
a domain using unanimous voting. The resulting
monolingual/parallel corpora size is presented in
Table 1.
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Domain

Corpora Medical Legal

Monolingual 93.3 184.6
Parallel 5.1 135.5

Table 1: Size of extracted domain-specific corpora (in
thousands)

2.3.4 Test set adaptation

The last step of domain adaptation was the WMT
2022 test set adaptation. Our main intention was
to prepare a corpus based on sentences similar to
those present in the competition test set. To achieve
this goal, we used the KNN algorithm. The first
step was creating a dataset consisting of sentence
embeddings from the WMT 2022 test set and all
constrained corpora. Embeddings were acquired
using the BERT base model (cased) (Devlin et al.,
2019). Afterwards, we applied the k nearest neigh-
bours search. The parameters were selected em-
pirically: the number of nearest neighbours was
set to 20, and we chose the Euclidean distance
metric. Finally, the candidates were picked by find-
ing neighbours whose distance to a given sentence
from WMT 2022 test set was lower than 1.2.

2.4 Dynamic ensemble weighting

For each given (expert-selected) collection of NMT
models, two modes of ensemble translation were
tested. In the standard mode, the entire test set is
translated using the same "static" set of weights
for ensemble components. Alternatively, we at-
tempted to construct a regression model that would
generate weights best suited to a given sentence
type; we call this mode "dynamic". For this, we
concatenated outputs from 3 BERT-based predic-
tors, trained to classify sentences as belonging to
legal, medical and news domain, respectively. The
medical and legal predictors were as described in
2.3.2; the predictor for news domain was fine-tuned
in the same way with the pretrained BERT model
allenai/news-roberta-base. Because each predictor
produced 6 strongly-correlated values, the result-
ing vectors underwent dimensionality reduction,
before being passed as inputs to the weight re-
gression model; the regression itself is a relatively
simple affine transformation in the logit domain.
We leveraged only English Bert models; therefore,
in the RU→EN direction, we performed prelim-

inary translation using some early ensemble and
extracted the predictions from its English outputs;
the Croatian task does not use weight optimization.

Because we could not perform a direct optimiza-
tion of BLEU/chrF (Popović, 2015) with regard to
ensemble weights (some sort of grid- or random-
search would be possible, but was deemed too ex-
pensive), we settled on minimizing cross-entropy
of reference translations. We experimented with
two formulas for interpolation of probability distri-
butions: in logarithmic-probability domain (more
commonly found, e.g. in Marian), or in linear-
probability domain.1 However, because the mini-
mization of cross-entropy in log-P domain will de-
generate the ensemble to the single best model (it
can be easily shown), we added the regularization
parameter to optimization of this kind of ensembles.
The regularization term penalizes the divergence
from the uniform vector.

26k sentences were selected from the model
training corpora as the training data, half of which
was classified as news, the rest as legal, medical,
or randomly sampled. Three validation sets were
used: Flores, Newstest 2021 and training data held-
out.

Static and dynamic weights were independently
estimated using gradient-descent for a handful of
different ensembles in each direction; the general
observations on development sets were the follow-
ing:

• for each of the directions, two different vec-
tors/transforms seem to be optimal, depend-
ing on the development set (one for Flores,
another for Newstest 2021 and held-outs)

• the impact of the interpolation model (log-P
vs linear-domain) is moderate, usually with
small advantage of log-P, except for EN→RU
Flores where linear yields ca. +0.22 BLEU

• the impact of the dynamic weighting is min-
imal, giving 0.09 BLEU improvement on
RU→EN direction, with 0.1–0.3 BLEU degra-
dation on top EN→RU configurations.

For final submission, in RU→EN direction we
used static ensembles as described; however, in
EN→RU task we made a last-minute decision

1We added an in-house extension to Marian-NMT that im-
plements this alternative ensemble interpolation (i.e. done in
the linear-probability domain); a patch that facilitates running
ensemble translations with a weight vector different for every
sentence was also implemented.
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to scrap automatically-derived weights and used
expert-crafted ensembles (obviously, also static).

We conjecture that the reason for the limited ben-
efits from the above experiments lies in the indirect
optimization of BLEU through cross-entropy, as
well as – in the dynamic approach – in small actual
distinctiveness of domain-specific data.

3 English-Russian

All corpora were preprocessed by removing sen-
tences of inappropriate languages, normalizing
punctuation, replacing all Russian letters ë (yo)
with e (ye), removing duplicate sentences.

3.1 Parallel corpora
During the training, we used all accessible
English-Russian parallel data except UEDIN back-
translated news corpus. This corpus was used only
during the first training iteration before generating
any new back-translated data. Later it was excluded
from training because it was worsening the results.
We filtered sentence pairs where the length ratio
between source and target sentences exceeded 1.6.
Paracrawl (Bañón et al., 2020) paragraphs consist-
ing of more than one sentence were split into single
sentences and appended to the original dataset.

We used our in-house rule-based filtering, but we
did not detect improvement but worsened quality
over not-filtered data. Similarly, inferior results
were obtained by applying Cross-Entropy Filtering
(Junczys-Dowmunt, 2018). Therefore, we used
unfiltered data during most of the training process.

3.2 Monolingual corpora
We used the monolingual corpora in two ways: to
train language models and to augment the parallel
data with back-translated data. Back-translation
(Sennrich et al., 2016) is a commonly used tech-
nique for improving machine translation, especially
for low-resource languages (Edunov et al., 2018).

We chose three different sources of monolingual
corpora and preprocessed them similarly to paral-
lel data (with minimal preprocessing). The used
corpora are:

• News crawl

• CommonCrawl

• News-CommonCrawl

All corpora were filtered by a language model
trained on the same corpus leaving only sen-
tences with a likelihood larger than 1e-5. Due

to the poor quality of CommonCrawl, we used
only lines/paragraphs containing three or more sen-
tences, which we split into single sentences.

News-CommonCrawl is the same filtered Com-
monCrawl but additionally filtered by a fastText2

model trained on 100k news sentences from News
crawl and 100k sentences from CommonCrawl. Us-
ing this model, we selected sentences classified by
fastText as news (Joulin et al., 2017).

During all training iterations, except the first, we
back-translated monolingual data using the best en-
sembles of currently trained models. We used clean
back-translation as well as noised (Edunov et al.,
2018) and tagged back-translation (Caswell et al.,
2019). We applied gumbel noise for noised back-
translation, as implemented in Marian, changing
the epsilon value from default 1e-5 to 1e-3.

3.3 Teacher-Student Knowledge Distillation

Distilled corpora were prepared by translating par-
allel corpora using best ensembles in the direction
of training with a beam equal to eight and selecting
two translations most similar to the original transla-
tion. Such corpus was added to the parallel corpus
expanding it three times.

3.4 Tuning corpora - FLORES

Despite poor results of standard filtering, we ex-
perimented with modified filtering versions during
further iterations. We finally found the following
filtering by marian-scorer that applied to parallel
corpora improved results in some of the final train-
ing iterations.

• Language model filtering - Using a language
model trained on a monolingual corpus we
filtered utterances for which the normalized
likelihood of the target side was higher than
1e-5.

• Backward cross-entropy filtering - Using the
backward translation model, we filtered only
sentence pairs where target to source trans-
lation normalized likelihood was larger than
1e-2.

The filtering described above was not applied to
the Wikititles corpus.

2https://fasttext.cc
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3.5 Tuning corpora - NEWS
Models adapted for news were finetuned by two
consecutive tuning iterations using the following
corpora:

1. Paracrawl and News Commentary

2. News Commentary and all Newstests from
WMT2012-20

3.6 Contextual corpus and decoding
The corpus used for contextual training translation
was built of two parts:

• Parallel utterances from News Commentary
containing 2-4 subsequent sentences.

• Sequence of 2-4 adjacent sentences from one
paragraph of CommonCrawl monolingual cor-
pus, back-translated sentence by sentence.
The back-translated part was tagged.

During decoding, we translated a sentence four
times:

• without a context

• with one preceding sentence

• with two preceding sentences

• with two preceding and one following sen-
tence

From the four above translations, we chose the
translation most similar to 3 others using Leven-
shtein distance (Levenshtein, 1965) as a similarity
metric.

4 English-Croatian

We applied similar preprocessing as for Russian
language. Additionally to all available EN-HR cor-
pora from OPUS (Tiedemann, 2012) we added all
available data for Serbian language to the training.
We used custom validation set based on TED for
first iterations and WMT22 dev set for last two it-
erations. We added directional tokens in front of
each sentence that allowed to differentiate between
Croatian and Serbian translation.

For back-translation we used news mono cor-
pora and source language from all EN-HR parallel
corpora as well. Additionally to the back-translated
corpora we added EN-HR parallel data. We per-
formed two iterations of back-translation. After
training of first iteration with back-translated data

we fine-tuned the model on all parallel EN-HR data.
After training of the second iteration we fine-tuned
the model on CCMatrix corpus (Schwenk et al.,
2021). The back-translation was noised with gum-
bel noise.

After the above we started to apply knowledge
distillation and fine-tuning the model on distilled
data. We did only 2 iterations of distillation.
First distillation was done on CCMatrix corpus
and second on tuning corpus (created from DGT,
QED, TedTalks, EuroPat, SETIMES, hrenWaC,
TED2020 corpora). We experimented with dif-
ferent learning rates in order to find the best per-
forming model after this step. Finally, we made an
ensemble out of the best-performing models. Ad-
ditionally, we found that a normalization value of
0.5 results in a better score.

5 Results

Results of training iterations for English to Russian
are presented in Table 2. Table 3 presents results
for the Russian to English direction. Finally, Table
4 presents results for the English to Croatian task.
Abbreviations mean:

• BTN - noised back-translation

• BTT - tagged BT

• BTTN - tagged noised BT

• KD - training with distilled parallel corpus

• news / cc / ncc - back-translated corpus

– News crawl
– CommonCrawl
– News-Commoncrawl

First iteration was trained using only constrained
parallel corpora provided by organizers. Next it-
erations were trained on mixed parallel corpora
combined with back-translated monolingual data
(BT). Further iterations used also distilled forward
translations (KD).

Tuning with domain adaptation corpora has im-
proved slightly (0.1-0.2) some of single models but
gave no noticeable improvement on final score of
ensembles.

6 Conclusions

We confirmed that iterative knowledge distillation
combined with iterative back-translation is suffi-
cient to prepare high-quality translation models.
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Iter Corpus
Flores
devtest

Newstest
2021

0 Parallel – baseline 30.1 26.8

1 BTN-news 32.5 28.8
BTN-news, filtered bitext 31.9 28.3

2 KD BTN-news 33.7 29.5
KD BTT-news 34.0 29.6
KD BTT-cc 33.9 28.9

3 KD BTT-news 34.1 29.4
KD BTT-news, tuned news 33.9 29.9

4 KD BTN-news 33.0 29.4
KD BTTN-news 33.7 29.2
KD BTT-news 34.0 29.6
KD BTT-news, tuned news 33.6 30.1
KD BTT-news + context 33.8 29.7
KD BTT-cc 34.4 28.9
KD BTT-cc + context 34.5 28.8

Best ensemble flores - SRPOL submission 34.8 30.7

Best constrained WMT2021 29.3

Table 2: Iterations and results of training for EN→RU direction.

Iter Corpus
Flores
devtest

Newstest
2021

0 Parallel – baseline 35.6 35.5

1 BTN-news 37.0 36.5
KD + BTN-news 36.4 37.9

2 BTN-news 36.6 37.1
BTN-news, filtered bitext 36.2 36.7

3 BTN-news 37.4 37.6
BTN-ncc 38.1 36.7
KD + BTN-ncc 37.8 37.9
KD + BTTN-ncc 37.4 39.0

4 KD + BTT-ncc 37.0 38.8
KD + BTN-ncc 38.0 38.1
KD + BTTN-ncc 37.4 38.5
KD + BTT-ncc tuned news 37.0 40.2
KD + BTN-ncc tuned news 37.8 39.8
KD + BTN-ncc + context 38.1 38.2
KD + BTN-ncc + context tuned news 37.6 39.7

Best ensemble flores - SRPOL submission 38.9 40.8
Best ensemble news 38.3 41.6
Best constrained WMT2021 41.8

Table 3: Iterations and results of training for RU→EN direction.
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Iter Corpus
Flores
devtest

WMT 22
devtest

0 Parallel – baseline 31.9 32.1

1 BTN 32.7 32.0

2 BTN 32.8 32.2

3 KD 33.5 33.4

4 KD 33.7 33.3

Best ensemble + normalization - SRPOL submission 33.6 33.7

Table 4: Iterations and results of training for EN→HR direction.

This method gives excellent results on low-resource
and mid-resource languages. During the WMT
2022 General MT task, we reached one of the best
results among constrained systems.

In our work, we compared different methods of
back-translation: clean, noised, and tagged. Mostly,
the tagged back-translation achieved the best re-
sults, but for some training iterations, noised back-
translation’s results were on-par or better.

We compared different sources of monolingual
data used for back-translation: CommonCrawl and
News crawl. The comparison suggests that the
choice of the monolingual corpus has a significant
influence on final results.

Our exploration of different filtering methods
suggests that while using pre-filtered data (as pro-
vided in WMT 2022), it is sufficient to filter only
target data, leaving source data unfiltered.

We presented a simple and effective method of
adding contextual data to the training corpus, which
gave a noticeable improvement.

We investigated a new method of dynamic en-
semble weighting, but the results show no improve-
ment over other methods.

Limitations

In our work we touched on a few aspects but did
not have time to address them in more detail.

The research showed that tagged back-
translation generally gives better results than other
back-translation methods, but not always. It may
be worth to investigate more deeply methods of
different noising, different noise level and how
it synergies on various parallel and monolingual
corpora.

Almost all our training iterations were performed
on very similar default transformer-big configura-
tions. We haven’t tested other configurations, larger

or deeper models, different training parameters,
what can improve the results.

We introduced very simple contextual translation
method which can be improved in many ways.

We gained best results filtering data only on tar-
get size, leaving source data unfiltered. This issue
looks worth to be investigated.
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Abstract

This paper describes Tencent AI Lab - Shang-
hai Jiao Tong University (TAL-SJTU) Low-
Resource Translation systems for the WMT22
shared task. We participate in the general trans-
lation task on English⇔Livonian. Our system
is based on M2M100 (Fan et al., 2021) with
novel techniques that adapt it to the target lan-
guage pair. (1) Cross-model word embedding
alignment: inspired by cross-lingual word em-
bedding alignment, we successfully transfer a
pre-trained word embedding to M2M100, en-
abling it to support Livonian. (2) Gradual adap-
tation strategy: we exploit Estonian and Lat-
vian as auxiliary languages for many-to-many
translation training and then adapt to English-
Livonian. (3) Data augmentation: to enlarge
the parallel data for English-Livonian, we con-
struct pseudo-parallel data with Estonian and
Latvian as pivot languages. (4) Fine-tuning: to
make the most of all available data, we fine-
tune the model with the validation set and on-
line back-translation, further boosting the per-
formance. In model evaluation: (1) We find
that previous work (Rikters et al., 2022) under-
estimated the translation performance of Livo-
nian due to inconsistent Unicode normalization,
which may cause a discrepancy of up to 14.9
BLEU score. (2) In addition to the standard val-
idation set, we also employ round-trip BLEU to
evaluate the models, which we find more appro-
priate for this task. Finally, our unconstrained
system achieves BLEU scores of 17.0 and 30.4
for English to/from Livonian.1

1 Introduction

This paper introduces our submissions to the
WMT22 general machine translation task. Last
year, Tencent AI Lab participated in two translation
tasks: News (Wang et al., 2021a) and Biomedical

∗Work was done when Zhiwei He was interning at Ten-
cent AI Lab.

†Xing Wang is the corresponding author.
1 Code, data, and trained models are available at https:

//github.com/zwhe99/WMT22-En-Liv.

translation (Wang et al., 2021b). This year, we
participate in English⇔Livonian (En⇔Liv), a very
low-resource and distant language pair. Consider-
ing the scarcity of parallel En-Liv corpus, we only
participate in the unconstrained evaluation.

We use M2M100 1.2B2 (Fan et al., 2021) as
the pre-trained model which is a massive multi-
lingual translation model that supports any pair
of 100 languages3 and shows promising perfor-
mance for low-resource translation. To adapt it
to En-Liv, the first thing to do is enabling it to
support Liv. A common approach is to expand
the vocabulary and the word embedding matrix to
contain the extra tokens. However, the incoming
embeddings must be randomly initialized (Garcia
et al., 2021; Bapna et al., 2022), which leads to
inconsistency with the original embeddings and in-
creases training difficulty. Fortunately, Rikters et al.
(2022) has released a translation model for En-Liv
called Liv4ever-MT4. Inspired by supervised cross-
lingual word embedding alignment (Lample et al.,
2018b), we propose cross-model word embedding
alignment (CMEA) that learns a linear transfor-
mation between the embedding matrices of two
models. Therefore, the incoming embeddings can
be extracted from Liv4ever-MT and transformed
to M2M100’s word embedding space rather than
random initialization.

In terms of model training, we adopt a grad-
ual adaptation strategy. The overall training pro-
cess is shown in Figure 1. Following Rikters et al.
(2022), we also use Estonian (Et) and Latvian (Lv)
as auxiliary languages. Liv has been influenced by
Et and Lv for centuries. There are about 800 Et
loanwords and 2,000 Lv loanwords in Liv (Décsy,
1965). Therefore, we first add Et and Lv for many-
to-many translation training, resulting in a 4-lingual

2https://github.com/facebookresearch/fairseq/
tree/main/examples/m2m_100

3M2M100 supports English, Latvian and Estonian.
4https://huggingface.co/tartuNLP/liv4ever-mt
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translation model. We then augment the En-Liv
data with forward and backward translations using
Et and Lv as the pivot languages. Finally, we com-
bine all the authentic and synthetic data to retrain
the model, followed by a few steps of fine-tuning
with the validation set and online back-translation.

In terms of model evaluation, we find that the
data set provided by Rikters et al. (2022) suffers
from inconsistent Unicode normalization. This in-
consistency is reflected in using two or more en-
codings for the same character, which leads to in-
consistent encoding between model hypothesis and
reference5 and thus inaccurate evaluation. In our
experiments, normalizing the character encoding
can bring an average improvement of +2.5 BLEU
on the liv4ever6 test set (see appendix A) and up
to +14.9 BLEU on a subset from a specific source.
In addition to the standard validation set, we also
employ round-trip BLEU to evaluate our models,
which is an effective unsupervised criterion (Lam-
ple et al., 2018a) and reduces the demand for the
parallel corpus. Zhuo et al. (2022) have found that
in the scope of neural machine translation, round-
trip translation quality correlates consistently with
forward translation quality. We consider round-trip
BLEU a better evaluation method for this task. The
reasons for this are threefold: more data, more gen-
eral domain, and the same original language as the
WMT22 En-Liv test set.

This paper is structured as follows: Section 2 de-
scribes the data statistics and processing methods.
Then we present our evaluation methods in Sec-
tion 3. Our translation system and ablation study
are detailed in Section 4, followed by the final re-
sults. Finally, we conclude the paper in Section 5.

2 Data and Processing

2.1 Overview

Statistics Table 1 lists statistics of the parallel
and monolingual data we used. We collect parallel
data for any pair in {En, Liv, Et, Lv} and collect
monolingual data for En and Liv.

Data Source The parallel data is mainly all avail-
able corpora from OPUS7. Due to the scarcity of
data, we include liv4ever-dev in training data and
use liv4ever-test as the validation set. For En-Et

5SentencePiece does uniform normalization by default.
Therefore, the character encoding in the model hypothesis is
uniform but may not be consistent with the reference.

6https://opus.nlpl.eu/liv4ever-v1.php
7https://opus.nlpl.eu/

Data Lang # Sent.

Raw Filter

Parallel Data

En-Liv 1.2K 1.1K
En-Et 40.3M 20.7M
En-Lv 27.2M 11.3M
Liv-Et 14.8K 14.8K
Liv-Lv 12.4K 12.2K
Et-Lv 10.7M 7.0M

Monolingual Data
En 325.6M 281.3M
Liv 138.2K 50.2K

Table 1: Statistics of parallel and monolingual data. We
report the number of sentences before and after filtering.

and En-Lv, we augment them with the parallel data
from WMT18 and WMT17, respectively. For En-
Liv, En-Lv and Liv-Lv, we collected additional
parallel data from Facebook posts of the Livonian
Institute and Livones.net8. The monolingual En
is News Crawl 2007-2021. The monolingual Liv
combines all Liv from parallel data and monolin-
gual data from liv4ever6.

2.2 Pre-processing

To obtain higher quality training data, we employ
a series of data cleaning using Moses toolkit9 and
our scripts10. We process parallel data as follows:

• Replace Unicode punctuation, normalize punc-
tuation and remove non-printing characters

• Language identification and filtering

• Remove instances with too much punctuation

• Remove instances with identical source and
target sentences

• Remove instances containing URLs

• Remove instances appearing in evaluation data

• Remove instances with more than 175 tokens
or length ratio over 1.5

The liv4ever corpus has a small amount of data,
and the existing tools may not support Liv well.
Therefore, for the liv4ever corpus, we don’t ap-
ply punctuation processing or language and length
ratio filtering. For the monolingual data, we use
the same cleaning steps as parallel data except for

8The numbers of additional sentences collected from Face-
book are En-Liv: 54, En-Lv: 61 and Liv-Lv: 61.

9https://github.com/moses-smt/mosesdecoder
10https://github.com/zwhe99/corpus-tools
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identical source-target filtering and length ratio fil-
tering.

After cleaning the data, we apply Sentence-
Piece11 encoding using the trained model from
Liv4ever-MT4. We also reuse their vocabulary that
shared by all languages.

2.3 Evaluation Data

We regard the liv4ever-test as the validation set,
which is a multi-way data set for {En, Liv, Et,
Lv} containing 855 unique sentences. Besides, for
En⇔Liv evaluation, we collect monolingual En-
glish from the source of WMT22 English-German
(En-De) test set to compute round-trip BLEU
(En⇒Liv⇒En).

3 Model Evaluation

This section describes our methods for model eval-
uation. Specifically, we explain the Unicode incon-
sistency problem in the liv4ever data set and the
resulting underestimation of model performance.
In addition, we introduce round-trip BLEU as the
more appropriate way for this competition.

3.1 Unicode inconsistency problem

Rikters et al. (2022) collected the liv4ever data set
and built Liv4ever-MT, the first machine transla-
tion model for Livonian. We find that the liv4ever
data set does not use consistent Unicode normaliza-
tion, resulting in different encodings for the same
character. This did not lead to any training prob-
lem in Rikters et al. (2022) because SentencePiece
does NFKC12 normalization by default. However,
when computing SacreBLEU13, the encoding of
model output and the reference will be inconsistent,
resulting in inaccurate evaluation.

We re-evaluate the performance of Liv4ever-MT
before and after normalizing the encoding of ref-
erences to NFKC. Table 2 shows the SacreBLEU
results14 on the entire test set and a subset from
Satversme. Before normalization, our results are
very close to those reported in Rikters et al. (2022),
while after normalization, the BLEU score im-
proves considerably. In particular, the difference
in BLEU score is up to 14.9 on the Lv⇒Liv of
the Satversme subset. Therefore, we report Sacre-
BLEU after normalization in the following.

11https://github.com/google/sentencepiece
12https://unicode.org/reports/tr15/
13https://github.com/mjpost/sacrebleu
14nrefs:1|case:mixed|eff:no|tok:13a|smooth:exp|version:2.0.0

En-Liv Et-Liv Lv-Liv

⇒ ⇐ ⇒ ⇐ ⇒ ⇐
All

Liv4ever-MT
(Rikters et al.)

11.0 19.0 16.5 23.1 17.7 25.2

Our Eval. 10.9 18.9 16.6 22.9 17.7 24.9
+ Norm. Ref. 14.3 19.3 20.5 24.4 22.3 29.3

Subset (Satversme)
Liv4ever-MT
(Rikters et al.)

7.7 24.5 - - - -

Our Eval. 7.6 24.7 7.2 18.7 9.2 19.4
+ Norm. Ref. 18.2 25.8 19.9 23.7 24.2 33.6

Table 2: BLEU scores of Liv4ever-MT on liv4ever-test.
Liv4ever-MT (Rikters et al.): copied from Rikters et al.
(2022). Our Eval.: We use the released Liv4ever-MT
to generate translation outputs and re-evaluate them
with the original references, which shows similar results
compared with Rikters et al. (2022). + Norm. Ref.: re-
evaluation after normalizing the encoding of references
to NFKC. See Appendix A for all language pairs.

3.2 Round-trip BLEU

We collect monolingual English from the source
of WMT22 English-German (En-De) test set and
conduct two steps translation: En⇒Liv⇒En. The
round-trip BLEU score can be obtained by compar-
ing the original input with the model output English.
We regard it a better way to evaluate En⇔Liv per-
formance for this task considering three aspects:
(1) En-De test set has 20683 sentences, much more
than the liv4ever-test. (2) It may contain more
general domain data, while the liv4ever-test is rela-
tively restricted due to the low-resource limitation.
(3) The original language used in computing the
round-trip BLEU is the same as the WMT22 En-
Liv test set (both English-original).

4 System and Ablation Study

In this section, we describe our system in this
competition and provide a comprehensive ablation
study of the key components.

4.1 System Overview

We depict the overview of our system in Figure 1,
which can be divided into five steps:

1. Cross-model word embedding alignment:
transfer the word embeddings of Liv4ever-MT
to M2M100, enabling it to support Livonian.
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② 4-lingual M2M 
training

M2M100 
1.2B

① Cross-model word 
 embedding alignment 

(CMEA)

En LivEt En LivLv

En LivEt En LivLv

Google Trans.

③ Synthetic data  
generation

authentic bi-text
synthetic bi-text

④ Combine data 
& 

retrain

Google Trans.

Liv4ever
MT

EmbEmb

M2M04
En Liv

Et Lv

⑤ Fine-tune & Post-process 
• Fine-tune on validation set 
• Online back-translation 
• Rule-based post-processing

model

src tgt

Generation process

Figure 1: The training process of our translation system.

2. 4-lingual M2M training: many-to-many
translation training for all language pairs in
{En, Liv, Et, Lv}, using only parallel data.

3. Synthetic data generation: generate syn-
thetic bi-text for En-Liv, using Et and Lv as
pivot languages.

4. Combine data and retrain: combine all the
authentic and synthetic bi-text and retrain the
model following step 2.

5. Fine-tune & post-process: fine-tune the
model on En⇔Liv using the validation set and
perform online back-translation using mono-
lingual data. Finally, apply rule-based post-
processing to the model output.

4.2 Cross-model Word Embedding Alignment

M2M100 1.2B does not support Livonian. There-
fore, we used Liv4ever-MT’s SentencePiece model
and vocabulary to process all the data. For
M2M100, the embeddings of new coming words
can be randomly initialized. However, ran-
domly initialized word embeddings and the pre-
trained models may not be compatible. In-
spired by supervised cross-lingual word embed-
ding alignment (Lample et al., 2018b), we propose
cross-model word embedding alignment (CMEA)

to transform the trained word embeddings of
Liv4ever-MT into M2M100, avoiding random ini-
tialization.

CMEA We denote Liv4ever-MT and M2M100
model by l and m. Their corresponding vocabular-
ies and embedding matrices are dl, dm and Xl,Xm.
Table 3 shows the statistics of the vocabularies. Let

|dl| |dm| |dl ∩ dm| |dl ∩ dm|/|dl|
47972 128108 11410 23.8%

Table 3: Statistics of Liv4ever-MT (dl) and M2M100
(dm) vocabularies.

Xf be the final embedding matrix we expected.
We adopt dl as the final vocabulary, which can be
divided into two parts:

dl = (dl ∩ dm) ∪ (dl − dm). (1)

For the overlapped part dl ∩ dm, Xf can reuse the
embedding from Xm:

Xf
dl∩dm = Xm

dl∩dm . (2)

For the rest part dl − dm, we first find a liner trans-
formation W between two embedding spaces such
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that:

W∗ = argmin
W

∥WXl
dl∩dm −Xm

dl∩dm∥F

s. t.WTW = I.
(3)

According to Everson (1998),

W∗ = UVT ,

with UΣVT = SVD
(
Xm

dl∩dmX
l
dl∩dm

T
)
.

(4)

Then the word embeddings can be initialized as:

Xf
dl−dm

= W∗Xl
dl−dm . (5)

Experiment To investigate the effect of CMEA,
we conducted 4-lingual M2M training with dif-
ferent sampling temperature (Aharoni et al., 2019;
Tang et al., 2021). Table 4 shows the BLEU scores
on the validation set. We have the following obser-
vations:

• M2M04 outperforms Liv4ever-MT by a large
margin owing to the larger model size, more
training data and the pre-trained parameters.

• On most language pairs, our proposed CMEA
initialization significantly improves translation
performance compared to random initializa-
tion of new coming embeddings.

• Temperature set to 5 with CMEA initialization
achieves the best overall results. Therefore, we
used this model in synthetic data generation.

En-Liv Et-Liv Lv-Liv

⇒ ⇐ ⇒ ⇐ ⇒ ⇐
Liv4ever-MT
Rikters et al.

14.3 19.3 20.5 24.4 22.3 29.3

M2M04 (T=5) 21.1 27.7 25.3 29.2 26.8 36.6
+ CMEA 23.0 28.4 27.2 30.7 28.5 37.6

M2M04 (T=10) 21.3 26.6 25.5 27.7 26.3 34.6
+ CMEA 21.1 27.1 26.0 29.6 27.5 36.3

M2M04 (T=20) 21.9 26.7 26.5 29.8 27.3 36.5
+ CMEA 22.1 27.4 25.8 27.9 27.9 33.8

Table 4: Experimental results of 4-lingual M2M training.
We denote M2M04 as the 4-lingual translation model.
‘T’ represents the sampling temperature.

4.3 Synthetic Data Generation
Data agumentation (Sennrich et al., 2016; Jiao
et al., 2020, 2022, 2021; He et al., 2022) is a widely

used technique to boost the performance of neural
machine translation. To augment the parallel data
for En-Liv, we adopt both forward and backward
translation to generate synthetic bi-text for En-Liv.
Figure 1 (below) illustrates the process of synthetic
data generation.

Considering the performances of Et/Lv⇒Liv are
much better than En⇒Liv (see Table 4), we use Et
and Lv as pivot languages to generate Liv instead
of directly generating from En. Taking Et as the
pivot language, given authentic En-Et bi-text, we
use the best model in Table 4 to translate the Et
into Liv, thus forming the synthetic En-Liv which
is En-original. Conversely, given authentic Et-Liv,
we translate Et into En using Google Translate,
forming the synthetic En-Liv which is Liv-original.
For Lv as the pivot language, we repeat the same
steps. Table 5 lists statistics of the synthetic En-Liv
data after filtering.

Data Type Pivot Language

Et Lv

En-original 20.5M 11.2M
Liv-original 14.2K 11.6K

Table 5: The number of sentences of generated synthetic
data after filtering, which is divided into four categories
based on the original language and the pivot language.

Experiment We combine the authentic and syn-
thetic bi-text and retrain the 4-lingual model. The
sampling temperature is set to 0 here to avoid down-
sampling for En-Liv. When using only En-original
or Liv-original synthetic data, we control the sam-
pling frequency of the different language pairs to be
consistent with using the full data. Table 6 shows
the BLEU scores on the multi-way validation set.
We also report the round-trip BLEU on the mono-
lingual En from the source of WMT22 En-De test
set, which is En-original. Unexpectedly, original-
language greatly affects the model performance
and causes inconsistent results between different
evaluation methods:

• En-original synthetic data remarkably de-
grades model performance on the validation
set but significantly increases the round-trip
BLEU.

• Liv-original synthetic data slightly reduces the
performance on the validation set but moder-
ately increases the round-trip BLEU.
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• When using both kinds of data, the best round-
trip BLEU is achieved. However, the perfor-
mance on the validation set is still worse than
the baseline.

Valid (multi-way) Round-Trip
(En-original)En⇒Liv Liv⇒En

M2M04 (T=5)
+CMEA 23.0 28.4 23.4

Add synthetic data and retrain
En-original 17.2 17.5 30.7
Liv-original 21.5 27.4 25.8
Both 17.0 19.3 32.7

Table 6: Translation performance after adding the syn-
thetic data and retraining the model.

As described in Section 3.2, we consider round-
trip BLEU the more appropriate evaluation in
this competition due to more data, more general
domain, and the same original language as the
WMT22 En-Liv test set. Therefore, we used both
kinds of synthetic data in our submissions.

4.4 Fine-tuning & Post-processing

Fine-tuning To further exploit the bilingual and
monolingual data, we fine-tuned the model on the
En⇔Liv validation set for 500 steps jointly with
online back-translation on monolingual data.

Post-processing We apply the following rule-
based post-processing:

• Apply NFC normalization.

• Replace all the httpshttp with https://.

• Replace <unk> with empty string.

• When a comma appears between two digits, re-
place it with a decimal point (only for Liv).

• Regenerate the sentences that detected as repeti-
tion with no-repeat constraint15 (only for Liv).

Final results Table 7 shows the test set perfor-
mance and round-trip BLEU after fine-tuning and
post-processing. As seen, fine-tuning significantly
improves model performance on both test set and
round-trip BLEU. Post-processing further boosts
the performance on the test set.

15We use —-no-repeat-ngram-size 2 in fairseq-generate.

Test Set Round-Trip
BLEUEn-Liv

⇒ ⇐
Before
fine-tuning 15.8 29.4 32.7

+Fine-tuning 16.3 30.1 37.1
+Post-proc. 17.0 30.4 37.1

Table 7: Translation performance after fine-tuning and
post-processing.

5 Conclusion

This paper presents the Tencent AI Lab - Shanghai
Jiao Tong University (TAL-SJTU) Low-Resource
Translation systems for the WMT22 shared task.
We start from the M2M100 1.2B model and inves-
tigate techniques to adapt it to English⇔Livonian.
We propose cross-model word embedding align-
ment that transfer the embeddings of Liv4ever-MT
to M2M100, enabling it to support Livonian. Then,
Estonian and Latvian are involved in model training
and synthetic data generation as auxiliary and pivot
languages. We further fine-tune the model with val-
idation set and online back-translation followed by
rule-based post-processing. In model evaluation,
we correct the inaccurate evaluation of Livonian
due to inconsistent Unicode normalization and use
round-trip BLEU as an alternative to the standard
validation set.
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XX⇒En XX⇒Et XX⇒Lv XX⇒Liv Avg.
XX Et Lv Liv En Lv Liv En Et Liv En Et Lv

All
Liv4ever-MT
(Rikters et al.)

26.17 21.53 19.01 19.48 22.38 23.05 20.85 23.44 25.24 11.03 16.40 17.65 20.52

Our Eval. 25.90 17.94 18.90 19.28 22.31 22.86 20.20 23.31 24.88 10.90 16.62 17.69 20.07
+ Norm Ref. 26.20 18.06 19.26 20.72 24.28 24.42 24.10 27.77 29.33 14.31 20.51 22.35 22.61

Subset (Satversme)
Liv4ever-MT
(Rikters et al.)

- - 24.49 - - - - - - 7.69 - - -

Our Eval. 27.50 19.77 24.68 16.69 20.22 18.68 16.05 15.10 19.38 7.58 7.18 9.23 16.83
+ Norm Ref. 28.45 20.21 25.76 21.41 26.74 23.75 29.10 29.82 33.56 18.23 19.87 24.15 25.09

Table 8: BLEU scores of Liv4ever-MT on liv4ever-test. Liv4ever-MT (Rikters et al.): copied from Rikters et al.
(2022). Our Eval.: We use the released Liv4ever-MT to generate translation outputs and re-evaluate them with the
original references, which shows similar results compared with Rikters et al. (2022). + Norm. Ref.: re-evaluation
after normalizing the encoding of references to NFKC.

A Re-evaluating Liv4ever-MT

Table 8 shows the results of re-evaluating Liv4ever-
MT on all language pairs. Normalizing references
to NFKC improves the average BLEU scores by
+2.54 on the entire set and +8.26 on the Satversme
subset. It is worth mentioning that liv4ever-test con-
tains data from the following sources: Facebook,
Livones.net, Dictionary, Trilium, Stalte, JEFUL
and Satversme. However, there does not exist the
Unicode inconsistency problem in the other sources
except Satversme.
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Abstract

This paper describes Lan-Bridge Translation
systems for the WMT 2022 General Transla-
tion shared task. We participate in 18 language
directions: English to and from Czech, Ger-
man, Ukrainian, Japanese, Russian, Chinese,
English to Croatian, French to German, Yakut
to and from Russian, and Ukrainian to and from
Czech. We mainly focus on multilingual mod-
els to develop systems covering all these direc-
tions. In general, we apply data corpus filtering,
scaling model size, sparse expert model (in par-
ticular, Transformer with adapters), large-scale
backtranslation, and language model reranking
techniques. Our system ranks first in 6 direc-
tions based on the automatic evaluation.

1 Introduction

Our Lan-Bridge MT team participate in the WMT
2022 General Translation shared task. As machine
translation expands into more and more languages,
multilingual machine translation has attracted more
and more attention in both academia and industry.
It can not only avoid training a separate model
for each language pair but also transfer knowledge
from high-resource languages to low-resource ones.
Many systems such as Tran et al. (2021) submit-
ted in previous years have proved this point and
achieved a state of the art results in some language
directions.

For data preprocessing, knowledge-based rules,
language detection, and language model are in-
volved to clean parallel data, monolingual data,
and synthetic data (mainly from large-scale data
mining and backtranslation). Punctuation normal-
ization and BPE (byte pair encoding) (Sennrich
et al., 2015) with subword regularization method
(Provilkov et al., 2019) are applied for all lan-
guages. As for models, we fork Fairseq (Ott et al.,
2019) as our development tool and use Transformer
(Vaswani et al., 2017) as the main architecture. In
addition, we follow Bapna et al. (2019) to extend

Transformer by adding language-specific adapters
to bridge the gap between different language pairs.
Finally, we ensemble dense Transformer models
and sparse adapter models, and the final result are
re-ranked by language models. For English to and
from Chinese, we develop a separate system. In
addition to optimization techniques similar to mul-
tilingual models, We also use additional private
data. And for Yakut to and from Russian, due to
a smaller corpus, we simply apply fine-tuning and
backtranslation on our multilingual models.

We win the first place in Russian↔ Yakut, Rus-
sian → English, English → Croatian, Czech →
English and Ukrainian → English based on BLEU
(Papineni et al., 2002) score. 1

2 System Overview

2.1 Data

Here we describe our base datasets, including bitext
and monolingual data sources, and the preprocess-
ing methods we apply to prepare these initial data
sets to train our baseline models.

2.1.1 Bitext Data
We use all available bitext data from the shared task
for all language pairs, besides, for English to and
from Chinese, we add extra data from ai-challenger.
For high-resource language pairs such as English to
Chinese or English to German, which provides mil-
lions of high-quality bitext, we only choose those
high-quality resources, and simply apply language
identification using fasttext (Joulin et al., 2017)
with an ID threshold of 0.8 and knowledge-based
rules shows below as data process:

• Remove empty sentences

• De-escaping HTML characters

1This result is based on the submission website
https://ocelot-wmt22.mteval.org/, not the official final result.
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• Normalization of different languages of punc-
tuation

• Normalization of spacing

• Remove sentences with repeated tokens, in-
cluding single character that repeat more than
four times, two characters that repeat more
than three times, and more than three charac-
ters that repeat more than twice.

• Delete the corpus with inconsistent punctua-
tion marks at the end of the original text and
the translation

• Deletion of segments where source/target to-
ken ratio exceeds 1:3 (or 3:1)

• Deletion of segments longer than 150 tokens

• Deletion of segments shorter than 5 tokens

• Transfer traditional Chinese characters to sim-
plified Chinese characters

• Delete corpus with misaligned number of
parentheses

• Delete corpus with misaligned number of Ara-
bic numerals

• Delete corpus with a proportion of non-native
language characters exceeding 0.4

The normalization of spacing and punctuation is
applied using Moses (Polykovskiy et al., 2020).

For medium- and low-resource language pairs,
we incorporate additional sources of data from
OPUS (Tiedemann, 2012), ccAligned (El-Kishky
et al., 2020), and ccMatrix (Schwenk et al., 2019).
All available data sources are utilized to train our
models.

Due to the low-quality issue of corpora men-
tioned above, we add a few filter steps to make
them usable. First, we try the word alignment
method using fast_align (Dyer et al., 2013) to filter
low-quality sentence pairs and keep top 80% for
all directions ranked by alignment score. Then we
use Fairseq to train the transformer multilingual
language model for all languages, similar to Bei
et al. (2019), the score is calculated as follows:

Scoresentence = PPL

Scorecombine = λ∗Scoresrc+(1−λ)∗Scoretgt

Language Pair Data
cs-en 100M
de-en 250M
fr-de 20M
hr-en 70M
sah-ru 0.1M
uk-cs 6M
uk-en 20M
zh-en 50M
ru-en 80M
ja-en 20M

Table 1: Ultimate bitext training data

Language Data
cs 64M
en 72M
de 63M
fr 79M
ja 81M
sah 0.2M
ru 70M
uk 5M
zh 10M
hr 14M

Table 2: Ultimate monolingual data

Here PPL is the perplexity of a language model
for sentence, λ is an empirical value between 0.2–
0.8 depending on the language pair, such as the
source language is English, and the target language
is Croatian, then our empirical value of λ is 0.7.
Finally, we consult Parallel Corpus Filtering Zhang
et al. (2020) for finetuning a multilingual high-
resource corpus classifier using mBERT (Gonen
et al., 2020) to get our ultimate training data de-
scribed in Table 1.

2.1.2 Monolingual Data

As we need a multilingual language model to filter
low-quality corpus and create synthetic parallel
text, we collect all high-quality monolingual corpus
from News-Commentary, europarl, and news-crawl
for all languages if available. For medium and low-
quality resources, we use all available monolingual
data from the shared task, and filter according to
the above steps (where applicable). The ultimate
monolingual data is described in Table 2.
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Module Big Large
Layers 12 24
Attention Heads 16 16
Embedding Size 1024 1024
FFN Size 2048 4096
Shared Vocab True True

Table 3: Hyper-parameters and model sizes of different
models used in our systems.

2.2 Tokenizer

We use sentencepiece (Kudo and Richardson, 2018)
to train a multilingual subword tokenizer. To repre-
sent the low-resource languages better, we follow
Tran et al. (2021)’s settings, sampling text with tem-
perature 5. Especially, for Yakut, we take mono-
lingual data into account, since it’s an extremely
low-resource. Finally, For bilingual models, we
used a vocabulary size of 32,000, and for multilin-
gual models, we used 100,000.

We also apply subword regularization methods
(Provilkov et al., 2019; Raffel et al., 2020) when
tokenizing text. For low- and medium-resource di-
rections, we apply BPE dropout on both the source
and target sides and double the corpus size. And
for high-resource directions, we only use it on the
source side and don’t do data augmentation stuff.

2.3 Model Architectures

Similar to Tran et al. (2021), we train two separate
models: Many to English, or one system encom-
passing every language translated into English, and
Many to Many directions, or one for English into
every language and other non-English directions.
Due to the very late release of the Yakut to the
Russian corpus, we apply simple finetuning and
backtranslation in this direction. For Chinese to
and from English, we train a separate model. Be-
cause we are native speakers of Chinese and good
at English, we introduce about 20 million high-
quality private corpus 2

Dense Multilingual Model Our model settings
are empirically designed based on Transformer
(Vaswani et al., 2017). We introduce two model
architectures seen in Table 3. All models are imple-
mented on top of the open-source toolkit Fairseq

2We have a data group and a translation review team. First,
we collect public monolingual data to make it multilingual.
Second, we have a cooperative corpus or terminology base
with our clients. With the consent of our clients, some non-
public corpora and terminology are used for training.

(Ott et al., 2019).
We also train three bilingual models: English

to/from Chinese, and French to Germany. The
aim is to compare how similarities among different
languages will influence multilingual model. Due
to the limitation of computing resources, we do not
test in other language directions.

Language Specific Adapter In brief, an adapter
layer is a dense layer with residual connection and
non-linear projection. The hyperparameter b is the
dim size of the inner dense layers. With a large
set of globally shared parameters and small inter-
spersed task-specific layers, adapters allow us to
train and adapt a single model for a huge number
of languages. Bapna et al. (2019) shows trans-
lation performance improvement in multilingual
models with residual adapters. So after training the
dense multilingual model, we add adapters for each
language direction and apply further training and
finetuning on these adapter layers. In detail, for
high-resource directions, we add a larger adapter
(b=4096). As for medium-resource, we set b=2048
and for the low-resource, we set b=1024.

2.4 Optimization Tricks
Backtranslation As shown in previous news task
submissions, such as Tran et al. (2021) and Wang
et al. (2021), backtranslation can significantly
improve the BLEU score in low- and medium-
resource language directions. We find no signifi-
cant improvement in high-resource directions. And
for some "X-en" high-resource directions, like zh-
en shows in Table 4, backtranslation even lower the
BLEU score. For this reason, we collect monolin-
gual data for low- and medium-resource directions.
All backtranslation data are generated by our well-
trained multilingual model with Transformer Big
settings. We use this generated data to train models
with "Large" settings.

Finetune We use in-domain finetuning to further
improve the model performance, which has proven
effective on previous news translation tasks. We
construct different types of finetuning data with
the following approaches. Li et al. (2020); Wang
et al. (2021) shows that low-frequency words fre-
quency words are mostly domain-specific nouns,
etc., which may indicate the topic directly. On the
other hand, this year the shared task has changed
from a news domain to a general translation task.
We think finetuning our model by previous in-
domain news data may be harmful to our model.
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Test Set Big Model Large Model +BT +Adapter +Finetune +LM Rerank
cs-en wmt21 23.0 23.9 — 24.2 24.8 25.2
uk-en flore101 35.7 35.9 36.1 37.0 37.0 37.5
ja-en wmt21 21.5 21.8 24.0 27.2 28.0 28.0
de-en wmt21 29.4 29.9 — 30.0 32.1 32.3
ru-en wmt21 30.1 31.3 32.5 34.0 37.5 37.9
en-cs wmt21 15.7 17.0 — 20.4 20.2 21.3
en-uk flore101 24.1 24.5 27.1 28.0 28.9 29.0
en-ja wmt21 16.9 18.0 22.5 22.8 25.0 25.1
en-de wmt21 24.4 24.8 25.0 25.0 27.1 27.3
en-ru wmt21 20.6 21.0 21.1 23.4 24.2 25.6
en-hr flore101 25.8 26.4 28.9 29.3 30.0 30.3
cs-uk flore101 19.8 21.3 25.0 25.9 26.2 26.6
uk-cs flore101 20.8 22.0 24.1 24.3 24.3 24.5
fr-de wmt21 35.8 36.1 37.3 39.1 39.0 39.1
zh-en wmt21 31.4 32.0 31.7 — 34.0 34.1
en-zh wmt21 33.0 33.4 35.1 — 35.5 35.7

Avg Incremental — — 0.70 2.99 2.40 4.11 4.47

Table 4: Evaluation result on dev dataset. The inside of the dividing line represents the same model. We
train X-en, en-X X-X, zh-en, and en-zh models separately. All translations are generated by beam search

with beam size 5. All the models are the average of the final 5 checkpoints.

So we follow Li et al. (2020); Wang et al. (2021)’s
strategies to select topic-related data based on a test-
set. We use the selected data for further finetuning.
We experimented with the 2022 news development
set and apply it directly to the 2022 test set.

Language Model Reranking Following Yee
et al. (2019); Tran et al. (2021), we train language
models and apply noisy channel reranking to the
outputs of our final system. Unlike Tran et al.
(2021), which trains a separate language model
for each language, we train a multilingual language
model for all languages to evaluate whether the
multilingual language models can also improve the
quality of translations.

Model Ensemble Model ensemble is a widely
used technique in previous WMT shared tasks. To
deal with biases toward recent training data, it is
common to average parameters across multiple
checkpoints of a model. We always average the
last 5 checkpoints during training. During finetun-
ing, we tune this hyperparameters (num epoch and
num average checkpoints) on the development set
and use it directly on the test set of wmt22.

3 Experiment

We conduct experiments to quantify the impact of
each component in our system. The evaluation

conduct on newstest2021 or development set on
wmt22 using SacreBLEU (Post, 2018).

3.1 Settings
Every single model is trained on 8 NVIDIA A100
GPUs, each of which has 40 GB of memory. We
also employ large batching with larger learning
rates (Ott et al., 2018). We set the max learn-
ing rate to 0.0005 and warmup steps to 10000.
All the dropout probabilities are set to 0.1. To
speed up the training process, we conduct training
with a half-precision floating point (FP16). During
training multilingual, we add both source-side lan-
guage tags and target-side language tags to leverage
the gap between different language pairs. Follow-
ing Tran et al. (2021), we divide data into multi-
ple shards and downsample data from both high-
resource directions and synthetic backtranslated
with each training epoch using one shard.

3.2 Multilingual Models Result
We mainly evaluate our model and method on the
wmt21 test set and flore101 dataset (Goyal et al.,
2021). We analyze each aspect in our final submis-
sion and the cumulative effect. The effect of each
component is shown in Table 4.

According to our experimental results, increas-
ing the model capacity, increasing the sparsity of
the model (adding a specific set of Adapter Layer
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en-zh zh-en fr-de
Bilingual Model Big 33.0 31.4 32.6
Multilingual Model Big 31.9 30.2 35.8

Table 5: BLEU score on wmt21 test set. All result is
based on Big Model without any optimization

for each speech direction), fine-tuning the train-
ing set by extracting more relevant corpus based
on the original text of the test set, and using the
language model for reranking is effective on all
language directions and the test set. Backtransla-
tion is particularly effective in low- and medium-
resource languages. Although the improvement of
BLEU value by backtranslation on high-resource
languages is not obvious or even worse, the average
improvement by backtranslation is as obvious in a
comprehensive view, with an average improvement
of 1.68 BLEU per language direction.

Because this year’s task is a general-purpose
machine translation, rather than the news domain
machine translation task of previous years, we are
not submitting translation results that validate the
optimal model on the development set, but rather
the results of model fine-tuning on selected domain
data after the release of the test set.

3.3 Distant Language Pairs Analysis

As shown in Tran et al. (2021), the multilingual
model can significantly improve the BLEU score
of medium- and low-resource language directions.
For high-resource language directions, there are no
significant enhancements. For high-resource lan-
guages, such as en-de, the BLEU score decreases
slightly, and this is even more severe for distant
language directions, en-ja, and en-zh for example.
To compare the influence of the distance of the lan-
guage family on the multilingual model. We train
bilingual models for en-zh, zh-en, and fr-de. The
test result is shown in Table 5. Since most of the
language directions of wmt22 are Indo-European,
distant languages, Chinese and Japanese for exam-
ple, cannot benefit from the knowledge transfer
additive of other languages, while the parameter ca-
pacity of the multilingual model is limited. These
factors lead to poor results. Overall, when training
multilingual models, languages with similar lan-
guage families should be trained together, instead
of putting all the languages together.

Task BLEU
cs-en 25.3⋆

de-en 33.4
ja-en 22.8
ru-en 45.2∗

uk-en 44.6⋆

zh-en 28.1
fr-de 41.8
uk-cs 36.5
ru-sah 15.3⋆

Task BLEU
en-cs 26.3
en-de 36.1
en-ja 39.4
en-ru 32.6
en-uk 29.5
en-zh 48.3
en-hr 18.2⋆

cs-uk 38.3
sah-ru 7.1⋆

Table 6: Our final submission results in 18 tasks. ⋆
represents the best score in the automatic evaluation.
Note that the result is based on the submission website
https://ocelot-wmt22.mteval.org/, not the official final
result.

3.4 Submission Results

The results we finally submitted are shown in Ta-
ble 6. We participate in 18 tasks this year. On the
whole, all of our systems performed competitively,
especially for Many-to-English directions. Yakut
to/from Russian tasks is added bonus. Few teams
participate in these two tasks.

4 Conclusion

In this paper, we described Lan-Bridge’s submis-
sion to the WMT2022 General Translation shared
task. Our main exploration was using a multilin-
gual model to train different language pairs. It
shows that the multilingual model can achieve state
of art results in both high- and low-resource lan-
guage directions. Meanwhile, we found that the
multilingual model worked better for languages
from the same or close language families than lan-
guages from distant language families. Finally, for
extremely low-resource languages, even a multilin-
gual model can boost their performance of them,
but the translation is still far from usable.
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Abstract

Manifold’s English-Chinese System at
WMT22 is an ensemble of 4 models trained
by different configurations with scheduled
sampling-based fine-tuning. The four config-
urations are DeepBig (XenC), DeepLarger
(XenC), DeepBig-TalkingHeads (XenC) and
DeepBig (LaBSE). Concretely, DeepBig
extends Transformer-Big to 24 encoder layers.
DeepLarger has 20 encoder layers and its
feed-forward network (FFN) dimension is
8192. TalkingHeads applies the talking-heads
trick. For XenC configs, we selected mono-
lingual and parallel data that is similar to the
past newstest datasets using XenC, and for
LaBSE, we cleaned the officially provided
parallel data using LaBSE pretrained model.
According to the officially released autonomic
metrics leaderboard1, our final constrained
system ranked 1st among all others when
evaluated by bleu-all, chrf-all and COMET-B,
2nd by COMET-A.

1 Introduction

This report describes Manifold’s machine
translation system submitted to WMT 22
English→Chinese general domain translation
task. The general domain translation task of
WMT is a new task set up this year, replaces the
time-honored news translation task. However, as
the newstest datasets released previously were
created by professional translators manually, they
were considered to have better quality compared
with the web crawled dataset. Therefore, generally
our strategy is selecting data from the provided
datasets according to their similarity between
past WMT test sets, and training big models with
different architectures or training methods based
on the selected data.

∗Work done during Jin’s internship in OPPO.
1https://github.com/wmt-conference/

wmt22-news-systems/blob/main/scores/
automatic-scores.tsv

2 Data Preprocessing

For officially released bilingual data, we merged
ParaCrawl v9, News Commentary v16, Wiki Titles
v3, UN Parallel Corpus v1.0, CCMT corpus and
WikiMatrix corpus together, then applied multiple
rules to preprocess and filter the officially released
bilingual data, including

• Normalizing punctuation.

• Removing unprintable characters.

• Tokenizing texts. jieba2 was applied for Chi-
nese texts, and moses tokenizer3 was applied
for English texts.

• Removing all the sentence pairs whose source
text or target text tokens count exceeds 150,
and the segment pairs with a source-target
token ratio lower than 2/3 or higher than 3/2.

• Removing all the sentence pairs that belong
to other languages. We applied the fasttext
model (Joulin et al., 2016)4 as our language
identifier.

• Deduplicating the dataset.

3 Basic models

After applying the aforementioned preprocessing
and filtering rules, 30M segment pairs were kept
5. For the kept data, we adopted two different
selection strategies:

1. Following NiuTrans’ system submitted to
WMT21 (Zhou et al., 2021), we selected 12M
segment pairs from the kept data which are

2https://github.com/fxsjy/jieba
3https://github.com/moses-smt/mosesdecoder/

blob/master/scripts/tokenizer/tokenizer.perl
4https://dl.fbaipublicfiles.com/fasttext/

supervised-models/lid.176.bin
5We did not make use of official back-translated corpus
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Config Item Big Deep Deeper DeepBig DeepLarger
# Encoder Layer 6 30 40 24 20

# Attention Heads 16 8 8 16 16
Embedding Size 1024 512 512 1024 1024

FFN Size 4096 2048 2048 4096 8192
Pre-Norm No Yes Yes No No

Table 1: Main configurations for different architectures we applied for basic models. Decoder layers numbers
were fixed to 6 for all the architectures if not specially mentioned.

most similar to our validation set (i.e. new-
stest2020enzh data) using XenC (Rousseau,
2013). This part of data will hereinafter be
referred as “XenC” for short.

2. We further cleaned the 30M segment pairs us-
ing LaBSE (Feng et al., 2022)6, set the thresh-
old to 0.7 according to our experience in filter-
ing out un-aligned data. After this step, 24.3M
segment pairs were kept. This part of data will
hereinafter be referred as “LaBSE” for short.

Config Item Value
dropout 0.3

learning rate 0.0005
max tokens 4096

warmup init lr 1e-7
warmup steps 4000

label smoothing 0.1
num max updates 300,000
update frequency 8

Table 2: Hyper-parameters for training models. All ex-
periments were conducted on 4 or 8 Tesla V100 GPUs.

We applied BPE-subword (Sennrich et al.,
2016)7 to divide tokens into subwords. BPE codes
were learned jointly with 32K merge operations
but dictionaries for the source language and target
language are generated separately.

Basic models were trained to generate synthetic,
pseudo bilingual segment pairs for the next step. As
is discovered by Zeng et al. (2021), sub-model di-
versity is a key factor to enhance the performance
of ensemble model. Therefore, we trained var-
ious Transformer models (Vaswani et al., 2017)
applying different architectures. For very deep
Transformers, we followed the suggestion given by

6We downloaded the pretrained model from transform-
ers official website on October 11th., 2021. As the model
was released before February 2022, the constrained system
requirement is not violated.

7https://github.com/rsennrich/subword-nmt

DLCL (Wang et al., 2019) to use Pre-Norm. Main
configurations for the architectures we trained are
listed in Table 1. Other hyper-parameters for train-
ing models are listed in Table 2 (same for all the
experiments we took in the contest).

For each architecture X listed in Table 1, we also
trained its talking-heads attention variant (Shazeer
et al., 2020) to further increase model diversity.
Such variants will be denoted as “X-th” in the fol-
lowing part of the report. All the models were de-
veloped and trained using fairseq (Ott et al., 2019)
8

4 Data Augmentation

Previous studies show that adding synthetic data
can help to boost the performance of machine
translation systems (Edunov et al., 2018) (Hoang
et al., 2018). We adopted four data augmenta-
tion methods during the contest, including back-
translation (with sampling), forward-translation,
sequence knowledge distillation and R2L transla-
tion. For R2L translation, we reversed the token
sequences of inputs, e.g. converted “This is a book
.” to “. book a is This”, and left the target sentences
unchanged.

We selected 12M sentences from officially re-
leased English and Chinese monolingual datasets
respectively9, also applying XenC algorithm on
them. The selected monolingual data was prepro-
cessed by the similar pipeline presented in section
2, with the difference on skipping the steps to filter
unaligned bilingual data. The reason behind select-
ing 12M sentences is we expect that the data from
each monolingual dataset has the same size com-
pared with the bilingual training data, as Edunov
et al. (2018) indicated.

The preprocessed Chinese monolingual data was
8https://github.com/facebookresearch/fairseq
9For English, we combined News Crawl, News Discus-

sions, News Commentary and Europarl v10 corpus together;
for Chinese, we combined News Crawl, News Commentary
and Common Crawl corpus.
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No. Method Data Size Newstest 2020 Newstest 2021
1 Deep baseline model 12M 42.7 32.4
2 1 + Forward-translation (ForT) 24M 44.7 (+2.0) 33.3 (+0.9)
3 1 + Top-p back-translation (topp BT) 24M 45.8 (+3.1) 32.9 (+0.5)
4 1 + R2L KD + R2L ForT 36M 44.2 (+1.5) 33.5 (+1.1)
5 Sequence KD 12M 42.7 (-) 32.5 (+0.1)
6 5 + ForT + topp BT 36M 45.3 (+2.6) 33.7 (+1.3)
7 4 - 1 + 6 60M 45.5 (+2.8) 33.8 (+1.4)

Table 3: Model performances when applying different methods. All the models are trained by Deep architecture
depicted in Table 1. Our validation dataset is from newstest2020 (Barrault et al., 2020) and test dataset is from
newstest2021 (Akhbardeh et al., 2021).

No. Method Newstest 2020 Newstest 2021
1 Fine-tuned Deep 46.2 34.6
2 DeepBig 47 (+0.8) 35 (+0.4)
3 DeepLarger 47.5 (+1.3) 35.7 (+1.1)
4 DeepBig-th 47.6 (+1.4) 35.4 (+0.8)
5 DeepBig (LaBSE) 47.6 (+1.4) 35.5 (+0.9)
6 Ensemble of 2, 3, 4 and 5 48.1 (+1.9) 36.2 (+1.6)

Table 4: Detailed performance information of the four bigger model and the final ensemble model. All the
improvements are based on the baseline model (Deep model shown in the last line of Table 3, fine-tuned using past
newsdev/test datasets, by applying decoder steps based schedule sampling as regularization). All sub-models (No.
2 to 5) are also fine-tuned by the same datasets applying the same regularization method.

then back-translated into English by an ensemble
model, which is composed by a Big model, a Deep
model and a Big-th model, all trained with the
bilingual XenC Chinese→English corpus. Inspired
by some ideas of Burchell et al. (2022), we per-
formed top-p (nucleus) sampling (Holtzman et al.,
2019) in the process of back-translation to import
some noises, and set topp to 0.9. In this way, 12M
Pseudo English-Chinese segment pairs were con-
structed.

The preprocessed English monolingual data was
forward-translated into Chinese, leading to another
12M English-Pseudo Chinese dataset. The ensem-
ble model used to generate data has the same archi-
tecture with the back-translation model introduced
above, the only difference is it is trained by the
parallel XenC English→Chinese corpus.

We further applied sequence-level knowledge
distillation (Kim and Rush, 2016) to distill this en-
semble model by translating English sentences of
the parallel XenC corpus into pseudo Chinese. Fur-
thermore, we also trained a Deep model with the
reversed parallel XenC data to get a right-to-left
(R2L) model, and generated forward-translation
and the results of knowledge distillation using re-
versed monolingual and parallel English corpora.

After having acquired these different synthetic
datasets, we trained Deep models by various combi-
nations of them. The concrete model performance
is shown in Table 3.

5 Fine-tuning and Bigger Models

After having acquired extra data by back/forward-
translation, knowledge distillation, and R2L data
augmentation, we experimented on several other
methods to further improve our system.
Fine-tuning. We fine-tuned our Deep model using
the combination of newsdev2017, newstest2017,
newstest2018, and newstest2019 datasets. As the
dataset used for fine-tuning is quite small, we ap-
plied decoder steps based scheduled sampling (Liu
et al., 2021) as a means of regularization. We set k
to 0.99. With this step, a 0.7 BLEU gain has been
brought on the validation set and 0.8 BLEU gain
on the test set.
Ensemble of bigger models. We trained three
bigger models on the 60M XenC Dataset (con-
figuration No. 7 in Table 3), including a Deep-
Big model, a DeepLarger model and a DeepBig-th
model. Furthermore, we replaced the distilled data
in the XenC Dataset (12M) with the LaBSE data
(24M), and got a dataset containing 72M segment
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pairs which is used to train another DeepBig model.
We fine-tuned these four models using past news-
dev/test datasets and applied decoder steps based
schedule sampling, then made an ensemble model
comprised of them. Table 4 lists the detailed per-
formance of the bigger models and their ensemble
model.
Post-processing. We converted punctuation from
half-width symbols to full-width symbols for the
generated results.

6 Conclusion

In this report, we describe our Manifold
English→Chinese system submitted to WMT 22
general translation task. The core idea of our sys-
tem is to train various big Transformer models
utilizing in-domain (actually news domain) data,
based on which an ensemble model is created. Al-
though most training data belongs to a special
domain, we still achieved compelling results in
the final submission, i.e. our final system ranked
first among the constrained systems, evaluated by
BLEU score based on the two references.
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Abstract

We present CUNI-Bergamot submission for
WMT22 General translation task. We compete
in English→ Czech direction. Our submission fur-
ther explores block backtranslation techniques. In
addition to the previous work, we measure perfor-
mance in terms of COMET score and named enti-
ties translation accuracy. We evaluate performance
of MBR decoding compared to traditional mixed
backtranslation training and we show possible syn-
ergy when using both of the techniques simultane-
ously. The results show that both approaches are
effective means of improving translation quality
and they yield even better results when combined.

1 Introduction

This work focuses on exploring of two methods
used in NMT in order to improve translation qual-
ity: backtranslation and Minimum Bayes Risk de-
coding using neural-based evaluation metric as a
utility function. The methods used and related
work are presented in the following section. In
next section we describe our experimental setting
and results.

2 Methods

We describe methods we used to build our system
in this section.

2.1 Block backtranslation
The translation quality of NMT depends heavily
on the amount of parallel training data. It has
been shown that the authentic bilingual data can
be partially supplemented by synthetically paral-
lel, machine translated monolingual text (Bojar and
Tamchyna, 2011; Sennrich et al., 2016; Xie et al.,
2018; Edunov et al., 2018). Often the synthetic
and authentic parallel data are mixed in the training
dataset, but previous research shows that simply

mixing the two types of text does not yield optimal
translation quality. We are using block backtrans-
lation (block-BT) in similar configuration to Popel
et al. (2020). This method creates blocks of par-
allel and synthetic data and presents them to the
neural network separately, switching between the
two types during the training. Since in last year’s
WMT, the submission using block-BT by Gebauer
et al. (2021) did not find any improvements, pre-
sumably due to improperly chosen block size, we
decided to verify effectiveness of this method once
again.

Averaging type Previous work on block-BT
shows the importance of averaging the checkpoints
to combine information from different blocks of
training data in order to obtain good performance.
We compare checkpoint averaging with another
method of combining older sets of model’s param-
eters with the current one – exponential smoothing.
After each update u, the current parameters Θu are
averaged (with smoothing factor α) with parame-
ters after the previous update Θu−1:

Θu = αΘu + (1− α)Θu−1

Previous work by Popel (2018) contains experi-
ments with exponential averaging, but only on the
level of already saved checkpoints, not online dur-
ing the training after each update as for our work.

Minimum Bayes Risk Decoding NMT models
predict conditional probability distribution over
translation hypotheses given a source sentence.
To select the most probable translation under the
model (mode of the model’s distribution), an ap-
proximation of MAP (maximum-a-posteriori) de-
coding is used, most commonly the beam search
(Graves, 2012). However, beam search and MAP
decoding in general has many shortcomings de-
scribed in recent work (Stahlberg and Byrne, 2019;
Meister et al., 2020) and other approaches have
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been proposed to generate a high-quality hypothe-
sis from the model.

One of them, MBR (Minimum Bayes Risk) de-
coding (Goel and Byrne, 2000; Kumar and Byrne,
2004), has been proposed as an alternative to MAP.
MBR does not produce a translation with the high-
est probability, rather a translation with the best
value of utility function. This utility function is
usually an automatic machine translation evalua-
tion metric. However, to optimize towards best
utility function value, it would necessary to know
the ideal selection of hypothesis. In case of MT,
that would mean a perfect, best possible translation,
which of course is not known during the translation
process. For this reason, an approximation of the
ideal translation is used, based on the model’s prob-
ability distribution (Bryan and Wilker, 2021). This
can be implemented as generating a list of hypothe-
ses (e.g. using sampling or beam search) and then
computing utility function of each hypothesis us-
ing all the other hypotheses as the ideal translation
approximation (i.e. as references). This approxi-
mation of MBR decoding can be seen as consensus
decoding – the hypothesis that is the most similar
to all the others is chosen.

Even though MBR is able to optimize towards
many metrics and increase the scores, these gains
did not translate into better human evaluation of
the final translations, when using traditional met-
rics based on surface similarities like BLEU. Re-
cent successes in development of novel metrics for
machine translation has renewed interest in this
method. (Amrhein and Sennrich, 2022a; Freitag
et al., 2021; Müller and Sennrich, 2021).

3 Experiments

In this section we present our experimental setup
and results.

3.1 Tools

We tokenize the text into subwords using Fac-
toredSegmenter1 and SentencePiece (Kudo and
Richardson, 2018). We use MarianNMT (Junczys-
Dowmunt et al., 2018) to train the models. BLEU
scores are computed using SacreBLEU (Post,
2018), for COMET scores (Rei et al., 2020) we
use the original implementation2.

1https://github.com/microsoft/
factored-segmenter

2https://github.com/Unbabel/COMET

3.2 Datasets

We train English-Czech NMT models for our exper-
iments. We train our models on CzEng 2.0 (Kocmi
et al., 2020). We use all 3 subsets of CzEng cor-
pus: the originally parallel part, which we call auth,
Czech monolingual data translated into English us-
ing MT (csmono) and English monolingual data
translated into Czech using MT (enmono). We use
newstest2020 (Barrault et al., 2020) as our dev
set and newstest2021 (Akhbardeh et al., 2021)
as our test set.

For experiments concerning translation of named
entities, we used a test set originally designed for
Czech NLG in restaurant industry domain3(Dušek
and Jurčíček, 2019). It contains sentences which in-
clude names of restaurants and addresses in Czech
and their translations in English. We will call this
test set the restaurant test set.

3.3 Models

We train Transformer-base (which we denote base)
and Transformer-big (big 6-6) models with stan-
dard parameters (Vaswani et al., 2017) as pre-
configured in MarianNMT. For the largest model
(big 12-6), we use Transformer-big with 12 encoder
layers and depth scaled initialization (Junczys-
Dowmunt, 2019; Zhang et al., 2019)4. We also
used learning rate of 1e−4 for the 12 layer model
instead of 3e−4, which was used for other models.
We trained all models for at least 1.4M updates.
After that, we computed validation BLEU scores
every 5k updates and we stopped if the score did
not improve for 30 consecutive validations. We
trained the models on heterogenous grid server,
which includes combinations of Quadro RTX 5000,
GeForce GTX 1080 Ti, RTX A4000 and GeForce
RTX 3090 cards. Typical training time on 4 108Ti
of the base models for 1.4M updates was 7 days.

3.4 Block-BT settings

For all our experiments, we create a checkpoint
each 5k updates and we vary only the size of the
blocks during which the training data have the
same type (20k, 40k, 80k and 160k updates). The
size is the same for all block types. We circle
through the block types in the following order:
auth→csmono→auth→enmono.

3https://github.com/UFAL-DSG/cs_
restaurant_dataset

4Training scripts available at: https://github.com/
cepin19/wmt22_general
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For checkpoint averaging, we average 8 check-
points. For exponential smoothing, we use default
Marian configuration (α = 0.001, but there are
some slight modifications based on number of up-
dates since start of the training and batch size).

We also look at the effects of using only back-
translation, or both back- and forward-translation.

3.5 Block-BT results

Training regime and averaging method First,
we compare different training regimes: mixed-BT,
where all the training datasets are concatenated and
shuffled together and block-BT with 40k updates
long blocks and two possible averaging types – ex-
ponential smoothing (exp) or checkpoint averaging
(avg8).

Figure 1 shows behavior of BLEU and COMET
scores on newstest2020 during the training for
these configurations. We opt to present the interval
between 480k and 1280k updates. We chose the
lower bound because the behavior is more stabi-
lized than in the beginning of the training and the
upper bound because all the models were trained
for at least 1400k updates and 1280k is the near-
est lower multiplicative for the largest block size.
40k block curve represents a model without any
averaging, 40k block avg8 is a model trained with-
out exponential smoothing, but each checkpoint
was averaged with 7 previous checkpoints for the
evaluation, 40k block exp model was trained with
continuous exponential smoothing. Finally, we also
experimented with combination of both - trained
with exponential smoothing and averaged after the
training. The combination does not improve over
the separate averaging techniques and we omitted
the curve from the figure to make it more readable.

In both metrics, block-BT with either form of
averaging outperforms mixed-BT training. With-
out any averaging, the advantage of block-BT over
mixed-BT is smaller. Type of averaging does not
seem to play a large role – checkpoint averag-
ing, exponential smoothing and their combination
yield very similar best scores. The best scores on
newstest2020 for each combination of param-
eters are presented in Table 1.

The curves for checkpoint averaging and expo-
nential smoothing behave similarly, with exponen-
tial averaging reacting faster to change of the block.
Additionally, the avg8 models have higher peaks in
enmono (red) blocks, especially for BLEU scores.
The shape of the curves could be tuned by chang-

ing frequency of saving checkpoints and number
of checkpoints to be averaged for checkpoint av-
eraging method, or by changing the α factor for
exponential smoothing.

There are differences in behaviour between
BLEU and COMET score curves. Most notably,
COMET is less sensitive to transition from auth
(green) to csmono (blue) blocks. We hypothesize
this is caused by lower sensitivity of COMET score
to wrong translation of named entities and rare
words (Amrhein and Sennrich, 2022a). We present
further experiments in this direction later.

Block size We asses influence of block size for
both of the two averaging methods. We compare
block sizes of 20k, 40k, 80k and 160k updates. Be-
haviour of COMET and BLEU scores is presented
in Figures 2 and 3 for exponential smoothing and
checkpoint averaging, respectively. The best scores
are again shown in Table 1.

We see that 20k block size yields noticeably
worse results when using checkpoint averaging that
the other sizes. The negative effect of the small
block size is less pronounced when using exponen-
tial smoothing, yet still present. Other block sizes
perform similarly in both metrics. This results is
expected, since for 8-checkpoint averaging with
5k updates checkpointing interval, it is necessary
to have a block size of at least 40k updates to fit
all the 8 checkpoints and thus explore all possible
ratios of auth and mono data.

Reverse direction For the reverse direction,
Czech to English, we performed less extensive
evaluation. We only compare mixed, block-BT
with 40k blocks and either exponential smooth-
ing or checkpoint averaging. Behavior of the met-
rics is shown in Figure 4 and final best scores
on newstest2020 are presented in Table 2.
Block-BT still outperforms mixed training, but by a
smaller margin than in the other direction.

Backtranslation direction We also evaluate in-
fluence of using only backtranslations as additional
synthetic data (monolingual data in target language
to automatically translated to source language) or
adding also forward translations (from source lan-
guage to target target) and we present the results
in Table 3. Interestingly the results show large
gains in both BLEU and COMET when using for-
ward translation. We hypothesize this is caused by
the good quality of the model used to perform the
forward translation. In such case, the translation
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Figure 1: Comparison of different training regimes for EN-CS translation on newstest20 in terms of BLEU (top)
and COMET (bottom). Background colors for block-BT regime show which part of training data was used for
given part of the training. Green means authentic parallel data, blue is CS->EN backtranslation and red is EN->CS
forward translation.

model assumes the role of the teacher in teacher-
>student training and might lead to a good quality
results.

Named entities test sets From anecdotal evi-
dence, we have seen that checkpoints with large
influence of backtranslated data perform worse on
named entities translation and COMET and BLEU
scores might not reflect this drop of accuracy. We
evaluate the models in terms of accuraccy of named
entitiy translation on the restaurant test set.
We selected Czech to English direction, since the
evaluation is easier given lower morphological rich-
ness of target language. Figure 5 shows compar-
ison of behavior of named entities translation ac-
curacy on the restaurant test set and COMET and
BLEU scores on newstest2020 for exponential
smoothing and checkpoint averaging. NE accu-
racy peaks towards the end of auth regions (green).
Both COMET and BLEU scores peak also during
the auth part of the training, but, especially for
COMET, the peak occurs in earlier stages after the

switch to auth. Overall, BLEU curve correlates
better with the NE accuracy curve. We hypothesize
this might be related to the fact that COMET was
found to be insensitive to named entities errors by
Amrhein and Sennrich (2022b).

However, it seems that the shift between the
accuracy and the other two metrics is not too large
in our settings and choosing the best performing
model in terms of either COMET or BLEU should
not hurt NE translation by a large amount. We
further investigate that in Table 4 – we chose the
checkpoint with best COMET (first row) and best
BLEU (second row) on the newstest2020 and
the checkpoint with best NE translation accuracy
on the restaurant test set (third row). We compute
all three metrics for these three models. The best
COMET checkpoint obtains accuracy of 60.7% on
the restaurant test set, the best BLEU checkpoint
reaches accuracy of 62.9%, while the best accuracy
reached by any checkpoint is 63.6%.
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Model size Block size Avg type update (k) BLEU update (k) COMET

base

mixed exp 1340 34.7 1760 0.7337
mixed exp+avg8 1365 34.7 965 0.7326

20k

- 1360 34.6 640 0.7324
exp 410 34.9 725 0.7406

avg8 660 34.8 1385 0.7349
exp+avg8 420 34.9 735 0.7399

40k

- 610 34.8 1415 0.7363
exp 1130 35.3 1290 0.7474

avg8 780 35.5 1420 0.7462
exp+avg8 1150 35.5 1075 0.7466

80k

- 1250 34.9 960 0.7393
exp 1210 35.2 1450 0.7447

avg8 985 35.5 665 0.7474
exp+avg8 585 35.3 1150 0.7455

160k

- 1130 34.9 1210 0.7387
exp 1125 35.3 1285 0.7453

avg8 1135 35.5 1305 0.7467
exp+avg8 1145 35.3 1310 0.7473

big 6-6 40k exp 445 35.4 1125 0.7546
exp+avg8 300 35.4 1310 0.7567

big 12-6 40k exp 130 36.1 1210 0.7848

Table 1: Best COMET and BLEU scores on EN-CS newstest2020 for all the combinations of models size, training
regime and block size. We report the best score and an number of updates after which was this score reached.
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Figure 2: Comparison of how the block size affects behavior of BLEU (top) and COMET (bottom) scores during
the training for block-BT with exponential smoothing of the parameters, without checkpoint averaging, on EN-CS
newstest2020.
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Figure 3: Comparison of how the block size affects behavior of BLEU (top) and COMET (bottom) scores during
the training or block-BT with checkpoint averaging and no exponential smoothing of the parameters, on EN-CS
newstest2020.

Model Block Avg type update (k) best BLEU update (k) best COMET

base

mixed exp 1405 25.2 1220 0.4149
exp+avg8 1430 25.1 1220 0.4114

40k

- 580 25.3 1040 0.4086
exp 755 25.3 570 0.4183

avg8 765 25.4 1060 0.4175
exp+avg8 1080 25.2 1230 0.4186

Table 2: COMET and BLEU scores for Czech to English
directions. The best checkpoints were chosen based on
their performance on newstest2020.

dir regime datasets D BLU T BLU D CMT T CMT

encs

mixed
all 34.7 20.9 0.7337 0.6206

auth+cs 31.5 19.5 0.6904 0.5779
auth+en 34.8 20.6 0.7258 0.6097

block
all 35.3 21.1 0.7474 0.6245

auth+cs 33.9 19.9 0.7232 0.5908
auth+en 35.4 20.7 0.7497 0.6147

csen
mixed all 25.2 - 0.4149 -

block all 25.3 - 0.4183 -
auth+en 24.3 - 0.3682 -

Table 3: Results on newstest2020 and newstest2021
for various dataset combinations. D/T mean dev (new-
stest2020) and test (newstest2021) sets respectivelly,
CMT stands for wmt20-comet-da scores.

Update (k) COMET BLEU Acc

570 0.4183 24.9 0.607
755 0.4038 25.3 0.629
590 0.4099 24.9 0.636

Table 4: Best checkpoints of Czech to English model
trained with 40k blocks and exponential smoothing in
terms of COMET (first row), BLEU (second row) on
newstest2020 and NE translation accuracy on restaurant
test set (third row).

3.6 MBR decoding

We used MBR decoding to rerank concatenation
of n-best lists produced by various checkpoints. In
total, we used 6-best lists from 12 checkpoints. We
divided the checkpoints based on which block of
the training data they were saved in and sorted them
by COMET score on newstest2020. Using dif-
ferent strategies we selected the best performing
checkpoints to provide the n-best lists. We present
the results in Table 5. The first row shows results
for mixed-BT regime, i.e. we concatenated n-best
lists produced by the 12 best performing mixed-BT
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Figure 4: Comparison of different training regimes for CS-EN translation on newstest2020 in terms of BLEU
(top) and COMET (bottom). Background colors for block-BT regime show which part of training data was used
for given part of the training. Green means authentic parallel data, blue is CS->EN forward translation and red is
EN->CS backtranslation.

i auth cs en AVG comet20 MBR comet20 comet21

1 - - - 0.7322 0.7888 0.0885
2 9 2 1 0.743 0.8082 0.0946
3 4 4 4 0.7408 0.8182 0.0972
4 12 0 0 0.7425 0.801 0.0929
5 0 12 0 0.7303 0.8104 0.0949
6 0 0 12 0.7372 0.796 0.0918
7 1 7 4 0.737 0.8232 0.0981
8 0 7 5 0.7361 0.8232 0.098
9 2 7 3 0.7377 0.8231 0.0981

Table 5: Results of MBR decoding on
newstest2020 for different selection of the
hypotheses n-best lists produced by checkpoints from
different training blocks. In total, 12 n-best lists
produced by transformer-base models are concatenated
and the first three columns show how many n-best lists
are used from each block (the checkpoints for each
block are sorted by COMET (wmt20-da model), so
these are produced by the best performing checkpoints).
The AVG COMET20 shows the average wmt20-da
COMET scores for the first hypotheses of each n-best
list that was used, MBR COMET20 shows wmt20-da
score of the final sentences after MBR decoding,
COMET21 shows results of the same sentences from
wmt21-da model.

checkpoints. In the second row, the block-BT train-
ing checkpoints were used to create n-best lists,
selected only based on their COMET scores, with-
out any regard on the block type they were saved in.
In third row, we combine n-best lists from 4 best
performing checkpoints from each type of block.
In rows 4-6, we use best performing checkpoints
from each type of block separately. In the final
row, we show the optimal selection which yielded
the highest score. The results suggest that larger
diversity in terms of block type of the checkpoints
improves MBR results: the combination of n-best
lists produced by checkpoints from diverse block
types provides a better pool of hypotheses for MBR,
even though the average COMET score of these
checkpoints is lower than for the less diverse selec-
tion. This can be observed in rows 2 and 3.

3.7 Submission

Our primary submission is based on the big 12-6
model and MBR decoding. We explored all the
possible combinations of 18 checkpoints from dif-
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Figure 5: Behaviour of BLEU (top), COMET (bottom) on newstest2020 and NE translation accuracy on
restaurant test set for Czech to English translation with block-BT using exponential smoothing.

auth cs en AVG comet20 MBR comet20 comet21

9 2 8 0.7802 0.8566 0.1114

Table 6: Our final submission for the EN-CS general
translation task, based on outputs of the transformer-big
12-6 model. Meaning of the columns is identical to
Table 5.

ferent blocks as described in the previous section.
The results of the best combination are shown in
Table 6. We present the results of the official eval-
uation in our task in Table 7. In total, there were
5 submitted systems (4 constrained) and 5 online
services. Our submission ranked first in COMET
score among the constrained systems and third in
ChrF score.
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System COMET-B COMET-C ChrF-all

Online-W 97.8 79.3 70.4
Online-B 97.5 76.6 71.3
CUNI-Bergamot * 96.0 79.0 65.1
JDExploreAcademy * 95.3 77.8 67.2
Lan-Bridge 94.7 73.8 70.4
Online-A 92.2 71.1 67.5
CUNI-DocTransformer * 91.7 72.2 66.0
CUNI-Transformer * 86.6 68.6 64.2
Online-Y 83.7 62.3 64.5
Online-G 82.3 61.5 64.6

Table 7: Results of automatic metrics on wmt22 general
task test set. Constrained submissions are marked by an
asterisk, the best scores among constrained submissions
are bold. COMET-B and COMET-C are COMET scores
for the two different references, ChrF is computed using
both references together.

like to thank Martin Popel for his feedback on the
paper and Ondřej Bojar for overall guidance in the
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Abstract 

We here describe our neural machine 

translation system for the general machine 

translation shared task in WMT 2022. Our 

systems are based on the Transformer 

(Vaswani et al., 2017) with base settings. 

We explore the high-efficiency model 

training strategies, aimed to train a model 

with high-accuracy by using a small model 

and a reasonable amount of data. We 

performed fine-tuning and ensembling with 

N-best ranking in English to/from Japanese 

directions. We found that fine-tuning by 

filtered JParaCrawl data set leads to better 

translations for both directions in English 

to/from Japanese models. In the English to 

Japanese direction model, ensembling and 

N-best ranking of 10 different checkpoints 

improved translations. By comparing with 

another online translation service, we found 

that our model achieved a great translation 

quality. 

1 Introduction 

We participated in the Japanese to/from English 

translation for the general machine translation 

shared task of WMT 2022. Japanese →English 

is one of the challenging language pairs for 

machine translation since their differences are large 

in both vocabulary and grammatical structure. 

Recent advances in neural machine translation 

models have greatly promoted the development of 

the community. The transformer is the current key 

model and most recent participants are using a big-

setting transformer model to improve the quality of 

translations. However, developing a more efficient 

model is also important. We here use a smaller 

model and limited computation resources to pursue 

high-quality translation models.  

Our systems are based on the Transformer model 

with base settings, and the models are trained on 

the parallel corpus of Japanese and English 

(Morishita et al., 2019). We compared the quality 

of translations by using fine-tuning with several 

datasets. Also, we tested several different 

hyperparameters of the training to find suitable 

values for the task. After the fine-tuning, we tried 

to perform ensembling of multiple results from the 

model to earn a better-quality translation in the 

English to/from Japanese model. Here we describe 

the details of our systems. 

2 Data selection and preprocessing 

We select a suitable parallel corpus for model fine-

tuning. We compare WMT provided dataset (which 

contained 7 different sources including the 

JParaCrawl dataset), KFTT (Kyoto Free 

Translation Task data set, Neubig, 2011), the 

JParaCrawl dataset (ver 2) and so on. We 

performed fine-tuning for these datasets and found 

that the model trained on the JParaCrawl dataset 

achieved better performance. We used a test data 

set made from WMT provided data and compare 

model performances by BLEU score. The score of 

the no fine-tuned model was 37.21, KFTT fine-

tuned model was 14.87 and JParaCrawl fine-tuned 

model was 44.09. Therefore, we decided to use 

JParaCrawl as our fine-tuning dataset finally. We 

also consider that JParaCrawl has a reasonable 

amount of data for our high-efficiency training 

strategies. 

Before we use the dataset, we check the corpus 

data to clean up. The JParaCrawl dataset contains 

over 10 million sentence pairs which were 

constructed by broadly crawling the web and 

automatically aligning. Therefore, there were noise 

and low-quality translations. We filtered low 

quality translation pairs and made a better 

translation dataset for fine-tuning. We also find that 

there were some contaminations of non-Japanese 

languages (e.g., Korean, Chinese) in the Japanese 

data. We also remove these pairs from the dataset. 
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3 Tokenization 

We perform the tokenization procedure using the 

SentencePiece toolkit1  which provides us with a 

segmented sentence as tokens. In Japanese and 

some other languages like Chinese, words were not 

separated by spaces, therefore, tokenization needs 

to detect divided positions to separate each token. 

For Japanese, tokenization can be performed by a 

lattice-based tokenizer like MeCab 2 . A lattice-

based tokenizer performs tokenization based on a 

dictionary and if the contents of the dictionary 

cover whole words in data, it provides highly 

accurate tokenization. However, in the 

development of machine translation using Neural 

Network mechanisms, more efficient tokenization 

methods like Byte-Pair-Encoding (BPE) were 

proposed (Sennrich et al. 2016c). SentencePiece 

was developed based on these methods and 

provides more efficient tokenization for the NMT 

(Kudo and Richardson, 2018).  

SentencePiece is especially effective for 

languages not using spaces to separate words, has 

agglutinating morphology, and contains many 

compound words. Using SentencePiece helps 

extract subwords within compound words and 

create a more robust tokenizer. SentencePiece was 

used again to detokenize by removing the meta 

symbols from the output translation. For 

preprocessing the data, we have used the 

SentencePiece model, in which the vocabulary size 

is set to 32,000, and sentences whose length 

exceeded 250 subwords are removed from the 

training data. 

4 Model Training 

We train our NMT models with the fairseq3 toolkit. 

The models are based on Transformer (Vaswani et 

al., 2017) with base settings. We use an 

encoder/decoder with six layers. We set their 

embedding size to 512, and their feed-forward 

embedding size to 2048. We use eight attention 

heads for both the encoder and the decoder. We 

used dropout with a probability of 0.3. As an 

optimizer, we used Adam with α = 0.001, β1 = 0.9, 

 
1 

https://github.com/google/sentencepi

ece 
2 https://taku910.github.io/mecab/ 

and β2 = 0.98. We used a root-square decay 

learning rate schedule with a linear warmup of 

4000 steps. We clipped gradients to avoid 

exceeding their norm 1.0 to stabilize the training. 

For the base settings, each mini-batch contained 

about 5,000 tokens (subwords), and we 

accumulated the gradients of 64 mini-batches for 

updates. We trained the model with 24,000 

iterations, saved the model parameters every 200 

iterations, and averaged the last eight models. To 

achieve maximum performance with the latest 

GPUs, we use mixed-precision training. When 

decoding, we used a beam search with a size of six 

as the default condition and length normalization 

by dividing the scores by their lengths. We test 

other parameters of a beam search in the model of 

Japanese → English translations (size = 2, 3, 4, and 

10) and found that size = 2 provide the best BLEU 

score for this task. We also compared models 

output by scaraBLEU (Post, 2018).  

Our models are trained on the Google Cloud 

Platform’s compute engine with 2-T4 GPUs. 

Model training generally took approximately 3.5 

hours. We train our models in mixed precision to 

save costs without compromising on the accuracy. 

 

 

5 Model Ensembling and N-Best 

Reranking for English → Japanese 

direction  

After we fine-tuned our base model, we performed 

model ensembling with N-Best Reranking (Le et. 

al., 2021). For n-best reranking, we have created a 

script by referring to a script by Xu Song4, bert-as-

3 

https://github.com/facebookresearch/

fairseq 
4 https://github.com/xu-song/bert-

as-language-model 

Model condition JParaCrawl data 

Pretrained Model 39.4 

Finetuned Model 45.1 

Finetuned with 
ensemble 

46.9*1 

Table 1:  BLEU Scores of English → Japanese 

direction, each column uses the same test dataset 

for three conditions. 

*1 This result was not submitted due to our system’s trouble.  
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a-language-model. We performed some changes in 

the scripts for its application to Japanese. For 

measuring the likelihood of the Japanese sentences 

produced by the NMT model, we have used the 

bert-Japanese model released by Yohei Kikuta5.  

For ensembling, the basic idea is to calculate the 

probability of tokens and perplexity of sentences 

produced by 10 different checkpoint files of a 

finetuned model. These 10 checkpoints will create 

10 different translations for a given English 

sentence. Later, we are using bert-as-language-

model to calculate the best sentence (the one with 

the lowest perplexity) score. We have used this 

sentence output for the submission. This method 

ensures the selected sentence has maximized 

fluency compared to other candidates. 

6 Results and discussions 

6.1 English → Japanese direction 

We performed an experiment to compare 

ensembling effect (Table 1). In the experiment, we 

prepare training data from the JParaCrawl dataset 

to fine-tune our model and compare translations 

with/without ensembling. Based on the same 

training conditions, the score of the ensembling 

model is higher than the result of the model without 

ensembling. 

To evaluate our translation quality, we compare 

the result with the online translation service 

(DeepL) by using a test dataset which created by 

the JParaCrawl dataset. The test data contains 1000 

sentences that were not contained in the train data. 

The BLEU score of our model was higher than 

DeepL this means our fine-tuning procedure leads 

to better translation for the JParaCrawl dataset 

(Table 2).  

 
5 

https://github.com/yoheikikuta/bert-

japanese 

We also check the translation result of the test set 

released by WMT2022. The dataset consists of 

2037 English sentences and there were no 

reference sentences of Japanese. Therefore, we 

cannot calculate BLEU score here. Alternatively, 

we calculate perplexity 6  (PPL), by using bert-

japanese model5, which is explained in the model 

ensembling section. PPL is a metric of a language 

model and lower values mean better. We also check 

the translation quality by the human evaluation of 

a Japanese native speaker.  

The average of the PPL of our model was lower 

than DeepL (Table 3). The result suggested that our 

small model established a high-fluently prediction 

rather than DeepL. In detail, for 941 cases in the 

test set with 2037 sentences, our PPL was lower 

than DeepL. We presented several examples of 

these cases in appendix examples 1 to 4. In these 

examples, the quality of translations for our model 

is also better than DeepL based on the confirmation 

of a native speaker. As a bad case, we list example-

5 in the appendix. Although the translation of 

DeepL has better quality, however, the PPL score 

was higher than our model’s output.  

The results above (Table 2 and Table 3) 

suggested that we can establish a high-quality 

NMT model by small model and a reasonable 

amount of data, by using high-efficiency training 

strategies. 

 

6.2 Japanese → English direction 

For the Japanese to English direction, we perform 

finetuning with the Transformer model base setting 

on the JParaCrawl dataset. Table 4 shows our 

training results. For the final submission, we also 

performed post-processing to delete some extra 

punctuations that appeared in the translation results. 

We found that post-processing improved our 

results by 0.1 BLEU score. 

6 

https://huggingface.co/docs/transfor

mers/perplexity 

Model condition Our_PPL DeepL_PPL No. of cases 

Average 41.59 51.75 2037 

Average (our < DeepL) 21.86 90.61 941 

Average (our > DeepL) 59.84 15.79 1096 
Table 3 Comparison of our model and DeepL outputs by PPL 

Models BLEU 

Our model 43.9 

DeepL 26.6 

Table 2 Test result of our model and DeepL 

292



 

 
 

  
 

7 Conclusions 

We explored the high-efficiency model training 

strategies with a small model and a reasonable 

amount of data. Our systems are based on the 

transformer with a base setting. In our experiments, 

we found that data cleaning, model averaging, 

model ensembling, beam search, finetuning, 

parameter-tuning, and post-processing are useful 

techniques to train a high-quality model. Finally, 

we compared the translation results between our 

model and the online translation service, we found 

that our model achieved better translation quality. 

Our experiments suggested that exploring more 

efficient training strategies with a smaller model, a 

reasonable amount of data, and limited 

computational resources is promising to achieve a 

high-quality translation model.  
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A Appendices 

Example1  

English: [Not this time.] 

our_translation (Ja) our_ppl 

"今回はそうではありません。" 3.219 

DeepL_translation (Ja) DeepL_ppl 

"今回は違う" 365.825 

These two translations are similar, our model 

translation is a bit better. 

 

Example2  

English: ["How are we going to handle this?" he 

continued.] 

our_translation (Ja) our_ppl 

"どのように私達はこれを処理し

ようとしているか? 彼は続けた。

" 

20.209 

DeepL_translation (Ja) DeepL_ppl 

"「そして、「この問題にどう対

処していくのか？" 

84.582 

The quality of translations is better for our model 

based on the confirmation of a native speaker. 

 

Example3  

English: [I have checked and this would be contactless 

so they would not be able to bring the item to your 

property I am afraid, I do apologise about this] 

Model condition JParaCrawl data 

Pretrained Model 37.2 

Finetuned Model 44.3 

Table 4: BLEU Scores of Japanese to English 

direction.  
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our_translation (Ja) our_ppl 

私はチェックしました、そして、

彼らは私が恐れているあなたの財

産にアイテムを持って来ることが

できないので、これは非接触にな

るでしょう、私はこれについて謝

ります。 

13.010 

DeepL_translation (Ja) DeepL_ppl 

"このような場合、私は、彼らが

あなたの財産に項目をもたらすこ

とができないだろう、私はこのこ

とについて謝罪している非接触型

であることを確認しました。" 

48.198 

The quality of translations is better for our model 

based on the confirmation of a native speaker. 

 

Example4 

English: [If you have any questions, please feel free to 

contact us through the eBay emailing system.] 

our_translation (Ja) our_ppl 

"ご不明な点がございましたら、E

メールにてお気軽にご連絡くださ

い。" 

3.439 

DeepL_translation (Ja) DeepL_ppl 

"質問があったら、eBay の 

emailing システムによって私達

に連絡すること自由に感じて下さ

い。" 

15.750 

The quality of translations is better for our model 

based on the confirmation of a native speaker. 

 

Example5  

English: [I've looked into it and I can see that your 

area is currently having a high volumes of order that 

is why they were assigning a rider for your order.] 

our_translation (Ja) our_ppl 

"私はそれを調べて、私は、あな

たの地域が、現在、それらが、あ

なたの注文のためにリカーを割り

当てていた理由である大量の注文

を持っているのを見ることができ

ます。" 

18.24 

DeepL_translation (Ja) DeepL_ppl 

"調べたところ、あなたの地域で

は現在注文が集中していて、その

ためライダーが割り当てられるこ

とになったようです。" 

85.75 

Although our model PPL is lower, the quality of 

translations is better for DeepL based on the 

confirmation of a native speaker.  
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Abstract

Customer feedback can be an important signal
for improving commercial machine translation
systems. One solution for fixing specific trans-
lation errors is to remove the related erroneous
training instances followed by re-training of
the machine translation system, which we refer
to as instance-specific data filtering. Influence
functions (IF) have been shown to be effec-
tive in finding such relevant training examples
for classification tasks such as image classifi-
cation, toxic speech detection and entailment
task. Given a probing instance, IF find influen-
tial training examples by measuring the simi-
larity of the probing instance with a set of train-
ing examples in gradient space. In this work,
we examine the use of influence functions for
Neural Machine Translation (NMT). We pro-
pose two effective extensions to a state of the
art influence function and demonstrate on the
sub-problem of copied training examples that
IF can be applied more generally than hand-
crafted regular expressions.

1 Introduction

Neural Machine Translation (NMT) is the de facto
standard for recent high-quality machine transla-
tion systems. NMT, however, requires abundant
amount of bi-text for supervised training. One com-
mon approach to increase the amount of bi-text
is via data augmentation (Sennrich et al., 2015;
Edunov et al., 2018; He et al., 2019, inter alia).
Another approach is the use of web-crawled data
(Bañón et al., 2020) but since crawled data is
known to be notoriously noisy (Khayrallah and
Koehn, 2018; Caswell et al., 2020), a plethora of
data filtering techniques (Junczys-Dowmunt, 2018;
Wang et al., 2018; Ramírez-Sánchez et al., 2020, in-
ter alia) have been proposed for retaining a cleaner
portion of the bi-text for training.

While standard data filtering techniques aim to
improve the quality of the overall training data

∗ Work done during an internship at Amazon.

without targeting the translation quality of specific
instances, instance-specific data filtering focuses
on the improvement of translation quality toward
a specific set of input sentences via removal of
the related training data. In commercial MT, this
selected set of sentences can be the problematic
translations reported by customers. One simple
approach of instance-specific data filtering in NMT
is manual filtering. In manual filtering, human
annotators identify translation errors on sentences
reported by customer and designs filtering scheme,
e.g., regular expressions to search related training
examples for removal from the training set.

In this work, we attempt to apply a more au-
tomatable technique called influence functions (IF)
which is shown to be effective on image classifi-
cation (Koh and Liang, 2017), and certain NLP
tasks such as sentiment analysis, entailment and
toxic speech detection (Han et al., 2020; Guo et al.,
2020). Given a probing example, influence func-
tions (IF) search for the influential training exam-
ples by measuring the similarity of the probing
example with a set of training examples in gradi-
ent space. Schioppa et al. (2021) use a low-rank
approximation of the Hessian to speed up the com-
putation of IF and apply the idea of self-influence to
NMT. However, self-influence measures if a train-
ing instance is an outlier rather than its similar-
ity with another instance. Akyürek et al. (2022)
question the back-tracing ability of IF on the fact-
tracing task. They compare IF with heuristics used
in Information Retrieval and attribute the worse
performance of IF to a problem called saturation.
Compared to fact-tracing, the target sides of ma-
chine translation can be more diverse which com-
plicates the application of IF.

We apply an effective type of IF called TracIn
(Pruthi et al., 2020) to NMT for instance-specific
data filtering and analyze its behaviour by con-
structing synthetic training examples containing
simulated translation errors. In particular, we find
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that

• the gradient similarity, also called the influ-
ence1, is highly sensitive to the network com-
ponent.

• vanilla IF may not be sufficient to achieve
good retrieval performance. We proposed two
contrastive methods to further improve the
performance.

• training examples consisting of copied source
sentences have similar gradients even when
they are lexically different. This indicates
that the use of influence functions can go be-
yond what can be achieved with regular ex-
pressions.

• an effective automation of the instance-
specific data filtering remains challenging.

To the best of our knowledge, we are the first to
investigate applying IF for instance-specific data
filtering to NMT.

2 Method

Influence functions IF is a technique from ro-
bust statistics (Hampel, 1974; Cook and Weisberg,
1982, inter alia). It aims to trace a model’s predic-
tions back to the most responsible training exam-
ples without repeated re-training of the model, aka
Leave-One-Out. Koh and Liang (2017) extend this
idea from robust statistics to deep neural network
that requires only the gradient of the loss functions
L and Hessian-vector products so that the influence
I(z, z′) of two examples z and z′ is approximated
as

I(z, z′) ≈ ∇θL(z′)TH−1θ̂ ∇θL(z) (1)

where θ̂ is the model parameters at optimum and
Hθ̂ =

1
n

∑n
i=1∇2

θL(θ) is the Hessian of the model
parameters at θ̂. Given n number of training in-
stances and p number of model parameters, the in-
verse of Hessian has a complexity of O(np2 + p3)
which is expensive to compute for deep neural net-
work. There are several proposed methods to speed
up the computation of IF, e.g., by computing on
a training subset selected by KNN-search (Guo
et al., 2020), by approximating the Hessian with
LISSA (Agarwal et al., 2017), by computing on a

1In this work, we use gradient similarity or influence inter-
changeably to denote the result of IF. Be aware that TracIn is
also one type of IF.

subset of model parameters (Koh and Liang, 2017),
or by replacing the Hessian with some other pro-
cedures (Pruthi et al., 2020). In this work, we
focus on TracIn which is shown to be better than
some other variations (Han and Tsvetkov, 2020;
Schioppa et al., 2021) in terms of retrieval perfor-
mance.

TracIn, denoted by ITracIn(z, z
′), replaces the

computationally costly Hessian matrix with an
identity matrix. The remained gradient dot product,
or called the gradient similarity, is instead com-
puted over C number of checkpoints, followed by
averaging:

ITracIn(z, z
′) =

1

C

C∑

i=1

∇θL(z′)T∇θL(z) (2)

In NMT, given the same source sentence, the mag-
nitude of the gradient in general is positively corre-
lated to the length of the target sentence. In order
to reduce the effect of the target length, we normal-
ize equation 2 by the product of ‖∇θL(z′)‖ and
‖∇θL(z)‖, or equivalently, we compute the cosine
similarity of∇θL(z′) and ∇θL(z).

Given a probing instance z′ and its probing gra-
dient ∇θL(z′), instances in the training set that
yield a positive value of ITracIn(z, z

′) are called
the positively influential training instances (+IF-
Train) whereas those that yield a negative value of
ITracIn(z, z

′) are called the negatively influential
training instances (-IFTrain). Taking a gradient
step on +IFTrain reduces the loss on the probing
example while taking a gradient step on -IFTrain
increases it. IF can be used for data filtering by
removing the +IFTrain examples of low quality
probing samples since their gradients have similar
direction. Conversely, if the probing sample is of
high quality, removing -IFTrain examples from the
training data would be expected to increase transla-
tion quality w.r.t. the probing sample.

3 Experimental Setting

Model configuration and training We use
Transformer BASE configuration as described in
Vaswani et al. (2017) with default setting and im-
plementation in FAIRSEQ. We use a sentence-piece
model to create subword units of size 32k. Un-
less otherwise specified, we pre-trained our NMT
on Europarl-v7 data and News Commentary-v12
data in German-English direction from WMT17
for 100 epochs, about 112K updates, using Adam
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Shared parameters Non-shared parameters
Samples ∇Full ∇Emb ∇srcEmb ∇trgEmb ∇output ∇concat

Probing Noch kommt Volkswagen glimpflich durch. 1 1 1 1 1 1
Volkswagen gets off lightly.

1 Das £ 1,35 Mrd. teure Projekt soll bis 0.153 0.240 0.006 0.287 0.437 0.339
Mai 2017 fertiggestellt werden
Volkswagen gets off lightly.

2 Alle in Frage kommenden Produkte wurden 0.238 0.320 0.013 0.230 0.401 0.319
aus dem Verkauf gezogen.
Volkswagen gets off lightly.

3 Noch kommt Volkswagen glimpflich durch. -0.021 -0.030 -0.149 -0.022 -0.017 -0.040
In 2008, most malware programmes were
still focused on sending out adverts.

4 Noch kommt Volkswagen glimpflich durch. -0.007 -0.016 -0.120 -0.003 0.011 -0.013
We’ve made a complete turnaround.

5 Noch kommt Volkswagen glimpflich durch. 0.950 0.894 0.973 0.927 0.843 0.873
Volkswagen gets off lightly!

6 Noch kommt Volkswagen glimpflich durch! 0.899 0.912 0.873 0.915 0.940 0.927
Volkswagen gets off lightly.

Table 1: Example showing the changes of influence by network components. Segments that are marked in red
are perturbed from the probing example. ∇X indicates the network components used in computing the influence,
∇concat indicates the concatenation of∇srcEmb, ∇trgEmb and ∇output.

optimizerion training of 16-bit2. The effective
mini-batch size is 4096 x 16 tokens and it takes a
p3.16xlarge3 machine on AWS 6 hours for training.
We evaluate the MT model on the newstest2017
test set with a checkpoint averaged over the 10-best
checkpoints, measured by the validation loss on
the newstest2014-2016 dev set. On the test set, our
NMT model with non-shared parameters with the
two word embeddings and the output layer scores
29.99 BLEU whereas the one with shared parame-
ters scores 29.78 BLEU. We use beam search with
beam size of 5 in decoding.

TracIn We select 5 checkpoints, i.e., at epoch 5,
8, 15, 30 and 100 for computing TracIn4. We select
checkpoints which have relatively large changes
in the validation loss, i.e., usually in the earlier
phrase of training, and include the last one to cover
information at the end of the training. We com-

2We use 32-bit precision to compute the gradient similarity
once the training is done.

3See https://aws.amazon.com/ec2/instance-types/ for de-
tails.

4It is tempting to just use the deployed checkpoint to com-
pute the influence. As shown by Liang et al. 2017, however,
the Hessian term in equation 1 captures more accurately the
effect of model training than the dot product of the optimal
checkpoint. In TracIn, the Hessian is approximated by the av-
erage over a set of checkpoints, and we follow their guidelines
for checkpoints selection.

pute the per-sample gradient with a batch size of
1 parallelized over multiple processes with several
g4dn.2x3 machines on AWS.

4 Experimental results

This section describes our findings on the proper-
ties of applying IF on NMT for instance-specific
data filtering.

4.1 Sensitivity of gradient similarity to the
network components

In previous works, the influence, or called the gra-
dient similarity, is usually computed with respect to
a small part of the network parameters, especially
the last or the last few layers (Han et al. (2020);Bar-
shan et al. (2020); inter alia). In NMT, we found
that the resulting influence is highly sensitive to
the network components used in computing the
gradients (or gradient component). For illustration,
we construct a set of perturbed instances, compute
its influence by different gradient components and
observe their changes. The perturbed instances are
not included during the NMT training. This in-
dependence between the NMT and the perturbed
instances provides a simpler setting for checking
how gradient components and the perturbed exam-
ples affect the influence.
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Table 1 shows the gradient similarities of a prob-
ing example from newstest2017 with six artifi-
cially created instances. We use two NMT mod-
els, 1) trained with shared parameters between the
two word embeddings and the output layer and 2)
trained without parameter sharing, to compute the
similarities.

We notice that gradient similarity for the model
with shared parameters is more strongly influenced
by lexical matches on the target side, as shown
by the larger magnitude of influence values for
probing examples 1 and 2 with random source
sides compared to probing examples 3 and 4 with
random target sides. For non-shared parameters,
we observe that the gradient w.r.t. the output
layer (∇output) has stronger response (0.437 and
0.401) to the probing instances with random source
side whereas the gradient w.r.t. source embed-
ding (∇srcEmb) has stronger response (-0.149 and
-0.120) to the instances with random target sides.
On the same probing example, we repeat this ran-
dom sampling of source and target sentences by
using the other 3003 instances in the newstest2017
set. We find that the mean magnitude of∇srcEmb
is 0.04 for random target whereas it is 0.004 for ran-
dom source. In the case of ∇output, the mean mag-
nitude for random target is 0.021 whereas it is 0.428
for random source. This indicates that ∇output has
a tendency of scoring sentence pairs higher when
their target side overlaps with the target side of the
probing instance and is less influenced by source-
side overlap. This may be suboptimal for retrieving
problematic training examples that are relevant to
a given probing instance.

When using a gradient vector ∇concat which
is the concatenation of ∇srcEmb, ∇trgEmb and
∇output, its similarity is dominated by ∇output
rather than equally shared between the three given
that they have the same number of parameters. This
may explain why, in the case of shared parameters,
instances with random source side have higher sim-
ilarities than those with random target side.

Instance 5 and 6 are minor edits of the prob-
ing instance with changes to punctuation. For in-
stance 5, it is not easy to interpret the results for
the model with shared parameters. However, in
the non-shared parameter setting, we observe a
higher similarity for ∇srcEmb than for ∇trgEmb
and ∇output. This is more interpretable because
the punctuation change is on the target side. For
instance 6, the punctuation change is on the source

side and we see a higher TracIn value for ∇output
than for ∇srcEmb and ∇trgEmb. As before, the
value of ∇concat is more similar to the value of
∇output. Further examples can be found in Table
A1 in the Appendix.

These qualitative results show that the choice of
network component is crucial in computing the gra-
dient similarity. As shown in the next experiment,
this affects the retrieval of training examples.

4.2 Contrastive signal is crucial for better
retrieval performance

In this section, we try to illustrate how different gra-
dient components affect the retrieval of the noisy
instances with TracIn. We add control to the re-
trieval outcome by adding synthetic noisy training
instances to the training data. In addition, we show
that vanilla IF may not be sufficient to achieve good
performance because the gradients are aggregated
over all tokens in the target sentence. We thus
propose two contrastive methods to sharpen the
gradient signal.

Synthetic noisy examples We use the error tem-
plate X→ Y which stands for X is translated to Y
to construct synthetic noise examples for the train-
ing set . We created four simple error patterns: 1)
August→ January, 2) Deutschland→ Italy, 3) Ok-
tober→ December and 4) Türkei→ New Zealand.

Error pattern
Number of instances

train synthetic noisy probing

August→ January 8,017 925 9

Deutschland→ Italy 15,360 4,891 30

Oktober→ December 11,927 2,422 8

Türkei→ New Zealand 14,963 7,417 22

Table 2: Number of instances per error pattern

In the training set, we replace the translation of
the sentences containing the source pattern by the
erroneous translation with a probability of 60% so
that the total number of training data is unchanged.
We select these error patterns because translation
errors of months and country names can easily re-
sult from noisy training examples and are therefore
suitable to simulate real customer issues. In addi-
tion, there are related source sentences in the test
set, i.e., newstest2017, which can be used as prob-
ing examples. In order to speed up the computation
of IF, we extract a subset of training data contain-
ing the original pattern, the perturbed pattern and
some randomly sampled training sentences. For
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example, in the error pattern Oktober→ December,
the training subset contains sentences with Okto-
ber, Dezember, October and December on either
the source or target side together with some ran-
domly sampled sentences. Table 2 gives the exact
number of instances for each case. We follow the
same training procedure as section 3 to pre-train
a NMT model on the training corpus perturbed by
the synthetic noises.

Contrastive-IF The gradient of a source-target
pair in NMT involves complicated mapping be-
tween the source tokens and the target tokens. That
is, the gradient vector does not just contain the in-
formation of the error pattern but also other context.
In order to isolate the gradient of the error pattern
from the aggregated signal, we propose two meth-
ods: 1) gradient masking and 2) gradient difference.
Both methods leverage a cleaner translation either
in the form of a gold-reference translation or a cor-
rected hypothesis, i.e. the hypothesis with the error
pattern corrected. We refer to them as Contrastive
Influence Functions (Contrastive-IF).

The idea of gradient masking (Mask) is to ap-
ply a 0/1 token-level mask to the loss function so
as to remove the contribution of irrelevant tokens
from the gradient computation. We assign the mask
based on which tokens differ between hypothesis
and reference. If the 0-mask is applied everywhere
except for the location of the error according to a
corrected translation, we refer to it as MaskExact.

We can use the difference between two hypothe-
ses in a continuous fashion by simply subtracting
their gradients. Specifically, we compute the dif-
ference of the gradient of a sentence A and the
gradient of a sentence B as the probing gradient:
GD(A,B) = ∇(A) − ∇(B). In this work, we
use the hypothesis as A and a cleaner translation
as B (either the reference or the corrected hypothe-
sis) so that positively influential training instances
w.r.t. to GD(A,B) are the synthetic noisy training
instances.

Results Table 3 shows the retrieval performance
of vanilla IF, gradient masking and gradient dif-
ference where the gradient is computed w.r.t. to
either the source embedding, output layer or the full
model. We evaluate the performance with preci-
sion over the top-X% influential training instances,
i.e. the number of synthetic training instances suc-
cessfully retrieved given top-X% of the influential
training samples. We combine results of the four

error patterns by (macro) averaging their precision.

The first three rows show results for vanilla
IF (TracIn) when either the hypothesis, the refer-
ence or a corrected hypothesis is used for probing
the training data. Using ∇srcEmb or ∇output ob-
tain substantially higher precision for each variant
than using ∇Full, i.e., the gradient w.r.t. the en-
tire model, which demonstrates the importance of
the choice of gradient component(s) in vanilla-IF
for retrieval performance. Using the corrected hy-
potheses to retrieve negatively-influential examples
yields the best precision for both top-1% and top-
10% of retrieved training examples.

We qualitatively examine the influential in-
stances retrieved. By using the source-hypothesis
pair as the probing instance, we find that instances
retrieved via ∇output have less similarity on the
source side. In the first probing example, Januar
→ January occurs more frequently in the ranking
than August →January. In the second example,
Italien→ Italy appears as the third influential train-
ing instance when using ∇output whereas all top-3
influential instances obtained by∇srcEmb contain
the desired error pattern of Deutschland→ Italy,
see Table A2 in the Appendix.

We find that both gradient masking,
∇(HYPMask), and gradient difference, ∇(HYP) −
∇(REF), perform better than the vanilla IF given
the same gradient component. ∇(HYPMask) always
outperforms the comparable vanilla IF variants
∇(HYP) and ∇(REF). If we can identify the exact
location of the error pattern, with the probing gra-
dient ∇(HYPMaskExact) or ∇(CorrHYPMaskExact),
the precision can be further boosted and this is
consistent for gradients ∇srcEmb, ∇output and
∇Full. While the gradient difference variants do
not always outperform the comparable masking
variants for all ∇X , ∇(HYP) − ∇(CorrHYP)
yields the overall best result using∇srcEmb.

An interesting finding is the improvement
brought by the corrected hypothesis (CorrHYP).
Applying vanilla-IF on it already achieves a preci-
sion of 0.930 under ∇srcEmb considering the top-
1% influential instances. By applying MaskExact
or gradient difference on it, we achieve very high
precisions of 0.989 and 1.0 under ∇srcEmb consid-
ering the top-1% influential training instances. One
notable gain brought by the proposed approaches is
that for∇Full, the precision increases from 0.531
to around 0.987 for the ∇(HYP) − ∇(CorrHYP)
variant, bringing it on-par to the performance of
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∇(Probing) +/- Precision
∇srcEmb ∇output ∇Full

∇(HYP) + 0.846 0.720 0.503
∇(REF) - 0.876 0.794 0.481
∇(CorrHYP) - 0.930 0.905 0.531

∇(HYPMask) + 0.893 0.840 0.654
∇(HYPMaskExact) + 0.957 0.910 0.862
∇(CorrHYPMaskExact) - 0.989 0.992 0.924

∇(HYP) -∇(REF) + 0.930 0.856 0.584
∇(HYP) -∇(CorrHYP) + 1.000 0.971 0.987

(a) Retrieval performance for top-1% influential training examples

∇(Probing) +/- Precision
∇srcEmb ∇output ∇Full

∇(HYP) + 0.765 0.644 0.442
∇(REF) - 0.799 0.693 0.437
∇(CorrHYP) - 0.844 0.781 0.455

∇(HYPMask) + 0.848 0.829 0.567
∇(HYPMaskExact) + 0.936 0.904 0.825
∇(CorrHYPMaskExact) - 0.962 0.958 0.875

∇(HYP) -∇(REF) + 0.855 0.764 0.515
∇(HYP) -∇(CorrHYP) + 0.986 0.935 0.931

(b) Retrieval performance for top-10% influential training examples

Table 3: Retrieval performance measured in (macro) averaged precision over all error patterns. ∇(Probing) refers
to the gradient with input ‘source-Probing’. HYP, REF and CorrHYP stands for hypothesis, reference and corrected
hypothesis respectively. “+” (“-”) indicates that positively (negatively) influential training instances were retrieved.
∇X indicates network components used in computing the gradient. We mark the best result per column in bold.

∇output. We include results for additional gradient
components in Table A3 in the Appendix.

∇(Probing)
top-X% influential

+/-
Precision

training samples ∇Emb ∇Full

∇(HYP)
1%

+
0.660 0.502

10% 0.596 0.444

∇(CorrHYP)
1%

-
0.877 0.541

10% 0.746 0.463

∇(HYP) - ∇(CorrHYP)
1%

+
0.891 0.691

10% 0.808 0.607

Table 4: Retrieval performance measured in average
precision across all error patterns for an NMT model
with shared parameters between the word embeddings
and the output layer.

We also conducted a side experiment with a
NMT model with shared parameters between the
embeddings and the output layer. Similar to the
case of a NMT model with non-shared parameters,
gradient difference improves over the vanilla-IF
when averaging precisions over all error patterns
as shown in Table 4.

To summarize, both our contrastive-IF variants
improve retrieval performance regardless of the net-

work component used in computing gradients and
whether the NMT model has shared parameters.

4.3 Copied source sentences have similar
gradient signature

Our initial motivation for applying influence func-
tions to NMT was to arrive at a more automatable
way of retrieving relevant training examples for
reported translation problems. We were also hop-
ing to generalize over what can be achieved by
applying manually composed regular expressions
which are limited to detecting lexical overlap. In
this section, we focus on the latter and investigate
whether Influence Functions can retrieve training
examples that cause an undesired copy behaviour
in the decoder.

Experimental settings On top-of the Europarl-
v7 and News Commentary-v12 data, we append a
set of 176,004 copied source sentences provided
by Khayrallah and Koehn (2018) to the training
set. Following the training recipe in section 3, our
NMT with non-shared parameters has a degrada-
tion of translation quality from 29.99 BLEU to
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∇(Probing) +/- Precision
∇srcEmb ∇encoder ∇Full

∇(HYP) + 0.930 0.972 0.994
∇(REF) - 0.525 0.452 0.548
∇(HYP) -∇(REF) + 0.708 0.712 0.949

(a) Retrieval performance for top-10% influential training
examples

∇(Probing) +/- Precision
∇srcEmb ∇encoder ∇Full

∇(HYP) + 0.888 0.932 0.986
∇(REF) - 0.508 0.449 0.504
∇(HYP) -∇(REF) + 0.670 0.647 0.895

(b) Retrieval performance for top-20% influential training
examples

Table 5: Retrieval performance measured in averaged
precision over the probing instances, on copied train-
ing instances. ∇(Probing) refers to the gradient with
input ‘source-Probing’. HYP, REF stands for hypothe-
sis, reference. “+” (“-”) indicates that positively (neg-
atively) influential training instances were retrieved.
∇X indicates the network components used in comput-
ing the gradient.

17.64 BLEU on the newstest2017 data, showing the
detrimental effect of the untranslated target sides.

We select 40 probing instances from the new-
stest2017 data where their translation by the above
NMT model is a copy of the source sentence. We
again reduce the computation time by running
TracIn over a training subset which contains the
newly added noisy data, i.e., 176,004 instances and
a set of randomly sampled training instances. This
creates a training subset of 476,004 instances.

Results Table 5 shows the retrieval performance
on copied source sentences in the training sub-
set with probing gradients of∇(HY P ),∇(REF )
and ∇(HY P ) - ∇(REF ) computed over source
embedding (∇srcEmb), the encoder (∇encoder), or
the entire model (∇Full). We skip the masking
strategy in this case since it would mask all target
tokens, resulting in a loss of 0. Different from our
results so far, the vanilla IF using only the hypoth-
esis preforms better than using the reference for
retrieval and better than the gradient difference vari-
ant for all network components. For example, when
considering only the top-10% influential training
instances, the precision is 0.930 for∇(HY P ) with
∇srcEmb and only 0.525 for ∇(REF ). This may
indicate that instances of copied source sentence
have similar gradient signature despite their lexi-

cal difference (see Table A4 for some examples)
and that the reference translation is less useful in
this setting because it cannot provide a specific
contrastive signal.

A surprising finding in this setting is that using
gradients computed over the entire network is better
than the source embedding or the entire encoder.
This is in contrast to the previous findings in the
synthetic training instances. This possibly indicates
that the copy mechanism is spread over the entire
model or parts beyond the source embedding or the
encoder.

4.4 An effective IF-based instance-specific
data filtering is hard to automate

Many data filtering algorithms require a threshold
to decide which instances are to be filtered. This
threshold can be a model score in an offline filtering
algorithm (Junczys-Dowmunt, 2018) or a dynamic
formula that is changed according to the learning
state of the model (Wang et al., 2018). In both
cases, a desirable threshold should be effective as
measured in the downstream model performance
and be easily computed and generalized to other
situations. In the case of IF-based instance-specific
data filtering, we observe two properties in the rank-
ing of the influence which makes the automation
of the data filtering algorithm challenging.

1: The range of influence varies across prob-
ing examples Although the influence is bounded
between [−1, 1] because of the cosine similarity,
the maximum magnitude of the influence for each
probing example can still be very different. Table
6 shows the mean and standard deviation of the
maximum influence value of positively influential
training instances computed over probing examples
of the same configuration. Firstly, the mean value
is quite diverse across different gradient compo-
nents, and across different probing gradients of the
same error pattern. For example, the mean value of
the error pattern August→ January computed with
∇srcEmb is 0.399 or 0.059 depending on which
probing gradient is used. Secondly, the standard
deviation within each configuration is relatively
large when compared to the corresponding mean
value. For example, it is about 26%, 36%, 22%
and 19% in the case of ∇srcEmb using gradient
difference as the probing gradient. This large stan-
dard deviation indicates the difficulty of setting an
effective threshold for filtering even for probing
examples with the same type of error pattern.

301



Error pattern ∇(HYP) -∇(CorrHYP) ∇(HYP)
∇srcEmb ∇Full ∇srcEmb ∇Full

August→ January 0.399 ± 0.104 0.199 ± 0.041 0.059 ± 0.023 0.119 ± 0.042
Oktober→ December 0.524 ± 0.192 0.397 ± 0.123 0.056 ± 0.028 0.143 ± 0.043
Deutschland→ Italy 0.576 ± 0.126 0.428 ± 0.047 0.097 ± 0.061 0.135 ± 0.046
Türkei→ New Zealand 0.527 ± 0.100 0.540 ± 0.118 0.080 ± 0.044 0.165 ± 0.051

Table 6: Statistics showing the mean and standard deviation of the largest influence per configuration. The large
standard deviation of the maximum influence value for probing examples of the same error pattern shows the
difficulty of defining a comparable filtering threshold across probing instances.

Error pattern ∇(HYP) -∇(CorrHYP) ∇(HYP)
∇srcEmb ∇Full ∇srcEmb ∇Full

August→ January 1.44 ± 0.50 3.33 ± 1.76 1.78 ± 1.55 1.44 ± 0.69
Oktober→ December 2.25 ± 0.43 2.00 ± 0.00 2.88 ± 1.76 2.00 ± 1.58
Deutschland→ Italy 1.00 ± 0.00 1.77 ± 0.62 1.67 ± 1.22 2.70 ± 2.62
Turkei→ New Zealand 3.05 ± 1.46 1.32 ± 1.26 2.27 ± 2.09 2.32 ± 1.66

Table 7: Mean and standard deviation of the number of influential training instances to be removed per configura-
tion, using the largest consecutive difference found in the ranking as clustering criterion.

2: The influence value drops abruptly at the
top-of the ranking Apart from a fixed threshold
across different probing example, we also examine
the possibility of automatically setting a threshold
for each probing example.

We first examine a simple clustering strategy by
searching for the position where the consecutive
difference is the largest in the ranking of influence.
Table 7 shows the result of the mean and standard
deviation of the number of most influential train-
ing instances to be removed per configuration. By
considering only the largest consecutive difference,
less than 5 training instances would be removed
which is far less than the number of synthetic train-
ing instances.

We examine further by investigating the shape
of the influence of the positively influential train-
ing instances in the ranking. Figure 1 shows the
influences, computed via TracIn, of the top-500
positively influential training instances per error
pattern. For each error pattern, we randomly se-
lect a probing example to examine its influence
under different gradient conditions. In all these
cases, the influence drops sharply in the first few
instances, especially in the case of vanilla IF, de-
noted by “GradHYP” in the figures. After the sharp
drop, the influence becomes quite steady for the
remaining instances. This steady behaviour holds
even for instances of much lower rank, see Figure
A1 in the Appendix. The “elbow” occurs before
the first 50 influential training instances, which in-
cludes only a tiny portion of the synthetic noisy
training instances.

How about Top-K filtering? In previous work,
the authors use either Top-K or Top-X% as the
filtering threshold which is not realistic in the case
of NMT where 1) there can be billions of training
instances, and 2) the error types are more diverse
than the prediction of wrong classes. In spite of
the good retrieval performance demonstrated in
the previous section, our results here show that
an effective automation of the IF-based instance-
specific data filtering for NMT remains a challenge.

5 Conclusion

We have analyzed the use of Influence Functions
for NMT as instance-specific data filtering. By
constructing synthetic instances, we found that 1)
the gradient similarity is very sensitive to the se-
lected network components, 2) vanilla Influence
Functions are not sufficient for good retrieval per-
formance, 3) our proposed contrastive-IF can boost
the retrieval performance regardless of the gradi-
ent component or parameter sharing, 4) finding
an effective automation of IF for instance-specific
data filtering is difficult. This is because the proper
choice of gradient component with respect to the
type of error in the probing example is crucial for
the effectiveness of Influence Functions. Despite
the reported effectiveness for certain classification
tasks in previous literature, our results show that ap-
plying IF to NMT poses some practical difficulties
that we have not yet been able to solve.
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Figure 1: TracIn of the top-500 positively influential training examples. In each subfigure, we randomly select
a probing example from each error pattern to compute its influence using gradient difference w.r.t. 1) source
embedding (GradDiff srcEmbed), 2) entire model (GradDiff full) and using vanilla-IF with source-hypothesis as
input w.r.t. 1) source embedding (GradHYP srcEmbed), 2) entire model (GradHYP full).

6 Limitations

In this work, we provided an analysis of using In-
fluence Functions for Neural Machine Translation
as instance-specific data filtering for the purpose of
cost saving and finding a more generally applica-
ble solution. Despite the reported success of some
previous works in NLP/Vision-related classifica-
tion tasks, we faced several challenges in applying
Influence Functions to NMT. We are aware of the
following limitations to our analysis:

• Our analysis focuses on TracIn rather than
other influence functions because TracIn is
reported to be very effective.

• Our analysis is based on a fixed set of check-
points, following the practice of previous
works. The selection and the number of check-
points used in TracIn are computationally
costly hyper-parameters.

• Our analysis focuses on major network com-
ponents such as embeddings, encoder and the

output layer, excluding other possible combi-
nations.

• The scale of our experiments is limited, e.g.,
only the De-En language direction with 3M
training instances and the synthetic exam-
ples are relatively simple. However, given
such simple setting, we can already see
the challenges of applying IF on NMT as
instance-specific data filtering or as an attribu-
tion/interpretable method.

• The proposed contrastive IF requires a cor-
rected translation, e.g., reference translation.

We hope that our analysis can inspire further
evaluation and modification of the technique.
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A Appendix

Samples ∇Full ∇Emb ∇srcEmb ∇trgEmb ∇output ∇concat
Probing Selbst die britische Queen hat ihn schon geadelt. 1 1 1 1 1 1

Even the British Queen has bestowed an
honour upon him.

1 Nur fehlten die Beweise. 0.358 0.284 0.024 0.225 0.401 0.319
Even the British Queen has bestowed
an honour upon him.

2 Biologen haben in Hannover untersucht, 0.275 0.168 0.004 0.219 0.280 0.200
welchen Effekt das Rufen von Katzenbabys
auf erwachsene Tiere hat.
Even the British Queen has bestowed
an honour upon him.

3 Selbst die britische Queen hat ihn schon geadelt. -0.035 -0.038 -0.125 0.025 -0.043 -0.036
The German branch of the Gülen movement
also fears that many Turks will flee abroad.

4 Selbst die britische Queen hat ihn schon geadelt. -0.039 -0.013 -0.141 0.039 0.001 -0.003
Demonstrators demanding political change
in Ethiopia have been met with violent resistance
by the government.

5 Selbst die britische Queen hat ihn schon geadelt. 0.962 0.924 0.992 0.981 0.905 0.924
Even the British Queen has bestowed
an honour upon him!

6 Selbst die britische Queen hat ihn schon geadelt! 0.908 0.899 0.912 0.949 0.935 0.935
Even the British Queen has bestowed
an honour upon him.

Table A1: Another example showing the changes of gradient similarity by selected network components. Segments
that are marked in red are perturbed from the probing example. The notation∇X indicates the network components
used in computing the gradient similarity. ∇srcEmb has a mean magnitude of 0.051 and 0.007 on random target
and random source respectively whereas ∇output has respectively a mean magnitude of 0.0145 and 0.350. This
shows that∇output has a tendency of scoring sentence-pairs containing random source higher.
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Figure A1: TracIn of the top-50% positively influential training examples. In each subfigure, we randomly select
a probing example from each error pattern to compute its influence using gradient difference w.r.t. 1) source
embedding (GradDiff srcEmbed), and 2) entire model (GradDiff full) as well as using vanilla-IF with source-
hypothesis as input w.r.t. 1) source embedding (GradHYP srcEmbed), and 2) entire model (GradHYP full).
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probing 1 Der Film läuft bei uns ab dem 25. August.
The film will be filmed here on 25 January.

∇srcEmb 1 Die Vereinbarung läuft am 31. Januar ab.
This agreement formally expires on 31 January.

2 Dieses Gesetz wurde im August unterzeichnet.
It was signed in January.

3 Die Vereinigten Staaten haben diese Garantie am 15. August 1971 aufgegeben.
The United States abandoned that guarantee on 15 January 1971.

∇output 1 Der Cardiff-Bericht erscheint Mitte Januar.
The Cardiff report will be published in mid-January.

2 Eine zweite Tagung ist für Januar 2004 vorgesehen.
A second meeting will be held in January 2004.

3 Ich hoffe, dass die Dynamik beibehalten und das Siebte Rahmenprogramm
am 1. Januar 2007 auf den Weg gebracht wird.
I hope that the momentum will be maintained and the Seventh Framework Programme
will be launched on 1 January 2007.

probing 2 Auch in Deutschland finde eine "Hexenjagd" gegen Erdogan-Kritiker statt.
A ’witch hunt’ against Erdogan critics is also taking place in Italy.

∇srcEmb 1 Deutschland ist dagegen.
Italy is opposed to this.

2 Dies wäre ein besseres Wirtschaftsmodell für Deutschland.
This would be a better economic model for Italy.

3 Deutschland und China können mehr tun als andere.
Italy and China can do more than others.

∇output 1 Eine weitere Lehre für Sarkozy aus Deutschland ist, dass ein aufgeklärter
korporatistischer Staat unterstützender politischer Führung
ebenso bedarf wie entgegenkommender Gewerkschaften.
A further lesson for Sarkozy from Italy is that an enlightened corporate state
needs supportive political leadership as well as accommodating trade unions.

2 Insgesamt wurden fast 2 300 Tonnen möglicherweise kontaminiertes Futtermittelfett
an 25 Futtermittelhersteller in Deutschland geliefert.
A total of almost 2 300 tonnes of potentially contaminated feed fat was delivered
to 25 feed manufacturers in Italy.

3 Leider Gottes ist der Titel der heutigen Debatte Italien.
Alas, the title of today’s debate is Italy.

Table A2: Two probing examples with source-hypothesis as input and their top-3 positively influential training
instances. ∇output has a tendency to assign higher scores to sentence-pairs which target side has overlapped
tokens but ignoring the similarity of the source side. For example, the pattern “Januar -> January” occurs more
frequently in the ranking than “August -> January” in probing 1.
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∇(Probing) +/- Precision
∇srcEmb ∇encoder ∇trgEmb ∇output ∇concat ∇Full

∇(HYP) + 0.846 0.485 0.334 0.720 0.722 0.503
∇(REF) - 0.876 0.432 0.303 0.794 0.805 0.481
∇(CorrHYP) - 0.930 0.494 0.324 0.905 0.919 0.531

∇(HYPMask) + 0.893 0.581 0.347 0.840 0.844 0.654
∇(HYPMaskExact) + 0.957 0.862 0.474 0.910 0.916 0.862
∇(CorrHYPMaskExact) - 0.989 0.903 0.467 0.992 0.994 0.924

∇(HYP) -∇(REF) + 0.930 0.523 0.321 0.856 0.855 0.584
∇(HYP) -∇(CorrHYP) + 1.000 0.985 0.458 0.971 0.980 0.987

(a) Retrieval performance for top-1% influential training examples

∇(Probing) +/- Precision
∇srcEmb ∇encoder ∇trgEmb ∇output ∇concat ∇Full

∇(HYP) + 0.765 0.399 0.301 0.644 0.646 0.442
∇(REF) - 0.799 0.382 0.297 0.693 0.700 0.437
∇(CorrHYP) - 0.844 0.402 0.299 0.781 0.789 0.455

∇(HYPMask) + 0.848 0.478 0.311 0.829 0.831 0.567
∇(HYPMaskExact) + 0.936 0.794 0.380 0.904 0.908 0.825
∇(CorrHYPMaskExact) - 0.962 0.821 0.372 0.958 0.960 0.875

∇(HYP) -∇(REF) + 0.855 0.442 0.307 0.764 0.765 0.515
∇(HYP) -∇(CorrHYP) + 0.986 0.884 0.371 0.935 0.939 0.931

(b) Retrieval performance for top-10% influential training examples

Table A3: Retrieval performance measured in (macro) averaged precision over all error patterns (extended version
of Table 3). ∇(Probing) refers to the gradient with input ‘source-Probing’. HYP, REF and CorrHYP stands
for hypothesis, reference and corrected hypothesis respectively. “+” (“-”) indicates that positively (negatively)
influential training instances were retrieved. ∇X indicates network components used in computing the gradient,
∇concat indicates concatenation of∇srcEmb, ∇trgEmb and ∇output. We mark the best result per column in bold.

308



probing 1 Golfer Langer erhält die Sportpyramide
Golfer Langer erhält die Sportpyramide

∇srcEmb 1 Binnenmarktanzeiger
Binnenmarktanzeiger

2 Vollständige Liste der ausgewählten Aussteller:
Vollständige Liste der ausgewählten Aussteller:

3 Dimiter TZANTCHEV Ständiger Vertreter
Dimiter TZANTCHEV Ständiger Vertreter

∇Full 1 Erstellung einzelstaatlicher Aktionspläne für die Verhütung von Verletzungen durch die Mitgliedstaaten.
Erstellung einzelstaatlicher Aktionspläne für die Verhütung von Verletzungen durch die Mitgliedstaaten.

2 Für weitere Informationen wenden Sie sich bitte an die Dienststelle Außenbeziehungen Europäischer Rechnungshof
Für weitere Informationen wenden Sie sich bitte an die Dienststelle Außenbeziehungen Europäischer Rechnungshof

3 Dimiter TZANTCHEV Ständiger Vertreter
Dimiter TZANTCHEV Ständiger Vertreter

probing 2 Die demokratische Bewerberin kündigt gar die größte Investition in neue Arbeitsplätze seit dem Zweiten Weltkrieg an.
Die demokratische Bewerberin kündigt gar die größte Investition in neue Arbeitsplätze seit dem Zweiten Weltkrieg an.

∇srcEmb 1 Die Krise hat die großen Unterschiede innerhalb der EU deutlich gemacht.
Die Krise hat die großen Unterschiede innerhalb der EU deutlich gemacht.

2 Die Regierungskonferenz ist nur eine Versammlung aller Regierungen.
Die Regierungskonferenz ist nur eine Versammlung aller Regierungen.

3 Die Entschließung wird uns dabei helfen, auf einer soliden Grundlage in die nächste Phase der Entwicklung
einer Meeresstrategie einzutreten.
Die Entschließung wird uns dabei helfen, auf einer soliden Grundlage in die nächste Phase der Entwicklung
einer Meeresstrategie einzutreten.

∇Full 1 Die Partei für Freiheit möchte dafür sorgen, dass die niederländische Öffentlichkeit nicht länger als
Geldautomat Europas behandelt wird.
Die Partei für Freiheit möchte dafür sorgen, dass die niederländische Öffentlichkeit nicht länger als
Geldautomat Europas behandelt wird.

2 Die russische Regierung hat geschätzt, dass ein Drittel aller Wasserleitungen dringend ersetzt werden muss.
Die russische Regierung hat geschätzt, dass ein Drittel aller Wasserleitungen dringend ersetzt werden muss.

3 Die internationale Gemeinschaft erkannte ihn einstimmig an.
Die internationale Gemeinschaft erkannte ihn einstimmig an.

Table A4: Two probing examples with copied training instances as input and their top-3 positively influential
training instances. Both ∇srcEmb and ∇Full can retrieve copied instances in the training subset given a probing
instance of copied source sentence which is lexically different.
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Abstract

This paper describes AISP-SJTU’s partici-
pation in WMT 2022 shared general MT
task. In this shared task, we participated in
four translation directions: English→Chinese,
Chinese→English, English→Japanese and
Japanese→English. Our systems are based
on the Transformer architecture with sev-
eral novel and effective variants, including
network depth and internal structure. In
our experiments, we employ data filtering,
large-scale back-translation, knowledge distil-
lation, forward-translation, iterative in-domain
knowledge finetune and model ensemble. The
constrained systems achieve 48.8, 29.7, 39.3
and 22.0 case-sensitive BLEU scores on
EN→ZH, ZH→EN, EN→JA and JA→EN, re-
spectively.

1 Introduction

We participate in the WMT 2022 shared general
MT task, including English↔Chinese(EN↔ZH)
and English↔Japanese(EN↔JA). All of our sys-
tems are built with constrained data sets.

For model architectures, we exploit several
Transformer variants including transformer-DLCL
(Wang et al., 2019), transformer-ODE (Bei Li,
2021), transformer-RPR (Shaw et al., 2018),
transformer-Coda (Zheng et al., 2021).

In this year’s translation tasks, we mainly em-
ploy data filtering (Zhou et al., 2021; Zeng et al.,
2021), large-scale back-translation (Sennrich et al.,
2015; Lample et al., 2017), knowledge distillation,
forward-translation, in-domain knowledge finetune
and model ensemble to improve the final model’s
performance.

For the synthetic data generation, we first ex-
ploit large-scale back-translation (Sennrich et al.,
2015) method to leverage the target-side monolin-
gual data and the knowledge distillation (Kim and
Rush, 2016) to leverage the source-side of bilingual
data. To use the source-side monolingual data, we

explore forward-translation by ensemble models
to get general domain synthetic data.Furthermore,
several data augmentation methods are applied to
improve the model robustness, including different
token-level noise and different sampling methods.

We mainly use three training strategies in the
training phase, including the warmup strategy (He
et al., 2016) to adjust the learning rate in training,
different sampling methods (Holtzman et al., 2019)
and the Graduated Label Smoothing (Wang et al.,
2020).

In the fine-tuning stage, the test set is clustered
into seven categories, and then use the TFIDF-
Ngram algorithm (Ramos et al., 2003) to search for
similar bilingual and monolingual data in all data
according to these seven domains. The monolin-
gual data is then generated using forward transla-
tion to generate pseudo-data, and finally fine-tuned
together with the searched bilingual data.

We pay more attention to the differences be-
tween different models in this year. We compute
Self-BLEU (Zhu et al., 2018) from the translations
of the models on the valid set to quantify the di-
versity among different models. To be precise, we
use the translation of one model as the hypothesis
and the translations of other models as references
to calculate an average BLEU score. A lower Self-
BLEU means this model is more different from
other models.

For ensemble method in every category, the self-
BLEU scores of the models are calculated to rep-
resent their differences from other models, and ac-
cording to the self-BLEU scores of the model, the
distribution weight when they perform ensemble is
calculated through the Softmax-Temperature (Zhu
et al., 2018; Cheng et al., 2017). Now seven do-
main ensemble models are obtained, then use the
model for each domain to predict the test set of the
corresponding domain separately.

This paper is structured as follows: Sec. 2 de-
scribes the novel model architectures. We introduce
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our system and training strategy in detail in Sec.
3. Experimental settings and results are shown in
Sec. 4. We conduct analytical experiments in Sec.
5. Finally, we conclude our work in Sec. 6.

2 Model Architectures

2.1 Model Configurations

As the number of model parameters increases, the
model’s performance is better, so deeper and wider
architectures are used in our system. However, the
training of the deep model is unstable, and the loss
is not easy to converge. Recent studies (Liu et al.,
2020a; Huang et al., 2020) show that the unstable
training problem of Post-Norm Transformer can
be mitigated by modifying initialization of the net-
work and the successfully converged Post-Norm
models generally outperform Pre-Norm counter-
parts. We adopt the Admin initialization method
(Liu et al., 2020b) in our training flows to stabi-
lize the training of deep Post-Norm Transformer.
Our experiments have shown that the Post-Norm
model has a good diversity compared to the Pre-
Norm model and slightly outperform the Pre-Norm
model.

In our experiments, we use multiple model
configurations with 24/30-layer encoders to build
deeper models, and the decoder layers are all 6, and
the hidden layer size of all models is 4096. Note
that all model configurations above apply to the
following variant models.

In addition, We use Transformer-ODE as the
baseline model.

2.2 Transformer-RPR

According to the research of (Shaw et al., 2018),
adding relative position representation to the self-
attention mechanism is used to characterize the
distance relationship of elements in the sequence,
which can further improve the performance of the
machine translation performance. So we incorpo-
rate relative position representation (RPR) into the
self-attention mechanism on both the Transformer
encoder and decoder side. Preliminary experiments
demonstrate that only relative key information is
enough, and we set the relative window size to 8.

2.3 Transformer-Coda

At the heart of the Transformer architecture is the
Multi-Head Attention (MHA) mechanism which
models pairwise interactions between the elements
of the sequence. Despite its massive success, the

current framework ignores interactions among dif-
ferent heads, leading to the problem that many of
the heads are redundant in practice, which underuti-
lizes the capacity of the model. To improve param-
eter efficiency, according to the research of (Zheng
et al., 2021), we adopt cascaded head-colliding
attention (CODA) which explicitly models the in-
teractions between attention heads through a hier-
archical variational distribution.

2.4 Transformer-DLCL

From the perspective of improving the residual net-
work structure, we introduce the DLCL(Dynamic
Linear Combination of Layers) method to solve the
problem of gradient disappearance or explosion in
deep model training. According to the research of
(Wang et al., 2019), this DLCL method can effec-
tively improve the performance of deep models.

2.5 Transformer-ODE

According to the research of (Bei Li, 2021), resid-
ual networks are an Euler discretization of solutions
to Ordinary Differential Equations (ODE), and a
residual block of layers in Transformer can be de-
scribed as a higher-order solution to ODE. Inspired
by this work, we adopt ODE to relieve the prob-
lem of gradient disappearance or explosion in deep
model training.

3 System Overview

3.1 Data Filtering

For ZH-EN and JA-EN language pairs, the filtering
rules are as follows:

* Filter out sentences which are longer than 120
words or contain a long word with over 40
characters.

* The word ratio between the source and the
target sentence must not exceed 1:3 or 3:1.

* Filter out the sentences that have invalid Uni-
code characters or HTML tags.

* Filter out the duplicated sentence pairs.

* The number of punctuation difference be-
tween the source and the target sentence must
not exceed 5.

* The number of digit difference between the
source and the target sentence must not exceed
3.
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* Filter out sentence pairs in which English sen-
tence has Chinese or Japanese characters.

Besides these rules, several models are trained
with constrained corpus for filtering corpus:

* Filter the bilingual corpus with semantic
matching models.

* Filter the bilingual corpus with word align
models (Dyer et al., 2013) .

* Filter out incomplete English sentences by a
discriminative model.

* Filter out incomplete Japanese sentences by a
discriminative model.

* Filter out classical Chinese and ancient poetry
sentences by a discriminative model.

The monolingual corpus is also filtered with
the above rules and models which are suitable for
monolingual data. All the above rules and models
are applied to synthetic parallel corpus as well.

3.2 Data Augmentation
In the field of NLP text classification, (Wei and
Zou, 2019) proposed EDA technology, which can
further improve the performance of the model. In-
spired by this work, we introduce three operations
of synonym replacement, random swap, and ran-
dom deletion to generate new data. Here we call
it Aug. Specifically, we choose 15% of sentence
pairs to add noise and keep the remaining 85% of
sentence pairs unchanged. For a chosen pair, we
keep the target sentence unchanged, and perform
the following three operations on the source sen-
tence:

* 30% probability of synonym replacement.

* 50% probability of random swap.

* 20% probability of random deletion.

3.3 General Domain Synthetic Data
Generation

In this section, we describe our methods for con-
structing general domain synthetic data. The
general domain synthetic data is generated via
large-scale back-translation, forward-translation
and knowledge distillation to enhance the models’
performance for all domains. In the following sec-
tions, we elaborate the above techniques in detail.

3.3.1 Back-Translation
Back-translation is the most commonly used data
augmentation technique to make good use of the
target side monolingual data in NMT (Hoang et al.,
2018). Previous work (Edunov et al., 2018) has
shown that Different generation strategies have dif-
ferent effects on the quality of generated pseudo-
data. After these efforts, we employ the following
three generation strategies.

* Sampling Top-K: At each time step, the model
generates the probability that each word in
the dictionary is likely to be the next word,
which we randomly draw from a sample of k
= 10 most likely candidates in this distribution.
Afterwards, words are generated at the next
time step based on the previously selected
words.

* Sampling Top-P: Top-P Sampling (Nucleus
sampling) is to preset a probability limit p-
value, and then arrange all possible words
from high to low according to the probabil-
ity, and select words in turn. Stop when the
cumulative probability of a word is greater
than or equal to the p-value, and then sample
from the already selected words to generate
the next word. In our experiments, p is set to
0.9.

* Beam Search: Generate target translation by
beam search with beam size 5.

Besides, we also use Tagged Back-Translation
(Caswell et al., 2019) in En→Zh, Zh→En, En→Ja
and Ja→En.

3.3.2 Forward-Translation
Forward translation refers to the generation of
pseudo-data using source-side monolingual data
(Sennrich et al., 2015). We use the ensemble model
to generate high-quality forward translation data,
which can greatly improve the robustness and per-
formance of the model. Forward translation pro-
vides steady improvements on all four tracks we
competed.

3.3.3 Knowledge Distillation
Knowledge Distillation (KD) has been proven to
be a powerful technique for NMT (Kim and Rush,
2016; Wang et al., 2020) to transfer knowledge
from the teacher model to student model. Specif-
ically, we use an integrated teacher model to gen-
erate target-side pseudo-data from the source side
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Domains Zh EN JA
CLIENT 345 364 0

conversational 0 0 502
ecommerce 518 515 453

medicals 277 1454 0
news 505 1910 505
social 503 0 0

t1 0 279 191
t3 0 14343 305

voa 0 19 0

Table 1: The distribution of the blind test sentences in
different domains.

of bilingual data. Likewise, Knowledge Distilla-
tion has steadily improved on all four tracks we
participated in.

3.4 In-domain Finetune

Domain adaption (Luong and Manning, 2015)
plays an important role in improving the transla-
tion performance. Different from the single domain
(news) in previous years, the blind test of this year
has shifted to a multi-domain. Firstly, we extract
the domain information of every sentence from the
"doc" tag in the XML files. The distribution of the
blind test sentences in different domains is shown
in Table 1. Secondly, we build 1-gram, 2-gram,
3-gram, 4-gram vocab for every domain and adopt
the TF-IDF algorithm to extract fine-tuning data for
each domain from the whole training set. Thirdly,
we finetune the models for each domain using the
corresponding domain data, 90% of which is used
for training and 10% for validation. Finally, the
models of each domain are ensembled and gener-
ate translation results of the test sentence in the
corresponding domain.

3.5 Softmax-T Self-BLEU based Ensemble

After we get numerous fine-tuned models, we need
to integrate them for better results. We improve
on the traditional Self-BLEU method (Zhu et al.,
2018). First, we calculate the Self-BLEU score of
each model in each domain, and then obtain the
weight score assigned to each model in each do-
main through the Softmax-Temperature (Zhu et al.,
2018; Cheng et al., 2017). Finally, we use the mod-
els of the respective domains to integrate according
to the assigned weight scores to generate data for
the respective domains.

4 Experiments and Results

4.1 Settings

All our models are implemented based on fairseq
1.0.0. All the models are carried out on 8 NVIDIA
V100 GPUs, each of which has 32 GB memory. We
use the Adam optimizer with β1 = 0.9, β2 = 0.98.
We use an initial learning rate of 0.001 and use a
warm-up strategy during the training phase. We
use warm-up step = 4000. The max token is set
to 3500 tokens per GPU and we set the “update-
freq” parameter in Fairseq to 8. The value of the
parameter Dropout is set to 0.3, and the value of
Relu-Dropout is set to 0.1. We use the officially
required sacreBleu to calculate all our models.

4.2 Dataset

The statistics of all training data is shown in Ta-
ble 2. For each language pair, the bilingual data
is the combination of all parallel data released by
WMT22. For monolingual data, we select data
from News Crawl, Common Crawl and Extended
Common Crawl, and the amount of data after pro-
cessing is shown in Table 2.

For generating pseudo-data, we use all source
monolingual to generate forward translation data
and all target monolingual to generate back-
translation data. Finally we use the source side
of bilingual data to generate knowledge distillation
data. We use the methods described in Sec. 3.1 to
filter bilingual and monolingual data.

4.3 Pre-processing and Post-processing

Before model training, we pre-process the training
data uniformly and customize the processing ac-
cording to the requirements of each model. Chinese
sentences are segmented by Jieba 1, and English,
we use Moses 2 for segmentation, and Japanese, we
use Mecab 3. Punctuation normalization is applied
in Chinese, English and Japanese data. Truecasing
is also applied for all the languages. For all the lan-
guages, we use byte pair encoding (BPE) with 40K
operations to do subword segmentation (Sennrich
et al., 2016).

For the post-processing, we apply de-tokenizing
and de-trucaseing on the translation results with
the scripts provided in Moses. And we use punctu-
ation normalization for the Chinese and Japanese
translations.

1https://github.com/fxsjy/jieba
2http://www.statmt.org/moses/
3https://github.com/taku910/mecab
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Data En→Zh Zh→En En→Ja Ja→En
Bilingual Data 25M 25M 26M 26M

Source Mono Data 15M 15M 10M 10M
Target Mono Data 45M 45M 20M 20M

Table 2: Statistics of all training data

System En→Zh Zh→En En→Ja Ja→En
Baseline 45.0 31.0 38.5 23.2

+Back Translation 46.5 33.6 39.5 27.9
+Knowledge Distillation 47.0 34.7 - -

+Forward Translation 47.4 35.0 40.2 28.2
+OurIndomainFinetune 47.5 - - 28.9

+NormalEnsemble 48.0 35.7 40.3 28.3
+OurEnsemble 48.1 35.9 40.4 28.4

Table 3: Case-sensitive BLEU scores(%) on the four directions newstest2020. OurEnsemble method outper-
form the NormalEnsemble. OurIndomainFinetune prove to be effective through validation in the news
domain. The final submitted system is a OurEnsemble of all models which are finetuned in each domain using
OurIndomainFinetune.

BASELINE-MODEL En→Zh Zh→En En→Ja Ja→En
Transformer 44.0 30.5 37.7 22.3

Transformer# 44.3 30.7 37.9 22.6
Transformer-RPR# 44.6 31.0 38.0 22.8
Transformer-Coda# 45.2 31.1 38.1 22.8
Transformer-DLCL# 45.3 31.3 38.2 23.0
Transformer-ODE# 45.0 31.0 38.5 23.2

Table 4: Case-sensitive BLEU scores (%) on the four translation directions newstest2020 for different architecture
in the baseline stage. The model with # indicates that the initialized strategy is ADMIN.

BASELINE-MODEL En→Zh Zh→En En→Ja Ja→En
Transformer# 44.3 30.7 37.9 22.6

Transformer-SourceAug# 44.8 31.1 38.2 23.0
Transformer-TargetAug# 44.6 30.6 37.9 22.5
Transformer-BothAug# 44.2 30.5 37.7 22.4

Table 5: Case-sensitive BLEU scores (%) on the four translation directions newstest2020 for different data aug-
mentation methods in the baseline stage.
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4.4 English→Chinese

The results of En→Zh on newstest2020 are shown
in Table 3. For the En→Zh task, there is a signif-
icant improvement in the valid set after adopting
our data filtering method. Our baseline score is
45.0. After applying large-scale Back-Translation,
we obtain +1.5 BLEU score on the baseline. We
further gain +0.5 BLEU score after applying knowl-
edge distillation and +0.4 BLEU from forward-
translation.

In preliminary experiments, we select all models
distilled from knowledge as our ensemble combi-
nations obtaining +0.6 BLEU score. On top of
that, We tried various combinations but couldn’t
get better results. After using our proposed ensem-
ble strategy, the BLEU score continue to improve
by 0.1, which saves a lot of manpower to select
models.

4.5 Chinese→English

The Zh→En task follows the same training proce-
dure as En→Zh. As shown in Table 3, we can ob-
serve that Back-Translation can improve 2.6 BLEU
from baseline. After this, knowledge distillation
brings a big improvement, which can increase the
BLEU scores from 33.6 to 34.7. Forward transla-
tion further boosts the BLEU score to 35.0. Like-
wise, our ensemble strategy saves a lot of man-
power while delivering a small BLEU boost, from
35.7 to 35.9.

4.6 English→Japanese

The results of En→Ja on newstest2020 are shown
in Table 3. The bilingual training data is 31M in
total, and we filter it down to 26M sentence pairs
through the filtering rules and models described
earlier. Because newstest2020 has detailed results
of each step as a reference, we regard the new-
stest2021 as the valid set and the newstest2020 as
the test set during training. The 26 million bilin-
gual training data brings the baseline model to 38.5
BLEU score on newstest2020.

For the back translation, our training data con-
sists of three parts: 1) 26 million bilingual target
data, 2) Japanese monolingual data, 3) Bilingual
augmented data. In addition to the 26 million
bilingual target sentences, we sample 20 million
Japanese monolingual data from the combination
of News Crawl and Common Crawl. Then we
used the JA-EN ensemble model to generate the
hypotheses as the pseudo data set via the Top-k,

Top-p and beam search strategy. We randomly ex-
tract 2 million from the bilingual data, and add
noise to the source sentences as described in Sec
3.2. We improve BLEU by 1.0 with the synthetic
back translation training data.

And then, we merge knowledge distillation and
forward translation together. We extract 26 million
bilingual source sentences and 10 million source
monolingual data, and generate pseudo data using
the ensemble model of the back translation models.
We also use 2 million noised data like used in back
translation. We improve the BLEU score from 39.5
to 40.2.

In the ensemble stage, we observe that both of
the normal ensemble and our ensemble strategy
have only a very slight improvement.

4.7 Japanese→English

The Ja→En task follows the same training proce-
dure as En→Ja. From Table 3, we can observe that
back translation can improve the BLEU score from
23.2 to 27.9. The knowledge distillation and for-
ward translation further improve 0.3 BLEU score.
In this task, we verify the effectiveness of our in-
domain fine tuning method in the News domain. It
is worth mentioning that out in-domain fine tuning
method brings 0.7 BLEU after forward-translation.
For the comparability of the experiment, we still
ensemble models which are on the base of forward-
translation. We observe that both ensemble meth-
ods make results worse.

5 Analysis

To verify the effectiveness of our approach, we con-
duct analytical experiments on model variants, data
augmentation methods, and ensemble strategies in
this section.

5.1 Effects of Model Architecture

We conduct several experiments to validate the ef-
fectiveness of Transformer (Vaswani et al., 2017)
variants we used in the baseline stage and list re-
sults in Table 4. Here we take the En→Zh and
En→Ja models as examples to conduct the exper-
iments. The results in the Zh→En direction are
similar to En→Zh, and the results for the Ja→En
direction are similar to En→Ja.

As shown in Table 4, Transformer-DLCL
achieves the best performance in En→Zh direction,
and Transformer-ODE achieves the best perfor-
mance in En→Ja direction. For Admin (Liu et al.,

315



2020b) initialization, Transformer#’s BLEU is 0.2
higher than Transformer in En→Zh and En→Ja di-
rections, so this verifies the effectiveness of Admin
initialization in deep models.

5.2 Effects of Data Augmentation
For data augmentation, we conduct several experi-
ments based on the Transformer# baseline model
in four directions. Specifically, we adopt three
methods detailed in Section 3.2:

* SourceAug Aug on the source text of the
sentence pair.

* TargetAug Aug on the target text of the
sentence pair.

* BothAug Aug on the source text and target
text of the sentence pair.

The experimental results are shown in Table 5.
Taking En→Zh direction as an example, the
SourceAug achieves a BLEU score of 44.8, Targe-
tAug achieves a BLEU score of 44.6, and BothAug
achieves 44.2. Results in other directions show the
same trend. Therefore, we operate on the source
text of sentence pairs in the data augmentation pro-
cess.

6 Conclusion

This paper summarizes the results of the shared
general MT task in the WMT 2022 produced
by the AISP-SJTU team. In this shared
task, we participated in four translation di-
rections: English→Chinese, Chinese→English,
English→Japanese and Japanese→English. We
investigate various novel Transformer based archi-
tectures to build MT systems. Our systems are
also built on several popular data augmentation
methods such as back-translation, knowledge distil-
lation, forward-translation and in-domain finetune.
In the future, we hope to explore more efficient
model architectures and data augmentation tech-
niques in MT systems. We hope that our practice
can facilitate research work and industrial applica-
tions.
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Abstract

This paper describes the NTT-Tohoku-
TokyoTech-RIKEN (NT5) team’s submission
system for the WMT’22 general translation
task. This year, we focused on the English-to-
Japanese and Japanese-to-English translation
tracks. Our submission system consists of an
ensemble of Transformer models with several
extensions. We also applied data augmentation
and selection techniques to obtain potentially
effective training data for training individual
Transformer models in the pre-training
and fine-tuning scheme. Additionally, we
report our trial of incorporating a reranking
module and the reevaluated results of several
techniques that have been recently developed
and published.

1 Introduction

This paper describes an overview of our submission
systems for participating in the WMT 2022 gen-
eral machine translation tasks. Our team, named
NT5, is comprised of individuals from four organi-
zations: NTT, Tohoku University, Tokyo Institute
of Technology, and RIKEN. This year, we focused
on bi-directional translation in a single language
pair: English-to-Japanese (En→Ja) and Japanese-
to-English (Ja→En) translation tracks.

Our submission system consists of an ensemble
of Transformer models (Vaswani et al., 2017) with
several recent extensions. We also applied data aug-
mentation and selection techniques to obtain poten-

∗: Equal contributions. Morishita trained the initial trans-
lation model and created a synthetic corpus. Morishita and
Kudo tuned the model’s hyper-parameters. Oka implemented
the relative positional embeddings. Chousa worked on the data
filtering and the reranking module. Kiyono and Takase imple-
mented the B2T connections and helped with the experiments.
Morishita and Oka implemented the in-domain data selection
methods for fine-tuning. Morishita, Kudo, and Suzuki devel-
oped an effective fine-tuning strategy. Morishita, Kudo, and
Suzuki trained the main translation models. Suzuki organized
the team. Everyone contributed to writing this paper.
†: Their current affiliation is LINE Corporation.
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Figure 1: System overview

tially effective training data for training individual
Transformer models in the pre-training/fine-tuning
scheme. The models were first trained with a large
but possibly noisy parallel corpus for pre-training
and then with a small but clean parallel corpus
for fine-tuning. Additionally, we report our trial
of incorporating a reranking module that rescores
the n-best lists based on source-to-target, target-to-
source, and masked language models.

The following section briefly provides an
overview of our entire system and each module
in more depth.

2 System Overview

Figure 1 shows an overview of our system. Our
submissions are for the constrained track, which
only uses parallel and monolingual data that are
provided by the WMT shared-task organizers.
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We selected Transformer models (Vaswani et al.,
2017) as our base translation model and chose a
two-step training strategy: pre-training and fine-
tuning schemes. We first constructed datasets for
the pre-training and fine-tuning.

The pre-training dataset must be as large as pos-
sible, even if the data are noisy (Bansal et al., 2022).
We first trained the Transformer models using only
the provided bitext datasets for both translation di-
rections: En→Ja and Ja→En. We refer to these
first trained models as initial models. We then gen-
erated synthetic datasets for both directions through
back-translation (Sennrich et al., 2016), i.e., trans-
lating target-side monolingual data using the initial
model in the reverse translation direction.

The fine-tuning dataset must be as clean as pos-
sible, even if it is relatively small. Indeed, in our
previous year’s submission (Kiyono et al., 2020),
we adapted the models to a news domain in the fine-
tuning phase and drastically improved the transla-
tion quality. However, this year’s task focused on
a general domain, i.e., a test set that consisted of
sentences from multiple domains. Thus, adapta-
tion by fine-tuning is much more challenging. We
tested and combined data selection methods based
on sentence embeddings and language models for
obtaining fine-tuning data. This process can be
viewed as selecting domain adaptation data.

By using these datasets, we pre-trained the Trans-
formers with pre-training configurations and fine-
tuned the pre-trained models with the fine-tuning
configurations described in Table 2. Finally, we
conducted an ensemble of fine-tuned models. A
notable characteristic of our system is that we com-
bined the Transformer models with heterogeneous
model configurations for the ensembling. Each
model configuration primarily differs in its depth
and width. Moreover, we applied recent advances
in the extensions of Transformer models, such as
bottom-to-top connection (Takase et al., 2022) and
relative position embedding (Shaw et al., 2018).

Our system also uses a reranking module. We
generated the ten best translation lists as reranking
candidates using an ensemble of Transformer mod-
els. Then we selected the best translations based on
the weighted sum of the likelihoods obtained from
the source-to-target and target-to-source translation
models and the masked language models.

Corpus w/o Filtering w/Filtering

JParaCrawl v3.0 25.7 M 25.0 M
WikiMatrix 3.89 M 3.64 M
JESC 2.80 M 2.57 M
Wiki Titles v3 757 K 327 K
KFTT 440 K 371 K
TED Talks 242 K 224 K
NewsCommentary v16 1.9 K 1.8 K

Table 1: Number of sentence pairs in bitext corpus

3 Dataset Construction

3.1 Provided Data

Bitext Corpus We used all the provided bitext
corpora: JParaCrawl v3.0, News Commentary v16,
Wiki Titles v3, WikiMatrix, Japanese-English Sub-
title Corpus (JESC), The Kyoto Free Translation
Task (KFTT) Corpus, and TED Talks. We filtered
out the potentially noisy pairs using the straight-
forward parallel corpus filtering methods, as de-
scribed in Section 3.2. Table 1 shows the size of
each dataset without/with filtering.

Monolingual Corpus We also used the follow-
ing provided monolingual data: News Crawl, News
Commentary, and Common Crawl. We back-
translated the monolingual sentences with a target-
to-source model trained only with the provided
parallel data, as described in Section 3.2, and used
them as synthetic data (Sennrich et al., 2016).

3.2 Building Pre-training Data

Synthetic Data Construction To augment the
training data, we constructed synthetic data by ap-
plying the initial translation model trained with
bitext to the monolingual data. As a preprocessing
step, we truecased1 both the bitext and monolin-
gual data. We then tokenized the data into sub-
words using the Sentencepiece tool (Kudo
and Richardson, 2018) with the unigram language
model option. We set the vocabulary size to 32,000
for the initial translation model, which is used for
creating synthetic data. For the final submission
model, we increased the vocabulary size to 64,000.
Our hypothesis argues that a bigger vocabulary is
crucial for completely exploiting large synthetic
data. In fact, this 64,000-vocabulary model outper-
formed the 32,000-vocabulary model in our prelim-
inary experiment.

1https://github.com/moses-smt/
mosesdecoder/blob/master/scripts/
recaser/truecase.perl
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Initial Translation Model

Subword Size 32,000
Architecture Transformer (big) with FFN

size of 4,096
Optimizer Adam (β1 = 0.9, β2 =

0.98, ϵ = 1× 10−8)
Learning Rate Schedule Inverse square root decay
Warmup Steps 4,000
Max Learning Rate 0.001
Dropout 0.3
Gradient Clip 1.0
Batch Size 1,280,000 tokens
Number of Updates 50,000 steps
Averaging Save a checkpoint every 200

steps and average the last
eight

Implementation fairseq (Ott et al., 2019)

Pre-training Configuration

Subword Size 64,000
Architecture (See Table 4)
Optimizer Adam (β1 = 0.9, β2 =

0.98, ϵ = 1× 10−8)
Learning Rate Schedule Inverse square root decay
Warmup Steps 4,000
Max Learning Rate 0.001
Dropout 0.1
Gradient Clip 0.1
Batch Size 1,024,000 tokens
Maximum Number of Updates 100,000 steps
Averaging Save a checkpoint every

2,000 steps and average the
last ten

Implementation fairseq (Ott et al., 2019)

Fine-tuning Configuration

Subword Size Identical to Pre-training
Configuration

Architecture (See Table 4)
Optimizer Adam (β1 = 0.9, β2 =

0.98, ϵ = 1× 10−8)
Learning Rate Schedule Fixed
Warmup Steps N/A
Max Learning Rate 0.00001
Dropout 0.2
Gradient Clip 1.0
Batch Size 14,400 tokens
Number of Updates Tuned for each model (See

Secsion 4.3)
Averaging Save a checkpoint every ten

steps and average the last
ten

Implementation fairseq (Ott et al., 2019)

Table 2: List of hyper-parameters: We used initial trans-
lation model for creating synthetic data, pre-training
configuration to construct pre-training models described
in Section 4.2, and fine-tuning configuration to construct
models for submission. We used several different model
configurations for ensembling. See Table 4 for more
details.

As the initial translation data, we trained the
Transformer-big model defined in the original
Transformer paper (Vaswani et al., 2017) for

#sent. pairs #subwords (JA) #subwords (EN)

En→Ja 579 M 11.6 B 13.1 B
Ja→En 724 M 15.5 B 16.7 B

Table 3: Statistics of synthetic data used for pre-training

both language directions (English-to-Japanese and
Japanese-to-English translations) only with the pro-
vided bitext data. The detailed hyper-parameters
are described in the initial translation model section
of Table 2. Finally, we respectively translated 1.4B
and 1.2B monolingual sentences for English and
Japanese.

Data Cleaning For both the provided bitext and
synthetic data, we carried out cleaning based on
a combination of sentence embeddings and hand-
crafted rules.

For both the bitext and synthetic data, we re-
moved the too-long sentences whose length ex-
ceeded 500 characters. We also removed the sen-
tences that were identified as not being written in
English or Japanese with the langid2 toolkit.

For the synthetic data, we further applied a sen-
tence embedding-based filtering approach. We took
advantage of LaBSE (Feng et al., 2022) to embed
the Japanese and English sentences into the same
embedding space. We then scored and ranked the
parallel sentence pairs based on the cosine similar-
ity of their sentence embeddings. Subsequently, we
filtered out the following items from the synthetic
data:

• duplicated sentence pairs
• sentences over 150 words3 or single words with

over 40 characters
• sentences whose ratio between word and charac-

ter count is greater than 12
• sentences that contain invalid Unicode characters
• sentence pairs whose source/target word ratio

exceeds 4
• sentence pairs whose source/target length ratio

exceeds 6
• sentence pairs whose source and target sentences

are identical
• sentence pairs whose cosine similarity is greater

than 0.964

2https://github.com/saffsd/langid.py
3We tokenized the Japanese sentences by MeCab (Kudo,

2006) with the IPA dictionary. Note that this tokenization is
for cleaning purpose only.

4We found that sentence pairs with high cosine similarities
might be noisy; for example, the source and target sentences

320



Finally, we respectively selected approximately
the top 579 M and 724 M sentences from the trans-
lated 1.2B and 1.4B monolingual sentences as the
synthetic data of En→Ja and Ja→En in the rank
orders. Table 3 shows the statistics of synthetic
data used for our pre-training.

3.3 Building Fine-tuning Data
As for the fine-tuning data, we prepared two types
of data: news and general. The news data consist
of the dev and test sets of the WMT’20 news trans-
lation task, which has 3,991 sentences. General
data were created by selecting parallel sentences
in the target domain. We used the n-gram lan-
guage model-based method proposed by Moore
and Lewis (2010) and selected the top 20,000
scored sentences from the synthetic corpus. We
also used sentence embeddings to select the gen-
eral domain data. We used an unsupervised Sim-
SCE (Gao et al., 2021) as the English sentence
embedding and SentenceTransformers (Reimers
and Gurevych, 2019) as the Japanese sentence em-
bedding5. We searched for the nearest 4,000 sen-
tences to the target domain using faiss (Johnson
et al., 2019) and combined the sentences selected
by both the language model-based and sentence
embeddings. As a result, our general domain data
contained 24,000 sentences.

4 Primary Translation Module

4.1 Model Configuration
We trained several Transformer models for the
model ensembling in the decoding phase. We inde-
pendently trained models with different sizes due
to the restrictions on computational resources at
hand. We pre-trained and fine-tuned each model
with the configurations shown in Table 2. The de-
tails of the model configurations are summarized
in Table 4.

Our configuration has three notable character-
istics: a bottom-to-top (B2T) connection (Takase
et al., 2022), relative position embedding, and a
larger batch size.

B2T Connection Transformer architectures can
be categorized into two types based on the position
of the layer normalizations: Post-LN and Pre-LN.
Previous studies (Xiong et al., 2020; Liu et al.,
2020; Takase et al., 2022) indicated that training

are sometimes identical. Thus we removed them from the
training data.

5We used stsb-xlm-r-multilingual.

a deep Post-LN Transformer6 is unstable due to
the vanishing gradient problem. However, Takase
et al. (2022) argued that Post-LN Transformers out-
perform Pre-LN Transformers if their trainings are
successful. Thus, we want to exploit the advantage
of Post-LN Transformers. In addition, we want
to make our Transformers as deep (and wide) as
possible to make a full use of large synthetic data.

Several studies proposed techniques that stabi-
lize the trainings of Post-LN Transformers while
retaining their performance advantages (Liu et al.,
2020; Takase et al., 2022). In this study, we
used the B2T connection proposed by Takase et al.
(2022), which has an additional residual connection
from an input to an output in each layer. The B2T
connection is easy to implement and can be incor-
porated with a tiny amount of extra computational
cost.

Relative Position Embedding A Transformer
model was originally equipped with Absolute Po-
sition Embedding (APE) (Gehring et al., 2017)
for position representation. However, several re-
cent studies (Raffel et al., 2020; Narang et al.,
2021) report that Relative Position Embedding
(RPE) (Shaw et al., 2018) outperforms APE, es-
pecially for sentences whose lengths are unseen
during the training (Kiyono et al., 2021). Thus, for
the Transformer encoder, we replaced APE with
RPE. Following Shaw et al. (2018), we set clipping
distance k to 16.

Larger Batch Size Ott et al. (2019) demon-
strated that a large batch size improves perfor-
mance. The recent development of large language
models also indicates this tendency (Hoffmann
et al., 2022). Given this knowledge, we followed
the setting of T5 (Raffel et al., 2020) and selected
a token batch size of approximately 1M. Note that
this is much larger than the batch size used by Ott
et al. (2019).

4.2 Pre-training
We trained each model described in Table 4 with
the filtered bitext and synthetic data described in
Section 3.2. We set the maximum number of up-
dates to 100,000 and used early stopping based
on the validation set performance. In this phase,
we used the Pre-training configuration of Table 2.
Since the synthetic data is extremely larger than the

6When we used the dimension sizes described in Table 4,
the trainings of nine or more layers of Post-LN Transformers
diverged.
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Configuration #Models #Params. Encoder Decoder

Layer dmodel dffn Attention Heads Layer dmodel dffn Attention Heads

NTT-Base 2 547M 9 1024 8192 16 9 1024 8192 16
ABCI-Base 2 622M 9 1024 16384 16 9 1024 4096 16

ABCI-EncBig 1 2.0B 12 1024 65536 16 9 1024 8192 16
ABCI-EncDeep 1 736M 18 1024 8192 16 9 1024 8192 16
Failab-EncBig 1 1.7B 9 1024 61440 16 9 1024 16384 16
Failab-DecBig 1 1.7B 9 1024 16384 16 9 1024 61440 16

Table 4: List of model configurations used in final system: dmodel and dffn respectively denote sizes of embedding
and feedforward layers. In En→Ja, Failab-EncBig and Failab-DecBig did not fit in the GPU memory.
Therefore, we set dffn to 58368 instead of 61440, which is the largest value that successfully worked.

bitext, we upsampled the bitext until it reaches to a
1:1 ratio to the synthetic data. In addition, we used
the tagged back-translation technique (Caswell
et al., 2019). In detail, we attached a special to-
ken ⟨BT⟩ to the beginning of source sentences in
synthetic data.

To improve the performance, we tried using
several perturbation methods described in Takase
and Kiyono (2021) in this training phase. How-
ever, they did not positively affect the performance.
Since the number of sentences in our training data
is far greater than in their study, regularization by
perturbations might be ineffective.

4.3 Fine-tuning

We fine-tuned the pre-trained translation models
with the fine-tuning dataset described in Section 3.3
and used the configurations described in Table 2.
We set the maximum number of updates to 600, and
used early-stopping according to the performance
on the test data of WMT’21 (wmt21test).

4.4 Ensemble

We ensembled the fine-tuned models described in
Table 47. How we ensembled the Transformer mod-
els trained in different model configurations is an-
other unique characteristic of our system compared
with the standard configurations used in the WMT
submission systems.

5 Post-processing

5.1 Reranking

We tried to apply a reranking method to select the
most likely candidate from a set of candidates and
input. We scored the candidate with several models
and unified these scores with Minimum Error Rate

7We trained two models with both the NTT-base and
ABCI-base configurations with different random seeds.

Training (MERT) (Och, 2003), which is often used
in Statistical Machine Translation (SMT).

Suppose we have set of candidate output sen-
tences Ci for each source sentence si, where i ∈
{1, . . . , I}. In our case, we generated n-best candi-
dates using the submission model with the beam-
search algorithm.

Hereafter, Pj(si, e) ∈ [0, 1] denotes candidate
score e ∈ Ci for i-th input si from the j-th model,
where j ∈ {1, . . . , J}, and w = (w1, . . . , wj)
denotes the vector representation of the model
weights. Given weights w, the most likely can-
didate êwi from Ci is obtained by maximizing the
weighted sum of Pj :

êwi = argmax
e∈Ci





J∑

j=1

wjPj(si, e)



 . (1)

Finally, we explored ŵ for the parameter esti-
mation of w by solving the following optimization
problem:

ŵ = argmax
w∈[0,1]J

{
corpus_bleu(Êw)

}
, (2)

where Êw =
(
êiw
)I
i=1

.
For the candidate’s score, we used the following

models to compute Pj(si, e).

L2R Forward and Backward Translation Mod-
els The left-to-right (L2R) forward and backward
translation models are identical as those used for
the candidate generation of En→Ja and Ja→En.
For each direction, we trained two models with two
different training data; these four models computed
the score by force-decoding a candidate from their
input.

R2L Forward and Backward Translation Mod-
els The right-to-left (R2L) forward and backward
translation models generate a translation in reverse
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ID Model En→Ja Ja→En

wmt20dev wmt21test wmt22test wmt20dev wmt21test wmt22test

(a) NTT-Base (bitext only) 22.5 - - 22.7 - -

(b) NTT-Base (Seed#1) 23.9 25.6 - 24.1 21.5 -
(c) NTT-Base (Seed#2) 23.7 25.5 - 24.0 21.5 -
(d) ABCI-Base (Seed#1) 25.4 27.6 - 25.5 23.4 -
(e) ABCI-Base (Seed#2) 26.0 28.3 - 25.5 23.2 -
(f) ABCI-EncBig 24.7 26.7 - 25.5 22.6 -
(g) ABCI-EncDeep 24.8 26.5 - 25.3 22.8 -
(h) Failab-EncBig 24.6 26.3 - 23.7 20.4 -
(i) Failab-DecBig 23.5 25.4 - 23.0 20.9 -

(j) (b), finetuned on news - 28.6 26.3 - 25.6 24.9
(c), finetuned on news - 29.0 26.2 - 26.0 25.1
(d), finetuned on news - 28.9 26.6 - 25.8 25.4
(e), finetuned on news - 28.5 26.6 - 25.8 25.0
(f), finetuned on news - 29.4 26.5 - 27.0 25.5
(g), finetuned on news - 28.8 26.7 - 26.4 25.6
(h), finetuned on news - 29.2 26.7 - 25.6 25.2
(i), finetuned on news - 28.6 26.4 - 25.9 25.1

(k) (b), finetuned on news+general - 27.8 25.4 - 24.9 23.9
(c), finetuned on news+general - 28.0 24.8 - 24.5 23.8
(d), finetuned on news+general - 28.4 25.3 - 25.0 24.7
(e), finetuned on news+general - 28.0 25.3 - 24.9 24.6
(f), finetuned on news+general - 28.0 25.0 - 25.8 24.8
(g), finetuned on news+general - 28.5 25.6 - 25.3 24.5
(h), finetuned on news+general - 28.6 25.1 - 25.2 24.2
(i), finetuned on news+general - 27.9 24.7 - 25.1 23.9

(l) Ensemble of (j) - 30.6 27.6 - 27.8 26.6
(m) Ensemble of (k) - 29.6 25.8 - 26.8 25.4
(n) Ensemble of (l) and (m) - 30.6 27.2 - 27.9 26.6

(o) (n) + reranking - - 25.7 - - 25.0

Table 5: Performance comparison of models trained for submission: Models (b)-(i) are pre-trained models (details
in Section 4.2). Models (j)-(o) do not contain wmt20dev result because the dataset is in news fine-tuning dataset.
We chose model (l) for the final submission. Note that the wmt22test results were computed as the post-evaluation
after the wmt22 test data was released.

word order. We trained the model of both directions
with all the provided bitext datasets and computed
the scores with the same procedure as was used for
the L2R models.

Masked Language Models We also used the
masked language models to compute the likelihood
of the decoded target sentences. Specifically, we
used the pre-trained models of DeBERTa (He et al.,
2021)8 for English and RoBERTa (Liu et al., 2019)9

for Japanese. To score the candidate, we adopted
pseudo-log-likelihood scores (PLLs), computed by
masking tokens one by one, as proposed by Salazar
et al. (2020) Finally, we normalized the PLLs by
dividing them by token length.

8https://huggingface.co/microsoft/
deberta-v2-xxlarge

9https://huggingface.co/nlp-waseda/
roberta-large-japanese-seq512

5.2 Rule-base Formatting

We also applied language-specific post-processing.

Ja→En We detokenized and detruecased the sen-
tences and removed all the unknown tokens from
the outputs. Since some placeholders were tok-
enized into two or more tokens, we fixed them to a
single token.

En→Ja We removed the spaces in the English
proper nouns of two characters or fewer, the spaces
before and after such special symbols as "/", "-" or
"#PRS/ORG#". We replaced English style commas
"," and periods "." with the Japanese styles: "，"
and "。".

6 Results

Table 5 shows the performance of both the interme-
diate models and the final model for our submis-
sion. Our result highlights the effectiveness of the
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techniques incorporated in our system.

Effectivenss of Fine-tuning Data We expected
model (m), which was fine-tuned on the general
domain, to achieve the best result. However, the
model (l), which was fine-tuned on the news do-
main, achieved the higher BLEU score on both
wmt21test and wmt22test. We suspect this is be-
cause the data used for the news fine-tuning are
cleaner than those of the general domain. Since
the fine-tuning data for the news domain consists
of the previous years’ dev/test sets that were trans-
lated by professionals, the news domain data are
clean while the general domain data were chosen
mainly from synthetic data. We will analyze the
relationship between the translation accuracy and
the cleanliness of the fine-tuned data in the future.

Negative Result on Reranking In Table 5, the
performance of model (n) and (o) demonstrate that
the reranking technique (Section 5.1) did not im-
prove the performance over the ensemble models
on wmt22test. We suspect that this performance
degradation comes from the domain difference be-
tween the datasets used for MERT and the eval-
uation. For MERT, We used wmt21test, whose
domain is news, to optimize the model weights;
however, this year’s test set, wmt22test, contains
sentences from multiple domains. Thus, we chose
model (l), which is the model without reranking,
for our final submission.

7 Conclusion

We described the submission of our joint team
(NTT, Tohoku, TokyoTech, and RIKEN) to the
WMT’22 general translation task. We participated
in the En↔Ja translation. Our system mainly con-
sists of an ensemble of Transformer models with
several recent extensions. We also applied data
augmentation and selection techniques to train indi-
vidual Transformer models in our pre-training/fine-
tuning training scheme.
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Abstract

This paper presents Adam Mickiewicz Univer-
sity’s (AMU) submissions to the constrained
track of the WMT 2022 General MT Task. We
participated in the Ukrainian ↔ Czech trans-
lation directions. The systems are a weighted
ensemble of four models based on the Trans-
former (big) architecture. The models use
source factors to utilize the information about
named entities present in the input. Each of
the models in the ensemble was trained using
only the data provided by the shared task or-
ganizers. A noisy back-translation technique
was used to augment the training corpora. One
of the models in the ensemble is a document-
level model, trained on parallel and synthetic
longer sequences. During the sentence-level
decoding process, the ensemble generated the
n-best list. The n-best list was merged with the
n-best list generated by a single document-level
model which translated multiple sentences at a
time. Finally, existing quality estimation mod-
els and minimum Bayes risk decoding were
used to rerank the n-best list so that the best hy-
pothesis was chosen according to the COMET
evaluation metric. According to the automatic
evaluation results, our systems rank first in both
translation directions.

1 Introduction

We describe Adam Mickiewicz University’s sub-
missions to the constrained track of the WMT 2022
General MT Task. We participated in the Ukrainian
↔ Czech translation directions – a low-resource
translation scenario between closely related lan-
guages.

The data provided by the shared task organizers
was thoroughly cleaned and filtered, as described
in section 2.

The approach described in section 3 is based
on combining various MT enhancement methods,

*AN and GP contributed equally.
†KG and MP contributed equally.

including transfer learning from a high-resource
language pair (Aji et al., 2020; Zoph et al., 2016),
noisy back-translation (Edunov et al., 2018), NER-
assisted translation (Modrzejewski et al., 2020),
document-level translation, model ensembling,
quality-aware decoding (Fernandes et al., 2022),
and on-the-fly domain adaptation (Farajian et al.,
2017).

The results leading to the final submissions are
presented in section 4. Additionally, we performed
a statistical significance test with paired bootstrap
resampling (Koehn, 2004), comparing the baseline
solution with the final submission on the test set
reference translations released by the shared task
organizers. According to the automatic evaluation
results based on COMET (Rei et al., 2020) scores,
our systems rank first in both translation directions.

2 Data

In the initial stage of system preparation, the
sentence-level data was cleaned and filtered us-
ing the OpusFilter (Aulamo et al., 2020) toolkit.
With the use of the toolkit, language detection
filtering based on fastText (Joulin et al., 2016)
was performed, duplicates were removed, and
heuristics based on sentence length were applied.
In particular, we removed sentence pairs with a
length ratio over 3 and long sentences (> 200
words). Then, using Moses (Koehn et al., 2007)
pre-processing scripts, punctuation was normalized
and non-printing characters removed. Finally, the
text was tokenized into subword units using Senten-
cePiece (Kudo and Richardson, 2018) with the uni-
gram language model algorithm (Kudo, 2018). For
Ukrainian→Czech and Czech→Ukrainian models
trained from scratch, we used separate vocabular-
ies for the source and the target language. Each
vocabulary consisted of 32,000 units.

We used concatenated data from the Flores-
101 (Goyal et al., 2022) benchmark (flores101-dev,
flores101-devtest) for our development set, as pro-
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Data type Sentences Corpora

Monolingual cs
available 448,528,116 News crawl, Europarl v10, News Commentary, Common

Crawl, Extended Common Crawl, Leipzig Corporaused 59,999,553

Monolingual uk
available 70,526,415 News crawl, UberText Corpus, Leipzig Corpora, Legal

Ukrainianused 59,152,329

Parallel cs-uk
available 12,630,806

OPUS, WikiMatrix, ELRC – EU acts in Ukrainian
used 8,623,440

Table 1: Statistics of the total available corpora and the corpora used for system training after filtering.

vided by the task organizers.
Table 1 shows statistics for the total available

corpora in the constrained track and the corpora
used for system training after filtering.

3 Approach

We used the Marian (Junczys-Dowmunt et al.,
2018) toolkit for all of our experiments. Our
model architecture follows the Transformer
(big) (Vaswani et al., 2017) settings. For all model
training, we used 4x NVIDIA A100 80GB GPUs.

3.1 Transfer Learning

For our initial experiments, we used transfer learn-
ing (Aji et al., 2020; Zoph et al., 2016) from the
high-resource Czech→English language pair. We
used only the parallel data provided by the or-
ganizers to train the model in this direction. In
this case, we created a single joint vocabulary
for three languages (Czech, English, Ukrainian),
consisting of 32,000 units. The Czech→English
model was fine-tuned for the Ukrainian→Czech
and Czech→Ukrainian language directions. Our
later experiments showed that there were no gains
in translation quality compared with models trained
from scratch using separate vocabularies for source
and target languages – the upside was that the mod-
els took less time to converge during training.

3.2 Noisy Back-Translation

We used models created by the transfer learn-
ing approach to produce synthetic training data
through noisy back-translation (Edunov et al.,
2018). Specifically, we applied Gumbel noise to
the output layer and sampled from the full model
distribution. We used monolingual data available
in the constrained track, which included all ~59M
Ukrainian sentences after filtering and ~60M ran-
domly selected Czech sentences.

After training the model with concatenated par-
allel and back-translated corpora, we replaced the

training data with filtered parallel data and further
fine-tuned the model. We kept the same settings as
in the first training pass, training the model until it
converged on the development set.

3.3 NER-Assisted Translation

Translation in domains such as news, social or
conversational texts, and e-commerce is a special-
ized task, involving such challenges as localization,
product names, and mentions of people or events in
the content of documents. In such a case, it proved
helpful to use off-the-shelf solutions for recogniz-
ing named entities. For Czech, the Slavic BERT
model (Arkhipov et al., 2019) was used, with which
entities such as persons (PER), locations (LOC),
organizations (ORG), products (PRO), and events
(EVT) were tagged. Due to the lack of support
for the Ukrainian language in the Slavic BERT
model, the Stanza Named Entity Recognition mod-
ule (Qi et al., 2020) was used to detect entities
in the Ukrainian text, recognizing persons (PER),
locations (LOC), organizations (ORG), and mis-
cellaneous items (MISC). With these ready-made
solutions, the parallel and back-translated corpora
were tagged. The named entity categories were
then numbered to assign appropriate source factors
to words in the text, supporting the translation pro-
cess. The source factors were later transferred to
subwords in a trivial way.

Source factors (Sennrich and Haddow, 2016)
have previously been used to take into account var-
ious characteristics of words during the translation
process. For example, morphological information,
part-of-speech tags, and syntactic dependencies
have been added as input to neural machine trans-
lation systems to improve the translation quality.

In the same way, it is possible to add informa-
tion about named entities found in the text (Mod-
rzejewski et al., 2020), making it easier for the
model to translate them correctly. However, the
AMU machine translation system does not dis-
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Hlavní|p0 inspektor|p0 organizace|p0 RSPCA|p3 pro|p0 Nový|p2 Jižní|p2 Wales|p2
David|p1 O'Shannessy|p1 televizi|p0 ABC|p5 sdělil|p0 ,|p0 že|p0 dohled|p0 nad|p0
jatky|p0 a|p0 jejich|p0 kontroly|p0 by|p0 měly|p0 být|p0 v|p0 Austrálii|p2
samozřejmostí|p0 .|p0

_Hlavní|p0 _inspektor|p0 _organizace|p0 _R|p3 SP|p3 CA|p3 _pro|p0 _Nový|p2 _Jižní|p2
_Wales|p2 _David|p1 _O|p1 '|p1 S|p1 han|p1 ness|p1 y|p1 _televizi|p0 _A|p5 BC|p5
_sdělil|p0 ,|p0 _že|p0 _dohled|p0 _nad|p0 _ja|p0 tky|p0 _a|p0 _jejich|p0 _kontroly|p0
_by|p0 _měly|p0 _být|p0 _v|p0 _Austrálii|p2 _samozřejmost|p0 í|p0 .|p0

Figure 1: An example of a sentence tagged with NER source factors before and after subword encoding.

cs uk
Category train-bt train-parallel dev test train-bt train-parallel dev test
PER 33,633,602 1,545,658 747 306 30,778,893 1,623,370 827 478
LOC 24,552,404 1,954,319 1,191 454 18,178,736 1,912,604 1,197 771
ORG 29,380,436 1,997,685 566 314 24,117,485 2,221,371 544 606
MISC - - - - 4,140,394 893,867 168 76
PRO 5,452,326 1,104,860 172 59 - - - -
EVT 1,150,301 111,563 83 10 - - - -

Table 2: The number of recognized named entity categories in the training, development and test data. The training
data statistics are split into train-bt, which was created by noisy back-translation, and train-parallel, which is the
filtered parallel training data.

tinguish between inside-outside-beginning (IOB)
tags (Ramshaw and Marcus, 1995), treating the
named entity tag names as a whole. Specifically,
we introduce the following source factors:

• p0: source factor denoting a normal token,

• p1: source factor denoting the PER category,

• p2: source factor denoting the LOC category,

• p3: source factor denoting the ORG category,

• p4: source factor denoting the MISC category,

• p5: source factor denoting the PRO category,

• p6: source factor denoting the EVT category.

An example of a tagged sentence is shown in
Figure 1.

Models were trained in two settings: concatena-
tion and sum. In the first setting, the factor embed-
ding had a size of 16 and was concatenated with
the token embedding. In the second setting, the
factor embedding was equal to the size of the token
embedding (1024) and was summed with it.

As shown in Table 4, we observe an increase
in the string-based evaluation metrics (chrF and
BLEU) while COMET scores remain about the

same. This is in accordance with Amrhein and
Sennrich (2022), who show that COMET models
are not sufficiently sensitive to discrepancies in
named entities.

Table 2 presents the numbers of recognized
named entity categories in the training, develop-
ment and test data.

3.4 Document-Level Translation

Our work on document-level translation is based
on a simple data concatenation method, similar
to Junczys-Dowmunt (2019) and Scherrer et al.
(2019).

As our training data, we use parallel document-
level datasets (GNOME, KDE4, TED2020, QED),
as well as synthetically created data, concatenat-
ing random sentences to match the desired input
length. Specifically, we merge datasets created in
the following ways as a single, large dataset:

• Curr→ Curr: sentence-level parallel data,

• Prev + Curr→ Prev + Curr: previous sentence
given as a context,

• 50T→ 50T: a fixed window of 50 tokens after
subword encoding,
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Netvrdím, že bakteriální celulóza jednou nahradí bavlnu, kůži, nebo jiné látky.
<SEP> Ale myslím, že by to mohl být chytrý a udržitelný přírůstek k našim stále
vzácnějším přírodním zdrojům. <SEP> Možná že se nakonec tyto bakterie neuplatní
v módě, ale jinde. <SEP> Zkuste si třeba představit, že si vypěstujeme lampu,
židli, auto, nebo třeba dům. <SEP> Má otázka tedy zní: Co byste si v budoucnu
nejraději vypěstovali vy?

Figure 2: An example document consisting of five sentences separated with <SEP> tags.

• 100T→ 100T: a fixed window of 100 tokens
after subword encoding,

• 250T→ 250T: a fixed window of 250 tokens
after subword encoding,

• 500T→ 500T: a fixed window of 500 tokens
after subword encoding.

By concatenating such datasets, we allow the
model to gradually learn how to translate longer
input sequences. It is also capable of sentence-
level translation. To separate sentences from each
other, we introduced a <SEP> tag. An example of
a document-level input sequence is shown in Fig-
ure 2. All data used to train the document-level
model were tagged with NER source factors, in-
cluding the back-translated data.

3.5 Weighted Ensemble

We created a weighted ensemble of four best-
performing models. It consisted of the following
model types:

• (A) sentence-level models trained with NER
source factors (concat 16),

• (B) sentence-level model trained with NER
source factors (sum),

• (C) document-level model trained with NER
source factors (concat 16).

In this case, the document-level model was used
only for the sentence-level translation. The optimal
weights for each model were selected using a grid
search method. For the specific language pairs, we
used the following model and weight combinations:

• Czech→ Ukrainian: 1.0 · (2×A) + 0.8 · (B) +
0.6 · (C),

• Ukrainian→ Czech: 1.0 · (2×A) + 0.8 · (B) +
0.4 · (C).

3.6 Quality-Aware Decoding

Having the final model ensemble, we created an
n-best list containing 200 translations for each sen-
tence with beam search. Then we merged it with
a second n-best list containing 50 translations for
each sentence, created by a single document-level
model with document-level decoding. The idea
behind it was that the hypotheses produced by the
document-level decoding take into account the con-
text of surrounding sentences, which is not the case
with the ensemble. This enabled the use of quality-
aware decoding (Fernandes et al., 2022).

We applied a two-stage quality-aware decod-
ing mechanism: pruning hypotheses using a tuned
reranker (T-RR) and minimum Bayes risk (MBR)
decoding (Kumar and Byrne, 2002, 2004), as
shown in Figure 3.

Figure 3: A two-stage (T-RR→ MBR) quality-aware
decoding process. 200 hypotheses generated by the
ensemble are merged with 50 hypotheses generated by
the document-level model. A tuned reranker is used to
prune the total number of hypotheses to 50, and these are
then used as input for minimum Bayes risk decoding.

First, we tuned a reranker on the development
set, using as features NMT model scores, as well as
existing QE models based on TransQuest (Ranas-
inghe et al., 2020) and COMET (Rei et al., 2020),
which are based on Direct Assessment (DA) (Gra-
ham et al., 2013) scores or MQM (Lommel et al.,
2014) scores. Specifically, we used:

• model ensemble log-likelihood log pθ(y|x)
scores,
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• TransQuest QE model trained on DA scores
(monotransquest-da-multilingual),

• COMET QE model trained on MQM scores
(wmt21-comet-qe-mqm),

• COMET QE model trained on DA scores
(wmt21-comet-qe-da).

We tuned the feature weights to maximize the
COMET reference-based evaluation metric value
using MERT (Och, 2003).

After tuning the reranker, we used it to prune
the n-best list from 250 to 50 hypotheses per input
sentence. The resulting n-best list was used for
minimum Bayes risk decoding, using the COMET
reference-based metric as the utility function. Mini-
mum Bayes risk decoding seeks, from the set of hy-
potheses, the hypothesis with the highest expected
utility.

ŷMBR = argmax
y∈Ȳ

EY∼pθ(y|x)[u(Y, y)]︸ ︷︷ ︸
≈ 1

M

∑M
j=1 u(y

(j), y)

(1)

Equation 1 shows that the expectation can be ap-
proximated as a Monte Carlo sum using model
samples y(1), . . . , y(M) ∼ pθ(y|x). In practice, the
translation with the highest expected utility can be
chosen by comparing each hypothesis y ∈ Ȳ with
all other hypotheses in the set.

The described two-stage quality-aware decoding
process allowed us to further optimize our system
for the COMET evaluation metric, which has been
shown to have a high correlation with human judge-
ments (Kocmi et al., 2021).

3.7 Post-Processing
The final step involved post-processing. We applied
the following post-processing steps for each best
obtained translation:

• transfer of emojis from the source to the trans-
lation using word alignment based on SimA-
lign (Jalili Sabet et al., 2020),

• restoration of quotation marks appropriate for
a given language,

• restoration of capitalization (e.g. if the source
sentence was fully uppercased),

• restoration of punctuation, exclamation and
question marks (if a source sentence ends with

such a mark, we make the translation do like-
wise),

• replacement of three consecutive dots with an
ellipsis,

• restoration of bullet points and enumeration
(e.g. if the source sentence starts with a num-
ber or a bullet point),

• deletion of consecutively repeated words.

Approach Sim. score COMET chrF
Baseline - 0.8322 0.5263
Default 0.4 0.8316 0.5260
Best-334 0.19 0.8322 0.5259
Best-133 0.25 0.8323 0.5262

Table 3: Results of the on-the-fly adaptation method
on the development set. The default approach is based
on Farajian et al. (2017). However, only 11 sentence
pairs were found in this scenario. The experiments
denoted as best-334 and best-133 used the learning rate
values of 0.002 and 10 epochs. In our development set
containing 2009 sentence pairs, 334 matching sentences
were found in best-334 and 133 in best-133.

3.8 On-The-Fly Domain Adaptation

The General MT Task tests the MT system’s per-
formance on multiple domains. Therefore, we in-
vestigated the possibility of improving our transla-
tion system with the on-the-fly domain adaptation
method.

This experiment was based on Farajian et al.
(2017). Our idea was to retrieve similar sentences
from the training data for each input sentence and
to fine-tune the model on their translations. Af-
ter the translation of a single sentence is complete,
the model is reset to the original parameters. We
used Apache Lucene (McCandless et al., 2010) as
our translation memory to search for similar sen-
tences. We indexed all of the training data and
used the Marian dynamic adaptation feature. We
compared the translation quality with and without
the retrieved context. The experiments were car-
ried out with a different similarity score used to
choose similar sentence pairs for the fine-tuning
process. We empirically modified the learning rate
and the number of epochs to find optimal values
that improved the translation quality.

Table 3 shows the results of the aforementioned
experiments on the full development set. We found
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System uk→cs cs→uk
COMET chrF BLEU COMET chrF BLEU

Baseline (transformer-big) 0.8622 0.5229 24.29 0.7818 0.5175 22.64
+back-translation 0.9053 0.5309 25.41 0.8356 0.5280 23.14

+ner
concat 16 0.9003 0.5314 25.62 0.8362 0.5309 24.28
sum 0.8991 0.5323 25.87 0.8421 0.5302 23.91

+fine-tune
concat 16 0.9021 0.5344 25.94 0.8387 0.5330 24.51
sum 0.8990 0.5357 25.99 0.8456 0.5321 24.24

+ensemble 0.9066 0.5376 26.36 0.8522 0.5373 24.85
+quality-aware 0.9874 0.5376 25.42 0.9238 0.5384 24.50
+post-processing 0.9883 0.5392 25.89 0.9240 0.5388 24.63

Document-level
sent-level dec. 0.8942 0.5326 25.47 0.8350 0.5289 23.92
doc-level dec. 0.8920 0.5324 25.44 0.8356 0.5297 23.78

Table 4: Results of COMET, chrF and BLEU automatic evaluation metrics on the concatenated datasets flores101-
dev and flores-101-devtest. ChrF and BLEU metrics were computed with sacreBLEU. Document-level model
evaluation includes added back-translation, NER source factors (concat 16) and fine-tuning.

System uk→cs cs→uk
COMET chrF BLEU COMET chrF BLEU

Baseline (transformer-big) 0.8315 0.5627 31.79 0.8008 0.5849 31.43
Final submission 1.0488 0.6066 37.03 0.9944 0.6153 34.74

Table 5: Results of COMET, chrF and BLEU automatic evaluation metrics on the test set. ChrF and BLEU metrics
were computed with sacreBLEU. The final submission results are statistically significant (p < 0.05).

that only a small number of sentences in the train-
ing data were similar to those present in the de-
velopment set. The results showed that tuning the
model on similar sentences from the training data
did not significantly improve translation quality. In
the end, we decided not to use this method in our
WMT 2022 submission.

4 Results

The results of our experiments are presented in
Table 4. We evaluated our models with the
COMET1 (Rei et al., 2020), chrF (Popović, 2015)
and BLEU (Papineni et al., 2002) automatic evalu-
ation metrics. ChrF and BLEU scores were com-
puted with the sacreBLEU23 (Post, 2018) tool. We
also include scores for the document-level model.
In this case, the scores include improvements added
by back-translation, NER source factors and fine-
tuning. The document-level evaluation was split
into sentence-level decoding and document-level
decoding. In the first scenario, the model translates

1COMET scores were computed with the
wmt20-comet-da model.

2BLEU signature: nrefs:1|case:mixed|eff:no|tok:13a
|smooth:exp|version:2.0.0

3chrF signature: nrefs:1|case:mixed|eff:yes|nc:6|nw:0
|space:no|version:2.0.0

a single sentence at a time, which is not different
from a sentence-level model. In the second sce-
nario, the model translates concatenated chunks of
at most 250 subword tokens at a time.

We found that the largest gain in the COMET
value was achieved due to the quality-aware decod-
ing method, at the cost of BLEU value. The chrF
value remained the same in the Ukrainian→Czech
translation direction, while it increased slightly in
the Czech→Ukrainian direction. As discussed in
section 3.3, the inclusion of NER source factors
helped the model with the translation of named en-
tities, which is not well reflected in the COMET
value, as this metric is not sufficiently sensitive
to discrepancies in named entities (Amrhein and
Sennrich, 2022).

Table 5 shows results for our final submissions
compared with the baseline. We performed a sta-
tistical significance test with paired bootstrap re-
sampling (Koehn, 2004), running 1000 resampling
trials to confirm that our submissions are statisti-
cally significant (p < 0.05).

5 Conclusions

We describe Adam Mickiewicz University’s
(AMU) submissions to the WMT 2022 General
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MT Task in the Ukrainian↔ Czech translation di-
rections. Our experiments cover a range of MT
enhancement methods, including transfer learn-
ing, back-translation, NER-assisted translation,
document-level translation, weighted ensembling,
quality-aware decoding, and on-the-fly domain
adaptation. We found that using a combina-
tion of these methods on the test set leads to
a +0.22 (26.13%) increase in COMET scores in
the Ukrainian→Czech translation direction and a
+0.19 (24.18%) increase in the Czech→Ukrainian
direction, compared with the baseline model. Ac-
cording to the COMET automatic evaluation re-
sults, our systems rank first in both translation di-
rections.
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Abstract

This paper describes the LT’22 team’s con-
strained submission to the WMT General Ma-
chine Translation task. NMT transformer-
based systems have been implemented using
only the WMT’22 released parallel corpora,
without using any pre-trained models. Two
language pairs have been tackled, namely Ger-
man to English and German to French. Empha-
sis was placed on removing the noisy sections
of parallel corpora where the degree of paral-
lelism is very limited, for which a publicly-
available tool was-used. Comparative results
are reported with baseline systems.

1 Introduction

This submission presents the contribution of the
LT’22 team to the WMT22: General MT Task. It
focuses on studying the effectiveness of cleaning
tools when these are applied to real-world parallel
corpora, to eliminate noisy sections and improve
the resulting NMT systems.

Traditionally, parallel corpora are used as the
primary data source for machine translation (MT)
models. The development of MT has been aided by
the availability of extensive parallel corpora. The
majority of these data have several areas of reduced
parallelism and are usually characterized as imper-
fect or noisy. The use of noisy data may result in
a neural machine translation model being inade-
quately prepared. Researchers (e.g. (Koehn and
Knowles, 2017) (Khayrallah and Koehn, 2018))
have reported that neural machine translation mod-
els are much more affected by noisy data than sta-
tistical machine translation models.

A number of software packages to implement
noise-removal from parallel corpora have been im-
plemented and released to the community. These
include publicly available tools such as qe-clean
(Denkowski)1, as well as Zipporah (Xu and Koehn,

1https://github.com/mjdenkowski/qe-clean

2017). (Zarin, a et al., 2015) have used a combi-
nation of alignment-indicating features to clean
corpora. For cleaning large-scale corpora in multi-
lingual setups, a cosine-distance metric has been
proposed (Schwenk and Li, 2018). Finally, the
suite of the paired Bifixer and Bicleaner software
tools (Ramírez-Sánchez et al., 2020) has been pro-
posed for parallel corpora cleaning purposes, with
Bifixer implementing restorative cleaning and Bi-
cleaner providing the ability to remove sentences
with very low parallelism in the parallel corpus.

For the experiments reported here, two language
pairs have been chosen, namely German-to-English
(denoted as De-to-En) and German-to-French (de-
noted as De-to-Fr). Compared with other systems
reported in WMT, our NMTs have a couple of iden-
tifying features: (1) the use of a fully-constrained
setup with respect to WMT’22 rules and (2) the
setting of a relatively low threshold to the allowed
training epochs, in an effort to comply to a setup
with limited computational resources. Whilst our
translation systems are not as accurate as they could
be if more epochs were allowed, it was decided to
adopt an approach that is more realistic when train-
ing resources are not unlimited.

To implement the LT’22 participation to the
WMT’22 shared task work, we used the follow-
ing three software packages: (i) the Marian NMT
Toolkit (Version: v1.11.5), which was used for the
training of the neural machine translation models
and (ii) Bifixer and (iii) Bicleaner, which were used
in order to correct and clean our data.

Regarding the structure of the paper, in the sec-
ond section the selection of data on which to train
the translation systems is reported. In the third
section, the method used to carry out all essential
experiments is detailed. In the fourth section, the
corpus-cleaning tools are analyzed. In the fifth sec-
tion the translation systems and their parameters
are reported. The sixth section is devoted to de-
tails related to experiments. Finally, we review the
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findings of this series of experiments and examine
potential future research directions.

2 Training Data

Our experiments involve comparing the translation
outputs for a series of NMT models for two lan-
guage pairs: German-to-English (denoted as De-to-
En) and German-to-French (denoted as De-to-Fr).
It should be noted that for these two language pairs
no pretrained models for either Bifixer or Bicleaner
are available at the respective repository. All the
NMT models reported here are trained using only
the parallel training data specified by WMT’22, and
no monolingual training data are used. In-training
validation has been performed using the develop-
ment data recommended in WMT’22, whilst for
evaluating the trained NMT systems (developed
prior to the release of WMT’22 test data), the rele-
vant test data from WMT’20 were used. Moreover,
the translations submitted at the WMT22 shared
task have been produced using the test data released
by WMT’22.

3 Methodology

The aim of our experiments has been to evaluate
methods for cleaning-up a parallel corpus and to
determine if their use leads to MT systems that gen-
erate more accurate translations. For each language
pair, baseline NMT models have been trained from
raw (i.e. unfiltered) parallel training corpora as
specified by WMT’22, while the additional NMT
models have been trained with corpora subjected
to a special cleaning process via the Bifixer and
Bicleaner suite (Ramírez-Sánchez et al., 2020). It
should be mentioned that the Bicleaner repository2

doesn’t include pre-trained classifiers for the above
language pairs; consequently we trained probabilis-
tic dictionaries in order to produce new models. An
added benefit of this choice is that no pre-trained
model was used to develop our NMT systems, and
thus the submitted systems reviewed here are con-
strained.

The fundamental differences between the NMT
models produced are mainly related to the qual-
ity and quantity of the training data, while there
are no differences in the training parameters or in
the setup of the deep neural network architectures
(unless otherwise noted in the experimental sec-
tion). By doing so, it is possible to safely draw

2https://github.com/bitextor/bicleaner-data/
releases/tag/v1.5

conclusions about the amount of computational
resources required while also examining and com-
paring the translation outputs using automatic as-
sessment methods. The following were the driving
factors behind the experiments reported here:

• Using the Bifixer/Bicleaner tool in other lan-
guage pairs for which they have not been used
to date, in order to observe their effectiveness
in a different real-world scenario.

• The comparison of the results of cleaned as
well as raw parallel corpora, automatically as
well as manually.

• The study of the effectiveness of translation
models produced with limited computing re-
sources (Arase et al., 2021).

4 Cleaning Parallel Corpora

4.1 Bifixer

The first tool that was used in the translation
pipeline is Bifixer, which undertakes to correct
some very specific errors that publicly available
parallel corpora usually present. Bifixer imple-
ments restorative cleaning of imperfect parallel
data, working towards fixing the content and pre-
serving unique parallel sentences before filtering
out the noise (Ramírez-Sánchez et al., 2020). The
steps followed involve empty side removal, char-
acter fixing, orthography fixing, re-splitting, dupli-
cates identification. In order to apply Bifixer, we
used the recommended default parameter values,
without changes, and noted an improvement in the
quality of the parallel corpora.

100 random sentence pairs were examined in
order to ascertain the effectiveness of Bifixer. Af-
ter using of the aforementioned tool, fewer noisy
data were observed. Better sentence segmentation,
fewer typographical errors and fewer extremely
short and big sentences were the most notable mod-
ifications.

4.2 Bicleaner

Continuing the corpus-cleaning process, we pro-
ceeded to the next tool, Bicleaner. This tool filters
parallel corpora in order to distinguish the noisiest
sentences and then remove them to create a cleaner
corpus.

In order to use Bicleaner we need to have an
already trained classifier. Hence, we initiated the
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Bicleaner training process, following the steps de-
scribed in the official github page 3.

The assembly of a big corpus consisting of about
10 M sentences was our first concern. In order to
avoid bias, the sentences were chosen to be differ-
ent from those used to train Marian NMT models.
The training data went through a simple prepro-
cessing which consists of the following steps; deto-
kenization in case of already tokenized corpora;
then tokenization of all sentences. As the same
tokenization method will be used during Bicleaner
running, and the parallel data needs to be aligned in
both directions, we used MGIZA++ (Gao and Vo-
gel, 2008). Another software package we used was
Moses4, which is utilized for tokenization as well
as the construction of probabilistic dictionaries in
combination with MGIZA++. Following this pro-
cess, two probabilistic dictionaries are constructed,
one for each translation direction.

The next step was to create word frequency files.
Two folders are needed, for the source language
and the target language. To build these two folders
we needed two large monolingual corpora. Besides,
ideally a very clean corpus of about 100K sentences
is required, though such clean data are not readily
available. According to the recommendations in
github in this case the data can be cleaned by using
Bifixer and the Bicleaner Hardrules, which given
a parallel corpus, seek to identify evident noisy
sentence pairs (Sánchez-Cartagena et al., 2018).

After gathering the aforementioned material, the
final step is the training of the Bicleaner. Fur-
thermore, to create the character language models,
we utilize the KenLM software package (Heafield,
2011). Via these steps, a trained classifier ready for
use in pre-processing was obtained.

5 Training the NMT Systems

For training neural machine translation models, we
chose the Marian NMT toolkit (Junczys-Dowmunt
et al., 2018). Marian was developed to allow rapid
training and translation speed, to facilitate the stan-
dardization of research work. All the models we
trained adopted the architecture of a sequence-to-
sequence transformer with 8 attention heads and 6
layers in both the encoder and decoder, thus largely
adhering to the standard transformer configuration
from (Vaswani et al., 2017). We also decided to set

3https://github.com/bitextor/bicleaner/wiki/
How-to-train-your-Bicleaner

4http://www2.statmt.org/moses/

a specific limit to the number of training epochs
to avoid lengthy training sessions, aiming to econ-
omize as far as possible on valuable computing
resources, as per the recent ACL recommendation
for efficient computing (Arase et al., 2021).

The transformer is characterized as innovative
and uncomplicated (Vaswani et al., 2017). In our
experiments, we activated the dropout mechanism,
which is a widely adopted regularisation technique
in NMT.

When training our NMT systems, we opted
to use the SentencePiece tokenizer, which has
the ability to train subword models straight from
unprocessed data (Kudo and Richardson, 2018).
The vocabulary size was set to 32000 and the
range for the batch size was from 64 to 100. For
the workspace size we used a variable value across
our experiments, as the size of the training corpora
varied due to the Bicleaner filtering. As suggested
by the Marian developers, the workspace was
adapted via a number of trial runs at the start of
the training process, to maximise the throughput of
training sentences per time unit. The other main
parameter choices for the transformer models are
shown in Table 1. Moreover, the full command
used for training is presented in Table 3.

Translation Systems
encoder/decoder depth 6
beam size 6
layer normalization yes
exponential smoothing yes
mormalize factor 0.6
early stopping 5
transformer dropout 1
transformer dropout attention 1
dropout-rnn 0.2
dropout-src 0.1
dropout-trg 0.1

Table 1: Main parameters of the transformer architec-
ture used.

6 Experiments

6.1 Experimental setup
As discussed above, the training data used to
implement all the reported experiments were
limited to the parallel corpora released for WMT22
for the two language pairs German-French and
German-English. For the baseline systems the text
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corpora of the respective language pair were used
as released, without any pre-processing or noise-
removal. Contrariwise, the remaining experiments
were carried out using the aforementioned cleaning
tools. After applying Bicleaner, the content of
the parallel corpus remains the same, however
an extra column is added where the parallelism
ratings that the classifier assigned to each pair
of parallel sentences are stored. Based on this
column, sentence pairs rated below a threshold
are discarded. Although 0.5 is suggested as a
desirable threshold in relevant literature, we chose
to examine other thresholds. For this reason, we
tested different threshold values within the range
from 0.4 to 0.7 to to discover whether changes
in this parameter affect the translation accuracy
of neural machine translation models. Table 2
provides details regarding the number of sentences
that are retained in the parallel corpus following
each application of Bicleaner.

Corpora(de-en) Sentences
baseline_corpus.de_en ∼2.800.000
0.7_corpus.de_en ∼1.100.000
0.6_corpus.de_en ∼1.500.000
0.5_corpus.de_en ∼1.600.000
0.4_corpus.de_en ∼1.700.000
Corpora(de-fr) Sentences
baseline_corpus.de_fr ∼18.000.000
0.7_corpus.de_fr ∼7.800.000

Table 2: Volume of data before and after the cleaning
process.

6.2 Computer resources

For the experiments presented here a workstation
was used, equipped with a single Nvidia GeForce
RTX-3090 GPU, and an Intel i9-11900 CPU with
32 GB of memory. The first two tools were run
on the CPU whilst the NMT models training via
Marian involved predominantly the GPU. For all
experiments where execution times are reported,
these times are obtained with the workstation run-
ning exclusively the reported process.

6.3 Experimental results

At this point, we will review the Marian NMT train-
ing results. In Table 4 the BLEU scores during
experimental process are presented. Additionally
in Table 5, the WMT22 results of the automatic

evaluation metrics can be found. Regarding the
German-English language pair, we can observe
that the baseline system has the highest score. Im-
plementing the cleaning steps and increasing the
threshold, the size of training data gets smaller and
smaller, as can be seen in Table 1. Since the size of
the initial data was not very big, the decrease of the
data may well affect the efficiency of the models.

Regarding the German-French language pair, the
best score is observed in the model trained on
cleaned data. As is mentioned in a related study
(Ramírez-Sánchez et al., 2020), it has been ob-
served that the Bifixer/Bicleaner tools work bet-
ter on big data. In this case the number of the
sentences continues to be adequate even after the
cleaning process.

7 Conclusions and Future Work

In this paper, we have presented our submission
to the WMT22: General MT Task. In order to
rectify and filter noisy sentences from the corpora
recommended by WMT’22, we have applied two
cleaning approaches for the parallel corpus. After
experimenting with various categorization criteria,
we created seven distinct parallel corpora. We dis-
covered that as expected, thoroughly cleaned cor-
pora require fewer computer resources, as a large
number of sentences are removed. Additionally, we
noticed that differences in the BLEU score across
cleaned corpora are relatively small.

Our main submissions to the shared task were
two, one for each language pair. Regarding the lan-
guage pair German to English, the highest quality
translation result was obtained by training a trans-
former model using the raw baseline corpus, and
thus the use of Bifixer/Bicleaner did not lead to
an improvement. The best result was obtained for
the language pair German to French by training a
transformer model using the bifixed and bicleaned
parallel corpus with a threshold of 0.5.

In upcoming research, the Back Translation tech-
nique is planned to be utilized in order to expand
the size of the training data, since the size of the
sentence pairs is reduced after the cleaning pro-
cedure. The translations that emerged from the
aforementioned experimental process could be fil-
tered and reused so as to train the NMT system
with bigger and cleaner parallel corpora.

In the future, it would be highly interesting to
develop probabilistic dictionaries with more than
10 M parallel sentences as well as to train the Bi-
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cleaner in more than 100 K parallel sentences. Ad-
ditionally, we want to use these methods on even
more information about the language pairs we pre-
viously stated. In order to achieve an even cleaner
corpus, it would also be quite fascinating to investi-
gate comparatively other cleaning techniques such
as those reported in the introduction.

A final direction for future work would be to
use larger models such as the Big Transformer
(Vaswani et al., 2017) to see if for this architecture
the effect of pre-filtering with Bifixer/Bicleaner
will be more marked, and what the trade-off
between the improvement in translation quality
and the increased training time would be.

Limitations One potential limitation of the
present work is the relatively limited range and
number of Bicleaner thresholds tested, though the
values include both the recommended and default
values. Another limitation concerns the use of a
single architecture, whilst ideally a second archi-
tecture (such as the Transformer-Big configuration
of (Vaswani et al., 2017)) could be used. Finally, a
comparison with other corpus-cleaning methods
would be desirable, though such work is beyond
the scope of the present work.
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Translation Systems
∼/marian/build/marian –model modelsname.npz \

- -vocabs modelsname/vocabsname.deen.spm modelsname/vocabsname.spm \
- -type transformer - -transformer-heads 8 - -train-sets ∼/corpus.srl \
∼/corpus.trl - -disp-freq 100 - -mini-batch-fit - -workspace 21000 \

- -layer-normalization - -exponential-smoothing \
- -sentencepiece-alphas 0.2 0 \
- -dim-vocabs 32000 32000 \

- -after-epochs 21 - -dropout-rnn 0.2 - -dropout-src 0.1 - -dropout-trg 0.1 - -valid-metrics cross-entropy \
- -valid-sets ∼/dev.srl ∼/dev.trl - -valid-freq 10000 \
- -beam-size 6 - -normalize=0.6 - -early-stopping 5 \

- -cost-type=ce-mean-words - -max-length 200 - -save-freq 10000 \
- -overwrite - -keep-best - -log ∼/transformer.log \

- -valid-log ∼/transformer_valid.log \
- -enc-depth 6 - -dec-depth 6 - -learn-rate 0.0001 \

- -lr-warmup 8000 - -lr-decay-inv-sqrt 8000 - -lr-report \
- -seed 1 - -label-smoothing 0.1

Table 3: An example command used in order to train NMT systems with Marian.

Data Cleaning Method Threshold BLEU Training Time
System1.de-en None(raw data) - 17.4 ∼66h
System2.de-en Bifixer/Bicleaner 0.4 22.7 ∼26h
System3.de-en Bifixer/Bicleaner 0.5 23.2 ∼26h
System4.de-en Bifixer/Bicleaner 0.6 24.1 ∼19h
System5.de-en Bifixer/Bicleaner 0.7 23.3 ∼15h
System1.de-fr None(raw data) - 26.3 ∼92h
System2.de-fr Bifixer/Bicleaner 0.7 27.6 ∼74h

Table 4: BLEU scores on WMT20 test during the development process.

Data Cleaning Method Threshold BLEU chrF COMET-A COMET-B
System1.de-en* None(raw data) - 26.0 0.5 25.6 33.3
System2.de-en Bifixer/Bicleaner 0.4 24.3 0.5 N/A N/A
System3.de-en Bifixer/Bicleaner 0.5 25.3 0.5 N/A N/A
System4.de-en Bifixer/Bicleaner 0.6 24.9 0.5 N/A N/A
System5.de-en Bifixer/Bicleaner 0.7 24.0 0.5 N/A N/A
System1.de-fr* None(raw data) - 24.4 0.5 N/A N/A
System2.de-fr Bifixer/Bicleaner 0.7 28.3 0.5 10.4 54.4

Table 5: Cleaning method, WMT22 automatic scores and training time for all submitted NMT systems. *Systems
defined as primaries.
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Abstract 

This paper describes the PROMT 

submissions for the WMT22 Shared 

General Translation Task. This year we 

participated in four directions of the 

Shared Translation Task: English to 

Russian, English to German and back, and 

Ukrainian to English. All our models are 

trained with the MarianNMT toolkit using 

the transformer-big configuration. We use 

BPE for text encoding, all of our models 

are unconstrained. We achieve competitive 

results according to automatic metrics in 

all directions. 

1 Introduction 

The WMT Shared General Translation Task is an 

annual event where different companies and 

researchers build and test their systems on the test 

sets provided by the organizers. This year the Task 

has shifted from news to the general domain. We 

participate in four directions: English to Russian, 

English to German and back, and Ukrainian to 

English. We build the transformer-big models for 

the first time. We also explore new data filtering 

techniques, data preparation and model training 

strategies. 

The rest of the paper is organized as follows: in 

Section 2 we describe in detail the systems we 

submitted to the Shared Task. In Section 3 we 

present and discuss the results. We conclude the 

paper in Section 4 with discussion for possible 

future work. 

2 Systems overview 

All of our WMT22 submissions are MarianNMT-

trained (Junczys-Dowmunt et al., 2018) 

transformer-big (Vaswani et al., 2017) systems. 

We use the OpenNMT toolkit (Klein et al., 2017) 

version of byte pair encoding (BPE) (Sennrich et 

al., 2016b) for subword segmentation.  Our BPE 

models are case-insensitive, we use special tokens 

in the source and target sides to process case (see 

Molchanov (2019) for details). 

All of the systems are unconstrained, i.e. we 

use all data provided by the WMT organizers, all 

publicly available data and some private data 

crawled from different web-sources. 

This year we use the dual conditional cross-

entropy (Junczys-Dowmunt, 2018) method for 

data filtering. We extend the method as proposed 

by the author and build neural language models 

for both source and target languages. 

We also augment our training data with two 

types of synthetic data: 1) back-translations 

(Sennrich et al., 2016a) and 2) synthetic data with 

placeholders as described in Pinnis et al. (2017). 

The back-translations are obtained using the 

previous versions of our NMT models which are 

baseline transformers trained with less data (and 

without some up-to-date data like the news 2021 

corpora from statmt.org). We also tag all our 

synthetic data with special tokens at the beginning 

of the source sentences as described in Caswell et 

al. (2019). 

All models are trained with guided alignment 

which is used at translation time to handle named 

entities and document formatting. We obtain 
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alignments using the fast-align (Dyer et al., 

2013) tool. 

The data statistics for different language pairs 

are presented in Table 1. 

The details regarding different directions can 

be found in the next Section. 

 

2.1 Data preparation 

There are several stages in our data preparation 

pipeline. These are mostly common filtering 

techniques. The main stages of the pipeline are: 

 Basic filtering 

This includes some simple length-based 

and source-target length ratio-based 

heuristics, removing tags, lines with low 

amount of alphabetic symbols etc. We 

also remove lines which appear to be 

emails or web-addresses and duplicates. 

 Language identification 

The algorithm is a fairly simple 

ensemble of three tools: pycld21, 

langid (Lui and Baldwin, 2012), 

langdetect2. For large monolingual 

corpora we use only pycld2. 

 Bicleaner filtering 

We use the bicleaner (Ramírez-Sánchez 

et al., 2020) tool to filter parallel data. 

We discard all sentence pairs with the 

score threshold <= 0.3. 

 Scoring with NMT models 

We finally score all parallel data and 

back-translations with our intermediate 

                                                           
1
 https://pypi.org/project/pycld2/ 

2
 https://pypi.org/project/langdetect/ 

models to discard non-parallel sentence 

pairs and bad synthetic translations. 

 Dual conditional cross-entropy filtering 

This year we use this algorithm for the 

first time. We apply it to the English-

German language pair. 

2.2 English-Russian 

The English—Russian system was trained in two 

steps. First, we build the baseline model on all 

available data. Second, we fine-tune the model on 

data of high quality. Specifically, we totally 

remove the ParaCrawl, UN and OpenSubtitles 

corpora and fine-tune the model using the remains 

of the human data mixed with the back-

translations of the news corpora (2020, 2021) 

from statmt.org. This approach shows good results 

according to automatic metrics and general 

translation quality. The reason for doing this is 

that we aim for our models to be used mostly for 

translation of news and formal texts like various 

types of documents. 

The system was trained with separate 

vocabularies, the sizes of the BPE models are 24k 

for the source side and 48k for the target side. 

2.3 English-German and German-English 

Both models were trained with the same joint 

vocabulary, the BPE model size is 32k. We use all 

available human data. We apply basic filtering for 

some data which we believe to be clean (e.g. 

private data and high-quality open-source corpora 

like News-Commentary). The rest of the data is 

filtered with the modified dual conditional cross-

entropy filtering algorithm. We noticed that using 

only the news corpora as general for filtering as 

described in Junczys-Dowmunt (2018) results in 

the fact that the data shifts towards the news 

domain. For example, a perfectly fine sentence 

 

German-English Russian-English Ukrainian-English 

#sent #tokens EN #sent #tokens EN #sent #tokens EN 

WMT+OPUS 148.0 4000.1 37.4 690.9 24.8 566.7 

Private 8.1 106.8 30.2 542.2 0.5 5.8 

Total 156.1 4106.9 67.6 1233.1 25.3 572.5 

Table 1: Statistics for the filtered human parallel data in millions of sentences (#sent) and tokens (#tokens) 

for three language pairs. WMT stands for the data available for the News Task on the statmt.org/wmt22 

website; OPUS is the data from the OPUS website apart from the data available for the News Task; 

Private stands for private company data. 
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pair related to the IT domain may receive low 

scores from News models. Therefore, we try to 

build a general good quality corpus comprising 

different domains (news, IT, technical data etc.). 

We do not include colloquial corpora into these 

general corpora because we intend for our models 

to be used for translating mostly formal text, be it 

news, formal letters or technical documents. We 

set the threshold for the filtering score at 0.1. 

Thus, we discard around 60-70% of the original 

data. 

2.4 Ukrainian-English 

We use a lot of synthetic data for this model. We 

decided that we could pivot the Ukrainian-English 

model through our Ukrainian-Russian and 

English-Russian data and systems. We translate 

the Russian side of the English-Russian data to 

Ukrainian and use it as synthetic data for the final 

model. 

The Ukrainian-Russian model is a transformer-

base unconstrained model. It was built jointly to 

translate from Ukrainian into Russian and back. 

We use all available parallel data and back-

translations of the news and Wikipedia corpora. 

Although this is a transformer-base model, the 

Ukrainian-Russian language pair is relatively easy 

for the model to learn properly and achieve very 

good results in. Thus, we made an assumption that 

even the big model would benefit from this 

synthetic data given the fact that the Ukrainian-

English is not a high-resource language pair. 

To see how much we benefit specifically from 

using the transformer-big architecture in addition 

to the synthetic data from the Russian-English 

pair we also build a transformer-base model for 

this language pair. 

3 Results and discussion 

The results are presented in Table 2. 

As we can see, we clearly outperform our 

baselines (i.e. previous versions of the models). 

The gains we observe, however, are not that large. 

We notice that our submitted models have 

some problems with translation of colloquial 

content compared to the previous versions. This 

can be explained by our data preparation scheme. 

As we have already mentioned above, we want 

our models to translate formal text better and thus 

‘sacrifice’ colloquial data. The examples of such 

degradations are presented in Table 3. The first 

example illustrates the problem when short 

colloquial segments are left untranslated. We think 

there are two major reasons for that: 1) the fine-

tuned model has partially ‘forgotten’ how to 

translate colloquial speech; 2) there are many 

technical and IT-related texts in the fine-tuning 

data where large constructions (e.g. model or 

software program names) are left untranslated. 

Two other examples illustrate bad choice of 

meaning for specific words from the fine-tuned 

translation model (‘screwed’ is translated literally 

as if the kid was attached to something with a 

screwdriver; ‘кредит’ is a word from the financial 

domain which is inappropriate in this context). 

System BLEU chrF COMET 

English-Russian  

Model2021 29.1 52.5 0.54 

Model2022 30.6 53.8 0.60 

English-German  

Model2021 45.3 62.8 0.49* 

Model2022 49.0 65.3 0.55* 

German-English  

Model2021 47.3 62.3 0.51* 

Model2022 49.1 63.8 0.55* 

Ukrainian-English  

Model2021 38.6 60.4 0.44 

Model2022 

base 

39.7 61.3 0.46 

Model2022 41.2 62.6 0.49 

Table 2: Results for different systems and 

directions. The submitted systems are marked in 

bold. The starred scores are averaged scores over 

two references provided by the organizers. 

Model2021 stands for our previous versions of the 

systems which we consider the baseline. 

Model2022 base stands for the transformer-base 

configuration of the 2022 model. 

 

Source text Model2021 Model2022 

You meet me Встретишь меня You meet me 

And this kid is screwed. И этот парень облажался. И этот пацан прикручен. 

I don't have enough credits 

to graduate. 

У меня недостаточно 

баллов, чтобы закончить 

школу. 

У меня недостаточно 

кредитов, чтобы получить 

высшее образование. 

Table 3: Examples of translation degradation for colloquial content in the English-Russian direction. 

Model2021 stands for the previous version of the English-Russian system which we consider the baseline. 
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We should also note that the gain from the 

transformer-big configuration for the Ukrainian-

English model is not that large according to the 

automatic scores and our human evaluation. We 

think this is because the synthetic translations 

obtained from the English-Russian data with the 

Russian-Ukrainian model are ultimately not of 

perfect quality.  

4 Conclusions and future work 

In this paper we presented our submissions for the 

WMT22 Shared General Translation Task. We 

show good results in all directions we participate. 

We clearly outperform our baselines in all 

directions. A detailed analysis of the translations 

shows us that we lose quality in translation of 

colloquial speech. We plan to carefully select 

colloquial data of very high quality and use it for 

the general-domain language models for dual 

cross-entropy data selection. We also plan to train 

a transformer-big Russian-Ukrainian model and 

rebuild the synthetic translations for the 

Ukrainian-English model in the future. 
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Abstract

The paper describes the 3 NMT models sub-
mitted by the eTranslation team to the WMT22
general machine translation shared task. In
the WMT news task last year, multilingual sys-
tems with deep and complex architectures uti-
lizing immense amounts of data and resources
were dominant. This year with the task ex-
tended to cover less domain specific text we
expected even more dominance of such sys-
tems. In the hope to produce competitive (con-
strained) systems despite our limited resources,
this time we selected only medium resource
language pairs, which are serviced in the Euro-
pean Commission’s eTranslation system. We
took the approach of exploring less resource
intensive strategies focusing on data selection
and data filtering to improve the performance of
baseline systems. With our submitted systems
our approach scored competitively according
to the automatic rankings in the constrained
category, except for the En→Ru model where
our submission was only a baseline reference
model developed as a by-product of the multi-
lingual setup we built focusing primarily on the
En→Uk language pair.

1 Introduction

The eTranslation team is responsible for the de-
velopment of machine translation systems pro-
viding the translation services of the European
Commission’s eTranslation project1. This is a
building block of the Connecting Europe Facil-
ity (CEF), with the aim of supporting European
and national public administrations’ information
exchange across language barriers in the EU. The
project is described in more details in Oravecz et al.
(2019).

During the previous years the team’s participa-
tion in the WMT shared tasks allowed us to explore
state-of-the-art methods to develop high quality ma-
chine translation systems. However, due to strict

1https://language-tools.ec.europa.eu

resource constraints, these systems do not normally
carry over to production environments and there
has been a continuous search for the right balance
between the use of resources in production environ-
ments and the best performing but more complex
architectures.

With the news translation shared task extended to
being a general MT task the need for more robust-
ness, coverage and consequently more complexity
and resources has further increased. We expect
a strong competition in these areas, where teams
with modest resources might have some inherent
disadvantages. Therefore, in this year’s experi-
ments we did not consider high resource language
pairs (specifically English→ German, our constant
submission in previous years) and opted for the
medium resource French→ German and English
→ Ukrainian language directions. The latter sys-
tem originated from a multilingual setup including
Russian data, so we built and submitted a baseline
English→ Russian model as well.

2 Data Preparation

In this section we briefly describe the base data sets,
the general selection and filtering methods we ap-
plied to prepare these initial data sets used to train
the first baseline models. Further data selection and
augmentation methods to improve the quality of
baseline models are described in Section 3.1. We
only used the provided parallel and monolingual
data, so our submissions all fall into the constrained
category.

2.1 Base Data Selection and Filtering

As a general clean-up, we performed the following
filtering steps on the parallel data2:

2In some subcorpora, only a subset (not necessarily the
same) of these steps was applied, depending on the data set.
No filtering was used for the dev sets.
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Data set Fr→De En→Uk, Ru En→Uk En→Ru

Europarl v10 1.79M – – –
Common Crawl 0.42M 0.78M – 0.78M
News Commentary v16 0.29M 0.34M – 0.34M
Tilde Model Corpus 4.24M 9.00k 1.00k 8.00k
Dev sets 0.03M – – –
Wiki Titles v3 0.99M 0.70M 0.70M
ParaCrawl 5.64M 12.9M 7.60M 5.30M
OPUS – 22.9M 22.9M –
WikiMatrix 1.99M 5.28M 1.50M 3.78M
Yandex – 1.00M – 1.00M
UN Parallel – 9.19M – 9.19M

Total: 15.39M 53.1M 32.0M 21.1M

Table 1: Number of segments in the filtered parallel data used for baseline bilingual and multilingual models.

• language identification with FastText3 (Joulin
et al., 2016),

• segment deduplication,

• deletion of segments where source/target to-
ken ratio exceeds 1:3 (or 3:1),

• deletion of segments longer than 100-150 to-
kens (depending on language pair),

• exclusion of segments where the ratio between
the number of characters and the number of
words was below 1.5 or above 40,

• exclusion of segments without a minimum
number of alphabetic characters (2),

• exclusion of segments with tokens longer than
40 characters,

• exclusion of segments where the length differ-
ence between source and target in the number
of tokens was higher than 8,

• removal of segments where source side con-
tained specific noise patterns (in Fr→De
ParaCrawl).

These filtering steps led to an average reduction
of about 15-20% of the training data with the num-
ber of segments as shown in Table 1. For Fr→De,
after some manual inspection of the raw WikiMa-
trix and ParaCrawl data, we decided to experiment
with some further clean-up on these data sets, using

3https://fasttext.cc/docs/en/
language-identification.html

dual conditional cross-entropy filtering (Junczys-
Dowmunt, 2018), where we built the scoring mod-
els from a subset of filtered parallel data (7.6M
segments) by excluding ParaCrawl and WikiMa-
trix. We then built models by deleting the worst
scoring 5 and 10 % of the two data sets but none of
these models was better then the baseline system,
so we did not use this filtering in the submission se-
tups. In En→Uk, we experimented with language
model based filtering, where we built the language
model from the Leipzig corpora and fine tuned the
baseline model on the filtered data set, however, it
gave no improvement, so this step was not used in
the submission systems either.

2.1.1 Monolingual data
In the Fr→De models, where we used back-
translation (Sennrich et al., 2016) to improve base-
line performance we utilized monolingual data
from the various corpora provided. The data was
filtered with the same rules (where applicable) as
the parallel data (see Section 2.1). Table 2 provides
a summary. For the other systems, we didn’t use
back-translated data in the submissions4, only the
original parallel data sets.

2.1.2 Development and test data
For Fr→De, since the task had been extended from
news translation to general MT, where test data
was expected from “news, e-commerce, social, and
conversational” text, we opted to use a custom built

4See Section 3.1 for experiments with monolingual
Ukrainian news. The other monolingual Ukrainian data sets
that could have been used for back-translation came too late
for us to be able to reschedule the trainings.
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Data set Fr→De

Europarl v10 2.08M
Leipzig mixed 0.99M
Leipzig web 0.99M
News Commentary v16 0.43M
News Crawl 2021 25.0M

Total: 29.29M

Table 2: Number of segments in the filtered monolin-
gual data used for back-translation.

test set for development rather than some previous
dev set from the news domain. We extracted a 10k
random subset from the filtered original parallel
data and manually selected 2k segments for test
and validation each. In the manual selection we
tried our best to keep segments most representative
of the expected domains. These segments were
then obviously removed from the training data.

For En→Uk, the validation data was extended
with 2k segment pairs randomly extracted from the
filtered original parallel data. In addition to the
Flores test set, we used 2 development test sets:
10k segment pairs extracted at random from OPUS,
and 5k segment pairs extracted from ParaCrawl.

For En→Ru, we extended the validation data
again with 2k segment pairs extracted at random
from the 2012–2020 dev sets. Beside the Flores
test set, we used 2 additional test sets: a 5k random
extraction from the parallel data and the provided
2021 news test set. In the latter two language pairs
we did not apply manual selection, we considered
the test sets already representative enough for the
task.

2.2 Pre- and Postprocessing

As in our previous years’ systems, we applied
the simplest possible workflow without the stan-
dard pre- and postprocessing steps of truecasing, or
(de)tokenization, and simply used SentencePiece
(Kudo, 2018), which allows raw text input/output
within the Marian toolkit (Junczys-Dowmunt et al.,
2018)5 in the experiments. In the submission hy-
potheses, some simple normalization steps were
applied in post-processing, similarly to previous
years.

5We kept the default settings for Marian’s built-in Sen-
tencePiece: unigram model, built-in normalization and no
subword regularization.

3 Trainings

In all experiments we used Marian, as the core
tool of our standard NMT framework in the eTrans-
lation service. Trainings were run as multi-GPU
setups on 4 NVIDIA V100 GPUs with 16GB RAM,
typically for about 30 epochs. In general, except
for the first baseline setups, we built only big trans-
former models, this year even for back-translation,
in the hope of getting better quality output for
the higher resource consumption. The develop-
ment scenario was straightforward without much
room for experimenting with different parameters
or setups due to limited resource availability: for
Fr→De, a single set of 4 member ensembles from
big transformers, while in En→Uk and En→Ru,
a multilingual model at the first stage, fine tuned
on the specific languages at the second stage, with
4 (Uk) and 3 (Ru) models in an ensemble as our
submission systems for these two language pairs.
The parameter settings did not change from last
year’s setup: for most of the hyperparameters we
used the default settings in the baseline models for
the base transformer architecture in Marian6 with
dynamic batching and tying all embeddings. In
Fr→De, trainings were stopped if sentence-wise
normalized cross-entropy on the validation set did
not improve in 5 consecutive validation steps. The
multilingual systems were stopped after about 40
epochs, and then fine tuned for each target direc-
tion until they were stopped to meet the submission
deadline.

In the big transformer setups, we also fol-
lowed standard settings for Marian, i.e. we dou-
bled the filter size and the number of heads, de-
creased the learning rate from 0.0003 to 0.0002
and halved the update value for –lr-warmup and
–lr-decay-inv-sqrt.

Following common ranges of subword vocabu-
lary sizes, we set a 32k joint SentencePiece vocab-
ulary for all language pairs. SentencePiece models
were trained from 10M random segments.

3.1 Synthetic Data

In Fr→De, we back-translated the monolingual
data described in Section 2.1.1 with a single big
transformer trained from all available original par-
allel data. The resulting synthetic data set was fil-
tered (where applicable) with the same techniques
as the original parallel data. To train the submission

6See eg. https://github.com/marian-nmt/
marian-examples/tree/master/transformer.
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Test sets

Dev 2022

System Data COMET ChrF BLEU COMET ChrF BLEU

M1: Bilingual baseline 32.0M 69.9 63.2 40.3 47.4 52.9 24.4
M2: Multilingual En→{Uk,Ru} 53.1M 68.4 62.3 39.2 46.7 52.5 24.2
M3: M2 fine-tuned on En→Uk 53.1M/32.0M 71.2 63.7 40.9 50.1 53.3 24.5
M4: M2bigTr 53.1M 73.0 64.2 41.5 53.3 54.3 25.6
M5: M4 fine-tuned on En→UkbigTr 53.1M/32.0M 74.2 65.0 42.7 52.5 54.4 25.8
M6: 4 x M5 ens.bigTr

subm 53.1M/32.0M 75.0 65.3 43.2 54.5 54.8 26.2

Table 3: Results for En→Uk models. The Dev column displays the global scores for all dev sets concatenated.

ready systems we upsampled the (filtered) baseline
original parallel (OP) data set to a 1:1 ratio with
the BT data (Ng et al., 2019; Junczys-Dowmunt,
2019). This setup was a one shot configuration,
we lacked the resources to experiment with other
OP-BT combinations. As in previous years, we
used tagged back-translation (Caswell et al., 2019)
in our workflows.

In En→Uk, back-translation of a 2.4 M subset
of monolingual news data with a reverse engine
trained from original parallel data did not yield any
improvement over the baseline so it was not used
in the submission systems.

3.2 Continued Trainings
For Fr→De, in the first phase of the trainings we
used all available OP data together with the back-
translated synthetic data set. As a second phase
after model convergence, we continued the training
for 3 additional epochs7 only on the OP data set.

In the multilingual setup, the first phase of the
trainings utilized all available OP data for En→Ru
and En→Uk8. These trainings were stopped after
about 40 epochs and continued only on the respec-
tive target data. In both phases the source language
data was prefixed with the target language code.
All continued trainings were stopped before the
submission deadline.

4 Results

We submitted a constrained system for each of the
3 language pairs. We provide COMET (Rei et al.,
2020) (with the default model wmt20-comet-da),
ChrF (Popović, 2017) and BLEU (Papineni et al.,
2002) evaluation scores for models at important

7We experimented with different number of epochs, until
we saw a steady improvement on the test set.

8Without EU-Acts, which came too late.

stages in the development, which reflect how the
performance of the models changed as we experi-
mented with the various configurations.9

4.1 English→Ukrainian

Table 3 gives a summary of the of the En→Uk ex-
periments. The baseline model (M1) was trained
on the filtered original parallel (OP) data using the
base transformer architecture. We did not primarily
go for a system with synthetic data since the us-
able monolingual Uk data was small in size (2.6M
after filtering) and we didn’t expect substantial im-
provement. Instead, we decided to experiment with
multilingual systems. The next model (M2) was a
multilingual En→{Uk,Ru} system trained only on
filtered OP data (En→Uk, En→Ru), again as a base
transformer. The target language was indicated in a
token that was prefixed to the source language seg-
ments. The slight drop of the scores compared to
M1 is not unexpected in multilingual NMT systems
when using the same architecture as the bilingual
model (Wang et al., 2020). In the next step we used
the model of M2 that scored best on the En→Uk
development test sets and fine-tuned on En→Uk
data until convergence (early-stopping set to 20
stalls). This fine-tuned model was better than the
bilingual baseline (M1) and the multilingual M2.
The next step (M4) was to train M2 with big trans-
former architecture. This model was significantly
better than all 3 previous models. M5 was an M4
model fine-tuned on En→Uk data, while M6 (our
submission model) was a 4 member ensemble built
from M5 models. Both M5 and M6 yielded some

9sacreBLEU signatures:
chrF2|nrefs:1|case:mixed|eff:yes|nc:6|nw:0|
space:no|version:2.1.0
BLEU|nrefs:1|case:mixed|eff:no|tok:13a|smooth:exp|
version:2.1.0
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Test sets

Dev 2022

System Data COMET ChrF BLEU COMET ChrF BLEU

M1: Bilingual baseline 21.1M 51.2 57.2 31.8 48.3 53.4 27.0
M2: Multilingual En→{Uk,Ru} 53.1M 50.3 56.9 31.1 47.3 53.1 26.7
M3: M2bigTr 53.1M 57.8 59.5 34.1 56.2 55.4 29.2
M4: M3 fine-tuned on En→RubigTr 53.1M/21.1M 59.6 59.9 34.8 56.1 55.3 29.1
M5: 3 x M4 ens.bigTr

subm 53.1M/21.1M 60.3 60.3 35.3 57.9 55.8 29.8

Table 4: Results for En→Ru models. The Dev column displays the global scores for all dev sets concatenated.

Test sets

Dev 2022

System Data COMET ChrF BLEU COMET ChrF BLEU

M1: Baseline 15.4M 64.6 62.1 32.9 47.2 65.2 41.5
M2: M1+BTbigTr 59.4M 65.1 62.3 33.0 53.1 67.1 44.5
M3: M2 cont.bigTr 59.4M 65.5 62.4 33.1 53.4 67.3 44.9
M4: 4 x M3 ens.bigTr

subm 59.4M 66.7 62.8 34.0 55.4 68.4 46.5

Table 5: Results for Fr→De models.

improvement in the automatic metrics.

4.2 English→Russian
The main stages of the model development for the
En→Ru language pair are presented in Table 4. As
we described before, the En→Ru system was not
intended to be a competitive submission, and this
is reflected in the evaluation scores, which are be-
low the scores of other submissions. The baseline
model (M1) was trained on the filtered OP data as
a base transformer. The next two models (M2 and
M3) are common with En→Uk (M2 and M4) – a
multilingual En→{Uk,Ru} systems trained only
on filtered OP data as base/big transformers (cf.
Section 4.1 above). M4 is the M3 model fine-tuned
on En→Ru OP data, while M5 (our submission
model) is a 3 member ensemble built from M4
models. The score improvements are similar to
En→Uk.

4.3 French→German
Table 5 summarizes the results of the Fr→De exper-
iments. The first baseline model (M1) was trained
only on the (filtered) original parallel (OP) data
with the base transformer architecture. The next
model (M2) switched to the big transformer setup
and used the back-translated (BT) data with the
OP data upsampled (see Section 3.1). Despite the

significant increase of the training data size, the
effect on the scores on our development set was
moderate, however, on the 2022 test set the in-
crease was substantial. This might suggest that the
back-translated data gave better support than the
OP data to the 2022 test set as a general test set
but was much less effective for our development
set (which was perhaps still too restricted to the
news domain). In the 3rd model (M3), we contin-
ued the training only with the OP data as described
in Section 3.2, with a slight increase in the metrics.
Our submission model (M4) was a 4 member en-
semble built from M3 models, where the 4th model
was weighted 10% more than the rest. This con-
figuration yielded the most promising result with
a significant increase in the scores suggesting that
ensembling might be an efficient strategy for gen-
eral MT models.10 Model 4 ended up as the best
submission of the constrained category, according
to all automatic metrics.

5 Conclusion

We described the submissions of the eTransla-
tion team to the WMT22 general MT shared task
on 3 language pairs: French-German, English–

10In previous years, ensembling was less efficient in our
submitted news specific models.
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Ukrainian and English–Russian, the last submis-
sion being only a baseline setup for reference, built
only as a by-product of the En→Uk system. We
selected medium resource language pairs and tried
to focus on data selection, filtering and evaluation
with custom test sets to be able to produce strong
constrained systems even with limited resources. In
our two competitive systems, first automatic results
seemed to justify this approach.
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Abstract

We present Charles University submissions to
the WMT 22 General Translation Shared Task
on Czech-Ukrainian and Ukrainian-Czech ma-
chine translation. We present two constrained
submissions based on block back-translation
and tagged back-translation and experiment
with rule-based romanization of Ukrainian.
Our results show that the romanization only
has a minor effect on the translation quality.
Further, we describe Charles Translator, a sys-
tem that was developed in March 2022 as a
response to the migration from Ukraine to the
Czech Republic. Compared to our constrained
systems, it did not use the romanization and
used some proprietary data sources.

1 Introduction

How fast can the machine translation (MT) com-
munity react to a sudden need of a high-quality MT
system which was previously under low demand?
This question motivated the new task at the WMT
this year, which is Czech-Ukrainian translation.

Both languages belong to the Slavic language
family (Czech is western Slavic, Ukrainian is east-
ern Slavic), and share some lexical and structural
characteristics. Unlike Czech, which uses the Latin
script, Ukrainian uses its variant of the Cyrillic
alphabet.

We submit three systems to the WMT 22
General Translation Shared Task for this lan-
guage pair in each translation direction. The
first system, CUNI-JL-JH, implemented in Mar-
ian (Junczys-Dowmunt et al., 2018), uses tagged
back-translation and is a result of our experiments
with romanization of Ukrainian. Our second sys-
tem, CUNI-TRANSFORMER, implemented in Ten-
sor2Tensor (Vaswani et al., 2018), uses block back-
translation. Finally, we submit an unconstrained
system, CHARLES TRANSLATOR, implemented
in Tensor2Tensor, which has been developed in

∗The author order was determined by a coin toss.

spring 2022 as a response to the crisis caused by
the Russian invasion of Ukraine and the following
migration wave.

2 Constrained WMT Submissions

We submitted two systems in each translation di-
rection that use the same parallel and monolingual
data, but different techniques and different toolk-
its. This section first describes the shared data
processing steps and then the specifics of each of
the submissions in separate subsections.

2.1 Training Data

We use all parallel data allowed in the constrained
task, along with 50 million Czech and 58 million
Ukrainian sentences of monolingual data. In the
following paragraphs we describe the data cleaning
steps when preparing the training data. We fur-
ther experiment with romanization of the Ukrainian
Cyrillic alphabet and with artificial noising of the
data.

Parallel data. The data for the constrained trans-
lation task consist of OPUS corpora (Tiedemann,
2012) that have a Czech-Ukrainian part, WikiMa-
trix (Schwenk et al., 2021) and the ELRC EU acts
in Ukrainian.1

We clean the parallel data using rule-based filter-
ing in the following way:

1. Filter out non-printable and malformed UTF-
8 characters.

2. Detect language using FastText (Grave et al.,
2018), only keep Czech and Ukrainian sen-
tences on their respective source/target sides.

3. Only keep sentence pairs with character length
ratio between 0.67 and 1.5 if longer than 10
characters.

1https://elrc-share.eu/repository/search/?q=EU+acts+in+Ukrainian
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Source Original Filtered

bible-uedin 8 k 8 k
CCMatrix 3,992 k 3,884 k
EUbookshop 2 k 1 k
GNOME 150 81
KDE4 134 k 64 k
MultiCCAligned 1,607 k 1,199 k
MultiParaCrawl 1,773 k 1,606 k
OpenSubtitles 731 k 273 k
QED 161 k 138 k
Tatoeba 3 k 2 k
TED2020 115 k 106 k
Ubuntu 0.2k 0.2k
wikimedia 2 k 2 k
XLEnt 695 k 695 k

WikiMatrix 105 k 99 k
ELRC EU Acts 130 k 108 k

Total 9,457 k 8,186 k

Table 1: Sizes of parallel data sources (number of sen-
tence pairs).

4. Apply hand-crafted regular expressions to fil-
ter out the frequent errors, such that the sys-
tem does not attempt to translate e-mail ad-
dresses, currencies, etc. In addition, regular
expressions check translations of names of
Czech2 and Ukrainian3 municipalities down-
loaded from Wikipedia.

We omit steps 2 and 3 for the XLEnt corpus,
which seems to be very clean and consist of short
phrases (likely to get misclassified for language).

The sizes of the used parallel data sources before
and after cleaning are presented in Table 1.

Monolingual data. The overview of the mono-
lingual data sources is in Table 2. For Czech, we
use the Czech monolingual portion of the CzEng
2.0 corpus (Kocmi et al., 2020). For Ukrainian,
we used all resources, available for WMT, i.e.,
the NewsCrawl, the Leipzig Corpora (Biemann
et al., 2007), UberText corpus (Khaburska and Ty-
tyk, 2019) and Legal Ukrainian Crawling by ELRC.
The Uber corpus and the Ukrainian Legal corpus
are distributed tokenized with removed punctua-
tion. We automatically restored the punctuation
and detokenized the models using a lightweight
Transformer model (Vaswani et al., 2017; Base
model with 3 layers, 8k vocabulary) trained on the
NewsCrawl corpus.

For Ukrainian, we only keep sentences shorter
than 300 characters. For Czech, we keep all sen-
tence lengths from the CzEng corpus (up to 1400

2https://uk.wikipedia.org/wiki/Мiста_Чехiї
3https://cs.wikipedia.org/wiki/Seznam_měst_na_Ukrajině

Source Original Filtered

Czech CzEng 2.0 50.6 M

Ukrainian

NewsCrawl 2.3 M 2.0 M
Leipzig Corpora 9.0 M 7.6 M
UberText Corpus 47.9 M 41.2 M
ELRC Legal 7.6 M 7.2 M

Total 66.8 M 58.1 M

Table 2: Monolingual data sizes in number of sentences
before and after filtering.

characters). For both languages, we remove non-
printable and malformed UTF-8 characters.

Romanization. We develop a reversible roman-
ization than transcribes between the Ukrainian and
Czech alphabets. For example, Зараз у нас є
4-мiсячнi мишi is transcribed to Zaraz u nas je
4-misjačni myši. This way the model can better
exploit the lexical similarities between the two lan-
guages (e.g. мишi should be translated to Czech as
myši), while keeping all the necessary information
to reconstruct the original Cyrillic text. Note that
the transcription of Cyrillic changes when chang-
ing the target language, reflecting the phonology
of that language (e.g. ш transcribes to sh in En-
glish, but š in Czech). We introduce special tags for
words and characters that are written in Latin script
found in Cyrillic text. The romanization is specif-
ically designed for Ukrainian (e.g. и transcribes
to y, not i as would be the case in Russian), so its
reversibility occasionally fails for Russian names.

Artificial noise. We apply synthetic noise on the
source side that should simulate the most frequent
deviations from the standard orthography (missing
capitalization, lower- or upper-casing parts of the
sentences, missing or additional punctuation).

All scripts for training data processing
are available at https://github.com/ufal/
uk-cs-data-scripts. We use Flores 101 (Goyal
et al., 2022) development set for validation.

2.2 Tagged-back-translation-based System
(CUNI-JL-JH)

The CUNI-JL-JH submission is a constrained
system and uses the data described in the para-
graphs above. We train the system in 3 iterations
of tagged back-translation (Caswell et al., 2019)
with greedy decoding. Each iteration, we filter
the back-translated data using Dual Cross-Entropy
filtering (Junczys-Dowmunt, 2018) when keeping
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40, 930, 735 synthetic sentences, i.e., 5× the size
of clean authentic parallel data.

The first two back-translation iterations were
done with the Cyrillic script on the Ukrainian side.
In the final back-translation iteration, we performed
romanization and noising of the source side. We
train three models with random initialization and
submit the ensemble.

For all iterations, we used a Transformer Big
model with tied embeddings and a shared Senten-
cePiece vocabulary size of 32k (fitted on 5M ran-
domly sampled sentences; with sampling at the
training time, α=0.1; Kudo and Richardson, 2018).
We set the learning rate to 0.0003 and use 8, 000
warm-up steps. We initialize the models randomly
in each back-translation iteration.

For validation, we use greedy decoding. At test
time, we decode with beam search with beam size
of 4 and length normalization of 1.0 (estimated on
validation data).

The system is implemented using Marian
(Junczys-Dowmunt et al., 2018).

Negative results. We experimented with Dual-
Cross-Entropy filtering (Junczys-Dowmunt, 2018)
for parallel data selection and came to inconclusive
results. Therefore, we used all parallel data after
rule-based filtering.4

Additionally, we experimented with MASS-style
(Song et al., 2019) pre-training using monolingual
data only and continue with training on parallel
data. We were not able to find a hyper-parameter
setting where the pre-trained model would outper-
form the models trained from random initialization.
Therefore, we only use model trained from random
initialization.

2.3 Block back-translation System
(CUNI-TRANSFORMER)

The CUNI-Transformer submission is also con-
strained, trained on the same data as CUNI-JL-JH.
The system was trained in the same way as the
sentence-level English-Czech CUNI-Transformer
systems submitted to previous years of WMT
shared tasks (Popel, 2018, 2020; Gebauer et al.,
2021). It uses Block back-translation (BlockBT)
(Popel et al., 2020), where blocks of authentic
(human-translated parallel) and synthetic (back-
translated) training data are not shuffled together,

4Note that we use Dual-Cross-Entropy for filtering the
monolingual data, as described in the first paragraph of this
section, but we have not done any experiments with keeping
all the monolingual data.

but checkpoint averaging is used to find the opti-
mal ratio of checkpoints from the authentic and
synthetic blocks (usually 5:3). The uk→cs system
was trained with a non-iterated BlockBT (i.e. cs-
mono data was translated with an authentic-only
trained baseline). The cs→uk was trained with two
iterations of BlockBT (i.e. the uk-mono data was
translated with the above mentioned uk→cs non-
iterated BlockBT system). We had not enough time
to train more iterations and apply noised training
and romanization. The system was implemented
using Tensor2Tensor (Vaswani et al., 2018).

Inline casing. We experimented with Inline cas-
ing (InCa) pre-processing in the cs→uk direc-
tion. The main idea is to lowercase all train-
ing data and insert special tags <titlecase> and
<all-uppercase> before words in the respective
case, so that the original casing can be recon-
structed (with the exception of words like McDon-
ald or iPhone, which use different casing patterns
than all-lowercase, all-uppercase and titlecase). We
improved this approach by remembering the most
frequent casing variant of each (lowercased) word
in the training data. The most frequent variant
does not need to be prefixed with any tag, which
makes the length of training sequences shorter. We
also introduced a third tag <all-lowercase> for
encoding all-lowercased words whose most fre-
quent variant is different. For example, if the InCa
vocabulary includes only two items: iPhone and
GB, sentence My iPhone 64GB and iPod 64 GB or
32 gb will be encoded as <titlecase> my iphone
<all-uppercase> 64gb and iPod 64 gb or 32 <all-
lowercase> gb. Note that iPod was kept in the orig-
inal case because it was not included in the InCa
vocabulary and it does not match any of the three
“regular” casing patterns. We applied InCa on both
the source and target side and experimented with
training the InCa vocabulary on the authentic data
only or on authentic plus synthetic (monolingual
backtranslated).

Inline casing showed promising results in pre-
liminary experiments (without backtranslation), es-
pecially when combined with romanization and ar-
tificial noise in training. Unfortunately, we had not
enough time to train the backtranslated model long
enough, so we submitted it only as a contrastive
run and plan to explore it more in future.
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Model cs→uk uk→cs

Authentic only 20.91 22.95
BT iteration 1 21.69 23.70
BT iteration 2 21.87 23.98
BT iteration 3 (seed 1) 21.53 23.76

Table 3: Validation BLEU scores for the first two itera-
tions of BT for the tagged BT systems.

3 Charles Translator for Ukraine

Charles Translator for Ukraine is a free Czech-
Ukrainian online translation service available for
public at https://translator.cuni.cz and as
an Android app. It was developed at Charles
University in March 2022 to help refugees from
Ukraine by narrowing the communication gap be-
tween them and other people in Czechia. Similarly
to CUNI-TRANSFORMER, it is based on Trans-
former and iterated Block back-translation (Popel
et al., 2020). The training used source-side arti-
ficial noising, but no romanization and no inline
casing. It was trained on most (but not all) of the
training data provided by WMT plus about one mil-
lion uk-cs sentences from the InterCorp v14 corpus
(Čermák and Rosen, 2012; Kotsyba, 2022), so this
submission is unconstrained.

4 Results

In this section, we report BLEU scores on the Flo-
res 101 development set that we used to make our
decisions about the system development and the
final automatic scores. Note that the validation set
is very different from the test set. The validation set
consists of clean and rather complicated sentences
from Wikipedia articles, whereas the WMT 22 test
set is noisy user-generated text from the logs of the
production deployment of Charles Translator.5

Tagged BT systems. Table 3 shows validation
BLEU scores from the first three iterations of back-
translation. The second and third iteration did not
bring substantial improvements, so we decided not
to further iterate.

Table 4 shows validation BLEU scores from
the last (third) BT iteration – three independently
trained systems and their ensembles, and the Cyril-
lic and romanized versions of the data. In general,
ensembling only brings a small improvement. Ro-
manization does not bring a significant difference

5The test set only contains sentences from users who
provided their consent for this usage and the sentences were
pseudonymized.

Model cs→uk uk→cs

C
yr

ill
ic

Seed 1 21.53 23.76
Seed 2 22.28 25.10
Seed 3 21.96 24.39

Ensemble 22.45 24.86

R
om

an
iz

ed Seed 1 21.42 23.99
Seed 2 21.76 23.91
Seed 3 22.37 24.18

Ensemble 22.62 24.22

Table 4: Validation BLEU scores for the last (i.e., the
third) iteration of BT comparing romanized and original
script.

compared to using the Cyrillic script. In the Czech-
to-Ukrainian direction, the best system was the
ensemble of the romanized systems. However, in
the Ukrainian-to-Czech direction, the best system
was one of the Cyrillic systems that used acciden-
tally 3 times higher batch size than the remaining
ones. This result suggests that the batch size has a
much stronger effect than most of the techniques
that we experimented with and that we might have
reached better results if we opted for higher batch
size.

Results on WMT test. Automatic evaluation on
the WMT22 test set is presented in Table 5. Both
the constrained systems and Charles Translator
show comparable results. The tagged BT system
reaches a slightly higher COMET score than the
Block BT system, however, Czech-Ukrainian was
not in the training data of the COMET score, which
make the score unreliable for this particular lan-
guage pair. For Czech-to-Ukrainian, Charles Trans-
lator reaches a slightly higher COMET score and
slightly lower BLEU and chrF scores than both the
constrained systems, but we do not consider such
small differences of automatic metrics relevant.

5 Conclusions

We presented Charles University submissions to
the WMT 22 General Translation Shared Task on
Czech-Ukrainian and Ukrainian-Czech machine
translation. We present two constrained submis-
sions based on block back-translation and tagged
back-translation and experiment with rule-based
romanization of Ukrainian. Further, we describe
Charles Translator, a system that was developed in
March 2022 as a response to the migration from
Ukraine to the Czech Republic. Compared to our
constrained systems, it did not use the romanization
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cs→uk uk→cs

System BLEU chrF COMET BLEU chrF COMET

Best constrained (HuaweiTSC/AMU) 36.0 62.6 0.994 37.0 60.7 1.048
CUNI-Transformer 35.0 61.6 0.873 35.8 59.0 0.885
CUNI-JL-JL 34.8 61.6 0.900 35.1 58.7 0.890

Best unconstrained (Lan-Bridge/Online-B) 38.1 64.0 0.942 36.5 60.4 0.965
Charles Translator 34.3 61.5 0.908 35.9 59.0 0.901

Table 5: Final automatic results on the WTM22 test data compared to the best overall score achieved in each metric.

and used some proprietary data sources.
Our results show that the romanization only has

a minor effect on the translation quality, compared
to machine-learning aspects that affect translation
quality. Block back-translation seems to deliver
slightly better results that tagged back-translation,
however the differences are only small.
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Abstract 

In what follows, we provide an overview of 

the ARC-NKUA (“Athena” Research 

Center - National and Kapodistrian 

University of Athens) submission to the 

WMT22 General Machine Translation 

shared task for the EN-UK (English to 

Ukrainian) and UK-EN (Ukrainian to 

English) translation directions. We describe 

how we constructed two Neural Machine 

Translation systems by training 

Transformer models (Vaswani et al., 2017), 

as well as our experiments involving: (a) 

ensemble decoding, (b) selected fine-tuning 

with a subset of the training data, (c) data 

augmentation with back-translated 

monolingual data, and (d) post-processing 

of the translation outputs. Furthermore, we 

discuss filtering techniques and the 

acquisition of additional data used for 

training the systems. 

1 Introduction 

Neural Machine Translation (NMT) has achieved 

significant improvements in translation quality in 

recent years, especially concerning high-resource 

language pairs. However, there is a lot of room for 

research on systems with general translation 

capabilities, underrepresented domains, low- or 

medium- resource language pairs, as well as 

multilingual systems. This year, the former news 

translation shared task widened in scope by 

introducing new domains, as well as the English-

Ukrainian language pair among others. 

We participated in the WMT22 General 

Machine Translation shared task for the 

unconstrained tracks of the EN-UK (English to 

 
1https://opus.nlpl.eu/ 
2https://paracrawl.eu/news/item/17-

english-ukrainian-bonus-parallel-corpus  

Ukrainian) and UK-EN (Ukrainian to English) 

translation directions. The two submitted NMT 

systems are based on the Transformer architecture 

(Vaswani et al., 2017) and our experiments involve 

various methods and techniques such as data 

acquisition, filtering and selection, fine-tuning, 

ensemble decoding, tagged back-translation of 

English and Ukrainian monolingual sentences and 

post-processing of the translation outputs. 

This paper is structured in the following way: In 

Section 2, we describe the parallel and monolingual 

corpora, as well as the acquisition, selection, 

filtering and pre-processing techniques that were 

used in our experiments. Section 3 outlines the 

NMT systems architecture, training parameters and 

the various experiments on top of our baseline 

systems. In Section 4, we report and discuss the 

experimental results of the two translation 

directions we participated in, while Section 5 

concludes and summarizes our work. 

2 Datasets 

We participated in the unconstrained tracks of this 

year’s general machine translation shared task for 

the English-Ukrainian and Ukrainian-English 

translation directions. We made use of most of the 

datasets given by the organizers: corpora from 

OPUS 1  (Tiedemann, 2012), ParaCrawl v9 2  and 

ELRC - EU acts in Ukrainian3  from the ELRC-

SHARE repository. Other parallel resources from 

this repository that were used in our systems 

include: 

 

 
3https://elrc-share.eu/repository/eu-

acts-in-ukrainian/ 
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• Multilingual English, French, Polish to 

Ukrainian Parallel Corpus (processed)4 

• Official web-portal of the Parliament of 

Ukraine, primary legislation5  

• Official web-portal of the Parliament of 

Ukraine, Ukrainian laws in EN6 

• Official web-portal of the Parliament of 

Ukraine, abstracts of UK laws7 

• SciPar UK-EN-RU8 (Roussis et al., 2022a) 

• A Bilingual English-Ukrainian Lexicon of 

Named Entities Extracted from Wikipedia9 

We also made use of three monolingual datasets 

given by the organizers: News crawl10 , Leipzig 

Corpora11  and Legal Ukrainian Crawling12  from 

the ELRC-SHARE repository. After manually 

inspecting the other given dataset, UberText 

Corpus 13 , we decided not to use it for back-

translation (see Section 3.2), as most punctuation is 

missing. Instead, we make use of monolingual 

corpora that we acquired (see Section 2.1), as well 

as the Ukrainian monolingual corpus of 

WikiMatrix. 

2.1 Acquisition of Additional Corpora 

In order to acquire additional parallel English-

Ukrainian data, we used the ILSP-FC toolkit 14 

(Papavassiliou et al., 2013) to crawl candidate 

parallel documents from websites and the LASER 

toolkit 15  (Artetxe and Schwenk, 2019) to mine 

bitexts with the use of its margin-based alignment 

score, after splitting each document into sentences. 

It is worth noting that manual inspection was also 

moderately applied so as to exclude machine 

 
4https://elrc-

share.eu/repository/multilingual-

english-french-polish-to-ukrainian-

parallel-corpus-processed/ 
5https://elrc-

share.eu/repository/official-web-portal-

of-the-parliament-of-ukraine-primary-

legislation/ 
6https://elrc-

share.eu/repository/official-web-portal-

of-the-parliament-of-ukraine-ukrainian-

laws-in-en/ 
7https://elrc-

share.eu/repository/official-web-portal-

of-the-parliament-of-ukraine-abstracts-

of-uk-laws/ 
8https://elrc-

share.eu/repository/scipar-uk-en-ru/ 

translated websites. Additional parallel data 

acquisition techniques that were used are 

mentioned in more detail in Roussis et al. (2022a; 

2022b). During parallel data acquisition, 

monolingual sentences in English and Ukrainian 

were also collected and were later used for back-

translation (see Section 3.2). 

The aforementioned techniques were used to 

compile the first five bulleted corpora listed in 

section 2, as well as EU acts in Ukrainian which 

was given by the organizers. Nevertheless, we 

attempted to enrich the acquired data by also 

targeting approximately 300 websites to extract 

EN-UK parallel sentences and more than 2,000 

websites to extract monolingual UK sentences. 

This process resulted in ~2M additional EN-UK 

sentence pairs and ~31.9M monolingual UK 

sentences. 

2.2 Parallel Corpus Filtering 

The following filtering methods are used on all of 

the parallel data (including the subset that we 

selected for fine-tuning, as well as the synthetic 

data) after punctuation normalization and 

tokenization with the Moses toolkit16 (Koehn et al., 

2007): 

• Sentence pairs with identical source and 

target sides are removed (Papavassiliou et 

al., 2018; Pinnis, 2018). 

• Duplicate sentence pairs are removed, based 

on either source or target side; i.e. no English 

or Ukrainian sentence (after being 

lowercased and having its digits removed) 

appears more than once in the training set. 

 
9https://elrc-share.eu/repository/a-

bilingual-english-ukrainian-lexicon-of-

named-entities-extracted-from-wikipedia/ 
10http://data.statmt.org/news-crawl  
11https://wortschatz.uni-

leipzig.de/en/download/ukr/  
12https://elrc-share.eu/repository/legal-

ukrainian-crawling/ 
13https://lang.org.ua/en/corpora/#anchor5  
14http://nlp.ilsp.gr/redmine/projects/ils

p-fc/ 
15https://github.com/facebookresearch/LAS

ER/ 
16https://github.com/moses-

smt/mosesdecoder/  
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• Sentence pairs in which either side consists 

of more than 50% non-alphabetic characters 

are removed (Rikters, 2018). 

• Sentence pairs in which the length ratio in 

terms of digit characters is over 2:1 (or below 

1:2) are removed. 

• Sentence pairs in which either the source or 

target sentence contains more than 250 

tokens or more than 1000 characters are 

removed. 

• Sentence pairs in which the token ratio 

between the longest and the shortest sentence 

is higher than 2 are removed. 

• Sentence pairs in which either sentence 

contains letters not in the range of Unicode 

character sets relevant to Latin and Cyrillic 

scripts are removed (Papavassiliou et al., 

2018). 

• The repeating token filter 17  from Rikters 

(2018) was used to remove sentence pairs 

originating from machine-translated content. 

• Language identification with fastText 18 

(Joulin et al., 2017) is used to remove 

sentence pairs with different languages than 

expected. 

In Table 1, we report the number of the raw 

(unfiltered) English-Ukrainian sentence pairs 

(57.7M), the number actually used for training the 

baseline systems after filtering (19M), and the 

selected subset used for fine-tuning (10.2M). 

Additionally, we list the number of filtered 

synthetic parallel sentences generated from English 

monolingual sentences with the EN-UK system 

(60M) and from Ukrainian monolingual sentences 

with the UK-EN system (54.5M).  

2.3 Data Selection  

As we will describe in more detail in Section 3.4, 

we also experimented with fine-tuning the NMT 

systems (see Section 3.3). In particular, after 

training a system we continue its training with a 

subset of the parallel data which has been selected 

according to some stricter criteria. LASER-based 

 
17https://github.com/M4t1ss/parallel-

corpora-

tools/blob/master/parallel/repeating-

tokens.php 

corpus filtering has been shown to have promising 

results (Chaudhary et al., 2019), it has already been 

computed for many of the used datasets and we 

believe that it may prove especially useful in 

counteracting possible quality degradation in NMT 

systems trained with additional back-translated 

data (Tran et al., 2021).  

To this end, we decided to select an appropriate 

subset of the training data with the utilization of the 

alignment score given by the LASER toolkit. For 

this reason, the LASER scores of the parallel 

sentences of the available corpora were examined 

and the following data selection strategy was 

adopted: 

• A LASER score threshold of 1.1 was set for 

sentence pairs originating from the 

CCMatrix, CCAligned and ParaCrawl 

corpora. These three datasets contain a total 

of 42.1M raw sentence pairs and have been 

collected from the web. 

• A LASER score threshold of 1.06 was set for 

sentence pairs originating from the 

WikiMatrix corpus as well as for those that 

we acquired (see Section 2.1). 

2.4 Pre-Processing and Vocabulary 

As mentioned in section 2.2, the Moses toolkit is 

used to normalize the punctuation and tokenize the 

datasets. Additionally, in order to handle casing, we 

use the “inline casing” technique (Bérard et al., 

2019; Etchegoyhen and Ugarte, 2020; Molchanov, 

2020) which uses specific tags to denote uppercase 

(<UC>), title case (<TC>) or mixed case (<MC>) 

words. Depending on the tags which the decoder 

has generated, the output sentences are re-cased 

 
18https://fasttext.cc/docs/en/language-

identification.html  

Type of data Sentence pairs 

Raw EN-UK parallel 57,727,556 

Filtered EN-UK parallel 19,023,045 

Filtered EN-UK parallel 

selected for fine-tuning 
10,203,198 

Back-translated from 

monolingual EN 
60,055,592 

Back-translated from 

monolingual UK 
54,517,999 

 
Table 1: Number of used EN-UK sentence pairs 
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during post-processing. Inline casing has been 

shown as the optimal approach in handling casing 

(Etchegoyhen and Ugarte, 2020). 

After the application of the filtering pipeline, as 

well as the addition of tags (from inline casing or 

tagged back-translation) and NFC Unicode 

normalization, a separate BPE tokenizer with 18k 

merge operations is trained independently for 

English and Ukrainian with SubwordNMT 19 

(Sennrich et al., 2016a) and BPE-dropout with 

probability of 0.1 is applied on the source sentences 

for each translation direction (Provilkov et al., 

2020). 

3 System Overview 

Both submitted systems follow the Transformer 

architecture (Vaswani et al., 2017) and were trained 

using two RTX 2080 Ti GPUs with the utilization 

of the Fairseq toolkit (Ott et al., 2019). In the 

subsections that follow, we describe the training 

process of both NMT systems, as well as the 

techniques that we experimented with in order to 

improve translation quality. 

3.1 Model Architecture and Training 

The “big Transformer” architecture (Vaswani et al., 

2017) is used as our NMT model, although we 

made use of 8 encoder layers instead of 6, as 

increasing the number of encoder layers has been 

shown to improve performance in many scenarios 

(Subramanian et al., 2021; Wang et al., 2021b). We 

apply dropout with probability 0.3, activation 

dropout with probability 0.1 and attention dropout 

with probability 0.1. The Adam optimizer (Kingma 

and Ba, 2014) is used with a peak learning rate of 

0.0007 after 4,000 warmup steps which then 

follows inverse square root decay. The models are 

trained using half precision training (FP16), with 

2,800 tokens per batch, while the parameters are 

updated every 4 batches (Ott et al., 2018). 

Checkpoints are saved every 20,000 updates and 

every 10,000 updates when fine-tuning, while the 

training stops if the BLEU score on the validation 

set does not improve for 5 checkpoints. Finally, 

checkpoint averaging 5 was applied to all NMT 

systems, i.e., we average the parameters of the 5 

last checkpoints in order to obtain the final model 

parameters. 

 
19https://github.com/rsennrich/subword-

nmt  

3.2 Tagged Back-Translation 

Back-translation (Sennrich et al., 2016b; Edunov et 

al., 2018) has been proven as an effective data 

augmentation technique which leverages large 

amounts of monolingual data and is particularly 

useful for domain adaptation and low-resource 

settings (Bérard et al., 2019; Wang et al., 2021a; 

Wang et al., 2021b). We follow Caswell et al. 

(2019) in using tagged back-translation, i.e., 

inserting a <BT> tag in the beginning of each 

source sentence which has been synthetically 

generated; a method which is simple and robust.  

For each of the two translation directions, the 

reverse fine-tuned models trained on parallel data 

are used (with beam size 5) in order to generate the 

synthetic outputs (see Table 1). When we enrich the 

training set with back-translated data, we upsample 

the original parallel data by a factor of 2. 

3.3 Selected Fine-Tuning 

Fine-tuning is usually used to adapt a NMT model 

to a specific domain, i.e., to improve its quality on 

inputs with specific characteristics. Since this year 

the former news translation shared task changed its 

focus to more general translation capabilities, there 

is not a specific domain which we would like our 

systems adapted to. 

Nevertheless, fine-tuning has also been shown 

to have a corrective effect on systems which exhibit 

decreased performance after having been trained 

with large amounts of synthetic data (Tran et al., 

2021; Wang et al., 2021a). Thus, after the training 

of the NMT models ends, we continue to train them 

using a selected subset of the training set (see 

Section 2.3), while also halving the dropout 

probability to 0.15. 

3.4 Ensemble Decoding 

Ensemble decoding has been shown to have mostly 

minor effects on performance, although it can 

improve performance on specific translation 

directions (Oravecz et al., 2020; Tran et al., 2021; 

Subramanian et al., 2021; Wang et al., 2021a; Wang 

et al., 2021b). During inference, the probability 

distributions over the next token are averaged 
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according to the systems used in ensemble 

decoding. 

It is generally better to use ensemble decoding 

with NMT systems trained with different seeds or 

different subsets of the training set (Oravecz et al., 

2020; Subramanian et al., 2021). Unfortunately, 

hardware and time constraints did not allow us to 

follow this approach and thus, we experimented 

with ensembling 2 or 3 models from the resulting 

systems mentioned in the paper. 

3.5 Post-Processing 

In the WMT 2022 test data provided by the 

organizers, we observed specific peculiarities 

which were handled by post-processing scripts. In 

particular, the Ukrainian data used in the evaluation 

of the Ukrainian-English systems contained emojis 

which our systems were not able to handle. We 

used a simple post-processing script on the English 

outputs to copy emojis from the beginning or the 

end of the original Ukrainian input sentences. As 

regards the Ukrainian outputs of the English-

Ukrainian systems, we used a script to replace 

double quotes ("…") with angled quotation marks 

(«…»), as well as to fix anonymous placeholders 

according to their original style in the English 

inputs. 

4 Results 

We perform the evaluation of our systems using the 

FLORES101 test set (Goyal et al., 2022) and the 

WMT22 General Machine Translation test set 

given by the organizers. Scores are reported in 

terms of the detokenized case-sensitive BLEU 

score (Papineni et al., 2002) and have been 

computed with the SacreBLEU toolkit 20  (Post, 

2018). In Table 2, we can see the resulting scores 

 
20https://github.com/mjpost/sacreBLEU  

from our experiments, as well as the scores of the 

submitted models. 

4.1 English to Ukrainian 

The submitted NMT system for English to 

Ukrainian has been trained only with parallel data, 

fine-tuned with a subset of them (see Section 3.3) 

and its outputs have been post-processed (see 

Section 3.5). In Table 2, we can see that the effect 

of back-translation is negative for the EN-UK 

system. Selected fine-tuning exhibited a corrective 

effective which, nevertheless, was not enough to 

offset the initial degradation caused by the addition 

of synthetic data. However, we also obtain a small 

improvement (+0.2 BLEU on the WMT22 test set) 

when fine-tuning the baseline system trained only 

with parallel data. The largest increase in BLEU 

scores (+0.8) on the WMT22 test set, is observed 

after the application of post-processing on the 

outputs of the final system, which has been trained 

only with parallel data and fine-tuned on a selected 

subset of them. This increase does not concern the 

FLORES101 test set, since there are significant 

differences in the use of quotation marks between 

the two test sets. Finally, ensemble decoding did 

not provide any advantage in our experiments. 

4.2 Ukrainian to English 

As we can see in Table 2, back-translation initially 

degrades translation quality but, contrary to the 

results discussed in Section 4.1, ultimately leads to 

increased performance after fine-tuning with a 

selected set of the training data. Ensemble 

decoding usually has a marginal effect on NMT 

systems and we see a small increase by its use here 

as well. For this translation direction, we do not 

observe any significant difference after the 

application of post-processing, although we 

# System EN - UK UK - EN 

  FLORES101 WMT22 FLORES101 WMT22 

(1) Baseline 30.7 24.2 36.4 40.9 

(2) (1) + Selected Fine-Tuning 31.0 24.4 36.8 41.5 

(3) (1) + Back-Translation 30.5 23.7 37.4 40.9 

(4) (3) + Selected Fine-Tuning 30.8 24.0 37.7 41.7 

(5) Ensemble 30.7 24.0 37.8 41.9 

WMT22 Best + Post-Processing - 25.2 - 41.9 

Table 2: BLEU scores on FLORES101 and WMT22 test sets for  

English to Ukrainian (EN-UK) and Ukrainian to English (UK-EN) systems. 
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decided to use it in the final system, since we do 

not believe it has any negative effects (less than 50 

sentences were affected). Thus, the submitted 

NMT system for Ukrainian to English is based on 

all the techniques that we experimented with: back-

translation (see Section 3.2), selected fine-tuning 

(see Section 3.3), ensemble decoding (see Section 

3.4) and post-processing (see Section 3.5). 

5 Conclusion 

In this paper, we have presented the ARC-NKUA 

submission to the WMT22 General Machine 

Translation shared task for the English to Ukrainian 

and Ukrainian to English translation directions. 

The submitted systems follow the Transformer 

architecture and were determined after 

experimentation with back-translation, selected 

fine-tuning, and ensemble decoding. We showed 

that the corrective effect of fine-tuning with a 

subset of the training set can ultimately increase the 

translation quality of a system which has exhibited 

degradation due to having been exposed to a large 

number of synthetic data, while it also proved 

useful for systems trained only with parallel data. 

Our systems underperformed in comparison 

with other submitted systems, according to 

automatic scores calculated by the organizers21 , 

although human judgements will be used for 

official ranking. In the future, we aim at better 

investigating the effects of acquiring additional 

parallel and monolingual data, following different 

filtering, selection and pre-processing strategies, as 

well as implementing several techniques which 

have been generally shown to increase translation 

quality, but hardware and time constraints did not 

allow us to experiment upon. Possible techniques 

that could be investigated include reranking, larger 

NMT model architecture, iterative back-

translation, ensembling models trained on different 

subsets of the training set and exploiting higher-

resource similar languages. 
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Abstract

This paper describes the NiuTrans neural ma-
chine translation systems of the WMT22 Gen-
eral MT constrained task. We participate in
four directions, including Chinese→English,
English→Croatian, and Livonian↔English.
Our models are based on several advanced
Transformer variants, e.g., Transformer-ODE,
Universal Multiscale Transformer (UMST).
The main workflow consists of data filtering,
large-scale data augmentation (i.e., iterative
back-translation, iterative knowledge distilla-
tion), and specific-domain fine-tuning. More-
over, we try several multi-domain methods,
such as a multi-domain model structure and
a multi-domain data clustering method, to rise
to this year’s newly proposed multi-domain test
set challenge. For low-resource scenarios, we
build a multi-language translation model to en-
hance the performance and try to use the pre-
trained language model (mBERT) to initialize
the translation model.

1 Introduction

We participate in the WMT22 General
MT task, including Chinese→English
(ZH→EN), English→Croatian (EN→HR),
and Livonian↔English (LIV↔EN) in four
directions. All of our systems are built with
constrained data sets. We adopt some methods that
have been proven to work well in WMT over the
past few years (Li et al., 2019; Zhang et al., 2020;
Zhou et al., 2021). At the same time, we also
adopt some new model structures (Li et al., 2022;
Jiang et al., 2020), data clustering (Aharoni and
Goldberg, 2020), initialization (Guo et al., 2020),
and training methods (Liu et al., 2021), which are
described in detail below.

For data preparation and augmentation, since fil-
tering data could hurt the model performance on
the general domain machine translation task, we
apply several soft data filtering rules to preserve as
much data as possible (Zhang et al., 2020; Zhou

et al., 2021). To obtain the in-domain data, we use
the open-source toolkit XenC (Rousseau, 2013) and
specially try a domain clusters method based on
the BERT (Devlin et al., 2019) and RoBERTa (Liu
et al., 2019) model in the ZH→EN direction. We
also use back-translation (Sennrich et al., 2016a)
and knowledge distillation (Freitag et al., 2017) iter-
atively to increase the size of in-domain data, which
has been proved effective in recent years (Zhang
et al., 2020; Zhou et al., 2021).

For model architectures, our system is built
on several Transformer variants, including
Transformer-RPR, Transformer-DLCL (Wang
et al., 2019), Transformer-ODE (Li et al.,
2021), Transformer-UMST (Li et al., 2022),
and Transformer-based model with domain mix-
ing (Jiang et al., 2020). We build a wide and
deep model based on the pre-norm structure (Wang
et al., 2019) and relative position representa-
tion(RPR) (Shaw et al., 2018), inspired by the effec-
tiveness of the deep model. Furthermore, we select
four single models to build the ensemble model for
better performance. Particularly, in the EN↔LIV
direction, we build a multilingual machine trans-
lation system (Johnson et al., 2017) based on the
above models.

For model initialization, training, and decoding
strategies, we use nucleus sampling(Top-P) (Holtz-
man et al., 2020), top-k sampling(Top-K), and
beam search as decoding methods in all languages.
At the same time, we adopt scheduling sam-
pling (Liu et al., 2021) in ZH→EN direction during
fine-tuning. Furthermore, we attempt to initialize
the translation model with the pre-trained language
model based on lightweight adapter (Guo et al.,
2020) in the EN↔LIV direction.

Based on the softer filtering rules and appro-
priate hypo-parameter settings, we achieve better
results on the deep model than last year. In the
ZH→EN direction, fine-tuning with the normal
training and the scheduling sampling also obtain
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good results. Furthermore, we use an unsupervised
multi-domain data clustering method and some sim-
ple domain classification methods. However, we
find no significant domain differences in the con-
strained data. Initializing the translation model
with the pre-trained model leads to poor perfor-
mance in the EN↔LIV direction. It may be due to
the sensitivity to the size of the training set.

The rest of the paper is organized as follows:
In Section 2, we describe our system in detail, in-
cluding the data preprocessing and filtering, model
structure, back-translation and knowledge distilla-
tion, fine-tuning, and post-editing. In Section 3, we
introduce our experimental settings and results ac-
cording to different tasks and give a brief analysis.
In Section 4, we summarize our work.

2 System Overview

In Figure 1, we describe the whole process of our
system. We use three different colors to repre-
sent the different translation tasks. At the data
preparation stage, we perform several data pro-
cessing methods to obtain the training set. Then,
we train several models with different structures
and use back-translation(BT) and knowledge dis-
tillation(KD) iteratively based on ensemble model.
Finally, we obtain our final submission based on
fine-tuning and post editing.

2.1 Data Preprocessing and Filtering

In the word segmentation stage, we choose dif-
ferent word segmentation methods for the three
languages according to the language characteris-
tic. In ZH→EN, we use the NiuTrans (Xiao et al.,
2012) word segmentation tool for both Chinese
and English, which makes it easier for the model
to align the words in the bilingual sentence. In
EN↔LIV, we use Reldi-Tokeniser1 for each lan-
guage. In EN→HR, we use Reldi-Tokeniser for
Croatian and Niutrans for English. Further, we
apply BPE (Sennrich et al., 2016b) with 32K oper-
ations and not shared vocabulary in most language
pairs. Specifically, in EN↔LIV, we use five lan-
guages, including EN, CS, LIV, ET, and LV, to build
a multilingual translation system. We apply BPE
with different operations for different languages,
as shown in Table 1. Furthermore, we manually
construct a dictionary based on fast_align (Dyer
et al., 2013) to improve word-level alignment.

1https://github.com/clarinsi/reldi-
tokeniser/blob/master/LICENSE

language operations
EN 32K
CS 32K
LIV 10K
ET 10K
LV 10K

Table 1: Bpe operations in Livonian↔English

We mainly use the previous filtering
method (Zhou et al., 2021). Nevertheless,
we adopt softer filtering rules to improve the model
performance on the general MT task as follows:

• Filter out sentences that contain long words
over 40 characters and sentences that contain
over 200 words.

• The word ratio between the source and target
sentence must be in the range of [1/3, 3].

• Use Unicode to filter uncommon characters
that never appear in previous years’ test sets.

• Filter out the sentences which contain HTML
tags or duplicated translations.

We use the same filtering rules for monolingual
and bilingual data, and based on the filtering rules,
we retain more data to do domain filtering further.
Based on these filtering rules, we effectively reduce
the <UNK> proportion on the previous years’ new-
stest set, while retaining some longer sentences to
meet the challenge of the general test set.

2.2 Model Architectures

In recent years, the deep model has been widely
proven to be a very effective model structure (Wang
et al., 2019; Zhang et al., 2020; Zhou et al.,
2021), so we use a variety of deep models, includ-
ing Transformer-RPR, Transformer-DLCL (Wang
et al., 2019), and Transformer-ODE (Li et al.,
2021). In addition, we use a new model structure,
Transformer-UMST (Li et al., 2022), which uses
multi-scale information to enhance the representa-
tion ability of model representation. The explicit
information of the above model is shown in Table
2.

Transformer-RPR: Compare to Vanilla Trans-
former, we only increase the number of encoder
layers and add RPR into the self-attention at each
layer to efficiently consider the relative positions
between different representations.
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Figure 1: The whole process of our system.

Transformer-DLCL: Build a deeper network
with dense inter-layer connections based on the
vanilla Transformer, which can increase the infor-
mation flow at the lower layer.

Transformer-ODE: Based on the relationship
between numerical methods of Ordinary Differen-
tial Equations(ODEs) and Transformer, A more
efficient Transformer calculation method can be
obtained by solving ODEs.

Transformer-UMST: Enhance the representa-
tion ability of vanilla Transformer by importing
sentence-level and word-level information to atten-
tion.

2.3 Back-Translation And Knowledge
Distillation

Back-translation (Sennrich et al., 2016a) is a popu-
lar data augmentation method to improve the per-
formance of machine translation models. We use
iterative back-translation(Hoang et al., 2018) based
on the in-domain monolingual data to alleviate the
domain adaptation problem (Zhang et al., 2020).
In addition to use pseudo data directly, we also try
Tagged Back-translation (Caswell et al., 2019) in
the EN→HR direction. Based on iterative back-
translation, we utilize iterative knowledge distilla-
tion, which iteratively transforms knowledge (Zhou

et al., 2021) from an ensemble model to sub-models
based on sequential knowledge distillation (Hinton
et al., 2015; Kim and Rush, 2016). We use the
following steps for iterative back-translation and
knowledge distillation:

1. Select the good quality monolingual data from
the source language, filter the data closest to
the single domain by XenC toolkit, and obtain
bilingual pseudo-data by a forward transla-
tion.

2. Filter the data, mix the pseudo data with the
training set, and train the back translation
model.

3. Search for the best ensemble model combina-
tion among all existing models.

4. Use the ensemble model to translate the fil-
tered monolingual data of the target language,
and obtain the pseudo data.

We use the newstest2021 to evaluate our model
performance, and repeat steps 1-3(BT) or 2-4(KD)
of the above process until the model performance
no longer improves2. When performing steps 1

2It is worth noticing that we do a set of KD after a set of
BT, these two methods are combined sequentially
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and 4, we use various decoding methods, including
beam search, Top-K, and Top-P. In the tasks of
ZH→EN, EN→HR, the ratio of raw bilingual data
to pseudo data in the training set was about 2 : 1.
In the EN↔LIV tasks, the size of pseudo data is
much larger than the raw bilingual data.

2.4 Model Ensemble

The ensemble model can significantly improve the
translation quality by considering the output of
every single model. We search for the model en-
semble combined with the highest BLEU score on
the newstest2021 and use the model ensemble re-
peatedly in knowledge distillation, back-translation,
and fine-tuning. This ensures that we can obtain
the optimal models at every stage.

2.5 Fine-tuning

A model trained on a large amount of data may
not outperform a model trained on a small amount
of in-domain data (Zhou et al., 2021). This phe-
nomenon indicates a mismatch between the domain
of the training set and the test set, which becomes
an obstacle to performance improvement. For a
specific domain, we adjust the size of the training
datasets that are more focused on a single domain.
However, We find it hard to separate bilingual data
into multiple domains. In the case that the training
set domain is inseparable, fine-tuning by domain is
a reasonable way.

Fine-tuning the model with in-domain data is an
effective way to alleviate the domain mismatch (Lu-
ong and Manning, 2015; Zeng et al., 2021; Tran
et al., 2021). In the ZH→EN direction, we split the
test set into four domains according to the domain
label in the test set and fine-tune the model in the
single domain for each of the four domains.

Take the news domain as an example, and fine-
tuning process consists of the following three steps:

1. Translate sentences in the news domain to gen-
erate pseudo data by the best ensemble model
on newstest2021.

2. Fine-tune all sub-models in the ensemble
model with pseudo-data, newstest2020, and
newstest2021.

3. Based on the data mentioned in the previous
step and test2022, we utilize the scheduling
sampling strategy (Liu et al., 2021) for fine-
tuning further.

For the other three domains, we do not use Step
2 because we do not have any other in-domain data.

2.6 Post Editing
Post editing is a way to correct significant errors in
the model translation. In all directions, we insist
on using common rules to correct significant errors
in the model translation. The errors include:

• Misalignment of symbols and emoji between
source and target languages.

• The unnecessary space between Url, HTML,
and the text in parenthesis.

In the final submission, this process corrects ap-
proximately 2% of all tokens in the test set (most
of them are symbols such as extra Spaces between
characters).

3 Experiment

3.1 Experiment Settings
The implementation of our models was based on
fairseq (Ott et al., 2019), and the total data we
used were shown in Table 3. In the ZH→EN di-
rection, All models were trained on 8 RTX 2080Ti
GPUs, and all other direction models were trained
on 4 RTX 3090 GPUs. We used Adam opti-
mizer (Kingma and Ba, 2015) with β1 = 0.9,
β2 = 0.997 during training. Except for the base
model, all of our models adopted the pre-norm
structure (Wang et al., 2019). Following the idea
of the work (Wang et al., 2019), we adopted the
deep and wide model to increase the model capac-
ity (Zhou et al., 2021; Wang et al., 2019). Under
the GPU memory constraint, we accumulated the
gradient four times and set the batch size to 2048
tokens.

For the deep model, we trained the model for 15
epochs at most. We set max learning rate = 0.002
and warmup step = 8000 for all deep models. All
dropout probabilities were 0.1. Meanwhile, we also
used FP16 to accelerate the training process. All ex-
periments were evaluated on newstest2021 using
SacreBLEU (Post, 2018) in the EN→HR and the
EN↔LIV directions. In the ZH→EN direction, we
used multi-bleu.perl3. At last, we introduced a
patience factor during decoding, which provided a
more flexible decoding depth (Kasai et al., 2022).
However, this method led to a significantly slower
decoding speed. So we only applied this method to
generate the final output.

3https://github.com/moses-smt/mosesdecoder
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Model depth P&R Head Hidden Size Filter Size Batch size update freq
BASE 6 % 8 512 2048 4096 2
RPR 24 ! 8 512 4096 2048 4
DLCL 25 ! 8 512 4096 2048 4
ODE 6 ! 16 1024 4096 1024 16
ODE 12 ! 16 1024 4096 1024 16
UMST 24 ! 8 512 4096 2048 4

Table 2: Explicit information of model structure, P&R indicates whether to use the pre-Norm and relative position
representation(RPR)

Bilingual
Monolingual
EN Other

ZH→EN 12.10M 8M 11M
EN→HR 46M 5M 20M
EN↔LIV 600 0.15M 0.04M

Table 3: The sentences we use in each direction after
filtering(The M stands for million).

3.2 ZH→EN

For the ZH↔EN tasks, we only submit in the
ZH→EN direction. We filter out the part of data
from ParaCrawl, News Commentary V16, Wiki-
Matrix, UN Parallel Corpus V1.0, and the CCMT
Corpus as the training set. We use the filtering rules
and XenC mentioned above for data filtering. We
end up with 12 million raw bilingual data as the
training set.

Regarding the multi-domain adaptation, we try
an unsupervised data clustering method that uses
the pre-trained model’s hidden state to do domain
classification in the training set. We also use TF-
IDF to select keywords from the test set to repre-
sent each domain and then use these keywords to
select in-domain sentences from constrained data.
Unfortunately, the aforementioned methods show
poor performance except in the news domain. We
find no significant domain difference between the
constrained bilingual data and constrained mono-
lingual data we used.

Based on the training set, we train several deep
models mentioned above. We use newstest2020
as the valid set and newstest2021 as the test set to
modify the hyper-parameters and find the optimal
ensemble combination. In addition, we also realize
a multi-domain translation model which introduces
layer-wise Domain Mixing into the vanilla Trans-
former. However, the model performs poorly on
the inseparable domain data, so it is not included

in our model ensemble.
For the first round of back-translation, we filter

multiple groups’ English monolingual data from
the News crawl, News discussions, Europarl v10,
News Commentary, Common Crawl, and Leipzig
Corpora. The amount of data is about 4 million
to 8 million sentences. We use the best ensemble
model to translate monolingual data with Beam
Search, Top-K, and Top-P decoding. By directly
concatenating the raw training and pseudo data,
we fine-tune the existing model and achieve +0.85
BLEU improvement after the first back-translation
iteration, then achieve +0.59 BLEU improvement
after the second back-translation iteration.

For knowledge distillation, we filter 3 million
monolingual data from News crawl, News Com-
mentary, Common Crawl, Extended Common
Crawl, and Leipzig Corpora. We use the best en-
semble model to translate the monolingual and
obtain the pseudo data, and then fine-tune each
sub-model in the ensemble model. We obtain the
improvement of 0.16 BLEU points. We select the
best four models to construct the ensemble model
every time during back-translation and knowledge
distillation in both directions.

For fine-tuning, we first do fine-tuning
on the news domain to search the opti-
mal hypo-parameters. We use newstest2019,
newstest2020 in both ZH→EN and EN→ZH di-
rections as the training set, and obtain the opti-
mal learning rate of 0.001 on newstest2021. We
achieve +0.93 BLEU improvement in the ZH→EN
direction. Then we add newstest2021 to the train-
ing set for fine-tuning. In order to improve the
performance of the model in a single domain, we
divide the test2022 into five domains according
to the domain labels: news, social, conversational,
e-commerce, and biomedical. Finally, we do do-
main adaptation separately in four domains except
biomedical by fine-tuning the model with schedul-
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ing sampling.
At last, we use four single-domain models to

generate translation in every single domain and use
post-processing methods to correct the error in the
translation, which brings us +0.81 BLEU improve-
ment in the ZH→EN direction. Our experimental
results are shown in Table 4.

3.3 EN→HR

For the EN→HR tasks, we choose ParaCrawl v9,
Tilde MODEL corpus, WikiMatrix, and OPUS to-
tal of four parallel data corpora of about 90M. We
choose all of the News Crawl and Leipzig Corpora
for the Croatian monolingual data of about 20M. In
order to strengthen the generalization of the model
in the social, conversational, and e-commerce do-
mains, we choose the Web and Wikipedia parts
from Leipzig Corpora about 10M for the English
monolingual data to distill our models.

In addition to the common data filtering process,
we calculate the Levenshtein ratio of two adjacent
sentences from sorted sentences to remove dupli-
cation sentences whose Levenshtein ratio are not
less than 0.85. After the data filtering, about 46M
sentence pairs are left to build our system. Addi-
tionally, we use a shared vocabulary and set the
merge operations of BPE to 32K.

Since the domain of the official development set
focuses on e-commerce and reviews, we make a
general domain test set by ourselves to evaluate
the model generalization ability better. To use the
Croatian monolingual data, we implement tagged
back-translation, which brings us +0.35 BLEU im-
provement on the official development set and +0.5
BLEU improvement on our test set. We also imple-
ment knowledge distillation to use English mono-
lingual data, which brings us +0.3 BLEU improve-
ment on the official development set and +0.14
BLEU improvement on our test set.

We use XenC to select 5M sentence pairs sim-
ilar to the official development set from the origi-
nal training set and then fine-tune each model for
several epochs. However, we find that not only
fine-tuning significantly reduces the model’s gener-
alization, but also has a slightly better performance
on the official development set and significantly
worse performance on our test set. Finally, we put
all models together to search for the best ensem-
ble greedily. This method brings us +0.51 BLEU
improvement on the official development set and
+0.25 BLEU improvement on our test set.

During post-processing, we use rules to adjust
the order of punctuation, case inconsistencies and
remove some extra spaces, which brings us +0.43
BLEU improvement on the official development
set.

3.4 EN↔LIV

For the EN↔LIV tasks, we create a many-to-many
multilingual submission for WMT2022. The mul-
tilingual submission includes seven language di-
rections, which are CS→EN, ET→EN, LV→EN,
EN↔LIV, ET→LIV, and LV→LIV. For CS→EN
, we only use ParaCrawl v9 dataset and obtain
50M parallel data after cleaning. After the data
filtering, we sample the top 10M data according
to a language model trained with CS→EN data.
For ET→EN, LV→EN, EN↔LIV, ET→LIV, and
LV→LIV directions, we only use OPUS liv4ever
v1 dataset, separately obtaining 956, 997, 540,
11420, 10786 parallel data after cleaning. We use
the valid set and test set in OPUS liv4ever v1 data
set as our valid set and test set. It is worth noting
that we delete the same sentences in the test set and
the train set.

We use a combination of multiple language direc-
tions to train the baseline model, including many-
to-many and many-to-one, and find that models
trained by all language directions data and many-
to-many is 1 BLEU point higher on average than
the model trained by several language directions
data or many-to-one in the test set. We find that
data in different language directions can provide
semantic help to EN↔LIV model because CS, LV,
ET and LIV are similar languages. So, we select
all language directions data and many-to-many to
train our model.

We also use pre-trained model for language mod-
eling. Since the constrained track, we choose the
AB-Net (Guo et al., 2020) model whose encoder
and decoder are initialized with mBERT. However,
the performance of AB-Net model was lower than
that of the baseline model, so it is not included
in our final submission results. The poor perfor-
mance may be due that: first, the pre-trained model
doesn’t contain LIV, and second, the parallel data
of EN↔LIV is too scarce. This leads to a big chal-
lenge to transform the knowledge of the pre-trained
model into the EN↔LIV translation model.

Due to the lack of EN↔LIV parallel data, the
model cannot capture the alignment information
at the word level. Therefore, we make a parallel
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System ZH→EN EN→HR EN→LIV LIV→EN
Baseline 24.27 31.28 4.1 6.57
Deep model 27.2 32.68 5.66 8.79
+ Dict − − 8.16 13.79
+ Iteratively BT 28.64 33.03 − −
+ Iteratively KD 28.8 33.33 8.96 15.99
+ Fine-tuning 29.73 − 10.26 16.89
+ Ensemble - 33.84 10.48 16.95
+ Post edit 30.54 34.27 − −

Table 4: BLEU evaluation results on the WMT 2021 ZH→EN, EN↔LIV test sets and WMT 2021 EN→HR
development sets.

dictionary of EN↔LIV. First, we use fast_align 4

tool to align the words on the EN↔LIV dataset,
and then manually check and modify it. Finally, we
obtain a parallel dictionary of EN↔LIV with a dic-
tionary size of 3127. We mix the parallel dictionary
and parallel data of EN↔LIV to obtain new paral-
lel data. Then, we train the model by new parallel
data and bring us +5 BLEU improvement in the
LIV→EN direction and +2.5 BLEU improvement
in the EN→LIV direction.

We also use iterative back-translation and it-
erative knowledge distillation to enhance the
model. Since the many-to-many method, the back-
translation implemented in the LIV→EN direction
is the same as the knowledge distillation in the
EN→LIV direction. During the back-translation
on the EN→LIV direction, we use 40000 LIV
monolingual data from OPUS liv4ever v1 data set.
And then during the knowledge distillation on the
EN→LIV direction, we use the test set in OPUS
liv4ever v1 as in-domain data, and we use the XenC
tool to sample 150000 EN monolingual data from
Europarl v10 based on in-domain data. We gen-
erate pseudo data by using both post-ensemble
and ensemble methods. We obtain the improve-
ment of 2.2 BLEU points and 0.8 BLEU points
in the back-translation (knowledge distillation) in
LIV→EN and EN→LIV. After KD, we use the
OPUS liv4ever v1 valid set to fine-tune our models
for five epochs with the 0.0003 learning rate and
obtain +0.9 and +1.3 BLEU improvement in the
LIV→EN and EN→LIV directions.

3.5 Submission Results

The results of our best submissions in four di-
rections this year are shown in Table 5. In the
EN→HR direction, our system performed well

4https://github.com/clab/fast_align

Direction Submission
ZH→EN 26.2
EN→HR 18.1
EN→LIV 12.3
LIV→EN 13.0

Table 5: Our final submission results in four directions.

trained on large amounts of bilingual data. In the
EN↔LIV direction, our multilingual model perfor-
mance is better than the model initialized by the
pre-trained model(e.g., mBERT), indicating that
the multilingual model has potential in the low re-
source language. In the ZH→EN direction, KD is
not performing well enough in newstest2021 as
usual. On the one hand, this may be related to our
data filtering method and the domain changes on
the test set; on the other hand, it may be related to
our stronger deep model.

4 Conclusion

This paper introduces our submissions on WMT22
in four directions. We train our system with con-
strained data in all directions. The system is con-
stituted by the ensemble model based on multiple
deep models.

For training data, we use a softer data filtering
method to obtain more data and make the model
more robust in the general domain. Based on this
data, model performance is better than our last
year’s systems. We use iterative back-translation
and knowledge distillation methods which have
been proven to be very effective in the past. In ad-
dition, fine-tuning using both normal training and
scheduling sampling also achieves good results.

In the ZH→EN direction, we mainly build
the news domain translation model. Also, we
try the multi-domain data clustering method and
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multi-domain adaptation method to build the multi-
domain model. However, because the sentences
in constrained data have no noticeable domain dif-
ference, the performance of the above method is
not satisfactory. In the EN↔LIV direction, we try
the multilingual model and initialization method,
which initialize the translation model with the pre-
trained model. We find that the multilingual model
show more considerable potential than the model
initialized with mBERT, even under minimal data.
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Abstract

In recent years, large multilingual pre-trained
neural machine translation model research has
grown and it is common for these models to
be publicly available for usage and fine-tuning.
Low-resource languages benefit from the pre-
trained models, because of knowledge transfer
from high- to medium-resource languages. The
recently available M2M-100 model is our start-
ing point for cross-lingual transfer learning to
Finno-Ugric languages, like Livonian. We par-
ticipate in the WMT22 General Machine Trans-
lation task, where we focus on the English-
Livonian language pair. We leverage data from
other Finno-Ugric languages and through that,
we achieve high scores for English-Livonian
translation directions. Overall, instead of train-
ing a model from scratch, we use transfer learn-
ing and back-translation as the main methods
and fine-tune a publicly available pre-trained
model. This in turn reduces the cost and dura-
tion of training high-quality multilingual neural
machine translation models.

1 Introduction

We participate in the WMT 2022 General Machine
Translation shared task where we submit a system
for English-Livonian and Livonian-English transla-
tion directions. Our system is trained in the uncon-
strained setting utilizing data from other languages
that are all in a way related to Livonian.

Recently, the development of large multilingual
models has been increasing (Johnson et al., 2017;
Gu et al., 2018; Fan et al., 2021; NLLB Team et al.,
2022) and thus there are multiple pre-trained mul-
tilingual models available for further fine-tuning
to a specific task. Fine-tuning these models on in-
domain data saves time and computational costs
by not having to train a multilingual model from
scratch. We utilize the M2M-100 multilingual pre-
trained neural machine translation (NMT) model
(Fan et al., 2021) and do cross-lingual transfer
learning to low-resource language pairs from the

Finno-Ugric language family, including the Livo-
nian language. We further improve our model
with two back-translation iterations and a final fine-
tuning on languages that have available original
parallel data paired with Livonian.

The languages we use to support the English
(en)-Livonian (liv) directions are from the Finno-
Ugric language family or geographically close to
that family of languages: Finnish (fi), Estonian
(et), Latvian (lv), Norwegian (no), Võro (vro),
North Sami (sme), South Sami (sma), Inari Sami
(smn), Skolt Sami (sms), Lule Sami (smj).

The structure of the article consists of giving
insight into the related work in the field of low-
resource NMT and from the Finno-Ugric language
family perspective in Section 2, the description
of data in Section 3, the overview of our system
architecture and training methods in Section 4, de-
scription of experiments in Section 5 and the results
in Section 6.

2 Related work

2.1 Low-resource setting

There have been a lot of efforts in trying to achieve
high-quality translation for low-resource languages
in order for them to catch up with high- and
medium-resource languages. The main benefits
seem to come from performing transfer learning to
low-resource languages with previous knowledge
acquired from a high-resource language (Gu et al.,
2018).

Another aspect is data augmentation. Com-
monly, low-resource languages have a lot more
monolingual data available than parallel data,
which enables producing synthetic parallel sam-
ples that have been shown to improve the accuracy
of translation (Sennrich and Zhang, 2019).

For the Finno-Ugric languages, in Rikters et al.
(2018), they note that in efforts of achieving better
translation quality for Estonian, training a multi-
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lingual model gets the best result. It usually helps
even more if the high- or medium-resourced lan-
guages in the mix during training are closely re-
lated to the low-resource languages as shown in
Tars et al. (2021). In Kocmi and Bojar (2018), the
authors proved transfer learning to be very bene-
ficial for languages with low amounts of parallel
resources. However, in some cases, they saw more
improvements when the high-resource language
was not related to the low-resource language.

2.2 M2M-100

M2M-100 is a massively multilingual pre-trained
machine translation model featuring many-to-many
translations between 100 languages (Fan et al.,
2021). It was trained on 7.5 billion parallel
sentence pairs which, unlike datasets for many
previous approaches, were chosen to make the
dataset non-English-Centric. Fan et al. (2021)
were able to compose the non-English-Centric
training dataset through the use of bitext mining
and back-translation. The improvement of M2M-
100 over previous models is especially visible in
non-English directions and low-resource languages.
The vast amount of training data, many supported
languages, and promising results reported by Fan
et al. (2021) give us reason to believe that M2M-
100 would be also a good starting point for training
a Finno-Ugric system.

3 Data

3.1 Additional languages

We did not limit ourselves to only English-Livonian
training data, because the amount of parallel data
for that language pair seemed too scarce to train a
quality machine translation system. Instead, we de-
cided to leverage our previous research into Finno-
Ugric languages (Tars et al., 2021) and include the
language pairs that are closely related to Livonian
grammatically as well as geographically.

We added four languages that were high- or
medium-resource: Estonian, Finnish, Latvian, Nor-
wegian. The aim of including these languages was
for them to aid the low-resource Finno-Ugric lan-
guages in the training process. The low-resource
languages that we included were: Võro, North
Sami, South Sami, Inari Sami, Skolt Sami, Lule
Sami.

As Livonian has historically been spoken mainly
in the areas that are nowadays Latvia, its language
has shaped Livonian noticeably, even though Lat-

vian itself is part of the separate Baltic branch of
languages. Multiple low-resource languages that
we also included are Sami languages, which are
mainly spoken in the areas of Norway, Sweden
and Finland. Most of the parallel data available for
Sami languages is paired with either Finnish or Nor-
wegian. Norwegian is not part of the Finno-Ugric
language family, but as was the case for Latvian,
it is spoken in the same area as some of the Sami
languages and has influenced them over time, for
example sharing some orthographic symbols in the
vocabulary.

3.2 Pre-processing and filtering

The data not provided by the shared task was col-
lected from various openly available sources, such
as META-SHARE1 and translation memory com-
piled by the Arctic University of Norway2. Further
details about the data sources are described in Tars
et al. (2021). We compiled all of the filtered paral-
lel data and the monolingual data and publish it on
our HuggingFace page 3.

Following the collection phase, we applied mul-
tiple pre-processing and filtering heuristics to the
parallel data, as well as deduplicated the whole
dataset. We normalized punctuation and detok-
enized the data with the help of Moses scripts, how-
ever, we modified the normalization script for it
to be more applicable to Finno-Ugric languages4.
Detokenization language code defaulted to English
if the script did not recognize the language code of
a low-resource language. Filtering and whitespace
normalization was done with the OpusFilter tool
(Aulamo et al., 2020). We provide a list of filters
used:

• maximum segment length: 1000 characters or
400 words

• maximum word length: 50 characters

• source and target segment length difference:
max 3 times

• ratio of numeric characters in segment: 0.5 or
less

1https://doi.org/10.15155/
1-00-0000-0000-0000-001A0L

2https://giellalt.uit.no/tm/TranslationMemory.
html

3https://huggingface.co/datasets/tartuNLP/
finno-ugric-train

4https://github.com/Project-MTee/model_
training/blob/main/normalization.py
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lang-pair et-vro fi-sme fi-sma fi-smn fi-sms no-sma no-sme no-smj sme-sma sme-smj sme-smn en-liv et-liv lv-liv

filtered 29 775 62 837 2766 9459 2708 15 702 195 970 11 627 19 963 14 985 894 280 12 887 10 763

Table 1: Parallel data numbers after filtering (in sentence pairs).

language vro sma sme sms smn smj liv

nr of segments 162 807 55 088 33 964 76 685 122 916 128 180 40 329

Table 2: Monolingual data numbers.

• ratio of alphabetic characters in latin alphabet:
1

• ratio of alphabetic characters in segment: 0.75
or more

• ratio of similar numerals between segments,
with zeros removed: 0.5 or more

Some of the values are default from OpusFilter, but
others had to be tuned to filter out the noisy training
samples that were left undetected with the default
parameters. The data numbers of all the parallel
data for all of the translation directions left after
filtering can be seen in Table 1. Additionally, we
sampled 20 000 segments from corpora available
in OPUS (Tiedemann, 2012) for each language pair
between high- to medium-resource languages (et,
en, lv, no, fi).

3.3 Monolingual data

We also gathered monolingual data for all the lan-
guages involved. The monolingual data for high-
and medium-resourced languages was acquired
from previously available WMT sources. For the
low-resource languages, the data was scraped from
various files from the web, that were collected ei-
ther by the Arctic University of Norway or our-
selves.

We sampled 500 000 random segments for all
of the high- to medium-resource languages from
publicly available data (et, en, lv, no, fi). The
amounts of monolingual data for low-resource lan-
guages can be seen in Table 2. No filtering was
done to the monolingual data, but the data segments
all went through the same detokenization and nor-
malization scripts that were applied to parallel data.
After the back-translation iterations explained in
Section 4.2, the synthetic parallel samples were
also not filtered.

For the English-Livonian directions, the only
parallel and monolingual data used was the data
provided by the WMT.

3.4 Evaluation benchmarks

In order to evaluate the multiple translation direc-
tions we had other than English-Livonian, we cre-
ated new test sets5 for them, because there are no
publicly available benchmarks for translation di-
rections like Finnish-Inari Sami, for example. The
test sets are composed of held-out data from the
parallel datasets. For all the language pairs con-
taining at least one of the low-resource languages,
we extracted 500 sentences for evaluation and 200
sentences for validation.

4 System overview

4.1 M2M-100 settings

Our final system builds on the large pre-trained mul-
tilingual neural machine translation model M2M-
100. Livonian along with other low-resource Finno-
Ugric languages were not part of the training pro-
cess of M2M-100. We use the HuggingFace imple-
mentation of M2M-1006. Fine-tuning this model
for previously unseen languages requires introduc-
ing new symbols to the vocabulary and increasing
the embedding matrix. We created scripts7 that
allow expanding the embedding matrix of a pre-
trained model and thus make it possible to do cross-
lingual transfer learning.

4.2 Stages of training

This section describes the training of our final sys-
tem. The first stage of transfer learning used all
of the original Finno-Ugric parallel data that we
had. We decided to go with the M2M-100’s 1.2
billion parameter model (1.2B) as our starting point
because our previous experiments showed that it
improves more than the smaller, 418 million pa-
rameter model (418M) on the data that we have
(Tars et al., 2022).

5https://huggingface.co/datasets/tartuNLP/
finno-ugric-benchmark

6https://huggingface.co/docs/transformers/
model_doc/m2m_100

7https://github.com/TartuNLP/m2m-100-finetune
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After that, we performed the first iteration of
back-translation with all of the monolingual data.
Combining the original parallel data and the syn-
thetic data, we fine-tuned the M2M-100 1.2B
model again and performed the second iteration of
back-translation with the newly fine-tuned model.
The monolingual data stayed the same.

For the next step we went back to do transfer
learning from the beginning on the 1.2B model, but
this time the data we used consisted of the original
parallel data and the data produced in the second
iteration of back-translation, leaving the data from
the first iteration out. Finally, we fine-tuned the
model on original parallel data for language pairs
between en-liv-et-lv.

5 Experiments

5.1 Experimental settings

All our systems, including the final system, were
trained on one Tesla A100 GPU with 40GB vRAM.
Our experiments were done on two versions of the
M2M-100 model: 418M model and 1.2B model.
The learning rate was initialized with the default
value from HuggingFace code. Batch size was 12
with gradient accumulation steps set to 8.

5.2 Different experiments

The size of the model was one aspect of experi-
mentation that we looked into. As smaller mod-
els are easier and quicker to fine-tune and deploy,
comparing the 418M and 1.2B models seemed nec-
essary. 1.2B model has more parameters, but the
intuition was that maybe the 418M model is also
big enough for this specific dataset, because it is
relatively small.

The main approach to enhance en-liv results
was leveraging information from other Finno-Ugric
languages. We trained models on all the Finno-
Ugric language data described, as well as dividing
the languages into even smaller groupings, as de-
scribed in Tars et al. (2022). Subsequently, we
performed additional experiments to see whether
the added languages really help the Livonian lan-
guage.

We repeated the stages of training described in
Section 4.2 but with different-sized models and
with a smaller dataset, consisting only of languages
paired with Livonian.

COMET-A ↓ ChrF-all
en-liv -36.8 39.2
liv-en -5.8 53.5

Table 3: Automatic metric results of our primary system
on WMT22 test set.

6 Results

6.1 Automatic metrics
According to the automatic metric results, our sys-
tem performs the best in the Livonian-English trans-
lation direction and achieves second place in the
English-Livonian direction. The metrics that were
used were COMET and ChrF. The results of the
automatic evaluation can be seen in Table 3.

During the development period, we measured
most of our additional experiments on BLEU. The
results of those experiments compared to the earlier
results for English-Livonian translation directions
can be seen in Table 4. For further understanding
of where the gain in performance happened, we
describe the results of intermediate models that
were trained before arriving at the final system.

Firstly, we can observe that en-liv results are
about half of the liv-en results and that the BLEU
score improvements come from different tech-
niques for either of the translation directions. For
en-liv, the main source of improvement is the last
stage of fine-tuning the model on the original paral-
lel en-et-lv-liv data. For liv-en however, the
biggest gain happens with back-translation. This
could be explained by the amount of monolingual
data, as Livonian had only about 40 000 segments
but for English, we sampled 500 000 segments.

Another aspect we can point out is the relatively
small difference between the smaller (418M) and
the larger (1.2B) model results. The 1.2B model
is better at every stage as expected, but consider-
ing how much more computational cost and de-
ployment resources the larger model requires, the
trade-off in quality might be tolerable.

Lastly, compared to the previous best results re-
ported by Rikters et al. (2022), our models surpass
those results by about 4 BLEU for en-liv and 12
BLEU for liv-en.

6.2 Results for other language pairs
Additionally, we report results on our held-out test
set described in Section 3.4 for low-resource lan-
guage pairs that were a part of our final system
development. The results can be seen in Table
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en-liv liv-en

1.2B (baseline) 10.15 18.92
+ bt1 11.24 28.67
+ bt2 12.16 29.37
+ tuned on liv 15.19 31.06
+ bt1 only-liv 10.66 27.88
+ bt2 only-liv 11.21 29.85
+ tuned on liv 11.56 30.33
Rikters et al., 2022 11.03 19.01

en-liv liv-en

418M (baseline) 10.29 15.78
+ bt1 11.25 27.52
+ bt2 10.62 27.38
+ tuned on liv 12.83 27.23
+ bt1 only-liv 11.39 27.74
+ bt2 only-liv 11.63 28.81
+ tuned on liv 11.53 29.27

11.03 19.01

Table 4: Experiment results on BLEU. “1.2B” and “418M” refer to models trained with all original parallel data.
“bt1” is trained on parallel + first back-translation iteration data, “bt2” on parallel + second back-translation iteration
data. “only-liv” - only data between et-en-lv-liv languages was used for training. “tuned on liv” refers to the
“bt2” model that was tuned on et-en-lv-liv original parallel data. Last row represents previously best results for
en-liv-en by Rikters et al. (2022).

5 and Table 6. The language pairs were evalu-
ated on the final system and although the final sys-
tem was chosen on en-liv-en validation data, we
see good overall results for other low-resource lan-
guage pairs as well. However, the results in Table
5 are significantly lower than the results reported
in Tars et al. (2022) on the same test data. This is
probably caused by the fact that as the last train-
ing stage, the final system was fine-tuned only on
et-en-lv-liv original parallel data.

For et-liv-et and lv-liv-lv directions, how-
ever, we report new state-of-the-art results on the
test data that was also used in Rikters et al. (2022).

7 Conclusion

Large pre-trained multilingual neural machine
translation models prove to be beneficial to low-
resource Finno-Ugric languages, such as Livonian.
We placed in the top 2 for the English-Livonian lan-
guage pair in the WMT22 General Machine Trans-
lation shared task. Training in an unconstrained
setting gets reasonable and good-quality results, es-
pecially when using languages close to Livonian to
help achieve a better translation quality. In the fu-
ture, we plan to test additional and more recent pre-
trained multilingual models as a starting point for
cross-lingual transfer learning and add more low-
resource Finno-Ugric languages into the dataset.

Limitations

The 1.2B M2M-100 model has a lot of parameters
which makes deploying this model very costly and
difficult because it needs a lot of memory and is
computationally unfeasible. In turn, it also makes
the training somewhat slower in terms of loading

the model parameters and updating them. We are
working on trying to reduce the vocabulary and
number of parameters, by removing parts of the vo-
cabulary not necessary for Finno-Ugric languages.
Another thing we left out of the process was filter-
ing monolingual and synthetic data, which might
be a useful addition to the pre-processing pipeline.
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Abstract

Previous works mostly focus on either multi-
lingual or multi-domain aspects of neural ma-
chine translation (NMT). This paper investi-
gates whether the domain information can be
transferred across languages on the composi-
tion of multi-domain and multilingual NMT,
particularly for the incomplete data condition
where in-domain bitext is missing for some
language pairs. Our results in the curated leave-
one-domain-out experiments show that multi-
domain multilingual (MDML) NMT can boost
zero-shot translation performance up to +10
gains on BLEU, as well as aid the generali-
sation of multi-domain NMT to the missing
domain. We also explore strategies for ef-
fective integration of multilingual and multi-
domain NMT, including language and domain
tag combination and auxiliary task training. We
find that learning domain-aware representations
and adding target-language tags to the encoder
leads to effective MDML-NMT.

1 Introduction

Multilingual NMT (MNMT), which enables a sin-
gle model to support translation across multiple
directions, has attracted a lot of interest both in
the research community and industry. The gap be-
tween MNMT and bilingual counterparts has been
reduced significantly, and even for some settings,
it has been shown to surpass bilingual NMT (Tran
et al., 2021). MNMT enables knowledge sharing
among languages, and reduces model training, de-
ployment, and maintenance costs. On the other
hand, multi-domain NMT aims to build robust
NMT models, providing high-quality translation
on diverse domains. While multilingual and multi-
domain NMT are highly appealing in practice, they
are often studied separately.

To accommodate the domain aspect, previous
MNMT works focus on learning a domain-specific

∗Work done while doing internship at eBay Inc.

Figure 1: An example of the multi-domain multilingual
incomplete data condition (best seen in colours). (a)
The colour indicates the availability of bitext in the
corresponding domain for each language. (b) Domain
and language-pair matrix for the data condition in (a).

MNMT by finetuning a general NMT model on the
domain of interest (Tran et al., 2021; Bérard et al.,
2020). Recently, Cooper Stickland et al. (2021) pro-
pose to unify multilingual and multi-domain NMT
into a holistic system by stacking language-specific
and domain-specific adapters with a two-phase
training process. Thanks to the plug-and-play abil-
ity of adapters, their system can handle translation
across multiple languages and support multiple do-
mains. However, as each domain adapter is learned
independently, their adapter-based model lacks the
ability of effective knowledge sharing among do-
mains.

In this paper, we take a step further toward uni-
fying multilingual and multi-domain NMT into a
single setting and model, i.e., multi-domain multi-
lingual NMT (MDML-NMT), and enable effective
knowledge sharing across both domains and lan-
guages. Unlike the complete data assumption in the
multi-domain single language-pair setting where
training data is available in all domains, we assume
the existence of bitext in all domains for only a sub-
set of language-pairs, as illustrated in Figure 1(a).
In fact, it is highly improbable to obtain in-domain
bitext for all domains and all language pairs in
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many real-life settings. Depending on the avail-
ability of parallel data, we categorise a translation
task from a source to a target language into four
categories based on the following dimensions:

• in-domain/out-of-domain, wrt to the domain
of interest, and

• seen/unseen, wrt to the translation direction
during training.

Please note the domain and language-pair ma-
trix in Figure 1(b). In this figure, parallel data
available in the training set specifies the group
A, the in-domain seen tasks. Given this training
dataset, most MNMT research focuses on cross-
lingual transfer to in-domain unseen translation
tasks (A→C), while the studies on multi-domain
NMT and domain adaptation seek to generalise to
out-of-domain seen translation tasks (A→B). In-
tegrating domain and language aspects in the in-
complete data condition gives rise to an interesting
and more challenging setting that transfers to out-
of-domain unseen translation tasks (A→D). We
hypothesise that the out-of-domain “seen and un-
seen” translation tasks (A→B+D) can benefit from
the in-domain translation tasks if there exists the
domain transfer across languages in MDML-NMT.

Specifically, we ask the following research ques-
tions: (1) Do out-of-domain translation tasks bene-
fit from the out-of-domain and in-domain bitext in
other seen translation pairs? and (2) What is effec-
tive method to handle the composition of domains
and languages? Furthermore, beyond the cross-
lingual transfer (A→C) and the out-of-domain gen-
eralisation (A→B), we also consider the challeng-
ing setting where the translation direction of inter-
est may not have any bitext in any domain, i.e. the
zero-shot setting (A→D).

In general, we can vary the degree of domain
transfer based on the number of domains in which
parallel data for a translation task is available. Com-
bining with the number of language pairs of inter-
est, there are large numbers of incomplete data
conditions, even for our toy examples in Figure 1.
In this study, we assume the highest degree of do-
main transfer and carefully design controlled ex-
periments where one domain is left out for some
language pairs (Table 1). We then examine the
potential of MDML-NMT on this incomplete data
condition. We also explore training strategies for
effective integration of multi-domain and multi-
lingual NMT, mainly on (i) how to combine the

LAW IT KORAN MED SUB

En-Fr ✔ ✔ ✔ ✔ ✔

En-De ✔ ✔ ✔ ✔ ✔

De-Fr ✔ ✔ ✔ ✔ ✔

En-Cs ✗ ✔ ✔ ✔ ✔

En-Pl ✗ ✔ ✔ ✔ ✔

Table 1: Illustration of leave-one-out LAW experiment
setting. ✗, ✔describes whether there is bitext in the
corresponding domain for the given language pairs.

language and domain tags, and (ii) using auxiliary
task training to learn effective representations. Our
contributions are as follows:

• We investigate effective strategies to jointly
learn multi-domain and multilingual NMT
models under the incomplete data condition.

• Our empirical results show that MDML-NMT
model can improve translation quality in
the zero-shot directions by mitigating the
off-target translation issue that an MNMT
model translates the input sentence to a wrong
target language. Additionally, MDML-NMT
exhibits domain transfer ability by achiev-
ing up to +4 BLEU improvement over the
multi-domain NMT on the translation direc-
tion where in-domain training data is ab-
sent. Thanks to the effective cross-domain
and cross-lingual knowledge sharing, MDML-
NMT outperforms the adapter-based method
(Cooper Stickland et al., 2021) by a large mar-
gin in the language-domain zero-shot setting.

• Our study sheds light on effective MDML-
NMT training. Our experimental results re-
veal that: (i) for the domain, it is important
to make the encoder domain-aware by either
providing the domain tags or training with the
auxiliary task; and (ii) for the language, the
best practice is to prepend the target language
tag to the encoder.

2 Multi-domain Multilingual NMT

In this section, we first provide the necessary back-
ground on multilingual NMT (MNMT) and multi-
domain NMT individually. We then describe ef-
fective modelling approaches for the integration
of multi-domain and multilingual NMT (MDML-
NMT).
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2.1 Multilingual NMT
Given a set of languages L, the primary goal of
MNMT is to learn a single NMT model that can
handle all translation directions of interest in this
set of languages (Dabre et al., 2020). According to
the parameter sharing strategy, MNMT can be cat-
egorised into: 1) partial parameter sharing (Dong
et al., 2015; Firat et al., 2016; Zhang et al., 2021),
and 2) full parameter sharing (Ha et al., 2016;
Johnson et al., 2017). The latter has been widely
adopted because of its simplicity, lightweight, and
its zero-shot capability. Thus, we adopt the full
parameter sharing strategy in our work.

In the fully parameter-shared MNMT, all pa-
rameters of encoders, decoders and attentions are
shared across tasks. Special language tags are in-
troduced to indicate the target languages. One can
prepend the target language tags to either the source
or target sentences. The model is then trained
jointly to minimise the negative log-likelihood
across all training instances:

LML(θθθ) := −
∑

(s,t)∈T

∑

(xxx,yyy)∈Cs,t
logP (yyy|xxx;θθθ) (1)

where θθθ is model parameters, Cs,t denotes a bilin-
gual corpus for the source language s and the target
language t, (xxx,yyy) is a pair of parallel sentences in
the source and target language, and T denotes the
translation tasks for which we have bitext available.
Among all possible language pairs (s, t) ∈ L× L,
we often only have access to bilingual data for a
subset of them. We denote these pairs as seen (ob-
served) translation tasks, and the rest as unseen
tasks corresponding to the zero-shot setting.

2.2 Multi-domain NMT
Multi-domain NMT aims to handle translation
tasks across multiple domains for a given language
pair. Similar to MNMT, tagging the training corpus
is the most popular approach, where a tag indicates
the domain of a sentence pair. We also minimise
the negative log-likelihood across all domains to
train the model:

LMD(θθθ) := −
∑

d∈D

∑

(xxx,yyy)∈Cd
s,t

logP (yyy|xxx;θθθ) (2)

where D is the set of domains, and Cds,t denotes
the parallel bitext in the source language s, target
language t, and the domain d.

Apart from tagging, some auxiliary tasks have
also been incorporated into the training process. A

common practice is the use of domain discrimina-
tion, which aims to force the encoder to capture
domain-aware characteristics (Britz et al., 2017).
For this purpose, a domain discriminator is added
to the NMT model at training time. The input to the
discriminator is the encoder output, and its output
predicts the probability of the domain of the source
sentence. The discriminator is jointly trained with
the NMT model, and is discarded at inference time.

Let h = enc(xxx) be the representation of sen-
tence xxx computed by the mean-pooling over the
hidden states of the top layer of the encoder. The
training objective for the domain-aware encoder is
as follows:

Ldisc(θθθ,ψψψ) := −
∑

d∈D

∑

(xxx,yyy)∈Cd
s,t

log Pr(d|h;ψψψ) (3)

LMD-aware(θθθ,ψψψ) := LMD(θθθ) + λLdisc(θθθ,ψψψ) (4)

where ψψψ is the parameter of the domain discrimina-
tor classifier, and λ controls the contribution of the
domain discriminator into the training objective of
the multi-domain NMT model.

Alternatively, one can design an adversarial train-
ing objective in order to learn domain-agnostic rep-
resentations by the encoder. This is achieved by
inserting a gradient reversal layer (Ganin and Lem-
pitsky, 2015) between the encoder and the domain
discriminator. The gradient reversal layer behaves
as an identity layer in the forward pass but reverses
the gradient sign during back-propagation. It has
the opposite effect on the encoder, forcing it to
learn domain-agnostic representations. This en-
courages the domain specific characteristic to be
learned mainly by the decoder of the NMT model.

2.3 Composition of Domains and Languages
In this paper, we explore strategies for composing
multi-domain and multilingual NMT. We consider
the incomplete multi-domain multilingual data con-
dition where in-domain data may be only available
in a subset of language pairs. For example, Ta-
ble 1 shows one of the data conditions explored in
our experiments in Section 3. Given the five lan-
guage pairs and five domains, we assume that the
domain data in some language pairs are missing.
Our goal is to investigate effective techniques to
train a high-quality MDML-NMT model covering
all combinations of domains and language pairs.

Given a specific domain, we define in-domain
languages as those having data available in the
domain as part of some bilingual corpora; the rest
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Figure 2: Illustration of domain and languages composition strategies: (a) prepending domain (D) and target
language (T) tag to encoder (ENC) or decoder (DEC). This example shows a T-ENC D-DEC model where the target
language tag and domain tag are added to encoder and decoder respectively; (b) combining the tagging method with
the domain aware auxiliary task (MDML + aware) to learn domain-aware representation; and (c) combining the
tagging method with the domain adversarial auxiliary task (MDML + adv) to learn domain-agnostic representation.

Trans. direction Eval. domain MDML task type

En→De LAW seen in→in
En→Cs LAW seen in→out
Pl→En LAW seen out→in

De→Cs LAW unseen (zero-shot) in→out
Cs→De LAW unseen (zero-shot) out→in
Pl→Cs LAW unseen (zero-shot) out→out

Table 2: Examples of MDML task types in the leave-
one-domain-out LAW training scenario of Table 1.
Please refer to Table 1 for the in/out and seen/unseen
settings.

of the languages are referred to as out-of-domain
languages. We consider all combinations of in-
domain/out-of-domain source/target languages for
both seen and unseen translation directions (see
examples in Table 2) in Section 3.

We investigate different combinations of the tag-
ging strategy and auxiliary task training to effec-
tively train MDML-NMT models, as shown in Fig-
ure 2.

Language and Domain Tags. We explore differ-
ent ways of injecting the target language tags and
domain tags into the translation process. Following
the standard convention, we explore inserting the
target language tag at the beginning of either the

source sentence or the translation. Furthermore, the
domain tag can also be added to either the source
or the target side.

Auxiliary Task Training. We investigate the ef-
fect of encoder-based auxiliary tasks on MDML-
NMT. As described in Section 2.2, we consider
two types of auxiliary objectives to train encoder
which are domain-aware or domain-agnostic. The
former aims to amplify the domain-related features,
while the latter focuses on the domain invariant
representation in the encoder.

3 Experiments

In this section, we evaluate the MDML-NMT ap-
proaches and seek to answer the following research
questions (RQs):

• RQ1: Do out-of-domain translation tasks ben-
efit from the out-of-domain and in-domain bi-
text in other translation pairs?

We explore the benefits of having a single
MDML model trained on all available train-
ing data from multiple languages and domains
over the multi-domain bilingual (MDBL) and
the single domain multilingual (SDML) mod-
els learned on a subset of training data from a
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single language pair or domain. We carefully
design controlled experiments to build incom-
plete data conditions and study the translation
quality of the unified MDML-NMT model on
both seen and unseen (zero-shot) translation
directions. We hypothesise that the translation
involving the out-of-domain languages can
be beneficial from the in-domain languages
thanks to the knowledge sharing across do-
main and languages.

• RQ2: What is effective method to handle com-
position of domains and languages?

We investigate strategies for effective integra-
tion of existing multi-domain and multilingual
NMT methods, including the use of language
and domain tags and auxiliary task training.

3.1 Setup
We describe the experimental setup in this section,
and then present our results.

Dataset. We conduct experiments with transla-
tion directions among five languages English (En),
Czech (Cs), German (De), French (Fr) and Polish
(Pl). Following the recipe in Koehn and Knowles
(2017), we create five domains: Law (LAW) , IT
(IT), Koran (KOR), Medical (MED), and Subtitles
(SUB) from OPUS (Tiedemann, 2012). These cor-
pora are deduplicated and randomly selected, from
each corpus 2K sentences extracted as the develop-
ment and test sets in all possible translation pairs.
The statistics of the training dataset are reported in
Appendix A.

Seen vs Unseen Language Pairs. We categorise
the evaluated languages into two groups, high-
resource languages including En, De, and Fr, for
which bilingual data among these languages is
easy to obtain. We also consider low-resource
languages, including Cs and Pl, for which only
English-centric data is available, resulting in two
language pairs. As a result, there are five seen
language pairs, consisting of ten seen translation
directions.1 There are also five unseen language
pairs, resulting in ten unseen translation directions;
they are the ones for which we do not have any
bitext in the dataset.2

Leave-one-domain-out (LODO). We curate the
incomplete MDML data condition by removing

1This set consists of En-Fr, En-De, De-Fr, En-Cs, En-Pl.
2This set consists of De-Cs, De-Pl, Fr-Cs, Fr-Pl, Cs-Pl.

the data of one domain for the translations tasks
involving low-resource languages. An example of
the leave-one-domain-out data condition is shown
in Table 1. In total, there are five LODO conditions,
each of which corresponding to removing the bitext
of one domain for both En-Cs and En-Pl (i.e., our
low-resource language pairs). For each of these
LODO conditions, we have five seen language-
pairs and five unseen language-pairs, hence a total
of 20 translation tasks in both directions.

In the multi-domain NMT literature, this setting
is related to domain generalisation which evaluates
the NMT model on out-of-domain data in a zero-
shot manner. By carefully removing only a specific
domain, we would like to examine whether extra
data (i.e., the in-domain and out-of-domain data for
high-resource languages, and out-of-domain data
for low-resource languages) can boost the generali-
sation of MDML-NMT to the domain of interest.

Models. We use Transformer (Vaswani et al.,
2017) as the NMT model architecture and Fairseq
implementation (Ott et al., 2019). For all
MDML-NMT models, we initialise them with
mBART_large (Liu et al., 2020). We describe the
model training details in Appendix B.

As described in Section 2.3, our approaches to
MDML problem include combining language and
domain tags, and adding domain auxiliary task to
the standard multilingual NMT objective. In the
first approach, the target language tags can be in-
serted to the source sentence (T-ENC) or the target
sentence (T-DEC). The domain tags can also be
handled in similar manners denoted as D-ENC and
D-DEC respectively. On combining these tags, the
language tag always appears first in the sentence.
In addition to the domain and language tag combi-
nation, we also explore whether learning domain-
aware or domain-agnostic representation in the en-
coder with auxiliary task can aid MDML-NMT per-
formance. Figure 2 summarises the MDML-NMT
approaches evaluated in this paper.

We also report the results of the adapter-
based domain-specific MNMT, proposed
by Cooper Stickland et al. (2021). Language
adapters (Bapna and Firat, 2019) are firstly injected
to each layer of a pre-trained MNMT model and
then trained while freezing the backbone. Then,
domain adapters are stacked on top of the language
adapters and trained without backpropagating to
the MNMT backbone and the language adapters.
Since we do not consider any additional parallel
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D-ENC D-DEC

MDBL 12.43 10.21
+adv 12.91 9.90
+aware 13.13 10.13

D-ENC D-DEC

T-ENC T-DEC T-ENC T-DEC

MDML 14.48 13.21 14.11 8.16
+adv 14.91 14.30 14.72 8.44
+aware 15.00 14.59 15.35 7.99

Table 3: Average BLEU score of En→Cs translation
across all leave-out domains for multi-domain multi-
lingual (MDML) models and multi-domain bilingual
(MDBL) models. The best score on overall and within
each tagging group are marked in bold and underline
respectively.

seen unseen unseen
-both -SDML -both

T-ENC
SDML 41.40 6.80 7.73
MDML 37.25 21.72 9.27

T-DEC
SDML 41.03 7.79 8.16
MDML 35.44 21.43 14.73

Table 4: Average BLEU scores of single-domain
multilingual (SDML) and multi-domain multilingual
(MDML) on the leave-out domains for three groups: (i)
seen-both - the three seen high-resource language pairs
(En-De, En-Fr, De-Fr); (ii) unseen-SDML - the two low-
resource language pairs which are seen by MDML but
unseen to SDML (En-Cs, En-Pl); and (iii) unseen-both -
the other five unseen language pairs.

data apart from the multi-domain dataset, we train
the MNMT backbone as well as the language
and domain adapters using this multi-domain
multilingual dataset (instead of Paracrawl) for fair
comparison.

Evaluation. We report the detokenised BLEU
scores calculated by SacreBLEU (Post, 2018) (Post,
2018) and the micro-average of BLEU score in a
group as the measure of overall performance.3

3.2 Results and Discussions

Can multilinguality help the multi-domain
learning? (MDBL vs. MDML) We first ex-

3nrefs:1|case:mixed|eff:no|tok:none|smooth:
exp|version:2.0.0

MDML +adv +aware

T-ENC 25.17 28.91 30.14
T-ENC D-ENC 24.36 28.90 29.23
T-ENC D-DEC 22.10 29.43 29.94
T-DEC 24.82 29.14 29.52
T-DEC D-ENC 24.95 28.56 29.01
T-DEC D-DEC 19.19 17.68 14.37

Adapter-based 23.26

Table 5: Average BLEU score of MDML-NMT models
across all five leave-one-out scenarios. The best score
overall and within each tagging group are marked in
bold and underline respectively.

amine the potential of MDML over the counter-
part multi-domain NMT model. Table 3 shows the
BLEU scores of MDBL and MDML for En→Cs
translation on various LODO settings. A break-
down of BLEU scores on leave-out domains is
shown in Table 11 in the Appendix C. The MDBL
models are trained on all En→Cs bilingual data ex-
cept of the domain of interest. Within the same tag-
ging method, augmenting the NMT training with
the domain auxiliary objectives (i.e., domain-aware
and domain-agnostic encoders) enhances the trans-
lation performance. The MDML models consis-
tently surpass the corresponding MDBL settings,
with an exceptional case, where both domain and
language tags are applied to the decoder (i.e., T-
DEC D-DEC). This observation suggests there is
knowledge sharing from in-domain languages to
out-of-domain languages.

Can multi-domain data help multilingual NMT?
(SDML vs. MDML) SDML models are domain-
specific multilingual NMT models trained on the
multilingual dataset in a given domain. As in-
domain parallel data is absent for several language
pairs, the MDML models are exposed to more seen
translation tasks than SDML models thanks to the
availability of out-of-domain data. Hence, for a
given domain, we divide the evaluation translation
tasks into three groups: seen-both, unseen-SDML
and unseen-both. The seen-both and unseen-both
groups consist of translation directions which are
observed and unobserved respectively by both mod-
els in training. The unseen-SDML group corre-
sponds to those unseen by SDML, but seen by
MDML models. We report the average perfor-
mance of the MDML and SDML model on the
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seen (10) unseen (zero-shot) (10)
AVG

in→in (6) in→out (2) out→in (2) in→out (4) out→in (4) out→out (2)

Adapter-based 34.32 11.76 33.34 7.38 6.86 6.84 16.75

T-ENC

MDML 37.25 14.63 29.05 7.93 10.35 9.79 18.17
+adv 36.81 13.88 28.33 10.91 22.05 11.38 20.56
+aware 37.50 14.31 29.09 10.61 24.50 11.94 21.33

T-ENC
D-ENC

MDML 32.32 11.52 24.23 7.22 17.25 7.85 16.73
+adv 37.24 13.66 31.17 10.20 24.21 11.67 21.36
+aware 37.57 13.15 31.15 8.65 25.20 11.24 21.16

T-ENC
D-DEC

MDML 31.94 10.55 22.14 5.88 8.63 5.83 14.16
+adv 36.70 12.85 25.38 10.61 22.57 9.52 19.61
+aware 37.47 12.08 25.59 10.08 22.41 9.01 19.44

T-DEC

MDML 31.44 11.25 23.62 7.63 20.39 8.59 17.15
+adv 36.92 13.94 28.83 8.93 24.48 12.14 20.87
+aware 37.20 14.00 28.62 10.30 23.95 12.18 21.04

T-DEC
D-ENC

MDML 31.80 10.40 22.13 5.97 18.81 7.47 16.10
+adv 36.35 13.22 27.96 8.46 24.35 10.21 20.09
+aware 37.00 13.32 29.34 9.57 25.89 11.43 21.09

T-DEC
D-DEC

MDML 30.17 4.77 24.72 3.65 14.08 4.43 13.64
+adv 25.18 6.04 25.94 5.88 14.72 6.37 14.02
+aware 20.61 5.50 23.27 5.72 7.64 6.40 11.52

Table 6: Average BLEU score on leave-out domain for different translation tasks. We categorise 20 translation
direction into seen where the training data for the translation direction is available, otherwise unseen. in and out
show whether the corresponding domain is observed during training or not (see Table 2 for a concrete example).
The number in parentheses shows how many translation directions are in the corresponding category. The best score
of each column overall and within each tagging group are marked in bold and underline respectively.

leave-out domains in Table 4. The detailed results
on each leave-out domain can be found in Table 12
in the Appendix C. As expected, SDML works
well on the seen directions (seen-both) but behaves
badly on the zero-shot settings (unseen-SDML and
unseen-both). We speculate it is due to the nega-
tive inference among domains. On the other hand,
MDML outperforms SDML in unseen-SDML by a
large margin thanks to the out-of-domain parallel
data. Additionally, leveraging multi-domain data
also helps to improve multilingual NMT on unseen-
both tasks up to +6 BLEU score on average.

What is an effective method to MDML? We
have previously shown the benefits of MDML over
multi-domain and multilingual NMT models. The
remaining question is how to integrate the multi-
domain and multilingual approaches effectively.
We report the average BLEU scores of different
MDML methods across all five LODO scenar-
ios and 20 translation tasks in Table 5. Simi-
lar to the previous observation on En→Cs transla-
tion, models with domain discriminator outperform
the vanilla MNMT model in all tagging methods.
More specifically, the domain-aware MNMT mod-

els (+aware) are the winning method in most sce-
narios. These results emphasise the importance of
having domain-aware representation in the encoder.
Furthermore, it shows MDML is more effective
than the adapter-based approach.

As illustrated in Table 2, translation tasks in
MDML setting can be categorised into seen and
unseen (zero-shot) tasks involving the in-domain
or out-of-domain languages. Table 6 reports the
performance of MDML-NMT models in the leave-
out domains on different task categories, e.g. LAW

in the example in Table 1. The results for other
domains, i.e. excluding the leave-out domains, can
be found in Appendix C. Consistent with previous
findings, the domain discriminative mixing meth-
ods outperform the other models. While the best
multilingual NMT model (MDML T-ENC) per-
forms comparably with other MDML-NMT mod-
els on seen translation tasks, the main benefit of
MDML-NMT models comes from unseen trans-
lation tasks. As expected, for both seen and un-
seen tasks, the quality of translation when translat-
ing into in-domain languages is consistently higher
than into out-of-domain languages. Stacking the
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seen unseen (zeroshot)
En De Fr Cs Pl De Fr Cs Pl

T-ENC

MDML 94.72 95.99 95.54 92.10 94.50 48.66 49.38 32.73 40.78
+adv 94.81 96.01 95.33 91.62 95.06 75.56 85.93 59.18 66.57
+aware 94.85 96.09 95.56 91.60 94.69 80.92 90.86 64.77 74.67

T-ENC
D-ENC

MDML 92.55 95.54 95.06 91.21 94.12 73.99 72.85 44.69 58.83
+adv 94.65 96.11 95.42 90.51 93.60 80.30 81.16 59.13 67.17
+aware 94.67 96.18 95.44 90.35 92.69 81.21 84.05 61.10 66.92

T-ENC
D-DEC

MDML 94.33 95.22 95.10 91.26 94.98 43.53 46.94 36.10 44.04
+adv 94.86 95.81 95.44 91.55 94.64 87.23 90.67 69.01 74.42
+aware 95.01 96.01 95.49 91.34 94.46 82.00 91.38 68.75 75.69

T-DEC

MDML 94.03 95.32 95.04 90.70 93.83 90.44 92.74 60.44 70.93
+adv 94.68 96.05 95.44 91.72 94.84 86.03 88.64 52.45 64.01
+aware 94.72 96.21 95.50 92.22 95.13 77.20 87.61 58.17 70.86

T-DEC
D-ENC

MDML 92.72 95.51 95.06 89.72 92.23 85.75 89.82 56.74 68.56
+adv 93.82 96.14 95.53 91.41 94.27 84.70 87.99 51.59 63.66
+aware 94.19 96.12 95.54 91.54 93.80 79.93 87.00 60.22 72.77

T-DEC
D-DEC

MDML 93.44 90.30 93.44 74.49 83.06 64.33 58.96 21.42 25.74
+adv 80.29 17.71 94.36 49.29 16.07 3.37 47.72 1.04 0.62
+aware 69.89 14.25 85.62 52.34 10.10 2.89 9.52 2.07 0.28

0 25 50 75 100

Table 7: On-target translation ratio of MDML-NMT models on the seen and unseen translation tasks.

language and domain adapters works particularly
well in seen translation direction to in-domain tar-
get languages. Aligned with previous findings, the
adapter-based method struggles to translate to out-
domain target languages due to the unobserved
combination of language and domain adapters dur-
ing training (Cooper Stickland et al., 2021).

4 Analysis

4.1 Domain-specific token generation

In this section, we will look at how well MDML
models are in generating domain-specific tokens.
We concatenate all training data in a given domain
in each language, remove stopwords, and extract
the top 1000 domain-specific tokens with TF-IDF.
The stopwords for each language are obtained from
stopwords-iso4. Table 8 reports the F1 score of
MDML models in generating leave-out domain-
specific tokens. As expected, translation to in-
domain languages (in→in, out→in) has a higher F1
score than translation to out-of-domain languages
(in→out, out→out). Compared to MDML, both
MDML-aware and MDML-adv models are able to
generate more domain-specific tokens.

4.2 On-target translation ratio

One challenge of multilingual NMT (MNMT) is
the off-target translation in zero-shot direction. Off-
target translation is an issue that the MNMT model

4https://github.com/stopwords-iso/
stopwords-iso

in→in in→out out→in out→out

T-ENC

MDML 63.22 21.45 35.58 16.42
+adv 62.71 26.73 44.48 22.06
+aware 63.45 25.85 47.53 23.96

T-ENC
D-ENC

MDML 58.93 20.58 35.17 16.10
+adv 63.14 24.24 46.75 23.55
+aware 63.48 20.80 47.82 23.17

T-ENC
D-DEC

MDML 58.82 20.32 30.34 13.37
+adv 62.83 27.68 47.02 26.21
+aware 63.59 27.64 47.21 25.73

T-DEC

MDML 58.35 21.70 43.69 19.98
+adv 62.83 23.72 47.55 25.56
+aware 63.08 25.90 47.31 25.49

T-DEC
D-ENC

MDML 58.94 18.34 38.85 17.56
+adv 62.37 21.86 45.67 20.31
+aware 62.98 24.23 47.87 24.17

T-DEC
D-DEC

MDML 56.74 12.52 40.01 10.98
+adv 46.71 9.18 34.73 8.34
+aware 39.20 8.93 26.32 8.06

0 25 50 75 100

Table 8: In-domain token generation F1 score.

translates the input sentence to the wrong language,
causing low BLEU scores. In this section, we as-
sess the ability to alleviate the off-target issue in
MDML models. Table 7 reports the on-target trans-
lation ratio of MDML models on seen and unseen
translation for different target languages. We detect
the language of translated targets using langdetect5

tool and calculate the on-target translation ratio as
the percentage of translated sentences having the
target language detected correctly. As expected,

5https://github.com/Mimino666/langdetect
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Figure 3: Source token contribution on Pl→Cs MDML with T-ENC D-ENC. The target language and domain tag
are the first two tokens.

En De Fr Cs Pl

LO

En 91.60 93.27 33.30 43.99
De 93.26 90.79 9.88 10.82
Fr 90.59 83.86 2.53 4.90
Cs 91.51 68.39 64.78 7.87
Pl 92.18 66.58 64.96 18.83

others

En 95.38 94.79 84.79 92.83
De 94.58 92.78 37.27 46.95
Fr 91.70 86.50 22.04 28.20
Cs 94.37 63.79 58.49 15.48
Pl 94.66 63.29 56.46 13.21

0 25 50 75 100

Table 9: On target ratio of T-DEC D-DEC MDML on the
leave-out (LO) and other domains. Rows and columns
correspond to the source and target languages.

the seen translation tasks have more than 90% sen-
tences in the correct target language, except T-DEC

D-DEC models. On the other hand, the unseen
tasks suffer from a low ratio, especially for Cs and
Pl. We also observe significant improvement from
MDML-aware and MDML-adv over the MDML
models on unseen translation tasks to Cs and Pl.

Generally, T-DEC D-DEC model always under-
performs other models and have a much lower on-
target ratio on unseen tasks. Table 9 further con-
firms this phenomenon on the leave-out domains.
While heavily suffering from the off-target issue
in the leave-out domains, it has comparable ratios
to other methods in other domains on seen tasks
En-Pl and En-Cs. One possible explanation is that
the combination of the target language and domain
tags has never been observed during training for
the unseen tasks with out-of-domain languages.

4.3 Language and domain tag contribution

To understand the role of the target and language
tags to the generated prediction, we estimate the
total contribution of source tokens at each position

to the whole target sentence using Layerwise Rel-
evance Propagation (Voita et al., 2021). We filter
out the pairs having too short or too long target
sentences and compute the contribution to target
sentences of length between 10 and 100.

Results of T-ENC D-ENC MDML models on
Pl→Cs translation in the leave-out medical domain
are shown in Figure 3. The language and domain
tag are the first two source tokens in respective or-
der. It can be seen that all models have a similar
trend in which the contribution of source tokens
decreases toward later positions and suddenly in-
creases at a few last positions. Additionally, the
target language tags play an important role in the
final prediction of all MDML models. Interestingly,
while still having a fairly high contribution com-
pared to other tokens, the domain tag seems less
important for the domain adversarial models. It can
be explained that the encoder learns to produce do-
main agnostic representation; hence less depends
on the domain tags.

5 Related works

Multilingual NMT. As a remarkable branch of
NMT, multilingual NMT (MNMT) has been ap-
pealing for its capability of supporting translations
among different language pairs. Dong et al. (2015)
opened the door to the MNMT by conducting a
one-to-many translation. Firat et al. (2016) effec-
tively extend this approach to a many-to-many set-
ting. Since these approaches consider each transla-
tion as an independent system, they suffer from
two major drawbacks. First, as the parameter
size is proportional to the language size, it is not
parameter-efficient when scaling to tens or hun-
dreds of languages. In addition, the separate ar-
chitectures cannot fully benefit from cross-lingual
knowledge transfer. Johnson et al. (2017); Ha et al.
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(2016) devise a universal MNMT system to alle-
viate these issues by prepending a target language
tag to the inputs and training a shared SEQ2SEQ

model on the concatenation of all bitext. However,
owing to the negative interference, high-resource
languages suffer from translation inferiority, com-
pared to the corresponding bilingual NMT models.
As a remedy, Zhang et al. (2021); Kudugunta et al.
(2021) leverage a mixture-of-experts design to sep-
arate language-specific features from the generic
features by incorporating language-specific com-
ponents into the universal MNMT model. Besides,
Bapna and Firat (2019); Zhu et al. (2021) propose
to fine-tune a lightweight adapter as a means of
compensation for the quality loss caused by the
adverse effect.

Multidomain NMT. While both involving train-
ing on dataset coming from multiple domains,
NMT domain adaption is different from multi-
domain NMT. The former aims to transfer the
knowledge of out-of-domain data into the in-
domain data (Luong and Manning, 2015; Zoph
et al., 2016; Freitag and Al-Onaizan, 2016), while
the latter focuses on building a system, perform-
ing well on multiple domains (Pham et al., 2021).
Since lexical and topic variations have been ob-
served in different domains, it is challenging to
handle the mixed-domain data with a generic NMT
model (Farajian et al., 2017). To operate transla-
tion in multiple domains, recent research focuses
on exploiting domain-shared and domain-specific
knowledge by introducing a domain tag to the
source sentence (Kobus et al., 2017), using aux-
iliary objectives such as domain discrimination
loss (Britz et al., 2017; Gu et al., 2019), domain
knowledge distillation (Currey et al., 2020), and
modifying the architecture to capture this infor-
mation explicitly (Zeng et al., 2018). Rather than
using a heavy domain-specific encoder-decoder ar-
chitecture, Wang et al. (2020) introduce lightweight
domain transformation layers between the shared
encoder and decoder.

Multilingual & multi-domain NMT. Previous
works have mainly considered multilingual and
multi-domain NMT models as two disjoint sys-
tems. Until recently, Cooper Stickland et al. (2021)
propose to unify these two settings into a holistic
system, but focus more on the domain adaptation
angle. They investigate the combination of lan-
guage and domain adapters by superimposing do-

main adapters on language adapters. They noticed
that domain adapters and back-translation could
boost the translation quality on the out-of-domain
languages. In contrast, our work creatively stitches
multilingual and multi-domain NMT together and
explores the capability of a cross-lingual domain
transfer within a unified model without adaption.

6 Conclusion

We study the problem of MDML-NMT for which
a single NMT can support multiple translation di-
rections and domains. We investigate whether the
tagging and auxiliary task learning method can be
combined for MDML-NMT. Our empirical results
reveal a positive transfer from in-domain to out-of-
domain languages, especially in the zero-shot sce-
nario. This study provides insights into the synergy
of the domain and language aspects of training an
MDML-NMT model. The main findings include:
(i) it is crucial to make the encoder domain-aware;
and (ii) it is best to prepend the target language tag
to the encoder in MDML. These findings lay the
groundwork for future research in this direction.
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Domain Cs-En De-En Fr-En Pl-En De-Fr

LAW 1.3M 467K 596K 1.0M 1.3M
IT 73K 158K 230K 97K 146K
MED 686K 705K 705K 666K 707K
KOR 117K 17.8K 28K 30K 10K
SUB 595K 494K 492K 491K 590K

Table 10: Number of training sentences in the evalu-
ation datasets. Each dataset contains 2K dev and test
sentences.

A Data statistics

Table 10 shows the statistics of dataset used in the
experiments.

B Training Details

For all MDML-NMT models, we initialise them
with mBART_large (Liu et al., 2020) and train with
mixed-precision training up to 200K update steps
(around 13 epochs) using a batch size of 8192 to-
kens and early stopping on 8 V100 GPUs. The
multi-domain NMT (MDBL) is trained in a similar
manner, except with the total update steps of 60K
which is equivalent to around 30 epochs. We ap-
ply Adam with an inverse square root schedule, a
linear warmup of 5000 steps and a learning rate of
3e-5. We set dropout and label smoothing with a
rate of 0.3 and 0.2. We use temperature-based sam-
pling with T = 5 to balance training size between
domains and languages (Arivazhagan et al., 2019).

For the NMT model with auxiliary task, the do-
main discriminator is a 2-layer feed-forward net-
work with hidden size of 1024. We set the mixing
hyperparameters λ in Equation 4 to 1, i.e., the do-
main discriminative loss and NMT loss contributes
equally to the training signal.

Followed (Cooper Stickland et al., 2021), we use
adapter bottle-neck of 1024 for the adapter-based
models. The monolingual language adapters are
trained all together on the multi-domain dataset
while the NMT backbone are frozen. In contrast,
we train domain adapters separately for each do-
main and build homogeneous batches containing
sentences from the same language direction and
domain. We also apply domain-adapter dropout
(DADrop) where the domain adapters are skipped
20% of time.

C Additional Results

MDBL vs. MDML. Table 11 shows the BLEU
scores of different models for En→Cs translation

on various LODO settings. Each domain column
reports the results corresponding to the LODO set-
ting in which the bitext of that domain is removed.

SDML vs. MDML. We report the performance
of the MDML and SDML model on each leave-out
domains in Table 12.

MDML Result. The average BLEU scores on
each domain across all five LODO scenarios and
20 translation tasks are reported in Table 13. Ta-
ble 14 reports the performance of MDML-NMT
models on other domains (excluding the leave-out
domains) on different task categories.
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LAW IT KOR MED SUB AVG

D-ENC

MDBL 10.52 20.37 7.63 19.46 4.16 12.43
+adv 10.62 19.43 8.16 20.79 5.57 12.91
+aware 10.37 21.70 8.25 20.07 5.26 13.13

D-DEC

MDBL 9.21 12.39 6.64 19.56 3.27 10.21
+adv 9.78 11.01 6.76 18.03 3.94 9.90
+aware 9.51 12.25 7.00 18.46 3.41 10.13

T-ENC
D-ENC

MDML 11.98 22.64 8.08 21.05 8.63 14.48
+adv 12.11 23.43 9.26 21.59 8.16 14.91
+aware 11.82 23.07 9.08 21.54 9.51 15.00

T-DEC
D-ENC

MDML 10.57 18.32 6.87 20.04 10.25 13.21
+adv 11.36 22.69 7.13 20.88 9.44 14.30
+aware 11.25 21.94 8.73 20.69 10.34 14.59

T-DEC
D-DEC

MDML 5.21 17.56 4.53 9.12 4.36 8.16
+adv 2.25 17.47 4.89 12.41 5.18 8.44
+aware 3.37 18.85 4.23 9.35 4.14 7.99

T-ENC
D-DEC

MDML 9.39 21.29 8.28 22.06 9.54 14.11
+adv 10.84 22.92 8.45 22.27 9.10 14.72
+aware 12.29 22.70 8.39 22.62 10.75 15.35

Table 11: BLEU score of En→Cs translation on leave-out domains for multi-domain multilingual (MDML) models
and multi-domain bilingual (MDBL) models. +adv and +aware denote MDML models trained with domain-agnostic
or domain-aware auxiliary tasks, respectively. The best score on each domain overall and within each tagging group
are marked in bold and underline respectively.

LAW IT KOR MED SUB AVG

T-
E

N
C

(I)
SDML 49.21 41.63 32.33 51.84 32.01 41.40
MDML 45.87 35.76 29.01 47.30 28.30 37.25

(II)
SDML 1.98 13.29 3.03 12.57 3.11 6.80
MDML 23.40 27.27 13.29 31.19 13.44 21.72

(III)
SDML 2.68 14.89 4.26 11.70 5.10 7.73
MDML 5.07 15.32 6.26 12.87 6.85 9.27

T-
D

E
C

(I)
SDML 48.42 41.36 29.50 54.00 31.88 41.03
MDML 44.48 30.43 28.53 45.75 27.99 35.44

(II)
SDML 2.07 14.01 3.95 14.54 4.36 7.79
MDML 21.73 28.84 13.77 29.18 13.65 21.43

(III)
SDML 2.66 15.37 4.38 12.94 5.44 8.16
MDML 14.57 15.57 14.39 20.52 8.61 14.73

Table 12: Average BLEU scores of single-domain multilingual (SDML) and multi-domain multilingual (MDML)
on the leave-out domains for three groups: (I) the three seen high-resource language pairs (En-De, En-Fr, De-Fr);
(II) the two low-resource language pairs which are seen by MDML but unseen to SDML (En-Cs, En-Pl); and (III)
the other five unseen language pairs.

394



model LAW IT KOR MED SUB AVG

Adapter-based 23.02 29.37 19.52 28.87 15.51 23.26

T-ENC

MDML 23.09 27.86 22.83 34.19 17.88 25.17
+adv 28.74 31.14 25.68 40.08 18.89 28.91
+aware 31.56 32.00 26.63 40.88 19.62 30.14

T-ENC
D-ENC

MDML 21.14 26.92 21.84 34.61 17.31 24.36
+adv 26.09 31.91 26.09 40.72 19.67 28.90
+aware 27.10 31.85 26.40 40.77 20.03 29.23

T-ENC
D-DEC

MDML 20.04 24.71 19.57 30.77 15.43 22.10
+adv 30.14 31.26 26.03 41.04 18.68 29.43
+aware 31.61 31.49 26.56 40.84 19.20 29.94

T-DEC

MDML 25.92 26.81 20.49 34.34 16.56 24.82
+adv 29.64 30.91 26.22 40.31 18.62 29.14
+aware 29.45 31.54 26.81 40.82 19.01 29.52

T-DEC
D-ENC

MDML 24.89 27.23 20.97 34.83 16.85 24.95
+adv 27.66 31.02 25.54 39.55 19.02 28.56
+aware 28.15 31.31 25.77 40.27 19.56 29.01

T-DEC
D-DEC

MDML 21.24 19.24 16.06 27.42 12.01 19.19
+adv 20.58 20.60 11.75 24.09 11.40 17.68
+aware 13.91 17.75 9.49 20.97 9.74 14.37

Table 13: Average BLEU score of MDML-NMT models on each domain across all five leave-one-out scenarios and
20 (seen and unseen) translation tasks. The best score on each domain overall and within each tagging group are
marked in bold and underline respectively.

395



seen (10) unseen (zero-shot) (10)
LAW IT KOR MED SUB AVG LAW IT KOR MED SUB AVG

Adapter-based 43.38 36.15 26.92 50.06 27.27 36.76 10.97 23.23 27.69 35.05 12.16 21.82

T-ENC

MDML 43.07 36.66 26.32 49.37 26.28 36.34 4.16 21.07 23.45 22.67 11.12 16.49
+adv 42.83 35.73 26.60 49.04 25.46 35.93 17.32 28.73 28.58 35.38 14.17 24.84
+aware 43.36 36.54 27.08 49.84 25.97 36.56 22.88 29.64 29.91 36.62 15.38 26.88

T-ENC
D-ENC

MDML 36.02 36.50 22.29 43.00 22.48 32.06 7.01 26.46 22.79 28.34 12.28 19.38
+adv 43.08 36.41 26.76 49.46 25.99 36.34 10.63 29.77 28.31 36.49 15.02 24.05
+aware 43.41 36.71 27.02 49.74 26.15 36.61 12.95 29.20 29.25 36.64 15.37 24.68

T-ENC
D-DEC

MDML 36.06 36.32 22.24 42.74 21.86 31.85 3.87 21.95 19.36 21.10 9.92 15.24
+adv 42.80 35.67 26.66 49.10 25.23 35.89 20.29 29.92 29.45 37.91 14.79 26.47
+aware 43.53 36.50 27.39 49.94 25.84 36.64 23.20 29.72 29.82 36.98 15.32 27.01

T-DEC

MDML 35.30 35.45 21.60 42.39 21.68 31.28 17.02 27.49 20.37 28.55 12.00 21.08
+adv 42.76 35.95 26.90 49.36 25.56 36.10 18.73 28.04 29.25 36.22 13.33 25.11
+aware 43.22 36.28 27.33 49.70 25.72 36.45 17.84 29.02 30.25 36.75 14.23 25.62

T-DEC
D-ENC

MDML 35.94 35.74 21.64 42.31 22.11 31.55 17.00 28.23 21.68 29.42 11.60 21.59
+adv 42.08 35.45 26.85 48.55 25.41 35.67 15.87 28.49 29.12 34.95 13.71 24.43
+aware 43.12 35.62 25.98 48.69 25.90 35.86 16.02 28.99 28.40 36.31 14.62 24.87

T-DEC
D-DEC

MDML 33.99 32.09 20.85 39.35 18.75 29.01 9.10 13.17 11.46 16.37 4.82 10.98
+adv 35.67 27.11 19.13 35.53 17.76 27.04 6.92 15.26 4.74 14.39 5.75 9.41
+aware 26.89 23.03 17.07 31.83 16.26 23.02 3.14 13.03 2.58 10.93 3.92 6.72

Table 14: Average BLEU score on other domains, i.e. excluding the leave-out domains, for different translation
tasks. We categorise 20 translation direction into seen where the translation direction in which training data are
available, otherwise unseen. The number in parentheses shows how many translation directions in the corresponding
category.
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Abstract

This paper describes DUTNLP Lab’s submis-
sion to the WMT22 General MT Task on four
translation directions: English to/from Chinese
and English to/from Japanese under the con-
strained condition. Our primary system are
built on several Transformer variants which
employ wider FFN layer or deeper encoder
layer. The bilingual data are filtered by de-
tailed data pre-processing strategies and four
data augmentation methods are combined to en-
large the training data with the provided mono-
lingual data. Several common methods are also
employed to further improve the model perfor-
mance, such as fine-tuning, model ensemble
and post-editing. As a result, our constrained
systems achieve 29.01, 63.87, 41.84, and 24.82
BLEU scores on Chinese→ English, English
→ Chinese, English→ Japanese, and Japanese
→ English, respectively.

1 Introduction

DUTNLP Lab participates in the WMT22 General
MT Task on four translation directions: English↔
Chinese and English↔ Japanese. Our translation
system is trained on the officially provided bilin-
gual and monolingual data under the constrained
condition. Several strategies such as fine-grained
data pre-processing, large-scale synthetic data aug-
mentation, diverse model architectures and domain
fine-tuning are utilized to enhance the performance
of the final ensemble model.

Since the quality of the training data is crucial
to the translation performance, all the training sets
are filtered by the off-the-shelf toolkits and some
manual rules. Details will be discussed in Section
2. Those data pre-processing strategies are also
employed to filter out the synthetic data generated
by different data augmentation methods.

To generate synthetic parallel data, four data
augmentation methods including back-translation

∗Corresponding author

(Sennrich et al., 2016), forward-translation (Wu
et al., 2019), knowledge distillation (Freitag et al.,
2017) and R2L training (Liu et al., 2016) are
employed in our experiments. Specifically, we
leverage source-side monolingual data by explor-
ing forward-translation, knowledge distillation and
R2L training, while target-side monolingual data
by back-translation. These strategies increase the
data size to a large extent. The generated data
and the original parallel data are combined to train
NMT models.

For model architectures, starting from
Transformer-Big (Vaswani et al., 2017) settings,
several Transformer variants are used to improve
the model capacity and diversity. Previous
studies (Bapna et al., 2018; Li et al., 2020) have
shown that the translation performance can be
significantly improved by increasing the model
capacity. Therefore, we build different model
architectures with either wider FFN layers (Ng
et al., 2019) or deeper transformer encoder (Sun
et al., 2019). Moreover, the Pre-Norm (Wang et al.,
2019) is also adopted in all our experiments as its
performance and training stability are better than
the Post-Norm counterpart.

Domain fine-tuning is the most effective method
in our experiments, which greatly improves the
translation performance. We first employ previous
WMT test sets as the domain data to fine-tune sev-
eral models with different architectures. Then we
ensemble those fine-tuned models and translate the
test sets to construct pseudo parallel data. Finally,
the original and the pseudo test sets are merged for
further domain fine-tuning.

This paper is structured as follows: Section 2
describes the data pre-processing strategies. We
present the details of our systems in Section 3 and
show the experiment settings and results in Sec-
tion 4. We draw the conclusion in Section 5.
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2 Data Pre-processing

For each language pair, we follow the constrained
data requirements and make full use of the provided
bilingual and monolingual data. Table 1 lists the
data we used in our experiments.

Language Pair Filtered Bilingual Monolingual

En-Zh 34.5M En:15M Zh:15M
En-Ja 20.1M En:20M Ja:20M

Table 1: Statistics of the training dataset.

As the quality of the parallel training data is
crucial to the final translation performance, we per-
form fine-grained data filtering with the off-the-
shelf toolkits and some manual rules. For both
language pairs, the pre-processing strategies are as
follows:

• Normalize punctuation with Moses scripts
(Koehn et al., 2007) for English. Chinese
and Japanese text are separately segmented
by jieba1 and MeCab2 toolkits.

• Filter out the duplicated sentence pairs.

• Filter out sentences containing html tags, ille-
gal characters and invisible characters.

• Filter out sentences with the character-to-
word ratio higher than 12 or lower than 1.5
following (Wei et al., 2021).

• Filter out sentences with the source-to-target
token ratio higher than 3 or lower than 0.3
following (Wei et al., 2021).

• Filter out sentences in other languages by ap-
plying language identification (Joulin et al.,
2016).

• Filter out sentence pairs with low alignment
score by using fast-align (Dyer et al., 2013).

• For Chinese, we convert full-width format to
half-width format and convert traditional Chi-
nese characters to simplified ones.

3 System Overview

3.1 Model Architectures
Previous studies (Bapna et al., 2018; Li et al., 2020;
Wei et al., 2021; Li et al., 2021) have shown that

1https://github.com/fxsjy/jieba
2http://taku910.github.io/mecab/

the translation performance can be significantly im-
proved by increasing the model capacity. Consid-
ering the model performance, we adopt the Deep
Encoder and Shallow Decoder architecture with
wider FFN layer. For En-Zh pair, we adopt the
Deep 35-6 big model as baseline model following
(Wei et al., 2021). For En-Ja pair, in view of the
training cost we choose the Deep 24-6 big model
as baseline model following (Subramanian et al.,
2021; Zhou et al., 2021). The details about the
models are as follows:

• Deep 24-6 model: This model features 24-
layer encoder, 6-layer decoder, 512 dimen-
sions of word vector, 4096 dimensions of
FFN, 16-head self-attention and uses Pre-
Norm strategy(Wang et al., 2019).

• Deep 35-6 big model: This model features
35-layer encoder, 6-layer decoder, 768 di-
mensions of word vector, 3076 dimensions
of FFN, 16-head self-attention and uses Pre-
Norm strategy(Wang et al., 2019).

3.2 Data Augmentation

In this task, four data augmentation strategies are
utilized to generate synthetic data, which have
shown their effectiveness on improving the per-
formance of NMT model in previous works (Wei
et al., 2021; Zhou et al., 2021; Wang et al., 2021;
Zeng et al., 2021).

Back-Translation (Sennrich et al., 2016) is the
most commonly used data augmentation technique
which generates pseudo parallel data by translat-
ing the target monolingual sentences into source
language with a pre-trained target-to-source NMT
model. Our back-translation is divided into three
stages:

• Training an ensemble target-to-source NMT
model with the provided bilingual parallel
data.

• Translating the target monolingual sentences
to source language with the pre-trained target-
to-source NMT model to generate synthetic
parallel data.

• Training models with the bilingual and syn-
thetic parallel data in a ratio of 1:1.
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Forward-Translation (Wu et al., 2019) is an-
other data generation technique. Different from
back-translation, forward-translation translating
the source monolingual corpus into target corpus
with a pre-trained source-to-target NMT model.
Here, the forward-translation is only applied to Ja
→ En direction.

Knowledge Distillation (Freitag et al., 2017) is
a powerful technique to improve a student model
by distilling knowledge from a group of teacher
models. In our experiments, we first train several
teacher models on the original bilingual data and
generate synthetic training corpus with the ensem-
ble teacher models. Then the student model is
trained on the combination of the original and syn-
thetic training set.

R2L Training Previous work (Liu et al., 2016)
has shown that R2L training is an effective way
to boost translation quality by addressing the er-
ror propagation problem in auto-regressive gener-
ation tasks. Following this strategy, we train an
R2L model with the original source sentences and
inverse target sentences and translate the source
monolingual sentences into target sentences. In our
experiment, we mix the synthetic data generated
by both R2L and L2R models to for iterative joint
training.

3.3 Domain Fine-tuning
Domain fine-tuning plays a key role in improv-
ing the model performance. Following Sun et al.
(2019), we take previous development and test sets
as in-domain data and fine-tune the models. For
En ↔ Ja task, since previous development and
test sets are too small to use, we search for ad-
ditional in-domain data which are similar to the
development sets. Specifically, we obtain the low-
frequency domain-specific words in the develop-
ment/test sets by employing the TF-IDF algorithm
and filter sentences in the training set which contain
those words.

3.4 Model Ensemble
Model ensemble is a widely used method in previ-
ous WMT shared tasks (Garmash and Monz, 2016),
which can enhance the translation performance by
combining the predictions of several models at each
decoding step. In our work, we employ two kinds
of ensemble methods, namely, checkpoint average
and voting based ensemble. For checkpoint av-
erage, we average the top-5 checkpoints of each

model according to their BLEU performance on
the development set. While for model ensemble,
we train several models with different architectures
to increase the model diversity.

3.5 Post-editing
We apply post-editing to obtain the final translation
outputs. For En → {Zh, Ja}, the post-editing in-
cludes removing the redundant spaces, converting
punctuation to the language-specific format and re-
placing some of the English in the translation (such
as the person name) with the English in the source
sentence. For {Ja, Zh}→ English, we de-tokenize
the sentences with the Moses toolkit.

4 Experiments and Results

4.1 Settings
The implementation of our models is based on
open-source fairseq (Ott et al., 2019) and we use
sacreBLEU (Post, 2018) to measure system per-
formances which is officially recommended. We
select Transformer-big as the baseline for all tasks.
The Zh ↔ En models are carried out on single
NVIDIA 3090 GPU which has 24GB of mem-
ory and the Ja ↔ En models are carried out on
8 RTXA6000 GPUs each of which has 48GB of
memory. For all tasks, the dropout probabilities
are set to 0.1. We use the Adam optimizer with
β1 = 0.9 and β2 = 0.997 (Zhou et al., 2021) during
training. Table 2 lists the fairseq parameter setting
in training.

Parameter Zh↔ En Ja↔ En

batch size 4096 8192
update-freq 4 2
learning rate 0.0005 0.002
warmup steps 4000 8000
save-interval-updates 4000 2000

Table 2: Fairseq parameter setting in training.

4.2 Zh↔ En
For Zh ↔ En tasks, the training data consists of
ParaCrawl v9, News Commentary v16, Wiki Titles
v3, WikiMatrix, UN Parallel Corpus V1.0 (Ziemski
et al., 2016) and CCMT Corpus. We take news-
dev2017 as the development set and newstest2021
as the test set to tune the hyper-parameters. The
training data is filtered by aforementioned methods
and obtain the training data of 34.5M. The joint
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System En→ Zh Zh→ En

Baseline 32.1 23.4
+ Back Translation 32.3(+0.2) 23.5(+0.1)
+ Checkpoint Average 32.8(+0.5) 24.2(+0.7)
+ Domain Fine-tuning 34.1(+1.3) 26.9(+2.7)
+ Ensemble 34.5(+0.4) 27.4(+0.5)
+ Post-edit 37.9(+3.4) 27.4

Table 3: The experimental result of En↔ Zh task.

vocabulary with 32K words is generated by using
sentencepiece(Kudo and Richardson, 2018). The
officially provided back-translation data are not
used in our experiments since no obvious improve-
ments are obtained when adding it to the training
set. The results of En↔ Zh on newstest2021 are
shown in Table 3.

We perform back-translation with the deep 35-6
big model in the target-to-source direction to gen-
erate the synthetic parallel data. Comparing with
the baseline model, the back-translation technique
leads to an improvement of 0.2 and 0.1 BLEU in En
→ Zh and Zh→ En directions, respectively. The
checkpoint average method brings another BLEU
improvements of 0.5 and 0.7.

In the fine-tuning stage, we use previous WMT
test sets as the in-domain data. We first perform
fine-tuning on several different models with the
combination of newstest2017-2019. Then we trans-
late the in-domain data by the ensemble model to
obtain pseudo parallel data and perform further
fine-tuning on both the original and pseudo data.
In our final submission, we add the newstest2020
and newstest2021 test set to the in-domain data.
Domain fine-tuning is the most effective method in
our experiment, which achieve an improvement of
1.3 and 2.7 BLEU scores in En→ Zh and Zh→
En directions, respectively.

We ensemble several models with better perfor-
mance on the test set, in order to obtain more robust
translation system. In our work, model ensemble
further lead to a 0.4 and 0.5 BLEU improvement,
respectively. Moreover, we apply post-editing to
the translation outputs. It should be noted that post-
editing can mainly improve the BLEU of En →
Zh, which is about 3.4 BLEU. The punctuation for-
mat of Chinese translation has a great impact on
BLEU. Finally, we obtain 37.9 BLEU scores in En
→ Zh direction and 27.4 BLEU scores in Zh→ En
direction.

4.3 Ja↔ En

For Ja↔ En tasks, we choose ParaCrawl v9, News
Commentary v16, Japanese-English Subtitle Cor-
pus (Pryzant et al., 2018), The Kyoto Free Trans-
lation Task Corpus (Neubig, 2011) and TED Talks
as the training bilingual corpus. The final train-
ing bilingual corpus we used to train the model is
about 20.1M. The source and target side each has
a vocabulary with 32K words. We use the combi-
nation of newsdev2020 and newstest2020 as the
development set and newstest2021 as the test set,
respectively. Table 4 summarizes our results on
newstest2021.

As shown in Table 4, all the four data aug-
mentation methods improve the translation perfor-
mance in both translation directions. We apply the
deep 24-6 model to implement four data augmen-
tation methods and We find that back-translation
contributes the largest BLEU improvements (+4.1
BLEU) of the four data augmentation methods
on En → Ja direction, while knowledge distilla-
tion performs best in the opposite direction (+2.1
BLEU). Moreover, we also evaluate the combina-
tion of the four data augmentation methods. In En
→ Ja direction, we combine the synthetic data from
back-translation and R2L model with the original
parallel data in a ratio of 0.5:0.5:1. By contrast, in
Ja→ En direction, we mix the synthetic data from
back-translation, forward-translation and knowl-
edge distillation with the original parallel data in
a ratio of 0.5:0.5:0.5:1. The combination of multi-
ple data augmentation methods brings 4.5 and 2.0
BLEU gains in En→ Ja and Ja→ En directions.

We further use newsdev2020, newstest2020 and
selected in-domain data to fine-tune the model and
achieve another 3.6 and 1.8 BLEU improvement
in En→ Ja and Ja→ En directions, respectively.
Then, the model ensemble further bring 1.1 and
0.6 BLEU improvement. Finally, we apply post-
editing to the translation outputs and it further bring
0.2 and 0.1 BLEU improvement in En→ Ja and Ja
→ En directions.

5 Conclusion

This paper presents the DUTNLP Translation sys-
tems for WMT22 General MT Task. Our main
exploration is to improve the translation perfor-
mance with the fine-grained data filtering, diverse
model architectures, large-scale data augmentation
and domain fine-tuning. The effectiveness of each
method is demonstrated in our experiments. Model
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System En→ Ja Ja→ En

Baseline 36.8 22.3
+ Back Translation 40.9 23.8
+ Forward Translation 39.5 24.2
+ Knowledge Distillation 38.9 24.3
+ R2L Training 39.7 23.4
+ BT+R2L 41.3(+4.5) -
+ BT+FT+KD - 24.3(+2.0)
+ Domain Fine-tuning 44.9(+3.6) 26.1(+1.8)
+ Ensemble 46.0(+1.1) 26.7(+0.6)
+ Post-edit 46.2(+0.2) 26.8(+0.1)

Table 4: The experimental result of En↔ Ja task.

ensemble and post-editing are also used to further
improve the performance of our system. Our con-
strained systems achieve 29.01, 63.87, 41.84, and
24.82 BLEU scores on Chinese→ English, English
→ Chinese, English→ Japanese, and Japanese→
English, respectively.
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Abstract

This paper presents the submissions of Huawei
Translate Services Center (HW-TSC) to the
WMT 2022 General Machine Translation
Shared Task. We participate in 6 language pairs,
including Zh↔En, Ru↔En, Uk↔En, Hr↔En,
Uk↔Cs and Liv↔En. We use Transformer ar-
chitecture and obtain the best performance via
multiple variants with larger parameter sizes.
We perform fine-grained pre-processing and fil-
tering on the provided large-scale bilingual and
monolingual datasets. For medium and high-
resource languages, we mainly use data aug-
mentation strategies, including Back Transla-
tion, Self Training, Ensemble Knowledge Dis-
tillation, Multilingual, etc. For low-resource
languages such as Liv, we use pre-trained ma-
chine translation models, and then continue
training with Regularization Dropout (R-Drop).
The previous mentioned data augmentation
methods are also used. Our submissions ob-
tain competitive results in the final evaluation.

1 Introduction

This paper introduces our submissions to the
WMT 2022 General Machine Translation Shared
Task. We participate in 6 language pairs includ-
ing Chinese/English (Zh↔En), Russian/English
(Ru↔En), Ukrainian/English (Uk↔En), Croat-
ian/English (En→Hr), Ukrainian/Czech(Uk↔Cs),
and Livonian/English (Liv↔En). For Zh↔En
translation, we use additional in-house in-domain
data, so the final submission for this language
pair is unconstrained. For Liv↔En translation, al-
though we did not use additional data, we used
M2M-100 (Fan et al., 2020) as the pretrained
model, and the final submission is also uncon-
strained. All other languages pair participate in
the constrained evaluation. Our method is mainly
based on previous works (Wei et al., 2020, 2021;
Yang et al., 2021) but with fine-grained data cleans-
ing techniques and language-specific optimiza-
tions.

For each language pair, we perform multi-step
data cleansing on the provided dataset and only
keep a high-quality subset for training. At the same
time, several strategies are tested in a pipeline, in-
cluding Backward (Edunov et al., 2018) and For-
ward (Wu et al., 2019a) Translation, Multilingual
Translation (Johnson et al., 2017), Iterative Joint
Training (Zhang et al., 2018), R-Drop, Pretrained
NMT model, Ensemble Knowledge Distillation
(Freitag et al., 2017; Li et al., 2019), Fine-Tuning
(Sun et al., 2019), Ensemble (Garmash and Monz,
2016), and Post-Processing.

Our system report includes four parts. Section
2 focuses on our data processing strategies while
section 3 describes our training details. Section 4
explains our experiment settings and training pro-
cesses and section 5 presents the results.

2 Data

2.1 Data Source
We obtain bilingual and monolingual data from
data sources such as CCMT, UN, ParaCrawl, Wiki-
Matrix, WikiTitles, News Commentary, Leipzig
Corpora, News Crawl, and Common Crawl. The
amount of data we used is shown in Table 1. It
should be noted that in order to obtain better perfor-
mance in the general domain, we mix the monolin-
gual data from Common Crawl and News Crawl.

2.2 Data Pre-processing
Our data processing procedure is basically the same
as our method last year (Wei et al., 2021), includ-
ing deduplication, XML content processing, langid
(Joulin et al., 2016b,a) and fast-align (Dyer et al.,
2013) filtering strategies, etc. As we use the same
data pre-processing strategy as last year’s, we will
not go into details here.

2.3 Data Denoise
Regarding Hr↔En, the CCMatrix data is highly
noisy, so more fine-grained data cleaning is nec-
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language pairs Raw bi data Filter bi data Used mono data
Zh/En 39M 37M En: 150M (C&N), Zh: 150M (C)
Ru/En 28M 26M En: 160M (C&N), Ru: 160M (C&N)
Hr/En 69M 55M Hr: 22M (N)
Uk/En 39M 36M En: 150M (C&N), Uk: 60M (N)
Cs/Uk 8.4M 8M Cs: 60M (C&N), Uk: 60M (N)
Liv/En 1.1k 1.1k Liv: 50K, En: 1M

Table 1: Bilingual data sizes before and after filtering, and monolingual data used in the task. Regarding monolingual
data, N means that the data comes from News Crawl; C means that the data comes from Common Crawl; and C&N
means half of News and Common Crawl.

essary. We adopted the data denoise strategy by
Wang et al. (2019, 2018). The strategy uses a
small amount of high-quality data to tune the base
model, and then leverages the differences between
the tuned model and the baseline to score bilingual
data. The score is calculated based on formula 1.

score =
logP (y|x; θclean)− logP (y|x; θnoise)

|y|
(1)

Where θnoise denotes the model trained with noisy
data; θclean denotes the model after fine-tuning on
a small amount of clean bilingual data, and |y|
denotes the length of the sentence. Higher score
means higher quality.

3 System Overview

Our method basically follows our previous train-
ing strategies (Wei et al., 2020, 2021), such as
commonly used Back-Translation (Edunov et al.,
2018), Iterative Joint Training (Zhang et al., 2018),
Multilingual enhancement (Johnson et al., 2017;
Kudugunta et al., 2019; Zhang et al., 2020), Data
Diversification (Nguyen et al., 2020) (for details,
please refer to our previous work Yang et al.
(2021)), Ensemble and Fine-tuning, etc. We will
not detail these strategies in this report. The fol-
lowing paper focuses on new strategies used in this
year.

3.1 Model

We continue using Transformer (Vaswani et al.,
2017) as our NMT architecture, but we do not use
the four model variants as last year. For conve-
nience, we only use a 25-6 deep model architec-
ture. The parameters of the model are the same
as Transformer-big. We just change the post-layer-
normalization to the pre-layer-normalization, and
increase the encoder layers to 25.

3.2 R-Drop

Dropout-like method (Srivastava et al., 2014; Gao
et al., 2022) is a powerful and widely used
technique for regularizing deep neural networks.
Though it can help improve training effectiveness,
the randomness introduced by dropouts may lead
to inconsistencies between training and inference.
R-Drop (Wu et al., 2021) forces the output distribu-
tions of different sub models generated by dropout
be consistent with each other. Therefore, we use
R-Drop training strategy to augment the baseline
model for each track and reduce inconsistencies
between training and inference.

3.3 Pretrained NMT Model

There are many pre-trained Sequence-to-Sequence
models, such as Mbart (Liu et al., 2020), MT5
(Xue et al., 2020), M2M-100 (Fan et al., 2020), etc.
These pre-trained models are very useful for ultra-
low resource tasks. For the ultra-low-resource track
Liv↔En, very few bilingual data (1k) is available,
so we use a method similar to Adelani and Alabi
(2022) to continue training on the basis of M2M-
100 (418M) 1. Since M2M-100 does not support
the Liv language, we select an existing language
tag (Estonian) similar to Liv to identify this lan-
guage. For unknown tokens in Liv, we replace
them with very low-frequent words in the vocabu-
lary. We find this strategy effective for performance
improvement.

3.4 Noised Self-Training

Self-training (Imamura and Sumita, 2018) (ST),
also known as Forward translation (Wu et al.,
2019b), usually refers to using a forward NMT
model to translate source-side monolingual data so
as to generate synthetic bilinguals, which aims at

1https://dl.fbaipublicfiles.com/m2m_
100/418M_last_checkpoint.pt
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System WMT20 WMT21 Med20 Flores Avg WMT22
baseline 41.6 32.2 34.3 42.2 37.6 -
R-Drop 43.4 32.9 35.6 44.0 39.0 -
Data Rejuvenation 43.5 33.0 35.4 44.3 39.5 -
Data Diversification 44.8 33.4 35.7 44.5 39.6 -
ST+BT 45.0 33.8 36.6 45.0 40.1 46.0
Finetune & Ensemble (constrain) - - - - - 47.8
Domain Data (unconstrain) - - - - - 49.7

Table 2: En→Zh BLEU scores on WMT 2020 News (WMT20), WMT 2021 News (WMT21), WMT 2020
Biomedical (Med20) and Flores test sets, and their average (Avg) scores based on different training strategies. We
also report part of WMT 2022 (WMT22) test set results.

System WMT20 WMT21 Med20 Flores Avg WMT22
baseline 28.6 23.5 26.3 30.5 27.2 -
R-Drop 30.4 25.0 28.3 31.8 28.9 -
Data Rejuvenation 31.3 26.2 28.4 31.3 29.3 -
Data Diversification 32.5 27.8 29.5 31.9 30.4 -
ST+BT 33.3 28.1 29.6 32.0 30.7 26.0
Finetune & Ensemble (constrain) - - - - - 27.7
Domain Data (unconstrain) - - - - - 29.8

Table 3: Zh→En BLEU scores on WMT 2020 News (WMT20), WMT 2021 News (WMT21), WMT 2020
Biomedical (Med20) and Flores test sets, and their average (Avg) scores based on different training strategies. We
also report part of WMT 2022 (WMT22) test set results.

increasing the training data size. Forward transla-
tion usually relies on beam search-based (Freitag
and Al-Onaizan, 2017) decoding when generating
synthetic data. He et al. (2019) find that drop-out
plays an important role in ST and adding a certain
noise to the original text can further improve the
effect of ST, which is called Noised ST. We adopt
this method during training.

3.5 Data Rejuvenation

We score all the training bilingual data through
Equation 1, and filter out 10% - 20% of the data
according to the score distribution. We use the re-
maining 80% - 90% clean data to continue training
on the previous model for denoising. This strategy
is particularly effective with noisy data and is used
in several several languages in this task. We refer
to it as Data Rejuvenation in the following.

4 Experiment Settings

We use the open-source fairseq (Ott et al., 2019) for
training and sacreBLEU (Post, 2018) to measure
system performances. The main parameters are as
follows: Each model is trained using 8 V100 GPUs.
The size of each batch is set as 2048, parameter
update frequency as 4, and learning rate as 5e-4

(Vaswani et al., 2017). The number of warmup
steps is 4000, and model is saved every 1000 steps.
The architecture we used is described in section
3.1. We adopt dropout, and the rate varies across
different language pairs. R-Drop is used in model
training, and we set parameter λ to 5 for all lan-
guage pairs.

5 Results and Analysis

5.1 Zh↔En
Regarding Zh↔En, we use R-Drop, Knowledge
Distillation (Kim and Rush, 2016), Self Training +
Back Translation, and fine-tuning. The results of
Zh→En and En→Zh are shown in Tables 2 and 3.

To better measure the generalizability of our
models, we also calculate BLEU on WMT Biomed-
ical 2020 and Flores test sets (Goyal et al., 2021).

We see that R-Drop can stably bring about 1.5
BLEU improvement, and data enhancement can
bring 1.0 BLEU improvement. In the final result
we submitted, we only use the news test sets to
fine-tune the model, but we see that it was still able
to bring 1 BLEU improvement on the WMT 2022
test set.

In the end, our submission uses a combination
of our domain-related in-house data and the WMT
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System WMT20 WMT21 Med20 Flores Avg WMT22
baseline 22.9 26.2 32.7 30.8 28.2 -
ST+BT 23.8 27.9 33.1 31.3 29.0 -
ST+BT+R2L 24.1 28.4 32.1 31.6 29.1 -
Data Rejuvenation 22.9 27.1 34.9 31.5 29.1 27.2
Common Crawl 24.1 28.6 34.5 32.7 30.0 29.4
Finetune - - - - - 30.4
Ensemble - - - - - 30.8

Table 4: En→Ru BLEU scores on WMT 2020 News (WMT20), WMT 2021 News (WMT21), WMT 2020
Biomedical (Med20) and Flores test sets, and their average (Avg) scores based on different training strategies. We
also report part of WMT 2022 (WMT22) test set results.

System WMT20 WMT21 Med20 Flores Avg WMT22
baseline 36.1 36.7 41.1 34.1 37.0 -
ST+BT 37.5 38.1 40.4 35.1 37.8 -
ST+BT+R2L 37.7 38.4 41.4 36.2 38.4 42.8
Data Rejuvenation 37.1 38.1 42.7 36.7 38.7 43.0
Common Crawl 37.4 38.1 42.6 36.5 38.7 43.4
Finetune - - - - - 44.6
Ensemble - - - - - 45.1

Table 5: Ru→En BLEU scores on WMT 2020 News (WMT20), WMT 2021 News (WMT21), WMT 2020
Biomedical (Med20) and Flores test sets, and their average (Avg) scores based on different training strategies. We
also report part of WMT 2022 (WMT22) test set results.

data, and we find that domain-related data is critical
for quality improvement. By using the extra data,
we get an improvement of about 2.0 BLEU over
using only the WMT data. Our final Zh→En and
En→Zh submissions achieve 49.7 and 29.8 BLEU
respectively.

5.2 Ru↔En

Regarding Ru↔En (Table 4 and 5), we use strate-
gies including Iterative Self Training + Back Trans-
lation, R2L enhancement, and general domain
monolingual enhancement.

We see that in addition to the average 1 BLEU
improvement brought by fine-tune, the most effec-
tive strategy is adding more general domain data.
On En→Ru, after the Common Crawl monolingual
is added, we observe 2.0 BLEU improvement on
WMT 2022 test set.

The data enhancement strategy could bring sta-
ble improvement like that in Zh↔En, with an in-
crease of 2 BLEU compared to the baseline model
in an average.

The BLEU scores of our final Ru→En and
En→Ru submissions are 45.1 and 30.8 respec-
tively.

System En→Liv Liv→En
M2M-100 finetune 8.0 16.0
OOV process 9.6 17.6
Multilingual 11.0 21.6
Iter Tagged BT 13.3 24.0
Noised ST 14.6 -
R-Drop 15.1 25.8
WMT22 Submission 12.8 23.4

Table 6: The results of Liv↔En for WMT 2022 dev test
set. We remove overlapping sentences in the dev set that
also appear in the training set.

5.3 Liv↔En

Regarding Liv↔En (Table 6), we first fine-tune
the M2M-100 model with 1K bilingual data, and
then replace the out-of-vocabulary (OOV) token
in Liv with low-frequency sub-words in the vocab-
ulary, we see that this strategy brings 1.6 BLEU
improvement on En→Liv.

Then we use the Liv/Et and Liv/Lv data together
to fine-tune the model. This strategy can bring sig-
nificant improvement on both directions (1.4 BLEU
on En→Liv and 4 BLEU on Liv→En. It should be
pointed out that regarding En→Liv, we use addi-
tional data from Et→Liv and Lv→Liv, while for
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System dev Flores Avg
R-Drop 31.5 33.2 32.4
Data Rejuvenation 32.1 33.5 32.8
Sampling BT 33.2 32.9 33.1
Finetune 33.1 33.0 33.0
Ensemble 33.2 33.4 33.3
WMT22 Submission 18.1

Table 7: The results of En→Hr on WMT 2022 dev test
set and Flores.

Liv→En, we use data from Liv→Et and Liv→Lv
to enhance the model.

We do three rounds of Tagged BT (Caswell et al.,
2019) in total and observe that the improvement
is still significant (an average improvement of 3
BLEU on two directions). For En→Liv, we adopt
the strategy of Noised ST because we have a large
amount of English monolinguals. We used 1M
English monolinguals for Noised ST. We see that
this strategy can bring an additional 1.3 BLEU
improvement.

Additionally, we employ the R-Drop strategy
during training and find that on Liv2En, this strat-
egy brings an improvement of 1.8 BLEU.

Finally, using dev fine-tune and ensemble of 4
models, our submissions achieve 12.8 BLEU on
En→Liv, and 23.4 BLEU on Liv→En.

5.4 En→Hr
The results of En→Hr are shown in Table 7. We
use 22M Hr monolinguals for BT and find that
the results on the dev set is different from that on
the test set as the magnitude of improvements are
inconsistent. The overall improvement on dev set
is only 0.8 BLEU, but 3 BLEU on the test set. The
main improvement is brought by data denoising.
We assume that this is because the provided En2Hr
bilingual data is highly noisy. Our final submission
achieves 18.1 BLEU.

5.5 Uk↔En and Cs↔Uk
Regarding Uk↔En (Table 8), we conduct Sam-
pling BT and see 2.2 BLEU improvement on
Uk→En but no improvement on En↔Uk. After
adding self-training data, an additional 0.5 BLEU
improvement is gained on Uk→En. We then use
real bilinguals data to continue training the model
that have been augmented with synthetic data. This
strategy further leads to an average improvement
of 0.4 BLEU. We do not use dev fine-tuning but
directly ensemble the 4 models. The final En→Uk

and Uk→En submissions achieve 26.5 and 41.6
BLEU respectively on the WMT22 test set.

The strategy for Cs↔Uk is basically the same as
that for Uk↔En, but we further apply multilingual
enhancement. We use additional En→Uk data for
enhancing Cs→Uk translation and En→Cs data
for enhancing Uk→Cs translation. Multilingual
enhancement brings 1.2 BLEU improvement on
Uk→ Cs. Monolingual data augmentation also
brings significant improvement. Ensemble further
leads to 1 BLEU increase on Uk→Cs. Our final
Cs↔Uk submissions achieve 36.0 BLEU on the
WMT22 test sets.

6 Discussion

6.1 General Domain

In this year, WMT changed its focus on news do-
main to the broader general task, with three addi-
tional domains putting into consideration (social,
conversational, and ecommerce). We also use test
sets from other domains to measure the generaliz-
ability of our models.

However, for language pairs we participate in,
most of the knowledge in domains other than news
can only be learned from Common Crawl mono-
linguals. Without in-domain data, a model’s per-
formance in social, conversational and ecommerce
domains can hardly be improved. We add addi-
tional bilingual data related to the three domains
for the Zh↔En track and observe an average of 2.0
BLEU improvement. As a result, how to maximize
the effectiveness of in-domain data is crucial.

6.2 Evaluation Method

N-gram matching metrics such as BLEU and chrF
(Popović, 2015) are widely used in machine trans-
lation evaluation. However, as machine translation
technology improves, relying only on BLEU to
evaluate a model’s performance become increas-
ingly risky. For example, in last year’s evaluation,
the BLEU score of our De→En model ranks among
the top, but the human evaluation results show
that our model performs the worst. In this year’s
En→Uk evaluation, widely-used back-translation
lead to no BLEU increase as shown in Table 8. So
far, we are not sure whether back-translation does
lead to no improvement or the improvement can-
not be measured by BLEU. We believe that more
researches are required on robust metrics (Sellam
et al., 2020; Rei et al., 2020), reliable test set con-
structions, and sound human evaluation methods
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System En→Uk Uk→En Cs→UK Uk→Cs
baseline 31.7 38.7 24.1 22.3
Multilingual - - 24.6 23.5
Sampling BT 31.7 40.9 25.7 24.2
ST + BT 31.5 41.4 25.4 23.9
Data Rejuvenation 31.9 41.8 25.7 24.2
Ensemble 32.9 41.9 26.3 25.1
WMT22 Submission 26.5 41.6 36.0 36.0

Table 8: The results of Uk↔En and Uk↔Cs for WMT 2022 dev set.

considering the great advances in NMT and subtle
differences among systems.

7 Conclusion

This paper presents the submissions of HW-TSC
to the WMT 2022 General Machine Translation
Task. We participate in six language pairs and per-
form experiments with a series of pre-processing
and training strategies. The effectiveness of each
strategy is demonstrated. Our experiments show
that in very low-resource scenarios, fine-tuning on
pre-trained NMT models can significantly improve
system performance. R-Drop also brings stable im-
provement across languages. Certainly, commonly-
used data augmentation strategies are still effective
for model training. Our submissions finally achieve
competitive results in the evaluation.
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Abstract

We describe the JD Explore Academy’s
submission of the WMT 2022 shared task on
general machine translation. We participated
in all high-resource tracks and one medium-
resource track, including Chinese↔English
(Zh↔En), German↔English (De↔En),
Czech↔English (Cs↔En), Russian↔English
(Ru↔En), and Japanese↔English (Ja↔En).
[Method] We push the limit of our previous
work – bidirectional training (Ding et al.,
2021d) for translation by scaling up two main
factors, i.e. language pairs and model sizes,
namely the Vega-MT system. As for language
pairs, we scale the “bidirectional” up to the
“multidirectional” settings, covering all par-
ticipating languages, to exploit the common
knowledge across languages, and transfer
them to the downstream bilingual tasks. As for
model sizes, we scale the Transformer-BIG
up to the extremely large model that owns
nearly 4.7 Billion parameters, to fully enhance
the model capacity for our Vega-MT. Also,
we adopt the data augmentation strategies,
e.g. cycle translation (Ding and Tao, 2019)
for monolingual data, and bidirectional self-
training (Ding and Tao, 2021) for bilingual
and monolingual data, to comprehensively
exploit the bilingual and monolingual data.
To adapt our Vega-MT to the general domain
test set, generalization tuning is designed.
[Results] Based on the official automatic
scores* of constrained systems, in terms of
the SACREBLEU (Post, 2018) shown in
Figure 1, we got the 1st place in {Zh-En (33.5),
En-Zh (49.7), De-En (33.7), En-De (37.8), Cs-En
(54.9), En-Cs (41.4) and En-Ru (32.7)}, 2nd place
in {Ru-En (45.1) and Ja-En (25.6)}, and 3rd

place in {En-Ja(41.5)}, respectively; W.R.T
the COMET (Rei et al., 2020), we got the

Equal contribution. Work was done when Chang-
tong and Keqin were interning at JD Explore Academy.

*https://github.com/wmt-conference/
wmt22-news-systems/tree/main/scores

1st place in {Zh-En (45.1), En-Zh (61.7), De-En
(58.0), En-De (63.2), Cs-En (74.7), Ru-En (64.9),
En-Ru (69.6) and En-Ja (65.1)}, 2nd place in
{En-Cs (95.3) and Ja-En (40.6)}, respectively.
Models will be released to facilitate the MT
community through GitHub† and OmniForce
Platform‡.

1st!

1st!

1st!

1st!

1st!

1st! 1st!

2nd"

2nd"

3rd#

Figure 1: Vega-MT achieves 7 state-of-the-art BLEU
points out of 10 high-resource translation tasks among
all constrained systems, and significantly outperforms
the competitive Transformer-BIG baselines.

1 Introduction

In this year’s WMT general translation task,
our Vega-MT translation team participated in
10 shared tasks, including Chinese↔English
(Zh↔En), German↔English (De↔En),
Czech↔English (Cs↔En), Russian↔English
(Ru↔En), and Japanese↔English (Ja↔En). We
use the same model architectures, data strategies
and corresponding techniques for all tasks.

†https://github.com/JDEA-NLP/Vega-MT
‡OmniForce Platform will be launched by JD Explore

Academy
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We aim to leverage the cross-lingual knowl-
edge through pretraining (PT) to improve the high-
resource downstream bilingual tasks. Although re-
cent works (Song et al., 2019; Lewis et al., 2020;
Liu et al., 2020b; Wang et al., 2022) attempt to
leverage sequence-to-sequence PT for neural ma-
chine translation (NMT; Bahdanau et al., 2015a;
Gehring et al., 2017; Vaswani et al., 2017a) by
using a large amount of unlabeled (i.e. monolin-
gual) data, Zan et al. (2022b) show that it usually
fails to achieve notable gains (sometimes, even
worse) on resource-rich NMT on par with their
random-initialization counterpart, which is con-
sistent with our preliminary experiments. Ding
et al. (2021d) show that bidirectional pretrained
model as initialization for downstream bilingual
tasks could consistently achieve significantly bet-
ter performance. It is natural to assume that scal-
ing the “bidirectional” to the “multidirectional”
setting with {1) multilingual pretraining and 2)
large enough model capacity} could benefit the
downstream resource-rich bilingual translations.
Tran et al. (2021) and Lin et al. (2020) also pro-
vide empirical evidences to support our motivation
of supervised multilingual pretraining. Different
from Tran et al. (2021) that explores the effective-
ness of multilingual training, we show that further
tuning on the bilingual downstream task provide
more in-domain knowledge and thus could gain
better translation quality. Compared with Lin et al.
(2020), our model do not require any alignment in-
formation during pretraining, which will consume
more extra time and computation resources, mak-
ing our strategy flexible to be applied to any lan-
guage.

For model frameworks in §2.1, we tried au-
toregressive neural machine translation, includ-
ing Transformer-BIG and -XL (Vaswani et al.,
2017b), and non-autoregressive translation mod-
els (Gu et al., 2018), where the Transformer-XL
is employed as the foundation model and autore-
gressive BIG and non-autoregressive models are
used during augmenting. For the core training
strategy of our Vega-MT, we cast the multilin-
gual pretraining as foundation models in §2.2,
including MULTI-DIRECTIONAL PRETRAINING

(§2.2.1) and SPECIFIC-DIRECTIONAL FINETUN-
ING (§2.2.2). For data augmentation strate-
gies, we employ CYCLE TRANSLATION (§2.3.1)
and BIDIRECTIONAL SELF-TRAINING (§2.3.2)
for both monolingual and parallel data. In or-

MBase MBig MXL
#Stack 6 6 24
#Hidden Size 512 1024 2048
#FFN Size 2048 4096 16384
#Heads 8 16 32

Table 1: Model differences among base (MBase ), big
(MBig) and extremely large (MXL).

der to adapt our Vega-MT to the general do-
mains, we employ GREEDY BASED ENSEM-
BLING (§2.4.1), GENERALIZATION FINETUNING

(§2.4.2) and POST-PROCESSING (§2.4.3) strate-
gies.

The subsequent paper is designed as follows.
We introduce the major approaches we used in
Section 2. In Section 3, we provide the data de-
scription. We also present the experimental set-
tings and results in Section 4. Conclusions are de-
scribed in Section 5.

2 Approaches

2.1 Neural Machine Translation Frameworks

The neural machine translation task aims to trans-
form a source language sentence into the target
language with a neural network. There are several
generation paradigms for translation, e.g. Autore-
gressive Translation (AT, Bahdanau et al., 2015b;
Vaswani et al., 2017b) and Non-Autoregressive
Translation (NAT, Gu et al., 2018).

Autoregressive Translation Given a source
sentence x, an NMT model generates each target
word yt conditioned on previously generated ones
y<t. Accordingly, the probability of generating y
is computed as:

p(y|x) =
T∏

t=1

p(yt|x,y<t; θ) (1)

where T is the length of the target sequence and
the parameters θ are trained to maximize the like-
lihood of a set of training examples according to
L(θ) = argmaxθ log p(y|x; θ). Typically, we
choose Transformer (Vaswani et al., 2017b) as its
state-of-the-art performance and scalability. We
carefully employ the standard Transformer-BASE
(MBase) and Transformer-BIG (MBig) in the pre-
liminary studies, and also scale the framework up
to an extremely large setting (Tran et al., 2021)
– Transformer-XL (MXL) to maintain powerful
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Figure 2: The schematic structure of the two main stages of the Vega-MT.

model capacity (see Table 1) . In Vega-MT, we
utilized the autoregressive translation (AT) model
with MBig and MXL for multi-directional pre-
training (§2.2.1), specific-directional finetuning
(§2.2.2), bidirectional self-training (§2.3.2) and
generalization fine-tuning (§2.4.2) as its powerful
modelling ability and generation accuracy.

Non-Autoregressive Translation Different to
autoregressive translation (Bahdanau et al., 2015b;
Vaswani et al., 2017b, AT) models that generate
each target word conditioned on previously gen-
erated ones, non-autoregressive translation (Gu
et al., 2018, NAT) models break the autoregres-
sive factorization and produce the target words in
parallel. Given a source sentence x, the probabil-
ity of generating its target sentence y with length
T is defined by NAT as:

p(y|x) = pL(T |x; θ)
T∏

t=1

p(yt|x; θ) (2)

where pL(·) is a separate conditional distribution
to predict the length of target sequence. Typi-
callly, most NAT models are implemented upon
the framework of MBase. We utilized the NAT
for bidirectional self-training (§2.3.2) as NAT
can nicely avoid the error accumulation prob-
lems during generation, and generate diverse syn-
thetic samples. Also, we employ several ad-
vanced structure (Gu et al., 2019; Ding et al.,
2020) (Levenshtein with source local context mod-
elling) and advanced training strategies (Ding
et al., 2021a,b,c, 2022b; Ding, 2022) to obtain
high quality and diverse translations.

2.2 Multidirectional Pretraining as
Foundation Models

This section illustrates how we scale the “bidirec-
tional” training in Ding et al. (2021d) up to “multi-
directional” pretraining with all high-resource par-
allel corpora, including Zh, De, Cs, Ru, Ja to/from
En. The pretrained foundation models will be fine-
tuned for the downstream specific-directional task,
e.g. Zh-En. Such two-stage scheme is shown in
Figure 2.

2.2.1 Multi-Directional Pretraining
Recent works on real-world WMT translation
datasets have verified that it is possible to trans-
fer the pretrained cross-lingual knowledge to
the downstream tasks with the pretrain-finetune
paradigm, hence improving performance and gen-
eralization ability (Ding et al., 2022b,a; Wang
et al., 2020a).

Here, we propose multi-directional pretrain-
ing by extending Bidirectional Pretraining (Ding
et al., 2021d, BiT) to utilize multiple transla-
tion corpora of different languages. Compared
with BiT, multi-directional pretraining could uti-
lize the cross-lingual knowledge among more lan-
guages, thus further exploiting the cross-language
knowledge and facilitating the downstream trans-
ferring. The main modifications could be summa-
rized twofold:

1) We increase language numbers to utilize
the cross-lingual knowledge of various languages.
The straight setting for multi-directional pre-
training is multi-lingual translation, which is di-
vided into Many-to-Many (M2M), One-to-Many
(O2M), and Many-to-One (M2O), according to
the language number that the model supports.
M2M has potential of capturing more cross-
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lingual knowledge from N ∗ N pairs compared
with N ∗ 1/1 ∗N pairs of M2O/O2M but usually
leads to worse performance because of the imbal-
anced language data distribution question (Freitag
and Firat, 2020). Inspired by (Tran et al., 2021),
we focus on pretraining two separate systems,
including English-to-Many and Many-to-English.
We also prepend the corresponding language to-
ken to source & target sentences.

2) We further expand model size to an ex-
tremely large setting. While enjoying the ben-
efit of cross-lingual knowledge transferring, the
difficulty of modeling extremely large-scale data
and language-specific feature pushes us to enlarge
Transformer-BIG to an extremely large size (4.7
Billion parameters, see Table 1). This ensures our
models are capable of better mastering multiple
translation corpus.

2.2.2 Specific-Directional Finetuning
The off-target problem, which widely exits in mul-
tilingual translation systems (Yang et al., 2021),
indicates model often generates the translation
with some non-target words. To reduce non-target
word translation ratio in multi-directional pre-
trained models, we consider a two-stage specific-
directional finetuning strategy. As shown in Fig-
ure 2, the English source/target model is tuned
with an English source/target bilingual corpus.

Specifically, we first replace the multilingual
embedding with a bilingual one. To fit model and
bilingual vocabulary, we freeze all parameters of
the Transformer backbone and only tune embed-
ding layers in this stage. Next, we employ full
model finetuning on large-scale translation corpus.
This allows the model to fully adapt to the specific
directional translation task, thus further achieving
gains. To balance both finetune stages, we set the
ratios of update step as 1 : 4 for embedding- and
full model-tuning, respectively.

For future work during specific directional fine-
tuning, it will be interesting to design tuning data
order (Liu et al., 2020a; Zhou et al., 2021) by
leveraging the learning difficulty of each training
sample estimated in the pretraining stage.

2.3 Data Augmentation Strategies

In Vega-MT, we consider augmenting both
the parallel and monolingual data comprehen-
sively. Specifically, we employ the cycle trans-
lation (Ding and Tao, 2019) for regenerating the
low-quality monolingual data, and adopt bidirec-

T2S Model

S2T Model

Low-quality 

mono. data x

S2T(T2S(x))

Semantic-

equivalent

Mono Parallel

T2S(x)

Figure 3: The Cycle Translation process, into which we
feed the low quality monolingual data x, and then cor-
respondingly obtain the improved data CT (x) (denoted
as S2T (T2S(x))). Note that models marked in red and
blue represent the target-to-source and source-to-target
model trained with MBig. The dotted double-headed
arrow between the input x and the final output CT (x)
means they share the semantic but differ in fluency.

# Cycle Translated Sentence “1”→“2”

1 She stuck to her principles even when
some suggest that in an environment of-
ten considered devoid of such thing there
are little point.

2 She insists on her own principles, even
if some people think that it doesn’t make
sense in an environment that is often con-
sidered to be absent.

Table 2: Example of difference between original sen-
tence (line 1) and cycle translated result (line 2). Pre-
trained BERT model using all available English cor-
pora show that the Loss decreased from 6.98 to 1.52.

tional self-training (Ding and Tao, 2021) to distill,
diversify both the monolingual and parallel data.

2.3.1 Cycle Translation for Mono. Data

There is a large amount of monolingual data in-
complete or grammatically incorrect. To fully
leverage such part of monolingual data for better
data augmentation, e.g. back translation (Sennrich
et al., 2016) or sequence -level knowledge distilla-
tion (Kim and Rush, 2016), we adopt Cycle Trans-
lation (Ding and Tao, 2019) (denoted as CT (·), as
Figure 3) to improve the monolingual data below
the quality-threshold (the latter 50% will be cycle
translated according to Ding and Tao (2019)’s op-
timal setting). We give an example in Table 2 to
clearly show how the cycle translation improves
the quality of the sentence.
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2.3.2 Bidirectional Self-Training for Both
Mono&Para Data

Currently, data-level methods have attracted the
attention of the community, including exploiting
the parallel and monolingual data. The most rep-
resentative approaches include:

• Back Translation (BT, Sennrich et al. 2016)
introduces the target-side monolingual data
by translating with an inverse translation
model, and combines the synthetic data with
parallel data;

• Knowledge Distillation (KD, Kim and Rush
2016) generates the synthetic data with
sequence-level knowledge distillation;

• Data Diversification (DD, Nguyen et al.
2020) diversifies the data by applying KD
and BT on parallel data.

Clearly, self-training is at the core of above ap-
proaches, that is, they generate the synthetic data
either from source to target or reversely, with ei-
ther monolingual or bilingual data.

To this end, we employ the bidirectional self-
training (Ding and Tao, 2021; Liao et al., 2020)
strategy for both parallel and monolingual data
(including source and target, respectively). Specif-
ically, baseline AT models with MBig setting
and NAT models with MBase setting are trained
with original (distilled for NAT) parallel data in
the first iteration, and based on these forward-
and backward-teachers, all available source & tar-
get language sentences can be used to generate
the corresponding synthetic target & source sen-
tences. The authentic and synthetic data (gen-
erated by AT and NAT models) are then con-
catenated to train the second round AT and NAT
models. We run the bidirectional self-training
by totally 2 rounds for each translation direc-
tion. And for each round, we train 3 forward-
and 3 backward- AT models, and 1 forward- and
backward- NAT models to perform self-training.
In this way, the amount of bidirectional synthetic
data will be 8x larger than the original parallel and
monolingual data.

2.4 Generalization Adaptation for
Downstream Translation

To adapt Vega-MT to the general domain transla-
tion task, we employ several strategies, including

Algorithm 1: Generalization Finetuning
with Iteratively Transductive Ensemble
Input: Single Model Mn,

General Seed D={D1, D2..Dk},
Ensemble N models EN .

Output: New Model M
′
n

1 t := 0
2 while not convergence do
3 Translate D1 with EN and get DEN

1

4 ..
5 Translate Dk with EN and get DEN

k

6 DEN = DEN
1 ∪ ..DEN

k

7 Train Mn on D ∪DEN and get M
′
n,

then Mn =M
′
n

8 t := t+ 1

9 end

SRC Siltalan edellinen kausi liigassa oli

:::::::
2006-07

HYP Siltala’s previous season in the
league was

:::::
2006

::
at

:::
07

+post Siltala’s previous season in the
league was

::::::::
2006-07

Table 3: Example of the effectiveness of post-
processing in handling inconsistent number translation.

ensembling, generalization finetuning, and post-
processing. Note that in our preliminary study, we
find that noisy channel reranking with the target-
to-source MT model and language model does not
work in our setting, thus we have not reranked the
results in the final submission.

2.4.1 Greedy Based Ensembling
Greedy based ensembling adopts an easy opera-
ble greedy-base strategy to search for a better sin-
gle model combinations on the development set,
which consistently shows better performance than
simply average in our preliminary study, there-
fore we technically follow the instruction of Deng
et al. (2018) to choose the optimal combination
of checkpoints to enhance the generalization and
boost performance of the final model. We refer to
this method as “Ensemble” in the following.

2.4.2 Generalization Finetuning
As the general domain evaluation is on multi-
domain directions, i.e. containing (up to) four dif-
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Languages # Sents # Ave. Len.

Parallel

ZH-EN 46,590,547 22.8/27.1
DE-EN 292,020,383 22.9/21.7
CS-EN 88,244,832 20.5/19.9
RU-EN 98,454,430 28.5/27.8
JA-EN 28,943,024 26.2/28.0

Monolingual

EN 1,384,791,758 21.3
ZH 1,346,538,572 25.8
DE 5,612,161,001 23.2
CS 444,049,843 19.7
RU 8,351,860,471 28.5
JA 5,534,872,418 27.9

Table 4: Data statistics after pre-processing.

ferent domains, we design generalization finetun-
ing strategy to transductively finetune (Wang et al.,
2020b) on each domain, and ensemble them into
one single model, to empower the general transla-
tion ability. The proposed generalization finetun-
ing is shown in Algorithm 1. The main difference
from Multi-Model & Multi-Iteration Transductive
Ensemble (Wang et al., 2021) is that the kth do-
main seed Dk is extracted from the test set using
heuristic artificial knowledge.

2.4.3 Post-Processing
In addition to general post-processing strategies
(e.g. de-BPE), we also employ a post-processing
algorithm (Wang et al., 2018) for inconsistent
number, date translation, for example, “2006-07”
might be translated to the wrong translation “2006
at 07”. Our post-processing algorithm will search
for the best matching number string from the
source sentence to replace these types of errors
(see Table 3). Besides, we also conduct punc-
tuation conversion, including convert quotation
marks to German double-quote style (Czech, Ger-
man), convert punctuation to language-specific
characters (Japanese, Chinese).

3 Data Preparation

We participated in translation of all high-
resource tracks and one medium-resource
track, including Chinese↔English (Zh↔En),
German↔English (De↔En), Czech↔English
(Cs↔En), Russian↔English (Ru↔En), and

Japanese↔English (Ja↔En).
In this section, we take the En↔Zh translation

as example and describe how to prepare the train-
ing data. The setting is the same for other language
pairs. We use all available parallel corpus for
En↔Zh §, including ParaCrawl v9, News Com-
mentary v16, Wiki Titles v3, UN Parallel Cor-
pus V1.0, CCMT Corpus, WikiMatrix and Back-
translated news. For monolingual data, we ran-
domly sample from “News Crawl” and “Common
Crawl”. The final corpus statistics are presented in
Table 4.

To improve the quality of parallel data, we
further propose to filter the low-quality samples.
First, we remove the sentence pair which is pre-
dicted as wrong language with Fasttext (Joulin
et al., 2017, 2016). Second, we replace uni-
code punctuation and also normalize punctuation
with mosesdecoder. We also remove duplicate
sentence pairs and filter out sentences with ille-
gal characters. For length, we remove sentences
longer than 250 words and with a source/target
length ratio exceeding 3.

4 Experiments

Settings We use the extremely large Trans-
former (MXL) for all tasks and Transformer-BIG
(MBIG) for bilingual baselines. For MBIG, we
empirically adopt large batch strategy (Edunov
et al., 2018) (i.e. 458K tokens/batch) to opti-
mize the performance. The learning rate warms
up to 1 × 10−7 for 10K steps, and then decays
for 70K steps with the cosine schedule. For reg-
ularization, we tune the dropout rate from [0.1,
0.2, 0.3] based on validation performance, and ap-
ply weight decay with 0.01 and label smoothing
with ϵ = 0.1. We use Adam optimizer (Kingma
and Ba, 2015) to train models. We evaluate the
performance on an ensemble of last 10 check-
points to avoid stochasticity. For the main model
MXL, we adopt 1M Tokens/Batch to optimize
the performance both in multilingual pretraining
and bilingual finetuning. We set 0.1 as the la-
bel smoothing ratio, 4000 as warm-up steps, and
1e-3 as the learning rate. We optimize Vega-MT
with Adam (Kingma and Ba, 2015). We use 100k
updates for multi-directional pretraining, 40k up-
dates for each specific-directional finetuning. For

§both parallel and monolingual corpus can be ob-
tained fromhttps://www.statmt.org/wmt22/
translation-task.html
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Zh-En En-Zh
Models W21 test W22 test ∆ W21 test W22 test ∆

Transformer-BIG w/ Para. 25.3 21.9 - 25.9 33.2 -
Multi-Directional PT 28.4 25.1 +3.2 27.1 35.7 +1.9

+Specific-Directional FT 29.5 26.7 +4.3 27.4 36.6 +3.6
+Bidirect. Self-Training 30.8 29.0 +6.3 29.7 40.7 +5.7
+Ensemble 31.1 29.8 +6.7 30.4 41.3 +6.4
+Generalization FT 30.3 33.5 +8.3 30.6 44.1 +9.0
+Post-Processing 30.5 33.5 +8.4 33.6 49.7 +13.3

Table 5: Ablation studies of each component on Zh↔En general translation task in terms of SacreBLEU.We
select Transformer-BIG only trained with official parallel data as the baseline.

Models Zh→En De→En Cs→En Ru→En Ja→En ∆

Baseline 21.9 23.0 42.5 30.2 19.0 -
Vega-MT 33.5 33.7 54.9 45.1 25.6 +11.2
Best Official 33.5 33.7 54.9 45.1 26.6

Models En→Zh En→De En→Cs En→Ru En→Ja ∆

Baseline 33.2 26.4 34.8 20.8 17.9 -
Vega-MT 49.7 37.8 41.4 32.7 41.5 +14.0
Best Official 49.7 37.8 41.4 32.7 42.5

Table 6: SacreBLEU-Scores of our submissions in WMT2022 general translation task. “Baseline” indicates
the performance of the baseline systems. And “Best Official” denotes the best results of constrained systems in
each direction.

evaluation, we select SacreBLEU (Post, 2018) as
the metric for all tasks. news-test2020 and
news-test2021 are selected for validation and
test respectively.

All parallel data will be used in the multi-
directional PT stage, and during specific-
directional FT, corresponding bilingual data
augmented by bidirectional self-training are
utilized. Each sentence are jointly tokenized
in to sub-word units with SentencePiece (Kudo
and Richardson, 2018), which is trained on
all concatenated multilingual parallel data for
Transformer-XL with merge operation 120K
at the pretraining stage, and during finetuning
stage, is trained on corresponding bilingual data
with merge operation 60K for English and 75K
for other languages. And for each baseline with
Transformer-BIG, the joint bilingual vocab size
is 80K. During pretraining, we select the sample
with temperature-based method (T=5) to preserve
the representation of relatively low-resource
language, e.g. Japanese. We grid-search the
beam size within the range of [3,4,5,..,8] on
validation set for each translation task. All models

are trained on 32 DGX-SuperPOD A100 GPUs
for about two weeks pre-training and five days
fine-tuning.

Main Results To illustrate the effectiveness of
each strategy in our Vega-MT, we report the abla-
tion results in Table 5 on Zh↔En tasks. Clearly,
directly generating the translations with the multi-
directional pretrained model could obtain aver-
age +3.2 and +1.9 BLEU improvements for Zh-
En and En-Zh, respectively, which is consistent
with the findings of Tran et al. (2021). We show
that tuning on downstream bilingual data could
further improve the translation by +1.4 BLEU
points, showing the necessity of bridging the
cross-lingual gap with in-domain learning dur-
ing leveraging multilingual pretrain (Zan et al.,
2022a). Bidirectional self-training actually con-
tains several strategies, e.g. back translation, dis-
tillation and data diversification, and we empiri-
cally show that such data augmentation strategy
nicely complement pretraining, which is also ver-
ified by Liu et al. (2021). Other strategies could
consistently enhance the translation performance
besides the generalization FT for the news domain
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Models Zh→En De→En Cs→En Ru→En Ja→En ∆

Baseline 16.5 3.5 40.1 8.5 21.5 -
Vega-MT 45.1 58.0 74.7 64.9 40.6 +38.6
Best Official 45.1 58.0 74.7 64.9 42.0

Models En→Zh En→De En→Cs En→Ru En→Ja ∆

Baseline 26.6 -40.6 66.9 -1.4 42.1 -
Vega-MT 61.7 63.2 95.3 69.6 65.1 +52.3
Best Official 61.7 63.2 96.0 69.6 65.1

Table 7: COMET-Scores of our submissions in WMT2022 general translation task. “Baseline” indicates the
performance of the baseline systems. And “Best Official” denotes the best results of constrained systems in each
direction.

test2021, where the Zh-En model decreases the
BLEU scores (-0.8 BLEU) because the general-
ization FT is designed and tuned for the general
domain test2022.

Table 6 and Table 7 show the final submissions
in terms of SacreBLEU and COMET scores, in-
cluding Zh, De, Cs, Ru and Ja to/from En, listing
the baseline and our final submissions. We also re-
port the best official scores among all constrained
systems “Best Official” as reference. As seen,
SacreBLEU and COMET results show identical
trends, where our Vega-MT outperforms base-
line Transformer-BIG by +11.2/ +38.6 and +14.0/
+52.3 BLEU/ COMET points, showing the effec-
tiveness and universality of our model. Interest-
ingly, we observe that the improvements upon En-
X are more significant than that of X-En, which
will be investigated in our future work. For more
system rankings, please refer Table 8 and Table 9
in Appendix for SacreBLEU and COMET results,
respectively.

5 Conclusion

This paper presents the JD Explore Academy
machine translation system Vega-MT for WMT
2022 shared tasks on general machine translation.
We investigate various frameworks, including au-
toregressive and non-autoregressive Transformer
with BASE, BIG and XL settings, respectively,
to build strong baseline models. Then we push
the limit of bidirectional training by scaling up
two main factors, i.e. language pairs and model
scales, to develop the powerful foundation Vega-
MT model. Also, the popular data augmentation
methods, e.g. cycle translation and bidirectional
self-training, are combined to improve their per-
formance. We carefully design the generalization

adaptation strategies to further improve the multi-
domain performance. Among all participated con-
strained systems, our Vega-MT won 7 champions,
2 runners-up and 1 third place w.r.t sacreBLEU.
And according to the COMET, we won 8 champi-
ons and 2 runners-up.
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pair system id is constrained metric score
En-Cs Lan-Bridge 551 FALSE bleu-B 45.6
En-Cs JDExploreAcademy 829 TRUE bleu-B 41.4
En-Cs CUNI-DocTransformer 800 TRUE bleu-B 39.8
En-Cs CUNI-Bergamot 734 TRUE bleu-B 38.6
En-Cs CUNI-Transformer 761 TRUE bleu-B 37.7
pair system id is constrained metric score

En-De JDExploreAcademy 843 TRUE bleu-A 37.8
En-De Lan-Bridge 549 FALSE bleu-A 36.1
En-De PROMT 694 FALSE bleu-A 36.1
En-De OpenNMT 207 FALSE bleu-A 35.7
pair system id is constrained metric score

En-Ja NT5 763 TRUE bleu-A 42.5
En-Ja DLUT 789 TRUE bleu-A 41.8
En-Ja LanguageX 676 FALSE bleu-A 41.7
En-Ja JDExploreAcademy 516 TRUE bleu-A 41.5
En-Ja Lan-Bridge 555 FALSE bleu-A 39.4
pair system id is constrained metric score

En-Ru JDExploreAcademy 509 TRUE bleu-A 32.7
En-Ru Lan-Bridge 556 FALSE bleu-A 32.6
En-Ru HuaweiTSC 680 TRUE bleu-A 30.8
En-Ru PROMT 804 FALSE bleu-A 30.6
En-Ru SRPOL 265 TRUE bleu-A 30.4

pair system id is constrained metric score
En-Zh LanguageX 716 FALSE bleu-A 54.3
En-Zh HuaweiTSC 557 FALSE bleu-A 49.7
En-Zh JDExploreAcademy 834 TRUE bleu-A 49.7
En-Zh AISP-SJTU 611 TRUE bleu-A 48.8
En-Zh Manifold 336 TRUE bleu-A 48.7

pair system id is constrained metric score
Cs-En JDExploreAcademy 505 TRUE bleu-B 54.9
Cs-En Lan-Bridge 585 FALSE bleu-B 54.5
Cs-En CUNI-DocTransformer 805 TRUE bleu-B 51.9
Cs-En CUNI-Transformer 772 TRUE bleu-B 51.6
Cs-En SHOPLINE-PL 819 TRUE bleu-B 46.8
pair system id is constrained metric score

De-En JDExploreAcademy 809 TRUE bleu-A 33.7
De-En Lan-Bridge 587 FALSE bleu-A 33.4
De-En PROMT 796 FALSE bleu-A 32.5
De-En LT22 605 TRUE bleu-A 26.0
pair system id is constrained metric score

Ja-En NT5 766 TRUE bleu-A 26.6
Ja-En JDExploreAcademy 512 TRUE bleu-A 25.6
Ja-En DLUT 693 TRUE bleu-A 24.8
Ja-En Lan-Bridge 588 FALSE bleu-A 22.8
Ja-En NAIST-NICT-TIT 583 TRUE bleu-A 22.7
pair system id is constrained metric score

Ru-En Lan-Bridge 589 FALSE bleu-A 45.2
Ru-En HuaweiTSC 836 TRUE bleu-A 45.1
Ru-En JDExploreAcademy 769 TRUE bleu-A 45.1
Ru-En SRPOL 666 TRUE bleu-A 43.6
Ru-En ALMAnaCH-Inria 710 TRUE bleu-A 30.3

pair system id is constrained metric score
Zh-En JDExploreAcademy 708 TRUE bleu-A 33.5
Zh-En LanguageX 219 FALSE bleu-A 31.9
Zh-En HuaweiTSC 477 FALSE bleu-A 29.8
Zh-En AISP-SJTU 648 TRUE bleu-A 29.7
Zh-En Lan-Bridge 386 FALSE bleu-A 28.1

Table 8: Ranking of our submissions in terms of SacreBLEU-Score in WMT2022 general translation task.

421



pair system id is constrained metric score
En-Cs CUNI-Bergamot 734 TRUE COMET-B 0.960
En-Cs JDExploreAcademy 829 TRUE COMET-B 0.953
En-Cs Lan-Bridge 551 FALSE COMET-B 0.947
En-Cs CUNI-DocTransformer 800 TRUE COMET-B 0.917
En-Cs CUNI-Transformer 761 TRUE COMET-B 0.866
pair system id is constrained metric score

En-De JDExploreAcademy 843 TRUE COMET-A 0.632
En-De Lan-Bridge 549 FALSE COMET-A 0.588
En-De OpenNMT 207 FALSE COMET-A 0.572
En-De PROMT 694 FALSE COMET-A 0.558
pair system id is constrained metric score

En-Ja JDExploreAcademy 516 TRUE COMET-A 0.651
En-Ja NT5 763 TRUE COMET-A 0.641
En-Ja LanguageX 676 FALSE COMET-A 0.621
En-Ja DLUT 789 TRUE COMET-A 0.605
En-Ja Lan-Bridge 555 FALSE COMET-A 0.565
pair system id is constrained metric score

En-Ru JDExploreAcademy 509 TRUE COMET-A 0.696
En-Ru Lan-Bridge 556 FALSE COMET-A 0.673
En-Ru PROMT 804 FALSE COMET-A 0.603
En-Ru SRPOL 265 TRUE COMET-A 0.597
En-Ru HuaweiTSC 680 TRUE COMET-A 0.592

pair system id is constrained metric score
En-Zh LanguageX 716 FALSE COMET-A 0.638
En-Zh JDExploreAcademy 834 TRUE COMET-A 0.617
En-Zh Lan-Bridge 714 FALSE COMET-A 0.614
En-Zh Manifold 336 TRUE COMET-A 0.601
En-Zh HuaweiTSC 557 FALSE COMET-A 0.595

pair system id is constrained metric score
Cs-En JDExploreAcademy 505 TRUE COMET-B 0.747
Cs-En Lan-Bridge 585 FALSE COMET-B 0.718
Cs-En CUNI-DocTransformer 805 TRUE COMET-B 0.706
Cs-En CUNI-Transformer 772 TRUE COMET-B 0.692
Cs-En SHOPLINE-PL 819 TRUE COMET-B 0.611
pair system id is constrained metric score

De-En JDExploreAcademy 809 TRUE COMET-A 0.580
De-En Lan-Bridge 587 FALSE COMET-A 0.565
De-En PROMT 796 FALSE COMET-A 0.518
De-En LT22 605 TRUE COMET-A 0.256
pair system id is constrained metric score

Ja-En NT5 766 TRUE COMET-A 0.420
Ja-En JDExploreAcademy 512 TRUE COMET-A 0.406
Ja-En DLUT 693 TRUE COMET-A 0.372
Ja-En NAIST-NICT-TIT 583 TRUE COMET-A 0.334
Ja-En LanguageX 435 FALSE COMET-A 0.329
pair system id is constrained metric score

Ru-En JDExploreAcademy 769 TRUE COMET-A 0.649
Ru-En Lan-Bridge 589 FALSE COMET-A 0.631
Ru-En HuaweiTSC 836 TRUE COMET-A 0.609
Ru-En SRPOL 666 TRUE COMET-A 0.595
Ru-En ALMAnaCH-Inria 710 TRUE COMET-A 0.268

pair system id is constrained metric score
Zh-En JDExploreAcademy 708 TRUE COMET-A 0.451
Zh-En LanguageX 219 FALSE COMET-A 0.449
Zh-En Lan-Bridge 386 FALSE COMET-A 0.430
Zh-En HuaweiTSC 477 FALSE COMET-A 0.428
Zh-En AISP-SJTU 648 TRUE COMET-A 0.416

Table 9: Ranking of our submissions in terms of COMET-Score in WMT2022 general translation task.
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Abstract 

We participated in the WMT General MT 

task and focus on four high resource 

language pairs: English to Chinese, 

Chinese to English, English to Japanese 

and Japanese to English). The submitted 

systems (LanguageX) focus on data 

cleaning, data selection, data mixing and 

TM-augmented NMT. Rules and 

multilingual language model are used for 

data filtering and data selection. In the 

automatic evaluation, our best submitted 

English to Chinese system achieved 54.3 

BLEU score and 63.8 COMET score, 

which is the highest among all the 

submissions. 

1 Introduction 

Training neural machine translation models for a 

specific domain is a well-studied task. However, 

maximizing the performance of a single NMT 

model for multiple domains remains difficult. As 

a former translator and a current machine 

translation engineer, I always dream about 

building a versatile machine translation system – 

no domain left behind. Our neural machine 

translation system is developed using big 

transformer (Vaswani et al., 2017) architecture 

and the toolkit I used is fairseq (Ott et al., 2020). 

Rules, multilingual language model and faiss 

(Johnson et al., 2021) are used to align, clean and 

select parallel data. The following techniques are 

used in model training: a. Data mixing is used to 

mix general domain corpus with specific domain 

corpus; b. Back translation (Sennrich et al., 2016) 

is not applied because it is time-consuming. 

Instead, Neural Machine Translation with 

Monolingual Translation Memory (Cai et al., 

 
1http://mteval.cipsc.org.cn:81/agreement/description 

2021) is used to fully utilize the monolingual 

corpus. 

2 Data Filtering and Selection 

The Chinese-English parallel data is mainly from 

CCMT Corpus 1 , inhouse domain data from 

translation projects, as well as parallel data 

aligned from multilingual websites and e-books. 

The monolingual data for multiple domains is 

collected from the internet and e-books. WMT 

newstest2021 is used to evaluate the model’s 

general domain performance. Multiple domain-

specific test sets are created to evaluate the 

model’s specific domain performance. Each 

domain has a test set of 1,000 sentences. 

In order to build a versatile machine translation 

system, a total of 15 domains are covered in 

preparing the parallel and monolingual corpus. 

The primary domains and subdomains are listed 

as follows: 

Literature 

Web novel 

Famous literary work 

Literature/Poetry 

Idioms/maxims/sayings 

Slang 

Conversation 

Names (personal, company) 

Symbols / Abbreviations / Acronyms 

Art, History and Philosophy 

Arts/crafts/painting 

Cooking/culinary/gastronomy 

Folklore 

History 

Philosophy 

Graphic arts/photo/imaging 

Music 

Religion 

No Domain Left Behind 
 

 

Hui Zeng 
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felix_zeng_ai@aliyun.com 
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Social Science, Sociology, Ethics, etc. 

Economy, Finance and Business 

Business/commerce 

Accounting 

Finance (general) 

Investment / Securities 

Insurance 

Economics 

Real Estate 

Fashion and Marketing 

Advertising / Public Relations 

Marketing / Market Research 

Cosmetics / Beauty 

Fashion 

Textiles / Clothing / Fashion 

Clothing/textiles 

Politics and National Defense 

Government/politics 

International org/Dev/coop 

Military / Defense 

Law 

Law (general) 

Law: Contract(s) 

Law: patents/trademarks/copyrights 

Law: Taxation & Customs 

Computers and IT (Information Technology) 

Computers (general) 

Computers: Systems, Networks 

Computers: Hardware 

IT (Information Technology) 

Telecommunications 

Internet, e-Commerce 

SAP System Applications and Products 

Media / Multimedia 

Films and Television 

Cinema/film/TV/drama 

Games, Sports and Entertainment 

Games / Video Games / Gaming / Casino 

Sports / Fitness / Recreation 

Tourism & Travel 

Medical 
Medical (general) 

Medical: Cardiology 

Medical: Dentistry 

Medical: Health Care 

Medical: Instruments 

Medical: Pharmaceuticals 

Dentistry 

Veterinary 

Genetics 

Nutrition 

Industry and Engineering 

Engineering 

Nuclear Eng/Sci 

Automation & Robotics 

Automotive / Cars & Trucks 

Mechanics / Mech Engineering 

Construction / Civil Engineering 

Transport / Transportation / Shipping 

Electronics / Elect Eng 

Petroleum Eng/Sci 

Surveying 

Metallurgy / Casting 

Mining & Minerals / Gems 

Energy / Power Generation 

Maritime / Sailing / Ships 

Industrial 

Food/drink 

Paper / Paper Manufacturing 

Printing & Publishing 

Nuclear 

Manufacturing 

Furniture/household/appliance 

Materials (Plastics, Ceramics, Rubber, Glass, 

Wood etc.) 

Science 

Astronomy/space 

Aerospace/aviation/space 

Mathematics & Statistics 

Physics 

Chemistry 

Geography/geology 

Architecture 

Zoology 

Biology 

Botany 

Meteorology 

Metrology 

Psychology 

Education/pedagogy 

Linguistics 

Environment & Ecology 

Anthropology 

Archaeology 

Genealogy 

Agriculture and Animal Husbandry 

Agriculture 

Fisheries 

Forestry wood timber 

Wood Industry = Forestry 

Wine / Oenology / Viticulture 

Animal husbandry/livestock 

Management and Training 

Management 
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Human Resources 

Safety 

News and Journalism 

2.1 Monolingual Data Filtering 

The monolingual data for 15 primary domains are 

mainly collected from websites and e-books. The 

following rules are used for a simple cleaning: 

•Remove duplicated sentences. 

•Remove the sentences containing special 

characters. 

•Remove the sentences containing html addresses 

or tags. 

2.2 Parallel Corpus Aligning 

There are a large number of multilingual websites 

and multilingual e-books, which are easily 

accessible. However, these data need to be 

aligned to create sentence level parallel corpus. To 

this end, a corpus aligner is created using 

Sentence-BERT (Reimers et al., 2019) and faiss 

(Johnson et al., 2021). 

Regardless of order, thousands of source 

sentences and target sentences are first encoded 

into sentence embeddings using Sentence-BERT, 

and then faiss is used to retrieve the target 

sentences which is most similar in meaning to the 

source sentences. The aligning of thousands of 

parallel sentences could be finished within a few 

seconds. 

2.3 Parallel Data Filtering Using Rules 

The following rules are used to filter parallel 

corpus. 

a. Remove duplicated sentence pairs. 

b. Remove the lines having identical source and 

target sentences. 

c. Remove the sentence pairs containing special 

characters. 

d. Remove the sentence pairs containing html 

addresses or tags. 

e. Remove the sentence pairs with empty source 

or target side. 

2.4 Parallel Data Filtering Using 

Multilingual Language Model 

As mentioned in section 2.2, a corpus aligner is 

created using Sentence-BERT (Reimers et al., 

2019) and faiss (Johnson et al., 2021). This can 

also be used to filter parallel data. 

Apart from the corpus aligned from websites 

and e-books, in-house data from translation 

projects and public corpus like CCMT are also 

used. 

The aforesaid corpus aligner can be used to 

score each parallel sentence pair so that the pairs 

with extremely low scores can be removed. 

3 System Description 

This section illustrates how the model is trained 

step by step. 

3.1 Data pre-processing 

For data preprocessing, we use the tokenizer 

developed on my own to process both Chinese 

and English. Chinese text (including punctuations 

and numbers) is split to single character level. We 

keep the upper- and lower-case letters of English 

as they are, since we believe they are also 

important features for the model. Numbers in 

English text are also split into single digits. We 

use byte pair encoding (BPE) (Sennrich et al., 

2016) to create a shared vocabulary, so that the 

vocabulary size is reduced to 45467. We also 

wrote a post-processor to restore the Chinese and 

English text to normal form. 

3.2 Baseline Model Training 

WMT newstest2021 is used to evaluate the 

model’s general domain performance. Multiple 

domain-specific test sets are created to evaluate 

the model’s specific domain performance. Each 

domain has a test set of 1,000 sentences. 

The CCMT parallel Corpus filtered by rules 

and corpus aligner is used to train big transformer 

(Vaswani et al., 2017) English to Chinese and 

Chinese to English translation models as the 

general domain baselines. 

Validation is performed every 2000 steps. The 

training is terminated if there is no gain in BLEU 

(Papineni et al., 2002) for 20 consecutive 

validations. 

The BLEU scores on specific domains are also 

calculated as baselines. 

3.3 Training on Mixed Data 

Data mixing (Hasler et al., 2021) is used to 

improve translation quality for multiple new 

domains represented by small amounts of parallel 

data while maintaining the performance of a high-

quality, general-purpose NMT model. 

The importance of the training data sample can 

be increased by increasing its size, thereby 
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changing the ratio of training data and domain 

data to influence the trade-off between generic 

and domain performance. 

3.4 NMT with Monolingual Translation 

Memory 

Prior work has proved that Translation memory 

(TM) can boost the performance of Neural 

Machine Translation (NMT). In contrast to 

existing work that uses bilingual corpus as TM 

and employs source-side similarity search for 

memory retrieval, Cai (Cai et al., 2021) proposed 

a new framework that uses monolingual memory 

and performs learnable memory retrieval in a 

crosslingual manner. 

This framework has unique advantages. First, 

the cross-lingual memory retriever allows 

abundant monolingual data to be TM. Second, the 

memory retriever and NMT model can be jointly 

optimized for the ultimate translation goal. The 

“plug and play” property of TM is useful for 

domain adaptation, where a single general-

domain model can be adapted to a specific 

domain by using domain-specific monolingual 

TM. 

3.5 Results 

The BLEU scores on general test sets and some 

domain specific test sets for each corpus plus 

model combination are shown in Table 1. 

In the automatic evaluation, our best submitted 

English to Chinese system achieved 54.3 BLEU 

score and 63.8 COMET score, which is the 

highest among all the submissions. 

4 Conclusion 

This paper describes LanguageX’s translation 

system for the WMT2022 General MT task. The 

potential of a single translation model for all 

domains is explored. We are pleased to argue that, 

with data mixing and TM-augmented NMT, a 

versatile machine translation system with all-

round translation performance could be built. 
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Abstract

This paper describes the Global Tone Commu-
nication Co., Ltd.’s submission of the WMT22
shared general MT task. We participate in
six directions: English to/from Ukrainian,
Ukrainian to/from Czech, English to Croatian
and English to Chinese. Our submitted sys-
tems are unconstrained and focus on backtrans-
lation, multilingual translation model and fine-
tuning. Multilingual translation model focus
on X to one and one to X. We also apply rules
and language model to filter monolingual, par-
allel sentences and synthetic sentences.

1 Introduction

We applied fairseq(Ott et al., 2019) as our develop
tool and use transformer(Vaswani et al., 2017) as
the main architecture. The primary ranking in-
dex for submitted systems is BLEU(Papineni et al.,
2002), therefore we apply BLEU as the evaluation
matrix for our translation system by using sacre-
BLEU1.

For data preprocessing, punctuation normaliza-
tion, tokenization and BPE(byte pair encoding) are
applied for all languages. Further, we apply true-
case model for English, Ukrainian, Czech and Croa-
tian according to the character of each language.
Regarding to the tokenization, we use polyglot
as the tokenizer for Ukrainian and Croatian, and
mosese tokenizer.perl for English and Czech. Be-
sides, knowledge based rules and language model
are also involved to clean parallel data, monolin-
gual data and synthetic data.

This paper is arranged as follows. We firstly de-
scribe the task and show the data information, then
introduce our baseline and multilingual translation
model. After that, we describe the conducted ex-
periments in detail in all directions, including data
preprocessing, model architecture, back-translation
and multilingual translation model. At last, we

1https://github.com/mjpost/sacrebleu

analyze the results of experiments and draw the
conclusion.

2 Task Description

The task focuses on bilingual text translation and
the provided data is shown in Table 1, including
parallel data and monolingual data. For the direc-
tions between English and Ukrainian, the parallel
data is mainly from ParaCrawl v9, WikiMatrix,
Tilde MODEL corpus and OPUS, as well as the
directions English to Croatian. For the directions
between Ukrainian and Czech, the parallel data is
mainly from WikiMatrix and OPUS. The monolin-
gual data we used includes: News Crawl in English,
Ukrainian, Croatian and Czech; Leipzig Corpora in
Croatian, Ukrainian and Czech; News discussions
in English. All language directions we participated
in are new tasks this year, therefore we only use the
provided development set from FLoRes101 dataset
for all directions.

Usually, the news translation task will take the
human evaluation result as the final ranking index.
And this requires each participated team contribute
8 hours of human evaluation for each participat-
ing translation direction. For some low resource
language directions, it is not very easy for the or-
ganizer to employ human translators from the par-
ticipating team or translation agency. Besides, due
to the number of sentences in the test set and the
quantity of participating teams, it is not possible
to employ human evaluation for all the test sets.
Besides, with recent improvements of MT quality,
the organizer decided to move away from testing
only in the news domain and we are shifting the
WMT focus on testing the general capabilities of
MT systems.

3 Billingual Baseline Model and
Multilingual Translation Model

To set a strong baseline for our multilingual
model as a comparison. Our Billingual base-
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language number of sentences
en-hr parallel data 318M
en-uk parallel data 13M
uk-cs parallel data 4M
en monolingual data 40M
uk monolingual data 15M
cs monolingual data 40M
hr monolingual data 13M
en-uk development set 997
en-hr development set 997
uk-cs development set 997

Table 1: Task Description

line model is different from the transformer base
model transformer_wmt_en_de with 6 encoding
layers and 6 decoding layers. Instead, we set
our bilingual baseline model by using trans-
former_vaswani_wmt_en_de_big architecture with
12 encoding layers and 4 decoding layers.

The multilingual translation model is almost the
same as GTCOM2021(Bei and Zong, 2021), but
focuses on one to X and X to one this year. To ob-
tain a better translation quality, we include Russian
as the main auxiliary language since Russian and
Ukrainian are very similar. We train four multilin-
gual models: 1. ru-en, uk-en and hr-en to translate
uk-en; 2. en-ru, en-uk and en-hr to translate en-uk
and en-hr; 3. cs-uk, en-uk and ru-uk to translate
cs-uk 4. en-uk; uk-cs and en-cs to translate uk-cs
and en-cs. We use joint BPE for all languages in
the multilingual model separately.

For English to Chinese direction, we just test our
online system as a comparison with other partici-
pating systems. Therefore we did not conduct data
augmentation, finetuning, or any other adaption
experiments.

4 Experiment

4.1 Training Step

This section introduces all the experiments we set
step by step and Figure 1 shows the whole flow.

• Date Filtering The methods of data filtering
are mainly the same as we did last year, in-
cluding human rules, language models, and
repeat cleaning.

• Baseline. We use big transformer architec-
ture with 24 layers of encoder and 4 layers of
decoder to construct our baseline.

model en2uk uk2en
baseline 32.43 40.08
back translation 32.58 40.84
joint training 32.97 42.33
deep multilingual translation model 33.72 43.27

Table 2: The BLEU score between English and
Ukrainian.

model uk2cs cs2uk
baseline 22.52 22.00
back translation 25.51 23.59
joint training 25.72 24.09
deep multilingual translation model 26.14 24.89

Table 3: The BLEU score between Czech and
Ukrainian.

• Back-translation. We use a multilingual
translation model to translate the target sen-
tence to the source side, and clean synthetic
data with language model. Here, we translate
each language pairs we have added into the
multilingual translation model. Mix cleaned
back-translation data and parallel sentences
and train multilingual translation model.

• Joint training. Repeat the back-translation
step by the best model, until there is no im-
provement.

• Multilingual translation model. We focus
on one to X and X to one model, and each mul-
tilingual model has joint BPE and a shared vo-
cabulary. The multilingual translation model
setting follows Google’s Multilingual Neural
Machine Translation System(Johnson et al.,
2017).

• Deep multilingual translation model. Us-
ing bilingual parallel data and synthetic data
by the best model, train the multilingual
transformer model with 12 encoding layers
and 4 decoding layers, then repeat the back-
translation step and forward-translation step,
until there is no improvement.

• Ensemble Decoding. We use GMSE Algo-
rithm (Deng et al., 2018) to select models to
obtain the best performance.
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Figure 1: The work flow of GTCOM machine translation competition systems

model en2hr
baseline 30.15
back translation 32.90
joint training 33.80
deep multilingual translation model 34.93

Table 4: The BLEU score for English to Croatian.

5 Result and Analysis

Table 2, Table 3 and Table 4 show the BLEU
score we evaluated on development set for English
to/from Ukrainian, Czech to/from Ukrainian and
English to Croatian respectively. As shown in the
above table, back-translation is still the best data
augmentation measure to improve translation qual-
ity from the data aspect. Joint training and deep
multilingual translation model also show solid im-
provement in all five directions.

We notice that when adding Russian (a very sim-
ilar language to Ukrainian) into the multilingual
corpus, we did not obtain as much improvement as
we expect. This is probably because the original
English to Ukrainian data is rich enough and de-
creased the positive impact of adding Russian data
into the multilingual model.

6 Conclusion

This paper describes GTCOM’s neural machine
translation systems for the WMT22 shared general
MT task. We applied 3 major techniques to im-
prove the translation quality: back-translation, joint
training, and deep multilingual translation model.
With these 3 techniques, the final automatic evalu-
ation matrix is shown in Table 5. Besides BLEU,

Direction BLEU COMET Rank
en2uk 30.8 1
uk2en 43.9 2
cs-uk 36.8 2
uk-cs 31.3 7
en-hr 17.6 2
en-zh 47.7 1

Table 5: The final online automatic evaluation result.

this year the organizer introduce a new evaluation
matrix COMET(Rei et al., 2020) to inspect the
translation quality. Our system is ranking 1st place
in English->Ukrainian and English->Chinese, 2nd
place in Ukrainian-English, Czech ->Ukrainian and
English->Croatian, 7th place in Ukrainian->Czech
with COMET index.
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Abstract

This document describes a fine-grained linguis-
tically motivated analysis of 29 machine trans-
lation systems submitted at the Shared Task
of the 7th Conference of Machine Translation
(WMT22). This submission expands the test
suite work of previous years by adding the lan-
guage direction of English–Russian. As a re-
sult, evaluation takes place for the language di-
rections of German–English, English–German,
and English–Russian. We find that the German–
English systems suffer in translating idioms,
some tenses of modal verbs, and resultative
predicates, the English–German ones in idioms,
transitive-past progressive, and middle voice,
whereas the English–Russian ones in pseudo-
gapping and idioms.

1 Introduction

Neural Machine Translation has seen enormous
progress and reached a quality that is helpful for
many everyday use cases. However, several meth-
ods for evaluating MT suggest that there is still
plenty of room for improvement. An evaluation
method for revealing the translation flaws in a more
structured way refers to the use of test suites or
challenge sets. Contrary to the classical evaluation,
where test sets are drawn from random everyday
texts, test suites consist of manually devised or se-
lected sentences that focus on testing the ability
of the MT systems to translate a particular phe-
nomenon. Here, we are presenting test suite results
while analyzing the state-of-the-art systems with
regard to many linguistically-motivated phenom-
ena. The test suites1 were applied to the MT sys-
tems submitted at the 7th Conference of Machine
Translation (WMT22) for the language directions
German–English, English–German, and English–
Russian. The test suites for the first two language

1https://github.com/DFKI-NLP/
mt-testsuite

directions have also been showcased during the pre-
vious years, whereas English–Russian is published
for the first time.

This paper is structured as follows: Section 2
goes through related papers, whereas Section 3 ex-
plains how the test suite was created and applied.
Section 4 outlines the setup of this year’s experi-
ment, whose results are detailed in Section 5. Sec-
tion 6 concludes the paper with an outlook to future
research.

2 Related Work

The first test suites were introduced as early as the
first MT systems in the 1990s (King and Falkedal,
1990; Way, 1991; Heid and Hildenbrand, 1991).
Recent years saw the rise of Deep Learning and the
drastic improvement of the quality of MT outputs,
which has led to the current revival of test suites.
Most of these test suites, however, focus on evalu-
ating specific linguistic phenomena, e.g., Guillou
and Hardmeier (2016), or on the comparison of
different MT technologies (Isabelle et al., 2017;
Burchardt et al., 2017), and Quality Estimation
methods (Avramidis et al., 2018).

Over the last few years, several test suites for
multiple language directions have emerged as a
part of the Conference on Machine Translation test
suite track. These test suites, however, focus on one
or a few different phenomena, including the works
of Popović (2019) Cinkova and Bojar (2018), Bo-
jar et al. (2018), Rysová et al. (2019), Vojtěchová
et al. (2019), Kocmi et al. (2020), Zouhar et al.
(2020), Burlot et al. (2018), Guillou et al. (2018),
Rios et al. (2018), Raganato et al. (2019), Scher-
rer et al. (2020). Our test suite, on the other hand,
performs a systematic evaluation of more than one
hundred phenomena per language direction (Mack-
etanz et al., 2022). Similar to our work, the test
suite approach and human evaluation are also used
to evaluate MT quality metrics (Freitag et al., 2021;
Avramidis and Macketanz, 2022).

432



Test set Test sentences Categories Phenomena

De–En ∼5,500 14 106
En–De ∼4,400 13 110
En–Ru ∼300 12 51

Table 1: Metadata of the language pairs in the test suite.

3 Method

We have created a large-scale test suite with the
goal of testing and comparing the performance of
MT systems. Currently, the test suite covers four
different language pairs. We will present three in
this paper: German to English, English to German,
and English to Russian (the fourth language pair
being Portuguese to English). The test suite is
based on a number of linguistic categories which
are in turn divided into more fine-grained linguistic
phenomena. The categories and phenomena are
language-specific; however, there is a significant
overlap between many of the categories and phe-
nomena across the different language pairs. Each
linguistic phenomenon in the test suite is repre-
sented by multiple test sentences. All categories,
phenomena, and test sentences are the result of
extensive research and knowledge of the syntax
and morphology of the languages under inspection.
The categories and phenomena do not follow a
specific linguistic theory, but they were created by
linguistic experts who are native speakers or highly
proficient speakers of the languages. Furthermore,
the set of categories and phenomena was reviewed
internally by linguists and experienced translators
to achieve objectivity in the classification.

The number of test sentences, categories, and
phenomena for each language pair can be found in
Table 1. As can be seen in the table, the English–
Russian test set is considerably smaller than the
other two test sets. This is due to the fact that we
started creating the English–Russian test set only
recently. However, we are currently working on
expanding the test set by creating more phenomena
and test sentences.

In order to allow for a semi-automatic evaluation
of the test sentences, we have created a set of rules
which determine whether a test sentence is trans-
lated correctly or incorrectly. The rules consist of
hand-crafted regular expressions and fixed strings
of translation outputs. They can be applied with
the help of an internal evaluation tool (Macketanz
et al., 2022). The workflow of the preparation and
application of the test suite is depicted in Figure 1.

3.1 Application of the test suite

The thorough building and application of the test
suite can be found in the previous test suite track
papers (Macketanz et al., 2018; Avramidis et al.,
2019, 2020; Macketanz et al., 2021). This paper
gives a quick overview of the whole system. As
shown in Figure 1, the building of the test suite fol-
lows steps a to c. Once the test sentences are fed as
input to the MT systems, begins the application of
the test suite (step d). The MT outputs are then au-
tomatically evaluated by the test suite tool with the
help of the rules defined earlier by linguists and an-
notators (step e). The rules combine pre-set regular
expressions and fixed strings (correct and incorrect
translations from earlier MT system outputs). The
rules are designed to evaluate each phenomenon in
question’s correct and incorrect translations. Note
that only the phenomenon under inspection is being
evaluated, meaning that all translation errors that
are unrelated to the phenomenon are being ignored.
The test sentence is marked with a warning if the
output cannot be automatically sorted as correct or
incorrect with the predefined rules. These warn-
ings are then manually reviewed by human linguist
annotators who decide on the translation’s correct-
ness and adapt the rules accordingly (step e). After
that, the phenomenon-specific translation accuracy
is calculated by dividing the number of correctly
translated test sentences of a phenomenon by the
total number of test sentences of that phenomenon:

accuracy =
correct translations
sum of test items

Since this evaluation aims to compare the systems
fairly, only the test items that do not contain any
warnings for any systems are included in the cal-
culation. If a test item has an unresolved warning
for any MT systems, we exclude them from the
calculation. Unfortunately, this reduces the num-
ber of test items. We see great importance in the
extensive manual evaluation and human annotators
designing rules with good coverage.

To define which system(s) perform better for
a particular phenomenon (or category), we first
identify the best scoring system in each language
direction and then compare it to other systems. To
do so, we confirm the significance of the compar-
ison with a one-tailed Z-test with α = 0.95. The
systems that do not differ significantly from the
best system are considered in the first performance
cluster and indicated with boldface in the tables.
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Er las gerne Novellen.

1. He liked to read novellas.
2. He liked to read novels.

regex: (+) novellas  (-) novels

1. He liked to read novellas.
2. He liked to read novels. 
3. He liked to read short stories. 
4. He liked reading novellas. 
5. He liked to read a novel. 
                      ...

1. ✓ 
2. ✗
3. ?
4. ✓
5. ?
  ...

⇨ ⇨

 
produce paradigms apply 

regex
⟲

check

 

a.

b.

c.

d. e. f.

1. ✓ 
2. ✗
3. ✓
4. ✓
5. ✗
  ...

 

write regular expressions

fetch sample translations

⇨

fetch more translations

Figure 1: Example of the preparation and application of the test suite for one test sentence

The boldfaces, therefore, have a meaning only for
the respective row of the table.

The average scores are computed in three ways
as each category or phenomenon has a different
number of test items. Micro-average aggregates
the contributions of all test items to compute the
average percentages. Category macro-average com-
putes the percentages independently for each cate-
gory and then averages them (i.e., treating all cate-
gories equally). Phenomenon macro-average com-
putes the percentages independently for each phe-
nomenon and then takes the average (i.e., treating
all phenomena equally).

4 Experiment Setup

In this paper, we present the evaluation of 29 sys-
tems with our test suite. The systems are part of the
news translation task of the Seventh Conference
on Machine Translation (WMT22). The systems
cover three different language pairs: nine systems
for German–English, nine systems for English–
German, and 11 systems for English–Russian.

This year is the second time that the English–
German systems are being evaluated and the first
time that the English–Russian systems are being
evaluated with our test suite. Every year, manual
work is involved upon receiving the system trans-
lations as there are usually a number of translation
outputs that are not yet covered by the existing rules
in the database (the warnings). This year, there
were on average 7.8 % of warnings for German–
English, 9.7 % for English–German, and 20,6 %
for English–Russian. It is not surprising that the
English–Russian test set had a comparably bigger
amount of warnings as this was the first time the
test set was evaluated and therefore, the database
of evaluation rules for this language pair was still

rather small. It was also expected that English–
German would have a higher amount of warnings
than German–English as the German–English test
set has the largest rules database since this language
pair has been evaluated five years in a row.

Two annotators with extensive linguistic knowl-
edge of the three languages under investigation
conducted the manual evaluation of the warnings.
No inter-annotator agreement was calculated; how-
ever, problematic cases were discussed with several
linguistic experts to exclude subjectivity. The man-
ual evaluation took around four weeks and involved
around 50 person-hours. After the manual evalua-
tion, there were on average 1.2 % of warnings left
for German–English, 3.2 % for English–German,
and 0.7 % for English-Russian.

As mentioned above, test sentences with at least
one warning by one system were excluded from the
analysis to achieve a fair comparison between the
systems under inspection. As a result, our analysis
was conducted on 5049 (91 %) test sentences for
German–English, 3723 (83 %) test sentences for
English–German, and 300 (97 %) test sentences
for English–Russian.

5 Results

All result tables can be found in the Appendix.

5.1 System comparison
For German–English, two systems have the high-
est micro-average (85 %), Online-W and Online-
A, whereas when considering the macro-average,
three more systems also achieve the highest scores
(89-90 %), Online-B, Land-Bridge, and JDExplore-
Academy.

For English–German, two systems have the
highest micro-average (97 %), Online-B and Lan-
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Bridge. However, on the macro-average, a different
system displays the highest score (94 %), JDEx-
ploreAcademy. The system with the lowest micro-
and macro-average, Online-Y, still achieves scores
of 84 % for both averages.

For English–Russian, the same four systems
achieve the highest scores on both the micro- (78-
81 %) and the macro-average (82-85 %), Online-W,
Online-G, Online-B, and JDExploreAcademy. The
average scores of English–Russian on the category
level are comparably smaller than the scores of
German–English and English–German. One plau-
sible explanation is that English and Russian are
more distant from a typological perspective than
English and German.

5.2 Category-level analysis
For German–English, the categories with the high-
est average by all systems (> 90 %) are composition,
coordination & ellipses, named entity & terminol-
ogy, negation, and non-verbal agreement. The cate-
gory with the lowest average score (77.2 %) is false
friends.

For English–German, the categories with the
highest average scores (> 96 %) are function words,
negation, non-verbal agreement, subordination,
and verb tense/aspect/mood. The category with
the lowest average score (77.8 %) is punctuation.

For English–Russian, the category with the
highest average score (92 %) is punctuation, with
seven of the 11 systems achieving 100 % of accu-
racy, followed by ambiguity, function words, nega-
tion, and subordination (all > 80 %). The category
with the lowest accuracies is coordination & ellip-
sis, followed by false friends.

5.3 Phenomenon-level analysis
For German–English, there are many phenom-
ena that reach an average of 90-100 %, while the
phenomenon macro-average reaches 85 %. Phe-
nomena that reach more than 95 % of accuracy
are gapping, sluicing, polar question, verbal MWE,
date, measuring unit, negation, internal posses-
sor, comma, infinitive clause, object clause, several
verb tenses in ditransitive, intransitive, transitive,
and modal verbs, and passive voice.

Yet there are some phenomena with a very low
accuracy: The phenomena idiom, modal pluperfect,
modal pluperfect subjunctive II modal negated plu-
perfect, modal negated pluperfect subjunctive II,
and resultative predicates are the phenomena with
the lowest averages, ranging only between 20-57 %

Idiom
Er macht aus einer Mücke immer gleich
einen Elefanten.
It always makes out of a mosquito an elephant. fail
He always turns a gnat into an elephant. fail
He always makes a mountain out of a molehill. pass
Modal negated pluperfect
Ich hatte nicht lesen sollen.
I wasn’t supposed to read. fail
I shouldn’t have read. fail
I didn’t want to read. fail
Right node raising
Lena soll und Tim will den Vertrag kündigen.
Lena will and Tim will terminate the contract. fail
L. should and T. want to terminate the contract. fail
L. should and T. wants to terminate the contract. pass

Table 2: Examples of German–English linguistic phe-
nomena with passing and failing MT outputs.

accuracy. This result goes hand in hand with last
year’s result where the phenomena modal pluper-
fect, resultative predicates, and idioms reached the
lowest accuracy.

Table 2 contains example outputs from three dif-
ferent phenomena for German–English. The first
example is from the phenomenon idiom. Idioms
are multiword expressions whose meaning goes be-
yond the meaning of their separate elements. This
also means that a simple literal translation into an-
other language is usually incorrect. In our example
at hand, the German idiom “aus einer Mücke einen
Elefanten machen” means “to blow something out
of proportion”. A literal translation like the first
and second outputs leads to an incorrect English
meaning. What is further interesting about the in-
correct outputs is that while the second one (“turns
a gnat into an elephant”) is at least grammatically
correct, the first one (“makes out of a mosquito
an elephant”) is also grammatically incorrect. The
translation of “Mücke” (“mosquito”) as the term
“gnat” is also unexpected. Only the third translation
“makes a mountain out of a molehill” is a correct
translation of this idiom.

The second example contains a negated modal
verb in the pluperfect tense. The German sentence
“Ich hatte nicht lesen sollen.” can only be correctly
translated as “I had not been supposed to read”.
This year, all systems failed to produce this cor-
rect output. Instead, there were different incorrect
outputs with incorrect tenses (“I wasn’t supposed
to read.”, “I shouldn’t have read.”) or incorrect
translations of the modal verb (“I didn’t want to
read.”).

The third example sentence contains an elliptical
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right node raising construction. Right node raising
constructions often consist of parallel coordinate
sentences (sentences joined by “and”) in which two
conjuncts share some material on the right side of
the structure. In the example sentence, the two con-
juncts “Lena soll” (“Lena should”) and “Tim will”
(“Tim wants to”) are sharing the material “den Ver-
trag kündigen” (“terminate the contract”) on the
right side of the construction. In the first incor-
rect example, the verbs “soll” and “will” are both
translated as “will” which is an incorrect transla-
tion for both verbs. In the second incorrect output,
the verbs are translated correctly, however, the verb
“want” is incorrectly conjugated, missing the third
person singular ending. Surprisingly, there were
multiple systems that created this incorrectly con-
jugated translation.

At this point, it is also interesting to mention
that there was one system that often incorrectly
conjugated the verb “to sleep” in the past tense:
Instead of “slept”, the outputs by that particular
system often contained the non-existing conjuga-
tion “sleeped”.

For English–German, the phenomenon-level
macro-average is similarly high as for the other
language direction with 93 %. The phenomena for
which all systems reach 100 % accuracy are ques-
tion tag, compound, prepositional MWE, subject
clause, intransitive - present perfect progressive,
present perfect simple, simple present, and transi-
tive - future I progressive.

The phenomena with the lowest accuracies, rang-
ing between 35-61 %, are idioms, transitive - past
progressive, and middle voice. These results are
more in line with last year’s results, as idioms and
middle voice were also among the lowest accuracy
phenomena.

Table 3 contains correct and incorrect translation
examples from English–German. The first example
contains a coreference. While many English nouns
are gender-neutral, the same German nouns are in
most cases gender specific. This can lead to trans-
lation errors if the context of a sentence clarifies
the gender in English yet the German translation
contains the incorrect gender. The test sentence
at hand provides a clear context of the nurse be-
ing male. Yet, many systems incorrectly translated
“nurse” as the female “Krankenschwester’ instead
of the male “Krankenpfleger”. 2

2We are aware that genders and their translation are a large
topic on their own which we can only scratch on the surface

Coreference
My brother is a nurse in the local hospital.
Mein Bruder ist Krankenschwester im
örtlichen Krankenhaus. fail
Mein Bruder ist Krankenpfleger im
örtlichen Krankenhaus. pass
Verbal MWE
She takes after her mother.
Sie nimmt nach ihrer Mutter. fail
Sie hinterlässt ihre Mutter. fail
Sie kommt nach ihrer Mutter. pass
Transitive future II progressive
I will have been playing the piano.
Ich würde Klavier gespielt haben. fail
Ich habe Klavier gespielt. fail
Ich werde Klavier gespielt haben. pass

Table 3: Examples of English-German linguistic phe-
nomena with passing and failing MT outputs.

The second example contains the verbal mul-
tiword expression “to take after somebody”. As
explained above, multiword expressions cannot be
translated literally as their meaning goes beyond
their separate elements. The first incorrect output
“Sie nimmt nach ihrer Mutter.” is, however, a literal
translation of this multiword expression. The sec-
ond incorrect output “Sie hinterlässt ihre Mutter.”
is not a literal translation, yet still incorrect as it
means “She leaves her mother behind”. Only the
translation “Sie kommt nach ihrer Mutter.”, which
is the German equivalent of this multiword expres-
sion, is correct.

The third example output contains a transitive
verb in the tense future II progressive. The fu-
ture II tense was often mistranslated as a condi-
tional II tense “würde gespielt haben” (“would have
played”) instead of the correct form “werde”. The
second incorrect output contains a completely in-
correct tense, the present perfect “habe gespielt”
(“have played”).

For English–Russian, the phenomenon level
macro-average accuracy lies at 76 %. Also for this
language pair, there are some phenomena which
reach 100 % accuracy for all systems, like nominal
MWE, prepositional MWE, contact clause, indi-
rect speech, and passive voice. On the other hand,
there are quite a few phenomena that reach a very
low accuracy, ranging between 30-50 %: gapping,
pseudogapping, idioms, verbal MWE, anaphora
agreement, intransitive verbs, and middle voice.
The low accuracies of idioms and verbal MWEs are

within the scope of our test suite. We would like to point the
interested reader to the following research: (Hardmeier et al.,
2022)
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Collocation
She is careful to eat light and exercise often.
Она старается есть легкую пищу и
часто занимается спортом. pass
Она старается есть свет и
часто тренируется. fail
Она осторожно ест легко и
часто занимается спортом. fail
Она следит за тем, чтобы есть мало и
часто заниматься спортом. pass

Pseudogapping
I don’t know that and don’t think you do.
Я этого не знаю и не думаю,
что вы это делаете. fail
Я этого не знаю и не думаю,
что знаешь. fail
Я не знаю этого и не думаю,
что вы знаете. pass
Resultative
He read the children to sleep.
Он зачитывал детей спать. fail
Он читал детям спать. fail
Он читал детям перед сном. pass

Table 4: Examples of English–Russian linguistic phe-
nomena with passing and failing MT outputs.

not surprising as multiword expressions generally
tend to cause translation errors across all language
pairs. What is interesting is that the accuracy of
intransitive verbs is considerably lower than the
accuracies of the other verb types. One potential
reason might be that in our small-scale English–
Russian test suite the intransitives are presented by
the verb of motion “to go”, which has a number
of equivalents in Russian that can convey various
aspects such as tense, frequency, or incomplete-
ness. This ambiguity increases the overall number
of equivalents in the training data which could lead
to faulty results when analyzing the translations
with respect to specific phenomena.

Table 4 covers example translations of some low-
accuracy phenomena for English–Russian. The
first example contains the collocation “to eat light”
that does not have an exact equivalent in Russian.
The word “light” poses some extra difficulty, as it
is lexically and semantically ambiguous in both lan-
guages. In different contexts, it could function as
an adverb, adjective, or noun. This year, a typical
incorrect output is “есть свет” (est’ svet) meaning
to consume light as in electromagnetic radiation,
and “есть/питаться легко” (est’/pitat’sya legko),
a combination of the verb to eat with an ill-passing
adverb. Some possible translations would be Rus-
sian equivalents “to eat light food” or “to eat little”
that we see in the first and fourth translations.

The second example is taken from the phe-

nomenon of pseudogapping. Pseudogapping is
an ellipsis mechanism in which a part of the verb
phrase is omitted. In the example at hand, the non-
finite verb part “know” is omitted in the second
conjunct of the construction. Instead, the auxil-
iary verb “do” is used as a substitute for the full
verb. Verbal substitution is not common in Rus-
sian. Moreover, Russian does not employ auxiliary
verbs (such as “to do” or “to be”) to form parallel
elliptical constructions standard in English. The
verb “does” in the second part of the sentence is
translated as “сделает” (sdelaet) in the first incor-
rect Russian translation, leading to an impossible
Russian phrasing. The second translation leaves
out the subject “you” or “ты” (ty) in the conjunct
resulting in a syntactically incorrect construction.

The last example contains a resultative predi-
cate. Resultatives contain a verb with an adjective
describing the result of the verb action. Resultative
predicates usually require a significant construction
change to get an equivalent translation in the target
language. “He read the children to sleep” would be
transformed in Russian as “on chital detyam pered
snom” meaning “he read to the children before they
were going to bed,” as in the third translation in
the table or as “on chital detyam, chtobi oni spali”
meaning “he read to the children so that they would
sleep”.

5.4 Comparison with previous years

The progress of the systems’ accuracy for partic-
ular categories through the last years can be seen
in Table 6 for German-English (since 2018) and
Table 9 for English-German (since 2021). The cal-
culation has been done based on the common test
items without warnings over all these years, which
is 4307 items for German-English and 3616 items
for English-German. The general trend of this year
suggests small but steady improvements for most
systems and categories. In a few cases where the
accuracies deteriorated, this is only for very few
percentage points.

6 Conclusions and Outlook

This paper presents a fine-grained, linguistically
motivated test suite to evaluate machine transla-
tion outputs. The test suite was applied to evaluate
and compare the outputs of 29 machine translation
systems in three different language pairs: German–
English, English–German, and (for the first time)
English–Russian. Altogether, almost 7,000 test sen-
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tences, structured in various linguistic categories
and phenomena, were evaluated altogether across
the three language pairs. Additionally, a compari-
son to the evaluation in previous years for the lan-
guage pairs German–English and English–German
was drawn.

The average accuracy for most categories and
phenomena is relatively high for German–English
and English–German, with only about 5 % room
for improvement. As compared to last year, this
is an improvement of around 5 %. For English–
Russian, the average accuracy is not as high, yet
still around 80 %.

The high average accuracies do not necessarily
mean that the respective categories and phenom-
ena no longer pose difficulties for MT. Instead, it
could mean that the difficulty of the test sentences
has become too easy over the past few years and
should thus be increased. Therefore, we are cur-
rently constructing more complex test sentences
for German–English and English–German. Further
work also includes expanding the English–Russian
test suite with more phenomena and more test sen-
tences.
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Tereza Vojtěchová, Michal Novák, Miloš Klouček, and
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Abstract
The most widely used metrics for machine
translation tackle sentence-level evaluation.
However, at least for professional domains such
as legal texts, it is crucial to measure the con-
sistency of translation of terms throughout the
whole text.

This paper introduces an automated metric for
term consistency evaluation in machine trans-
lation (MT). To demonstrate the metric’s per-
formance, we used the Czech-to-English trans-
lated texts from the ELITR 2021 agreement
corpus and the outputs of the MT systems that
took part in WMT21 and WMT22 News Tasks.
We show different modes of our evaluation al-
gorithm and try to interpret the differences in
the ranking of the translation systems based
on standard sentence-level metrics and our ap-
proach. We also demonstrate that the pro-
posed metric scores significantly differ from
the widespread automated metric scores, and
correlate with human assessment.

1 Introduction

Throughout the last decade, the quality of machine
translation (MT) has improved significantly, and
it is becoming a common phenomenon for various
neural MT (NMT) systems to get better scores in
manual direct assessment and other metrics than
reference human translations (Akhbardeh et al.,
2021; Bojar et al., 2018). However, such figures are
obtained when the MT outputs are evaluated on the
sentence level (i.e., each sentence is assessed sepa-
rately, without context); in document-level evalua-
tion, human translations typically remain the best,
although exceptions exist (Popel et al., 2020). We
can explain this situation by the fact that most of
the current state-of-the-art NMT systems translate
documents sentence by sentence, which thus can
provoke inconsistencies in the translation of differ-
ent linguistic elements – from anaphoric pronouns
to named entities and terminology. We focus on
the latter.

While term inconsistencies can be tolerable for
the general spheres of communication, they are
unacceptable for several professional domains, es-
pecially legal texts, where the coherent usage of
terms is the ultimate characteristic.

In the case of the term translation in the legal
domain, the goal of the MT system can be split into
several parts:

1. To translate one source term to only one tar-
get term (we will call this property “consis-
tency”);

2. To ensure that every source term is mapped to
a distinct target term (we will call this property
“unambiguity”);

3. To ensure that the target term is an adequate
translation of the source term in general.

In this paper, we present a novel metric that fo-
cuses on the consistency and unambiguity of terms,
whereas measuring the third parameter, adequacy,
is delegated to the mainstream automated metrics
such as BLEU (Papineni et al., 2002) and chrF
(Popović, 2015). Our proposed metric can be ap-
plied automatically, and it needs a small amount of
human preprocessing and annotation (for instance,
it does not require reference translation of the sen-
tences). However, it can include manually tuned
parameters as a variable.

In Section 2, we describe the background in the
field of the term consistency in MT; in Section 3 we
introduce the algorithm of our metric; in Section 4
we present the data on which the metric is applied;
in Section 5 we discuss the results and compare
them to the widespread automated metrics in MT.
Limitations of our method are highlighted in Sec-
tion 6.

2 Background

Scholars have been drawing attention to document-
level consistency for over a decade. For instance,
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Hardmeier (2012) presents a number of discourse-
related phenomena (such as pronoun use and verb
tense modeling) that should be taken into account,
as well as an overview of the metrics that were
designed to catch the consistency (by that moment,
they did not correlate with human judgments much).
Since this time, there have been various experi-
ments in enhancing the sentence-level MT models
for better consistency, by a variety of means, from
hierarchical approaches (Ture et al., 2012) to post-
editing the output sentences (Voita et al., 2019b).
Notably, the main focus of the proposed systems
tends to be on the discourse-related features of
texts, such as verb forms, anaphora, ellipsis, named
entities, etc. (Voita et al., 2019a), rather than on the
terminology consistency.

There has also been progress in designing
the evaluation for lexical consistency in domain-
specific spheres. For example, the creators of SAO
WMT test suite (Vojtěchová et al., 2019) point out
that the most accurate evaluation for the audit re-
ports is performed manually by professionals in
the field, while neither the automated metrics nor
the direct evaluation by non-experts gives valuable
information about the ranking of the systems’ qual-
ity. The same authors in 2020 introduced the con-
cept of the “markables”: the linguistic elements
to which the human annotators have to pay spe-
cial attention (Zouhar et al., 2020). In the paper,
they considered the domains of Sublease, News,
and Audit, and the main markables were the cru-
cial terms in the document. The research reaffirms
that the automated metrics such as BLEU are not
very informative with respect to term consistency,
while the non-professional annotators cannot spot
the domain-specific inconsistencies; however, the
additional annotation of the “markables” allows
even the “lay” annotators to keep in mind the nec-
essary terms, which makes the manual annotation
more accurate and informative.

Another notable research by Alam et al. (2021)
presents the ideas for automated metrics for the
term consistency evaluation, namely, exact match
accuracy, window overlap, and TER with big-
ger penalties for terms. The results of this ap-
proach, tested on the domain of medical texts about
COVID-19, show a correlation with human profes-
sional judgments; however, for most of the metrics,
reference translations or at least term dictionaries
are necessary. Thus, the relevance of designing
more automated metrics in the field is still valid.

3 Metric

Before explaining the metric in detail, we will reit-
erate our aim. Our first objective is to reward trans-
lation consistency (i.e., penalize the one-to-many
correspondences in source-to-target term pairs).
Secondly, we want translated terms to be unambigu-
ous (i.e., we should penalize the many-to-one cor-
respondences in source-to-target term pairs). Op-
tionally, we also want to include adequacy in our
estimation (i.e., penalize the inappropriate transla-
tion of the term); otherwise, we will rely on the
widely accepted metrics for adequacy. Finally, we
want the algorithm to be as automatic as possible,
i.e., to avoid the necessity of human annotation on
any level. To meet these demands, we introduce
the following pipeline.

1. General preprocessing: We tokenize the
texts. The tokenization needs to be consis-
tent in both source and target texts to run the
alignment algorithms (Step 3 below).

2. Source terms extraction: We extract “cru-
cial” terms in the source text. The task can
be reduced to keyword extraction, which has
various approaches. In our study, we used the
manual method based on regular expressions:
in legal-like texts, the terms relevant for the
document are announced uniformly at the be-
ginning of the document (for example, by the
phrases “hereinafter referred as...”). We jus-
tify this choice in Section 6. As a result of this
step, we get a set of the terms that occur in the
text (hereinafter: src term set), and, for each
sentence, we get a list of terms that appear
there.

3. Term Alignment: For automation, we sug-
gest using any word alignment algorithm. In
this experiment, we used fast-align algorithm
introduced by Dyer et al. (2013). Now, for
each text separately, we extract the alignments
of the source terms obtained in Step 1.1 At the
end of this step, for each document, we have,
firstly, lists of aligned target terms in each sen-
tence, secondly, the dictionary of source terms
and the counts of their corresponding align-
ments in this text (hereinafter: src-tgt dict).

1To create a better word alignment, we firstly collect all
outputs of the same system into one text, apply fast-align to
such big texts, and then split the alignments back to the initial
document level.
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4. Choosing the “pseudo-reference” transla-
tions: To measure the performance of the MT
system, we have to compare the real occur-
rences of the translations (obtained in Step
3, hereinafter called “candidate” translations)
to the translations that we expect to be used
throughout the text (we call them “pseudo-
reference” translations). Choosing the pseudo-
reference translation is the trickiest element of
the task. However, we can introduce several
solutions to it. On the one hand, we can count
the first occurrence of each translated term
as the pseudo-reference. This is reasonable
in the logic of legal texts, where the terms
are “introduced” at the beginning and consis-
tently used afterwards. On the other hand, we
can choose the most frequent translation of
the term to be the correct translation. In our
experiment, we tried both approaches, which
are easily done by the src-tgt dict or by the
lists of the target terms for each sentence in
the text. As a result of this step, we obtain
the list of the “pseudo-reference” target terms
for each sentence. Notably, the choice of the
“pseudo-reference” terminology is calculated
separately for each document.

5. Evaluation: After the four steps, the final
data structure consists of quintuples, where
each quintuple consists of the source sen-
tence, the target sentence, and three lists: of
the source terms, of the “candidate” occur-
rences of the translated source terms, and of
the “pseudo-reference” translations. We can
represent them as a variant of the TORT an-
notation (term-only reference translation, in-
troduced by Bafna et al., 2021), where for
each MT output sentence, there is a list of cru-
cial reference terms instead of the whole text.
Such lists of lists of “candidate” and “pseudo-
reference” occurrences can be measured by
the widespread data science metrics – multi-
class precision, recall, true positive rate, etc.
For better granularity, we also suggest group-
ing the lists by the source terms and counting
the percentage of the correct occurrences of
the exact term (hereinafter we call it "our" or
"our own" metric).

Therefore, the main novelty of our approach is
not the metric itself but an algorithm for automatiz-
ing the data collection for applying the widespread
metrics.

4 Data

We used the data from the ELITR agreement test
suite to test the metric. The test suite consists of
various short agreement documents, namely, 18
purchase agreements, 13 lease and sublease agree-
ments, and two agreements on renting or using
the software. All documents have Czech as the
source language and English as the target language;
only for three files, the reference English transla-
tions are provided. As the MT outputs, we used
the results of seven MT systems that took part in
2021 and 2022 competitions on this test suite. De-
tailed information about the systems is presented
in Akhbardeh et al. (2021) and ?, and the test suite
texts are available online.2

5 Results and Discussion

In this section, we firstly comment on the absolute
scores of the different variants of the proposed met-
ric; secondly, we compare the ranking of the MT
systems by our metric and by the ones represented
in the findings of WMT21 and WMT22.

5.1 Proposed Metric Scores

Speaking about the absolute scores (see Table 1),
we can see that for both years, if we fix formula
that we use (either F1 or our own metric), the
most frequent pseudo-reference initialization is reg-
ularly higher than the first-occurrence one (1-3%
for F1; 3-5% for our metric). If we fix the pseudo-
reference initialization and compare different for-
mulas, the difference is bigger and varies between
7-9%. This can be a reflection of the fact that the
NMT models are sentence based. The reason is
following: if a model has a pre-trained distribution
of translations for each term, then it may tend to
choose the same likeliest translation for the term
in the majority of the sentences. Thus, such likeli-
est translations will be most frequent in the src-tgt
dicts, and will be chosen as "pseudo-references" in
case of the most frequent initialization.

If we take into account the ranking of the algo-
rithms, we can see that the big difference tends
to be between the variants with different pseudo-
reference choice. Kendall’s tau paired comparisons
between the variants support this hypothesis: the
most correlating rankings are the F1 and our metric
with first-occurrence initialization, next best corre-
lation is between the F1 and our metric with the

2https://github.com/ELITR/agreement-corpus
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Year MT System 1st;
F1

1st;
Own

Freq;
F1

Freq;
Own

1st;
F1

rank

1st;
Own
rank

Freq;
F1

rank

Freq;
Own
rank

2
0

2
1

CUNI-Doc
Transformer 0.897 0.804 0.915 0.835 3 4 4 4

CUNI-Trans
former2018 0.857 0.776 0.895 0.827 8 7 8 7

Facebook-AI 0.907 0.838 0.930 0.871 1 1 1 1
Online-A 0.883 0.795 0.914 0.829 4 5 5 6
Online-B 0.880 0.792 0.925 0.852 6 6 2 2
Online-G 0.871 0.771 0.900 0.811 7 8 6 8
Online-W 0.881 0.807 0.898 0.831 5 3 7 5
Online-Y 0.900 0.813 0.921 0.840 2 2 3 3

2
0

2
2

ALMAnaCH-
Inria 0.816 0.688 0.885 0.807 11 11 10 9

CUNI-Doc
Transformer 0.897 0.805 0.916 0.836 4 6 4 6

CUNI-Trans
former 0.848 0.751 0.882 0.790 10 10 11 11

JDExplore
Academy 0.899 0.817 0.928 0.863 3 4 1 1

Lan-Bridge 0.902 0.826 0.918 0.846 2 2 3 2
Online-A 0.877 0.773 0.924 0.836 7 7 2 7
Online-B 0.902 0.831 0.912 0.842 1 1 5 4
Online-G 0.871 0.772 0.898 0.807 8 8 8 10
Online-W 0.889 0.816 0.903 0.838 6 5 7 5
Online-Y 0.860 0.767 0.892 0.809 9 9 9 8

SHOPLINE-
PL 0.895 0.822 0.910 0.845 5 3 6 3

Table 1: Scores of different metric variants. The first position in the column name denotes the method for choice of
pseudo-reference (“Freq” for “most frequent translation”, “1st” for “first occurrence”); the second means the metric
(“F1” for F1 score and “Own” for our own metric – averaged percentage of the correct hits per term). The last four
columns show the ranking of the systems.
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Compared Setups τ
2021

τ
2022

1st;F1 VS 1st;Own .786* .891*
1st;F1 VS Freq;F1 .643* .636*
1st;F1 VS Freq;Own .571 .673*

1st;Own VS Freq;F1 .429 .527*
1st;Own VS Freq;Own .643* .709*
Freq;F1 VS Freq;Own .786* .600*

Table 2: Pairwise Kendall’s Tau correlations between
the rankings of the scores obtained by different variants
of our algorithm. The first column shows the pairs of
variants we compare (separated by “VS”). The second
and the third columns show Kendall’s Tau scores; the
asterisk denotes the values that are statistically signifi-
cant for the null hypothesis of τ = 0(p < 0.05).

same most frequent initialization. The next level of
correlation is for the pairs of different initializations
with the same metric (F1 or our own, respectively);
the lowest correlation is between the most distant
variants (such as F1 with the first-occurrence ini-
tialization and our metric with the most-frequent
initialization). Notably, such a clear trend can be
seen only on the results of WMT2021 systems,
while on 2022 data, the only clear correlation is be-
tween the F1 and our metric with first occurrence
initialization. The detailed tau values are shown
in Table 2. Looking back at Table 1, we can see
that, for 2021 systems, the best ones are Facebook-
AI, Online-Y, and Online-B according to any met-
ric variant, and the worst are CUNI-Transformer
and Online-G. As for 2022 systems, the best-rated
ones are JDExploreAcademy, Lan-Bridge, CUNI-
DocTransformer, and Online-B, while the worst-
rated ones are CUNI-Transformer ALMAnaCH-
Inria, Online-Y, and Online-G.

5.2 Comparison with Standard Automatic
Metrics and Direct Assessment

We also wanted to compare our metrics to the tradi-
tional manual and automated evaluation approaches
for MT. Unfortunately, the only published results
of the considered MT systems were based on the
evaluation of another dataset of news texts, see
Akhbardeh et al. (2021) and the actual scores on-
line.3 However, they can still give us an approx-
imate idea of the systems’ relative performance.
For the 2021 news track, we have both automatic
scores (BLEU and chrf) and human direct assess-

3https://github.com/wmt-conference/
wmt22-news-systems

Metrics Compared τ
2021

τ
2022

1st;F1 VS BLEU .357
-.5271st;F1 VS chrf .286

1st;F1 VS DA .714* N/A
1st;Own VS BLEU .143

-.6361st;Own VS chrf .071
1st;Own VS DA .500 N/A
Freq;F1 VS BLEU .143

-.527Freq;F1 VS chrf .071
Freq;F1 VS DA .786* N/A

Freq;Own VS BLEU -.071
-.636Freq;Own VS chrf -.143

Freq;Own VS DA .571 N/A

Table 3: Pairwise Kendall’s Tau correlations between
our metrics and the standard metrics (DA for direct
assessment). The columns are arranged the same way as
in Table 2; the statistical significance pointed by asterisk
is p < 0.05 (for positive tau values only). For 2022 data,
we do not have DA scores, thus it is marked “N/A”;
also the rankings by BLEU and chrf are same, thus the
corresponding cells in 2022 are merged.

ment, while for the 2022 track, we only have the
automated metrics, the same as for the previous
year. To compare the rankings of our metric and
the standard ones, we find it logical to use Kendall’s
tau correlation, as it was applied in previous met-
rics shared tasks Macháček and Bojar (2014). The
results of this comparison can be seen in Table 3.
Regarding the WMT2021 outputs, on the one hand,
the correlation between any automatic metric and
any of our variants is not as high (and the p-values
do not show any significance). The correlation with
direct assessment scores, on the other hand, is high
(more than 0.6 on average), and shows also the sta-
tistical significance in 2 out of 4 cases (for F1 with
both variants of pseudo-reference initialization).

Unfortunately, we cannot compare the 2022 re-
sults with human scores yet. For the 2022 auto-
matic scores, the discrepancy between our metric
and automated metrics is even bigger, which is rep-
resented by the negative τ value. If we analyze
the ranking of the systems by the standard met-
ric and of the proposed metrics, we can see that,
for 2021, the tentative clustering into three groups
(best-average-worst system) roughly coincides with
the automated metrics, while for 2022 the general
coincidence remains, but there are counterexam-
ples such as Online-W which is best by BLEU
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and chrf, and average by our metric. We can inter-
pret the lack of correlation between the automated
metrics and our metric the following way: the pro-
posed metrics can give additional information com-
pared to the dominant automated ones; moreover,
they tend to correlate with the human document-
level judgments, which are, as it has already been
mentioned, more sensitive to the inconsistencies in
translations on the document level.

5.3 Comparison of 2021 and 2022
Performance

The last notable comparison is the progress of sys-
tems that participated in both the 2021 and 2022
competitions; there were six such systems. We sub-
tracted the 2021 scores from the 2022 scores and
ranked the differences from the most significant
increase to the biggest decrease. We did that both
for our metrics and for the standard automatic ones.
The first notable difference is that the changes in
scores with our metrics are very small compared to
BLEU and chrf, they are not bigger than 3% (while
the smallest change in BLEU and chrf are 15% and
10%, correspondingly). Based on that, we may
hypothesize that our metrics show that the system
developers did not aim at increasing the term con-
sistency of the translations. However, to check this
hypothesis, we should analyze the architecture of
the systems and possibly to compare their perfor-
mance against the systems intentionally oriented at
term preservation, such as Voita et al. (2019a). The
detailed comparison of 2021 and 2022 algorithms
is shown in Table 4.

6 Limitations and Perspectives

As was stated, we proceed with testing our metrics,
both “extensively” (on more data) and “intensively”
(by tweaking the inner parameters of the metric it-
self). Regarding the “extensive” analysis, we firstly
should retrieve the automatic metrics obtained for
the ELITR agreement corpus and compare them to
our findings. Secondly, we should test our method
on other language pairs or at least on the opposite
English-to-Czech direction.

The second priority covers a more “intensive”
analysis of the metric. The method that we suggest
is based on several automated (or semi-automated)
steps. For each of the steps (keyword extraction,
word alignment, manual restriction of the term
translations), different approaches and algorithms
can be used. So far, we have tested the YAKE

Campos et al. (2018) and KeyBERT4 keyword ex-
tractors for the first step. We compared their per-
formance on the legal text outside the main ELITR
collection (this means that, for regex-based extrac-
tor, we created the templates based on the ELITR
connection and applied it to the testing text). Ten-
tative analysis shows that for the considered text,
regex term extractor demonstrates the best perfor-
mance, with 100% precision and 64% recall (7 out
of 11 terms). Both YAKE and KeyBERT output
an excessive number of false positive results, thus
showing a dramatic decrease in precision (best per-
formance – YAKE with 1-token keyword retrieval,
35%). The recall scores for these algorithms de-
crease as well: the comparable result is performed
only by YAKE (54% for 1-token keyword retrieval),
while the 2-token length YAKE shows 36% and
KeyBERT shows 9%.

This can lead us to the conclusion that the regex
term extraction is the best algorithm. However, if
we apply these extractors to different texts of a sim-
ilar domain – audit report (retrieved from another
ELITR repository,5) we will see that the regex key-
word extraction outputs no terms at all. The reason
is that the terms in this report are introduced only in
parentheses, with no additional explicit hints (such
as “hereinafter referred as. . . ”) in the legal texts.
Both machine learning-based algorithms, in con-
trast, manage to catch at least some of the necessary
terms. This drives us to the conclusion, that for the
robustness of the regex-based term extraction, we
should take into account different “strategies” of
introducing the terms in the document (sometimes –
by parentheses, sometimes – by additional phrases).
This means that, before evaluating a new collection
of the exact text, we still need some human effort to
understand the strategy of the term marking there.
Another way for a bigger automatization can be
using the combination of different keyword extrac-
tion algorithms, and choosing the terms through
a majority vote or taking the union. Finally, we
can look at the problem of the term extraction and
alignment from an opposite perspective: if there
is no reliable combination of the automated algo-
rithms for these two steps, we can use our metric
semi-manually: the steps 2-3 from Section 3 will
be completely handed over to human annotators,
and their results will be processed automatically

4https://maartengr.github.io/KeyBERT/index.
html

5https://github.com/ELITR/
wmt20-elitr-testsuite
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1st;
F1

1st;
Own

Freq;
F1

Freq;
Own

1st;
F1

rank

1st;
Own
rank

Freq;
F1

rank

Freq;
Own
rank

BLEU chrf BLEU
rank

chrf
rank

CUNI-Doc
Transformer .0006 .0012 .0006 .0013 3 3 3 3 .1603 .1109 5 4

Online-A -.0065 -.0219 .0099 .0065 5 5 1 2 .1985 .1371 2 2
Online-B .0223 .0395 -.0126 -.0097 1 1 5 5 .1749 .1197 3 3
Online-G -.0005 .0006 -.0012 -.0049 4 4 4 4 .1533 .1031 6 6
Online-W .0081 .0085 .0051 .0066 2 2 2 1 .2733 .1835 1 1
Online-Y -.0399 -.0465 -.0288 -.0305 6 6 6 6 .1668 .1078 4 5

Table 4: Comparison of systems’ progress from 2021 to 2022. The columns with the names of metrics (or the
variants of our metric) denote the result of subtraction of the 2022 scores from 2021 scores. The “rank” columns sort
the systems by their progress in the corresponding metric (1 - biggest increase, 6 - lowest increase/biggest decrease).

by steps 4-5. Of course, such implementation will
be more time- and effort-consuming, but, firstly, it
should still be faster than other manual evaluation
approaches such as MQM, secondly, it will give us
a model results of term extraction and alignment,
against which we will compare the automated algo-
rithms.

The last notable limitation of the proposed ap-
proach is rooted in linguistic issues. Although the
legal texts are very consistent in using the same
term for the same concept, there regularly appear
cases of “legitimate” homonymy, where two terms
can denote the same concept. This usually occurs
when two or more antecedents can be referred to
separately or by one term. The example is the
following sentence: X, hereinafter referred to as

“Seller”, and Y, hereinafter referred to as “Buyer”,
together also as “contracting parties”.... Such am-
biguity (when person X can be both referred as
“Seller” and as “contracting parties”) may cause
the problems even within the correct translation,
if in the original the chosen formulation would be
“the Seller and the Buyer”, and in the target lan-
guage it would be chosen as “contracting parties”.
The current metric does not have any capacity to
capture this feature of the legal language domain.

7 Conclusion

We have presented the metric for evaluating the
terminology consistency of the automatically trans-
lated texts. Among its main advantages is its abil-
ity to be automatized and its relative simplicity of
interpretation. We have tested our metric on the
texts from the legal domain in the Czech-to-English
translation pair, and we have obtained the results
that, according to preliminary estimates, correlate

with human document-level judgements and sta-
tistically differ from those of the automated met-
rics such as BLEU or chrF. We are continuing our
analysis to understand the scope of our metric’s
functionality and test it on other language pairs.

We publish our code of the project online at the
Github page6 of the Institute of Formal and Applied
Linguistics, Charles University. We will appreciate
feedback on the current algorithm, and we are open
to discussion and suggestions on its improvement.
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Abstract

This paper summarizes the results of our test
suite evaluation with a main focus on morphol-
ogy for the language pairs English to/from Ger-
man. We look at the translation of morpholog-
ically complex words (DE–EN), and evaluate
whether English noun phrases are translated as
compounds vs. phrases into German. Further-
more, we investigate the preservation of mor-
phological features (gender in EN–DE pronoun
translation and number in morpho-syntactically
complex structures for DE–EN). Our results in-
dicate that systems are able to interpret linguis-
tic structures to obtain relevant information, but
also that translation becomes more challenging
with increasing complexity, as seen, for exam-
ple, when translating words with negation or
non-concatenative properties, and for the more
complex cases of the pronoun translation task.

1 Introduction

Evaluating MT output is challenging. Document-
levels metrics give a rather coarse-grained estima-
tion of the overall translation quality, but cannot
determine how well a system operates for particular
challenges. Translations do not have a determin-
istic solution, but there are always several possi-
bilities for a valid translation, making a focused
evaluation of particular phenomena difficult.

The annual WMT Shared Task provides the pos-
sibility to submit custom test suites to be translated
in addition to the regular test sets, which allows
the investigation of the translation performance of
state-of-the-art systems when presented with par-
ticular translation tasks. In this test suite, we focus
on morphological challenges for English to/from
German translation: For German–English transla-
tion, we look at the translation of morphologically
complex words, in addition to a small set of sen-
tences where a subtle difference (singular vs. plu-
ral) needs to be detected. For English–German, we
study how complex noun phrases are translated –

as compounds or rather as multi-word phrases. Fur-
thermore, we add a pronoun translation task and
evaluate the translation of the English pronoun it
into its German equivalents er/sie/es, depending on
the gender of the noun it refers to.

The test suite does not aim at measuring a sys-
tem’s general translation performance – this is al-
ready assessed by means of a manual evaluation
and various other metrics in the main shared task –
but rather at evaluating the translational behaviour
for carefully selected words or phrases. As the sen-
tences in the test suite are not parallel, we opt for a
semi-automatic approach where translation options
for the words in question are manually collected
and then matched with the translation output. Thus,
only the translation of the relevant word is consid-
ered, whereas the rest of the sentence is ignored.

2 Data Creation and Evaluation

In the following, we outline the process of compos-
ing and evaluating the test suite.

Selection of words The sets for the analysis of
translating morphologically complex words, com-
pound variants and compounds for re-translating
into English are mostly based on a word-frequency
list from DeWac1 (Baroni et al., 2009). The
words were morphologically analyzed with SMOR
(Schmid et al., 2004). Based on this analysis, words
for the aforementioned categories were selected:

• Morphologically complex words: Words with
a high degree of complexity and properties
such as different forms (e.g. with/without Um-
laut) in stem and derivations; with negation
prefixes or particles or verbal components.

• Compound variants: compounds for which
both variants NN1 NN2 and NN2 NN1 exist.

• Compounds for re-translation: adjectives and
nouns with up to four components.

1https://wacky.sslmit.unibo.it/doku.php?id=frequency_lists
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Sentence selection We manually retrieved sen-
tences containing the selected words, using Google
and the search function provided by the corpus plat-
form DWDS (Geyken et al., 2017) with the corpus
Webmonitor2 which is daily updated. The search
was (mostly) restricted to newspaper entries from
this year, in order to obtain “new” data that was not
previously seen in the (monolingual) training data.

Evaluation We identified the translation hypothe-
ses of the relevant words using word alignment
(Eflomal (Östling and Tiedemann, 2016)), which
were then matched with a manually composed lex-
icon containing translations options. This step is
semi-automatic in the sense that yet unseen trans-
lation options need to be verified and added to the
lexicon. For the verification, we took into account
the sentence context. Being mainly interested in ad-
equacy (i.e. reproducing the meaning of the source
word) we allowed for some leeway at the level of
fluency, which is difficult to determine anyway in
sentences that are not always fully grammatical.

3 DE–EN Translation

This section summarized the design and the out-
come of the four categories in DE–EN translation.

3.1 Morphologically Complex Words
We are interested in the translation of morphologi-
cally complex words that contain interesting mor-
phological properties such as negation, particles,
verbal elements or non-concatenative derivation,
which often pose a challenge for translation.

Consider, for example, the word abrissunwillig:
abreißen + un + willig (tear down + un + willing:
unwilling to tear down), which consists of a nomi-
nalization (abreißenV →AbrissN), a negation pre-
fix (un-) and an adjective (willig: willing). In
addition to being complex, there is also a non-
concatenative operation in the derivation, namely
the stem change in abriss- vs. abreißen. This
makes it difficult for linguistically uninformed split-
ting approaches to find a segmentation into mean-
ingful splits that match with, and thus benefit from,
other instances of related words with the same
stem.

Many of the selected words emerged from cre-
ative use of language and are rather low-frequency.
This is to challenge the systems to analyze the
words rather than having them already memorized.
The words can be loosely grouped as follows:

2https://www.dwds.de/d/korpora/webmonitor
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correct 49 51 15 50 55 47 54 51 49
incorrect 8 6 42 7 2 10 3 6 8
→ polarity – 4 9 1 2 4 – 3 1
→ lex. 8 2 30 6 – 6 3 3 7
→ untransl. – – 3 – – – – – –

V
E

R
B correct 12 13 2 12 15 13 14 11 11

incorrect 4 3 14 4 1 3 2 5 5

U
M

L correct 50 49 18 48 49 43 50 43 40
incorrect 2 3 34 4 3 9 2 9 12

N
O

N
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O
N

C correct 43 40 5 28 44 35 36 34 24
incorrect 8 11 46 23 7 16 15 17 27

PA
R

T
IN

F correct 62 64 24 63 62 64 64 60 58
incorrect 14 12 52 13 14 12 12 16 18

Table 1: Morphologically complex words.

Negation: words containing the negation mor-
phemes un- (unschmelzbar: unmeltable) or -los
(knopflos: without buttons). We are in particular in-
terested how the negation is realized, i.e. as an iso-
morphic, word-internal negation vs. word-external
negation. This group comprises 57 sentences.

Verbal elements: the form of verbal elements
in derivations often differs from that of the verb
stem (aufbruchsbereit: ready to go; aufbrechen: to
leave). This group comprises 16 sentences.

Stem change (Umlaut): words containing an
Umlaut in the derivation but not in the stem:
blümchenbedruckt/Blume (printed with little flow-
ers/flower). This group comprises 52 sentences.

Non-concatenative words: adjectives derived
from nouns with non-concatenative properties,
e.g. langwimprig/Wimper: long-lashed/lash. This
group comprises 51 sentences.

Complex words: words containing particles,
such as mitzittern (lit: tremble-with; to sympathize,
share somebody’s emotions) and words containing
-zu- infixes (e.g. aufzutürmen: to stack up). Words
of this group are often difficult to translate directly.
This group comprises 76 sentences.

Table 1 gives an overview for all five categories.
For words containing negation, we find that most
systems made between 6 and 10 errors (out of 57),
with three systems being much better or worse.

For the errors, we distinguish between lexically
incorrectly translated and wrong polarity3. For the
lexically bad translations, we found that a major-
ity still contained a negation morpheme (such as

3The negation is incorrectly reproduced in the translation,
either through omission or by a word of the opposite meaning.
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nuancenlos nuanced (3), nuances (1)
manövrierunfähige maneuverable (3),manoeuv-

rable (1), manoeuvring (1)
familienunfreundliche family-friendly (1)
datenschutzunfreundliche data protection-friendly (2),

data-protection-friendly (1)
keimunfähig viable (1), germinate (2)
kundenunfreundlichen client-friendly (1)
klimaunfreundliches climate-friendly (1)
fahrradunfreundlichste most bicycle-friendly (1)
unverblasst still faded (1)
unaufgetaut unfrozen (1)
unadeligen aristocratic (1)
kalorienlose calories (1)

Table 2: Translations with wrong polarity (all systems).

knopflos (buttonless)→ headless). For translations
with wrong polarity, we observed that in partic-
ular words with an infix negation morpheme are
error-prone, especially when considering that the
test set contains only 13 sentences with such words.
Table 2 lists the (otherwise lexically correct) trans-
lations with wrong polarity.

Among the correct translations, we observe the
entire range between no translation variation (e.g.
unwählbar↔ unelectable and vorwarnungslos→
without warning) and lexical and local structural
variation, as shown in table 3.

For words containing verbal elements that differ
from the lemma of the verb, the systems’ perfor-
mances range from nearly all correct to nearly all
incorrect. For this subset, there was no clear trend
of error, certainly also due to its small size. One
thing that we observed was that for abrissbedroht
(threatened by demolition), abrissbereit, abrissreife
(ready to be demolished), abrissgeweihten (marked
for demolition), abrisswilligen (willing to demol-
ish) a common mistranslation was just demolished,
even though the state of being actually demolished
is not described by any of these words.

The words with a stem change (Umlaut)
lead to mixed results; for the words with non-
concatenative properties, we observe even more
errors. Among the incorrectly translated words,
there is a tendency that the part with the non-
concatenative properties is mistranslated, whereas
the other, more easy part, is correct (cf. table 4).
Finally, the words containing particles or infixes
were challenging to translate, even though some
words were considerably more difficult. In partic-
ular, the set included some verbs that cannot be
translated isomorphically. One example is the com-
bination of kaputt (broken) + verb, in analogy to
kaputtmachen (to break, lit. kaputt-make): kaputt-

quittungslos without receipt (9), without receipts (2),
without a receipt (2), receiptless (1),
receipt-free (1)

nuancenlos without nuances (4), nuanceless (3), nuance-
free (3),nuance-less (2), unnuanced (1),
lacking in nuance (1)

unaufgetaut unthawed (3), without thawing (1), without
defrosting (1), undefrosted (1), before it
is thawed (1)

unverblasst unfaded (2), still vivid (1), not yet faded (1),
not faded (1), still fresh (1)

Table 3: Translation variants for words with negation
morphemes (only correct translations shown).

correct incorrect
langwimprigen long-lashed (4) long-drawn (1), long

tail (1), long-winded
(1), long-eyed (1)
long-wimprigen (1)

sonnenbebrillt in sun glasses (2), bespectacled by the
with sunglasses sun (1), in the sun
(1), wearing sun- (1), sunglassed (1)
glasses (1)

löwenmähnige lion-maned (15) lion-eyed (1) lion-
like (1), duel-like (1)

Table 4: Translating non-concatenative words.

sparen (to destroy through excessive money saving)
or kaputtsanieren (to destroy through excessive ren-
ovating). With the exception of kaputtschlägt and
kaputtzukriegen (to break), they were nearly always
translated incorrectly. In particular kaputtsparen
was often translated as saved from damage or simi-
lar, the opposite of the intended meaning. In con-
trast, for schönreden (to gloss over, to sugar coat,
lit: beautiful + talk), a generally similar construc-
tion, about half of the translations were correct.

3.2 Compound Variations

Compounds are commonly occurring in German
and their translational behaviour has been studied
extensively. An important aspect in compound
translation is to correctly reproduce the relation
between the head and modifier in noun-noun com-
pounds, which we aim to investigate in this cat-
egory by looking at compound pairs that consist
of the variants NN1 NN2 and NN2 NN1, such as
Oliven|öl and Öl|olive (olive oil vs. oil olive) or
Leder|stiefel and Stiefel|leder (leather boot vs. boot
leather).

The compound variants NN1 NN2 and NN2 NN1

have different heads and thus a different meaning
(as opposed to variation in hyponymy/hypernymy)
and are not generally interchangeable4. We thus

4We found, however, that in some cases, there is an accept-
able one-word translation for both variants, e.g. Absatzschuh
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correct 57 58 29 59 59 60 59 59 57
wrong order – – 2 – 1 – – – –
head missing 1 – 7 – – – – – 1
mod missing – – 5 1 – – 1 – –
bad transl. 2 2 17 – – – – 1 2

Table 5: Translation results of compound pairs. wrong
order: wrong order of head and modifier; head/mod
missing: only translated head or modifier; bad transl:
translation was either missing or wrong.

retrieved different sentences for each variant: this
means that the compound variants are not analyzed
in a minimal pair setting, but each variant is pre-
sented in an appropriate and natural context.

This category is somewhat inspired by one of the
error types introduced by Sennrich (2017), where
translation probabilities for contrastive sentences
containing compound variants (a correct vs. a
wrong translation consisting of a compound with
switched components) are compared.

Table 5 shows the results for 15 compound pairs,
with 2 examples per variant in most cases, result-
ing in 60 sentences total. All systems, with the
exception of one, translated most compounds cor-
rectly. Furthermore, there is no dominant error
type for cases with incorrect translation. This in-
dicates that through most systems, there is a gen-
erally good understanding of compound structure
and subsequent translation, even in cases such as
the high-frequency Olivenöl (21M google hits5) vs.
the low-frequency Ölolive (507 google hits).

3.3 Compound Translation

In this section, we look at the translation of com-
pounds consisting of two to four components. This
set of compounds6 also serves as a basis for the ex-
periment in section 4.1 which studies how English
noun phrases are translated into German.

This word set contains some “newish” words, i.e.
words that are not new per-se, but became consid-
erably more frequent recently, such as Gasengpass
(gas bottleneck) and some Covid-related terms such
as Impfbereitschaft (willingness to be vaccinated).

→ heel, heeled shoe and Schuhabsatz→ heel, shoe heel.
5Search of the citation form in double quotes. Numbers

reported by Google give only a rough idea of the true fre-
quency on the web, but are sufficient to estimate the order of
magnitude.

6This set of words is not exactly the same as in section 4.1.
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correct 68 70 34 70 70 71 69 68 71
wrong 5 3 35 3 3 2 3 5 2
missing/copy – – 4 – – – 1 – –

Table 6: Results for translating compounds into English.

Most words in this set are compositional, and very
few are non-compositional compounds, such as
Dornröschendasein (Sleeping Beauty existence).

Table 6 shows the results for translating com-
pounds into English; most systems did quite well.
Among the compounds with the most consistent
translations are Sonnenblumenkernöl (sunflower
seed oil) and Haifischflossensuppe (shark fin soup),
i.e. compounds with a straightforward literal trans-
lation. Similarly, the somewhat new Testmüdigkeit:
test fatigue (17), testing fatigue(1) (occurrences
in two sentences) leads to consistent translations.
One of the more difficult words was distanzler-
nende (distance learning), which 5 of the 9 systems
translated correctly. The incorrect translations did
not quite capture the meaning and translated into
learning distance, learning about distance and to
dance (probably due to an incorrect splitting that
contained the German “tanz”).

3.4 Preserving Morphological Information in
Syncretic Forms

Understanding the precise meaning of a word and
its function in the sentence is crucial to obtain a
good translation. This includes the comprehension
of relevant morphological features.

While German is rich in different inflected forms,
there is also a certain degree of syncretism (forms
with different morphological features sharing the
same surface form). For example, Hund (dog) can
be dative, accusative and nominative, Unternehmen
(company) can be singular and plural. Usually, this
can be resolved by the context, often by means of
the determiner: demDAT/denACC/derNOM Hund and
dasSG/diePL Unternehmen.

In this experiment, we look at number in non-
subject words as (i) number is the only feature of
nominal inflection that is shared between German
and English, and (ii) there are no further ramifi-
cations to the rest of the sentence. We designed
a setting in which the disambiguating context, a
definite article, is not directly adjacent to the word
in question, but separated by an inserted phrase.
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Die Verzögerungen sind auf Engpässe bei den mit der Umsetzung beauftragten Unternehmen und auf ... zurückzuführen.
The delays are to bottlenecks at the with the implementation charged companies and to ... due
Die Verzögerungen sind auf Engpässe bei dem mit der Umsetzung beauftragten Unternehmen und auf ... zurückzuführen.
The delays are to bottlenecks at the with the implementation charged company and to ... due
The delays are due to bottlenecks at the companies/company charged with the implementation and to ... .

Table 7: Example for minimal sentence pairs.
JD

E
xp

lo
re

A
ca

de
m

y
L

an
-B

ri
dg

e

LT
22

O
nl

in
e-

A

O
nl

in
e-

B

O
nl

in
e-

G

O
nl

in
e-

W

O
nl

in
e-

Y

PR
O

M
T

Correct 15 16 8 15 16 17 17 18 17
Incorrect 3 2 7 3 2 1 1 – 1
NA – – 3 – – – – – –

Table 8: Preserving number information: Correct: the
noun in singular and plural was translated correctly. In-
correct: for at least one noun, the number was incorrect.
NA: not translated or otherwise impossible to judge.

We created 18 minimal sentence pairs with the
only difference being a singular vs. a plural arti-
cle, in order to test whether the noun (with iden-
tical forms in both sentences) is correctly trans-
lated. The sentences contain “nested prepositional
phrases” where an inserted prepositional phrase
separates the article and the noun, cf. table 7.

Table 8 shows the results for the task of preserv-
ing number information: most systems can handle
this problem reasonably well, indicating that the
systems have the ability to interpret the sentence
structure and to identify the relevant context.

4 EN–DE Translation

In this section, we look at re-translating compounds
and present a pronoun translation task.

4.1 Compound Creation
To prepare the test set, we translated the German
compounds from section 3.3 into English, includ-
ing structural or lexical variations if possible (cf.
table 9 for some examples) and retrieved English
sentences with these translations, resulting in a
set of 102 sentences. We distinguish between
“phrase” (PHR), containing a preposition (such
as interpreter for sign language) and “compound”
(COMP) where the order of the words corresponds
to a compound (as in sign language interpreter).

The results in table 10 show a tendency to keep
the structure, i.e. translating a compound-like struc-
ture into a compound, and a phrase into a phrase
rather than a compound, even though there are dif-
ferences depending on the word.

Gebärdensprach- sign language interpreter
dolmetscher interpreter for sign language
Obstbaumschnittkurs fruit tree pruning workshop

workshop on fruit tree pruning
Kleinkläranlagen- small wastewater treatment plant
betreiber operators; operators of small

wastewater treatment plants
Kreuzworträtselfrage crossword question

crossword puzzle question

Table 9: Structural and lexical variants in the compound
translation task.
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Comp→ Comp 58 56 60 57 58 55 47 49 55
Comp→ Phr 13 15 10 11 11 17 11 13 6
Phr→ Comp 5 9 2 9 5 7 2 3 4
Phr→ Phr 23 18 24 18 23 21 25 18 19
Wrong transl. 2 3 6 6 5 2 16 19 18
Copied EN 1 1 – 1 – – 1 – –

Table 10: Translating English complex phrases.

For example, the variants wearers of head-
scarves and headscarf wearers were mostly trans-
lated by the compound Kopftuchträger(innen),
with only two instances of Träger von Kopftüch-
ern. In contrast, both pacemaker wearer and
pacemaker carrier have a more equal distri-
bution of Träger von Herzschrittmachern and
(Herz)Schrittmacherträger. A more complex exam-
ple, willingness to get vaccinated, was translated
to the corresponding compound Impfbereitschaft
(6 times), as Bereitschaft zur Impfung (3 times)
and Bereitschaft, sich impfen zu lassen (9 times).
The variant unwillingness to get vaccinated proved
more problematic: only three systems obtained
correct translations: Impfunwilligkeit (2) and Un-
willigkeit, sich impfen zu lassen (1). The translation
Impfunbereitschaft, while transporting the correct
message, is questionable. In the remaining 5 cases,
the negation was ignored.

4.2 ContraCat: Translating Pronouns
The translation of pronouns is often more difficult
than it seems at a first glance: a translation system
requires diverse linguistic information to produce a
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1 The mouse ate the cookie and the bear drank
the milk. It drank the milk quickly.

2 The tiger ate the ice cream. It was happy.
3 The giraffe ate the steak. It was cooked.

Table 11: Examples for the ContraCat template set.

target-language pronoun with the correct morpho-
logical features such as gender, number or case.

To translate the English it into German, a
translation system needs to identify the noun it
refers to and to have knowledge about that noun’s
gender7 in German, as illustrated below:

... a dog ... it ... → ... ein HundMASC ... er ...

... a cat ... it ... → ... eine KatzeFEM ... sie ...

... a zebra ... it ... → ... ein ZebraNEUT ... es ...

To analyze the translation of pronouns, we make
use of the template set ContraCat (Stojanovski
et al., 2020) which consists of sentence pairs where
several nouns are introduced in the first sentence,
and a pronoun it in the second sentence either refers
to one of these nouns, or is generic as in it is rain-
ing. The sentences are constructed in a way that the
relevant noun/context can be derived through either
world knowledge or through analyzing the struc-
ture of the sentence. Furthermore, the sentences
are designed such that the nouns of e.g. the two
subjects (mouse and bear in sentence 1 in table 11)
have translations into German with different gen-
ders (MausFEM and BärMASC) in order to allow for
an unambiguous evaluation.8 Table 11 shows three
examples; an overview of all template categories
can be found in table A.

Technically, each sentence consists of two short
sentences. As this might be disadvantageous in
some system settings, we generated a second ver-
sion where we joined the two short sentences with
“and” into one sentence. In the evaluation, these
variants will be referred to as 2S and AND.

In its original form, the template set provides
three translation hypotheses, each with a different
translation option (male/female/neutrum) for it, for
which the system’s likelihood to produce the cor-
rect translation is then measured.

To be used in an actual translation scenario, we
adapt the evaluation process: given the template
structure, we first identify the antecedent (the noun

7Further features leading to variations at the level of gram-
matical case and number will be ignored here.

8This was guaranteed for the pre-defined translations in the
original setting. In actual translations, there can be more varia-
tion, for example deer→ HirschMASC , RehFEM , WildNEUT .

that is referenced by the pronoun it), and then its
translation and the translation of the pronoun it in
the target sentence using word alignment (Eflomal,
Östling and Tiedemann (2016)). The translation
options of the nouns observed in the different sys-
tems’ outputs are listed in a manually compiled
dictionary9, alongside their German grammatical
gender. With this, the translated pronoun can be
automatically matched with the noun’s gender.

4.2.1 Test Set Creation
From the original test suite10, we randomly selected
100 sentences for each of the 20 categories (cf. ta-
ble A for an overview), with the exception of the
category world knowledge, for which 200 sentences
were selected as this category comprises the sce-
nario of addressing an animate noun (animal) vs.
inanimate noun (food). Doubling the sentences for
the AND variant results in 4200 sentences total.

4.2.2 Evaluation and Results
Table 12 shows the results of translating pronouns.
For the categories event_* and pleo_*, where the
translation it→ es is always expected, nearly all
systems have a perfect score. The other categories
where the antecedent needed to be derived from
the context are more challenging, however without
a clear pattern between the systems. We can ob-
serve two tendencies, even though not consistent
through all systems: first, the variant AND often
leads to better results, probably due to the fact that
sentences are often the “standard unit” for trans-
lation, whereas the two sentences in variant 2S

might be considered separately, depending on the
systems’ architecture. Second, sentences where the
antecedent is the second NP of the first sentence,
i.e. closer to the it, tend to get better results.

Looking further into the errors, we find that
esNEUT is often preferred over a a feminine or mas-
culine form. This might simply be the case be-
cause it → es is the default translation, and also
because the generic es can oftentimes be consid-
ered grammatical, even though a translation into
the gender-specific pronoun would be possible.

A general problem with this template approach
is the degree of freedom in the translation process:
sometimes the pronoun is just not translated (cf.
table 13), and in some cases, it is possible to formu-
late the sentence such that the pronoun es leads to

9The dictionary comprises entries for 141 English nouns,
with one to four translation options.

10https://github.com/BennoKrojer/ContraCAT
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JDExplore Lan-Bridge Online-A Online-B Online-G Online-W Online-Y OpenNMT PROMPT
Academy
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event_chaos 100 100 100 100 100 100 100 100 100 100 100 99 100 100 100 100 100 100
event_happened 100 100 100 100 100 100 100 100 100 100 100 99 100 100 99 100 100 100
event_situation 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100
event_surprise 100 100 100 100 100 100 100 93 100 100 100 99 100 100 100 100 100 100
gender_step 95 92 22 95 21 84 22 92 21 91 88 97 21 92 80 66 22 89
obj_drink 77 96 22 95 18 57 22 76 35 50 81 81 18 30 26 38 29 27
obj_eat 1 27 37 6 23 26 37 26 32 38 42 10 23 24 14 23 20 28
obj_verb_drink 100 100 20 98 16 53 20 95 38 53 84 92 22 57 24 41 18 41
obj_verb_eat 1 1 36 2 25 30 33 11 29 36 43 8 26 32 2 25 28 41
pleo_believe 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100
pleo_rain 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100
pleo_seem 100 100 100 100 100 100 100 100 100 100 99 99 100 100 100 100 100 100
pleo_shame 5 100 100 100 100 100 100 100 100 100 100 100 100 100 97 100 100 100
subj_drink 36 45 34 34 34 34 34 37 34 34 45 84 34 34 85 68 34 34
subj_eat 45 44 45 45 45 45 45 45 45 45 44 24 45 45 18 35 45 45
subj_verb_drink 99 99 34 100 34 94 34 100 34 98 100 100 34 75 100 93 34 64
subj_verb_eat 22 20 34 20 34 11 34 13 34 34 54 2 34 22 0 14 34 25
verb_drink 100 100 24 98 22 72 25 90 26 68 84 96 22 72 71 19 22 43
verb_eat 2 2 27 2 18 18 26 11 25 33 43 20 18 21 28 8 21 45
world_knowl. 180 194 77 200 71 124 73 195 67 133 185 181 76 126 97 77 77 97

Table 12: Results for pronoun translation using the ContraCat template, the number indicates the amount of correct
pronoun translations (out of 100 for all except for world_knowledge, which has 200 test sentences). (Note: in
JDExploreAcademy–pleo_shame, it is a shame is nearly always translated as “Schade.”, i.e. without a pronoun.)

The mouse ate the cookie and the sheepSG/PL drankSG/PL the tea.
ItSG liked the tea.
Die Maus aß den Keks und die SchafePL/NT trankenPL den Tee.
ErSG/MASC mochte den Tee.

Table 13: Example for incorrectly passed-on number.

The cow ate and the dog drank. It drank a lot.
Die Kuh aß und der Hund trank viel.
The cow ate and the dog drank a lot.

The frog ate the fruit and it had a sour taste.
Der Frosch aß die Nuss und ∅ hatte einen sauren Geschmack.
The frog ate the fruit and had a sour taste.

Table 14: Examples for pronoun omission.

a grammatical sentence. For example, the -animal-
liked it (it→food item) can be translated as Dem
-Tier- gefiel/schmeckte es. This is a valid transla-
tion, even though not strictly in the sense of the
intended meaning as in dem -Tier- schmeckte er
(→ ApfelMASC) vs. dem -Tier- schmeckte sie (→
BananeFEM) . For the sake of evaluation, we count
a translation only as correct if the pronoun exists
and matches in gender with the noun it refers to.

While this experiment only focused on gender,
we also observed some cases that extended to num-
ber, namely in a few cases where the English singu-
lar and plural forms are the same. In the example in
table 13, the number of sheep is not directly visible
in the first part of the sentence, but can be disam-
biguated through the singular form it. The transla-
tion contains Schafe in plural, but er as translation
of it is singular/masculine (Schaf is neutrum).

5 Related Work

The linguistic and morphological compentence of
translation systems is a topic of previous and on-
going research. Isabelle et al. (2017) present a
challenge set for English to French translation tar-
geting linguistic divergence between the two lan-
guage pairs. Their hand-crafted set has a focus on
morpho-syntactic, lexico-syntactic and syntactic
divergences. Burlot and Yvon (2017) present an
analysis of minimal pairs representing a contrast
that is expressed syntactically in EN and morpho-
logically in a morphologically rich language (DE,
CZ and LV). For a source test sentence (the base),
variant(s) containing exactly one difference with
the base (e.g. person/number/tense of a verb or
number/case of a noun/adjective or polarity) are
generated and automatically evaluated, counting
a translation as correct if the targeted feature is
produced correctly in the target language. The
work of Burchardt et al. (2017) and Avramidis et al.
(2019) comprises the DFKI test suite for German
to English MT. Their test set consists of over 5k
sentences to analyze over 100 categories, including
negation, composition, function words, subordi-
nation, non-verbal agreement, multi-word expres-
sions, verb tense/aspect/mood, lexical ambiguity
and punctuation. LingEval97 (Sennrich, 2017) is a
large-scale data set of 97000 contrastive English–
German translation pairs where errors (on the level
of agreement, auxiliaries, verb particles, polarity
and swapped compound components) haven been
automatically created. It is then measured whether
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a reference translation is more probable than the
corresponding contrastive translation containing an
inserted error. An obvious question with this ap-
proach is whether forced translation mimics the MT
system’s “natural behaviour”, i.e. whether the pre-
sented sentence e is the system’s best choice given
the source sentence f. This question is addressed
in Vamvas and Sennrich (2021) where it is argued
that test data should be chosen such that there is
minimal discrepancy between the training data and
the data to be evaluated. They recommend that test
sentences be created from machine generated text
rather than using human-written references. The
paper proposes an updated version of LingEval97.

6 Conclusion and Future Work

This paper summarizes the results of our WMT22
Test Suite, looking at the translation of morpho-
logically complex words, compounds and a set of
minimal pairs to assess the preservation of number.
Our evaluation shows that on one side, the trans-
lation of morphologically complex words is not
without challenges, in particular for low-frequency
words and when containing negation. On the other
hand, the handling of the (structurally much sim-
pler) compounds NN1 NN2 vs NN2 NN1 and the
preservation of the number feature worked quite
well. The results for the pronoun translation exper-
iment were mixed.

Our results indicate that the systems have a gen-
erally good understanding of linguistic structures,
but also that at a certain degree of (morphological)
complexity, problems start to arise. For research
in MT, this means that modeling morphology, par-
ticularly negation and non-concatenative processes,
might be worthwhile.

The test suite, with the exception of the pronoun
translation task, is based on a manually created
set of sentences alongside matching dictionaries.
While this has the advantage of presenting the se-
lected words/phrases in a natural context, it comes
with a comparatively high amount of manual effort,
making it difficult to upscale. In contrast, the artifi-
cial data used in the pronoun translation task allows
for a comparatively straightforward evaluation, but
sounds unnatural and likely differs considerably
from the MT training data, which might even bias
the results to a certain extent.

For future work, we intend to look into the gener-
ation of meaningful sentences with particular prop-
erties that allow for a systematic evaluation of MT.

Limitations

There are several limitations to this work: first, the
work is obviously limited in terms of data-set size
and the small number of language pairs considered.
As there is a certain amount of manual selection
and annotation required, this is generally a tricky
problem to address. As mentioned previously, we
plan to work on more sophisticated test data gen-
eration as a basis for a more focused evaluation.
Another limitation is a lack of generalizability: the
presented analyses offer only partial insights and
provide but a first glimpse into understanding to
what extent morphological information is captured
and passed on in machine translation.
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A Appendix

Words with negation: abgaslose, abgaslosen,
akzentlosen, datenschutzunfreundliche fahrradun-
freundlichste, fahrunfähig, familienunfreundlich,
familienunfreundliche, flugunfähigen, handlung-
sunfähig, kalorienlose, keimunfähig, klimaunfre-
undliches, knopflosen, kundenunfreundlichen, lück-
enlose, manövrierunfähige, nuancenlos, quittungs-
los, Rücksichtlose, tageslichtlose, unabgefüllten,
unabgeschirmt, unablösliche, unadeligen, unan-
fechtbar, unanfechtbare, unangemeldete, unaufge-
taut, unausgereift, unauswechselbar, unbege-
hbar, unfußballerisch, ungepflügten, ungeschliffen
,ungeschliffene, unkontrollierbare, unliebenswert,
unregierbaren, unreparierbar, unreparierbarer,
unsanierten, unschmelzbaren, unverblasst, un-
verderblich, unverhangene, unverwundbaren, un-

wählbar, unzerknittert, unzerschnittene, vorwar-
nungslos

Words with verbal element: abrissbedroht,
abrissbereiten, abrissgeweihten, abrissreife, abris-
swilligen, abwieglerisch, aufbruchsbereiten, auf-
bruchsicher, aufwieglerisch, aufwieglerischen, aus-
bruchsartigen, ausbruchsicher, ausstiegswillige,
bestbesprochenen, weitergesponnen

Words with Umlaut: ananasförmigen, Anemo-
nenblütige, barhändig, blümchenbedruckte,
blümchenbedruckten, blümchentapetigen,
doppelbödig, doppelköpfig, doppelköpfigen,
einblättrig, einblättrigen, einsträngig, einsträngige,
einsträngigen, engräumig, fädenziehende,
fältchenmindernden, gehirnwäscherische,
gehirnwäscherischen, großäugig, großäugigen,
großräumig, höhergeschossigen, höherrangiger,
höherwüchsiger, hundertäugigen, hütchenförmige,
kaltblütig, kannenförmige, kannenförmiges, klein-
räumig, kurzfädige, kurzfädigen, pünktchenförmig,
rot-schnäblige, Rundbäuchig, rundbäuchige, san-
ftäugige, sanftäugigen, schnellfüßige, schnellfüßi-
gen, spitztürmige, städtebauliche, städtebaulichen,
städteübergreifend, täschchenlosen, viersträngig

Words with non-concatenative proper-
ties: angsthasig, aprilwettrig, dreistreifig,
dunkelschalige, dünnschalig, dünnschalige,
eigenpfotig, einhöckrigen, einstreifig, engmaschig,
erdbeerartigen, flinkfingrige, flinkfingriger,
grobbrockige, grobmaschig, grobmaschigen,
grobmaschiger, großfenstrigen, großmaschig,
großnasigen, hellschalig, hochgiebligen, hornbril-
ligen, langwimprigen, leichtpfotig, löwenmähnige,
rotschalig, rotwangige, samtpfotigen, schmal-
hüftige, schnarchnasig, sonnenbebrillt, spitzgiebli-
gen, Unbebrillt, zartschalig, zweihöckrige,
zweistreifig

Words with particle/zu-infix : anföhnen,
angeföhnt, aufdimensioniert, aufeinandergestapelt,
aufgetürmt, aufgetürmten, auftürmen, aufzutürmen,
beschuhten, coronabedingter, dichtgedrängten,
eingerahmte, eingeschnürt, einrahmende, ein-
schnürende, erdzugewandten, Fehlbefüllte, Fehlbe-
füllung, fehlbesetzt, fehlgeleitete, Fehlübersetzung,
feindosiert, feindosierte, feingekleidete, fernsteuer-
bar, fernsteuerbarer, fertiggepackten, festbetoniert,
festgerostet, festgeschraubt, geheimgehaltene,
geheimzuhalten, geheimzuhaltenden, gutriechende,
heißbegehrter,hitzebedingt, hochaufgetürmte,
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hochbeschuhten, kaputtanalysiert, kaputtgespart,
kaputtgestanden, kaputtsanieren, kaputtschlägt,
kaputtzukriegen, kaputtzusparen, kontinen-
tübergreifende, kostümbedingt, krankheitsbedingt,
mitgezittert, mitzittern, mitzitternden, nachzubauen,
notbedingt, pandemiebedingt, plattgebügelten,
plattgetrampelt, redimensioniert, sanktions-
bedingten, schiefgelaufenen, schiefgelaufener,
schiefstehende, schöngeredet, schönreden,
schönzureden, sonnenzugewandten, straßenzuge-
wandten, überdimensioniert, unterdimensioniert,
vollgesprüht, vollgestapelt, vorbeiflanieren,
weltzugewandter, zukunftszugewandte

Words from section 3.2 Bekleidungsberuf –
Berufsbekleidung, Stiefelleder – Lederstiefel, Fet-
tbauch – Bauchfett, Zugluft – Luftzug, Stallkühe
– Kuhstall, Drahtmaschen – Maschendraht, Tep-
pichwolle – Wollteppich, Dauerprojekte – Projek-
tdauer, Öloliven – Olivenöl, Schalenobst – Ob-
stschale, Schachtelpappe – Pappschachtel, Tüten-
papier – Papiertüten, Absatzschuhe – Schuhabsatz,
Stoffschichten – Schichtstoffe, Druckkunst – Kunst-
drucken

Words from section 3.3: Energieentlas-
tungspakets, Energieentlastungspakete, Energieent-
lastungspaketen, Entlastungspaket, Gasengpässen,
Gasengpasses, Gasengpass, Gasengpässe,
Mindestfüllstände, Mindestfüllstand, Mindestfüll-
ständen, Mindestfüllstands, Halbleiterengpässe,
Halbleiterengpass, Halbleiterengpasses, Hal-
bleiterengpässen, Testmüdigkeit, Testmüdigkeit,
Endlos-Lockdown, Distanzlernens, Distanzlernen,
distanzlernende, Distanzlernenden, ansteck-
ungsfrei, ansteckungsfreien, ansteckungsfreiem,
ansteckungsfreies, bemaskt, Impfbereitschaft,
impfbereit, Impffrust, Herzschrittmacherträger,
Parkraumbewirtschaftungskonzept, Fluggastdaten-
sätze, Herzschrittmachertypen, Musiktauschbörse,
Kochbuchautorinnen, Kochbuchautor, Kochbuchau-
toren, Atomkraftgegner, Kopfsteinpflasterpassage,
massenvernichtungswaffenfreien, Hausstaubmilbe-
nallergikern, Gebärdensprachdolmetscher:innen,
Gebärdensprachdolmetscher, Kopftuchträgerin,
Schilddrüsenhormontabletten, Sonnenblu-
menkernöl, Haifischflossensuppe, Abwasserbe-
seitigungspflicht, Knochenmarkspenderregister,
Muttermilchersatzprodukten, Kinderbuchau-
torin, Maiglöckchenduft, Herrenarmbanduhr,
Kunstrasenspielfeld, Kunstrasenspielfeldes,
Dornröschendasein, Gabelstaplerführerschein,

Festnetztelefonnummer, Massentierhaltungsanla-
gen, Mauerblümchendasein, Obstbaumschnittkurs,
Kreuzworträtselfrage, Medizinjournalismus,
Blutzuckerteststreifen, Kuhmilcheiweißallergie,
Kleinkläranlage, Kläranlagenbetreiber, Klein-
kläranlagenbetreiber

467



event_chaos The tiger ate the fruit . It resulted in chaos .
event_happened The wolf ate the apple . It actually happened .
event_situation The lion ate the carrot . It was a funny situation .
event_surprise The owl ate the cake . It came as a surprise .
gender_step I saw a pineapple . It was big .
object_overlap_eatdrinkdrink The zebra ate the fruit and the monkey drank the tea .

It liked the tea .
object_overlap_eatdrinkeat The lion ate the fruit and the zebra drank the milk .

It liked fruit .
object_verb_overlap_eatdrinkdrink The mouse ate the cookie and the bear drank the milk .

It drank the milk quickly .
object_verb_overlap_eatdrinkeat The zebra ate the fruit and the lion drank the water .

It ate the fruit quickly .
pleo_believe The lion ate the ice cream . It is hard to believe this is true .
pleo_rain The lion ate the pizza . It was raining .
pleo_seem The frog ate the cookie . It seemed this was unnecessary .
pleo_shame The giraffe ate the cheese . It is a shame .
subject_overlap_eatdrinkdrink The turtle ate the bread and the dog drank the tea .

The dog liked it .
subject_overlap_eatdrinkeat The dove ate the fruit and the zebra drank the tea .

The dove liked it .
subject_verb_overlap_eatdrinkdrink The dove ate the apple and the frog drank the water .

The frog drank it quickly .
subject_verb_overlap_eatdrinkeat The mouse ate the fruit and the lion drank the tea .

The mouse ate it quickly .
verb_overlap_eatdrinkdrink The zebra ate and the bear drank . It drank quickly .
verb_overlap_eatdrinkeat The zebra ate and the lion drank . It ate a lot .
world_knowledge The tiger ate the ice cream . It was happy .
world_knowledge The giraffe ate the steak . It was cooked .

Table 15: Overview of the different categories of reference in ContraCat. The noun that is referred to by the it in
question, as well as the it itself, are marked in bold face. For the categories event_* and pleo_*, the it does not refer
to a noun.
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Abstract

Automatic translations with critical errors may
lead to misinterpretations and pose several risks
for the user. As such, it is important that Ma-
chine Translation Evaluation systems are robust
to these errors in order to increase the reliabil-
ity and safety of the translation process. Here
we introduce SMAUG, a novel Sentence-level
Multilingual AUGmentation approach for gen-
erating translations with critical errors and ap-
ply this approach to create a test set to evaluate
the robustness of Machine Translation metrics
to these errors. We show that current State-of-
the-Art methods are improving their capability
to distinguish translations with and without crit-
ical errors and to penalize the first accordingly.
We also show that metrics tend to struggle with
errors related to named entities and numbers
and that there is a high variance in the robust-
ness of current methods to translations with
critical errors.

1 Introduction

In recent years, Machine Translation (MT) systems
have been used in diverse real world environments.
However, widespread adoption of these systems
raises many concerns, namely in the quality of their
outputs. Ideally, human translators would evaluate
generated translations but this process is expensive
and slow. As an alternative, automatic Machine
Translation Evaluation relies on external systems
to measure the quality of generated translations.

As a crucial aspect of Machine Translation Eval-
uation, it is vital to ensure that generated sentences
do not contain critical errors. As detailed in Specia
et al. (2021), translations with such errors devi-
ate in meaning from their source sentence in ways
that may lead to misinterpretations and pose health,
safety, legal, reputation, religious or financial im-
plications. Specia et al. (2021) group these trans-
lations into three categories, based on how their

∗Corresponding author: duartemalves@tecnico.ulisboa.pt

meaning deviates from the source sentence. Mis-
translation errors have critical content in the source
sentence translated into a different meaning, not
translated (the content remains in the source lan-
guage), or translated into gibberish. Hallucination
errors introduce content in the translated sentence
that is not present in the source sentence. Deletion
errors exclude important content from the source
sentence.

In this work, we propose SMAUG1, a Sentence-
level Multilingual AUGmentation framework to
generate translations with critical errors, targeting
all the aforementioned critical error categories.

We also introduce a novel test set to analyse
the robustness of MT Evaluation systems to criti-
cal errors. This test set was created with the pro-
posed augmentation framework and submitted to
the WMT22 Challenge Sets Sub-task (Freitag et al.,
2022).

Finally, we present the results obtained from
evaluating metrics submitted to the WMT22 Met-
rics Shared Task with the developed test set. We
show progress of submitted metrics with respect
to baseline systems, particularly concerning Qual-
ity Estimation systems. Namely, we demonstrate
that several metrics are able to correctly distinguish
translations with and without critical errors and to
penalize the former. Furthermore, we show that
current metrics are less sensitive to translations
containing errors in named entities and numbers
and that there is a high variance in the performance
of current SOTA evaluation metrics with respect to
identifying and penalizing the occurrence of critical
errors.

2 Related Work

Metrics for Machine Translation Evaluation pro-
duce a quality score for a given hypothesis, based
on the source sentence and a possibly empty set

1Code available at: https://github.com/
Unbabel/smaug
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of reference translations. These metrics can be di-
vided into two main groups, given their reference
set. Reference based metrics have a non-empty
reference set, while reference free metrics have an
empty reference set. Reference free evaluation is
also denominated by Quality Estimation.

Within reference-based metrics, n-gram based
metrics, such as BLEU (Papineni et al., 2002) and
CHRF (Popović, 2015), measure lexical overlap
from the hypothesis to the human references. Rei
et al. (2020) advocate that these methods fail to cap-
ture semantic similarities beyond the lexical level.
Their inability to capture meaning at a sentence
level also makes them unfit for the detection of
critical errors as they equally penalize the usage of
synonyms or the mistranslation of a named entity.

As an alternative to n-gram matching, more
recent methods leverage word representations to
capture semantic similarities beyond the lexical
level. As described in Rei et al. (2020), embed-
ding-similarity methods, like YISI-1 (Lo, 2019)
and BERTSCORE (Zhang et al., 2020), create an
alignment between the vector representations of the
words in the hypothesis and the reference and then
compute a score that captures the semantic similar-
ity between both sentences. As noted by Rei et al.
(2020), the main issue with these approaches is
that human judgements consider other information
beyond semantic similarity, limiting the correlation
of these methods with human evaluations.

More recently, learnt methods, such as
BLEURT20 (Sellam et al., 2020) and COMET
(Rei et al., 2020), address this issue by training
to directly maximize correlation with human judge-
ments. Results from the WMT21 Metrics (Freitag
et al., 2021) and the WMT21 Quality Estimation
(Specia et al., 2021) shared tasks suggest that these
methods obtain higher correlations with human
judgements, such as Direct Assessments (Graham
et al., 2013), Human Translation Edit Rate (HTER)
(Snover et al., 2006) or Multi-dimensional Quality
Metrics (MQM) (Lommel et al., 2014).

However, as noted by Ribeiro et al. (2020), rely-
ing on accuracy on held-out sets can lead to an over-
estimation on the performance of NLP models. As
such, Ribeiro et al. (2020) proposes CheckList
that relies on data augmentation techniques to cre-
ate examples that test specific behaviours of NLP
systems in various situations. Within the field of
Machine Translation Evaluation, as a case study
for exploring the sensitivity of learnt metrics to

specific phenomena, Amrhein and Sennrich (2022)
employed Minimum Bayes Risk decoding with
COMET as an utility function to identify good
hypotheses. The authors show that hypotheses cho-
sen with COMET are more likely to have errors in
Named Entities and Numbers when compared to
CHRF, indicating the metric is not sensitive enough
to these errors.

Considering multiple metrics, Freitag et al.
(2021) tested multiple systems on a challenge set
with errors related to negation and sentiment po-
larity and found that most metrics struggle with
these errors. Nonetheless, these examples were
chosen from existing MT outputs, which can lead
to a major human effort, as these errors are not
common.

Regarding reference free evaluation, Kanojia
et al. (2021) define multiple perturbations to test
the robustness of QE systems in detecting specific
errors. The authors show that overall the tested
perturbations are well detected but some, such as
polarity based perturbations, still pose a challenge
to QE systems. However, the list of perturbations
is not exhaustive and most rely on transformations
that do not necessarily preserve the semantics of the
phrases, such as random insertions, substitutions
and deletions.

3 SMAUG Framework

In order to create an example of a critical error,
the proposed framework receives an existing sen-
tence and perturbs it, inducing one of the linguistic
phenomena detailed in the following sections. For
each linguistic phenomenon, the perturbation pro-
cess is separated into two phases: transformation
and validation. The first phase generates a candi-
date sentence by perturbing the original translation.
This phase may not produce a candidate, as some
perturbations are not applicable to all sentences.
The second phase verifies whether the produced
candidate meets a set of desirable criteria, discard-
ing it otherwise.

3.1 Deviation in Named Entities

The first perturbation replaces a named entity in the
original sentence for a different one that is consis-
tent with the original context. The transformation
phase of this perturbation, in Figure 1, starts by de-
tecting all Named Entities in the original sentence
with the Named Entity Recognition (NER) System
in the Stanza library (Qi et al., 2020). If no entity is

470



detected, the generation process stops. Otherwise,
a single one is randomly chosen using an Uniform
Distribution. This entity is replaced by employing
the mT5 pretrained language model (Xue et al.,
2021). For this, the span with the sampled entity
is replaced by a single mask token and the model
is used to generate the candidate sentence. The
decoding strategy for the mT5 model is sampling
considering the top 50 elements. When compared
with other strategies, such as Beam-Search and Top-
P sampling, this approach was empirically found
to give realistic examples at a lower computational
cost. The mT5 model was chosen for three main
reasons: it is multilingual and trained on a massive
set of different languages; it can generate multiple
words from a single mask token, thus not requiring
any special strategy for adding mask tokens in or-
der to avoid only single word entities; and does not
change the remainder of the sentence, avoiding un-
wanted side-effects. Nevertheless, the mT5 model
was found to often generate punctuation symbols
in the beginning of the sentence. In order to in-
crease the credibility of the generated sentences,
these symbols were removed.

John saw a movie with Bob.

John saw a movie with Bob. 

Original

Detect NE

<mask> saw a movie with Bob. Sample and Mask

Mike saw a movie with Bob. Candidate

Figure 1: Example of the transformation phase for the
Deviation in Named Entities phenomenon.

The validation phase for this perturbation encom-
passes several sub-validations. On the one hand, in
order to ensure the mT5 model generates a named
entity, the candidate is only accepted if the above
NER model detects the same number of entities in
both the candidate and the original sentence. On
the other hand, the mT5 model can “guess” the cor-
rect named entity from the remaining context. As
such, the generated sentence can not be equal to the
original. Furthermore, to prevent cases where mT5
produces a small variation of the original entity (for
example by adding an hyphen between two words
or changing the accentuation), candidate sentences
may only be accepted if they have a character-
level minimum edit distance to the original above a

threshold. This procedure can discard many valid
candidates and thus, depending on the desired qual-
ity and quantity of generated sentences, may be
applied or not. Through manual experimentation, a
distance greater or equal to 5 was found to produce
a good balance between ensuring the generated enti-
ties are different without discarding too many valid
candidates. Finally, to increase the overall quality
of the generated sentences, several sub-validations
can be employed. Candidates with words matching
the regular expression of the mT5 masking token
(<extra_id_\d{1,2}>) are discarded, as they
represent cases where the model was unable to
generate content. This can be extended by consid-
ering more generic expressions such as extra_*.
Furthermore, since named entities do not usually
have characters such as ()[]\{\}_, candidates
that have more of these characters than the original
can also be removed. As before, these validations
can remove valid candidates and they should be
adapted to the use case in question.

3.2 Deviation in Numbers

Another perturbation, similar to the deviation in
named entities, replaces a number in the origi-
nal sentence by a different one. The transfor-
mation phase for this phenomenon follows the
same procedure as the deviation in Named Enti-
ties. However, it employs the regular expression
[-+]?\.?(\d+[.,])*\d+ to detect numbers
in the original sentence. From the detected num-
bers, the process to sample a single number and
replace it with another one using the mT5 model
is the one described above, from masking the span
with the chosen number to generating the candidate
sentence.

Regarding the validation phase, it also employs
a set of sub-validations. As before, the candidate
is accepted only if the regular expression to detect
numbers is matched the same number of times in
both the original and candidate sentences, ensuring
a number was generated. Furthermore, the original
and candidate sentences must be different to ensure
the mT5 model did not “guess” the number by the
context. In this perturbation, the minimum edit
distance sub-validation was not applied as small
variations in numbers mostly lead to critical errors
(for example changing the place of a comma within
the number). Finally, candidates matching the
mT5 masking token (<extra_id_\d{1,2}>)
or that introduce one of the following characters
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()[]\{\}_ are also removed to increase the over-
all quality of the generated sentences.

3.3 Deviation in Meaning
Concerning deviations in meaning, a phenomenon
that either introduces or removes a negation in the
original sentence was developed, thus generating a
sentence with the opposite meaning.

In order to negate the original sentences, this
perturbation relies on the POLYJUICE (Wu et al.,
2021) model conditioned for negation. POLYJUICE

can either negate an entire sentence or a span, by
masking the sentence or only the desired text span,
respectively. Initial experiments showed that, when
trying to negate the entire sentence, the model often
forgot some content, specially in longer phrases.
Thus, the developed approach, shown in Figure 2,
masks a verb in the original sentence, as well as any
adjacent auxiliary verbs before it, in order to pro-
duce a small perturbation that changes the meaning
of the sentence. Specifically, the transform used a
Part-of-Speech tagger from the Stanza library (Qi
et al., 2020) in the original sentence and recovered
all spans with 0 or more AUX tags immediately fol-
lowed by a VERB tag. If no spans are detected, the
generation process stops. Otherwise, one span is
sampled using an uniform distribution. Finally, the
conditioned POLYJUICE model produces the can-
didate sentence by negating the original sentence
with a mask over the chosen span.

The validation phase for this phenomenon first
verifies whether the candidate sentence is equal to
the original or if the POLYJUICE model produced
its empty token, meaning it was unable to generate
a sentence. Furthermore, a RoBERTa (Liu et al.,
2019) model trained for Multi-Genre Natural Lan-
guage Inference (MNLI) corpus was used to verify
whether the candidate contradicts the original sen-
tence. This procedure is employed as a proxy for
validating whether the generated sentence is a nega-
tion over the original.

3.4 Insertion of Content
Regarding the generation of Hallucinated content,
a phenomenon to insert new content in the original
sentence was devised.

The transformation phase of this perturbation
employs a similar strategy to the Named Entities
phenomenon. In this case, the masking pattern
randomly inserts mask tokens between adjacent
words in the original sentence. In order to avoid
inserting too much content, a maximum of three

John was seeing a movie with Bob when he left.Original

Detect Verbs

Sample and Mask

Candidate

John was seeing a movie with Bob when he left.

John <mask> a movie with Bob when he left.

John was not seeing a movie with Bob when he left.

Figure 2: Example of the transformation phase for
the Deviation in Meaning phenomenon. Although not
shown in this example, the POLYJUICE model receives
additional information besides the masked sentence to
know the text that was replaced by the mask.

mask tokens are introduced. After this step, the
masked sentence is fed to the mT5 model, which
generates the candidate sentence.

In the validation phase, as in the Named En-
tities phenomenon, candidate sentences that are
equal to the original or that match the reg-
ular expression for the mT5 masking pattern
(<extra_id_\d{1,2}>) are discarded. More-
over, another sub-validation that ensures the min-
imum edit distance at a word-level between the
candidate and original sentences is above a thresh-
old was applied. As there are only insertions, this
sub-validation ensures at least a minimum number
of words are introduced in the candidate sentence.
Furthermore, higher thresholds increase the like-
lihood of the candidate sentences having halluci-
nated content as, with a fixed number of masks
(defined in the masking strategy), the model has to
generate spans of text with multiple words and it
is unlikely that only function words are introduced.
Through manual experimentation, a threshold of
eight words was found to produce a good balance
between ensuring content was added without dis-
carding too many valid candidates.

3.5 Removal of Content

Finally, translations with deletion errors were tack-
led by a phenomenon that removes a span of text
between two punctuation symbols. By considering
text spans between adjacent punctuation symbols,
this method aims to remove a sub-phrase of the
original sentence that likely contains some infor-
mation, thus generating a sentence which is missing
content.

As shown in Figure 3, the transformation phase
of this perturbation starts by detecting all instances
of the symbols .,?! in the original sentence.
Then, a span between two adjacent symbols is ran-
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domly sampled with an Uniform Distribution. The
chosen span, as well as the punctuation symbol
after it, are deleted in order to generate the candi-
date sentence. In order to increase the likelihood
of removing content, the deleted span has a mini-
mum number of words. Furthermore, to increase
the credibility of the generated sentence, three ad-
ditional constraints were enforced. First, the first
text span was not considered, as translation models
are less likely to forget content in the beginning of
the sentence. Second, the deleted span has a max-
imum size, as it is unlikely the translation model
drops a large portion of the sentence. Third, if the
generated candidate does not end in .!? , the final
symbol is replaced by a punctuation mark. If no
span exists in the previous conditions, the trans-
form does not generate a candidate sentence.

This transform does not require any extra valida-
tion, as all verifications are enforced when choos-
ing the text span to delete.

John saw a movie with Bob. He then went for a walk.Original

Detect Punctuation

Sample Span

Candidate

John saw a movie with Bob. He then went for a walk.

John saw a movie with Bob. He then went for a walk.

John saw a movie with Bob.

Figure 3: Example of the transformation phase for the
Removal of Content phenomenon.

4 Challenge Set

The created test set comprises of records in the for-
mat (s, hgood, hbad, r, p), where s is a source sen-
tence, hgood and hbad are “good” and “bad” hypoth-
esis, r is a reference and p is an identifier for the
linguistic phenomenon present in hbad. Three lan-
guage pairs were considered: English-Portuguese,
Spanish-English, Portuguese-English. For each
language pair, a data augmentation approach was
applied to an existing parallel corpus to generate a
the final set of records.

4.1 Parallel Corpora

To create our challenge set we extracted sentences
from OPUS (Tiedemann, 2012) ranging several do-
mains such as News and Euro Parliament. To guar-
antee high-quality references we used Bicleaner
tool (Ramírez-Sánchez et al., 2020) with a thresh-
old of 0.85.

4.2 Augmentation Approach
For each language pair, the source side of the re-
spective corpus was considered as source sentences
and the target as references. First, the source sen-
tences were translated using an OPUS-MT bilin-
gual model (Tiedemann and Thottingal, 2020)2.
Second, all the perturbations were applied to the
references, generating sentences with at most one
critical error. This information was aggregated to
create records in the format (s, hgood, hbad, r, p),
where hgood is the translation of the source sen-
tence, hbad is a perturbation of the reference and
p is the linguistic phenomenon that was induced.
With this approach, multiple records can be created
from an original source and reference pair, one for
each perturbation applied to the reference. In this
case, all the records have the same good hypothesis.

The generated records were then manually fil-
tered and validated to ensure its quality. In this
process, we ensured that both the references and
the good translations were high quality and that the
bad translation contained a critical error. Further-
more, we chose records where hgood was different
from r to force the metrics to attend to the meaning
of the sentence instead of analysing lexical overlap.
In the end, around 50 records for each phenomenon
and language pair were obtained, as shown in Table
1. The Deviation in Named Entities and Meaning
phenomena for the English-Portuguese language
pair have 0 records since the Portuguese language
is not supported by the NER model in the Stanza
library or the POLYJUICE model.

5 Experiments

The developed test set was submitted to the
WMT22 Challenge Set Sub-task and the scores
for several State-of-the-Art metrics were gathered.
The following sections detail the evaluation method
for the tested metrics and the obtained results.

5.1 Evaluation Method
We rely on two evaluation methods to assess the ro-
bustness of metrics to the developed critical errors.

The first is the official evaluation method for the
Shared Task in order to compare the performance
of the several metrics. This method used a Kendall-
Tau like formulation, defined as:

τ =
Concordant−Discordant
Concordant+Discordant

, (1)

2Available at Hugging Face Transformers (Wolf et al.,
2020)
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en-pt
Phenomenon Size
NE 0
NUM 49
MEAN 0
INS 44
DEL 48

pt-en
Phenomenon Size
NE 50
NUM 48
MEAN 50
INS 48
DEL 50

es-en
Phenomenon Size
NE 48
NUM 50
MEAN 48
INS 50
DEL 49

Table 1: Number of selected records for each phenomenon and language pair. The Deviation in Named Entities and
Meaning phenomenon have 0 records for the English-Portuguese language pair as the phenomenon do not support
to-Portuguese language pairs.

where Concordant is the number of times the met-
ric assigned a higher score to the good hypothesis
and Discordant is the number of times the metric
assigned a higher score to the bad hypothesis.

The second method measures the average differ-
ence between the scores assigned to hgood and hbad,
when the score assigned to the hgood is higher. For
a given set S with pairs of scores, this method is
defined as

d =

∑
(sgood,sbad)∈S

I[sgood > sbad](sgood − sbad)
∑

(sgood,sbad)∈S
I[sgood > sbad]

(2)
where sgood and sbad are respectively the scores

for multiple good and bad hypothesis pairs. This
formulation is used as a proxy for the confidence of
the evaluated metric when it assigns a higher score
to the good hypothesis. In order to compare mul-
tiple metrics with different scoring intervals, the
metric scores are normalized before this evaluation
method is applied.

5.2 Baseline Metrics
All the baseline metrics from the Sub-task were
considered. These comprise of several State-of-the-
Art methods: BLEU and CHRF are n-gram based
metrics; BERTSCORE and YiSi-1 are embedding-
similarity methods, and BLEURT20, COMET-20
and COMET-QE are learnt methods.

Figure 4 shows the obtained results for these
metrics. For each phenomenon, results show the
average Kendall-Tau considering all language pairs
and the black bars represent the standard deviation.
We observe that the metrics obtain mostly negative
correlations, indicating they are assigning higher
scores to the bad hypothesis. n-gram based met-
rics show the worst correlations. This result is to
be expected as the perturbations create localized
changes, such as changing a number, which do not

significantly modify the alignments with the refer-
ence. Embedding-similarity based metrics exhibit
a better performance as contextual embeddings can
capture divergence in meaning of the bad hypoth-
esis, but still the obtained correlations are mostly
negative. Pretrained models obtain the best results,
having positive correlations for the phenomenon
Deviation in Meaning, Insertion and Removal of
Content. Nevertheless, they still show poor cor-
relations and struggle with Deviation in Named
Entities and Numbers.
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Figure 4: Average Kendall-Tau for baseline metrics dis-
criminated by phenomenon. The coloured bars indicate
the average score for all language pairs and the black
bars represent the standard deviation.

5.3 Submitted Metrics

The submissions that rely on the reference to
predict a score encompass COMET-22 (Rei
et al., 2022), metricx_xl_DA_20193, MS-COMET-
22 (Kocmi et al., 2022) and UniTE (Wan et al.,
2022).

3Citation was not available.
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As depicted in Figure 5, these metrics obtain
much higher correlations, when compared to the
baselines. The metric metricx_xl_DA_2019 ob-
tains the overall best results, achieving high cor-
relations for all phenomena. Across all metrics,
the Deviation in Numbers phenomenon is the one
with lowest scores. Furthermore, it is also the one
with the highest standard deviation over the several
language pairs, showing the uncertainty of these
metrics when faced with this perturbation.
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Figure 5: Average Kendall-Tau for submitted refer-
ence based metrics discriminated by phenomenon. The
coloured bars indicate the average score for all language
pairs and the black bars represent the standard deviation.

Regarding reference free metrics, submissions
comprise of COMET-Kiwi (Rei et al., 2022),
HWTSC-Teacher-Sim (Liu et al., 2022), HWTSC-
TLM (Liu et al., 2022), KG-BERTScore (Liu
et al., 2022) and MS-COMET-QE-22 (Kocmi et al.,
2022). Here, it is important to note that HWTSC-
TLM is a system that only receives the hypothesis
as input and, as such, it is likely in disadvantage in
this task, as the developed bad hypothesis are only
critical errors in the context of the source sentence.

As shown in Figure 6, several reference free met-
rics obtain very high correlations for all linguistic
phenomena. The main exception is HWTSC-TLM,
which can be attributed to the reasons explained
above. KG-BERTScore obtains the best overall
results, with almost perfect correlations. Further-
more, we observe that reference free metrics outper-
form reference based metrics. This result is further
discussed in the following section.
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Figure 6: Average Kendall-Tau for submitted refer-
ence free metrics discriminated by phenomenon. The
coloured bars indicate the average score for all language
pairs and the black bars represent the standard deviation.

5.4 Reference based vs Reference free

Figure 7 compares the performance of reference
based and reference free metrics across all phenom-
ena. We observe that reference free metrics obtain
higher correlations on all perturbations, which can
be attributed to the adversarial nature of the bad
hypothesis that is specifically generated with a lo-
calized perturbation of the reference.

This result reveals the dependency of reference
based metrics on the reference and, in particular, on
the word overlap of the reference with the hypothe-
sis. Reference-free metrics are forced to attend to
the source and compare its meaning with the hy-
pothesis, as there is little word overlap between the
two sentences. This issue is particularly visible in
the Deviation in Named Entities and Numbers phe-
nomena, where the reference and bad hypothesis
differ on a single named entity or number, respec-
tively.

Comparing the performance of metrics for each
phenomenon, we verify that both groups of metrics
obtain lower correlations for Deviation in Named
Entities and Numbers, indicating these phenomena
are not well detected by current methods. More-
over, the results show large standard deviations,
suggesting an inherent unpredictability on the per-
formance of current methods for all phenomena.

5.5 Penalisation of critical errors

In order to measure whether the metrics penalize
the critical errors when they score the bad hypoth-
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Figure 7: Average Kendall-Tau for submitted reference
based and reference free metrics discriminated by phe-
nomenon. The coloured bars indicate the average score
for all language pairs and the black bars represent the
standard deviation.

esis lower, we compare their Kendall-Tau values
with their average difference between the scores
for good and bad hypothesis, as described in Sec-
tion 5.1.

In Figure 8, we observe that submitted metrics
not only obtain higher correlations but also have a
greater difference between the scores attributed to
the good and bad hypothesis. Moreover, the two
variables follow a linear relationship, obtaining a
Pearson Correlation Coefficient of 0.8924. This
shows the metrics that correctly distinguish the
good from the bad hypothesis also penalize the bad
hypothesis accordingly.
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Figure 8: Average Kendall-Tau and Difference for all
metrics. Each data point represents a single metric and
language pair.

6 Conclusions

Ensuring generated translations do not have critical
errors is a crucial aspect of Machine Translation
Evaluation, as they can pose various risks. In this
work, we propose SMAUG, a multilingual aug-
mentation framework to create translations with
critical errors by inducing several linguistic phe-
nomena in existing translations. We also apply
these perturbations to create a manually verified
test set to assess the robustness of Machine Trans-
lation Evaluation systems to critical errors.

With the created test set, we evaluate multiple
metrics and show promising progress in current
State-of-the-Art methods in both distinguishing
translations with and without critical errors and
significantly penalizing the occurrence of critical
errors in translations. Nevertheless, errors related
to named entities and numbers were found to pose
a challenge for several tested metrics. Addition-
ally, we observe a high variance in the measured
correlations across all the developed phenomena,
suggesting an unpredictability on the performance
of current methods with respect to detecting critical
errors.

One of the challenges in the automatic genera-
tion of translations with critical errors is the vali-
dation of the output. In this work, we relied on a
preliminary automatic validation but also required
a manual verification of the outputs. Future work
will explore high-precision validation techniques,
such as the work of Raunak et al. (2022) that uses
very specific detectors to find examples of critical
errors in translations.

Furthermore, support for multiple languages is a
crucial aspect of this framework. However, several
of the devised perturbations support a limited num-
ber of languages pairs. For example, the Deviation
in Meaning phenomenon only supports to-English
language pairs, as the POLYJUICE model is an En-
glish only model. A future avenue of research will
investigate methods to expanding the number of
languages supported by the linguistic phenomena.
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Abstract

As machine translation (MT) metrics improve
their correlation with human judgement ev-
ery year, it is crucial to understand the limi-
tations of such metrics at the segment level.
Specifically, it is important to investigate met-
ric behaviour when facing accuracy errors
in MT because these can have dangerous
consequences in certain contexts (e.g., legal,
medical). We curate ACES1, a Translation
Accuracy ChallengE Set, consisting of 68 phe-
nomena ranging from simple perturbations at
the word/character level to more complex errors
based on discourse and real-world knowledge.
We use ACES to evaluate a wide range of MT
metrics including the submissions to the WMT
2022 metrics shared task and perform several
analyses leading to general recommendations
for metric developers. We recommend: a) com-
bining metrics with different strengths, b) de-
veloping metrics that give more weight to the
source and less to surface-level overlap with the
reference and c) explicitly modelling additional
language-specific information beyond what is
available via multilingual embeddings.

1 Introduction

Challenge sets have already been created for mea-
suring the success of systems or metrics on a partic-
ular phenomenon of interest for a range of NLP
tasks, including but not limited to: Sentiment
Analysis2 (Li et al., 2017; Mahler et al., 2017;
Staliūnaitė and Bonfil, 2017), Natural Language
Inference (McCoy and Linzen, 2019; Rocchietti
et al., 2021), Question Answering (Ravichander
et al., 2021), Machine Reading Comprehension
(Khashabi et al., 2018), Machine Translation (MT)

∗Equal contribution by all authors.
1Our dataset is available at https://huggingface.co/

datasets/nikitam/ACES and the corresponding evaluation
scripts at https://github.com/EdinburghNLP/ACES

2Submitted to the EMNLP 2017 “Build It Break It” shared
task on sentiment analysis

(King and Falkedal, 1990; Isabelle et al., 2017), and
the more specific task of pronoun translation in MT
(Guillou and Hardmeier, 2016). They are useful to
compare the performance of different systems, or
to identify performance improvement/degradation
between a modified system and a previous iteration.

In this work, we describe the University of
Zurich - University of Edinburgh submission to
the Challenge Sets subtask of the Conference on
Machine Translation (WMT) 2022 Metrics shared
task. Our Translation Accuracy ChallengE Set
(ACES) consists of 36,476 examples covering 146
language pairs and representing challenges from
68 phenomena (see Appendix A.4 for the distri-
bution of examples across language pairs and Ap-
pendix A.5 for the distribution of language pairs
across phenomena). We focus on translation accu-
racy errors and base the phenomena covered in our
challenge set on the Multidimensional Quality Met-
rics (MQM) ontology (Lommel et al., 2014). We
include phenomena ranging from simple perturba-
tions involving the omission/addition of characters
or tokens, to more complex examples involving
mistranslation e.g. ambiguity and hallucinations
in translation, untranslated elements of a sentence,
discourse-level phenomena, and real-world knowl-
edge. We evaluate the metrics submitted to the
WMT 2022 metrics shared task and a range of base-
line metrics on ACES. Additionally, we perform
an extensive analysis, which aims to reveal:

1. The extent to which reference-based and
reference-free metrics take into account the
source sentence context.

2. The extent to which reference-based metrics
rely on surface-level overlap with the refer-
ence.

3. Whether using multilingual embeddings re-
sults in better metrics.
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Figure 1: Diagram of the error categories on which our collection of challenge sets is based. Red means challenge
sets are created automatically, blue means challenge sets are created manually.

Based on our analysis, we recommend that met-
ric developers consider: a) combining metrics with
different strengths, e.g. in the form of ensemble
models, b) paying more attention to the source
and avoiding reliance on surface-overlap with the
reference, and c) explicitly modelling additional
language-specific information beyond what is avail-
able via multilingual embeddings. We also propose
that ACES be used as a benchmark for develop-
ing evaluation metrics for MT to monitor which
error categories can be identified better, and also
whether there are any categories for which metric
performance degrades.

2 Motivation

With the advent of neural networks and especially
Transformer-based architectures (Vaswani et al.,
2017), machine translation outputs have become
more and more fluent (Bentivogli et al., 2016;
Toral and Sánchez-Cartagena, 2017; Castilho et al.,
2017). Fluency errors are also judged less severely
than accuracy errors by human evaluators (Freitag
et al., 2021a) which reflects the fact that accuracy
errors can have dangerous consequences in certain
contexts, for example in the medical and legal do-
mains (Vieira et al., 2021).

For these reasons, we decided to build a chal-
lenge set focused on accuracy errors. Specifically,
we use the hierarchy of errors under the class Ac-
curacy from the MQM ontology to design these
challenge sets. We extend this ontology by two er-

ror classes (translations defying real-world knowl-
edge and translations in the wrong language) and
specify several more specific subclasses such as
discourse-level errors or ordering mismatches. A
full overview of all error classes can be seen in Fig-
ure 1. Our challenge set consists of synthetically
generated adversarial examples, examples from re-
purposed contrastive MT test sets (both marked in
red), and manually annotated examples (marked in
blue). To create the challenge sets, we use test sets
from tasks such as adversarial paraphrase detection,
Natural Language Inference, and contrastive MT
test sets created independently of the WMT shared
tasks to avoid overlap with the data that is used to
train neural evaluation metrics.

Another aspect we focus on is including a broad
range of language pairs in ACES. Whenever pos-
sible we create examples for all language pairs
covered in a source dataset when we use automatic
approaches. For phenomena where we create ex-
amples manually, we also aim to cover at least two
language pairs per phenomenon, but are of course
limited to the languages spoken by the authors.

Finally, we aim to offer a collection of chal-
lenge sets covering both easy and hard phenom-
ena. While it may be of interest to the community
to continuously test on harder examples to check
where machine translation evaluation metrics still
break, we believe that easy challenge sets are just
as important to ensure that metrics do not suddenly
become worse at identifying error types that were
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previously considered “solved”. Therefore, we take
a holistic view when creating ACES and do not
filter out individual examples or exclude challenge
sets based on baseline metric performance or other
factors.

We first discuss previous efforts to create chal-
lenge sets (Section 3), before giving a broad
overview of the datasets used to construct ACES
(Section 4) and discussing the individual challenge
sets in more detail (Section 5). We then introduce
the metrics that participated in the shared task (Sec-
tion 6), present an overview of their performance
on ACES (Section 7) and detailed analyses (Sec-
tion 8) that lead to a set of recommendations for
future metric development (Section 9).

3 Related Work

Challenge sets are used to study a particular phe-
nomenon of interest rather than the general distri-
bution of phenomena in standard test sets (Popović
and Castilho, 2019). The earliest introduction of
challenge sets was by King and Falkedal (1990)
who probed acceptability of machine translations
for different domains. Challenge sets have been
prevalent in different fields within NLP such as
parsing (Rimell et al., 2009), NLI (McCoy and
Linzen, 2019; Rocchietti et al., 2021), question an-
swering (Ravichander et al., 2021), reading compre-
hension (Khashabi et al., 2018) and sentiment anal-
ysis (Li et al., 2017; Mahler et al., 2017; Staliūnaitė
and Bonfil, 2017), to name a few. These challenge
sets provide insights on whether state-of-the-art
models are robust to domain shifts, and whether
they have some understanding of linguistic phe-
nomena like negation/commonsense or they simply
rely on shallow heuristics. Another line of work
under “adversarial datasets” also focuses on creat-
ing examples by perturbing the standard test set to
fool the model (Smith (2012); Jia and Liang (2017),
inter-alia).

Challenge sets for evaluating MT systems have
focused on the translation models’ ability to gener-
ate the correct translation given a phenomenon of
interest. These include word sense ambiguity (Vam-
vas and Sennrich, 2021), gender bias (Rudinger
et al., 2017; Zhao et al., 2018; Stanovsky et al.,
2019), structural divergence (Isabelle et al., 2017)
and discourse level phenomena (Guillou and Hard-
meier, 2016; Emelin and Sennrich, 2021).

While such challenge sets focus on evaluating
specific machine translation models, it is necessary

to identify whether the existing machine transla-
tion evaluation metrics also perform well under
these and related phenomena. Developing chal-
lenge sets for machine translation metric evalua-
tion has gained considerable interest because re-
cently, neural MT evaluation metrics have shown
improved correlation with human judgements (Fre-
itag et al., 2021b; Kocmi et al., 2021). However,
their weaknesses remain relatively unknown and
only a small number of works (e.g. Hanna and Bo-
jar (2021) and Amrhein and Sennrich (2022)) have
proposed systematic analyses to uncover them.

Previous challenge sets for metric evaluation
focused on negation and sentiment polarity (Spe-
cia et al., 2020) and synthetic perturbations such
as antonym replacement, word omission, number
swapping, punctuation removal, etc. (Freitag et al.,
2021b). Avramidis et al. (2018) developed a man-
ually constructed test suite of linguistically mo-
tivated perturbations for identifying weaknesses
in reference-free evaluation. However, these chal-
lenge sets for metrics are only focused on high-
resource language pairs such as English↔German
and English→Chinese. In this work, we repurpose
existing machine translation challenge sets to eval-
uate machine translation evaluation metrics. We
introduce several synthetically generated and man-
ually created challenge sets that broadly focus on
translation accuracy errors for 146 language pairs.

4 Datasets

The majority of the examples in our challenge
set were based on data extracted from three main
datasets: FLORES-101, PAWS-X, and XNLI (with
additional translations from XTREME).

The FLORES-101 evaluation benchmark
(Goyal et al., 2022) consists of 3,001 sentences
extracted from English Wikipedia and translated
into 101 languages by professional translators.
FLORES-200 (NLLB Team et al., 2022) expands
the set of languages in FLORES-101. Originally
intended for multilingual and low-resource MT
evaluation, these datasets have a particular focus
on low-resource languages.

PAWS-X (Yang et al., 2019), a cross-lingual
dataset for paraphrase identification, consists of
pairs of sentences that are labelled as true or ad-
versarial paraphrases. It comprises the Wikipedia
portion of the PAWS corpus (Zhang et al., 2019)
translated from English into six languages: French,
Spanish, German, Chinese, Japanese, and Korean.
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The development and test sets (23,659 sentences to-
tal) were manually translated by professional trans-
lators, and the training set was translated using
NMT systems via Google Cloud Translation3.

XNLI (Conneau et al., 2018) is a multilingual
Natural Language Inference (NLI) dataset consist-
ing of 7,500 premise-hypothesis pairs with their
corresponding inference label. The English ex-
amples were generated by crowd source workers
before being manually translated into 14 languages:
French, Spanish, German, Greek, Bulgarian, Rus-
sian, Turkish, Arabic, Vietnamese, Thai, Chinese,
Hindi, Swahili and Urdu. In addition, we use the
automatic translations from XTREME (Hu et al.,
2020) of the XNLI test set examples from these 14
languages into English.

For the mistranslation phenomena Gender in Oc-
cupation Names and Word Sense Disambiguation,
we leveraged the WinoMT and MuCoW datasets.
WinoMT (Stanovsky et al., 2019), a challenge set
developed for analysing gender bias in MT, con-
tains 3,888 English examples extracted from the
Winogender (Rudinger et al., 2017) and WinoBias
(Zhao et al., 2018) coreference test sets. WinoMT
sentences cast participants into non-stereotypical
gender roles and the dataset has an equal balance
of male and female genders, and of stereotypi-
cal and non-stereotypical gender-role assignments
(e.g., a female nurse vs. a female doctor). Mu-
CoW (Raganato et al., 2019) is a multilingual con-
trastive, word sense disambiguation test suite for
machine translation. The dataset covers 16 lan-
guage pairs with more than 200,000 contrastive
sentence pairs. It was automatically constructed
from word-aligned parallel corpora and BabelNet’s
(Navigli and Ponzetto, 2012) wide-coverage multi-
lingual sense inventory.

For the discourse-level phenomena, we relied
on annotated resources developed specifically to
support work on those phenomena in an MT set-
ting. The WMT 2018 English-German pronoun
translation evaluation test suite (Guillou et al.,
2018) contains 200 examples of the ambiguous En-
glish pronouns it and they extracted from the TED
talks portion of ParCorFull (Lapshinova-Koltunski
et al., 2018). The example sentences were trans-
lated into German by the 16 English-German sys-
tems submitted to WMT 2018, and the (German)
pronoun translations were manually judged by hu-
man annotators as “good/bad”. Wino-X (Emelin

3https://cloud.google.com/translate

and Sennrich, 2021) is a parallel dataset of German,
French, and Russian Winograd schemas, aligned
with their English counterparts. It was developed
for commonsense reasoning and coreference resolu-
tion and used for this purpose to generate examples
for Commonsense Co-Reference Disambiguation.
The Europarl ConcoDisco corpus (Laali and Kos-
seim, 2017) comprises the English-French parallel
texts from Europarl (Koehn, 2005) over which au-
tomatic methods were used to perform PDTB-style
discourse connective annotation. Discourse con-
nectives are labelled with their sense type and are
aligned between the two languages.

5 Challenge Sets

Creating a contrastive challenge set for evaluating
a machine translation evaluation metric requires a
source sentence, a reference translation, and two
translation hypotheses: one which contains an error
or phenomenon of interest (the “incorrect” trans-
lation) and one which is a correct translation in
that respect (the “good” translation). One possi-
ble way to create such challenge sets is to start
with two alternative references (or two identical
copies of the same reference) and insert errors into
one of them to form an incorrect translation while
the uncorrupted version can be used as the good
translation. This limits the full evaluation scope
to translation hypotheses that only contain a single
error. To create a more realistic setup, we also cre-
ate many challenge sets where the good translation
is not free of errors, but it is a better translation
than the incorrect translation. For automatically
created challenge sets, we put measures in place
to ensure that the incorrect translation is indeed a
worse translation than the good translation.

5.1 Addition and Omission

We create a challenge set for addition and omis-
sion errors which are defined in the MQM ontol-
ogy as “target content that includes content not
present in the source” and “errors where content
is missing from the translation that is present in
the source”, respectively. We focus on the level of
constituents and use an implementation by Vamvas
and Sennrich (2022) to create synthetic examples
of addition and omission errors.

To generate examples, we use the concatenated
dev and devtest sets from the FLORES-101 eval-
uation benchmark. We focus on the 46 languages
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for which there exists a stanza parser4 and create
datasets for all languages paired with English plus
ten additional language pairs that we selected ran-
domly. The script by Vamvas and Sennrich (2022)
randomly drops constituents from the source sen-
tence and then generates two translations, one of
the full source and one of the partial source without
the constituent. Here is an example of two resulting
translations:

Full: For example, castle visits in the Loire Valley,
the Rhine Valley, or a cruise to interesting
cities on the Danube or a boat ride along
the Erie Canal.

Partial: For example, castle visits in the Loire Valley,
the Rhine Valley, or a cruise or boat ride
along the Erie Canal.

Only partial translations that can be constructed
by deleting spans from the full translation are con-
sidered. For translation, we use the M2M1005

model with 1.2B parameters (Fan et al., 2021).
We create omission examples by taking the orig-

inal source and reference and using the translation
of the full source as a good translation and the trans-
lation of the partial source as an incorrect transla-
tion. For addition errors, we test if the deleted
span also occurs in the reference. If it doesn’t, we
discard the example, if it does, we delete that span
from the reference and pair this partial reference
with the partial source. Then, the good transla-
tion is the translation of the partial source and the
incorrect translation is the translation of the full
source. For language pairs with a BLEU score
of less than 13 between the good translation and
the reference, we manually check the examples to
ensure the challenge set features appropriate exam-
ples of additions and omissions.

5.2 Mistranslation - Ambiguous Translation

This error type is defined in the MQM ontology as
a case where “an unambiguous source text is trans-
lated ambiguously”. For this error type, we create
challenge sets where MT metrics are presented
with an unambiguous source and an ambiguous ref-
erence. The metrics then need to choose between
two disambiguated translation hypotheses where
only one meaning matches the source sentence.
Therefore, these challenge sets test whether met-
rics consider the source when the reference is not

4https://stanfordnlp.github.io/stanza/
available_models.html

5https://huggingface.co/facebook/m2m100_1.2B

expressive enough to identify the better translation.
Since many reference-based metrics, by design, do
not include the source to compute evaluation scores,
we believe that this presents a challenging test set.

Our method for creating examples is inspired by
Vamvas and Sennrich (2021) who score a transla-
tion against two versions of the source sentence,
one with an added correct disambiguation cue and
one with a wrong disambiguation cue to determine
whether a translation model produced the correct
translation or not. Instead of adding the disam-
biguation cues to the source, we use an unambigu-
ous source and add disambiguation cues to an am-
biguous reference to create two contrasting transla-
tion hypotheses.

5.2.1 Ambiguity - Occupation Names Gender
First, we create a challenge set based on WinoMT,
where the challenge is to choose either a transla-
tion with a “female” or “male” disambiguation cue
based on the source sentence:

SRC (de): Der Manager feuerte die Bäckerin.
REF (en): The manager fired the baker.
✓: The manager fired the female baker.
✗: The manager fired the male baker.

We take all English sentences from the WinoMT
dataset where either a pro-stereotypical or an anti-
stereotypical occupation name occurs. The original
sentences in WinoMT contain additional context
from which the gender in the English sentence can
be inferred. For example, the sentence above ex-
ists in the dataset once as “The manager fired the
baker because she was too rebellious.” from which
it is clear that the baker is female, and once as
“The manager fired the baker because he was up-
set.” from which it is clear that the manager is
male. To make the English sentences ambiguous,
we remove the explanatory subordinate clauses us-
ing a sequence of regular expressions, so that the
sentence becomes “The manager fired the baker.”
where the gender of the manager and the baker are
ambiguous.

We then add the disambiguation cues (“female”
or “male”) to the ambiguous English sentences
and translate them into German, French and Italian
which are all languages that mark gender morpho-
logically on most nouns that refer to a person. For
translation, we use Google Translate6 because we
find that this system produces gendered occupation

6https://translate.google.com/
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names that are largely faithful to the disambigua-
tion cues. Finally, we remove explicit translations
of “female” and “male” from the German, French
or Italian output that would help the disambiguation
beyond morphological cues. We predict the gender
of the occupation names using the scripts provided
by Stanovsky et al. (2019) and only keep transla-
tion pairs where both the translation of the male-
disambiguated source is predicted to be male and
the translation of the female-disambiguated source
is predicted to be female. We then use either the
German, French or Italian translation as the source
sentence, the disambiguated English sentences as
the translation candidates, and the ambiguous En-
glish sentence as the reference, as shown in the
example above.

5.2.2 Ambiguity - Word Sense
Disambiguation

Second, we create a challenge set based on Mu-
CoW, where the challenge is to choose a translation
with a sense-matching disambiguation cue based
on the unambiguous source sentence:

SRC (de): Was heisst “Brühe”?
REF (en): What does “stock” mean?
✓: What does “vegetable stock” mean?
✗: What does “penny stock” mean?

We start with disambiguation cues that were
automatically extracted by Vamvas and Sennrich
(2021) via masked language modelling. Initial
screening of the data shows that some disambigua-
tion cues are not sense-specific enough. Therefore,
we decide to manually check all disambiguation
cues and ensure they are sense-specific and if nec-
essary, replace them with other cues. We generate
three pairs of contrasting disambiguation cues per
example and use the question “What does X mean?”
as a pattern to create the challenge set examples.
We decided against using sentences where ambigu-
ous words occur naturally since it may be possible
to infer the correct sense from the context of the En-
glish sentence rather than by looking at the unam-
biguous source word. We annotate each example
as to whether the correct sense is the more frequent
or less frequent sense using frequency counts pro-
vided by Vamvas and Sennrich (2021). Following
this methodology, we create challenge sets for Ger-
man into English and Russian into English.

5.2.3 Ambiguity - Discourse Connectives

Third, we create a challenge set where the chal-
lenge is to identify a translation with the correct
discourse connective based on the unambiguous
source sentence:

SRC (fr): Aucun test de qualité de l’air n’ait été réal-
isé dans ce bâtiment depuis notre élection.

REF (en): No air quality test has been done on this
particular building since we were elected.

✓: No air quality test has been done on this
particular building from the time we were
elected.

✗: No air quality test has been done on
this particular building because we were
elected.

The English discourse connective “since” can
have either causal or temporal meaning, which is
expressed explicitly in both French and German.
Exploiting this fact, we use the ambiguous “since”
in the reference and create two contrastive transla-
tions one with “because” for causal meaning and
one with “from the time” for temporal meaning.
The correct translation is determined by looking
at the French or German source sentence where
this information is marked explicitly. We use the
discourse connective annotations in the Europarl
ConcoDisco corpus for this challenge set. We use
an automatic-guided search based on the French
discourse connective “depuis” (which has tempo-
ral meaning) to identify candidate translation pairs.
We then manually construct valid contrasting exam-
ples for causal and temporal “since” based on the
English reference. This results in a challenge set
for French-English but we also create a German-
English version of the challenge set, where we
translate the French source sentences into German
and manually correct them.

5.3 Mistranslation - Hallucinations

In this category, we group together several subcat-
egories of mistranslation errors that happen at the
word level and could occur due to hallucination by
an MT model. Such errors are wrong units, wrong
dates or times, wrong numbers or named entities,
as well as hallucinations at the subword level that
result in nonsensical words. We also present a chal-
lenge set of annotated hallucinations in real MT
outputs. These challenge sets test whether the ma-
chine translation evaluation metrics can reliably
identify hallucinations when presented with a cor-
rect alternative translation.
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5.3.1 Hallucination - Date-Time Errors
We create a challenge set for the category of “date-
time errors”. To do this, we collect month names
and their abbreviations for several language pairs.
We then form a good translation by swapping a
month’s name with its abbreviation. The corre-
sponding incorrect translation is generated by swap-
ping the month name with another month name:

SRC (pt): Os manifestantes esperam coletar uma
petição de 1,2 milhão de assinaturas para
apresentar ao Congresso Nacional em
novembro.

REF (en): Protesters hope to collect a petition of 1.2
million signatures to present to the Na-
tional Congress in November.

✓: The protesters expect to collect a petition
of 1.2 million signatures to be submitted
to the National Congress in Nov.

✗: The protesters expect to collect a petition
of 1.2 million signatures to be submitted
to the National Congress in August.

To create this dataset, we use the automatic
translations of the FLORES-101 dataset from Sec-
tion 5.1. We choose all pairs with target languages
for which we know the abbreviations for months7

which results in 70 language pairs. As a measure of
control, we check that the identified month names
in the translation also occur in the reference. If they
do not, we exclude the example.

5.3.2 Hallucination - Numbers and Named
Entities

We create a challenge set for numbers and named
entities where the challenge is to identify trans-
lations with incorrect numbers or named entities.
Following the analysis by Amrhein and Sennrich
(2022), we perform character-level edits (adding,
removing or substituting digits in numbers or char-
acters in named entities) as well as word-level edits
(substituting whole numbers or named entities). In
the 2021 WMT metrics shared task, number differ-
ences were not a big issue for most neural metrics
(Freitag et al., 2021b). However, we believe that
simply changing a number in an alternative trans-
lation and using this as an incorrect translation as
done by Freitag et al. (2021b) is an overly simplis-
tic setup and does not cover the whole translation
hypothesis space.

To address this shortcoming, we propose a three-
level evaluation (see examples below). The first,

7https://web.library.yale.edu/cataloging/
months

easiest level follows Freitag et al. (2021b) and ap-
plies a change to an alternative translation to form
an incorrect translation. The second level uses an
alternative translation that is lexically very similar
to the reference as the good translation and ap-
plies a change to the reference to form an incorrect
translation. The third, and hardest level, uses an
alternative translation that is lexically very differ-
ent from the reference as the good translation and
applies a change to the reference to form an incor-
rect translation. In this way, our challenge set tests
whether number and named entity differences can
still be detected as the surface similarity between
the two translation candidates decreases and the
surface similarity between the incorrect translation
and the reference increases.

SRC (es): Sin embargo, Michael Jackson, Prince
y Madonna fueron influencias para el
álbum.

REF (en): Michael Jackson, Prince and Madonna
were, however, influences on the album.

Level-1 ✓: However, Michael Jackson, Prince, and
Madonna were influences on the album.

Level-1 ✗: However, Michael Jackson, Prince, and
Garza were influences on the album.

Level-2 ✓: However, Michael Jackson, Prince, and
Madonna were influences on the album.

Level-2 ✗: Michael Jackson, Prince and Garza were,
however, influences on the album.

Level-3 ✓: The record was influenced by Madonna,
Prince, and Michael Jackson though.

Level-3 ✗: Michael Jackson, Prince and Garza were,
however, influences on the album.

We use cross-lingual paraphrases from the
PAWS-X dataset as a pool of alternative transla-
tions to create this challenge set. For levels 2
and 3, we measure surface-level similarity with
Levenshtein distance8 at the character-level and
use spacy9 (Honnibal et al., 2020) for identify-
ing named entities of type “person”. To substitute
whole named entities, we make use of the names10

Python library. We only consider language pairs
for which we can use a spacy NER model on the
target side, which results in 42 language pairs.

8https://github.com/life4/textdistance
9https://spacy.io/

10https://github.com/treyhunner/names
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5.3.3 Hallucination - Unit Conversion
We create a challenge set for unit conversions
where the challenge is to identify the correct unit
conversion:

SRC (de): Auf einem 100 Fuß langen Teilabschnitt
läuft Wasser über den Damm.

REF (en): Water is spilling over the levee in a section
100 feet wide.

✓: On a 30.5 metres long section, water
flows over the dam.

✗: On a 100 metres long section, water flows
over the dam.

We take all source sentences, reference sentences
and translations of the FLORES-101 sets from
Section 5.1. We only use the 45 language pairs
into English since the Python packages we use for
unit conversion only work for English. We first
use the Python package quantulum311 to extract
unit mentions from text. We only consider sen-
tences where we identify the same unit mentions
in the translation as in the reference and we re-
move self-disambiguating unit mentions, like “645
miles (1040 km)” from the reference and transla-
tion. Then, we use the Python package pint12 to
convert unit mentions in the translation into differ-
ent units. The permitted conversions are listed in
Appendix A.2.

The sentence with the converted amount and new
unit is considered to be the good translation. Based
on this sentence, we construct two incorrect ver-
sions, one where the amount matches the reference
but the unit is still converted (see example above)
and one where the amount is the converted amount
but the unit is copied from the reference. We pair
each incorrect translation with the good transla-
tion and add both examples to the challenge set
individually. We are aware that this challenge set
lies beyond the ability of current MT systems and
evaluation metrics, however, we believe challenge
sets such as these incentivise future work on such
capabilities which would reduce the workload in
post-editing.

5.3.4 Hallucination - Nonsense Words
We also consider more natural hallucinations at the
subword level. Because recent MT systems are
trained with subwords (Sennrich et al., 2016), an
MT model may choose a wrong subword at a spe-
cific time step such that the resulting token is not a

11https://github.com/nielstron/quantulum3
12https://github.com/hgrecco/pint

known word in the target language. With this chal-
lenge set, we are interested in how well neural MT
evaluation metrics that incorporate subword-level
tokenisation can identify such “nonsense” words.

To create this challenge set, we consider tokens
which are broken down into at least two subwords
and then randomly swap those subwords with other
subwords to create nonsense words. In the example
below, “mass” is broken down as “mas” and “##s”
using subwords and the new word is created by
swapping “mas” with “in” while retaining “##s”,
creating “ins” as the nonsense word. We use the
paraphrases from the PAWS-X dataset as good
translations and randomly swap one subword in
the reference to generate an incorrect translation.
This perturbation is language-agnostic. We use the
multilingual BERT (Devlin et al., 2019) tokeniser
to replace the subwords.

SRC (de): Die Massenproduktion von elektron-
ischen und digitalen Filmen war bis
zum Aufkommen der pornographischen
Videotechnik direkt mit der Mainstream-
Filmindustrie verbunden.

REF (en): The mass production of electronic and
digital films was directly linked to the
mainstream film industry until the emer-
gence of pornographic video technology.

✓: Until the advent of pornographic video
technology , the mass production of elec-
tronic and digital films was tied directly
to the mainstream film industry.

✗: The ins production of electronic and digi-
tal films was directly linked to the main-
stream film industry until the emergence
of pornographic video technology.

5.3.5 Hallucination - Real Data Hallucinations

The previously discussed hallucination challenge
sets were all created automatically. In addition to
these challenge sets, we also create one with real
data hallucinations.

For this dataset, we manually check the trans-
lations of the FLORES-101 dev and devtest sets
for four language pairs: de→en, en→de, fr→de
and en→mr. We consider both cases where a more
frequent, completely wrong word occurs and cases
where the MT model started with the correct sub-
word but then produced random subwords as hal-
lucinations. Translations with a hallucination are
used as incorrect translations. We manually replace
the hallucination part with its correct translation to
form the good translation. If possible, we create
one good translation by copying the corresponding
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token(s) from the reference and one with a synony-
mous token that does not match the reference:

SRC (de): Es wird angenommen, dass dieser
voll gefiederte warmblütige Raubvogel
aufrecht auf zwei Beinen lief und Krallen
wie der Velociraptor hatte.

REF (en): This fully feathered, warm blooded bird of
prey was believed to have walked upright
on two legs with claws like the Velocirap-
tor.

✓ (copy): It is believed that this fully feathered
warm-blooded predator ran upright on two
legs and had claws like the Velociraptor.

✓ (syn.): It is believed that this fully feathered
warm-blooded predator ran upright on two
legs and had talons like the Velociraptor.

✗: It is believed that this fully feathered
warm-blooded predator ran upright on two
legs and had crumbs like the Velociraptor.

5.4 Mistranslation - Lexical Overlap
Language models trained with the masked lan-
guage modelling objective are successful on down-
stream tasks because they model higher-order word
co-occurrence statistics instead of syntactic struc-
tures (Sinha et al., 2021). Although this has been
shown for a monolingual English model, we ex-
pect that multilingual pre-trained models, as well
as MT metrics finetuned on such models, exhibit
such behaviour. Similarly, existing surface-level
metrics rely on n-gram matching between the hy-
pothesis and the reference. Thus, we are interested
in whether MT evaluation metrics can reliably iden-
tify the incorrect translation if it shares a high de-
gree of lexical overlap with the reference:

SRC (fr): En 1924, il a été porte-parole invité de
l’ICM à Toronto, à Oslo en 1932 et à
Zurich en 1936.

REF (en): In 1924 he was an invited spokesman for
the ICM in Toronto, in Oslo in 1932 and
in 1936 in Zurich.

✓: He served as a guest speaker for ICM in
1924, 1932 and 1936 in Toronto, Oslo and
Zurich.

✗: He was an invited spokesman for the ICM
in Toronto in 1924, in Zurich in 1932 and
in Oslo in 1936.

In this example, Oslo and Zurich are swapped in
the “incorrect translation” making the sentence fac-
tually incorrect. To create such examples, we use
the PAWS-X dataset for which adversarial para-
phrase examples were constructed by changing
the word order and/or the syntactic structure while

maintaining a high degree of lexical overlap. We
only consider examples in the development set that
are adversarial paraphrases.

We automatically translate the first example in a
pair (fr→en, en→fr, en→ja) and then manually cor-
rect the translations for en, fr, and ja to obtain 100
“good translations” per language. We use the corre-
sponding first paraphrase as the “reference” and the
second (adversarial) paraphrase as the “incorrect
translation”. We then pair these examples with the
first paraphrase in the remaining six languages in
PAWS-X to obtain the “source”. Following this
methodology we create examples for each target
language (xx→en, xx→fr, xx→ja).

5.5 Mistranslation - Linguistic Modality

Modal auxiliary verbs signal the function of the
main verb that they govern. For example, they
may be used to denote possibility (“could”), per-
mission (“may”), the giving of advice (“should”),
or necessity (“must”). We are interested in whether
MT evaluation metrics can identify when modal
auxiliary verbs are incorrectly translated:

SRC (de): Mit der Einführung dieser Regelung kön-
nte diese Freiheit enden.

REF (en): With this arrangement in place, this free-
dom might end.

✓: With the introduction of this regulation,
this freedom could end.

✗: With the introduction of this regulation,
this freedom will end.

We focus on the English modal auxiliary verbs:
“must” (necessity), and “may”, “might”, “could”
(possibility). We begin by identifying parallel sen-
tences where there is a modal verb in the German
source sentence and one from our list (above) in the
English reference. We then translate the source sen-
tence using Google Translate to obtain the “good”
translation and manually replace the modal verb
with an alternative with the same meaning where
necessary (e.g. “have to” denotes necessity as does
“must”; also “might”, “may” and “could” are con-
sidered equivalent). For the incorrect translation,
we manually substitute the modal verb that con-
veys a different meaning or epistemic strength e.g.
in the example above “might” (possibility) is re-
placed with “will”, which denotes (near) certainty.
Instances of “may” with deontic meaning (e.g. ex-
pressing permission) are excluded from the set,
leaving only those with an epistemic meaning (ex-
pressing probability or prediction). We also con-
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struct examples in which the modal verb is omitted
from the incorrect translation.

We employ two strategies to create examples:
one in which the modal auxiliary is substituted, and
another where it is deleted. We use a combination
of the FLORES-200 and PAWS-X datasets as the
basis of the challenge sets.

5.6 Mistranslation - Overly Literal
Translations

MQM defines this error type as translations that
are overly literal, for example literal translations of
figurative language. Here, we look specifically at
idioms and at real-data errors.

5.6.1 Overly Literal - Idioms

Idioms tend to be translated overly literally
(Dankers et al., 2022) and it is interesting to see if
such translations are also preferred by neural ma-
chine translation evaluation metrics, which likely
have not seen many idioms during finetuning:

SRC (de): Er hat versucht, mir die Spielregeln zu
erklären, aber ich verstand nur Bahnhof.

REF (en): He tried to explain the rules of the game
to me, but I did not understand them.

✓: He tried to explain the rules of the game
to me, but it was all Greek to me.

✗: He tried to explain the rules of the game to
me, but I only understood train station.

We create this challenge set based on the PIE13

parallel corpus of English idiomatic expressions
and literal paraphrases (Zhou et al., 2021). We
manually translate 102 parallel sentences into Ger-
man for which we find a matching idiom that is not
a word-by-word translation of the original English
idiom. Further, we create an overly-literal transla-
tion of the English and German idioms. We use
either the German or English original idiom as the
source sentence. Then, we either use the correct
idiom in the other language as the reference and
the literal paraphrase as the good translation, or
vice versa. The incorrect translation is always the
overly-literal translation of the source idiom.

5.6.2 Overly-Literal - Real Data Errors

We are also interested in overly-literal translations
occurring in real data:

13https://github.com/zhjjn/MWE_PIE

SRC (de): Today, the only insects that cannot fold
back their wings are dragon flies and
mayflies.

REF (en): Heute sind Libellen und Eintagsfliegen
die einzigen Insekten, die ihre Flügel
nicht zurückklappen können.

✓ (copy) : Heute sind die einzigen Insekten, die ihre
Flügel nicht zurückbrechen können, Li-
bellen und Mayflies.

✓ (syn.): Heute sind die einzigen Insekten, die
ihre Flügel nicht zurückbrechen können,
Wasserjungfern und Mayflies.

✗: Heute sind die einzigen Insekten, die
ihre Flügel nicht zurückbrechen können,
Drachenfliegen und Mayflies.

For this challenge set, we manually check MT
translations of the FLORES-101 datasets. If we
find an overly-literal translation, we manually cor-
rect it to form the good translation. We create one
good translation where we copy the part of the ref-
erence that corresponds to the overly-literal part
and, if possible, another good translation where
we use a synonym of the reference token. This
challenge set contains examples for four language
pairs: de→en, en→de, fr→de and en→mr.

5.6.3 Mistranslation - Sentence-Level
Meaning Error

We also consider a special case of sentence-level
semantic error that arises due to the nature of the
task of Natural Language Inference (NLI). The task
of NLI requires identifying where the given hypoth-
esis is an entailment, contradiction, or neutral, with
respect to a given premise. As a result, the premise
and hypothesis have substantial overlap but they
vary in meaning. We are interested in whether MT
evaluation metrics can pick up on such sentence-
level meaning changes:

SRC (el): Ο πραγματικός θόρυβος ελκύει τους
ηλικιωμένους.

REF (en): Real noise appeals to the old. (premise)
✓: The real noise attracts the elderly.
✗: Real noise appeals to the young and ap-

palls the old. (hypothesis)

We use the XNLI dataset to create such exam-
ples. We consider examples where there is at least
0.5 chrF score between the English premise and
hypothesis and where the labels are either contra-
diction or neutral. Examples with an entailment
label are excluded as some examples in the dataset
are paraphrases of each other and there would be
no sentence-level meaning change. We discuss ef-
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fects of entailment in Section 5.12.1. We use either
the premise or the hypothesis as the reference and
an automatic translation as the “good translation”.
The corresponding premise or hypothesis from the
remaining 14 languages is used as the source. The
“incorrect translation” is either the premise if the
reference is the hypothesis, or vice versa.

5.7 Mistranslation - Ordering Mismatch

We also investigate the effects of changing word
order in a way that changes meaning:

SRC (de): Erfülle Dein Zuhause mit einem
köstlichem Kaffee am Morgen und etwas
entspannendem Kamillentee am Abend.

REF (en): Fill your home with a rich coffee in the
morning and some relaxing chamomile
tea at night.

✓: Fill your home with a delicious cof-
fee in the morning and some relaxing
chamomile tea in the evening.

✗: Fill your home with a delicious
chamomile tea in the morning and some
relaxing coffee in the evening.

This challenge set is created manually by chang-
ing translations from the FLORES-101 dataset and
covers de→en, en→de and fr→de.

5.8 Mistranslation - Discourse-level Errors

We introduce a new subclass of mistranslation er-
rors that specifically cover discourse-level phenom-
ena.

5.8.1 Discourse-level Errors - Pronouns
First, we are interested in how MT evaluation met-
rics handle various discourse-level phenomena re-
lated to pronouns. To create these challenge sets,
we use the English-German pronoun translation
evaluation test suite from the WMT 2018 shared
task as the basis for our examples.

We extract all translations (by the English-
German WMT 2018 systems) that were marked
as “correct” by the human annotators, for the fol-
lowing six categories derived from the manually
annotated pronoun function and attribute labels:
pleonastic it, anaphoric subject and non-subject po-
sition it, anaphoric they, singular they, and group
it/they. In the case of anaphoric pronouns, we se-
lect only the inter-sentential examples (i.e. where
the sentence contains both the pronoun and its an-
tecedent). We use the MT translations as the “good”
translations and automatically generate “incorrect”
translations using one of the following strategies:

omission - the translated pronoun is deleted from
the MT output, substitution - the “correct” pronoun
is replaced with an “incorrect” form.

For anaphoric pronouns, when translated from
English into a language with grammatical gender,
such as German, the pronoun translation must a)
agree in number and gender with the translation of
its antecedent, and b) have the correct grammatical
case. We propose “incorrect” translations as those
for which this agreement does not hold:

SRC (en): I have a shopping bag; it is red.
REF (de): Ich habe eine Einkaufstüte; sie ist rot.
✓: Ich habe einen Einkaufsbeutel; er ist rot.
✗ (subs.): Ich habe einen Einkaufsbeutel; sie ist rot.
✗ (omit): Ich habe einen Einkaufsbeutel; Ø ist rot.

Conversely, for pleonastic uses of “it” no agree-
ment is required, instead, the correct translation in
German requires a simple mapping: “it”→ “es”.
An ‘incorrect” translation of pleonastic ‘it’ in Ger-
man could be “er” (masc. sg.) or “sie” (fem. sg.,
or pl.). We create, for each “correct” translation
a set of possible “incorrect” values and automati-
cally select one at random to replace the “correct”
pronoun. For example, in the pleonastic case:

SRC (en): It is raining
REF (de): Es regnet
✓: Es regnet
✗ (subs.): Er regnet
✗ (omit): Ø regnet

5.8.2 Discourse-level Errors - Discourse
Connectives

The English discourse connective “while” is am-
biguous – it may be used with either a Compari-
son.Contrast or Temporal.Synchrony sense – as are
two of its possible translations into French: “tan-
dis que” and “alors que”. We leverage a corpus of
parallel English/French sentences with discourse
connectives marked and annotated for sense, and se-
lect examples with ambiguity in the French source
sentence. We construct the good translation by re-
placing instances of “while” temporal with “as” or
“as long as” and instances of “while” comparison as
“whereas” (ensuring grammaticality is preserved).
For the incorrect translation, we replace the dis-
course connective with one with the alternative
sense of “while” e.g. we use “whereas” (compari-
son) where a temporal sense is required:
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SRC (fr): Dans l’UE-10, elles ont progressé de 8%
tandis que la dette pour l’UE-2 a aug-
menté de 152%.

REF (en): In EU-10 they grew by 8% while the debt
for the EU-2 increased by 152%.

✓: In the EU-10, they increased by 8% when
the debt for the EU-2 increased by 152%.

✗: In the EU-10, they increased by 8%
whereas the debt for the EU-2 increased
by 152%.

We extract our examples from the Europarl Con-
coDisco dataset. We automatically selected the
sentence pairs that contain an instance of “while”
in English and either “alors que” or “tandis que” in
French. Our dataset contains examples for both
the Comparison.Contrast sense and the Tempo-
ral.Synchrony sense.

This challenge set complements the discourse
connectives set in section 5.2.3, in which the En-
glish discourse connective “since” is ambiguous,
but the corresponding connectives in French and
German are not. Note that while in the previous
challenge set the correct translation can be identi-
fied by looking at the source, here metrics can only
rely on context to identify the correct discourse
connective.

5.8.3 Discourse-level Errors - Commonsense
Co-Reference Disambiguation

One of the greater challenges within computational
coreference resolution is referring to the correct an-
tecedent by using commonsense/real-world knowl-
edge. Emelin and Sennrich (2021) construct a
benchmark to test whether multilingual language
models and neural machine translation models can
perform such commonsense coreference resolu-
tions. We are interested in whether such common-
sense coreference resolutions pose a challenge for
MT evaluation metrics:

SRC (en): It took longer to clean the fish tank than
the dog cage because it was dirtier.

REF (de): Das Reinigen des Aquariums dauerte
länger als das des Hundekäfigs, da es
schmutziger war.

✓: Das Reinigen des Aquariums dauerte
länger als das des Hundekäfigs, da das
Aquarium schmutziger war.

✗ : Die Reinigung des Aquariums dauerte
länger als die des Hundekäfigs, da er
schmutziger war.

The English sentences in the Wino-X challenge
set were sampled from the Winograd schema. All
contain the pronoun it and were manually trans-
lated into two contrastive translations for de, fr,

and ru. Based on this data, we create our chal-
lenge sets covering two types of examples: For
the first, the good translation contains the pronoun
referring to the correct antecedent, while the in-
correct translation contains the pronoun referring
to the incorrect antecedent. For the second, the
correct translation translates the instance of it into
the correct disambiguating filler, while the second
translation contains the pronoun referring to the
incorrect antecedent (see example above).

The sentences for en→de were common across
both the challenge sets developed by Emelin and
Sennrich (2021). Hence, the corresponding cor-
rect translations from the two challenge sets were
used as the “good” translation for our evaluation
setup. For en→ru and en→fr, the source contain-
ing the ambiguous pronoun was machine translated
and then verified by human annotators to form the
“good” translation.

5.9 Untranslated

MQM defines this error type as “errors occurring
when a text segment that was intended for transla-
tion is left untranslated in the target content”. In
ACES, we consider both word-level and sentence-
level untranslated content.

5.9.1 Untranslated - Word-Level
For word-level untranslated content, we manually
annotate translations of the FLORES-101 dev and
devtest sets:

SRC (fr): À l’origine, l’émission mettait en scène
des comédiens de doublage amateurs,
originaires de l’est du Texas.

REF (de): Die Sendung hatte ursprünglich lokale
Amateursynchronsprecher aus Ost-
Texas.

✓ (copy): Ursprünglich spielte die Show mit Ama-
teursynchronsprechern aus dem Osten
von Texas.

✓ (syn.): Ursprünglich spielte die Show mit
Amateur-Synchron-Schauspielern aus
dem Osten von Texas.

✗: Ursprünglich spielte die Show mit
Amateur-Doubling-Schauspielern aus
dem Osten von Texas.

We do not only count complete copies as untrans-
lated content but also content that clearly comes
from the source language but was only adapted
to look more like the target language (as in the
example above). If we encounter an untranslated
span, we use this translation as the incorrect trans-
lation and create a good translation by copying the
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correct span from the reference and, if possible, a
second good translation where we use a synonym
for the correct reference span. We manually an-
notate such untranslated errors for en→de, fr→de,
de→en, en→mr.

5.9.2 Untranslated - Full Sentences

In the case of underperforming machine translation
models, sometimes the generated output contains a
majority of the tokens from the source language to
the extent of copying the entire source sentence.14

We create a challenge set by simply copying the en-
tire source sentence as the incorrect translation. We
used a combination of examples from the FLORES-
200, XNLI, and PAWS-X datasets to create these
examples.

We expect that this challenge set is likely to
break embedding-based, reference-free evaluation
because the representation of the source and the
incorrect translation will be the same, thus leading
to a higher score.

5.10 Do Not Translate Errors

This category of errors is defined in MQM as con-
tent in the source that should be copied to the output
in the source language, but was mistakenly trans-
lated into the target language. Common examples
of this error type are company names or slogans.
Here, we manually create a challenge set based on
the PAWS-X data which contains many song titles
that should not be translated:

SRC (en): Dance was one of the inspirations for the
exodus - song “The Toxic Waltz”, from
their 1989 album “Fabulous Disaster”.

REF (de): Dance war eine der Inspirationen für das
Exodus-Lied „The Toxic Waltz“ von
ihrem 1989er Album „Fabulous Disaster“.

✓: Der Tanz war eine der Inspirationen für
den Exodus-Song „The Toxic Waltz“,
von ihrem 1989er Album „Fabulous Dis-
aster”.

✗: Der Tanz war eine der Inspirationen
für den Exodus-Song „Der Toxische
Walzer“, von ihrem 1989er Album „Fab-
ulous Disaster”.

To construct the challenge set, we use one para-
phrase as the good translation and manually trans-
late an English sequence of tokens (e.g. a song
title) into German to form the incorrect translation.

14Through observations of Swahili→ English translation;
unpublished work

5.11 Overtranslation and Undertranslation
Hallucinations from a translation model can of-
ten produce a term which is either more generic
than the source word or more specific. Within
the MQM ontology, the former is referred to as
undertranslation while the latter is referred to as
overtranslation. For example, “car” may be substi-
tuted with “vehicle” (undertranslation) or “BMW”
(overtranslation). To automate the generation of
such errors, we use Wordnet (Miller, 1994). In our
setup a randomly selected noun from the reference
translation is replaced by its corresponding hyper-
nym or hyponym to simulate undertranslation or
overtranslation errors, respectively:

SRC (de): Bob und Ted waren Brüder. Ted ist der
Sohn von John.

REF (en): Bob and Ted were brothers. Ted is John’s
son.

✓: Bob and Ted were brothers, and Ted is
John’s son.

✗: Bob and Ted were brothers. Ted is John ’s
male offspring.

During the implementation, we only replaced
the first sense listed in Wordnet for the correspond-
ing noun, which may not be appropriate in the
given translation. We constructed this challenge set
for hypernyms and hyponyms using the PAWS-X
dataset, only considering the language pairs where
the target language is English.

5.12 Real-world Knowledge
We manually constructed examples each for
en→de and de→en for the first four phenomena
described in this section. We used German-English
examples from XNLI, plus English translations
from XTREME as the basis for our examples. Typi-
cally, we select a single sentence, either the premise
or hypothesis from XNLI, and manipulate the MT
translations.

5.12.1 Real-world Knowledge - Textual
Entailment

We test whether the metrics can recognise textual
entailment – that is, whether a metric can recognise
that the meaning of the source/reference is entailed
by the “good” translation. We construct examples
for which the good translation entails the meaning
of the original sentence (and its reference). For
example, we use the entailment was murdered→
died (i.e. if a person is murdered then they must
have died) to construct the good translation in the
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example above. We construct the incorrect trans-
lation by replacing the entailed predicate (died)
with a related but non-entailed predicate (here was
attacked) – a person may have been murdered with-
out being attacked, i.e. by being poisoned for ex-
ample. When constructing our examples we focus
solely on leveraging directional entailments. We
specifically exclude paraphrases as these are bidi-
rectional.

In cases where an antonymous predicate is
available, we use that predicate in the incorrect
translation. For example, if “lost” is in the
source/reference, we use “won” in the incorrect
translation (lost ̸→ won).

SRC (de): Ein Mann wurde ermordet.
REF (en): A man was murdered.
✓: A man died.
✗ (omit): A man was attacked.

5.12.2 Real-world Knowledge - Hypernyms
and Hyponyms

We consider a translation that contains a hypernym
of a word to be better than one that contains a
hyponym. For example, whilst translating “Hund”
(“dog”) with the broader term “animal” results in
some loss of information, this is preferable over
hallucinating information by using a more specific
term such as “labrador” (i.e. an instance of the
hyponym class “dog”):

SRC (de): ..., dass der Hund meiner Schwester
gehört.

REF (en): ... the dog belonged to my sister.
✓ (hypernym): ... the pet belonged to my sister.
✗ (hyponym): ... the labrador belonged to my

sister.

We used Wordnet and WordRel.com15 (an online
dictionary of words’ relations) to identify hyper-
nyms and hyponyms of nouns within the reference
sentences, and used these as substitutions in the MT
output: hypernyms are used in the “good” transla-
tions and hyponyms in the “incorrect” translations.

5.12.3 Real-world Knowledge - Hypernyms
and Distractors

Similar to the hypernym vs. hyponym examples,
we construct examples in which the good transla-
tion contains a hypernym (here “pet”) of the word

15https://wordrel.com/

in the reference (here “dog”). We form the incor-
rect translation by replacing the original word in the
source/reference with a different member from the
same class (here “cat”; both cats and dogs belong
to the class of pets). For example:

SRC (de): ..., dass der Hund meiner Schwester
gehört.

REF (en): ... the dog belonged to my sister.
✓ (hypernym): ... the pet belonged to my sister.
✗ (hyponym): ... the cat belonged to my sister.

As before, we used Wordnet and WordRel.com
to identify hypernyms of nouns present in the refer-
ence translation.

5.12.4 Real-world Knowledge - Antonyms
Similar to the generation of over- and undertrans-
lations, we also constructed “incorrect” transla-
tions by replacing words with their corresponding
antonyms from Wordnet. We construct challenge
sets for both nouns and verbs.

For nouns, we automatically constructed “incor-
rect” translations by replacing nouns in the refer-
ence with their antonyms. The “good” translation
is not amended. This method may result in noisy re-
placement of nouns with their respective antonyms.

In the case of verbs, we manually constructed a
more challenging set of examples intended to be
used to assess whether the metrics are able to distin-
guish between translations that contain a synonym
versus an antonym of a given word. We replaced
verbs in the reference with a synonym to produce
the good translation, and with their antonym to
produce the incorrect translation:

SRC (de): Ich hasste jedes Stück der Schule!
REF (en): I hated every bit of school!
✓ (synonym): I loathed every bit of school!
✗ (antonym): I loved every bit of school!

For the verbs challenge set, we consider a trans-
lation that contains a synonym of a word in the
reference to be a “good” translation, and one that
contains an antonym of that word to be “incorrect”.
As in the example above the use of synonyms pre-
serves the meaning of the original sentence, and
the antonyms introduce a polar opposite meaning.

5.12.5 Real-world Knowledge - Commonsense
We are also interested in whether evaluation metrics
prefer translations that adhere to common sense.
To test this, we remove explanatory subordinate
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clauses from the sources and references in the
dataset described in Section 5.8.3. This guarantees
that when choosing between the good and incor-
rect translation, the metric cannot infer the correct
answer from looking at the source or the reference:

SRC (en): Die Luft im Haus war kühler als in der
Wohnung.

REF (de): The air in the house was cooler than in the
apartment.

✓: The air in the house was cooler than in the
apartment because the apartment had a
broken air conditioner.

✗: The air in the house was cooler than in
the apartment because the house had a
broken air conditioner.

We remove the explanatory subordinate clauses
using a sequence of regular expressions. We then
pair the shortened source and reference sentences
with the full translation that follows commonsense
as the good translation and the full translation with
the other noun as the incorrect translation.

Since we present several challenge sets in Sec-
tion 5.2 where the good translation can only be
identified by looking at the source sentence, we
also create a version of this challenge set where
the explanatory subordinate clause is only removed
from the reference but not from the source. By
comparing this setup with the results from the setup
described above, we achieve another way of quan-
tifying how much a metric considers the source.

5.13 Wrong Language

Most of the representations obtained from large
multilingual language models do not explicitly use
the language identifier (id) as an input while encod-
ing a sentence. Here, we are interested in checking
whether sentences which have similar meanings
are closer together in the representation space of
neural MT evaluation metrics, irrespective of their
language. We create a challenge set for embedding-
based metrics where the incorrect translation is in
a similar language (same typology/same script) to
the reference (e.g. a Catalan translation may be
used as the incorrect translation if the target lan-
guage is Spanish). Note that this is also a common
error with multilingual machine translation models.
We constructed these examples using the FLORES-
200 dataset where the “good” translation was the
automatic translation and the “incorrect” transla-
tion was the reference from a language similar to
the target language:

SRC (en): Cell comes from the Latin word cella
which means small room.

REF (es): El término célula deriva de la palabra
latina cella, que quiere decir «cuarto pe-
queño».

✓ (es): La célula viene de la palabra latina cella
que significa habitación pequeña.

✗ (ca): Cèl·lula ve de la paraula llatina cella, que
vol dir habitació petita.

We construct two categories within this chal-
lenge set: one where the target language is a higher-
resource language and the incorrect language is a
lower-resource language and vice-versa. The lan-
guages we consider are (src-tgt-sim): en-hi-mr,
en-es-ca, en-cs-pl, fr-mr-hi, en-pl-cs, and en-ca-es.

Note that if we were to compare references for
different languages and not an automatic transla-
tion vs. a reference, this challenge set should be
considered unsolvable for reference-free metrics
if there is no way to specify the desired target lan-
guage. But in this case, we expect reference-free
metrics to prefer the reference that we use as the
“incorrect translation” since there may be transla-
tion errors in the automatically translated “good
translation”.

5.14 Fluency

Although the focus of ACES is on accuracy errors,
we also include a small set of fluency errors for the
punctuation category. Future work might consider
expanding this set to include other categories of
fluency errors.

5.14.1 Punctuation
We assess the effect of deleting and substituting
punctuation characters. We employ four strategies:
1) deleting all punctuation, 2) deleting only quo-
tation marks (i.e. removing indications of quoted
speech), 3) deleting only commas (i.e. removing
clause boundary markers), 4) replacing exclama-
tion points with question marks (i.e. statement→
question).

In strategies 1 and, especially, 3 and 4, some of
the examples may also contain accuracy-related
errors. For example, the meaning of the sen-
tence could be changed in the incorrect translation
if we remove a comma, e.g. in the (in)famous
example “Let’s eat, Grandma!” vs. “Let’s eat
Grandma!”. We use the TED Talks from the WMT
2018 English-German pronoun translation evalua-
tion test suite and apply all deletions and substitu-
tions automatically.

493



6 Evaluation Methodology

We shall now briefly describe the metrics that par-
ticipated in the challenge set shared task. The or-
ganisers of the shared task also provided scores by
a number of baseline metrics, as described below.

6.1 Baseline Metrics

BLEU (Papineni et al., 2002) compares the
token-level n-grams of the hypothesis with the
reference translation and then computes a precision
score weighted by a brevity penalty.

spBLEU (Goyal et al., 2022) is BLEU computed
over text tokenised with a single language-agnostic
SentencePiece subword model. The spBLEU
baselines, F101SPBLEU and F200SPBLEU, are
named according to whether the SentencePiece
tokeniser (Kudo and Richardson, 2018) was trained
using data from the FLORES-101 or FLORES-200
languages.

chrF (Popović, 2017) evaluates translation outputs
based on a character n-gram F-score by computing
overlaps between the hypothesis and the reference.

BERTScore (Zhang et al., 2020) uses contextual
embeddings from pre-trained language models
to compute the similarity between the tokens in
the reference and the generated translation using
cosine similarity. The similarity matrix is used to
compute precision, recall, and F1-scores.

BLEURT20 (Sellam et al., 2020) is a BERT-based
(Devlin et al., 2019) regression model, which is first
trained on scores of automatic metrics/similarity
of pairs of reference sentences and their corrupted
counterparts. It is then fine-tuned on the WMT
human evaluation data to produce a score for a
hypothesis given a reference translation.

COMET-20 (Rei et al., 2020) uses a cross-lingual
encoder (XLM-R (Conneau et al., 2020)) and
pooling operations to obtain sentence-level repre-
sentations of the source, hypothesis, and reference.
These sentence embeddings are combined and then
passed through a feedforward network to produce
a score. COMET is trained on human evaluation
scores of machine translation systems submitted to
WMT until 2020.

COMET-QE was trained similarly to COMET-20

but as this is a reference-free metric, only the
source and the hypothesis are combined to produce
a final score.

YiSi-1 (Lo, 2019) measures the semantic similar-
ity between the hypothesis and the reference by
using cosine similarity scores of multilingual rep-
resentations at the lexical level. It optionally uses a
semantic role labeller to obtain structural similarity.
Finally, a weighted f-score based on structural and
lexical similarity is used for scoring the hypothesis
against the reference.

6.2 Metrics Submitted to WMT 2022

We list the descriptions provided by the authors
of the respective metrics and refer the reader to
the relevant system description papers for further
details.

COMET-22 (Rei et al., 2022) is an ensemble
between a vanilla COMET model trained with
Direct Assessment (DA) scores and a Multitask
model that is trained on regression (MQM
regression) and sequence tagging (OK/BAD
word identification from MQM span annotations).
These models are ensembled together using a
hyperparameter search that weights different
features extracted from these two evaluation
models and combines them into a single score.
The vanilla COMET model is trained with DA’s
ranging 2017 to 2020 while the Multitask model
is trained using DA’s ranging from 2017 to
2020 plus MQM annotations from 2020 (except
for en-ru that uses TedTalk annotations from 2021).

Metric-X is a massive multi-task metric, which
fine tunes large language model checkpoints such
as mT5 on a variety of human feedback data such
as Direct Assessment, MQM, QE, NLI and Sum-
marization Eval. Scaling up the metric is the key
to unlocking quality and makes the model work
in difficult settings such as evaluating without a
reference, evaluating short queries, distinguishing
high quality outputs, and evaluating on other gen-
eration tasks such as summarisation. The four met-
rics are referred to according to the mT5 model
variant used (xl or xxl) and the fine-tuning data:
METRICX_*_DA_2019 only used 2015-19 Di-
rect Assessment data for fine-tuning, whereas MET-
RICX_*_MQM_2020 used a mixture of Direct
Assessment 2015-19 and MQM 2020 data.
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MS-COMET-22 and MS-COMET-QE-22
(Kocmi et al., 2022) are built on top of the COMET
(Rei et al., 2020) architecture. They are trained on
a several times larger set of human judgements
covering 113 languages and covering 15 domains.
Furthermore, the authors propose filtering of
human judgements with potentially low quality.
MS-COMET-22 receives the source, the MT
hypothesis and the human reference as input, while
MS-COMET-QE calculates scores in a quality
estimation fashion with access only to the source
segment and the MT hypothesis.

UniTE (Wan et al., 2022), Unified Translation
Evaluation, is a metric approach where the model-
based metrics can possess the ability of evaluating
translation outputs following all three evaluation
scenarios, i.e. source-only, reference-only, and
source-reference-combined. These are referred to
in this paper as UNITE-SRC, UNITE-REF, and
UNITE respectively.

COMET-Kiwi (Rei et al., 2022) ensembles two
QE models similarly to COMET-22. The first
model follows the classic Predictor-Estimator QE
architecture where MT and source are encoded
together. This model is trained on DAs ranging
2017 to 2019 and then fine-tuned on DAs from
MLQE-PE (the official DA from the QE shared
task). The second model is the same multitask
model used in the COMET-22 submission but
without access to a reference translation. This
means that this model is a multitask model trained
on regression and sequence tagging. Both models
are ensembled together using a hyperparameter
search that weights different features extracted
from these two QE models and combines them
into a single score.

Huawei submitted several metrics to the shared
task (Liu et al., 2022). Cross-QE is a submission
based on the COMET-QE architecture. HWTSC-
Teacher-Sim is a reference-free metric constructed
by fine-tuning the multilingual Sentence BERT
model: paraphrase-multilingual-mpnet-base-v2
(Reimers and Gurevych, 2019). HWTSC-TLM
is a reference-free metric which only uses a
target-side language model and only uses the
system translations as input. KG-BERTScore is a
reference-free machine translation evaluation met-
ric, which incorporates a multilingual knowledge

graph into BERTScore by linearly combining the
results of BERTScore and bilingual named entity
matching.

MATESE metrics (Perrella et al., 2022) leverage
Transformer-based multilingual encoders to
identify error spans in translations, and classify
their severity between MINOR and MAJOR.
The quality score returned for a translation is
computed following the MQM error weighting
introduced in Freitag et al. (2021a). MATESE
is reference-based, while MATESE-QE is its
reference-free version, with the source sentence
used in place of the reference.

MEE (Mukherjee et al., 2020) is an automatic
evaluation metric that leverages the similarity
between embeddings of words in candidate and
reference sentences to assess translation quality,
focusing mainly on adequacy. Unigrams are
matched based on their surface forms, root forms
and meanings which aims to capture lexical, mor-
phological and semantic equivalence. Semantic
evaluation is achieved by using pretrained fasttext
embeddings provided by Facebook to calculate the
word similarity score between the candidate and
reference words. MEE computes an evaluation
score using three modules namely exact match,
root match and synonym match. In each module,
fmean-score is calculated using the harmonic
mean of precision and recall by assigning more
weightage to recall. The final translation score is
obtained by taking average of fmean-scores from
individual modules.

MEE2 and MEE4 (Mukherjee and Shrivastava,
2022b) are improved versions of MEE, focusing
on computing contextual and syntactic equiv-
alences along with lexical, morphological and
semantic similarity. The intent is to capture fluency
and context of the MT outputs along with their
adequacy. Fluency is captured using syntactic
similarity and context is captured using sentence
similarity leveraging sentence embeddings. The
final sentence translation score is the weighted
combination of three similarity scores: a) Syntactic
Similarity achieved by modified BLEU score; b)
Lexical, Morphological and Semantic Similarity:
measured by explicit unigram matching similar to
MEE score; c) Contextual Similarity: Sentence
similarity scores are calculated by leveraging
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sentence embeddings of Language-Agnostic BERT
models.

REUSE (Mukherjee and Shrivastava, 2022a) is
a REference-free UnSupervised quality Estima-
tion Metric. This is a bilingual untrained met-
ric. It estimates the translation quality at chunk-
level and sentence-level. Source and target sen-
tence chunks are retrieved by using a multi-lingual
chunker. Chunk-level similarity is computed by
leveraging BERT contextual word embeddings and
sentence similarity scores are calculated by lever-
aging sentence embeddings of Language-Agnostic
BERT models. The final quality estimation score
is obtained by mean pooling the chunk-level and
sentence-level similarity scores.

6.3 Evaluation of Metrics

For all phenomena in ACES where we generated
more than 1,000 examples, we randomly subsam-
ple 1,000 examples according to the per language
pair distribution to include in the final challenge
set to keep the evaluation of new metrics tractable.

We follow the evaluation of the challenge sets
from the 2021 edition of the WMT metrics shared
task (Freitag et al., 2021b) and report performance
with Kendall’s tau-like correlation. This metric
measures the number of times a metric scores the
good translation above the incorrect translation
(concordant) and equal to or lower than the incor-
rect translation (discordant):

τ =
concordant− discordant
concordant+ discordant

Ties are considered as discordant. Note that a
higher τ indicates a better performance and that
the values can range between -1 and 1.

7 Results

7.1 Phenomena-level Results

We start by providing a broad overview of metric
performance on the different categories of phenom-
ena. We compute Kendall’s tau-like correlation
scores (Section 6) for the 24 metrics which a) pro-
vide segment-level scores and b) provide scores
for all language pairs and directions in ACES. We
first compute the correlation scores for all of the
individual phenomena and then take the average

score over all phenomena in each of the nine top-
level accuracy categories in ACES plus the fluency
category punctuation (see Table 1).

The performance of the metrics varies greatly
and there is no clear winner in terms of perfor-
mance across all of the categories. There is also
a high degree of variation in terms of metric per-
formance when each category is considered in iso-
lation. Whilst each of the categories proves chal-
lenging for at least one metric, some categories are
more challenging than others. For example, look-
ing at the average scores in the last row of Table 1,
and without taking outliers into account, we might
conclude that addition, undertranslation, real-world
knowledge, and wrong language (all with average
Kendall tau-like correlation of < 0.3) present more
of a challenge than the other categories. On the
other hand, for omission and do not translate (with
an average Kendall tau-like correlation of > 0.7)
metric performance is generally rather high.

We also observe variation in terms of the per-
formance of metrics belonging to the baseline,
reference-based, and reference-free groups. For
example, the baseline metrics appear to struggle
more on the overtranslation and undertranslation
categories than the metrics belonging to the other
groups. Reference-based metrics also appear to
perform better overall on the untranslated category
than the reference-free metrics. This makes sense
as a comparison with the reference is likely to high-
light tokens that ought to have been translated.

7.2 ACES Score

To analyse general, high-level, performance trends
of the metrics on the ACES challenge set, we de-
fine a weighted combination of the top-level cate-
gories to derive a single score. We call this score
the “ACES - Score”:

ACES = sum





5 ∗ τaddition

5 ∗ τomission

5 ∗ τmistranslation

1 ∗ τuntranslated

1 ∗ τdo not translate

5 ∗ τovertranslation

5 ∗ τundertranslation

1 ∗ τreal-world knowledge

1 ∗ τwrong language

0.1 ∗ τpunctuation





(1)

The weights correspond to the values under the
MQM framework that Freitag et al. (2021a) rec-
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ommend for major (weight=5), minor (weight=1)
and fluency/punctuation errors (weight=0.1). We
determined that untranslated, do not translate and
wrong language errors should be counted as minor
errors because they can be identified automatically
with language detection tools and should also be
easy to spot in post-editing. We also include real-
world knowledge under minor errors since we do
not expect that current MT evaluation metrics have
any notion of real-world knowledge and we do not
want to punish them too severely if they do not
perform well on this challenge set.

We caution that our weighting for the ACES-
Score is not ideal, as some phenomena within a
broad category might be more difficult than oth-
ers. Still, we believe that an ACES-Score will be
helpful to quickly identify changes in performance
of a metric (e.g. following modifications), prior to
conducting in-depth analyses at the category and
sub-category levels. The ACES-Score ranges from
-29.1 (all phenomena have a correlation of -1) to
29.1 (all phenomena have a correlation of +1).

The ACES-Score results can be seen in the last
column of Table 1. Using the ACES-Score, we can
see at a glance that the majority of the metrics sub-
mitted to the WMT 2022 shared task outperform
the baseline metrics. Interestingly, many reference-
free metrics also perform on par with reference-
based metrics. The best performing metric is a
reference-free metric, namely KG-BERTSCORE,
closely followed by the reference-based metric
METRICX_XL_DA_2019. Perhaps unsurprisingly,
the worst performing metric is BLEU. However,
we caution against making strong claims about
which metrics perform best or worst on the chal-
lenge set based on this score alone. Instead, we
recommend that ACES be used to highlight gen-
eral trends as to what the outstanding issues are for
MT evaluation metrics. More fine-grained analyses
are reported in the following sections.

More generally, work on analysing system per-
formance on ACES prompts the question: What is
the definition of a good metric? One might consider
that a good metric exhibits a strong correlation
with human judgements on whether a translation is
good/bad and assigns sufficiently different scores
to a good vs. an incorrect translation. The latter
criterion would provide evidence of the ability of
the metric to discriminate reliably between good
and incorrect translations, but it may be difficult to
establish what this difference should be, especially

disco. halluci. other

Examples 3698 10270 10489

BLEU -0.048 -0.420 -0.251
f101spBLEU 0.105 -0.206 -0.153
f200spBLEU 0.094 -0.191 -0.149
chrF 0.405 -0.137 0.161
BERTScore 0.567 -0.058 0.362
BLEURT-20 0.695 0.142 0.402
COMET-20 0.641 0.016 0.399
COMET-QE 0.666 0.303 0.208
YiSi-1 0.609 0.019 0.368

COMET-22 0.682 0.461 0.542
metricx_xl_DA_2019 0.701 0.493 0.458
metricx_xl_MQM_2020 0.573 0.677 0.394
metricx_xxl_DA_2019 0.768 0.541 0.463
metricx_xxl_MQM_2020 0.716 0.713 0.392
MS-COMET-22 0.645 0.148 0.360
UniTE 0.746 0.322 0.424
UniTE-ref 0.776 0.396 0.437

COMETKiwi 0.733 0.493 0.637
Cross-QE 0.639 0.395 0.563
HWTSC-Teacher-Sim 0.594 0.296 0.330
HWTSC-TLM 0.756 0.306 0.151
KG-BERTScore 0.593 0.387 0.472
MS-COMET-QE-22 0.626 0.243 0.416
UniTE-src 0.172 0.463 0.551

Average 0.586 0.242 0.331

Table 2: Average Kendall’s tau-like correlation re-
sults for the sub-level categories in mistranslation:
discourse-level, hallucination, and other errors. The
horizontal lines delimit baseline metrics (top), participat-
ing reference-based metrics (middle) and participating
reference-free metrics (bottom). The best result for each
category is denoted by bold text with a green highlight.
Note that Average is an average over averages.

without knowing to what degree the translations are
good/bad without human judgements and because
the scales of different metrics are not comparable.
We leave an analysis of metrics’ confidence on dif-
ferent error types for future work.

7.3 Mistranslation Results

Next, we drill down to the fine-grained categories
of the largest category: mistranslation. We present
metric performance on its sub-level categories in
Table 2. Again, we find that performance on the
different sub-categories is variable, with no clear
winner among the metrics. The results suggest
that hallucination phenomena are generally more
challenging than discourse-level phenomena. Per-
formance on the hallucination sub-category is poor
overall, although it appears to be particularly chal-
lenging for the baseline metrics. We present addi-
tional, more fine-grained, performance analyses for
individual phenomena in Section 8.
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7.4 Language-level Results

trained en-x x-en x-y

Examples 8871 12695 17966 5815

BLEU 0.009 0.225 -0.370 -0.121
f101spBLEU 0.148 0.170 -0.290 -0.022
f200spBLEU 0.140 0.442 -0.286 -0.004
chrF 0.325 0.392 -0.047 0.098
BERTScore 0.479 0.031 0.173 0.125
BLEURT-20 0.541 0.327 0.280 0.257
COMET-20 0.495 0.379 0.278 0.121
COMET-QE 0.356 0.166 0.144 0.168
YiSi-1 0.476 0.520 0.185 0.150

COMET-22 0.599 0.486 0.554 0.355
metricx_xl_DA_2019 0.622 0.458 0.456 0.551
metricx_xl_MQM_2020 0.608 0.567 0.452 0.509
metricx_xxl_DA_2019 0.631 0.431 0.462 0.528
metricx_xxl_MQM_2020 0.605 0.572 0.487 0.502
MS-COMET-22 0.415 0.312 0.323 0.117
UniTE 0.635 0.452 0.406 0.283
UniTE-ref 0.619 0.313 0.413 0.305

COMETKiwi 0.620 0.510 0.694 0.468
Cross-QE 0.598 0.401 0.552 0.291
HWTSC-Teacher-Sim 0.497 0.357 0.352 0.149
HWTSC-TLM 0.538 0.519 0.167 0.194
KG-BERTScore 0.485 0.428 0.507 0.347
MS-COMET-QE-22 0.483 0.488 0.411 0.257
UniTE-src 0.658 0.445 0.582 0.328

MATESE -0.281 n/a n/a n/a
MEE -0.078 n/a n/a n/a
MEE2 0.340 n/a n/a n/a
MEE4 0.391 n/a n/a n/a
REUSE 0.430 n/a n/a n/a
MATESE-QE -0.313 n/a n/a n/a

Table 3: Average Kendall’s tau-like correlation results
grouped by language pairs: trained language pairs (en-
de, en-ru, zh-en), from English (en-x), into English
(x-en) and language pairs not involving English (x-y).
The horizontal lines delimit baseline metrics (top), all
language pairs participating reference-based metrics
(second), all language pairs participating reference-free
metrics (third) and trained language pairs only metrics
(bottom). The best result for each category is denoted
by bold text with a green highlight.

Another possible way to evaluate the metrics’
performance is not to look at the phenomena but
rather at the results on different language pairs.
Since ACES covers 146 language pairs and for
some of these language pairs we only have very
few examples, we decide to split this analysis into
four main categories:

• trained: language pairs for which this year’s
WMT metrics shared task provided training
material (en-de, en-ru and zh-en). This cate-
gory also allows us to analyse the metrics that
only cover these specific language pairs and
not the full set of language pairs in ACES.

• en-x: language pairs where the source lan-
guage is English.

• x-en: language pairs where the target lan-
guage is English.

• x-y: all remaining language pairs, where nei-
ther the source language nor the target lan-
guage are English.

Table 3 shows the results for all metrics. It is
important to note that the results for different lan-
guage pair categories cannot be directly compared
because the examples and covered phenomena cat-
egories are not necessarily the same. However,
we can compare metrics on each of the language
pair groups individually. First, it can again be ob-
served that most submitted metrics outperform the
baseline metrics (first group). This shows that the
field is advancing and MT evaluation metrics have
improved since last year (i.e. 2021).

Interestingly, the six metrics that only scored the
trained language pairs (last group in the table) do
not outperform the other metrics on the “trained”
category. Note, however, that the MEE* metrics
and REUSE are unsupervised metrics and that the
MATESE metrics only used MQM training data.
Therefore, we cannot comment on creating met-
rics that are specific to a language pair would re-
sult in better metrics. In any case, our findings in
Section 8.3.1 suggest that generalisation to unseen
language pairs is generally quite good for the mul-
tilingual metrics which might be a more desirable
property than increased performance on specific
language pairs.

8 Analysis

Aside from high-level evaluations of which metrics
perform best, we are mostly interested in metric-
spanning weaknesses that we can identify using
ACES. This section shows an analysis of three gen-
eral questions that we aim to answer using ACES.

8.1 How sensitive are metrics to the source?

We designed our challenge sets for the type of
ambiguous translation in a way that the correct
translation candidate given an ambiguous reference
can only be identified through the source sentence.
Here, we present a targeted evaluation intended
to provide some insights into how important the
source is for different metrics. We exclude all met-
rics that do not take the source as input, all metrics
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since female male wsd

causal temp. anti. pro. anti. pro. freq. infreq. AVG

Examples 106 106 1000 806 806 1000 471 471 4766

BERTScore -0.434 0.434 -0.614 -0.216 0.208 0.618 0.214 -0.223 -0.001
COMET-20 -0.019 0.302 -0.622 -0.370 0.586 0.772 0.202 -0.079 0.097
COMET-22 -0.415 0.792 0.940 1.000 -0.628 0.374 0.558 0.040 0.333
metricx_xxl_DA_2019 -0.849 0.811 -0.944 -0.228 0.233 0.942 0.032 -0.028 -0.004
metricx_xxl_MQM_2020 -1.000 1.000 -0.878 0.002 -0.007 0.884 0.083 -0.100 -0.002
MS-COMET-22 -0.604 0.623 0.296 0.640 -0.342 0.046 0.316 -0.155 0.102
UniTE 0.038 -0.075 -0.890 -0.213 0.377 0.934 0.270 -0.223 0.027

COMET-QE -1.000 0.981 0.450 0.871 -0.854 -0.382 0.244 -0.210 0.013
COMET-Kiwi -0.245 0.943 0.964 0.978 0.794 0.938 0.648 0.363 0.673
Cross-QE 0.208 0.830 0.976 0.995 -0.337 0.364 0.762 0.355 0.519
HWTSC-Teacher-Sim -0.453 0.717 0.916 0.772 -0.283 -0.360 0.295 0.079 0.210
KG-BERTScore 0.453 0.830 0.638 0.300 0.968 0.682 0.295 0.079 0.531
MS-COMET-QE-22 -0.283 0.792 -0.194 0.320 0.246 0.694 0.465 0.002 0.255
UniTE-src -0.321 0.906 0.976 0.980 0.171 0.736 0.622 0.346 0.552

Table 4: Results on the challenge sets where the good translation can only be identified through the source sentence.
Upper block: reference-based metrics, lower block: reference-free metrics. Best results for each phenomenon and
each group of models is marked in bold and green and the average over all can be seen in the last column.

that do not cover all language pairs, and the smaller
versions of METRIC-X (metricx_xl_DA_2019 and
metricx_xl_MQM_2020) from this analysis. This
leaves us with seven reference-based metrics and
seven reference-free metrics. Table 4 shows the
detailed results of each metric on the considered
phenomena.

The most important finding is that the reference-
free metrics generally perform much better on these
challenge sets than the reference-based metrics.
This indicates that reference-based metrics rely too
much on the reference. Interestingly, most of the
metrics that seem to ignore the source do not ran-
domly guess the correct translation (which is a valid
alternative choice when the correct meaning is not
identified via the source) but rather they strongly
prefer one phenomenon over the other. For ex-
ample, several metrics show a gender bias either
towards female occupation names (female correla-
tions are high, male low) or male occupation names
(vice versa). Likewise, most metrics prefer trans-
lations with frequent senses for the word-sense
disambiguation challenge sets, although the dif-
ference between frequent and infrequent is not as
pronounced as for gender.

Only metrics that look at the source and exhibit
fewer such preferences can perform well on aver-
age on this collection of challenge sets. COMET-
22 performs best out of the reference-based metrics
and COMET-KIWI performs best of all reference-

corr. gain

BERTScore 0.002
COMET-20 0.060
COMET-22 0.190

metricx_xxl_DA_2019 0.012
metricx_xxl_MQM_2020 -0.016

MS-COMET-22 0.050
UniTE 0.042

COMET-QE 0.018
COMET-Kiwi 0.338

Cross-QE 0.292
HWTSC-Teacher-Sim 0.154

KG-BERTScore 0.154
MS-COMET-QE-22 0.196

UniTE-src 0.216

Table 5: Results on the real-world knowledge common-
sense challenge set with reference-based metrics in the
upper block and reference-free metrics in the lower
block. The numbers are computed as the difference
between the correlation with the subordinate clause in
the source and the correlation without the subordinate
clause in the source. Largest gains are bolded.

free metrics. It is noteworthy that there is still a
considerable gap between these two models, sug-
gesting that reference-based models should pay
more attention to the source when a reference is
ambiguous to reach the performance of reference-
free metrics.

This finding is also supported by our real-world
knowledge commonsense challenge set. If we com-
pare the scores on the examples where the subor-
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Level 1 Level 2 Level 3

0.0
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NUMs ref − based

NUMs ref − free

NEs ref − based

NEs ref − free

Figure 2: Decrease in correlation for reference-based
and reference-free metrics on the named entity and num-
ber hallucination challenge sets.

dinate clauses are missing from both the source
and the reference to the ones where they are only
missing from the reference, we can directly see
the effect of disambiguation through the source.
The corresponding correlation gains are shown in
Table 5. All reference-based model correlation
scores improve less than most reference-free cor-
relations when access to the subordinate clause is
given through the source. This highlights again that
reference-based metrics do not give enough weight
to the source sentence.

8.2 How much do metrics rely on
surface-overlap with the reference?

Another question we are interested in is whether
neural reference-based metrics still rely on surface-
level overlap with the reference. For this analy-
sis, we use the dataset we created for hallucinated
named entities and numbers. We take the average
correlation for all reference-based metrics16 and
the average correlation of all reference-free metrics
that cover all languages and plot the decrease in
correlation with increasing surface-level similarity
of the incorrect translation to the reference. The
result can be seen in Figure 2.

We can see that on average reference-based met-
rics have a much steeper decrease in correlation
than the reference-free metrics as the two transla-
tion candidates become more and more lexically
diverse and the surface overlap between the incor-
rect translation and the reference increases. This
indicates a possible weakness of reference-based
metrics: If one translation is lexically similar to the
reference but contains a grave error while others
are correct but share less surface-level overlap with
the reference, the incorrect translation may still be
preferred.

16Excluding surface-level baseline metrics: BLEU, SP-
BLEU and CHRF.

reference-based reference-free

hallucination -0.22 ± 0.16 +0.04 ± 0.07
overly-literal -0.32 ± 0.16 +0.12 ± 0.09
untranslated -0.44 ± 0.18 +0.03 ± 0.24

Table 6: Average correlation difference and standard
deviation between the challenge sets with reference-
copied good translations and the challenge sets with the
synonymous good translations.

We also show that this is the case for the chal-
lenge set where we use an adversarial paraphrase
from PAWS-X that shares a high degree of lexical
overlap with the reference but does not have the
same meaning as an incorrect translation. On aver-
age, the reference-based metrics only reach a corre-
lation of 0.05 ± 0.12 on this challenge set, whereas
the reference-free metrics reach a correlation of
0.23 ± 0.15. This shows that reference-based met-
rics are less robust when the incorrect translation
has high lexical overlap with the reference.

Finally, we can also see a clear effect of surface-
level overlap with the source on three real error
challenge sets where we have different versions of
the good translation: some where the error was cor-
rected with the corresponding correct token from
the reference and some where the error was cor-
rected with a synonym for the correct token from
the reference. As seen in Table 6, the reference-
based metrics show a much larger difference in cor-
relation between the challenge sets with reference-
copied good translations and the challenge sets
with the synonymous good translations, than the
reference-free metrics. For example, for the hallu-
cination test set, reference-free metrics have very
similar average performance when the good trans-
lation contains the same word as the reference vs.
when it contains a synonym (δ of +0.04). On the
other hand, the reference-based metrics lose on
average -0.22 in correlation when the good trans-
lation contains the synonym rather than the same
word as the reference. Based on all of these re-
sults, we conclude that even though state-of-the-art
reference-based MT evaluation metrics are not only
reliant on surface-level overlap anymore, such over-
lap still considerably influences their predictions.

8.3 Do multilingual embeddings help design
better metrics?

As the community moves towards building metrics
that use multilingual encoders, we investigate if
some (un)desirable properties of multilingual em-
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beddings are propagated in these metrics.

8.3.1 Zero-shot Performance
Similar to Kocmi et al. (2021), we investigate
whether there is a difference in the performance
of metrics on our challenge sets when evaluated
on non-WMT language pairs i.e. language pairs
unseen during the training of the metrics. For this
analysis, we include only those metrics for which
the training data consisted of some combination of
WMT human evaluation data. As different metrics
used data from different years, we consider an in-
tersection of languages across these years as WMT
language pairs. For a fair comparison, we consider
a subset of examples from those phenomena where
we have least 100 examples in WMT languages and
100 examples in non-WMT languages, irrespective
of the number of examples per individual language
pair. We report some of the phenomena in Table 7,
where metrics are compared in terms of the correla-
tion difference between the performance on WMT
and non-WMT language pairs (see Appendix A.3
for the original WMT and non-WMT correlation
scores and the list of language pairs).

antonym-
replacement

real-world
knowledge
commonsense

nonsense

Examples 131 201 239

BERTScore 0.032 -0.054 1.469
BLEURT-20 0.032 0.201 0.350
COMET-20 0.048 0.067 1.021
COMET-QE -0.048 -0.188 -0.294
COMET-22 0.080 0.027 0.531

metricx_xl_DA_2019 -0.032 -0.054 0.434
metricx_xl_MQM_2020 -0.048 -0.094 0.182
metricx_xxl_DA_2019 0.016 -0.040 0.266
metricx_xxl_MQM_2020 0.064 -0.067 0.196
UniTE-ref -0.032 0.013 0.238
UniTE 0.080 0.000 0.643

COMETKiwi 0.048 -0.027 0.042
Cross-QE 0.064 0.188 0.182
HWTSC-Teacher-Sim 0.208 0.081 0.350
UniTE-src 0.096 0.161 -0.028

Table 7: Correlation difference between the perfor-
mance of WMT and non-WMT language pairs reported
for trained metrics across a subset of examples. δ= τWMT
- τnon WMT. WMT language pairs consist of a subset of
languages seen during training of the metrics, while
non-WMT language pairs are unseen. Results show that
the metrics are able to generalise to unseen languages.

We draw similar conclusions to Kocmi et al.
(2021), namely that trained metrics are not over-
fitted to the WMT language pairs. We observe
that the median difference of τ between WMT and
non-WMT language pairs is 0.056, indicating a
good generalisation to unseen languages. We still

−1.0 −0.5 0.0 0.5 1.0

Correlation

ref − based ref − free

Figure 3: Correlation of reference-based metrics (blue)
and reference-free metrics (orange) on the sentence-
level untranslated test challenge set.

note that performance on the phenomena is vari-
able when we compare the results on WMT lan-
guage pairs versus non-WMT language pairs. In
the case of real-world knowledge commonsense,
performance is slightly better on the non-WMT
language pairs17, while the opposite is (generally)
true for the antonym replacement and, especially,
the nonsense phenomena for certain metrics. Fur-
ther analysis is required to better understand metric
behaviour on zero-shot language pairs, especially
considering that some of the analysed non-WMT
language pairs have a target language that is also
the target language in at least one of the WMT
language pairs (e.g. English).

8.3.2 Language Dependent Representations
Multilingual models often learn cross-lingual rep-
resentations by abstracting away from language-
specific information (Wu and Dredze, 2019). We
are interested in whether the representations are
still language-dependent in neural MT evaluation
metrics which are trained on such models. For this
analysis, we look at the sentence-level untranslated
text challenge set (see Figure 3) and wrong lan-
guage phenomena (see Table 1). We only consider
metrics that provided scores for examples in all
language pairs.

Figure 3 shows the correlations for all reference-
based and reference-free metrics. Unsurprisingly,
some reference-free metrics struggle considerably
on this challenge set and almost always prefer the
copied source to the real translation. The represen-
tations of the source and the incorrect translation
are identical, leading to a higher surface and em-
bedding similarity, and thus a higher score. We
do, however, find some exceptions to this trend

17We also observe better performance on non-WMT lan-
guage pairs for the similar language high phenomenon.
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- COMET-KIWI and MS-COMET-QE-22 both
have a high correlation on sentence-level untrans-
lated text. This suggests that these metrics could
have learnt language-dependent representations.

Most reference-based metrics have good to al-
most perfect correlation and can identify the copied
source quite easily. As reference-based metrics
tend to ignore the source (see Section 8.2), the
scores are based on the similarity between the ref-
erence and the MT output. In this challenge set,
the similarity between the good-translation and the
reference is likely to be higher than the incorrect-
translation and the reference. The former MT out-
put is in the same language as the reference and
will have more surface level overlap. We believe
the reference here acts as grounding.

However, this grounding property of the refer-
ence is only robust when the source and reference
languages are dissimilar, as is the case with lan-
guage pairs in the sentence-level untranslated text
challenge set. We find that reference-based metrics
struggle on wrong language phenomena (see Table
1) where the setup is similar, but now the incor-
rect translation and the reference are from similar
languages (e.g. one is in Hindi and the other is
in Marathi). Naturally, there will be surface level
overlap between the reference and both the good-
translation and the incorrect-translation. For exam-
ple, both Marathi and Hindi use named entities with
identical surface form, and so these will appear in
the reference and also in both the good-translation
and the incorrect-translation. Thus, the semantic
content drives the similarity scores between the MT
outputs and the references. It is possible that the
human translation in the similar language (labelled
as the incorrect-translation) has a closer represen-
tation to the human reference because in the MT
output (labelled as the good-translation) some se-
mantic information may be lost. We leave further
investigation of this for future work.

While multilingual embeddings help in effective
zero-shot transfer to new languages, some proper-
ties of the multilingual representation space may
need to be altered to suit the task of machine trans-
lation evaluation.

9 Recommendations

Based on the metrics results on ACES and our anal-
ysis, we derived the following list of recommenda-
tions for future MT evaluation metric development:

No metric to rule them all: Both the evalua-

tion on phenomena and on language pair categories
in Section 7 showed that there is no single best-
performing metric. This divergence is likely to
become even larger if we evaluate metrics on dif-
ferent domains. For future work on MT evaluation,
it may be worthwhile thinking about how different
metrics can be combined to make robust decisions
as to which is the best translation. This year’s
submissions to the metrics shared task already sug-
gest that work in that direction is ongoing as some
groups submitted metrics that combined ensem-
bles of models or multiple components (COMET-
22, COMET-KIWI, KG-BERTSCORE, MEE*,
REUSE).

The source matters: Our analysis in Section 8.1
highlighted that many reference-based metrics that
take the source as input do not consider it enough.
Cases where the correct translation can only be
identified through the source are currently better
handled by reference-free metrics. This is a serious
shortcoming of reference-based metrics and should
be addressed in future research, also considering
that many reference-based metrics do not even take
the source as input.

Surface-overlap still prevails: In Section 8.2,
we showed that despite moving beyond only
surface-level comparison to the reference, most
reference-based metric scores are still considerably
influenced by surface-level overlap. We expect fu-
ture metrics to use more lexically diverse references
in their training regime to mitigate this issue.

Multilingual embeddings are not perfect:
Some properties of multilingual representations,
especially, being language-agnostic, can result in
undesirable effects on MT evaluation (Section 8.3).
It could be helpful for future metrics to incorporate
strategies to explicitly model additional language-
specific information.

10 Conclusion

We presented ACES, a translation accuracy chal-
lenge set based on the MQM ontology. ACES con-
sists of 36,476 examples covering 146 language
pairs and representing challenges from 68 phenom-
ena. We used ACES to evaluate the baseline and
submitted metrics from the WMT 2022 metrics
shared task. Our overview of metric performance
at the phenomena and language levels in Section 7
reveals that there is no single best-performing met-
ric. The more fine-grained analyses in Section 8
highlight that 1) many reference-based metrics that
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take the source as input do not consider it enough,
2) most reference-based metric scores are still con-
siderably influenced by surface overlap with the ref-
erence, and 3) the use of multilingual embeddings
can have undesirable effects on MT evaluation.

We recommend that these shortcomings of ex-
isting metrics be addressed in future research, and
that metric developers should consider a) combin-
ing metrics with different strengths, e.g. in the
form of ensemble models, b) developing metrics
that give more weight to the source and less to
surface-level overlap with the reference, and c) in-
corporating strategies to explicitly model additional
language-specific information (rather than simply
relying on multilingual embeddings).

We have made ACES publicly available and
hope that it will provide a useful benchmark for
MT evaluation metric developers in the future.

Limitations

The ACES challenge set exhibits a number of bi-
ases. Firstly, there is greater coverage in terms of
phenomena and number of examples for the en-de
and en-fr language pairs. This is in part due to
the manual effort required to construct examples
for some phenomena, in particular those belonging
to the discourse-level and real-world knowledge
categories. Further, our choice of language pairs is
also limited to the ones available in XLM-R. Sec-
ondly, ACES contains more examples for those
phenomena for which examples could be gener-
ated automatically, compared to those that required
manual construction/filtering. Thirdly, some of the
automatically generated examples require external
libraries which are only available for a few lan-
guages (e.g. Multilingual Wordnet). Fourthly, the
focus of the challenge set is on accuracy errors. We
leave the development of challenge sets for fluency
errors to future work.

As a result of using existing datasets as the basis
for many of the examples, errors present in these
datasets may be propagated through into ACES.
Whilst we acknowledge that this is undesirable, in
our methods for constructing the incorrect trans-
lation we aim to ensure that the quality of the in-
correct translation is always worse than the corre-
sponding good translation.

The results and analyses presented in the paper
exclude those metrics submitted to the WMT 2022
metrics shared task that provide only system-level
outputs. We focus on metrics that provide segment-

level outputs as this enables us to provide a broad
overview of metric performance on different phe-
nomenon categories and to conduct fine-grained
analyses of performance on individual phenomena.
For some of the fine-grained analyses, we apply
additional constraints based on the language pairs
covered by the metrics, or whether the metrics take
the source as input, to address specific questions of
interest. As a result of applying some of these addi-
tional constraints, our investigations tend to focus
more on high and medium-resource languages than
on low-resource languages. We hope to address
this shortcoming in future work.

Ethics Statement

Some examples within the challenge set exhibit
biases, however this is necessary in order to expose
the limitations of existing metrics. Wherever exter-
nal help was required in verifying translations, the
annotators were compensated at a rate of £15/hour.
Our challenge set is based on publicly available
datasets and will be released for future use.
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A Appendix

A.1 Language Codes

Code Language Code Language
af Afrikaans ja Japanese
ar Arabic ko Korean
be Belarusian lt Lithuanian
bg Bulgarian lv Latvian
ca Catalan mr Marathi
cs Czech nl Dutch
da Danish no Norwegian
de German pl Polish
el Greek pt Portuguese
en English ro Romanian
es Spanish ru Russian
et Estonian sk Slovak
fa Persian sl Slovenian
fi Finnish sr Serbian
fr French sv Swedish
ga Irish sw Swahili
gl Galician ta Tamil
he Hebrew th Thai
hi Hindi tr Turkish
hr Croatian uk Ukranian
hu Hungarian ur Urdu
hy Armenian vi Vietnamese
id Indonesian wo Wolof
it Italian zh Chinese

Table 8: ISO 2-Letter language codes of the languages
included in the challenge set

A.2 Permitted Unit Conversions
We allow the following unit conversions for the
challenge set that covers such errors:

Distance:

• miles→ metres

• kilometres→ miles

• kilometres→ metres

• metres→ feet

• metres→ yards

• feet→ metres

• feet→ yards

• centimetres→ inches

• centimetres→ millimetres

• inches→ centimetres
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• inches→ millimetres

• millimetres→ centimetres

• millimetres→ inches

• millimetres→ inches

Speed:

• miles per hour→ kilometres per hour

• kilometres per hour→ miles per hour

• kilometres per second→ miles per second

• miles per second→ kilometres per second

Time:

• hours→ minutes

• minutes→ seconds

• seconds→ minutes

• days→ hours

• months→ weeks

• weeks→ days

Volume:

• barrels→ gallons

• barrels→ litres

• gallons→ barrels

• gallons→ litres

Weight:

• kilograms→ grams

• kilograms→ pounds

• grams→ ounces

• ounces→ grams

Area:

• square kilometres→ square miles

A.3 Zero Shot Performance Scores
Table 9 contains the Kendall tau-like correlation
scores for neural metrics on WMT language pairs
(a subset of those seen during training) and non-
WMT language pairs (unseen), for three phenom-
ena: antonym replacement, real-world knowledge
commonsense, and nonsense. The table contains
the complete set of scores, and complements Ta-
ble 7, which reports only the difference between

the non-WMT and WMT correlation scores. See
Section 8.3.1 on zero-shot performance. We shall
now list the language pairs across the different phe-
nomena:

Antonym Replacement
WMT: de-en
non-WMT: ko-en, es-en

Real-world Knowledge - Commonsense
WMT: de-en, ru-en, en-ru, en-de
non-WMT: ru-de, fr-ru, ru-fr, de-ru

Nonsense
WMT: de-en
non-WMT: fr-ja, ko-ja, en-ko, ko-en

Note that the subset of examples used in this anal-
ysis only consists of mid/high resource language
pairs; investigation into the performance on low-
resource languages is left for future work.

A.4 Distribution of Examples Across
Language Pairs

Table 10 contains the total number of examples
per language pair in the challenge set. As can
be seen in the table, the distribution of examples
is variable across language pairs. The dominant
language pairs are: en-de, de-en, and fr-en.

A.5 Distribution of Language Pairs Across
Phenomena

Table 11 contains the list of language pairs per phe-
nomena in the challenge set. As can be seen in the
table, the distribution of language pairs is variable
across phenomena. Addition and omission have
the highest variety of language pairs. en-de is the
most frequent language pair across all phenomena.
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antonym-replacement real-world knowledge
-commonsense nonsense

WMT Non-
WMT WMT Non-

WMT WMT Non-
WMT

BERTScore -0.376 -0.408 0.007 0.060 0.790 -0.678
BLEURT-20 0.024 -0.008 0.396 0.195 -0.273 -0.622
COMET-20 0.152 0.104 0.087 0.020 0.706 -0.315
COMET-QE 0.616 0.664 0.168 0.356 0.245 0.538

COMET-22 0.744 0.664 0.584 0.557 0.706 0.175
metricx_xl_DA_2019 0.728 0.760 0.570 0.624 0.790 0.357
metricx_xl_MQM_2020 0.888 0.936 0.517 0.611 0.944 0.762
metricx_xxl_DA_2019 0.312 0.296 0.718 0.758 0.706 0.441
metricx_xxl_MQM_2020 0.696 0.632 0.691 0.758 0.930 0.734
UniTE-ref 0.664 0.696 0.409 0.396 0.091 -0.147
UniTE 0.632 0.552 0.409 0.409 0.441 -0.203

COMETKiwi 0.744 0.696 0.745 0.772 0.510 0.469
Cross-QE 0.680 0.616 0.638 0.450 0.720 0.538
HWTSC-Teacher-Sim 0.504 0.296 0.248 0.168 0.930 0.580
UniTE-src 0.776 0.680 0.651 0.490 0.524 0.552

Table 9: Zero-shot performance of neural metrics on three phenomena to measure the ability of metrics to generalise
to new language pairs. WMT language pairs consist of a subset of languages seen during training of the metrics,
while non-WMT language pairs are unseen. Results show that the metrics are able to generalise to unseen languages.
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Abstract
We employ a linguistically motivated chal-
lenge set in order to evaluate the state-of-the-
art machine translation metrics submitted to
the Metrics Shared Task of the 7th Conference
for Machine Translation. The challenge set
includes about 20,000 items extracted from
145 MT systems for two language directions
(German⇔English), covering more than 100
linguistically-motivated phenomena organized
in 14 categories. The best performing met-
rics are YiSi-1, BERTScore and COMET-22
for German-English, and UniTE, UniTE-ref,
MetricX-XL-DA19 and MetricX-XXL-DA19
for English-German. Metrics in both directions
are performing worst when it comes to named-
entities & terminology and particularly mea-
suring units. Particularly in German-English
they are weak at detecting issues at punctuation,
polar questions, relative clauses, dates and id-
ioms. In English-German, they perform worst
at present progressive of transitive verbs, fu-
ture II progressive of intransitive verbs, simple
present perfect of ditransitive verbs and focus
particles.

1 Introduction

Automatic evaluation metrics have been valuable
tools for Machine Translation (MT), allowing quick
evaluation and suggesting directions for further de-
velopment. Many metrics have been suggested
throughout the years, which in turn sets the require-
ment for their evaluation.

Whereas MT metrics so far have been evaluated
based on the agreement of their scores with human
judgments on test sets drawn from broad text, little
research has taken place on investigating whether
the performance of the metrics generalizes enough
when evaluating particular cases. A more target
way of evaluating metrics is using challenge sets.
These are targeted test sets, which have been de-
vised in such a way, so that they benchmark the
ability of metrics to score particular translation phe-
nomena.

In this paper we present empirical results on
the performance of MT metrics, using an exten-
sive challenge set, which includes thousands of test
items aiming to test the performance over more
than one hundred linguistically-motivated phenom-
ena in two language directions. It is based on thou-
sands of manually created test items, their trans-
lation outputs from dozens of MT systems and
semi-automatically evaluated with the supervision
of linguists. Through this analysis we attempt to
reveal strengths and weaknesses of several state-of-
the-art MT metrics considering their background
methods with regards to linguistic aspects.

The rest of the paper is structured as follows.
In Section 2 related work is briefly described. In
Section 3 we describe the construction of the chal-
lenge set and the evaluation protocol. The empiri-
cal results are outlined in Section 4, followed by a
conclusion is Section 5.

2 Related work

The need for a thorough evaluation of Natural Lan-
guage Processing (NLP) tools has lately received
increased interest in the research community, indi-
cated by a big amount of publications, among them
several which received best paper awards (Ribeiro
et al., 2020; Avelino et al., 2022; Campolungo et al.,
2022). When focusing on MT, first efforts were
made in the 1990s with the introduction of test
suites (King and Falkedal, 1990), which were re-
vived after the latest advances in the field (Guillou
and Hardmeier, 2016). To the best of our knowl-
edge, the first efforts relevant to the application
of challenge sets on MT metrics was presented
as an analysis at the Findings paper of the Met-
rics shared task of the 6th Conference of Machine
Translation (Freitag et al., 2021), based on our test
suite (Macketanz et al., 2022) that we are using on
this paper.

Hereby we are advancing as to that preliminary
analysis by (a) increasing the number of challenge
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items to about 9,000-10,000, including outputs
from state-of-the-art systems from 2021, (b) adding
a second language direction (English-German) (c)
presenting a more fine-grained analysis, not only
in the category level but also on the phenomenon
level. This way we can get more confident and
more generalisable empirical conclusions.

3 Method

3.1 Test suite for MT systems
The challenge set is based on our test suite (Macke-
tanz et al., 2022), a manually devised test suite for
MT for German-English and its recently developed
extension for English-German (Macketanz et al.,
2021).1 The German-English side consists of 5,540
German test sentences covering 107 linguistically
motivated phenomena, organized in 14 categories.
The English-German side consists of 4,438 English
test sentences covering 105 phenomena, organized
in 12 categories.

The chosen phenomena do not follow a partic-
ular linguistic theory but their definition has been
inspired by observing linguistic aspects which are
relevant for MT. Each phenomenon is represented
by at least 20 source test sentences to guarantee a
balanced test set. The test suite is used to evaluate
MT systems with regard to their performance on the
phenonmenon-targeting test sentences. The eval-
uation operates semi-automatically and it occurs
based on a set of handwritten rules which contain
regular expressions and fixed string tokens.

The above described test suite has been used to
evaluate the outputs of 116 German-English and
29 English-German systems, submitted at the trans-
lation task of the Conference of Machine Transla-
tion (WMT) for four consequent years (2018-2021;
Macketanz et al., 2018; Avramidis et al., 2019,
2020; Macketanz et al., 2021), including a prelimi-
nary system comparison in 2017 (Burchardt et al.,
2017).

3.2 Challenge set for MT metrics
Here we describe how the aforementioned test suite,
along with inputs from previous shared tasks, is
used in order to evaluate MT metrics. A challenge
set for metrics requires contrastive pairs of cor-
rect/incorrect translations and a reference, whereas
our original test suite contained only source sen-
tences and handwritten rules for the outputs, but

1https://github.com/DFKI-NLP/
mt-testsuite

no reference translations. We therefore use the col-
lected MT outputs to construct the challenge items
for the metrics task in order to create the required
challenge sets as following. For every source sen-
tence of the test suite we create a tuple including:

• one correct translation, to be given to the met-
rics as reference translation; and a pair of

• another correct translation and
• one incorrect translation, the latter two in-

tended to be given to the metrics for scoring.
In order to generate these tuples we perform ran-
dom combinations of correct and wrong transla-
tions from the WMT outputs. Also, before collect-
ing MT outputs, we filter out a part of the original
test items, to be reserved for future evaluations.

The above process resulted into a metrics chal-
lenge set with 10,402 items for German-English
and 8,945 items for English-German. The fact that
the correct and incorrect translations have been
sampled from real MT system outputs of the last
4 years, implies that these challenge set is closer
to the real MT system ecosystem, as compared to
artificially created challenge sets, which may con-
tain translations that would never be produced by
state-of-the-art MT.

3.3 Evaluation of metrics

As explained, the challenge set consists of subsets
of challenge items, where every subset has been
deliberately created so that it can detect the met-
rics’ performance to a particular phenomenon. For
every challenge item, the two MT outputs (cor-
rect/incorrect) are given unlabelled to the metrics
as two separate MT hypotheses so that they score
them against the aforementioned references and/or
the source. The item is considered correctly scored,
if the metric gives to the correct MT output a higher
score than the incorrect MT output. Then the fol-
lowing statistics are calculated:
Accuracy per phenomenon is given by the ra-
tio of all correctly-scored challenge items per phe-
nomenon to the total number of challenge items for
this phenomenon
Accuracy per category is given by the ratio of all
correctly-scored challenge items per category to the
total number of challenge items for this category
(after aggregating the underlying phenomena of
this category in one set).
Significant tests for comparisons: the highest
metric accuracy for every phenomenon is com-
pared to all other metric accuracies of the same
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phenomenon. For this, a one-tailed Z-test with
α = 0.95 is calculated. The metrics whose accura-
cies that are not significantly worse than the highest
accuracy, are considered to share the winning posi-
tion for this phenomenon. The best accuracies per
category are calculated in the same way, after ag-
gregating the challenge items from the underlying
phenomena of every category.
Statistics for metric categories: We repeat this
significance testing in two levels: one for all met-
rics participating in the shared task, and then sep-
arately for each one of the three metric categories
(baseline, QE as a metric, reference-based). The
significantly best systems per phenomenon over
all metrics are indicated with a gray background,
whereas the significantly best systems per metrics
category are indicated with boldface.

Finally, we report three kinds of average scores:
Micro-average treats all items equally, aggregating
all test items to compute the average percentages;
Category macro-average treats all categories
equally by computing the percentages indepen-
dently for each category and then averaging them
Phenomenon macro-average treats all phenom-
ena equally, by computing the percentages indepen-
dently for each phenomenon and then averaging
them

4 Results

The results are displayed in detail in Tables 1 and
3 in the category level and in Tables 4 and 5 for
the phenomenon level, for both language directions
German-English and English-German respectively.

4.1 Metric performance analysis
Here we are observing the statistics with a focus
on comparing the performance of various metrics
on the challenge set.

German-English The best performing met-
rics for German-English are YiSi-1 (Lo, 2019),
BERTScore (Zhang et al., 2020) and COMET-22
(Rei et al., 2022), achieving the significantly high-
est micro- and macro-average accuracies (84-85%),
whereas for the macro-average, UniTE-ref (Wan
et al., 2022) is also included in the first significance
cluster. The two QE based metrics of HWTSC (Liu
et al., 2022) get the lowest accuracies, together with
the baseline BLEU (Papineni et al., 2002).

When considering the systems performance with
regards to particular categories, one can see that
different metrics win in different combinations of

categories. Most reference-based metrics perform
best for at least four categories, apart from MS-
COMET which only gets two.

Interestingly enough, one QE method is outper-
forming reference-based metrics for one category:
HWTSC-TLM is the best performing system for
punctuation. Additionally, UNITE-src performs
equally well to reference-based metrics for coordi-
nation and ellipsis.

English-German UniTE and UniTE-ref are the
winning metrics based on the macro-average (82%),
whereas the former seems to be stronger than the
latter, winning 5 categories. MetricX-XL-DA19
and MetricX-xxl-DA19 are the winning metrics
when it comes to micro-average (78%). Their av-
erage accuracies are close to 80%, which raises
concerns, as this indicates that 2 out of 10 chal-
lenge items in average are not scored correctly in
this language direction, even for the best perform-
ing metrics. The lowest scoring metric is MATESE
(Perrella et al., 2022) in both QE and reference-
based versions, very close to REUSE (Mukherjee
and Shrivastava, 2022).

Also in this direction, QE methods manage to
outperform submitted reference-based metrics in
a few categories. REUSE is the best performing
metric for false friends and UNITE-src for function
words. COMET-kiwi (Rei et al., 2022) and UniTE-
src are on par with reference-aware metrics when
it comes to subordination and Cross-QE (Liu et al.,
2022) for verb tense/aspect/mood.

4.2 Linguistically motivated analysis

Here we are looking closer to the results for partic-
ular phenomena or categories.

4.2.1 German-English
Category-level The overall average accuracy of
all metrics with regards to the linguistically mo-
tivated categories is at 78% for German-English.
This indicates that the metrics failed in average to
predict properly the scores for about one out of four
challenge items that we provided. Even for the best
categories, the accuracy achieved by most metrics
is considerably below the acceptable limit of 90%.

The best performing category in negation with
86% average accuracy. For the rest of the cate-
gories, the average accuracy is less than 82%. The
worst performing categories in average are named
entity and terminology and punctuation with only
67% accuracy, whereas subordination comes next
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Composition 252 88 65 87 85 90 74 70 71 76 77 73 76 59 72 75 83 86 82 83 86 82 87 82 79
Coordination & ellipsis 316 79 74 79 77 80 77 72 73 82 78 69 72 78 69 83 84 75 79 80 79 83 78 78 77
False friends 90 91 64 93 82 92 78 69 70 88 74 81 91 87 63 44 91 88 92 92 90 90 87 88 82
Function word 586 83 72 83 78 81 73 73 73 81 77 78 81 70 68 77 83 81 86 84 84 79 83 82 79
LDD & interrogatives 1014 85 75 84 85 85 76 74 74 84 83 72 75 63 81 82 86 83 84 85 85 82 85 82 80
MWE 610 85 73 85 85 86 78 74 75 76 76 70 60 56 60 73 86 82 89 90 88 88 87 81 78
Named entity & termin. 861 74 62 68 68 76 67 70 71 65 71 64 61 55 61 61 70 66 67 64 67 75 70 72 67
Negation 76 95 84 88 92 91 88 83 80 93 78 62 74 87 88 92 91 88 93 93 89 78 88 83 86
Non-verbal agreement 419 77 74 83 81 76 75 75 76 75 72 66 63 62 78 73 84 77 84 85 83 81 85 83 77
Punctuation 293 74 77 70 68 73 69 78 80 55 75 81 73 62 61 69 68 65 65 61 61 53 59 47 67
Subordination 679 76 69 77 77 74 69 68 69 72 75 59 62 65 64 73 80 77 77 78 75 70 78 74 72
Verb tense/aspect/mood 4697 88 69 85 86 89 77 71 71 81 87 63 71 78 81 82 86 83 85 85 84 79 85 81 80
Verb valency 211 91 70 88 88 90 72 69 69 86 72 64 64 62 75 82 94 88 91 91 91 88 91 88 81

macro avg. 10402 84 71 83 81 84 75 73 74 78 76 69 70 68 72 75 84 80 83 83 82 80 82 79 78
micro avg. 10402 84 70 82 82 85 75 72 72 78 81 66 70 70 75 78 84 80 83 82 82 79 82 79 78

Table 1: Accuracy of the metrics (%) with regards to the 14 linguistically motivated categories for German-English.
The significantly best systems per phenomenon over all metrics are indicated with a gray background, whereas the
significantly best systems per metrics category are indicated with boldface.

with 72%. The lowest performing score for all sys-
tems and all categories is achieved by MetricX-XL-
MQM20, which can only score correctly almost
half of the punctuation challenge items (53%).

Phenomenon-level The best accuracy for this
language pair is achieved for Transitive, future I
where the metrics get an accuracy of 95%-100%.
Another 13 phenomena score more than 85%. Four
of them also refer to the future tenses of the transi-
tive, in particular future I and future II in both the
plain and their subjunctive form. Additionally, one
can see good performance in Intransitive-present,
Modal-future I, pied-piping, comma, negation, pas-
sive voice, and the negated modal for future I
subjunctive II.

The lowest accuracy of all metrics in average
is given for polar questions (61%), followed by
quotation marks (63%). An average accuracy of
less than 65% is given for some more phenomena,
such as the ones including measuring units, relative
clauses, dates and idioms.

The lowest phenomenon accuracies are given
by QE methods, and particularly when it comes
to idioms, where HWTSC-TLM achieves the low-
est performance of 17%. This is explainable by
the fact that idioms require resolving rather rare
semantic relations between the source and the MT

output (used for QE), but can be easily resolved
with lexical matching on the reference (used by
reference-aware metrics). Idioms have shown to be
a particular challenge for MT systems as well.

4.2.2 English-German
Category-level The overall average accuracy of
all metrics (Table 3) with regards to the linguisti-
cally motivated categories is at 69-72% for English-
German. This is 6% lower than the respective aver-
age accuracy for German-English, indicating that
the metrics for this MT language direction perform
worse.

The category where all metrics perform best
in average is negation (86%), whereas the one
where they perform worse is Named entity & ter-
minology (59%). The rest of the categories lie in
rather mediocre accuracies, between 66% and 82%.
The performance of metrics in English-German is
worse than German-English in all categories apart
from function words, punctuation and subordina-
tion, although the comparisons between the lan-
guage directions have to be taken with a grain of
salt, due to the fact that the two directions consist
of different items.

Phenomenon-level The English-German phe-
nomena, where metrics perform best in average are
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Figure 1: Plot of the accuracy of all phenomena per
language direction. The accuracy percentage is shown
on the vertical axis and the phenomena on the horizontal

the Contact clause, Negation, Ditransitive - present
progressive and question tags, achieving more than
85% of accuracy. The most difficult phenomena
to score are the Intransitive - future II progressive
and the Transitive - present progressive, as they
achieve less then 40% average accuracy, followed
by Ditransitive - present perfect simple, measuring
units and focus particles.

Interestingly enough, in this language direction
there are metrics which scored zero accuracies in
several phenomena, something that we didn’t see
in the opposite language direction.2 These zero
accuracies are mostly relevant to rare verb-related
phenomena (e.g. intransitive constructions). A
comparative plot of the accuracies for all phenom-
ena for both language directions can be seen in
Figure 1. It is very clear that English-German lacks
considerably, with its lowest scored phenomena
having an accuracy at half of the lower-scored phe-
nomena of the opposite direction.

Finally, some examples of incorrectly scored
challenge items from the phenomena that have the
lowest accuracies can be seen in Table 2. Whereas
is hard to know why each metric score in a wrong
way, in many cases we may assume that it was
misled by a part of the sentence which seemed
distant to reference (or the source for QE), but it
was correct.

5 Conclusion

In this paper we analyzed the performance of sev-
eral state-of-the-art metrics with regards to particu-
lar linguistically-motivated phenomena for two lan-
guage pairs, German-English and English-German.
The analysis gave a multitude of observations, re-

2again this should take into consideration that English-
German set has a participation of less systems and therefore
less diversity than German-English

garding both the performance of the metrics and
the corresponding linguistic observations.

In an effort to draw conclusions after averag-
ing accuracies, we conclude that the best perform-
ing metrics are YiSi-1, BERTScore and COMET-
22 for German-English, and UniTE, UniTE-ref,
MetricX-XL-DA19 and MetricX-xxl-DA19 for
English-German.

The metrics are particularly good at scoring the
German-English verb tense Transitive, future I and
the category of negation. Concerning English-
German, the best performing phenomena are con-
tact clause and negation.

On the contrary, metrics in both directions are
performing worst when it comes to named-entities
& terminology. Particularly in German-English
they are weak at detecting issues at punctuation
(quotation marks), polar questions, measuring
units, relative clauses, dates and idioms. In English-
German at present progressive of transitive verbs,
future II progressive of intransitive verbs, present
perfect of ditransitive verbs, measuring units and
focus particles.

We believe that further investigation on particu-
lar phenomena or categories can provide explana-
tions for the relevant observations and possibly lead
to suggestions for technical improvements in the
development of the metrics in the future. For exam-
ple, many observations are also relevant to whether
the metrics take into account for scoring the ref-
erence translation or the source (QE as a metric).
Additionally, having seen several low accuracies
regarding punctuation, we note that this issue is
often handled via pre-processing scripts. The low
percentages of scoring punctuation issues, show
that the metrics should improve their engineering
on that direction.
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Appendix

German-English

idiom src Ich glaube, Tim hat ein Auge auf Lena geworfen.
ref I think Tim has a crush on Lena.
✓ I think Tim has cast an eye on Lena.
✗ I think Tim has an eye on Lena.

polar question src Willst du mit mir ins Kino gehen?
ref Do you want to go to a movie with me?
✓ Do you want to go with me into the cinema?
✗ You want to go to the cinema with me?

measuring unit src Ein ausgewachsener Afrikanischer Elefant wiegt etwa sechs Tonnen.
ref An adult African elephant weighs about six tons.
✓ A fully grown African elephant weighs about six tons.
✗ An adult African elephant weighs about six tonnes.

comma src Er fragte sich, welches Auto er kaufen sollte.
ref He wondered what car to buy.
✓ He wondered which car to buy.
✗ He asked himself, which car he should buy.

quotation marks src "Wann sollen wir uns treffen?", wollten sie wissen.
ref "When are we supposed to meet?" they asked.
✓ "When shall we meet?" they wanted to know.
✗ When are we going to meet? They wanted to know.

English-German

Intransitive . src They will have been running.
future II progr ref Sie werden gelaufen sein.

✓ Sie werden gerannt sein.
✗ Sie würden gelaufen sein.

Focus particle src He even drank four bottles of wine.
ref Er habe sogar vier Flaschen Wein getrunken.
✓ Er trank sogar vier Flaschen Wein.
✗ Er trank noch vier Flaschen Wein.

Transitive src They are playing the piano.
present progr. ref Sie spielen auf dem Klavier.

✓ Sie spielen Klavier.
✗ Sie spielen das Klavier.

measuring unit src Potatoes are sold in hundredweights.
ref Kartoffeln werden in Zentnergewichten verkauft.
✓ Kartoffeln werden in Zentner verkauft.
✗ Kartoffeln werden in Hundertgewichten verkauft.

Table 2: Indicative examples of incorrectly scored challenge items for the phenomena that have the lowest accuracies
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Exploring Robustness of Machine Translation Metrics: A Study of
Twenty-Eight Automatic Metrics in the WMT22 Metric Task
Xiaoyu Chen, Daimeng Wei, Hengchao Shang, Zongyao Li, Zhanglin Wu,

Zhengzhe Yu, Ting Zhu, Mengli Zhu, Ning Xie, Lizhi Lei, Shimin Tao,
Hao Yang, Ying Qin
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Abstract
Contextual word embeddings extracted from
pre-trained models have become the basis for
many downstream NLP tasks, including ma-
chine translation automatic evaluations. Met-
rics that leverage embeddings claim better cap-
ture of synonyms and changes in word orders,
and thus better correlation with human rat-
ings than surface-form matching metrics (e.g.
BLEU). However, few studies have been done
to examine robustness of these metrics. This
report uses a challenge set to uncover the brit-
tleness of reference-based and reference-free
metrics. Our challenge set1 aims at examin-
ing metrics’ capability to correlate synonyms
in different areas and to discern catastrophic
errors at both word- and sentence-levels. The
results show that although embedding-based
metrics perform relatively well on discerning
sentence-level negation/affirmation errors, their
performances on relating synonyms are poor.
In addition, we find that some metrics are sus-
ceptible to text styles so their generalizability
compromised.

1 Introduction

Automatic metrics compare machine-translated
results with human-translated references or/and
sources, and give scores accordingly. Such met-
rics offer a quick and inexpensive approach for re-
searchers to evaluate model performances. Among
these metrics, BLEU (Papineni et al., 2002) has
dominated the area for twenty years since its birth
in 2002. However, its limitations are obvious: (1) it
weighs each word equally but in fact the entropy of
each word varies; (2) it only counts n-grams that are
exact in the reference and thus synonyms and elab-
orations are wrongly punished (Smith et al., 2016).
Consequently, the correlation between BLEU and
human evaluation is relatively low, which some-
times puzzles researchers.

1We open-source our challenge set
at: https://github.com/HwTsc/
Challenge-Set-for-MT-Metrics

In recent years, embedding-based approaches
have been introduced to design new automatic met-
rics. These metrics, e.g. BERTScore (Zhang et al.,
2019), COMET (Rei et al., 2020a), and BLEURT
(Sellam et al., 2020a), claim better ability to cap-
ture synonyms and changes in word order, and
thus better performance than BLEU. Apart from
ref-based metrics, researches on quality estimation
(QE) have been rising, as QE is an cheaper and
more convenient approach considering no need of
human-translated references.

In the WMT metric task, correlation with human
annotators is the major indicator to evaluate met-
ric performance (Freitag et al., 2021). However,
in addition to that, a good metric should meet the
following requirements (Banerjee and Lavie, 2005;
Koehn, 2009): (1) sensitivity to nuances in quality
among systems or outputs of the same system in
different stages of its development so it can be used
to direct system performance optimization; (2) con-
sistency and reliability of scores; (3) usability in a
great range of fields; (4) speed; (5) low cost. We
believe the first three aforementioned requirements
are crucial for judging metric performance as well.
So we build a Zh→En challenge set to evaluate
metrics’ capability in these regards. Section 2 of-
fers a brief description of metrics to be evaluated.
Details of our challenge set are described in Sec-
tion 3. Section 4 presents experiment results and
Section 5 discusses our findings.

2 Metrics To Be Evaluated

2.1 Surface-Form Matching Metrics

Reference-based metrics measure the similarity be-
tween MT outputs and human translations, and
believe that high similarity means high quality and
vice versa. In the pre-neural era, metrics calcu-
late the similarity based on surface forms and word
stems. Two examples that fall into this category and
used in this task as baselines are BLEU (Papineni
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et al., 2002) and chrF (Popović, 2015).

BLEU BLEU computes precision by comparing
the n-gram of hypothesis with n-gram of the refer-
ence, coupled with a brevity penalty. In this task,
sentence-level BLEU (SENT-BLEU) is used.

chrF chrF computes F1 score based on character-
level n-grams instead of word-level n-grams.

2.2 Embedding-based Metrics

In the neural era, by leveraging pre-trained word
embeddings, new metrics claim better understand-
ing of sentence meanings and thus fare better in
evaluation tasks. Some of the well-known metrics
that fall into this category and used as baselines in
this task include:

BERTScore BERTScore (Zhang et al., 2019)
outputs F1 score by calculating token similarity
based on contextual embeddings extracted from
BERT.

BLEURT-20 BLEURT (Sellam et al., 2020a) is
a BERT-based regression model trained on rating
data. BLEURT-20 (Sellam et al., 2020b), which is
fine-tuned based on Rebalanced mBERT is used in
this task.

COMET-20 COMET (Rei et al., 2020a) employs
the estimator-predictor architecture and leverages
both source and reference information to assess
translation quality. COMET-20 (Rei et al., 2020b),
which utilizes XLM-RoBERTa, is used in this task.

Yisi-1 Yisi (Lo, 2019) measures semantic similar-
ity between hypothesis and references. Yisi-1 (Lo,
2020) leverages contextual embeddings extracted
from language models to compute the idf-weighted
lexical semantic similarities.

2.3 QE as Metrics

Quality estimation approach evaluates machine
translation quality totally without human interven-
tion. It scores model outputs by leveraging informa-
tion in source text. Among the seven baseline met-
rics, COMET-QE (Rei et al., 2021) is a reference-
free version of COMET and thus falls into the QE
category.

Table 1 is a summary of the seven baselines.

2.4 Participants in WMT22 Metric Task

The challenge set is also used to measure perfor-
mances of metrics submitted to the WMT22 Metric

Metrics Surface CWE Source Ref Rating
BLEU Yes No No Yes No
chrF Yes No No Yes No
BERTScore No Yes No Yes No
BLEURT-20 No Yes No Yes Yes
COMET-20 No Yes Yes Yes Yes
COMET-QE No Yes Yes No Yes
YISI-1 No Yes No Yes No

Table 1: A comparison of seven baseline metrics from
aspects of whether they use surface form (Surface), con-
textual word embedding (CWE), Source text (Source),
Target text (Ref), and human rating data (Rating).

Task, including twelve reference-based (ref-based)
metrics: COMET-22, MATASE, three variants
of MEE, four variants of Metricx, ME-COMET-
22, two variants of UniTE; and nine QE metrics:
COMET-Kiwi, Cross-QE, HWTSC-Teacher-Sim,
HWTSC-TLM, KG-BERTScore, MATESE-QE,
MS-COMET-QE, REUSE, and UniTE-src.

For details about their implementations, please
refer to their system reports and summary report of
WMT22 Metrics Task2.

3 Challenge Set & Method

3.1 Source of the Challenge Set

We build our Zh-En challenge set to evaluate met-
rics’ ability to relate synonyms and identify crucial
mistakes. The set is built based on two open-source
test sets: Flores 101 (Goyal et al., 2022) En-Zh sub-
set (but used as a Zh-En test set in this task) and
WMT21 Zh-En news dev + test sets (Akhbardeh
et al., 2021). We particularly pick up an En-Zh
test set and a Zh-En test set because neural-based
metrics may be style-sensitive (Hanna and Bojar,
2021): the English side of the En-Zh test set is
natural language while that of the Zh-En test set
is translation results, which may suffer from trans-
lationese. In addition, WMT sets focus on news
domain while Flores is extracted from Wiki. We
try to understand whether reference style and do-
main might influence metric performance so as to
evaluate the generalizability of metrics.

3.2 Challenge Set Description

Our test set has 721 test cases and focuses on
five categories of errors: (1) number; (2) date
& time (D/T); (3) named-entity & terminology
(NE&Term); (4) unit; and (5) affirmation/negation

2At the time of writing, we have not received descriptions
from every participant.
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Phenomenon Flores WMT Overall
Number 183 172 355
D/T 50 90 140
NE&Term 68 42 110
Unit 23 35 58
AFF/NEG 58 0 58
Overall 382 339 721

Table 2: Challenge set composition

(AFF/NEG). Each case contains a source text, a ref-
erence, a good translation, a bad translation, a lan-
guage phenomena label and a source of origin label
indicating where the sentence comes from. Table
2 details the set composition. The first four cate-
gories focus on word-level crucial errors. If such
information is translated wrong, human annotators
will assign relatively low scores since the audience
will be misled by such mistakes. In addition, the
four categories feature rich types of expressions.
For instance, a number can be presented in either
numeral or number format; unit, named entity and
terminology have widely-used abbreviations. We
try to analyze whether metrics are able to relate
synonyms and punish errors the way human anno-
tators do. The last category – affirmation/negation
– deals with phrase- to sentence-level errors and
tests whether metrics are able to capture the overall
meaning of a sentence.

Since both sets provide only one translation re-
sult for each sentence, to generate an additional
translation result, we employ a group of six in-
house translators to post-edit MT results generated
by our in-house model. We adopt List-based Attack
(LIST) (Alzantot et al., 2018) to generate adversar-
ial examples. LIST replaces word(s) in a candi-
date sentence with a list of similar words to con-
struct adversarial examples. We use semi-auto and
human-craft approaches to extract related sentences
from the original data sets. We replace key words
in those sentences to ensure that key information
in references and good examples are semantically
equal but in different formats, and that in references
and adversarial examples are semantically different
but in the same "surface" format.

Table 3 shows an example of our challenge set.
The test case contains a source sentence, a refer-
ence, a good-translation that contains a correct
translation for a language phenomenon, and an
incorrect-translation with an error accordingly. Phe-
nomenon to be evaluated and source of the sentence

SRC: 在已知的大约24,000块坠落至地
球的陨石中，经核实只有34块是
来自火星。

REF: Out of the approximately 24,000
known meteorites to have fallen to
Earth, only about 34 have been veri-
fied to be martian in origin.

GOOD: Of the roughly 24,000 meteorites
known to have fallen to Earth, only
thirty-four have been confirmed to
have come from Mars.

BAD: Of the roughly 24,000 meteorites
known to have fallen to Earth, only
30 have been confirmed to have
come from Mars.

Table 3: A case of number in different formats. GOOD
refers to good translation and BAD refers to the adver-
sarial example.

are also labelled in our challenge set. In this case,
it is number and comes from Flores. For more
examples, please see Appendix A.

3.3 Measurement

Kendall’s tau-like correlation (Freitag et al., 2021)
is used to evaluate metric performance. A good
translation has higher quality than the correspond-
ing bad one, so a good metric should assign a higher
score to the good translation. If a metric does so,
we label the metric "Concordant" on the case, and
"Discordant" vice versa. The correlation is calcu-
lated based on the following formula:

τ =
Concordant−Discordant
Concordant+Discordant

4 Result

Table 4 presents the results of our challenge set.
In general, 20 out of the 28 metrics struggle to
discriminate between good and adversarial exam-
ples as they fail to achieve a medium correlation
(above 0.4) with human annotators. The 8 metrics
that manage to achieve medium-level correlation
including: BLEURT-20 (baseline), four variants of
Metricx (ref-based), HWTSC-Teacher-Sim (QE),
KG-BERTScore (QE), and REUSE (QE).

4.1 Comparison across types of metrics

In general, embedding-based metrics perform
much better than merely surface-form matching
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Metric Overall Number D/T NE&Term Unit AFF/NEG
SENT-BLEU -0.717 -0.735 -0.743 -0.691 -0.621 -0.690
chrF -0.393 -0.301 -0.300 -0.745 -0.655 -0.241
BERTScore -0.193 -0.149 -0.429 -0.291 -0.483 0.586
BLEURT-20 0.495 0.476 0.629 0.364 0.310 0.724
COMET-20 -0.132 -0.093 -0.400 -0.200 -0.414 0.690
COMET-QE 0.090 0.048 -0.343 0.400 0.069 0.828
Yisi-1 -0.140 -0.138 -0.271 -0.291 -0.379 0.690
Baseline Avg. -0.141 -0.128 -0.265 -0.208 -0.310 -0.369
COMET-22 0.331 0.206 0.500 0.327 0.138 0.897
MATESE -0.476 -0.673 -0.429 -0.109 -0.414 -0.138
MEE -0.667 -0.662 -0.700 -0.564 -0.897 -0.586
MEE2 0.060 0.251 0.229 -0.600 -0.345 0.138
MEE4 0.171 0.307 0.443 -0.473 -0.138 0.207
metricx_xl_DA 0.778 0.746 0.900 0.727 0.586 0.966
metricx_xl_MQM 0.781 0.685 0.900 0.818 0.828 0.966
metricx_xxl_DA 0.822 0.820 0.800 0.800 0.828 0.931
metricx_xxl_MQM 0.870 0.865 0.829 0.873 0.897 0.966
MS-COMET-22 0.012 -0.054 -0.143 0.055 -0.103 0.828
UniTE 0.287 0.177 0.500 0.200 -0.069 0.966
UniTE-ref 0.343 0.234 0.529 0.327 0.000 0.931
Ref-based Avg. 0.276 0.242 0.363 0.198 0.109 0.589
COMET-Kiwi 0.337 0.177 0.243 0.582 0.483 0.931
Cross-QE 0.340 0.245 0.171 0.473 0.448 0.966
HWTSC-Teacher-Sim 0.445 0.504 0.314 0.309 0.345 0.759
HWTSC-TLM 0.393 0.425 0.271 0.364 0.310 0.621
KG-BERTScore 0.445 0.493 0.286 0.491 0.138 0.759
MATESE-QE -0.675 -0.735 -0.771 -0.400 -0.690 -0.586
MS-COMET-QE 0.146 0.059 0.114 0.127 0.000 0.931
REUSE 0.528 0.577 0.657 0.291 0.241 0.655
UniTE-src 0.268 0.104 0.314 0.473 0.103 0.931
QE Avg. 0.247 0.206 0.178 0.301 0.153 0.663

Table 4: Kendall’s tau-like correlation results of each metric on our challenge set. The horizontal lines delimit
baseline metrics (top), participating ref-based metrics (middle), and participating QE metrics (bottom).

metrics. Ref-based QE metrics perform slightly
better than QE metrics. Regarding the two surface-
form matching metrics, character-level chrF per-
forms much better than SENT-BLEU on AFF/NEG,
Number and D/T test cases, although slightly worse
on the other two categories. The performances of
embedding-based metrics vary greatly across both
ref-based and QE metrics.

4.2 Comparison across error categories

Embedding-based metrics perform well on
AFF/NEG cases as we assumed, as most
embedding-based metrics (both ref-based and QE)
achieve medium to strong correlations with human
ranking. However, regarding the other four cate-

gories on word-level crucial errors, performances
of some embedding-based metrics deteriorate sig-
nificantly and only few metrics manage to reach
medium-level correlation.

5 Discussion

5.1 Number as A Tough Issue

One of the focuses of our challenge set is number.
Numbers are dispersed, rich in format, and seman-
tically similar, making metrics hard to grasp the
exact meaning. To analyze how metrics perceive
and score numbers, we further divide it into four
sub-categories:

• Same Format (SAME): Good and bad exam-
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Metric SAME DIFF SWAP SEP
STEN-BLEU -0.908 -0.807 -0.333 -0.630
chrF -0.333 -0.572 -0.286 0.210
BERTScore 0.632 -0.393 -0.476 -0.383
BLEURT-20 0.678 0.490 0.000 0.481
COMET-20 0.011 -0.559 -0.095 0.630
COMET-QE -0.034 -0.159 0.000 0.531
Yisi-1 0.586 -0.379 -0.476 -0.309
Baseline Avg. 0.090 -0.340 -0.238 0.076
COMET-22 0.747 -0.103 -0.143 0.358
MATESE -0.839 -0.710 -0.857 -0.333
MEE -0.701 -0.876 -0.810 -0.160
MEE2 0.747 0.283 -0.571 0.086
MEE4 0.816 0.421 -0.571 0.012
metricx_xl_DA 0.954 0.862 0.190 0.605
metricx_xl_MQM 0.770 0.724 0.571 0.580
metricx_xxl_DA 0.977 0.903 0.762 0.531
metricx_xxl_MQM 0.931 0.890 0.905 0.728
MS-COMET-22 0.057 -0.103 -0.190 -0.012
UniTE 0.655 -0.103 -0.381 0.457
UniTE-ref 0.655 -0.076 -0.190 0.556
Ref-based Avg. 0.481 0.176 -0.107 0.284
COMETKiwi 0.425 -0.090 0.048 0.457
Cross-QE 0.218 0.145 -0.095 0.630
HWTSC-Teacher-Sim 0.632 0.503 0.000 0.630
HWTSC-TLM 0.448 0.393 0.238 0.556
KG-BERTScore 0.655 0.503 -0.143 0.630
MATESE-QE -0.839 -0.821 -0.762 -0.457
MS-COMET-QE-22 -0.011 0.034 -0.095 0.259
REUSE 0.747 0.641 -0.048 0.605
UniTE-src 0.264 -0.241 -0.143 0.679
QE Avg. 0.282 0.119 -0.111 0.443

Table 5: Kendall’s tau-like correlation results on our
challenge set. The horizontal lines delimit baseline met-
rics (top), participating reference-based metrics (mid-
dle), and participating QE metrics (bottom).

ples use different numbers in the same format
(e.g. 1 & 2; three & four).

• Different Format (DIFF): The good examples
contain correct numbers in a different format
as reference while the bad examples contains
an incorrect number in the same format as ref-
erence (e.g. 1 & two; 1,000,000 & 1 million).

• Swapped Number (SWAP): When a sentence
contains two or more numbers, we swap the
numbers to generate the bad translation.

• Thousand Separator (SEP): Thousand separa-
tors are not required but help improve read-
ability. Test sets under this category compare
numbers without thousand separators with
those in wrong formats (e.g. 1 000; 10,00;
1.000).

Table 5 presents results on the number subcate-
gories. According to the table, surface-form match-

ing metrics perform worse under all the four sub-
categories. Although embedding-based metrics in
general perform much better, those metrics still
perform worse under the SWAP subcategory.

5.1.1 Numeral vs. Number
In daily usage, there is no strict rule about when
to use numerals or numbers. In some cases, nu-
meral and number are just two different symbols
to express the same meaning and as a result can
be regarded as synonyms. According to table 5,
the majority of embedding-based metrics perform
relatively well on discerning differences among nu-
merals or among numbers (SAME). To be more
specific, if the good and adversarial examples con-
tain different numbers in the same format, even if
the format is different from that used in the refer-
ence, the possibility for metrics to discern between
the correct and incorrect numbers is relatively high.

However, performances of these metrics under
the DIFF category deteriorate to varying extents.
In other words, if the good example contains a cor-
rect number in different format and the adversarial
example contains an incorrect number but in the
same format as that in the reference, metrics are
likely to assign a higher score to the adversarial
example.

The result demonstrates that contextual embed-
dings fail to relate semantically similar numbers
and numerals. Instead, they seem to rely more on
the "surface similarity". Another example to but-
tress this assumption is the metrics’ performances
in the thousand separator category, where there is
about 50% of chance that metrics score numbers
with wrong separator formats higher than those
without separators.

Although neural machine translation models sel-
dom translate numbers wrong, outputs do use dif-
ferent number formats. When these metrics are
used to measure model performances, they incline
to wrongly penalize sentences using a different
number format, thus leading to unfair evaluations.

5.1.2 Does Number Difference Count?
We further conducted two experiments to examine
if metrics’ capability of distinguishing numbers
improves when the difference between the correct
and incorrect numbers turns greater. The sentence
shown in Table 3 is used for the two experiments.

In the first experiment, we replace the number
in the reference (REF in table 3) to its numeral for-
mat "thirty-four" and denote the sentence as good-
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translation x1. Then we replace the number in the
reference to other Arabic numbers ranging from 1
to 100 to generate a set of comparative candidates
denoted as bad-translations Y{y1,y2,...y100}.

In the second experiment, we denote another cor-
rect post-edit result as good-translation x2 (GOOD
in table 3), and alter the numeral in x2 to Arabic
numbers ranging from 1 to 100 (denoted as bad-
translations Z{z1,z2,..., z100}).

We calculated BERTScore of x1, x2, Y and Z
against the reference and the result is presented
in figure 1. When there is no other difference be-
tween reference and candidates except the number,
it seems easier for BERTScore and BLEURT to
discern number differences even in different for-
mats. In addition, as the difference between num-
bers becomes greater, the gap of scores expands.
However, when there are other differences between
the reference and candidates, it becomes harder for
BERTScore to quantify the error, as BERTScore
gives the majority of candidates in Z higher scores
than x2. And greater difference between numbers
seems not help. However, BLEURT remains a
good performance in the second experiment, which
is consistent with our challenge test results.

5.1.3 Do Metrics Understand Number?
Another interesting finding regarding number is
that all metrics perform badly under the SWAP
category (only three ref-based metrics managed to
achieve medium-level correlation). Swapping two
numbers in a sentence causes drastic changes in
meaning but metrics lack the capability to identify
such changes.

5.2 Is Source/Ref Information Helpful?

In general, QE metrics perform relatively worse
than ref-based metrics, but the gap is smaller than
we assumed. By just leveraging source-side infor-
mation, the average of QE metrics almost reaches
medium-level correlation. This gives rise to a ques-
tion: if a metric leverages both source-side and
target-side information, will the accuracy improve?

The implementations of COMET-22 and
COMET-Kiwi are almost the same but COMET-
22 leverages both source-side and target-side text
while COMET-Kiwi uses only source-side text.
When we compare the performances of the two met-
rics, we find that COMET-22 outperforms COMET-
Kiwi under the Number and D/T categories. How-
ever, COMET-Kiwi outperforms COMET-22 un-
der the NE&Term, Unit and AFF/NEG categories.
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BERTScore-Arabic
BERTScore-English
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Figure 1: Results for experiment 1 and 2. The dotted
lines indicate the scores for x1 and x2, while the solid
lines represent the results of Y and Z.

The result indicates that while in some cases,
reference-side information helps improve accuracy;
in other cases, reference-side information surpris-
ingly causes performance deterioration.

Among all the participating ref-based metrics,
although some leverage source-side information
while the others do not, their implementations vary.
So we are unable to draw a conclusion that whether
adding source-side information to a ref-based met-
ric helps improve accuracy. More ablation experi-
ments are required.

5.3 Synonym is Still A Tough Issue

Although embedding-based metrics claim better
capture of synonyms, the result shows that there
is still a long way to go. Not only numbers, test
cases under NE&Term, D/T, and Unit categories
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all aim at examining metrics’ ability to relate differ-
ent formats of words that express the same mean-
ing. The results show that metric performances
vary greatly under these categories. The variations
demonstrate that there should be a solution to this
problem. However, at the time of writing, we have
no detailed information about the implementations
of those well-performed metrics. For more details,
please refer to WMT Metric summary report and
their system reports.

Metric FLORES WMT
BLEU -0.728 -0.705
chrF -0.398 -0.386
BERTScore -0.073 -0.327
BLEURT-20 0.529 0.457
COMET-20 -0.042 -0.233
Yisi-1 -0.016 -0.280
COMET-QE 0.225 -0.062
Baseline Avg. -0.072 -0.220
COMET-22 0.450 0.198
MATESE -0.492 -0.457
MEE -0.644 -0.693
MEE2 0.047 0.074
MEE4 0.178 0.162
metricx_xl_DA2019 0.801 0.752
metricx_xl_MQM2019 0.796 0.764
metricx_xxl_DA 0.848 0.794
metricx_xxl_MQM 0.911 0.823
MS-COMET-22 0.084 -0.068
UniTE 0.398 0.162
UniTE-ref 0.435 0.239
Ref-based Avg. 0.318 0.229
COMETKiwi 0.450 0.209
Cross-QE 0.445 0.221
HWTSC-Teacher-Sim 0.450 0.440
HWTSC-TLM 0.393 0.392
KG-BERTScore 0.487 0.398
MATESE-QE -0.649 -0.705
MS-COMET-QE-22 0.215 0.068
REUSE 0.571 0.481
UniTE-src 0.335 0.192
QE Avg. 0.300 0.188

Table 6: A comparison of metric performances on Flo-
res and WMT test cases. The horizontal line delimit
baseline metrics (top) and participating reference-based
metrics (bottom).

5.4 Do Metrics Suffer from Domain Issue?

We build our challenge set based on two open-
source test sets: Flores 101 and WMT21 Zh-En.
Hanna and Bojar (2021) claim that when the ref-
erence is a post-edit, BERTScore performs poorly
as the post-edit may have high lexical overlap with
machine translations. In our experiment setting,
the candidate sentences are post-edits, which are
stylistically similar to references in the WMT21
Zh-En news test sets, as the references are transla-
tions provided by professional translators. On the
contrary, the Flores 101 En-Zh test set is translated
from English to Chinese, so the English side is
original and less stylistically similar to post-edits.

We calculate each metric’s performance on Flo-
res and WMT test cases (see table 6). Surface-form
matching metrics are least influenced by the differ-
ence. For both ref-based and ref-free metrics, while
some metrics (e.g. Metricx, HWTSC-Teacher-Sim)
remain almost same performance on cases from
the two sources, some metrics (e.g. COMET-22,
UniTE) perform far worse on WMT cases.

The result shows that the generalizability of met-
rics varies. While good metrics can remain the
same performance on test sets in different domains
and of different styles, some metrics suffer greatly
from domain issues. We assume the reasons for
such performance gaps including: 1) WMT test
cases are longer than Flores cases in average, mak-
ing the cases harder to score; 2) big data for training
pre-trained models are mostly native monolinguals
so these models are better at encoding native lan-
guages than "translationese". However, more abla-
tion experiments are required and generalizability
should be concerned when developing metrics.

6 Conclusion

This paper presents our submitted challenge set to
the WMT22 Metrics Challenge Sets Subtask and
various metrics’ performances on our set. Our set
focuses on five categories of errors and the result
shows that while most metrics are able to identify
catastrophic sentence-level affirmation/negation er-
rors, some metrics fail at discerning word-level
keyword errors and capturing synonyms of such
words. The results show that references are not
always useful for a metric to identify errors. In
addition, generalizability of metrics should be con-
sidered as some metrics are susceptible to test sets
styles. The majority of metrics fail to meet the
requirements (Banerjee and Lavie, 2005; Koehn,
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2009) we discuss in the introduction section. They
fail to identify nuances in quality and provide reli-
able scores, and suffer from domain issues as well.

The limitation of this research is that all of the
perturbations are human-crafted, and these errors
may seldom occur in neural machine translations.
To further analyze metric performance in real set-
tings, we will try to annotate and categorize real
machine translation errors and evaluate metric per-
formance accordingly.
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A Appendix

SRC: 死亡人数至少为15 人，预计还
会增加。

REF: The death toll is at least 15, a figure
which is expected to rise.

GOOD: The death toll is at least fifteen and
is expected to rise.

BAD: The death toll is at least fourteen
and is expected to rise.

Phenom: Number (Same Format)
Source: Flores

SRC: 湖南红色旅游文化节已成功举
办16届，是全国红色旅游的知
名品牌。

REF: The Hunan Red Tourism and Cul-
ture Festival has been successfully
held for 16 years, making it a fa-
mous red tourism brand in China.

GOOD: Hunan Red Tourism Culture Festi-
val has been successfully held for
sixteen times and is a well-known
brand of red tourism in China.

BAD: Hunan Red Tourism Culture Festi-
val has been successfully held for
14 times and is a well-known brand
of red tourism in China.

Phenom: Number (Different Format)
Source: WMT
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SRC: 投票存在两极分化的情况，29%
的受访者认为澳大利亚应该尽
快成立共和国，31% 的人则认
为澳大利亚永远不应该成立共
和国。

REF: At the extremes of the poll, 29 per
cent of those surveyed believe Aus-
tralia should become a republic as
soon as possible, while 31 per cent
believe Australia should never be-
come a republic.

GOOD: The vote was polarised, with 29%
of respondents saying Australia
should become a republic as soon
as possible and 31% saying it
should never become a republic.

BAD: The vote was polarised, with 31%
of respondents saying Australia
should become a republic as soon
as possible and 29% saying it
should never become a republic.

Phenom: Number (Swapped Number)
Source: Flores

SRC: 除了大件，让傅昆宝两口子头
疼的还有家里1000多斤粮食和
新买的一些家具。

REF: Apart from the large items, the over
1,000 jin (500 kg) of grain and
newly bought furniture was also a
headache Fu Kunbao and his wife.

GOOD: In addition to big items, Fu Baokun
and his wife don’t know how to
deal with more than 1000 jin of
grain and some newly bought fur-
niture in the home.

BAD: In addition to big items, Fu Baokun
and his wife don’t know how to
deal with more than 1.000 Jin of
grain and some newly bought fur-
niture in the home.

Phenom: Number (Thousand Separator)
Source: WMT

SRC: “我是7月7日来北京的，当时其
实有点担心疫情，还提前三天
做了核酸检测，是带着酒精棉
和检测报告来布展的。”

REF: “I arrived in Beijing on July 7, and
at the time I was a little worried
about the pandemic, so took the
nucleic acid test three days in ad-
vance, and I came here with alcohol
pads and my test report. ”

GOOD: "I arrived in Beijing on the 7th of
July. At that time, I was a little wor-
ried about the pandemic so I did a
nucleic acid test three days in ad-
vance, and I took alcohol pads and
the test report to set up the exhibi-
tion."

BAD: "I arrived in Beijing on June 7.
At that time, I was a little wor-
ried about the pandemic so I did
a nucleic acid test three days in ad-
vance, and I took alcohol pads and
a test report to set up the exhibi-
tion."

Phenom: Date & Time
Source: WMT

SRC: 美国地质调查局国际地震地图
显示，冰岛在前一周并未发生
地震。

REF: The United States Geological Sur-
vey international earthquake map
showed no earthquakes in Iceland
in the week prior.

GOOD: The U.S. Geological Survey Inter-
national Earthquake Map shows no
earthquakes in Iceland in the previ-
ous week.

BAD: The United Kingdom Geological
Survey International Earthquake
Map shows no earthquakes in Ice-
land in the previous week.

Phenom: Named Entity & Terminology
Source: Flores
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SRC: 到今天早些时候，风速为每小
时83 公里左右，预计会不断减
弱。

REF: By early today, winds were around
83 km/h, and it was expect to keep
weakening.

GOOD: By early today, the wind speed
was about 83 kilometers per hour,
and it is expected to continue to
weaken.

BAD: By early today, the wind speed was
about 83 m/h, and it is expected to
continue to weaken.

Phenom: Unit Format
Source: Flores

SRC: 不久前，他在布里斯班公开赛
上败于拉奥尼奇。

REF: He recently lost against Raonic in
the Brisbane Open.

GOOD: Not long ago, he lost against
Raonic at the Brisbane Interna-
tional tournament.

BAD: Long ago, he lost against Raonic
at the Brisbane International tour-
nament.

Phenom: Unit Format
Source: Flores
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Abstract

We develop two new metrics that build on top
of the COMET architecture. The main contri-
bution is collecting a ten-times larger corpus
of human judgements than COMET and inves-
tigating how to filter out problematic human
judgements. We propose filtering human judge-
ments where human reference is statistically
worse than machine translation. Furthermore,
we average scores of all equal segments evalu-
ated multiple times. The results comparing au-
tomatic metrics on source-based DA and MQM-
style human judgement show state-of-the-art
performance on a system-level pair-wise sys-
tem ranking. We release both of our metrics for
public use.1

1 Introduction

Automatic metrics for machine translation (MT)
evaluation are commonly used as the primary tool
for comparing the translation quality of MT sys-
tems, often without evaluating systems with the
human judgement that can be expensive and time-
consuming (Marie et al., 2021). Therefore, study-
ing and developing metrics that correlate well with
human judgement is critical.

There is an increasing effort in the evaluation
of automatic MT metrics, leading with the annual
evaluation of metrics at the WMT conference (Fre-
itag et al., 2021b,a; Kocmi et al., 2021; Mathur
et al., 2020b). Most research has focused on com-
paring segment-level or system-level correlations
between absolute metric scores and human judge-
ments. However, Mathur et al. (2020a) emphasize
that this scenario is not identical to the everyday
use of metrics, where instead, researchers and prac-
titioners use automatic scores to compare pairs of
systems. For example, when claiming a new state-
of-the-art, evaluating different model architectures,

1https://github.com/MicrosoftTranslator/
MS-Comet

and deciding whether to publish results or deploy
new production systems.

In this work, we focus on training automatic
metric based on COMET architecture (Rei et al.,
2020) utilizing a large internal trainset of human
segment-level judgements. Additionally, we evalu-
ate the metrics in a pair-wise system-level evalua-
tion against human judgement.

We develop two metrics: MS-COMET intended
for reference-based evaluating systems, while MS-
COMET-QE is designed for quality estimation or
source-based evaluation. We use the suffix "-22"
to differentiate the models from potential future
releases.

2 Related work

There are two main categories of automatic MT
metrics: (1) string-based metrics and (2) metrics
using pretrained models. The former compares the
coverage of various substrings between the human-
generated reference and MT translations, this group
includes metrics such as ChrF (Popović, 2015),
BLEU (Papineni et al., 2002), or TER (Snover et al.,
2006). String-based methods largely depend on the
quality of reference translations. However, their
advantage is that their performance is predictable
as it can easily diagnose which substrings affect
the score the most.

The latter category of pretrained methods con-
sists of metrics that usually use pretrained models
to evaluate the quality of MT translations given
the source sentence, the human reference, or both.
Evaluation metrics from this category includes
COMET (Rei et al., 2020), BLEURT (Sellam et al.,
2020), or BERTScore (Zhang* et al., 2020). They
are not strictly dependent on the reference quality
(for example, they can better evaluate synonyms
or paraphrases), and many studies (Freitag et al.,
2021b; Mathur et al., 2020b; Kocmi et al., 2021)
showed their superiority over string-based metrics.
On the other hand, their performance is influenced
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by the data on which they have been trained, which
may introduce bias, and the pretrained models
present a black-box problem where it is challeng-
ing to diagnose potential unexpected behavior of
the metric.

A separate category of automatic metrics is
whether they need a human reference for evalu-
ation. Automatic metrics that calculate scores with-
out the need for reference (quality estimation) open
the possibility of evaluating monolingual testsets
that can be tailored for a specific domain without
the need to build expensive human references.

We build our metric with the architecture of
COMET (Rei et al., 2020).2 It uses the Estima-
tor model which uses pretrained language models
XLM-RoBERTa to encode source, MT hypothesis
and reference in the same cross-lingual space. The
model is then fine-tuned on human judgement data.
We use the identical hyper-parameters as COMET.

3 Human Judgement Trainset

For training our models, we use a mix of public and
internal data that we further denoise by filtering out
potentially problematic human judgements.

We use the same human judgments data used
to train the COMET model, i.e. WMT 2017-2019
(Barrault et al., 2019; Bojar et al., 2018, 2017).
To test the quality of metrics, we use WMT 2020
(Barrault et al., 2020), WMT 2021 (Akhbardeh
et al., 2021) and MQM 2021 (Freitag et al., 2021b).
Furthermore, we submitted our model to WMT
Metrics Shared Task 2022.

In addition to publicly available data, we use
a set of internal data, described in Kocmi et al.
(2021) plus newer data collected over the last year.
All our internal data are collected with the use of
expert annotators. We use a mix of human judge-
ment methods: source-based Direct Assessment
(srcDA) (Graham et al., 2013; Federmann, 2018),
contrastive Direct Assessment (contrDA, which
asks users to rate pairs of system outputs), and
SQM presented at WMT General MT 2022 (which
uses labeled scale). All collected labels are on a
scale of 0-100, where the interface structure is the
main difference for human annotators.

We use internal testsets for human judgements
that have been translated with a tandem of two pro-
fessional translators, following findings of Freitag

2To differentiate models, we are going to use COMET
to reference Rei et al. (2020) models from ours labeled as
MS-COMET

Langs. Domains Segments

All available data 6.53 M
Removed low-quality 0.79 M
Removed WMT refDA 0.35 M
Removed by averaging 2.12 M

MS-COMET 111 15 2.06 M
MS-COMET-QE 113 15 3.43 M
COMET 13 1 0.66 M

Table 1: The statistics of the training corpora and the
effect of filtering in terms of unique languages on the
target side, unique domains, and count of training seg-
ments used to train MS-COMET, MS-COMET-QE, and
original COMET.

et al. (2020) that high-quality reference plays an
essential role in automatic evaluation.

In contrast to publicly available data that uses
only the News domain, we use a mix of fifteen
domains (news, conversation, legal, medical, social,
e-commerce, tech, finance, and others). The news
domain is the largest domain utilizing at least half
of human judgements. Our collection of human
judgement data covers 113 languages in contrast to
13 on which COMET is trained. A complete list
of all supported languages and counts of human
judgement for the largest translation directions are
in Appendix A.

Reference-less metric MS-COMET-QE is
trained using all training data and removing
reference translations. Additionally, many human
judgments are evaluated on data that are missing
human reference, which is the reason for having
more training data for MS-COMET-QE.

3.1 Using raw scores instead of z-scores

The z-score has been introduced (Graham et al.,
2013) to resolve an issue with different strategies
annotators may apply when judging systems. For
example, an overly strict annotator may harshly
penalize a system from which he annotated more
segments. We partly avoid this problem in our
data via a better sampling technique. We sample
uniformly from each evaluated system in a way
that each annotator evaluates the same number of
sentences from each system. Therefore, different
strategies should penalize all systems similarly.

As Knowles (2021) pointed out that z-score stan-
dardization of human judgements normalizes away
both inter-annotator and system quality differences,
and since we do not have a mechanism to avoid nor-
malizing away system quality differences. There-
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fore, we decided to use raw scores (0-100) instead
of the z-score standardized counterpart.

Using raw scores has the benefit that it gives final
scores some meaning. For low-quality languages,
we may expect scores in the lower range (0-50),
while for high-quality languages, the scores gener-
ally can be higher. Z-scores only do not represent
any meaning. However, we do not advocate us-
ing our metric in an absolute fashion or comparing
quality across languages.

However, we want to point out that we have seen
only minor improvement when training metrics
using raw scores in contrast to z-scores. Therefore,
this decision is mainly on a pragmatic layer.

3.2 Professional annotators only

Freitag et al. (2021a) discuss that the quality of
crowd-based human judgement is suboptimal, and
human evaluation should focus on expert annota-
tors. Professional annotators collect our internal
human labels. However, data from WMT are col-
lected in two different setups when one uses crowd-
workers.

The language pairs that are from English or
not containing English are collected with semi-
professional to professional annotators and using
source-based DA, which avoids reference bias. On
the other hand, all into English language pairs are
collected with crowd-workers with reference-based
DA. For this reason, we decided to remove all
WMT reference-based DA human judgement from
our datasets, and therefore, we use only internal
into-English human assessments.

3.3 Averaging same human judgement

In our data, many human judgment campaigns eval-
uate identical triplets (source, hypothesis, refer-
ence) in different campaigns. This happens when
we compare identical baseline system across dif-
ferent campaigns or when a candidate system from
the earlier campaign is later evaluated as a baseline
system.

We notice that human scores fluctuate every time
each triplet is evaluated. We have decided to av-
erage scores for all identical triplets to normalize
the noise and balance the trainset. Averaging equal
scores improved the performance of the metric.

We also experimented with taking a median of
the scores, but the results have been a bit worse
than averaging.

3.4 Removing low-quality human judgements

In our human annotation campaigns, we often in-
clude human reference translation as another sys-
tem to measure how close MT systems are to hu-
man reference. However, scoring human references
can also be used as a sanity check for the quality of
campaigns or human references. Whenever we see
a campaign where human reference is worse than
the MT system, it suggests one of the following
three scenarios: human reference contains error
translations, human judgement is too noisy or mis-
leading, or the MT system performs better than
human translators. If we assume that MT systems
are not outperforming human translators, a lower
human reference score suggests either broken ref-
erence translation or a noisy campaign. Neither
of these two outcomes is desirable for fine-tuning
automatic metrics.

Therefore, we remove all campaigns contain-
ing human reference as an additional system,
where any of the systems is statistically signif-
icantly better than human translation under the
Mann–Whitney U test and alpha threshold of 5%.

4 Evaluation

Evaluation of automatic metrics is a challenging
task investigated in a yearly WMT Metrics shared
task (Freitag et al., 2021b). However, there is no
community-agreed testset or evaluation method for
comparing with humans that are considered gold
standards.

There are different dimensions how to evaluate
automatic MT metrics. Let’s summarize the main
differing points:

• Human annotation methods - source-based
direct assessment (DA) (Graham et al., 2013),
reference-based DA (Graham et al., 2013),
contrastive DA (Akhbardeh et al., 2021), Mul-
tidimensional Quality Metrics (MQM) (Fre-
itag et al., 2021a)

• Granularity of evaluation - evaluating cor-
relation with human on a segment-level or
system-level

• Correlation method - correlation of abso-
lute values (Pearson or Kendall-like, Mathur
et al., 2020b) or correlations in pairwise ap-
proach (pairwise accuracy, Kocmi et al., 2021;
Mathur et al., 2020a
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• Usage of unlabeled part of testset - human
judgment often evaluates only a subset of the
testset. Metrics can use the remaining unla-
belled segments (especially for system-level
setup)

• Normalize human behavior - use raw hu-
man scores or normalize them with z-score
standardization

• Evaluating human reference - if additional
human translated references should be eval-
uated like one of the systems (Freitag et al.,
2021b)

• Evaluating outlier systems - absolute value
correlations via Pearson are sensitive to out-
liers, therefore Mathur et al. (2020a) recom-
mends removing outlier systems from evalua-
tion.

The list is incomplete as there are other nuances,
such as removing outlier systems, using only sta-
tistically significant pairs of systems, underlying
quality of human judgement, etc.

Evaluating all combinations of approaches is
not reasonable. Therefore we mainly follow the
approach defined by Kocmi et al. (2021) and also
used by WMT Metrics 2021 (Freitag et al., 2021b).

Here is a list of constraints for the evaluation:

• We use only testsets produced by professional
annotators as described in Section 3.2. Thus,
we do not evaluate over reference-based DA.

• We focus on a system-level pairwise setup as
the important use-case for automatic metrics
(Kocmi et al., 2021). Thus we do not evaluate
absolute value correlations with humans. Fur-
thermore, this avoids the problem with outlier
systems.

• We use only segments that have been evalu-
ated by humans (unlabelled segments of test-
sets are not used).

• We use z-score normalization mainly to be
comparable with past work. However, we do
not consider z-score as a good standardization
approach.

• We do not remove additional human refer-
ences from the evaluation as metrics should
be able to evaluate any translation (not only
those produced with current MT systems).

LPs System pairs Method

WMT20 8 565 srcDA
WMT21 9 1000 srcDA
WMT21-contr 3 198 contrDA
MQM21-news 3 301 MQM
MQM21-ted 3 247 MQM

Table 2: The statistics of human judgement sets are used
for testing automatic metrics.

4.1 Evaluation methodology
We use system-level pairwise accuracy as intro-
duced by Kocmi et al. (2021), which evaluates how
often metric agrees on the ranking of two systems
with human rank:

Accuracy =
|sign(metric∆) = sign(human∆)|

|all system pairs|
We use implementation by Freitag et al. (2021b);

therefore, results on the MQM21 testset agree with
their findings. We use bootstrap resampling to cal-
culate which metrics are not significantly outper-
formed by the winning metric with an alpha thresh-
old of 0.05.

To test automatic metrics, we use publicly avail-
able data from different sources. You can find statis-
tics in Table 2.

• WMT20 and WMT21 - we use source-based
DA from Barrault et al. (2020) and Akhbardeh
et al. (2021)

• WMT21-contr - we use contrastive DA from
Akhbardeh et al. (2021). This is the only
source of truly pairwise human judgements,
where annotators see the outputs of two sys-
tems next to each other. We collect those pairs
of systems evaluated to each other.

• MQM21-news and MQM21-ted- we MQM
data from Freitag et al. (2021b), both testsets
evaluate same set of systems but over different
domains.

Additionally, we combine all testsets to calcu-
late pairwise accuracy across all system pairs, sim-
ply by counting all system pairs where the metric
agrees with human overall evaluated system pairs
in all testsets.

4.2 Evaluated automatic metrics
We train two metrics MS-COMET trained with
human-produced references and MS-COMET-QE
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All WMT20 WMT21 WMT21-contr MQM21-news MQM21-ted
n 2311 ↓ 565 1000 198 301 247

MS-COMET-22 0.826 (1) 0.892 (1) 0.864 (1) 0.722 (2) 0.714 (4) 0.745 (3)
MS-COMET-QE-22 0.821 (2) 0.873 (2) 0.847 (2) 0.808 (1) 0.734 (2) 0.713 (6)
Bleurt 0.820 (3) 0.869 (3) 0.864 (1) 0.702 (3) 0.718 (3) 0.749 (2)
COMET 0.816 (4) 0.869 (3) 0.864 (1) 0.677 (5) 0.678 (5) 0.781 (1)
COMET-QE 0.800 (5) 0.848 (6) 0.839 (3) 0.692 (4) 0.774 (1) 0.652 (7)
BERTScore 0.790 (6) 0.853 (5) 0.836 (4) 0.722 (2) 0.621 (6) 0.721 (5)
chrF 0.770 (7) 0.857 (4) 0.793 (5) 0.702 (3) 0.621 (6) 0.713 (6)
BLEU 0.688 (8) 0.848 (6) 0.622 (7) 0.601 (7) 0.618 (7) 0.741 (4)
TER 0.669 (9) 0.766 (7) 0.657 (6) 0.616 (6) 0.585 (8) 0.636 (8)

Table 3: The main results for pairwise accuracy in a system-level setting. The bold scores represent metrics that are
not statistically different from the winning metric with a 0.05 alpha level. The numbers in brackets show the rank of
metrics. The “n” represents the number of system pairs in each evaluation.

trained only with sources and MT hypothesis.
We use identical hyper-parameters as the original
COMET model (Rei et al., 2020), and the models
are trained for precisely four epochs.

We compare our metrics to publicly available
metrics, and either have the highest correlation
with humans - COMET, BLEURT, and BERTScore
(Kocmi et al., 2021; Freitag et al., 2021a) or are
widely used in MT field (BLEU, ChrF, TER). We
use default parameters and models for each of them,
specifically:

For BLEU (Papineni et al., 2002), ChrF
(Popović, 2015), and TER (Snover et al., 2006), we
use SacreBLEU implementation https://github.
com/mjpost/sacrebleu/ (Post, 2018) version
2.0.1. We use the “mteval-v13a” tokenizer for all
language pairs except for Chinese and Japanese,
which use their separate tokenizer, as is recom-
mended.

For BERTScore (Zhang* et al., 2020), we
use https://github.com/Tiiiger/bert_score
version 0.3.11.

For BLEURT (Sellam et al., 2020), we use the
recommended model “bleurt-20” and implemen-
tation https://github.com/google-research/
bleurt.

For COMET (Rei et al., 2020), we use rec-
ommended model “wmt20-comet-da” and for
COMET-QE we use “wmt21-comet-qe-mqm”.
The implementation is https://github.com/
Unbabel/COMET in version 1.1.0.

5 Results

The results for the pairwise system-level scenario
are in Table 3. The results over 2311 system pairs

n 23595

MS-COMET-QE-22 0.597 (1)
COMET-QE 0.596 (2)
MS-COMET-22 0.594 (3)
Bleurt 0.593 (4)
COMET 0.586 (5)
BERTScore 0.567 (6)
chrF 0.557 (7)
TER 0.536 (8)
sentBLEU 0.535 (9)

Table 4: The results for pairwise accuracy in a segment-
level setting over WMT21-contr testset. The “n” repre-
sent a number of segment pairs used in the evaluation.

show that both our metrics outperform all other
state-of-the-art metrics, with only Bleurt not being
statistically worse than our metrics.

The results over individual testsets show that our
metrics are ranked among the top-performing met-
rics. Interestingly, MQM21-news domain seems
to be easier for Quality Estimation metrics, while
MQM21-ted shows the opposite direction. These
results are interesting as the underlying systems are
identical except for additional human reference.

Lastly, our metrics win in the WMT21-contr test-
set. This is the only genuinely pairwise testset
where annotators saw systems next to each other
while evaluating them.

Although we focus on a system-level evaluation,
we evaluate how metrics perform in a segment-
level setting for completeness. We use the testset
WMT21-contr to calculate accuracies in the same
fashion as for system-level scenario, but taking
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pairs of segment annotations instead of system-
level scores. The segment-level results in Table 4
show that our metrics, COMET-QE, and Bleurt are
in the winning cluster outperforming other metrics.

6 Conclusion

We have investigated the training COMET model
with a larger corpus of human judgements covering
multiple domains and 113 languages.

We employed several steps of filtering low-
quality or repetitive human judgement.

With those data, we trained two metrics: MS-
COMET-22 and MS-COMET-QE-22, that outper-
form other current MT metrics on a pair-wise
system-level decision task.

We release the metrics for public use.
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Loïc Barrault, Ondřej Bojar, Marta R. Costa-jussà,
Christian Federmann, Mark Fishel, Yvette Gra-
ham, Barry Haddow, Matthias Huck, Philipp Koehn,
Shervin Malmasi, Christof Monz, Mathias Müller,
Santanu Pal, Matt Post, and Marcos Zampieri. 2019.
Findings of the 2019 conference on machine trans-
lation (WMT19). In Proceedings of the Fourth Con-
ference on Machine Translation (Volume 2: Shared

Task Papers, Day 1), pages 1–61, Florence, Italy. As-
sociation for Computational Linguistics.
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A List of languages

Our collection of human judgements covers 113
languages, language variants, or writing systems.
Here is the complete list. Note that XLM-Roberta
does not support some languages:

Afrikaans, Albanian, Amharic, Arabic, Arme-
nian, Assamese, Azeri, Bangla, Bashkir, Basque,
Bosnian, Bulgarian, Burmese, Catalan, Central
Kurdish, Chinese (Literary), Chinese (People’s
Republic of China), Chinese (Taiwan), Chinese
Yue, Chuvash, Classic Chinese (Simplified), Croa-
tian, Czech, Danish, Dari, Divehi, Dutch, En-
glish, Estonian, Faroese, Fijian, Filipino, Finnish,
French, French (Canada), Galician, Georgian,
German, Greek, Gujarati, Haitian Creole, He-
brew, Hindi, Hmong, Hungarian, Icelandic, In-
donesian, Inuktitut, Inuktitut (Latin), Inuinnaq-
tun, Irish, isiZulu, Italian, Japanese, Kannada,
Kazakh, Khmer, Kiswahili, Korean, Kurdish, Kyr-
gyz, Lao, Latvian, Lithuanian, Macedonian, Mala-
gasy, Malay, Malay Standard, Malayalam, Maltese,
Maori, Marathi, Mongolian, Mongolian (Cyril-
lic), Nepali, Norwegian, Odia, Otomi, Pashto, Per-
sian, Polish, Portuguese (Brazil), Portuguese (Por-
tugal), Punjabi, Romanian, Russian, Samoan, Ser-
bian (Cyrillic), Serbian (Latin), Slovak, Slovenian,
Somali, Spanish, Swedish, Tahitian, Tajik, Tajiki,
Tamil, Tatar, Telugu, Thai, Tibetan, Tigrinya, Ton-
gan, Turkish, Turkmen, Ukrainian, Upper Sorbian,
Urdu, Uyghur, Uzbek, Vietnamese, Welsh.

Furthermore, our human judgement data are not
balanced. In some translation directions, we have
more human-labeled data than in others. Table 5
shows the largest forty translation directions in our
training data corpus.
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Mono With ref

English - German 175k 103k
English - Chinese 117k 80k
English - Czech 93k 71k
English - Russian 92k 72k
English - French 66k 36k
Chinese - English 63k 33k
German - English 60k 28k
Japanese - English 57k 35k
English - Japanese 55k 30k
English - Spanish 54k 27k
English - Dutch 52k 27k
French - English 50k 32k
English - Italian 50k 24k
Spanish - English 48k 29k
English - Finnish 45k 38k
Italian - English 44k 25k
English - Polish 43k 23k
Korean - English 39k 25k
English - Portuguese 38k 22k
English - Turkish 37k 24k
English - Korean 36k 20k
Polish - English 35k 19k
Czech - English 35k 18k
English - Hindi 34k 18k
English - Arabic 34k 17k
Dutch - English 33k 19k
Arabic - English 32k 16k
Russian - English 32k 17k
English - Estonian 28k 21k
English - Lithuanian 27k 18k
Hindi - English 25k 15k
Greek - English 25k 15k
English - Swedish 24k 13k
Turkish - English 23k 14k
English - Danish 21k 11k
Portuguese - English 21k 12k
English - Romanian 21k 14k
Swedish - English 21k 8k
Romanian - English 21k 16k
English - Slovak 21k 12k

Table 5: The number of human judgement for the forty
largest translation directions. The counts represent data
on the final filtered training set, where “Mono” are
dataset counts for MS-COMET-QE and “With ref” are
for MS-COMET.
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Abstract

In this paper, we present the contribution
of HW-TSC to WMT 2022 Metrics Shared
Task. We propose one reference-based metric,
HWTSC-EE-BERTScore*, and four reference-
free metrics including HWTSC-Teacher-Sim,
HWTSC-TLM, KG-BERTScore and CROSS-
QE. Among these metrics, HWTSC-Teacher-
Sim and CROSS-QE are supervised, whereas
HWTSC-EE-BERTScore*, HWTSC-TLM and
KG-BERTScore are unsupervised. We use
these metrics in the segment-level and system-
level tracks. Overall, our systems achieve
strong results for all language pairs on previ-
ous test sets and a new state-of-the-art in many
sys-level case sets.

1 Introduction

Due to the expensive cost of manual evaluation,
automatically evaluating the outputs of transla-
tion systems is critically important in the field of
machine translation (MT) (Freitag et al., 2021a).
Therefore, a lot of automatic metrics have been pro-
posed to approach this task. According to whether
the reference sentences are required or not, the met-
rics are categorized into two classes: (1) reference-
based metrics like BLEU (Papineni et al., 2002),
METEOR (Lavie and Agarwal, 2007), BERTScore
(Zhang et al., 2020) and BLEURT (Sellam et al.,
2020), which evaluate the hypothesis by referring
to the golden reference; (2) reference-free metrics
like YiSi-2 (Lo, 2019) and COMET-QE (Rei et al.,
2020, 2021), which are also referred as quality esti-
mation (QE). These metrics estimate the quality of
hypothesis only based one source sentences with-
out using references.

In this paper, we present the contribution of
HW-TSC to the WMT 2022 Shared Task on Met-
rics. We participated in the segment-level and
system-level tracks with 1 reference-based metric
(HWTSC-EE-BERTScore*) and 4 reference-free

∗∗ equal contribution

metrics (HWTSC-Teacher-Sim, HWTSC-TLM,
KG-BERTScore and CROSS-QE). Details of our
metrics are illustrated in Table 1.

HWTSC-EE-BERTScore* (Entropy Enhanced
Metrics)is built upon existing metrics, aiming to
achieve a more balanced system-level rating by as-
signing weights to segment-level scores produced
by backbone metrics. The weights are determined
by the difficulty of a segment, which is related to
the entropy of a hypothesis-reference pair. A trans-
lation hypothesis with a significantly high entropy
value is considered difficult and receives a large
weight in aggregation of EE-Metrics’ system-level
scores.

HWTSC-Teacher-Sim is a supervised reference-
free metric with the framework of BERTScore
(Zhang et al., 2020), which is obtained by fine-
turning the multilingual Sentence-BERT model
(Reimers and Gurevych, 2019, 2020a). Both the un-
supervised TearcherSim (Yang et al., 2022b,a) and
the implicit multilingual word embedding align-
ment (Zhang et al., 2022b) have shown that the pre-
tained multilingual Sentence-BERT model is very
effective for both reference-based and reference-
free MT evaluations on WMT DA (Direct Assess-
ment) data. However, its performance on WMT
MQM (Multidimensional Quality Metrics) data is
poor. We propose an effective training strategy for
the pretrained multilingual Sentence-BERT and a
novel normalization method for the DA and MQM
scores.

HWTSC-TLM (Zhang et al., 2022a) is an un-
supervised reference-free metric which only uses
the system translations as input and calculates the
scores by a target-side language model. Although
source sentences are not considered, the results of
this metric with XLM-R (Conneau et al., 2020) on
WMT19 are very promising.

KG-BERTScore (Wu et al., 2022) is an unsu-
pervised reference-free metric, which incorporates
multilingual knowledge graph into BERTScore
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Metrics Reference Training Segment-level System-level
HWTSC-EE-BERTScore* reference-based unsupervised % !

HWTSC-Teacher-Sim reference-free supervised ! !

HWTSC-TLM reference-free unsupervised ! !

KG-BERTScore reference-free unsupervised ! !

CROSS-QE reference-free supervised ! !

Table 1: Description of 5 metrics participated in WMT 2022 Shared Task. !and%respectively indicate whether
the metric participates the corresponding track or not.

(Zhang et al., 2020). The score of this metric
is calculated by linearly combining the results of
BERTScore and bilingual named entity matching.

CROSS-QE is an application of "QE as a met-
ric". Based on our previous work (Yang et al.,
2020; Wang et al., 2020; Chen et al., 2021), we
propose a reference-free metric, like COMET-QE
architecture.

2 Metrics

This section introduces our metrics for WMT Met-
rics 2022 Shared Task including Reference-based
and reference-free.

2.1 Reference-based
This year, entropy-enhanced BERTScore (HWTSC-
EE-BERTScore, or referred as EE-BERTScore in
short) was used in the general tests of the system-
level track. EE-BERTScore, built upon standard
BERTScore (Zhang et al., 2019), is within one of
the EE metrics proposed earlier (Liu et al., 2022).
The main idea of EE metrics is to challenge the
standard way of acquiring system-level scores that
outputs a simple arithmetic average of scores on
segments in the evaluation set, and to provide a
framework that enhances existing MT metrics by
assigning higher weights to the difficult samples in
the evaluation set. The motivation is simple: for
MT evaluation, it is not likely that human raters
treat every source-reference pair equally. Those
simple samples can be easily translated, leading to
similar human scores given to different hypotheses,
while the more challenging part in an evaluation
set often distinguishes top candidates from inferior
systems. Like different weights are assigned to
questions in real-world examinations based on vari-
ant difficulties, MT evaluation metrics should also
encourage systems that perform better on relatively
difficult samples. In the preliminary experiment,
we find that using only the difficult segments (usu-
ally counting for less than 5% of all segments in

the whole evaluation set) to evaluate MT systems,
doesn’t lead the automatic metrics to give incor-
rect ratings for MT systems, and sometimes even
improves the performances of metrics in terms of
correlation with human DA scores. Thus, we pro-
posed EE metrics, which emphasize the translation
qualities of relatively difficult ones among all hy-
potheses given by a system and assign high weights
to these hypotheses in the aggregation of system-
level scores.

2.1.1 Working Process of EE Metrics
Currently, EE metrics determine the difficulty of
a segment via the average qualities of hypotheses.
The qualities are measured by the translation en-
tropy (or chunk entropy) (Yu et al., 2015) between
the reference and the hypothesis. For a human ref-
erence and a hypothesis given by an MT system, a
high chunk entropy suggests high uncertainty of the
translation (the more linguistically matched parts
between the hypothesis and the reference is, the
lower the uncertainty of the translation is) and a
low entropy indicates good confidence of the given
hypothesis in expressing the meaning of the source
segment. For example, if a hypothesis is perfectly
matched with a reference, then the entropy of the
translation is zero, and if there is no matching to-
ken between the hypothesis and the reference, the
chunk entropy is positive infinity, indicating a total
uncertainty and disorderness of the translation.

Fig. 1 illustrates how EE metrics assign different
weights to the segments in the evaluation set based
on the computed entropy. Firstly, segments in the
evaluation set are divided into two groups: easy
samples and difficult samples. If the entropy of a
hypothesis is higher than the threshold h, it is con-
sidered in the difficult group and vice versa. Then,
hypotheses are assigned weights in the aggregation
of final score based on the groups they belong to.
Specifically, samples in the easy group receive a
weight of w/Ne and samples in the difficult group
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Figure 1: Workflow of EE metrics, assuming the evaluation set contains two segments with reference-hypothesis
pairs (Hyp 1, Ref 1) and (Hyp 2, Ref 2).

receive a weight of (1 − w)/Nd, where Ne, Nd

are the sizes of easy and difficult group, respec-
tively, and w is a balance coefficient that, in our
earlier version of EE metrics, may vary for differ-
ent language pairs and evaluation datasets. Since
the number of easy hypothesis is much larger than
the number of difficult hypothesis for a given MT
system, the weight of easy samples is much lower
than the weight of difficult samples.

2.1.2 EE Metrics 2.0 vs. EE Metrics 1.0
The earlier version of EE metrics (denoted as EE
metrics 1.0) has two hyper-parameters: h and
w, involving in the selection of difficult samples
and the determination of weights assigned to each
group, respectively. The existence of such hyper-
parameters hinders the application of EE metrics.
What’s worse, the hyper-parameters often alter for
different language pairs and evaluation datasets
(e.g., we use up to 10 different parameters in our
preliminary experiment, involving WMT 19 eval-
uation set), making it hard to estimate a feasible
combination of parameters in the actual scenario.
To alleviate such undesirable pain, we propose EE
metrics 2.0 for this year’s WMT metrics shared
tasks. EE metrics 2.0 aims to reduce the hyper-
parameters involved in the computation of system-
level score as much as possible and offers a light-
weight approach of computing weights for each
segment. Specifically, EE metrics 2.0 doesn’t re-
quire specifying h anymore, but automatically es-
timates thresholds based on a normal distribution
fitting of average translation qualities (the aver-
age entropy) over all segments, aiming to find the

threshold value of entropy where a sample has a
significantly higher entropy than those of other sam-
ples in the datasets. Moreover, the estimation of w
is simplified to a single value, instead of a series
of different values for different language pairs. EE
metrics 1.0 provides a formula to estimate w for
every language pair, which is acquired based on the
fitting of WMT 19 results. In contrast, the value of
w doesn’t change across different language pairs
in EE metrics 2.0. Our submissions in WMT 2022
Metrics Shared Task contain three different config-
urations of values of w: 0.3, 0.5 and 0.8, which
stand for different degrees of balance of weights
received between difficult groups and easy groups.

2.2 Reference-free

In this section, we would introduce the four
reference-free metrics.

2.2.1 HWTSC-Teacher-Sim
HWTSC-Teacher-Sim proposed by (Zhang et al.,
2022b), is a Reference-free metric used for ma-
chine translation evalation by achieving cross-
lingual word embedding alignment throgh multi-
lingual knowledge distillation (MKD) (Reimers
and Gurevych, 2020b). The procedure of multilin-
gual knowleage distillation is described in the Fig-
ure 2. The teacher model is monolingual SBERT
(Reimers and Gurevych, 2019) which achieves
state-of-the-art performance for various sentence
embedding tasks, and the student model is a multi-
lingual pretrained model like mBERT or XLM-R
before distillation. After MKD, the similarity score
of sentence pairs in MT evaluation on the language
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Teacher Model

Student Model

[0.8, -0.2, 0.3]

[0.7, -0.2, 0.3]

[0.9, -0.2, 0.4]

Hello World

你好世界

Parallel Data (EN-ZH)

Teacher EN sentence vector

Student EN sentence vector

Student ZH sentence vector

MSE Loss

MSE Loss

Figure 2: Multilingual knowledge distillation

model should be as high as possible. Based on
this feature, embeddings of sentences are used to
calculate the similarity score as a metric. And we
achieve strong results using language models to
calculate the similarity between sentence pairs in
an supervised manner in MQM data.

2.2.2 HWTSC-TLM
HWTSC-TLM proposed by Zhang et al. (2022a)
utilizes a pretrained multilingual model XLM-R
(Conneau et al., 2020) to score the system transla-
tions, which is a zero-shot unsupervised metric for
MT evaluation.

<s>

XLM-R masked language model

How are [MASK] doing today </s>Input

Output

Raw How are you doing today

you:0.70; they: 0.15; your: 0.05; ...

Figure 3: An example of HWTSC-TLM metric calcula-
tion for a given sentence

For a given sentence s = (w1, . . . , wm) with m
tokens, the score is defined as:

SEG_LM(s) =
1

m

m∑

i=1

log
1

P (wi|s− wi)
, (1)

where P (wi|s−wi) the probability ofwi predicted
by the masked language model when wi is replaced
by [MASK], as shown in Figure 3. And this score is
used for segment-level MT evaluation.

For system-level evaluation where a set of sys-
tem translation sentences S is provided, the score
is defined as:

SY S_LM(S) =
1

|S|
∑

s∈S
SEG_LM(s), (2)

which is the mean value of SEG_LM scores on
each sentence in S.

2.2.3 CrossQE
CrossQE showed as figure 4 has used pre-trained
Cross-lingual XLM-Roberta large(Lample and
Conneau, 2019; Conneau et al., 2019) as predic-
tor instead of RNN-based model in the two-stage
Predictor-Estimator architecture (Kim et al., 2017),
and uses regressor as quality estimator, and mul-
titasks are trained at the same time. The Cross-
lingual XLM-Roberta large model is pre-trained
from large-scale parallel corpora which source
and target tokens are concatenated by MLM task.
Shuffling those tokens and predicting those to-
kens’ index by the pre-trained model as a addi-
tional pre-training task can improve CrossQE’s ef-
fect. CrossQE is build on the COMET architec-
ture1 by exploring adapter layers (Houlsby et al.,
2019) for quality estimation to eliminate the over-
fitting problem while instead of fine-tuning the
whole base pre-trained model for different NLP
tasks (He et al., 2021). At training step, the Mean
Teacher loss(Baek et al., 2021) is added to improve
model’s over-fitting problem. Data augmentation
method based on Monte Carlo (MC) dropout (Gal
and Ghahramani, 2016) is added to enhance the
performance in sentence quality score prediction.

sentence regression word regression

sentence score word tags

Feed-forward

Pooling

source feature target feature

Cross-lingual Pretrained Model 
Encoder (XLM-RoBERTa)

Adapter

source targetCLS

Figure 4: Cross QE architecture

2.2.4 KG-BERTScore
KG-BERTScore metric proposed by Wu et al.
(2022), incorporates multilingual knowledge graph
into BERTScore for reference-free MT evaluation.
The evaluation process in WMT22 metrics shared
task is shown in Algorithm 1:

1https://github.com/Unbabel/COMET
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Firstly, we employ a reference-free BERTScore
metric to calculate FBERT score of each MT sen-
tence. For the WMT22 metrics shared task, we use
HWTSC-Teacher-Sim metric to calculate FBERT

so that the score is more relevant to the MQM.
Secondly, we utilize model (NER) named en-

tity recognition to identify named entities in the
sentences, and retrieve the corresponding entity
IDs in multilingual knowledge graph. We then
calculate FKG scores based on entity matching de-
gree. Since the same named entities in different
languages share the same entity ID in multilingual
knowledge graph, we can check whether they can
be matched by entity IDs. For the WMT22 metrics
shared task, the NER model we use is spacy2, and
the multilingual knowledge graph we use is Google
Knowledge Graph Search API3.

Finally, we combine to obtain a segment-level
FKG−BERT score, and the FKG−BERT score of
all MT sentences are averaged to obtain a system-
level score. For the WMT 2022 metrics shared
task, we set α to 0.5, and if there is no entity in the
source, FKG score is 1.

In addition, due to limited access to the Google
Knowledge Graph Search API, we only use KG-
BERTScore metric to score the three language di-
rections zh-en, en-ru, and en-de on the WMT22
metrics shared task. The scores for other language
directions in our submissions are simply populated
with the FBERT score based on the paraphrase-
multilingual-mpnet-base-v2 model4.

3 Experiments

3.1 Experiments of Reference-based

To verify the feasibility of EE metrics 2.0, we con-
duct experiments mainly on WMT 20 and WMT 21
using MQM (Lommel et al., 2014) as the ground
truth. To investigate the difference between when
human translations are used as a system and when
they are not used, we display the results computed
on two sets of systems for each language pair. We
report three coefficients: Pearson’s correlation r,
Kendall’s τ and Spearman’s ρ, to validate system-
level correlations with human evaluations.

Table 2 displays performance comparison be-
tween EE-BERTScore and standard BERTScore,

2https://spacy.io/models
3https://developers.google.com/

knowledge-graph
4https://huggingface.co/sentence-transformers/

paraphrase-multilingual-mpnet-base-v2

Algorithm 1: KG-BERTScore evalua-
tion process

Input :all source sentences sk ∈ S and
machine translations tk ∈ T of
n sentence pairs

Output :a system-level score F
1 for each sentence pair {sk,tk}
∈ {S,T} do
// xi, xj, x̂i, x̂j is the word

embedding.
2 Rk = 1

|sk|
∑

xi∈sk
max
x̂j∈tk

xTi x̂j

3 Pk = 1
|tk|

∑
x̂i∈tk

max
xj∈sk

x̂Ti xj

4 FBERTk
= 2 Pk·Rk

Pk+Rk

// entities (sk), entities (tk) is
the number of entities.

5 if entities(sk) ̸= 0 then
6 FKGk

=
matches(entities(sk),entities(tk))

entities(sk)

7 else
8 FKGk

= 1
9 end

// α is an adjustable
hyperparameter.

10 FKG−BERTk
=

α · FKGk
+ (1− α) · FBERTk

11 end

12 F =
∑n

k=1 FKG−BERTk
n

where EE-BERTScore achieves overall higher
correlations with human MQM than standard
BERTScore. We experiment with EE-BERTScore
under different values of w, suggesting different
relative weights between easy groups and difficult
groups in the computation of system-level scores.
We find that each setting of w is able to improve
the performance of standard BERTScore, and has
their best performances on a certain dataset. For
example, EE-BERTScore-0.3 and EE-BERTScore-
0.5 achieve a strong result on news test of WMT
20 and WMT 21, while on WMT 21 tedtalks, best
performance is achieved when w is 0.8.

Since EE metrics evaluate a system relying on
not only the single system, but also other partici-
pated systems, the existence of human translations
may have an impact on the performances of EE met-
rics. As shown in Table 2, correlations with MQM
drop sharply for EE-BERTScore-∗ when human
translations are included as, which is in accordance
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Metric En→ De (w/o Human) Zh→ En (w/o Human) En→ Ru (w/o Human) En→ De (with Human) Zh→ En (with Human) En→ Ru (with Human)

r τ ρ r τ ρ r τ ρ r τ ρ r τ ρ r τ ρ

WMT 20 WMT 20
BERTScore 0.754 0.429 0.536 0.742 0.643 0.810 - - - 0.281 0.067 -0.018 0.550 0.422 0.467 - - -
EE-BERTScore-0.3 0.721 0.429 0.536 0.896 0.714 0.833 - - - 0.297 -0.067 -0.079 0.582 0.422 0.467 - - -
EE-BERTScore-0.5 0.736 0.429 0.536 0.827 0.714 0.833 - - - 0.292 0.022 -0.030 0.569 0.422 0.467 - - -
EE-BERTScore-0.8 0.755 0.333 0.464 0.654 0.571 0.690 - - - 0.284 0.067 -0.018 0.547 0.378 0.406 - - -

WMT 21-news WMT 21-news
BERTScore 0.911 0.795 0.945 0.577 0.308 0.484 0.776 0.538 0.692 0.181 0.441 0.500 0.382 0.295 0.439 0.540 0.417 0.485
EE-BERTScore-0.3 0.874 0.846 0.945 0.637 0.487 0.626 0.621 0.451 0.622 0.182 0.485 0.512 0.384 0.410 0.521 0.569 0.317 0.435
EE-BERTScore-0.5 0.898 0.846 0.945 0.595 0.359 0.511 0.717 0.495 0.701 0.183 0.500 0.517 0.382 0.352 0.457 0.562 0.383 0.491
EE-BERTScore-0.8 0.919 0.769 0.923 0.526 0.256 0.462 0.809 0.604 0.754 0.184 0.456 0.532 0.380 0.276 0.429 0.548 0.467 0.526

WMT 21-tedtalks WMT 21-tedtalks
BERTScore 0.465 0.256 0.319 0.634 0.055 0.134 0.826 0.626 0.793 0.541 0.363 0.455 -0.634 -0.086 -0.079 0.659 0.676 0.832
EE-BERTScore-0.3 0.560 0.333 0.473 0.321 0.055 0.125 0.687 0.451 0.626 0.553 0.429 0.578 -0.775 -0.086 -0.086 -0.568 0.219 0.289
EE-BERTScore-0.5 0.558 0.333 0.445 0.534 0.077 0.143 0.750 0.495 0.679 0.549 0.429 0.556 -0.719 -0.067 -0.071 -0.538 0.276 0.361
EE-BERTScore-0.8 0.495 0.359 0.478 0.645 0.077 0.134 0.829 0.692 0.829 0.543 0.451 0.582 -0.617 -0.067 -0.079 0.805 0.714 0.857

Table 2: Correlations with system-level human MQM scores on datasets of WMT 20 news, WMT 21 news and
WMT 21 tedtalks. EE-BERTScore-∗ represents EE-BERTScore with different w values. With Human indicates
evaluation on MT systems and human traslations, and w/o Human indicates MT systems only. Best correlations are
marked in bold.

with the conclusion from (Freitag et al., 2021b) that
most metrics struggle to correctly score translations
that are different from MT systems. However, we
still see EE-BERTScore-∗ improves the correla-
tions with human for BERTScore in some cases
(En→ De in WMT 21 datasets), while there are
cases where EE-BERTScore-∗ hardly has a differ-
ence with BERTScore in terms of the correlations
(Zh→ En in WMT 20 news). Overall, when human
translations participate as additional outputs, EE
metrics bring a less significant improvement to the
standard metrics.

3.2 Experiments of Reference-free

This section introduces the experimental results of
our four reference-free metrics.

3.2.1 HWTSC-Teacher-Sim
We choose paraphrase-multilingual-mpnet-base-
v24 as the model for generating sentence embed-
dings. Triplets were build with source, MT, and the
scores of MT - the scores of MT were normalized.
The MT with a higher score is closer to the source
in the vector space. With TripletEvaluator, we
achieve the alignment of embeddings of source and
MT in the space vector. In en-de and zh-en, we use
MQM data of WMT2020 and WMT2021 as train
set and test set respectively. Since en-ru only has
MQMdata of WMT2021, the experimental results
of en-ru are missing. COMET-QE-DA_2021-src
(Rei et al., 2020) is chosen as the state-of-the-art
reference-free metric for comparison. And sent-
BLEU and BLEU (Koehn et al., 2007) are selected
as the state-of-the-art reference-based metrics.

The experimental results show that the introduc-

Metrics en-de zh-en
sentBLEU 0.083 0.176
COMET-QE-DA_2021-src 0.244 0.305
HWTSC-Teacher-Sim 0.205 0.355

Table 3: Segment-level Kendall correlations for lan-
guage pairs of WMT21 MQM data

Metrics en-de zh-en
BLEU 0.937 0.310
COMET-QE-DA_2021-src 0.847 0.453
HWTSC-Teacher-Sim 0.863 0.596

Table 4: System-level Pearson correlations for language
pairs of WMT21 MQM data

tion of multilingual knowledge distillation is more
helpful to the system level scoring accuracy of
reference-free HWTSC-Teacher-Sim.

3.2.2 HWTSC-TLM
XLM-R5 is selected as the masked language model
for our metric HWTSC-TLM. The segment-level
and system-level results on the 8 from-English lan-
guage pairs of WMT19 are reported in Table 5
and Table 6 respectively. YiSi-2 (Lo, 2019) and
Prism-src (Thompson and Post, 2020) are chosen
as the state-of-the-art unsupervised reference-free
metrics for comparison, and reference-based met-
rics sentBLEU and BLEU (Koehn et al., 2007) are
selected for reference. More experimental results
of HWTSC-TLM on WMT19 could be found in
(Zhang et al., 2022a).

From the results in Table 5 and Table 6, it could
be seen that HWTSC-TLM is much better than

5https://huggingface.co/xlm-roberta-base
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Metrics en-cs en-de en-fi en-gu en-kk en-lt en-ru en-zh Avg
sentBLEU 0.367 0.248 0.396 0.465 0.392 0.334 0.469 0.270 0.368
YiSi-2 0.069 0.212 0.239 0.147 0.187 0.003 -0.155 0.044 0.093
Prism-src 0.470 0.402 0.555 0.215 0.507 0.499 0.486 0.287 0.428
HWTSC-TLM 0.443 0.343 0.492 0.328 0.301 0.471 0.457 0.297 0.392

Table 5: Segment-level metric results for from-English
language pairs of WMT19: absolute Kendall’s Tau cor-
relation of segment-level metric scores with DA.

Metrics en-cs en-de en-fi en-gu en-kk en-lt en-ru en-zh Avg
BLEU 0.897 0.921 0.969 0.737 0.852 0.989 0.986 0.901 0.907
YiSi-2 0.324 0.924 0.696 0.314 0.339 0.055 0.766 0.097 0.439
Prism-src 0.865 0.976 0.933 0.444 0.959 0.908 0.822 0.793 0.838
HWTSC-TLM 0.896 0.978 0.941 0.683 0.897 0.919 0.819 0.959 0.886

Table 6: System-level metric results for from-English
language pairs of WMT19: absolute Pearson correlation
of system-level metric scores with DA.

YiSi-2, and is very competitive with Prism-src,
which is a very strong baseline in unsupervised
reference-free metrics, although only system trans-
lations are used in HWTSC-TLM.

3.2.3 CrossQE
Experiments and results of CrossQE could be found
in WMT 2022 QE task report (Su et al., 2022).

3.2.4 KG-BERTScore
The ninth layer of XLM-R5 is selected for word em-
bedding to calculate FBERT scores in our metric
KG-BERTScore. The segment-level and system-
level results on the 7 into-English language pairs
of WMT19 are reported in Table 7 and Table 8
respectively. YiSi-2 (Lo, 2019) and reference-free
BERTScore are chosen as unsupervised reference-
free metrics for comparison, and reference-based
metrics sentBLEU and BLEU (Koehn et al., 2007)
are selected for reference. The experimental results
show that the introduction of multilingual knowl-
edge graph is more helpful to the system level scor-
ing accuracy of reference-free BERTScore.

Metrics de-en fi-en gu-en kk-en lt-en ru-en zh-en mean
sentBLEU 0.056 0.233 0.188 0.377 0.262 0.125 0.323 0.223
YiSi-2 0.068 0.126 -0.001 0.096 0.075 0.053 0.253 0.096
BERTScore 0.036 0.234 0.171 0.310 0.211 0.089 0.196 0.178
KG-BERTScore 0.039 0.191 0.165 0.313 0.177 0.095 0.213 0.170

Table 7: Segment-level metric results for into-English
language pairs of WMT19: absolute Kendall’s Tau cor-
relation of segment-level metric scores with DA.

4 Conclusions

In this paper, we present one reference-based met-
ric and four reference-free metrics. We apply the

Metrics de-en fi-en gu-en kk-en lt-en ru-en zh-en mean
BLEU 0.849 0.982 0.834 0.946 0.961 0.879 0.899 0.907
YiSi-2 0.796 0.642 -0.566 -0.324 0.442 -0.339 0.940 0.227
BERTScore 0.785 0.866 -0.007 0.117 0.657 -0.372 0.728 0.396
KG-BERTScore 0.862 0.733 0.764 0.936 0.688 0.918 0.908 0.830

Table 8: System-level metric results for into-English
language pairs of WMT19: absolute Pearson correlation
of system-level metric scores with DA.

methods of entropy-enhance, multilingual knowl-
edge distillation, multilingual knowledge graph,
and quality evaluation in MT to WMT 2022 Met-
rics Shared Task. The experimental results show
great effectiveness of our research direction and
the superiority of our metrics.
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Constantin, and Evan Herbst. 2007. Moses: Open
source toolkit for statistical machine translation. In
Proceedings of the 45th Annual Meeting of the As-
sociation for Computational Linguistics Companion
Volume Proceedings of the Demo and Poster Sessions,
pages 177–180, Prague, Czech Republic. Association
for Computational Linguistics.

Guillaume Lample and Alexis Conneau. 2019. Cross-
lingual language model pretraining. arXiv preprint
arXiv:1901.07291.

Alon Lavie and Abhaya Agarwal. 2007. METEOR: An
automatic metric for MT evaluation with high levels
of correlation with human judgments. In Proceed-
ings of the Second Workshop on Statistical Machine
Translation, pages 228–231, Prague, Czech Republic.
Association for Computational Linguistics.

Yilun Liu, Shimin Tao, Chang Su, Min Zhang, Yanqing
Zhao, and Hao Yang. 2022. Part represents whole:
Improving the evaluation of machine translation sys-
tem using entropy enhanced metrics. In Findings of
the 2nd Conference of the Asia-Pacific Chapter of
the Association for Computational Linguistics and
the 12th International Joint Conference on Natural
Language Processing.

Chi-kiu Lo. 2019. YiSi - a unified semantic MT quality
evaluation and estimation metric for languages with
different levels of available resources. In Proceed-
ings of the Fourth Conference on Machine Transla-
tion (Volume 2: Shared Task Papers, Day 1), pages
507–513, Florence, Italy. Association for Computa-
tional Linguistics.

Arle Lommel, Hans Uszkoreit, and Aljoscha Burchardt.
2014. Multidimensional quality metrics (mqm): A
framework for declaring and describing translation
quality metrics. Revista Tradumàtica: tecnologies de
la traducció, (12):455–463.

Kishore Papineni, Salim Roukos, Todd Ward, and Wei-
Jing Zhu. 2002. Bleu: a method for automatic evalu-
ation of machine translation. In Proceedings of the
40th Annual Meeting of the Association for Compu-
tational Linguistics, pages 311–318, Philadelphia,
Pennsylvania, USA. Association for Computational
Linguistics.

Ricardo Rei, Ana C Farinha, Chrysoula Zerva, Daan
van Stigt, Craig Stewart, Pedro Ramos, Taisiya
Glushkova, André F. T. Martins, and Alon Lavie.
2021. Are references really needed? unbabel-IST
2021 submission for the metrics shared task. In Pro-
ceedings of the Sixth Conference on Machine Trans-
lation, pages 1030–1040, Online.

Ricardo Rei, Craig Stewart, Ana C Farinha, and Alon
Lavie. 2020. COMET: A neural framework for MT
evaluation. In Proceedings of the 2020 Conference
on Empirical Methods in Natural Language Process-
ing (EMNLP), pages 2685–2702, Online. Association
for Computational Linguistics.

Nils Reimers and Iryna Gurevych. 2019. Sentence-
BERT: Sentence embeddings using Siamese BERT-
networks. In Proceedings of the 2019 Conference on
Empirical Methods in Natural Language Processing
and the 9th International Joint Conference on Natu-
ral Language Processing (EMNLP-IJCNLP), pages
3982–3992, Hong Kong, China. Association for Com-
putational Linguistics.

Nils Reimers and Iryna Gurevych. 2020a. Making
monolingual sentence embeddings multilingual us-
ing knowledge distillation. In Proceedings of the
2020 Conference on Empirical Methods in Natural
Language Processing (EMNLP), pages 4512–4525,
Online. Association for Computational Linguistics.

Nils Reimers and Iryna Gurevych. 2020b. Making
monolingual sentence embeddings multilingual us-
ing knowledge distillation. In Proceedings of the
2020 Conference on Empirical Methods in Natural
Language Processing. Association for Computational
Linguistics.

Thibault Sellam, Dipanjan Das, and Ankur Parikh. 2020.
BLEURT: Learning robust metrics for text genera-
tion. In Proceedings of the 58th Annual Meeting of
the Association for Computational Linguistics, pages
7881–7892, Online. Association for Computational
Linguistics.

556



Chang Su, Miaomiao Ma, Shimin Tao, Hao Yang, Xi-
ang Geng, Shujian Huang, Min Zhang, Jiaxin Guo,
Wang Minghan, Min Zhang, et al. 2022. Hw-tsc’s
participation at wmt 2022 quality estimation shared
task. In Proceedings of the Senventh Conference on
Machine Translation. Submitted.

Brian Thompson and Matt Post. 2020. Automatic ma-
chine translation evaluation in many languages via
zero-shot paraphrasing. In Proceedings of the 2020
Conference on Empirical Methods in Natural Lan-
guage Processing (EMNLP), pages 90–121, Online.
Association for Computational Linguistics.

Minghan Wang, Hao Yang, Hengchao Shang, Daimeng
Wei, Jiaxin Guo, Lizhi Lei, Ying Qin, Shimin Tao,
Shiliang Sun, Yimeng Chen, and Liangyou Li. 2020.
HW-TSC’s participation at WMT 2020 quality esti-
mation shared task. In Proceedings of the Fifth Con-
ference on Machine Translation, pages 1056–1061,
Online. Association for Computational Linguistics.

Zhanglin Wu, Min Zhang, Ming Zhu, Yinglu Li, Ting
Zhu, Hao Yang, Song Peng, and Ying Qin. 2022.
KG-BERTScore: Incorporating Knowledge Graph
into BERTScore for Reference-Free Machine Trans-
lation Evaluation. In 11th International Joint Con-
ference on Knowledge Graphs, IJCKG2022. To be
publiushed.

Hao Yang, Shimin Tao, Minghan Wang, Min Zhang,
Daimeng Wei, Shuai Zhao, Miaomiao Ma, and Ying
Qin. 2022a. CCDC: A Chinese-Centric Cross Do-
main Contrastive Learning Framework. In Knowl-
edge Science, Engineering and Management, pages
225–236, Cham. Springer International Publishing.

Hao Yang, Minghan Wang, Daimeng Wei, Hengchao
Shang, Jiaxin Guo, Zongyao Li, Lizhi Lei, Ying Qin,
Shimin Tao, Shiliang Sun, and Yimeng Chen. 2020.
HW-TSC’s participation at WMT 2020 automatic
post editing shared task. In Proceedings of the Fifth
Conference on Machine Translation, pages 797–802,
Online. Association for Computational Linguistics.

Hao Yang, Min Zhang, Shimin Tao, Miaomiao Ma,
Ying Qin, and Chang Su. 2022b. TeacherSim: Cross-
lingual machine translation evaluation with monolin-
gual embedding as teacher. In The 2nd International
Conference on Electrical, Computer, Communica-
tions and Mechatronics Engineering (ICECCME).
To be publiushed.

Hui Yu, Xiaofeng Wu, Wenbin Jiang, Qun Liu, and
Shouxun Lin. 2015. Improve the evaluation of trans-
lation fluency by using entropy of matched sub-
segments. CoRR, abs/1508.02225.

Min Zhang, Xiaosong Qiao, Hao Yang, Shimin Tao,
Yanqing Zhao, Yinlu Li, Chang Su, Minghan Wang,
Jiaxin Guo, Yilun Liu, and Ying Qin. 2022a. Target-
side language model for reference-free machine trans-
lation evaluation. In The 18th China Conference on
Machine Translation, CCMT2022. To be publiushed.

Min Zhang, Hao Yang, Shimin Tao, Yanqing Zhao, Xi-
aosong Qiao, Yinlu Li, Chang Su, Minghan Wang,
Jiaxin Guo, Yilun Liu, and Ying Qin. 2022b. In-
corporating multilingual knowledge distillation into
machine translation evaluation. In The 16th China
Conference on Knowledge Graph and Semantic Com-
puting, CCKS2022. To be publiushed.

Tianyi Zhang, Varsha Kishore, Felix Wu, Kilian Q Wein-
berger, and Yoav Artzi. 2019. Bertscore: Evaluating
text generation with bert. In International Confer-
ence on Learning Representations.

Tianyi Zhang, Varsha Kishore, Felix Wu, Kilian Q.
Weinberger, and Yoav Artzi. 2020. Bertscore: Evalu-
ating text generation with BERT. In 8th International
Conference on Learning Representations, ICLR 2020,
Addis Ababa, Ethiopia, April 26-30, 2020. OpenRe-
view.net.

557



Proceedings of the Seventh Conference on Machine Translation (WMT), pages 558–563
Abu Dhabi, December 7–8, 2022. ©2022 Association for Computational Linguistics

Unsupervised Embedding-based Metric for MT Evaluation with Improved
Human Correlation

Ananya Mukherjee and Manish Shrivastava
Machine Translation - Natural Language Processing Lab

Language Technologies Research Centre
International Institute of Information Technology - Hyderabad

ananya.mukherjee@research.iiit.ac.in
m.shrivastava@iiit.ac.in

Abstract

In this paper, we describe our submission to
the WMT22 metrics shared task. Our metric
focuses on computing contextual and syntactic
equivalences along with lexical, morphologi-
cal and semantic similarity. The intent is to
capture fluency and context of the MT outputs
along with their adequacy. Fluency is captured
using syntactic similarity and context is cap-
tured using sentence similarity leveraging sen-
tence embeddings. The final sentence trans-
lation score is the weighted combination of
three similarity scores: a) Syntactic Similarity
b) Lexical, Morphological and Semantic Simi-
larity and c) Contextual Similarity. This paper
outlines two improved versions of MEE i.e.,
MEE2 and MEE4. Additionally, we perform
our experiments on language pairs of en-de,
en-ru and zh-en from WMT17-19 testset and
further report the correlation with human as-
sessments. Our submission will be made avail-
able at https://github.com/AnanyaCoder/
WMT22Submission.

1 Introduction

Neural Machine Translation (NMT) systems have
emerged with an increased research interest in re-
cent times and significantly enhanced the MT qual-
ity. However, the MT research community still
relies mainly on antiquated metrics and no new,
universally adopted standard metric has emerged.
In the last few years, research in Machine Transla-
tion (MT) evaluation has made significant progress.
A metrics-shared task is held annually at the WMT
conference, where new evaluation metrics are pro-
posed and those which correlates highly with
human judgements are presented from the pool
of newly defined metrics. Neural-based metrics
largely dominated the last two years of the WMT
Metrics Task (Freitag et al., 2021; Mathur et al.,
2020; Ma et al., 2019). Nevertheless, n-gram
based or lexical-based metrics remain popular as
automatic MT evaluation metric due to their ag-

ile and light-weighted nature. Traditionally, auto-
matic metrics for evaluating MT quality have re-
lied on estimating the similarity between machine
outputs and reference sentences in the target lan-
guage. However, advanced NMT methods yield
high-quality translations that might have lexical,
morphological, syntactic variations and different
word choices having similar meanings. Typically,
the machine output diverges from monotonic lex-
ical transfer between the source and target lan-
guages. Widely used evaluation metrics rely on
basic, lexical-level features as they calculate the
surface similarity between the hypothesis and refer-
ence sentences by counting the number of matching
n-grams (Papineni et al., 2002; Doddington, 2002).
Metrics relying on n-gram overlap cannot appropri-
ately capture morphological, syntactic and seman-
tic variations as they are sensitive to only lexical
variations. METEOR (Denkowski and Lavie, 2014;
Gupta et al., 2010; Lavie and Denkowski, 2009;
Lavie and Agarwal, 2007; Banerjee and Lavie,
2005) captures semantic variations but it is highly
dependent on language specific tools . Hence, there
is huge requirement for a robust, understandable,
easy to use automatic MT evaluation metric which
captures all the linguistic features to evaluate like
humans. The better evaluation metric will be highly
helpful to the development of better MT systems
(Liu et al., 2011).

In this paper, we present our submission to the
WMT2022 metrics shared task. We evaluate the
translations of English-German (en-de), English-
Russian (en-ru) and Chinese-English (zh-en) lan-
guage pairs. However, the proposed metric is lan-
guage independent and supports 100+ languages.
Here, our submission includes scores of three met-
rics MEE (Mukherjee et al., 2020), MEE2 and
MEE4 (MEE2 and MEE4 are extended versions of
MEE). We have evaluated the testsets of WMT17
(Bojar et al., 2017), WMT18 (Bojar et al., 2018)
and WMT19 (Bojar et al., 2019a,b,c), for the same
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language pairs (en-de, en-ru and zh-en) and re-
ported the correlation with human assessments.
The empirical results conclude that MEE4 shows
better agreement with humans.

2 Metric for Evaluation using
Embeddings (MEE)

2.1 MEE

MEE (Mukherjee et al., 2020) is an automatic
evaluation metric that leverages the similarity be-
tween embeddings of words in candidate and refer-
ence sentences to assess translation quality focus-
ing mainly on adequacy. Unigrams are matched
based on their surface forms, root forms and mean-
ings which aids to capture lexical, morphological
and semantic equivalence. Semantic evaluation is
achieved by using pretrained fasttext embeddings
(Grave et al., 2018) provided by Facebook to calcu-
late the word similarity score between the candidate
and the reference words. MEE computes evalua-
tion score using three modules namely exact match,
root match and synonym match. In each module,
fmean-score is calculated using harmonic mean
of precision and recall by assigning more weigh-
tage to recall. Final translation score is obtained
by taking average of fmean-scores from individual
modules.

2.2 MEE2, MEE4

MEE2 and MEE4 are improved versions of MEE
that capture lexical, morphological, semantic, con-
textual and syntactic similarity. These linguistic
aspects are captured in different modules and the
final sentence translation score is the weighted pool
of these individual modules. Unlike MEE, these
metrics capture fluency and sentence semantics.
Contextual similarity (or sentence semantics) is
obtained by computing a cosine similarity between
sentence embeddings of reference sentence and
system output. Whereas fluency is captured by per-
forming Syntactic Similarity which is computed
by using a modified BLEU score. Lexical, Mor-
phological and Semantic1 Similarity is measured
by explicit unigram matching similar to MEE.

Figure 1 illustrates the segment-level computa-
tion of final translation score of based on a refer-
ence sentence.

1word-level semantic similarity

2.2.1 Syntactic Similarity
Our approach assesses fluency by capturing the syn-
tactic similarity between the reference and the hy-
pothesis using BLEU (Papineni et al., 2002) since
it follows the notion that longer n-gram scores ac-
count for the fluency of the translation. However,
the length with the "highest correlation with mono-
lingual human judgements" was found to be four
(BLEU-4). Our experiments adopt the concept
of BLEU with a slight variation i.e., dynamic n-
gram (n depends on the sentence length). Here,
while evaluating a hypothesis, the order of n-gram
is based on the corresponding reference sentence
length.

2.2.2 Lexical, Morphological and Semantic
Similarity

In our work, lexical, morphological and semantic
equivalence score is computed in similar to MEE
metric 2. MEE (Metric for Evaluation using Em-
beddings) contains three modules, namely Exact
Match, Root Match, and Synonym Match which
accounts for lexical, morphological and semantic
features of the translation (Mukherjee et al., 2020).

2.2.3 Contextual Similarity
Contextual Similarity Score is computed by mea-
suring the distance between the hypothesis sen-
tence embedding and reference sentence em-
bedding. Sentence Embedding models map
text/sentences to a vector space, implying that re-
lated or similar sentences lie closer to each other
in this embedding space. Sentence embedding cap-
tures the intention of the sentence. Our work is
based on the assumption that contextual informa-
tion of a given sentence can be captured from its
vector (or embedding). We determine the con-
text equivalence of two sentences by computing
a cosine similarity (Foreman, 2014) between the
embeddings of reference and hypothesis. Contex-
tual equivalence is calculated by computing co-
sine similarity between the sentences embedded
using LaBSE by Google AI. Out of several existing
Language-Agnostic models, LaBSE (Feng et al.,
2020), LASER (Artetxe and Schwenk, 2018), and
Indic-Bert (Kakwani et al., 2020) we prefered to
use LaBSE to embed the sentences as it is a mul-
tilingual BERT embedding model trained using
MLM and TLM pre-training, resulting in a model
that is effective even on low-resource languages

2https://github.com/AnanyaCoder/MEE_WMT2021
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for which there is no data available during training.
Also, it produces language-agnostic cross-lingual
sentence embeddings for 109 languages.

2.3 Score Computation
The segment-level evaluation score is computed as
follows. Based on number of matched unigrams in
candidate and reference sentence, individual fmean
scores are computed at lexical, morphological and
semantic levels. These fmean scores are achieved
by parameterized harmonic mean (Sasaki, 2007) of
precision and recall as per Equation 3. Ulitmately,
MEE score is computed by averaging the individual
fmean scores of three modules.

precision(P ) =
#matched_unigrams

Total#unigrams_in_hypothesis
(1)

recall(R) =
#matched_unigrams

Total#unigrams_in_reference
(2)

fβ =
(β2 + 1)PR

β2P +R
(3)

MEE2 and MEE4 is computed using Equation
4 where LMS score is same as the MEE score
(Mukherjee et al., 2020) i.e., β = 3 in Equation
3. Syn and Cxt are Syntax Simlarity score and
Contextual Similarity score of reference and trans-
lation. The parameters in Equation 4 are manually
tuned for computing MEE2 and MEE4 scores3. For
MEE2: α = 2, γ = 1, δ = 1, ϵ = 1 and for MEE4:
α = 2, γ = 1, δ = 1, ϵ = 3

score =
δ ∗ α∗LMS+γ∗Syn

α+γ
+ ϵ ∗ Cxt

δ + ϵ
(4)

3 Experiments and Results

3.1 Results on WMT17-19 testset
Each year, the WMT Translation shared task or-
ganisers collect human judgements in the form of
Direct Assessments. Those assessments are then
used in the Metrics task to measure the correlation
between metrics and therefore decide which metric
works best. Therefore, we evaluated a total of 9K
sentences from the testset of WMT17, WMT18,
WMT19 for en-ru, en-de, zh-en language pairs and
computed the pearson correlation (Benesty et al.,
2009) of MEE, MEE2, MEE4 with human assess-
ments. The segment level correlation scores are
mentioned in Table 1. It is clearly evident that

3These scores range from 0-1.

MEE4 correlates better with humans i.e., across
the different testsets and language pairs, MEE4
demonstrates higher agreement with human judge-
ments.

3.2 WMT22 task submission
During our experiments, we tested several tech-
niques: averaging the module scores with different
weights. Based on the agreement with humans on
the WMT17-19 testset (refer Table 1, we decided
to report the scores of MEE, MEE2 and MEE4 for
the current WMT22 metric shared task submission.
Table 2 shows the WMT22 test-set details we have
experimented on.

3.2.1 Segment Level Evaluation
For Segment-level task, we submitted the sentence
level scores obtained by our reference based met-
rics MEE2 and MEE4 for en-ru, en-de and zh-en
language pairs.

3.2.2 System Level Evaluation
For the System-level task we compute the system-
level score for each system by averaging the
segment-level scores obtained. We observe an
equivalent approach used to compute system-level
scores based on segment-level human annotations
such as DA’s and MQM, implying that a metric that
achieves a solid segment-level correlation should
also gain strong system-level performances.

4 Conclusion and Future Work

In this paper, we present our participation to the
WMT22 Metrics Shared Task. Our submission in-
cludes segment-level and system-level scores for
sentences of three language pairs Chinese-English
(zh-en), English-Russian (en-ru) and English-
German (en-de). We evaluate this year’s test set
using our unsupervised, reference-based metrics:
MEE2 and MEE4. Both the metrics are extended
versions of MEE with improved correlation. From
the last year’s findings, it was evident that MEE2
was one among the better performing metrics as it
was highlighted in the top significant cluster (Fre-
itag et al., 2021). However, this year we present
MEE4 along with MEE2 and MEE4 has proved to
perform better in terms of correlation with humans
when evaluated on testsets of WMT17, WMT18
and WMT19. We observe that this improvement
in agreement to human experts level judgements is
due to assigning more weightage to context infor-
mation (sentence level semantics) when compared
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Figure 1: Illustration of our model Architecture.

Test-set LP #Sentences BLEU MEE MEE2 MEE4

WMT17
zh-en 1000 0.22 0.261 0.383 0.402
en-ru 1000 0.32 0.376 0.476 0.495
en-de 1000 0.2 0.211 0.326 0.380

WMT18
zh-en 1000 0.18 0.189 0.273 0.290
en-ru 1000 0.32 0.335 0.404 0.414
en-de 1000 0.42 0.476 0.549 0.563

WMT19
zh-en 1000 0.33 0.328 0.5 0.555
en-ru 1000 0.35 0.465 0.491 0.489
en-de 1000 0.24 0.245 0.322 0.351

Table 1: Segment Level Correlation with Human Judgements on WMT17, WMT18 and WMT19 testset.

to other linguistic aspects. In future, we plan to
further experiment on optimizing weights assigned
to individual linguistic modules with an aim to eval-
uate the translations to have better correlation with
humans.
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Abstract
This paper describes our submission to the
WMT2022 shared metrics task. Our unsuper-
vised metric estimates the translation quality
at chunk-level and sentence-level. Source and
target sentence chunks are retrieved by using
a multi-lingual chunker. Chunk-level similar-
ity is computed by leveraging BERT contex-
tual word embeddings and sentence similarity
scores are calculated by leveraging sentence
embeddings of Language-Agnostic BERT mod-
els. The final quality estimation score is ob-
tained by mean pooling the chunk-level and
sentence-level similarity scores. This paper out-
lines our experiments and also reports the corre-
lation with human judgements for en-de, en-ru
and zh-en language pairs of WMT17, WMT18
and WMT19 testsets. Our submission will
be made available at https://github.com/
AnanyaCoder/WMT22Submission_REUSE

1 Introduction

Quality Estimation (QE) is an essential component
of the machine translation workflow as it assesses
the quality of the translated output without con-
ferring reference translations (Specia et al., 2009;
Blatz et al., 2004). High quality reference transla-
tions are often hard to find, QE helps to evaluate the
translation quality based on the source sentences.
Recently QE has emerged as an alternative eval-
uation approach for NMT systems (Specia et al.,
2018). Recently, many researchers have been work-
ing on QE, as a part of Quality Estimation Shared
Task, several QE systems (Zerva et al., 2021; Lim
et al., 2021; Chowdhury et al., 2021; Geigle et al.,
2021) were evaluated in WMT conference (Bar-
rault et al., 2021). However, most of the quality
estimation systems are supervised i.e., the model re-
gresses on the human judgements. Often, human as-
sessments are not available and it is very difficult to
procure high quality human judgements. This moti-
vated our research to emerge with an Unsupervised
Quality Estimation System. Also, QE is usually

performed at different granularity (e.g., word, sen-
tence, document) (Kepler et al., 2019); in this work,
we focus on the chunk-level and sentence-level sim-
ilarity. The final QE score of the target sentence
is obtained by mean pooling the chunk similarity
scores and sentence similarity scores. Overall, our
main contribution is as follows:

• We propose a concept of chunk level similarity
i.e., matching the source and target chunks by
leveraging multilingual BERT embeddings.

• We release a multilingual chunking model
which returns meaningful word group bound-
aries.

• We present our unsupervised reference free
QE metric (REUSE) that estimates the qual-
ity of translation by doing a chunk-level and
sentence-level comparison with the source.

1.1 Motivation to use chunks
Usually, the words in translated output might not
always follow the word sequence of the source text.
However, it is observed that few word-groups often
occur together irrespective of the order in source.

Figure 1 illustrates two example pairs: English-
German (en-de) pair and English-Hindi (en-hi) pair.
In the first example pair, the words sequence is not
highly altered as English and German belong to the
same language family (West Germanic), whereas
in en-hi pair we can see a drastic change in the
word order as Hindi belongs to a different language
family (Indo-Aryan). However, we can observe
that few word groups (here we refer as chunk) al-
ways occur together in both source and target. This
phenomenon has motivated our research in the di-
rection of chunk level assessment.

2 REUSE

We propose REUSE, a REference-free
UnSupervised quality Estimation Metric that
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Figure 1: Illustration of chunk similarity for two example sentences (en-de & en-hi).

evaluates a machine translated output based on
the corresponding source sentence regardless of
the reference. Figure 2 depicts the high-level
architecture of our model. The chunks of source
and hypothesis are acquired from the multilingual
chunking model. Further chunk-wise subword
contextual BERT embeddings are mean-pooled to
obtain the chunk-level embeddings. Meanwhile,
LaBSE model (Feng et al., 2020) is used for
the sentence-level embeddings. Using these
embeddings, we compute chunk-level similarity
and sentence-level similarity, finally combine them
by averaging chunk- and sentence-level similarity
scores1. We discuss the working details of our
system in the following sections.

Figure 2: High-level architecture of REUSE model.

1REUSE score ranges between 0-1.

2.1 Chunk-level Similarity

We measure the number of matches between source
chunks and hypothesis chunks. These matches are
obtained by computing a cosine similarity (Fore-
man, 2014) of the individual chunk embeddings
(refer 2.1.2) of source and translation sentence. An
all-pair comparison is done to determine the best
chunk match. Based on these matches, we com-
pute precision and recall i.e, precision is count of
matches / length of hypothesis and recall is count of
matches / length of source. Ultimately, the chunk-
level similarity score is calculated as the param-
eterized harmonic mean (Sasaki, 2007) of preci-
sion and recall, assigning more weightage to recall
(β = 3).

2.1.1 Multilingual Chunker

The fundamental innovation in recent neural mod-
els lie in learning the contextualized representa-
tions by pre-training a language modeling task.
Multilingual BERT is one such transformer-based
masked language model that is pre-trained on
monolingual Wikipedia corpora of 104 languages
with a shared word-piece vocabulary. Training
the pre-trained mBERT model for a supervised
downstream task (finetuning) has dominated per-
formance across a broad spectrum of NLP tasks
(Devlin et al., 2018). We leverage this finetuning
capability of BERT so as to create a Multilingual
Chunker model that inputs a sentence and returns a
set of divided chunks (word-groups).
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We use BertForTokenClassification which
has BERT (Bidirectional Encoder Representations
from Transformers) as its base architecture, with
a token classification head on top, allowing it to
make predictions at the token level, rather than
the sequence level. We use this BertForTokenClas-
sification model and load it with the pretrained
weights of "bert-base-multilingual-cased"2. We
train the token classification head, together with
the pretrained weights, using our labelled dataset
(chunk annotated data). We employ Cross Entropy
as the loss function and Adam optimizer (Kingma
and Ba, 2014) with a learning rate of 1e-05.

2.1.2 Chunk Embeddings
Currently, we have word embedding models and
sentence embedding models, but there is no spe-
cific chunk-level embedding models. Therefore,
we embed the chunks leveraging the BERT em-
beddings by loading the weights of "distiluse-base-
multilingual-cased"3. For a given sentence, this
model return embeddings at a subword-level. To
obtain the desired chunk embeddings, we perform
a chunk to subword mapping and mean-pool the
subword embeddings belonging to each chunk.

2.2 Sentence Similarity
To compute similarity at the sentence level, we find
the cosine similarity (Foreman, 2014) of source sen-
tence embedding and translation sentence embed-
ding. We use LaBSE (Language Agnostic BERT
Sentence Embedding) model to obtain the sentence
embeddings. LaBSE model (Feng et al., 2020)
is built on BERT architecture and trained on fil-
tered and processed monolingual (for dictionaries)
and bilingual training data. The resulting sentence
embeddings achieve excellent performance on mea-
sures of sentence embedding quality, such as the
semantic textual similarity (STS) benchmark and
sentence embedding-based transfer learning (Feng
et al., 2020).

3 Experiments and Results

3.1 Results on WMT17-19 testset
Each year, the WMT Translation shared task or-
ganisers collect human judgements in the form of
Direct Assessments. Those assessments are then
used in the Metrics task to measure the correlation

2https://huggingface.co/
bert-base-multilingual-uncased

3https://huggingface.co/
distiluse-base-multilingual-cased

between metrics and therefore decide which metric
works best. Therefore, we estimated the transla-
tion quality of about 9K translations from the test-
set of WMT17 (Bojar et al., 2017), WMT18 (Bo-
jar et al., 2018), WMT19 (Bojar et al., 2019a,b,c)
for en-ru, en-de, zh-en language pairs and com-
puted the pearson correlation (Benesty et al., 2009)
of human judgements with Chunk-level Similarity
scores, Sentence-level Similarity scores and their
combination (REUSE). The segment level correla-
tion scores are mentioned in Table 2. It is clearly
evident from the correlations that the ensemble of
Chunk Similarity model and Sentence Similarity
model outperforms the individual models.

3.2 WMT22 QE-as-a-metric task submission
Table 1 shows the WMT22 QE-as-a-metric task
test-set details for the language pairs we have ex-
perimented on.

Language Pair #Sentences #Systems
en-ru 36723 88
en-de 82356 91
zh-en 41127 103

Table 1: Data statistics of WMT22 QE-as-a-metric task
testset for en-ru, en-de and zh-en pairs.

3.2.1 Segment Level Evaluation
For Segment-level task, we submitted the sentence
level scores obtained by our reference free quality
estimation metric (REUSE) for en-ru, en-de and
zh-en language pairs.

3.2.2 System Level Evaluation
We compute the system-level score for each system
by averaging the segment-level scores obtained. A
similar method is also used to compute system-
level scores based on segment-level human anno-
tations such as DA’s and MQM, implying that a
metric with a high segment-level correlation should
also demonstrate high system-level correlation.

4 Conclusion

In this paper, we describe our submission to the
WMT22 Metrics Shared Task (QE-as-a-metric).
Our submission includes segment-level and system-
level quality estimation scores for sentences of
three language pairs Chinese-English (zh-en),
English-Russian (en-ru) and English-German (en-
de). We evaluate this year’s test set using our un-
supervised, reference-free metric - REUSE, that
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WMT
test-set Language Pair Chunk Similarity

using chunker
Sentence Similarity

using LaBSE
REUSE

(chunk + sentence)

wmt17
zh-en 0.269 0.242 0.316
en-ru 0.308 0.223 0.337
en-de 0.280 0.167 0.278

wmt18
zh-en 0.135 0.2 0.210
en-ru 0.145 0.2 0.213
en-de 0.306 0.107 0.273

wmt19
zh-en 0.225 0.279 0.3
en-ru -0.112 0.144 -0.003
en-de 0.254 0.131 0.251

Table 2: Correlation with Human Judgements on WMT17, WMT18 and WMT19 testset.

provides a quality estimation score by evaluating a
hypothesis against the source sentence. REUSE es-
timates the translation quality by combining chunk-
level similarity score and sentence-level similar-
ity score, leveraging multilingual BERT embed-
dings. We performed our experiments on testsets
of WMT17, WMT18, WMT19 and it has been em-
perically observed that the combination of chunk-
and sentence-level similarity scores performed bet-
ter in terms of agreement with human assessments.

Potential research directions definitely include
improving the multilingual chunking model. As
part of future work, we aim to further experiment
and emerge with such effortless efficient unsuper-
vised approach to estimate the translation quality
and exhibit higher agreement with humans.
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Abstract

Starting from last year, WMT human evalu-
ation has been performed within the Multi-
dimensional Quality Metrics (MQM) frame-
work, where human annotators are asked to
identify error spans in translations, alongside
an error category and a severity. In this pa-
per, we describe our submission to the WMT
2022 Metrics Shared Task, where we propose
using the same paradigm for automatic evalua-
tion: we present the MATESE metrics, which
reframe machine translation evaluation as a
sequence tagging problem. Our submission
also includes a reference-free metric, denom-
inated MATESE-QE. Despite the paucity of
the openly available MQM data, our metrics
obtain promising results, showing high levels
of correlation with human judgements, while
also enabling an evaluation that is interpretable.
Moreover, MATESE-QE can also be employed
in settings where it is infeasible to curate refer-
ence translations manually.

1 Introduction and Related Work

For many years, Machine Translation (MT) has
mainly been evaluated using untrained evaluation
techniques, such as BLEU (Papineni et al., 2002),
METEOR (Banerjee and Lavie, 2005) and CHRF
(Popović, 2015), which rely heavily on lexical-level
matching of either token, or character, n-grams.
Unfortunately, these metrics present two major
drawbacks: i) it is not possible to carry out the eval-
uation without manually-curated references and,
most importantly, ii) the evaluation is too depen-
dent on the surface form of the translation, and its
reference. More recently, attempts have been made
to address these problems using machine-learned
metrics, which have shown better correlations with
human judgements (Mathur et al., 2020). More
specifically, last year’s WMT Metrics Shared Task
saw C-SPECPN (Takahashi et al., 2021), BLEURT-

201 and COMET-MQM_2021 (Rei et al., 2021)
emerge as distinctly better than the other partici-
pants (Freitag et al., 2021b). These metrics con-
sist of regression models trained to mimic hu-
man annotators by directly assigning quality scalar
scores to candidate translations. In detail, COMET-
MQM_2021 is based on the Estimator architecture
introduced by Rei et al. (2020), where features ex-
tracted from the embeddings of the source sentence,
candidate translation, and reference translation are
passed to a feed-forward regressor; C-SPEC first
concatenates the embeddings derived from paired
inputs of candidate-source and candidate-reference,
and then passes the resulting vector to a multi-layer
perceptron; BLEURT, instead, feeds the candidate
translation and its reference to Rebalanced mBERT
(Chung et al., 2021), and regresses on the rep-
resentation provided by the [CLS] token. More-
over, BLEURT and C-SPEC add automatically-
generated negative pairs to the standard training
data: BLEURT applies random token perturbations,
while C-SPEC uses Word Attribute Transfer to re-
place words in the translations. Although undoubt-
edly effective, regression metrics have the major
drawback of not being interpretable, meaning that
users are not able to gauge the quality of assess-
ments that are returned, which is of paramount
importance for an evaluation metric.

Recently, Freitag et al. (2021a) have proposed
a shift in the standard practices for human ma-
chine translation evaluation, employing the Multi-
dimensional Quality Metrics framework (Lommel
et al., 2014, MQM), and moving away from Di-
rect Assessments (Graham et al., 2013, DA), which
were computed via requiring (even non-expert) an-
notators to assign a scalar value to a candidate
translation, given a reference. Furthermore, Fre-
itag et al. (2021a) pointed out the limitations of
non-professional Direct Assessments, also show-

1BLEURT-20 is the retrained version of the previous year’s
BLEURT submission (Sellam et al., 2020).
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ing their unreliability compared to MQM. Indeed,
differently from Direct Assessments, annotators
who follow the MQM guidelines look at the source
sentence rather than the reference, and are expected
to tag the spans of the candidate translations that
contain errors,2 together with their error category
(e.g., Fluency/Grammar, Fluency/Punctuation
or Style/Awkward) and severity (e.g., Major or
Minor), which, combined, determine the score as-
sociated with the error span. Finally, a scalar qual-
ity score for the entire sentence is derived from the
various annotated spans.

In this work, we introduce the MATESE and
MATESE-QE metrics, reframing the evaluation of
machine-translated text as a sequence tagging prob-
lem based on the MQM framework, in an attempt
to develop metrics that are interpretable, while also
displaying high levels of correlation with human
judgements.

2 MATESE Metrics

Inspired by the novel MQM evaluation framework,
our work aims at employing a similar paradigm for
automatic evaluation. We propose the MATESE

metrics which, given a candidate translation and its
reference (or source, for MATESE-QE), assign a
label to each token of the candidate. These labels
identify error spans, together with their severity,
chosen among Major and Minor. Finally, in order
to associate a score with the entire tagged sentence,
we follow a weighting scheme similar to the one
presented by Freitag et al. (2021a) for MQM-based
human evaluation: we assign a score to an entire
error span based on its severity, i.e., −5 and −1 for
Major and Minor, respectively. The score assigned
to a translation is the sum of the scores assigned
to its error spans, with a minimum total score of
−25. Following Freitag et al. (2021a), we compute
a corpus-level score by averaging the scores of the
sentences in the corpus. Although human MQM
annotators are asked to report a maximum of 5
errors per translation,3 we decided to let our metrics
detect as many errors as they can find; nevertheless,
in order to keep our scores in the same range as
those computed on gold MQM annotations, we set
a minimum score of −25, which is equal to the

2In a few cases, the source sentence might also be an-
notated. An example of this is with omission errors, where
annotators report the spans of the source sentence which are
missing from the candidate translation.

3This holds only for the MQM guidelines released by Fre-
itag et al. (2021a).

MATESE metric

CandidateReference

In the square team, this song is the motto of every team member.
Major Minor

This song was the motto of
every member of the unit.

In the square team, this
song is the motto of every

team member.

Figure 1: Example of the annotation returned by the
MATESE metrics, given a candidate translation and its
reference. The final score of the translation is −6, that
is the sum of −5 and −1, assigned to the Major and
Minor errors, respectively.

sum of 5 Major errors. Figure 1 shows an example
of the annotations returned by our metrics.

2.1 Data pre-processing

According to the MQM guidelines, mistranslated
spans are tagged with an error category and a sever-
ity. To reduce the granularity of the annotations,
we apply some transformations to the original data,
which we report below:

1. We discard annotations of the
Non-translation category, since they
are weighted −25 by Freitag et al. (2021a),
and would have required a special treatment,
but are too scarce (< 0.1% of the whole data)
for the model to learn how to assign them;

2. We discard annotations referring to either
Accuracy/Omission or Source error cate-
gories, since in these cases the annotation
might be in the source sentence, while our
models are trained to tag the candidate trans-
lation only;

3. We discard annotations of errors with
Neutral severity, since they are highly sub-
jective and do not participate in the computa-
tion of the final quality score (Freitag et al.,
2021a);

4. We replace Critical severity labels with
Major, in order to make the English→Russian
dataset conform to the rest of the data;

5. We discard all the MQM error categories,
leaving only information about error sever-
ity. While we believe error categorization to
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Figure 2: Distribution of the number of error spans
over sentences in both training and test data of WMT
2021 Metrics Shared Task, after the pre-processing we
described in Section 2.1.

be of great importance, we decided to remove
it because of the limited availability of train-
ing data and to avoid making the classification
problem too sparse.

Furthermore, in the MQM data released by Fre-
itag et al. (2021a), every sentence has been anno-
tated 3 times, each one by a different rater. In order
to yield a single sample per sentence and maximize
the number of annotations, we merge the annota-
tions of the different raters into a single annotated
sentence;4 in the case when there is even only a
partial overlap between two annotated spans, we
discard the one associated with the Minor error in
favor of the Major, or pick one or the other ran-
domly if they have the same severity. We decided
to keep Majors over Minors because Freitag et al.
(2021a) obtained almost the same ranking of MT
systems when considering only Major errors, com-
pared to the full MQM score.

2.2 Hypothesis and Target Span Hit metrics
Typically, MT evaluation metrics’ quality is as-
sessed through their correlations with human judge-
ments. Nevertheless, our novel formulation of MT
evaluation as a sequence tagging problem allows
us to estimate the quality of our metrics also via
the produced error spans. Specifically, we are in-
terested in determining how well our metrics are
able to flag, even partially, a true error span, re-
gardless of its severity or length. However, existing
span-level metrics, such as Span Precision, Span

4Therefore, in our merged sentences the number of error
spans per translation can be greater than 5. Figure 2 reports
the distribution of error spans in our entire data.

In the square team, this song is the motto of every team member 

Figure 3: An example of evaluation with the Hypothe-
sis and Target Span Hit metrics. The turquoise line —
(below) and amber line — (above) represent the hypoth-
esis and target annotation, respectively. HSH = 2/3 (2
out of 3 spans are hit), TSH = 2/2 (2 out of 2 spans
are hit).

Recall and Span F1, focus on exact overlaps be-
tween predicted spans and target ones. Moreover,
correlations with MQM scores paint only a partial
picture, since the final score assigned to a trans-
lation depends only on the number of error spans
(with their severity), but not on their position in the
sentence. For instance, if a system flagged a span
as a Major error, but the target annotation had a
different span tagged as Major, the MQM scores
would be identical despite the tagging error.

To address these issues, we introduce the Hy-
pothesis Span Hit (HSH) and Target Span Hit
(TSH) metrics: HSH represents the percentage of
predicted error spans that are also, at least partially,
true; instead, TSH represents the percentage of true
error spans that the metric has predicted, even par-
tially. An example of their assessments is given in
Figure 3.

Formal definition Let us consider a candi-
date translation c as a sequence of tokens
(c1, c2, . . . , cn); moreover, let us define an error
span s as a set of contiguous tokens in c, e.g.,
{c1, c2, c3}, and an error annotation A as a set of
disjoint error spans, i.e., that satisfies

⋂
s′∈A s

′ = ∅.
Furthermore, we define the Span Hit Indicator as

SHI(s,A) = I(s ∩ σ(A) ̸= ∅)

where σ(A) =
⋃

s′∈A s
′, i.e., the set of all tokens

in annotation A. In simpler terms, SHI(s,A) is 1
if at least one of the tokens in s belongs to the set
of all tokens of the error spans in A.

Finally, let us take two error annotations: Ah rep-
resents the hypothesis spans produced by a model,
whileAt represents the target spans that c was orig-
inally annotated with. We define the Hypothesis
Span Hit and Target Span Hit metrics as follows:

HSH(Ah, At) =

∑
sh∈Ah

SHI(sh, At)

|Ah|

TSH(At, Ah) =

∑
st∈At

SHI(st, Ah)

|At|
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Both metrics are defined as the average number
of span hits of one error annotation with respect
to the other. To compute the metrics for an entire
dataset we employ micro-averaging, i.e., we con-
catenate all hypotheses into a single one, do the
same for the targets, and then measure Span Hit
metrics on the newly-created pair of hypothesis
and target. We avoid averaging the single results
because the number of spans varies widely across
samples (Figure 2).

3 Experimental Setup

In this Section, we describe the different architec-
tures we experiment with, the data for training and
evaluation, and the metrics we use to measure per-
formances.

3.1 Architectures

Since it is rather convenient to have a single model
capable of evaluating text in multiple languages, we
leverage multilingual pre-trained models like XLM-
RoBERTa (Conneau et al., 2020) and mBART (Liu
et al., 2020). In order to compare the performances
of multilingual models with their English-only
counterparts, we also experiment with RoBERTa
(Liu et al., 2019).5

Encoder-only models XLM-RoBERTa and
RoBERTa models consist of only the encoder
part of the standard Transformer architecture
(Vaswani et al., 2017). The input we provide to
the encoder models is the concatenation of the
candidate translation and its reference (or source,
for MATESE-QE), separated by a </s> token.
Furthermore, we add two randomly-initialized
encoder layers on top of the last layer, as well
as a classification head. Due to computational
constraints, we keep the embedding layer frozen.

Encoder-decoder model When experimenting
with mBART, we feed the reference translation
(or the source, for MATESE-QE) to the encoder,
and the candidate to the decoder, so as to main-
tain similarity with the pre-training process. We
highlight that we do not use the decoder autore-
gressively; instead, following the standard practice
for sequence classification with encoder-decoder
models, we force the candidate to be processed all
at once, and collect the contextualized embeddings

5RoBERTa can be employed only for reference-based eval-
uation, and with language pairs that have English as target
language: in our case, this is only Chinese→English.

at the last layer. On top of the decoder, we add two
randomly-initialized encoder layers, and a classifi-
cation head. As with the encoder-only models, due
to computational constraints the embedding layer
is frozen.

3.2 Training and validation data

In order to perform our experiments employing all
the existing MQM data, we experiment using a
90/10 training/validation split of the concatenation
of the training set (which is the MQM data released
by Freitag et al. (2021a)) and the test sets of WMT
2021 Metrics Shared Task (Freitag et al., 2021b).

Moreover, to make a fair comparison between
the MATESE metrics and the ones submitted to the
aforementioned Shared Task, we also retrain our
systems using only the above-mentioned training
set, with the same split. We dub these systems
MATESE21 and MATESE-QE21.

In both settings, we use only English→German
and Chinese→English data. Moreover, we point
out that the split is performed on unique source
sentences: since each source sentence is translated
by multiple systems, our split avoids having trans-
lations of the same source sentence be present in
both the training and validation splits.

WMT Submission Training Split For our final
submission to the WMT 2022 Metrics Shared Task,
we include English→Russian data to the concate-
nation of the training and test sets of the WMT
2021 Metrics Shared Task. We split the whole data
5 times, each time taking 90% for training and 10%
for validation, and train 5 different systems (10 if
we also consider MATESE-QE). In our submission,
each score is the median prediction of the systems
trained on the 5 different data splits.

3.3 Evaluation metrics

The MATESE metrics tag the spans of a candi-
date translation that contain an error. Following
the BIO scheme (Ramshaw and Marcus, 1995), we
assign to each token a label in L = {O, B-Minor,
I-Minor, B-Major, I-Major}; a final score for the
annotated sentence is then obtained as the sum of
the individual spans’ scores. We can evaluate the
performances of our metrics according to the final
scores, as well as in terms of the produced annota-
tions: indeed, we use the scalar scores to rank trans-
lations and measure the correlations with human
judgements, and we measure the tagging accuracy
with respect to the gold annotations. In the latter
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O B-Minor I-Minor B-Major I-Major

EN→DE 818,945 32,667 37,897 8516 25,192
ZH→EN 1,053,663 33,633 48,333 33,996 76,984
EN→RU 343,449 614 1015 7271 3189
ALL 2,216,057 66,914 87,245 49,783 105,365

Table 1: Distribution of the token-level gold annotations
in the concatenation of the training and test sets of WMT
2021 Metrics Shared Task, after the pre-processing we
described in Section 2.1.

case, we rely on the standard classification metrics
of Precision, Recall and F1-score, computed using
TorchMetrics6 modules. More specifically, given
that our data is highly imbalanced (see Table 1),
we employ macro versions of these metrics and,
in particular, use the macro-F1 score to select the
best checkpoint of the models on the validation
set. Furthermore, in order to assess the span-level
error detection capabilities of our systems, we em-
ploy the Hypothesis and Target Span Hit metrics
as defined in Section 2.2.

4 Results

In this Section, we show the results obtained by
our metrics. Unless explicitly specified, all experi-
ments have been performed using reference-based
systems.

4.1 Architectures comparison

We can see the results of comparing the aforemen-
tioned architectures in Table 2. The best perform-
ing architecture is XLM-RLARGE, which attains the
highest F1-score, as a consequence of achieving
the best Recall. Considering the complexity of the
task, and the imbalance of the data, we conjecture
that the other architectures obtain high Precision
and low Recall scores because they are able to pre-
dict only the errors that are easier to detect, while
assigning Os more frequently. This is also con-
firmed by the TSH score which, ruling O labels out
of the computation, exacerbates the difference be-
tween different architectures, with XLM-RBASE and
mBART clearly failing to detect a higher number of
errors of the target annotation compared to XLM-
RLARGE. An additional interesting fact that emerges
from this comparison is that XLM-R architectures
perform better than mBART, with XLM-RBASE out-
performing it despite having less than half of its
parameters.

6https://github.com/Lightning-AI/metrics

P R F1 HSH TSH

XLM-RLARGE 47.38 38.40 41.72 57.73 46.08
XLM-RBASE 46.64 34.12 37.93 58.01 38.70
mBART 47.97 31.94 36.01 55.85 32.66

Table 2: Comparison of different architectures in terms
of Precision, Recall and F1-score in their macro ver-
sions; HSH and TSH are Hypothesis Span Hit and Tar-
get Span Hit metrics.

4.2 Monolingual-multilingual comparison
Table 3 reports the results of training the same
XLM-R model using a single language pair at a
time, or both. Moreover, we test whether an En-
glish language model like RoBERTa outperforms
XLM-R, when dealing with English-only data. Our
results show that training on the whole data is ben-
eficial to the task, with XLM-RALL obtaining a
higher Recall and Target Span Hit in both language
pairs, and an F1-score that is higher, or on par with,
its variants. Similarly to what happens with dif-
ferent architectures, we hypothesize that training
on more data enables the models to detect a wider
range of errors, even if the additional data is in a
different language. We do not record significant
differences in the results obtained by RoBERTa,
compared to XLM-RMONO on Chinese→English
data.

4.3 MATESE-QE

A desirable feature of evaluation metrics is to
function both in the presence and the absence of
humanly-curated references. To achieve this, we
investigate whether it is feasible to tag the errors in
the candidate translation by looking at the source
sentence only. Table 4 reports the results obtained
by the best architecture, i.e., XLM-RLARGE, trained
on both English→German and Chinese→English,
both when disposing of the reference sentence, and
not.

MATESE outperforms MATESE-QE in terms
of Recall, F1-score and Target Span Hit metrics.
Clearly, the information found in the reference is
easier to exploit, and the reference-based system
is able to detect a much wider range of errors. At
the same time, MATESE-QE proves to be a viable
alternative in the absence of manually-curated ref-
erences: it displays high levels of Precision and
Hypothesis Span Hit, which means that it outputs
predictions that are more accurate than those of
MATESE, even if only for the range of errors that
it is able to detect.
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EN→DE ZH→EN
P R F1 HSH TSH P R F1 HSH TSH

XLM-RALL 43.03 33.09 35.89 54.35 44.54 47.86 39.39 42.63 59.90 47.04
XLM-RMONO 43.98 30.64 33.52 56.56 39.67 50.85 38.51 42.77 63.51 44.38
RoBERTa – – – – – 51.49 37.91 42.41 64.33 42.81

Table 3: Model performances on monolingual and multilingual settings. XLM-RALL is trained and evaluated on
the concatenation of English→German (EN→DE) and Chinese→English (ZH→EN) datasets, while XLM-RMONO

stands for two different models, each one trained and evaluated on a single dataset. RoBERTa is an English language
model, and therefore can deal with ZH→EN data only.

P R F1 HSH TSH

MATESE 47.38 38.40 41.72 57.73 46.08
MATESE-QE 49.34 34.53 38.89 59.89 36.84

Table 4: Comparison of our reference-based
and reference-free systems, i.e., MATESE and
MATESE-QE, respectively. The only difference
between the two is that MATESE-QE uses the source
sentence in place of the reference.

4.4 Correlations with Human Judgements
Tables 5a and 5b report the correlations with
human judgements that our metrics attained
on newstest2021 (in-domain) and TED (out-of-
domain) test sets of last year’s WMT Metrics
Shared Task: w/ HT means that manually-curated
references have been scored together with system
outputs, while w/o HT means that those references
have been kept out of the evaluation. Aside from
our systems, i.e., MATESE21 and MATESE-QE21,
we also report two additional baselines: #1 WMT
and #2 WMT. These are the top-1 and top-2 results
reported by Freitag et al. (2021b) in the correspond-
ing tables (Tables 23, 24, 27 and 28). Since those
positions are held by different systems, we assign
each submission a unique symbol and report the
mapping in Appendix A.

Generally speaking, for in-domain settings, we
observe that, on English→German, MATESE21

and MATESE-QE21 achieve correlations on par
or better than the top-2 WMT 2021 submissions,
while on Chinese→English the results are slightly
worse. Interestingly, in out-of-domain settings,
we observe a sizeable drop in correlation on both
translation directions. We attribute this drop to the
very limited amount of training data, which prob-
ably hinders proper generalization capabilities to
out-of-domain settings. Finally, we observe that
MATESE-QE21 lags behind MATESE21 by a rela-
tively small margin.

EN→DE ZH→EN

w/o HT w/ HT TED w/o HT w/ HT TED

#1 WMT ‡0.938 ⊥0.823 ∥0.818 ∧0.834 ∧0.727 ∨0.421
#2 WMT †0.937 ⊥0.822 ⊥0.802 ∥0.628 ∥0.619 ⊤0.403

MATESE21 0.946 0.863 0.621 0.636 0.701 0.017
MATESE-QE21 0.910 0.806 0.584 0.502 0.600 0.056

(a) System-level Pearson correlations.

EN→DE ZH→EN

w/o HT w/ HT TED w/o HT w/ HT TED

#1 WMT ⊥0.267 ⊥0.256 ∧0.290 ⊥0.402 ⊥0.390 ∧0.248
#2 WMT ⊥0.266 ⊥0.254 ⊥0.285 ⊥0.401 ⊥0.388 ⊥0.241

MATESE21 0.323 0.310 0.271 0.358 0.346 0.257
MATESE-QE21 0.288 0.277 0.210 0.343 0.332 0.196

(b) Segment-level Kendall correlations.

Table 5: System- and segment-level correlations with
human judgements as measured in WMT 2021 Metrics
Shared Task (Freitag et al., 2021b). MATESE21 and
MATESE-QE21 are MATESE metrics that have been
re-trained using only the training set of the Shared Task.
A legend of the other symbols is found in Appendix A.

5 Conclusions

In this paper, we described our submission to the
WMT 2022 Metrics Shared Task: we presented
the MATESE metrics, a new way of automatically
assessing the quality of translations, putting for-
ward evaluation techniques that are interpretable,
while at the same time displaying high levels of
correlation with human judgements. Scores are in
the same ballpark of the best performing metrics
proposed in the WMT 2021 Metrics Shared Task.
Furthermore, the MATESE metrics can also be
used in the absence of humanly-curated references,
with MATESE-QE being slightly less accurate than
its reference-based counterpart, but still present-
ing encouraging levels of correlation with human
judgements. In future work, we plan to improve the
MATESE metrics to also detect the type of errors,
and not only their severity, in order to approximate
even better the MQM annotation process.
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Limitations

Poor generalization We expect the MATESE

metrics’ generalization capabilities to be hindered
by the narrow range of errors that they are trained
upon. Indeed, while the number of samples in the
datasets is relatively large (around 80K annotated
sentences), the number of unique sources is much
smaller (around 6K), because the annotations are
performed on the same source sentences translated
by multiple MT systems. In fact, we observe a drop
in performance in the out-of-domain setting, i.e.,
the TED dataset.

Computational requirements The MATESE

metrics require a non-negligible computational bud-
get, especially when compared to their untrained
alternatives, such as BLEU, METEOR or CHRF.
Given that the task we tackle is arguably challeng-
ing, and that we need semantically-rich representa-
tions of the analyzed sentences, we decided to rely
upon a large Transformer encoder, which makes
the evaluation computationally intensive. Unfortu-
nately, the comparison between XLM-RoBERTa
Large and its Base counterpart shows that a size-
able improvement is due to the increased size of
the model.

References

Satanjeev Banerjee and Alon Lavie. 2005. METEOR:
An automatic metric for MT evaluation with im-
proved correlation with human judgments. In Pro-
ceedings of the ACL Workshop on Intrinsic and Ex-
trinsic Evaluation Measures for Machine Transla-
tion and/or Summarization, pages 65–72, Ann Arbor,
Michigan. Association for Computational Linguis-
tics.

Hyung Won Chung, Thibault Fevry, Henry Tsai, Melvin
Johnson, and Sebastian Ruder. 2021. Rethinking em-
bedding coupling in pre-trained language models. In
International Conference on Learning Representa-
tions.

Alexis Conneau, Kartikay Khandelwal, Naman Goyal,
Vishrav Chaudhary, Guillaume Wenzek, Francisco
Guzmán, Edouard Grave, Myle Ott, Luke Zettle-
moyer, and Veselin Stoyanov. 2020. Unsupervised
cross-lingual representation learning at scale. In Pro-
ceedings of the 58th Annual Meeting of the Asso-
ciation for Computational Linguistics, pages 8440–
8451, Online. Association for Computational Lin-
guistics.

Markus Freitag, George Foster, David Grangier, Viresh
Ratnakar, Qijun Tan, and Wolfgang Macherey. 2021a.
Experts, errors, and context: A large-scale study of
human evaluation for machine translation. Transac-
tions of the Association for Computational Linguis-
tics, 9:1460–1474.

Markus Freitag, Ricardo Rei, Nitika Mathur, Chi-kiu Lo,
Craig Stewart, George Foster, Alon Lavie, and Ondřej
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A WMT 2021 System Mapping

• ‡: cushLEPOR(LM) (Han et al., 2021);

• ⊥: C-SPEC and C-SPECpn (Takahashi et al.,
2021);

• ∧: tgt-regEMT and tgt-regEMT-baseline (Ste-
fanik et al., 2021);

• ∥: COMET-MQM_2021 and COMET-QE-
MQM_2021-src (Rei et al., 2021);

• ∨: TER (Snover et al., 2006);

• †: BLEU (Papineni et al., 2002);

• ⊤: MTEQA (Krubiński et al., 2021a,b).
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Abstract

In this paper, we present the joint contribution
of Unbabel and IST to the WMT 2022 Met-
rics Shared Task. Our primary submission –
dubbed COMET-22 – is an ensemble between
a COMET estimator model trained with Di-
rect Assessments and a newly proposed mul-
titask model trained to predict sentence-level
scores along with OK/BAD word-level tags de-
rived from Multidimensional Quality Metrics
error annotations. These models are ensembled
together using a hyper-parameter search that
weights different features extracted from both
evaluation models and combines them into a
single score. For the reference-free evaluation
we present COMETKIWI. Similarly to our pri-
mary submission, COMETKIWI is an ensemble
between two models. A traditional predictor-
estimator model inspired by OPENKIWI and
our new multitask model trained on Multidi-
mensional Quality Metrics which can also be
used without references. Both our submissions
show improved correlations compared to state-
of-the-art metrics from last year as well as in-
creased robustness to critical errors.

1 Introduction

Automatic metrics for Machine Translation (MT)
are a fundamental component of MT research and
development. While human evaluation is still of
great importance, automatic metrics allow the rapid
evaluation and comparison of MT systems on large
collections of text and facilitate expansion to low
resource languages and domains. Neural fine-tuned
metrics in particular, have shown the ability to
leverage large multilingual data during training
to better compare and assess the quality of state-
of-the-art MT models, outperforming traditional
lexical-based metrics. Hence, our research is tar-
geted to and guided by the advancements in these
metrics.

∗*� ricardo.rei@unbabel.com

This paper presents the joint contribution of
Unbabel and Instituto Superior Técnico (IST) to
the WMT 2022 Metrics Shared Task (Freitag
et al., 2022). We participated in the segment-level
and system-level tracks, as well as the “QE-as-a-
Metric”. Similar to our participation last year (Rei
et al., 2021), our models are based on the COMET

framework1 (Rei et al., 2020a).
Our efforts this year built on findings and obser-

vations from our participation in the WMT 2021
Metrics Shared Task (Rei et al., 2021; Freitag et al.,
2021b) to further improve COMET for the Metrics
task and to increase its robustness to translation
errors such as deviation from named entities, re-
verse polarity and negation, deviation in numbers,
etc. These types of fine-grained critical errors have
been shown to be challenging for state-of-the-art
metrics and QE systems (Amrhein and Sennrich,
2022; Kanojia et al., 2021). For that reason we
aim to take advantage of finer-grained information,
incorporating word-level supervision from Multi-
dimensional Quality Metrics (MQM) annotations
when available. This approach is motivated by the
observed improvements in performance in WMT
2021 Metrics when fine-tuning on MQM data. Ad-
ditionally, the importance of word-level supervi-
sion as an auxiliary task was established via our
participation in the WMT 2022 Quality Estimation
task (Zerva et al., 2022), where we found that we
get a boost of performance across language pairs
when we combine word- and sentence-level targets
(Rei et al., 2022).

Overall, our main contributions are:

• We propose a new model architecture that is
trained with a multitask objective to predict a
sentence-level score along with word-level tags.
This architecture is well suited for MQM data
which comes in the form of sentence-level scores

1Code and models available at: https://github.
com/Unbabel/COMET
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alongside the annotation spans. Also, similarly
to UNITE (Wan et al., 2022) we can use this ar-
chitecture with and without access to a reference
translation.

• We show that ensembling scores from different
models, trained with different annotations (e.g
DA and MQM) can lead to improved correlations
and more robust metrics.

• We corroborate our findings from last year (Rei
et al., 2021) showing that reference-free evalu-
ation is becoming competitive with reference-
based evaluation.

Our submitted metrics, compared to two of the
best submissions from last year, improve by a
considerable margin in terms of correlations with
MQM (≈ 4% in Kendall-Tau at segment level and
≈ 6% on system-level accuracy) and in the ability
of detecting critical errors (≈ 30% in accuracy on
SMAUG challenge set (Alves et al., 2022), a newly
proposed challenge set built to test the robustness
of MT metrics to errors in named entities, numbers,
meaning, inserted content and missing content.).

2 Corpora

Every year, since 2017, the organisers of WMT
News translation tasks collect annotations in the
form of Direct Assessments (DA) (Graham et al.,
2013). Recently, Freitag et al. (2021a) showed
that DA annotations, collected by non-professional
crowd-source workers, are noisy and unfit to
measure the quality of high performing MT sys-
tems. For high quality MT evaluation the au-
thors suggest the use of MQM annotations per-
formed by professionals; they released annota-
tions for English→German and Chinese→English
on the WMT 2020 translation outputs. Since
then, along with the DA annotations coming
from the News translation task, the metrics
task organizers collect additional MQM data for
English→German (en-de), Chinese→English
(zh-en), and English→Russian (en-ru) to eval-
uate metrics against a more reliable ground-truth.

With that said, to test the performance of our new
systems we will use the MQM annotations from
2021 News domain. For training we will use all
DA ranging from 2017 to 2020 and the remaining
MQM annotations.

One of the findings from last years shared task
is that metrics struggle to accurately penalize trans-
lations with errors in reversing negation (Freitag

et al., 2021b). Also, Amrhein and Sennrich (2022)
showed that using COMET as a utility function for
Minimum Bayes Risk decoding is more likely to
lead to errors in named entities and numbers when
compared to lexical metrics such as CHRF. In order
to measure progress on capturing those errors we
will test our new metrics on SMAUG (Alves et al.,
2022).

3 Implemented Systems

Our goal this year is to build more robust Cross-
lingual Optimized Metrics for Evaluation of
Translations by ensembling systems that model
different aspects of MT evaluation. For that pur-
pose we used three different systems: a COMET

Estimator (Rei et al., 2020a) trained on DA, a newly
proposed Sequence Tagger, trained with MQM
data, that works with and without references, and
a COMETKIWI (Rei et al., 2022) model trained on
DA.

3.1 COMET Estimator

For a more comprehensive description of the Esti-
mator architecture we direct the reader to the orig-
inal paper (Rei et al., 2020a). Compared to our
COMET-DA model from last year (Rei et al., 2021)
we only changed hyper-parameters in order to max-
imize Kendall-Tau correlations with the MQM an-
notations from 2021 News domain.

3.2 QE Predictor-Estimator Model

For a more comprehensive description of the imple-
mented Predictor-Estimator architecture we direct
the reader to our QE system description paper (Rei
et al., 2022). In summary, for this year QE shared
task we combine the strengths of COMET and
OPENKIWI, leading to models that adopt COMET

training features, useful for multilingual generaliza-
tion, along with the predictor-estimator architecture
of OPENKIWI.

3.3 Extending COMET for Sequence Tagging:

Following our experiments for the Quality Esti-
mation shared task we implemented a multitask
COMET model that is trained to perform sequence
tagging along with sentence-level regression.

Inspired by UNITE (Wan et al., 2022), our model
receives three inputs:

1. Source-only (src): machine translated sentence
concatenated with its source sentence.
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zh-en en-de en-ru
Nº Segments 9750 8959 8432
Correlations ρ τ ρ τ ρ τ Avg. ρ Avg. τ

B
as

el
in

es

BLEU 0.215 0.153 0.086 0.065 0.123 0.094 0.141 0.104
CHRF 0.116 0.088 0.116 0.088 0.213 0.165 0.192 0.143
BLEURT 0.456 0.331 0.309 0.236 0.345 0.267 0.370 0.278
COMET-20 0.463 0.336 0.270 0.206 0.330 0.256 0.355 0.266
COMET-21 0.513 0.377 0.309 0.237 0.345 0.263 0.389 0.292

Pr
im

ar
y

Su
b. COMET-22 0.537 0.395 0.366 0.281 0.407 0.315 0.437 0.330

MQM Sequence Tagger
↪→ ŷtags 0.311 0.222 0.302 0.237 0.362 0.314 0.325 0.258
↪→ ŷsrc 0.487 0.356 0.347 0.266 0.359 0.276 0.398 0.299
↪→ ŷref 0.535 0.394 0.358 0.275 0.386 0.297 0.427 0.322
↪→ ŷuni 0.538 0.396 0.360 0.277 0.382 0.294 0.427 0.322
DA Estimator 0.495 0.362 0.289 0.221 0.369 0.285 0.384 0.289

Q
E

m
et

ri
c COMETKIWI 0.471 0.343 0.348 0.266 0.366 0.283 0.395 0.297

MQM Sequence Tagger
↪→ ŷtags 0.431 0.312 0.279 0.218 0.332 0.257 0.313 0.245
↪→ ŷsrc 0.283 0.201 0.347 0.266 0.310 0.268 0.348 0.262
DA Pred-Estimator 0.487 0.356 0.286 0.219 0.359 0.276 0.377 0.284

Table 1: Segment-level Spearman R (ρ) and Kendall-Tau (τ ) correlations for zh-en, en-de and en-ru 2021
MQM annotations for the News Domain.

2. Reference-only (ref): machine translated sen-
tence concatenated with its reference.

3. Unified input (uni): machine translated sentence
concatenated with both source and reference.

These inputs can be seen as a sequence with
two parts: 1) the machine translated sentence t =
⟨t1, ..., tn⟩ and 2) additional support information
such as source and/or reference r̂ = ⟨r1, ..., rm⟩.

Given that, for each input, our model works ex-
actly like COMETKIWI. We run three forward
passes and we store the corresponding sentence-
level scores ŷsrc, ŷref and ŷuni. Additionally, we
average the obtained word-level logits to derive a
single sequence S of {OK, BAD} tags from which
we compute an additional sentence score by using
a similar formula to MQM:

ŷtags = 1− w ×∑NS
i 1[Si = BAD]

NS
(1)

where w is a severity penalty for BAD tags which
we set to 1.

In sum, after running our new model we obtain
4 different scores: ŷtags, ŷsrc, ŷref , ŷuni which we
can combine into a single quality score. Also, since
this model is trained with a reference-less input it
can be used, during inference, as a QE system. In
those cases we run a single forward pass with the
reference-less input and instead of 4 quality score
we only get 2 (ŷtags and ŷsrc).

Training Data. Since the MQM training data is
not abundant and only covers 3 language pairs we
start by training the above model without word-
level information for 2 full epochs on DA ranging
the shared task data from 2017 to 2020. Then,
we fine-tune the model using the multitask setting
described above with the available MQM training
data for zh-en, en-de and en-ru.

3.4 Primary Submission
Our primary submission is an ensemble between a
COMET Estimator model trained on top of XLM-
R using DA from 2017 to 2020 and a sequence
tagging model, such as the one described above,
trained on top of InfoXLM (Chi et al., 2021). The
final score is computed by a weighted average of
the model outputs (5 scores), where the weights for
each language pair were tuned with Optuna (Akiba
et al., 2019)2.

3.5 QE-as-a-metric Submission
Our primary submission is an ensemble between
a COMETKIWI model trained on top of Rem-
BERT (Chung et al., 2021) and the same sequence
tagger from the primary submission but using a
reference-less input during inference. The final
score is computed by a weighted average in the

2We tuned weights specifically for the 3 MQM language
pairs. For all other language pairs the weights were tuned by
concatenating the MQM annotations for all three language
pairs
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same way as for our primary submission but using
only the obtained 3 reference-less scores.

zh-en en-de en-ru avg.
Nº Systems 15 17 16

B
as

el
in

es

BLEU 45.71 66.91 46.66 53.10
CHRF 43.81 65.44 55.00 54.75
BLEURT 48.57 83.09 70.83 67.50
COMET-20 53.33 74.26 64.17 63.92
COMET-21 53.33 78.68 70.83 67.61

Pr
im

ar
y

Su
b. COMET-22 64.76 86.76 70.83 74.12

MQM Sequence Tagger
↪→ ŷtags 60.95 80.88 75.83 72.55
↪→ ŷsrc 72.38 86.76 70.83 76.66
↪→ ŷref 71.42 86.76 75.83 78.00
↪→ ŷuni 69.52 85.29 72.5 75.77
DA Estimator 50.47 71.32 66.66 62.82

Q
E

m
et

ri
c COMETKIWI 68.57 86.02 70.83 75.14

MQM Sequence Tagger
↪→ ŷtags 47.61 86.76 59.16 64.51
↪→ ŷsrc 67.61 78.68 72.50 72.93
DA Pred-Estimator 72.38 57.35 70.83 66.85

Table 2: System-level accuracy for zh-en, en-de and
en-ru 2021 MQM annotations for the News Domain.

4 Experimental Results

As we have seen in Section 2, for our experiments
we use WMT 2021 News MQM annotations from
last year shared task (Freitag et al., 2021b) for test-
ing our metrics. As for baselines we used lexi-
cal metrics such as CHRF (Popović, 2015) and
BLEU (Papineni et al., 2002) and three state-of-
the-art metrics: BLEURT (Sellam et al., 2020; Pu
et al., 2021), COMET-20 (Rei et al., 2020b) and
COMET-21 (Rei et al., 2021)3.

4.1 Segment-level

Segment-level correlations for 2021 MQM anno-
tations on the News domain are shown in Table 1.
We used both Spearman R (ρ) and Kendall-Tau (τ )
correlation metrics to evaluate our models.

From this table we can observe that some in-
dividual scores from the MQM Sequence Tag-
ger already outperform state-of-the-art metrics
such as BLEURT and (COMET-20/21). Also, our
newly trained DA Estimator is able to outperform
BLEURT achieving results close to COMET-21
without ever seeing MQM data. Finally, when

3For all neural fine-tuned metrics we used the check-
points that were used as primary submissions for the WMT20
and WMT21 Metric tasks, more precisely, BLEURT20,
wmt20-comet-da and wmt21-comet-mqm

ensembled together, we are able to improve cor-
relations by ≈ 1% for both reference-based and
reference-free metrics.

4.2 System-level

System-level results for 2021 MQM annotations
for the News domain are shown in Table 2. To eval-
uate how our metrics perform we used the pairwise
accuracy proposed in (Kocmi et al., 2021), which
simulates a real world scenario where we are in-
terested in comparing two systems and deciding
which one is better.

Similarly to segment-level results, from Table
2, we can observe that the accuracy of individual
scores from the MQM Sequence Tagger outper-
form, on average, strong baselines such as BLEURT

and COMET-20/21. Nonetheless, when ensembled
together, these scores do not improve the overall
accuracy which seems to be obtained by using the
MQM Sequence Tagger with references only. An-
other interesting finding is that our QE submission
(COMET-KIWI) achieves higher accuracy than our
primary submission COMET-22. Also, depending
on the language pair the best accuracy is either
achieved by ŷsrc or ŷref but not by ŷuni. This seems
to indicate that the unified score is not learning to
take the best out of the source and reference and
that there might be a best way to combine these
two signals.

4.3 Robustness to Critical Errors

The SMAUG challenge set was built to specifically
test the robustness of metrics in capturing 5 dif-
ferent phenomena: deviation in Named Entities
(NE), deviation in Numbers (NUM), deviation in
meaning (MEAN), insertion of content (INS) and
removal of content (DEL). The goal of this chal-
lenge set is to check if metrics correctly penalize an
incorrect translation that was created by perturbing
a reference. To do so, the perturbed translation (t)
is scored using source (s) and reference (r) against
an alternative reference (r̂). The goal of a met-
ric f is to score r̂ above t (f(s, r̂, r) > f(s, t, r)).
To measure f ’s performance we will look at the
accuracy over the entire challenge set for each phe-
nomena:

AccP =

∑NP
i 1[f(s, r̂, r) > f(s, t, r)]

NP
(2)

where P denotes a phenomena and NP the number
of examples for that specific phenomena.
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Figure 1: Accuracy Scores on the SMAUG Challenge Set
for the baseline and submitted metrics.

Figure 1 presents the accuracy of our submis-
sions against a lexical baseline (CHRF) and a learnt
baseline (BLEURT) 4. From these figure we can ob-
serve that our reference-free submission seems to
be more robust than our primary submission which
indicates that, when the reference is present, mod-
els look at lexical overlap and can be oblivious to
critical errors that were derived from small pertur-
bations. Also, we can observe that our submissions
achieve a perfect accuracy on detecting deviations
in meaning (which tests phenomena such as nega-
tion), above 0.65 accuracy in detecting wrong num-
bers and above 0.86 accuracy in detecting incorrect
named entities. All of which were not correctly
detected by previous state-of-the-art metrics such
as BLEURT and COMET-20/21.

We also compare the performance of each en-
semble with the individual models that compose
it. In Figure 2, we observe that the DA Estima-
tor has the worst overall performance. Also, the
MQM Sequence Tagger ŷsrc achieves the highest
scores over all individual models, further suggest-
ing that reference-free evaluation is more robust
to these errors. Our final submission, while not
reaching the highest accuracy for all phenomena,
obtains good results in all cases. Regarding our
QE-as-a-metric submission, Figure 3 shows that
both the ensemble and individual systems achieve
very high scores. Our submission outperforms the
MQM Taggers and obtains a performance similar
to the DA Predictor-Estimator.

4Performance of COMET-20 and 21 is similar to the per-
formance shown by BLEURT while BLEU accuracy is close to
0.
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Figure 2: Accuracy Scores on the SMAUG Challenge
Set for Primary Submission and respective individual
scores.

5 Related work

For years, classic n-gram matching MT evaluation
metrics such as BLEU (Papineni et al., 2002) have
been adopted by the MT community as a primary
form of MT evaluation yet, recently, these classic
metrics have been outperformed by metrics based
on large pretrained models such as BERT (Bojar
et al., 2017; Ma et al., 2018, 2019; Mathur et al.,
2020).

Metrics based on large pretrained models can
be divided into two categories: 1) Embedding-
distance metrics and, 2) Fine-tuned metrics.
Embedding-distance metrics replaced the typical
word/n-gram matching by fuzzy matches based on
dense representations. Examples of such metrics
are BERTSCORE (Zhang et al., 2020) and YISI-
1 (Lo, 2019), which has been a top performing met-
ric since WMT 2019 Metrics task (Ma et al., 2019).
Note that these metrics used the embedding mod-
els without any further fine-tuning relying only on
their ability to capture semantic similarity. On the
other hand, fine-tuned metrics such as RUSE (Shi-
manaka et al., 2018), BLEURT (Sellam et al., 2020)
and COMET (Rei et al., 2020a) modify the under-
lying embedding models in order to learn how to
produce quality scores such as DA and/or MQM,
and thus to achieve higher correlations with human
judgements of MT quality.

Recently, the evaluation of metrics has been ex-
tended to consider not only correlations with hu-
man judgements but also sensitivity to specific er-
rors in translations. Namely, several works focused
on translations with critical errors, which Specia
et al. (2021) defines as translations that deviate in
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Figure 3: Accuracy Scores on the SMAUG Challenge Set
for QE-as-a-metric Submission and respective individ-
ual scores.

meaning from their source in such way that they
are misleading and can carry health, safety, legal,
reputation, religious or financial implications. Am-
rhein and Sennrich (2022) show that COMET is less
sensitive to errors in named entities and numbers
than CHRF; Freitag et al. (2021b) found that several
metrics struggle with negation and sentiment po-
larity errors; and Kanojia et al. (2021) showed that
several reference-free metrics fail to detect errors
related to omitting negation markers.

6 Conclusions

We present the joint contribution of Unbabel and
IST to the WMT 2022 Metrics shared task. We
propose a new architecture trained in a multitask
setting which takes advantage of sentence-level
scores along with supervision from MQM anno-
tation spans. Inspired by UNITE, our new model
can be used with and without references showing
promising results when references are not avail-
able.

Our primary submission ensembles our new
model along with the COMET Estimator architec-
ture showing both higher correlations and improved
robustness to phenomena that was deemed chal-
lenging in previous shared task editions.

Finally, our “QE-as-a-metric” submission yet
again has shown that reference-free is competitive
to reference-based evaluation not only at segment-
level but also at system-level and in terms of detect-
ing critical errors.
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Abstract

In this report, we present our submission to the
WMT 2022 Metrics Shared Task. We build
our system based on the core idea of UNITE
(Unified Translation Evaluation), which uni-
fies source-only, reference-only, and source-
reference-combined evaluation scenarios into
one single model. Specifically, during the
model pre-training phase, we first apply the
pseudo-labeled data examples to continuously
pre-train UNITE. Notably, to reduce the gap be-
tween pre-training and fine-tuning, we use data
cropping and a ranking-based score normaliza-
tion strategy. During the fine-tuning phase, we
use both Direct Assessment (DA) and Multidi-
mensional Quality Metrics (MQM) data from
past years’ WMT competitions. Specially, we
collect the results from models with different
pre-trained language model backbones, and
use different ensembling strategies for involved
translation directions.

1 Introduction

Translation metric aims at delivering accurate and
convincing predictions to identify the translation
quality of outputs with access to one or many gold-
standard reference translations (Ma et al., 2018,
2019; Mathur et al., 2020; Freitag et al., 2021b).
As the development of neural machine translation
research (Vaswani et al., 2017; Wei et al., 2022), the
metric methods should be capable of evaluating the
high-quality translations at the level of semantics
rather than surfance-level features (Sellam et al.,
2020; Ranasinghe et al., 2020; Rei et al., 2020; Wan
et al., 2022a). In this paper, we describe Alibaba
Translate China’s submissions to the WMT 2022
Metrics Shared Task to deliver a more adequate
evaluation solution at the level of semantics.

Pre-trained language models (PLMs) like
BERT (Devlin et al., 2019) and XLM-R (Conneau

∗ Equal contribution. Work was done when Yu Wan
and Keqin Bao were interning at DAMO Academy, Alibaba
Group.

et al., 2020) have shown promising results in iden-
tifying the quality of translation outputs. Com-
pared to conventional statistical- (e.g., BLEU, Pa-
pineni et al., 2002 and representation-based meth-
ods (e.g., BERTSCORE, Zhang et al., 2020), the
model-based approaches (e.g., BLEURT, Sellam
et al., 2020; COMET, Rei et al., 2020; UNITE, Wan
et al., 2022a) show their strong ability on delivering
more accurate quality predictions, especially those
approaches which apply source sentences as addi-
tional input for the metric model (Rei et al., 2020;
Takahashi et al., 2020; Wan et al., 2021, 2022a).
Specifically, those metric models are designed as
a combination of PLM and feedforward network,
where the former is in charge of deriving represen-
tations on input sequence, and the latter predicts
the translation quality based on the representation.
The metric model, which is trained on synthetic
or human annotations following a regressive objec-
tive, learns to mimic human predictions to identify
the translation quality of the hypothesis sentence.

Although those model-based metrics have shown
promising results in modern applications and trans-
lation quality estimation, they still show their own
shortcomings as follows. First, they often han-
dle one specific evaluation scenario, e.g., COMET
serves source-reference-only evaluation, where the
source and reference sentence should be concur-
rently fed to the model for prediction. For the other
evaluation scenarios, they hardly give accurate pre-
dictions, showing the straits of metric models due
to the disagreement between training and inference.
Besides, recent studies have investigated the feasi-
bility of unifying those evaluation scenarios into
one single model, which can further improve the
evaluation correlation with human ratings in any
scenario among source-only, reference-only, and
source-reference-combined evaluation (Wan et al.,
2021, 2022a). This indicates that, training with
multiple input formats than a specific one can de-
liver more appropriate predictions for translation
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quality identification. More importantly, unifying
all translation evaluation functionalities into one
single model can serve as a more convenient toolkit
in real-world applications.

Following the idea of Wan et al. (2022a) and
the experience in previous competition (Wan et al.,
2021), we directly use the pipeline of UNITE (Wan
et al., 2022a) to build models for this year’s met-
ric task. Each of our models can integrate the
functionalities of source-only, reference-only, and
source-reference-combined translation evaluation
into itself. When collecting the system outputs
for the WMT 2022 Metrics Shared Task, we em-
ploy our UNITE models to predict the transla-
tion quality scores following the source-reference-
combined setting. Compared to the previous ver-
sion of UNITE (Wan et al., 2022a), we reform
the synthetic training set for the continuous pre-
training phase, raising the ratio of training ex-
amples consisting of high-quality hypothesis sen-
tences. Also, during fine-tuning our metric model,
we apply available Direct Assessment (DA, Bo-
jar et al., 2017; Ma et al., 2018, 2019; Mathur
et al., 2020) and Multidimensional Quality Met-
rics datasets (MQM, Freitag et al., 2021a,b) from
previous WMT competitions to further improve the
performance of our model. Specifically, for each
translation direction among English to German (En-
De), English to Russian (En-Ru), and Chinese to
English (Zh-En) directions, we applied different en-
sembling strategies to achieve a better correlation
with human ratings on MQM 2021 dataset. Results
on WMT 2021 MQM dataset further demonstrate
the effectiveness of our method.

2 Method

As outlined in §1, we apply the UNITE frame-
work (Wan et al., 2022a) to obtain metric mod-
els. We use three types of input formats (i.e.,
source-only, reference-only, and source-reference-
combined) during training. While during infer-
ence, we only use the source-reference-combined
paradigm to collect evaluation scores. In this sec-
tion, we introduce the applied model architecture
(§2.1), synthetic data construction method (§2.2),
and model training strategy (§2.3) for this year’s
metric competition.

2.1 Model architecture

Input Format Following Wan et al. (2022a),
we construct the input sequence for source-only,

reference-only, and source-reference-combined in-
put formats as follows:

xSRC = [BOS]h[DEL]s[EOS], (1)

xREF = [BOS]h[DEL]r[EOS], (2)

xSRC+REF = [BOS]h[DEL]s[DEL]r[EOS],
(3)

where [BOS], [DEL] and [EOS] represent the
beginning, the delimeter, and the ending of se-
quence,1 and h, s, and r are hypothesis, source,
and reference sentence, respectively. During the
pre-training phase, we applied all input formats to
enhance the performance of UNITE models.

Model Backbone Selection Aside from the ref-
erence sentence which is written in the same
language as the hypothesis sentence, the source
is in another different language. We believe
that, cross-lingual semantic alignments can ease
the model training on source-only and source-
reference-combined scenarios. Referring to the set-
ting of existing methods (Ranasinghe et al., 2020;
Rei et al., 2020; Sellam et al., 2020; Wan et al.,
2022a), they apply XLM-R (Conneau et al., 2020)
as the backbone of evaluation models for better
multilingual support. In this competition, we addi-
tionally use INFOXLM (Chi et al., 2021), which en-
hances the XLM-R model with cross-lingual align-
ments, as the backbone of our UNITE models.

Model Training Following Wan et al. (2022a),
we first equally split all examples into three parts,
each of which only serves one input format training.
As to each training example, after concatenating
the required input sentences into one sequence and
feeding it to PLM, we collect the corresponding
representations – HREF,HSRC,HSRC+REF for each
input format, respectively. After that, we use the
output embedding assigned with CLS token h as
the sequence representation. Finally, a feedforward
network takes h as input and gives a scalar p as a
prediction. Taking xSRC as an example:

HSRC = PLM(xSRC) ∈ R(lh+ls)×d, (4)

hSRC = CLS(HSRC) ∈ Rd, (5)

pSRC = FeedForward(hSRC) ∈ R1, (6)

where lh and ls are the lengths of h and s, respec-
tively.

1Those symbols may vary if we use different PLMs, e.g.,
“[BOS]”, “[SEP]”, and “[SEP]” for English BERT (Devlin
et al., 2019), and “<s>”, “</s> </s>”, and “</s>” for XLM-
R (Conneau et al., 2020).
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For learning objectives, we apply the mean
squared error (MSE) as the loss function:

LSRC = (pSRC − q)2, (7)

where q is the given ground-truth score. Note that,
the batch size is the same across all input formats to
avoid the training imbalance. During each update,
the final learning objective is the sum of losses for
all formats:

L = LREF + LSRC + LSRC+REF. (8)

2.2 Synthetic Data Construction

To better enhance the translation evaluation ability,
we first construct a synthetic dataset for continu-
ous pre-training. The overall stage for obtaining
the dataset consists of the following steps: 1) col-
lecting synthetic data from parallel data provided
by the WMT Translation task; 2) downgrading the
translation quality and keeping the consistency of
synthetic and MQM datasets; 3) relabeling them
with a ranking-based scoring strategy.

Collecting Synthetic Data Specifically, we first
conduct parallel data from this year’s WMT
Translation competition as the source-reference
sentence pairs Then, we obtain hypothesis sen-
tences via translating the source using online
translation engines, e.g., Google Translate2

and Alibaba Translate3.

Quality Downgrading We follow existing
works (Sellam et al., 2020; Wan et al., 2022a) to ap-
ply the word/span dropping strategy to downgrade
the quality of hypothesis sentences, thus increas-
ing the ratio of training examples consisting of bad
translation outputs. Specially, we notice that the
translation quality of hypothesis sentences in the
MQM dataset is rather higher than that in the DA
dataset. In practice, to reduce the translation quality
distribution gap between the synthetic and MQM
datasets, we randomly select 15% examples of the
entire dataset, which is lower than the applied ratio
(i.e., 30%) in BLEURT (Sellam et al., 2020) and
UNITE (Wan et al., 2022a).

Data Labeling After downgrading the transla-
tion quality of synthetic hypothesis sentences, we
then collect predicted scores for each triple as the
learning supervision. To increase the confidence

2https://translate.google.com
3https://translate.alibaba.com

of pseudo-labeled scores, we use multiple UNITE
checkpoints trained with different random seeds
to label the synthetic data. Besides, to reduce the
gap of predicted scores among different translation
directions, we applied the ranking-based scoring
strategy as in Wan et al. (2022a).

2.3 Training Pipeline

Pre-train with Synthetic Data First, we use
the synthetic dataset to continuously pre-train
our UNITE models to enhance the evaluation abil-
ity on three input formats.

Fine-tune with DA Dataset After training
UNITE models on the synthetic dataset, we apply
the DA dataset for the first stage of model fine-
tuning. Considering the support of multilingual
translation evaluation, we collect all DA datasets
from the previous years, and we leave the year 2021
out of training due to the reported bug from the offi-
cial committee. We think that, although the DA and
MQM datasets have different scoring rules, train-
ing UNITE models on DA as an additional phase
can enhance both the model robustness and the
support of multilingualism. Besides, the number
of examples in the DA dataset is extremely larger
than that in MQM. The training examples from
the DA dataset can provide more learning signals
for UNITE model training.

Fine-tune with MQM Dataset After fine-tuning
UNITE models on the DA dataset, we then apply
the MQM dataset for the second stage of model
fine-tuning. For this year’s competition, we first use
MQM 2020 dataset during this stage, and testify
the performance of our models on MQM 2021 to
tune the hyper-parameters. Then, after identifying
the hyper-parameters, we use all MQM datasets to
fine-tune, choose two models whose backbones are
XLM-R and INFOXLM, and collect the ensembled
scores as submissions.

2.4 Model Ensembling

For each training pipeline, we use the three random
seeds to train UNITE models. However, when
identifying the performance of all models on the
MQM 2021 dataset, we find it hard to select the
same strategy across all domains and translation
directions. In practice, we select the models trained
with different random seeds for each translation
direction.
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3 Experiments

3.1 Experiment Settings
Implementations All of our models are imple-
mented with the released UNITE repository.4 We
choose the large version of XLM-R (Conneau et al.,
2020) and INFOXLM (Chi et al., 2021) as the PLM
backbones of all UNITE models, and directly use
the released checkpoints from Huggingface Trans-
formers (Wolf et al., 2020).5

Continuous pre-training Following Wan
et al. (2022a), we collect the translation
hypotheses from 10 directions, i.e., English-
Czech/German/Japanese/Russian/Chinese, as
those translation directions are engaged with
massive parallel datasets and the performance
of corresponding online translation engines is
relatively high. For each translation direction, we
collect 0.5M hypotheses, and label the translation
quality scores as describled in §2.2.

Hyper-parameters Following the setting in Wan
et al. (2022a), the feedforward network of our
UNITE model contains three linear transition lay-
ers, whose output dimensionalities are 3,072, 1,024,
and 1, respectively. Between any two adjacent lay-
ers, the hyperbolic tangent is arranged as the acti-
vations. During the continuous pre-training phase,
we set the batch size for each input format as 1,024,
and tune the hyper-parameters for our models. For
the models whose backbone is XLM-R, the learn-
ing rates for PLM and feedforward network are
1.0 · 10−4 for PLM, and 3.0 · 10−4, respectively.
For the models whose backbone is INFOXLM, the
learning rates are 5.0·10−5 for PLM, and 1.5·10−4,
respectively. For all the fine-tuning steps, we use
the batch size as 32 across all settings, and the
learning rates for PLM and feedforward network
are 5.0 ·10−6 for PLM, and 1.5 ·10−5, respectively.

Performance Evaluation Following the previ-
ous setting (Ma et al., 2018, 2019; Mathur et al.,
2020; Freitag et al., 2021b), we use the variant
Kendall’s Tau to evaluate the performance of our
models on the MQM 2021 dataset. For compari-
son, we directly use the officially released COMET
checkpoints (Rei et al., 2020)6, and select the

4https://github.com/wanyu2018umac/
UniTE

5https://huggingface.co/
xlm-roberta-large, https://huggingface.
co/microsoft/infoxlm-large

6https://github.com/Unbabel/COMET/

checkpoints which are trained with DA or MQM
datasets.

Results Conduction When collecting the results
for submitting predictions, we ensembled the mod-
els by directly averaging the predictions on the
same example. We do not apply the idea of
uncertainty-aware sampling (Zhou et al., 2020;
Wan et al., 2020; Glushkova et al., 2021) during
inference, because it takes far more additional time
to collect the results.

4 Results and Analysis

Baselines The experimental results are con-
ducted in Table 1. As seen, among all involved
baselines, the source-only evaluation models (mod-
els marked with “QE”) perform worse than their
corresponding source-reference-combined ones,
dropping 7.2 and 7.4 Kendall’s Tau correlation on
DA and MQM settings. This verifies that, the refer-
ence sentence in model translation quality evalua-
tion offers more information for metric models to
help deliver accurate predictions (Rei et al., 2020;
Takahashi et al., 2020; Wan et al., 2022a). Besides,
the model fine-tuned on the DA dataset performs
slightly better than that on MQM. We think that the
DA dataset may show its advantage in the robust-
ness of multilingual support and the scale of the
training dataset.

UNITE models As to our UNITE models, re-
placing the XLM-R backbone with INFOXLM
PLM for metric models does not deliver consis-
tent improvement on average. Specifically, for
both News and TED domains, the UNITE model
with INFOXLM as the backbone shows a better
correlation on En-De direction, whereas worse on
En-Ru and Zh-En than XLM-R. In addition, the
COMET-DA-2021 performs best in En-Ru direc-
tion, where we think the reason lies in the scarcity
of En-Ru training examples in MQM. In prac-
tice, during collecting the ensembled outputs, we
mainly use the UNITEINFOXLM models for En-De,
and UNITEXLM-R for En-Ru and Zh-En.

5 Conclusion

In this paper, we describe our submission UNITE
for the sentence-level Metrics Shared Task at WMT
2022. We apply UNITE (Wan et al., 2022a) as the
pipeline of our models. During training, we utilize
three input formats to train our models on our syn-
thetic, DA, and MQM data sequentially. Besides,
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Model News TED All
En-De En-Ru Zh-En En-De En-Ru Zh-En

COMET-QE-DA-2021 23.7 34.6 8.3 12.3 22.5 8.5 14.4
COMET-DA-2021 28.1 43.1 15.2 20.2 28.5 15.9 21.6
COMET-QE-MQM-2021 26.7 33.3 6.7 10.6 22.3 5.5 12.8
COMET-MQM-2021 27.5 42.5 11.4 18.5 28.8 13.3 20.2
UNITEXLM-R 27.7 39.0 16.3 19.7 31.2 17.3 25.3
UNITEINFOXLM 40.0 36.2 13.0 25.3 28.7 9.2 24.9

Table 1: Kendall’s Tau correlation (%) on MQM 2021 dataset. The best results for each translation direction are
bold. Taking XLM-R as backbone shows better result on En-Ru and Zh-En, and INFOXLM on En-De.

we ensemble the two models which consist of two
different backbones – XLM-R and INFOXLM. Ex-
periments demonstrate the reliability of our model
for identifying the quality of translation outputs,
whereas the two models whose backbones XLM-
R and INFOXLM show different performance for
different translation directions.

For the future work, we think that exploring the
feasibility of model-based evaluation metrics for
other natural language processing tasks is interest-
ing. We believe that, building reliable evaluation
metrics for translation diversity (Lin et al., 2022,
2021), domain-specific translation quality (Yao
et al., 2020; Wan et al., 2022b), and natural lan-
guage generation (Liu et al., 2022; Yang et al.,
2021, 2022) is also of vital importance for the nat-
ural language processing community.

Besides, we also submit the source-only predic-
tions of our models to this year’s WMT Quality Es-
timation Shared Task, achieving 1st place on mul-
tilingual and En-Ru, and 2nd place on En-De and
Zh-En sub-tracks. This further demonstrates the ef-
fectiveness of our UNITE approach, that unifying
all evaluation scenarios into one single model can
enhance the model performances on all evaluation
tasks. We believe that, the idea of unifying three
kinds of translation evaluation functionalities (i.e.,
source-only, reference-only, and source-reference-
combined) into one single model can deliver strong
evaluation models on all scenarios. This research
topic is worth further exploration in the future.
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Bojar. 2021b. Results of the WMT21 metrics shared
task: Evaluating metrics with expert-based human
evaluations on TED and news domain. In Proceed-
ings of the Sixth Conference on Machine Translation,
pages 733–774, Online. Association for Computa-
tional Linguistics.

Taisiya Glushkova, Chrysoula Zerva, Ricardo Rei, and
André F. T. Martins. 2021. Uncertainty-aware ma-
chine translation evaluation. In Findings of the Asso-
ciation for Computational Linguistics: EMNLP 2021,
pages 3920–3938, Punta Cana, Dominican Republic.
Association for Computational Linguistics.

Huan Lin, Baosong Yang, Liang Yao, Dayiheng Liu,
Haibo Zhang, Jun Xie, Min Zhang, and Jinsong Su.
2022. Bridging the gap between training and infer-
ence: Multi-candidate optimization for diverse neural
machine translation. In Findings of the Association
for Computational Linguistics: NAACL 2022, pages
2622–2632, Seattle, United States. Association for
Computational Linguistics.

Huan Lin, Liang Yao, Baosong Yang, Dayiheng Liu,
Haibo Zhang, Weihua Luo, Degen Huang, and Jin-
song Su. 2021. Towards user-driven neural machine
translation. In Proceedings of the 59th Annual Meet-
ing of the Association for Computational Linguistics
and the 11th International Joint Conference on Natu-
ral Language Processing (Volume 1: Long Papers),
pages 4008–4018, Online. Association for Computa-
tional Linguistics.

Xin Liu, Dayiheng Liu, Baosong Yang, Haibo Zhang,
Junwei Ding, Wenqing Yao, Weihua Luo, Haiying
Zhang, and Jinsong Su. 2022. Kgr4: Retrieval, retro-
spect, refine and rethink for commonsense generation.
In Proceedings of the AAAI Conference on Artificial
Intelligence, volume 36, pages 11029–11037.
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Abstract
This paper describes submission to the WMT
2022 Quality Estimation shared task (Task
1: sentence-level quality prediction, Zerva
et al. (2022)). We follow a simple and intu-
itive approach: estimating MT quality by au-
tomatically back-translating hypotheses into
the source language using a multilingual MT
system. Using standard MT evaluation met-
rics, we then compare the resulting backtrans-
lation with the original source. We find that
even the best-performing backtranslation-based
scores perform substantially worse than super-
vised QE systems, including the organizers’
baseline. However, combining backtranslation-
based metrics with off-the-shelf QE scorers
improves correlation with human judgments,
suggesting that they can indeed complement a
supervised QE system.

1 Introduction

Sophisticated approaches to MT quality estimation
(QE) based on large pre-trained models and care-
ful training regimen have enabled great progress
in recent years. However, when using online MT
systems, such QE technology is not yet available
to users and backtranslation provides an appeal-
ingly simple strategy to estimate translation quality
whether by humans or by automated sytems. Lay
users often rely on backtranslation to assess MT
quality in languages that they do not understand
(Somers, 2005; Mehandru et al., 2022). As a result,
from a user experience standpoint, using backtrans-
lation for QE is easy to explain. Furthermore, with
the increasing popularity of multilingual neural MT
systems that can easily translate between multiple
language pairs in any direction, backtranslations
are very cheap to obtain, since they do not even re-
quire training an auxiliary MT system in the reverse
translation direction.

However, the effectiveness of backtranslation
for estimating the quality of MT remains unclear.

∗ equal contribution.

In early rule-based and statistical MT systems,
Somers (2005) shows that, when using automatic
evaluation methods (e.g., BLEU), backtranslation
cannot discriminate good MT systems from bad
ones, nor between texts that are easy or hard to
translate. This led him to conclude that “round
trip translation [is] good for nothing”. Recently,
Moon et al. (2020) revisited the use of backtransla-
tion for QE with neural systems for MT and with
embedding-based similarity metrics to enable a
more sophisticated comparison of the backtransla-
tion with the source. They obtained strong results
on the WMT 2019 QE task, outperforming the
YISI-2 metric (Lo, 2019) on system-level evalua-
tions, but exhibited rather low correlations on the
segment-level task which is more directly aligned
with how humans use BT to gauge MT quality.

The goal of our submission is to pitch a
backtranslation-based QE score that can comple-
ment state-of-the-art quality estimation systems in
the controlled settings of the WMT shared task
(Zerva et al., 2022) and understand its reliability as
a sentence-level quality estimation technique.

2 Approach

Following Moon et al. (2020), given a source sen-
tence x and a MT hypothesis, we translate y back
into the source language using an off-the-shelf
multilingual model M , yielding backtranslation x̃.
We then compare x and x̃ using standard machine
translation evaluation metrics, and hypothesize that
the distance between x and x̃, referred to as BT-
score(x, x̃), can be an indicative of the translation
quality of y.

However, MT systems are prone to making er-
rors and are shown to hallucinate content. When
the BT system makes an error, it can misguide the
users in believing that the translation is a) erro-
neous when it is not and b) correct when the BT
system magically recovers the source content. In
order to improve the reliability of the BT-based QE
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BT Metrics Footprint Params. Development Set Test Set
Bytes Pearson Spearman Pearson Spearman

BLEU 0 0 0.179 0.170 0.141 0.137
chrF 0 0 0.203 0.181 0.184 0.174
BERTScore 0 177853440 0.292 0.296 0.325 0.285
Baseline1 2280011066 564527011 n/a n/a 0.560 0.576

Table 1: Pearson and Spearman correlation between backtranslation-based QE metrics and Direct Assessment
judgments on the WMT 2022 En-Cs task.

Metrics En-Cs (DA) En-Ru (MQM) Zh-En (MQM)
Dev Test Dev Test Dev Test

[1] BT-BERTScore 0.296 0.285 0.262 0.210 0.151 0.249
[2] Comet-Src 0.461 0.519 0.505 0.383 0.213 0.223

Multiply([1], [2]) 0.467 0.523 0.512 0.390 0.216 0.257

Baseline2 n/a 0.560 n/a 0.330 n/a 0.164

Table 2: Spearman correlation between QE metrics and human judgments on the WMT 2022 Sentence Level Quality
Estimation task: Combining BT-BERTScore and Comet-Src improves correlation with human judgments across the
board.

metrics, BT-score(x, x̃), and to understand whether
they can complement off-the-shelf QE scorers that
directly estimate the quality of a source sentence
and a MT hypothesis, FT-score(x, y), we also pro-
pose to combine the two evaluation methods using
a simple multiplication (“AND”) operation.

Back-translation Model The backward transla-
tions were generated from Facebook’s mBART-50
Many-to-One and One-to-Many multilingual ma-
chine translation (MMT) models. The MMT model
can translate between 49 languages into and out of
English, and uses 12 layers with 1,024 sized em-
beddings, 4,096 feedforward neural network (FNN)
embedding dimensions, and 16 heads for both en-
coder and decoders.3

MT Evaluation Metrics We experiment with
model-free and model-based evaluation metrics.
We apply the following sentence-level scores to
compare detokenized backtranslations x̃ with the
source x:

• BLEU: we use the Sacrebleu implementation
of sentence-level BLEU, with an exponential

3https://huggingface.co/facebook/
mbart-large-50-many-to-one-mmt/,
https://huggingface.co/facebook/
mbart-large-50-one-to-many-mmt/

decay smoothing.4 (Papineni et al., 2002)

• chrF: we use the Sacrebleu implementation
of the chrF score, which takes a maximum
character n-gram order count of six and cal-
culates the number of ngram overlap between
hypothesis and reference n-grams. (Popović,
2015)

• BERTScore: we compute the F-score based
on wordpiece-level embedding similarities of,
weighted by inverse document frequency (idf),
using BERT as the embedding model (Zhang
et al., 2019).5.

We use the publicly available QE metric, Comet-
Src (“wmt21-comet-qe-mqm”) to compute FT-
score(x, y).

3 Official Results using BT-based Metrics

We evaluate our approach on the English-Czech
sentence-level quality prediction subtask. As our
approach is unsupervised, we do not use the train-
ing data provided by the organizers. We report
results obtained on the development and test sets,
using the Pearson and Spearman correlations with
human judgments of quality.

4https://github.com/mjpost/sacrebleu
5https://pypi.org/project/bert-score/

594



DA >= −1 DA < −1 DA >= 0 DA < 0 DA >= 1 DA < 1

BT-BERTScore 0.197 0.230 0.133 0.222 0.022 0.235
Comet-Src 0.397 0.139 0.337 0.313 0.139 0.413

Table 3: En-Cs segment-level correlation in different quality buckets according to the direct assessment scores.

Sample Development Set
z-mean BT-BLEU BT-chrF BT-BERT

Source: Arif Lohar briefly went into acting in punjabi movies
before returning to his music career at the age of 22 .

-1.486 20.95 62.57 0.949

Output: Arif Lohar krátce začal hrát v Punjabi filmech , než
se v roce 22 vrátil ke své hudebnı́ kariéře .
BT Source: Arif Lohar briefly began acting in Punjabi films
before returning to his musical career in the year 22.

Source: Promulgate Thai Royal and noble titles back and
return the title to politician who was canceled .

-1.781 48.34 73.94 0.959

Output: Promulgate Thajské královské a šlechtické tituly zpět
a vrátit titul politici , který byl zrušen .
BT Source: Promulgate Thai royal and noble titles back and
return the title of politician that was abolished.

Source: Ika-6 na utos ; re - runs ; aired on gma life tv for the
first time ; replacing I heart davao .

-2.935 18.00 53.63 0.941

Output: Ika-6 na utos ; re - runs ; poprvé vysı́láno na gma life
TV ; nahrazuje I heart davao .
BT Source: Ika-6 on utos; re-runs; first broadcast on gma life
TV; replaces I heart davao.

Table 4: Three randomly sampled sentences from the bottom 5% according to DA scores.

As can be seen in Table 4, BERTScore provides
a better correlation with human judgments than
BLEU and chrF consistently on the development
and test sets. This is expected since the under-
lying BERT model provides a more semantically
informed comparison than n-gram metrics. How-
ever, the backtranslation metrics yield low corre-
lation scores overall, underperforming the orga-
nizer’s baseline on the test set.

Our results are complementary to Moon et al.
(2020) in that they suggest that BT-based metrics
might be better suited to ranking diverse outputs
from systems of varying overall quality, than those
from a single MT system, i.e. at predicting quality
assessments at the segment level.

4 Can BT-based scorers complement
existing QE metrics?

While standalone evaluation using BT-based scor-
ing significantly lags behind supervised SOTA QE
baselines, we evaluate whether BT-based metrics

can provide reliable complementary judgments to a
supervised off-the-shelf QE scorer in Table 2. We
combine the best BT-based scorer, BT-BERTscore
and a standard QE scorer, Comet-Src using a sim-
ple multiplication operation. On three sentence
level quality estimation tasks: En-Cs (DA), En-Ru
(MQM) and Zh-En (MQM), combining both BT
and QE scores result in improved correlation across
the board over individual metrics, outperforming
baselines on both En-Ru and Zh-En.

In order to better understand the source of this
improvement, we divide the En-Cs development
dataset into different buckets based on the direct
assessment scores and report correlation on the re-
sulsubsets in Table 3. On very bad quality transla-
tions, i.e. DA <= −1, BT-BERTScore exhibits a
higher correlation than Comet-Src, suggesting that
it is able to more reliably distinguish between bad
translations than Comet-Src, hence complementing
the QE metric.
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5 Qualitative Analysis on En-Cs

In Table 2, we randomly sampled three sentences
from the lowest 5% of the human direct assessment
scores from the development set data and report
the corresponding BT-BLEU, BT-chrF, and BT-
BERTScores. The outputs depict how the forward
translation output can be of poor quality, as indi-
cated by the human direct assessment scores. How-
ever, the semantic similarity between the source
and the back-translated source can still suggest that
the forward translation is correct. When we ap-
ply machine translation to other domains, this can
be problematic and misleading since users may
mistakenly impart higher trust levels when using
backtranslation techniques. From the same table,
we can also observe that the automatic metrics can-
not capture salient errors as suggested by the high
scores generated by the automatic metric for the
second example (“who was canceled” vs “that was
abolished”). This finding is in line with prior work
that has shown a positive correlation between hu-
man evaluations conducted on input sentences and
translated outputs with human evaluations on in-
put sentences and round-trip sentences (Aiken and
Park, 2010). These results together call for a more
systematic assessment of the role of backtranslation
in lay users perceptions of MT quality.

6 Conclusion

We evaluated backtranslation-based unsupervised
quality estimation systems on the sentence-level
quality estimation task. Our results show that back-
translation bases scorers fall substantially behind
supervised models such as the organizers’ baseline.
However, they can complement off-the-shelf QE
metrics in distinguishing bad translations. Quali-
tative analysis on En-Cs indicates that while back-
translation can be a poor indicator of translation
quality, the automatic metrics derived using the
source and the backtranslated source might also add
to the unreliability of the scorer. This suggests that
more investigation is needed to determine whether
backtranslation can be used effectively for QE in
practical systems, whether for automatic quality
estimation or to provide quality feedback to human
users.
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Orăsan, Marina Fomicheva, Andre F. T. Martins, and
Lucia Specia. 2022. Findings of the wmt 2022 shared
task on quality estimation. In Proceedings of the Sev-
enth Conference on Machine Translation, Abu Dhabi.
Association for Computational Linguistics.

Tianyi Zhang, Varsha Kishore, Felix Wu, Kilian Q
Weinberger, and Yoav Artzi. 2019. Bertscore: Eval-
uating text generation with bert. arXiv preprint
arXiv:1904.09675.

596



Proceedings of the Seventh Conference on Machine Translation (WMT), pages 597–605
Abu Dhabi, December 7–8, 2022. ©2022 Association for Computational Linguistics

Alibaba-Translate China’s Submission for
WMT 2022 Quality Estimation Shared Task

Keqin Bao1,2∗ Yu Wan1,3∗ Dayiheng Liu1 Baosong Yang1 Wenqiang Lei4
Xiangnan He2 Derek F. Wong3 Jun Xie1

1DAMO Academy, Alibaba Group 2University of Science and Technology of China
3NLP2CT Lab, University of Macau 4National University of Singapore

baokeqin@mail.ustc.edu.cn nlp2ct.ywan@gmail.com
{liudayiheng.ldyh,yangbaosong.ybs,qingjing.xj}@alibaba-inc.com

wenqianglei@gmail.com xiangnanhe@gmail.com derekfw@um.edu.mo

Abstract

In this paper, we present our submission to
sentence-level MQM benchmark at Quality Es-
timation Shared Task, named UNITE (Unified
Translation Evaluation). Specifically, our sys-
tems employ the framework of UNITE, which
combined three types of input format during
training with a pre-trained language model.
First, we apply the pseudo-labeled data exam-
ples for the continuously pre-training phase.
Notably, to reduce the gap between pre-training
and fine-tuning, we use data pruning and
a ranking-based score normalization strategy.
For the fine-tuning phase, we use both Direct
Assessment (DA) and Multidimensional Qual-
ity Metrics (MQM) data from past years’ WMT
competitions. Finally, we collect the source-
only evaluation results, and ensemble the pre-
dictions generated by two UNITE models,
whose backbones are XLM-R and INFOXLM,
respectively. Results show that our models
reach 1st overall ranking in the Multilingual
and English-Russian settings, and 2nd over-
all ranking in English-German and Chinese-
English settings, showing relatively strong per-
formances in this year’s quality estimation com-
petition.

1 Introduction

Quality Estimation (QE) aims at evaluating ma-
chine translation without access to a gold-standard
reference translation (Blatz et al., 2004; Specia
et al., 2018). Different from other evaluation tasks
(e.g., metric), QE arranges its process of evalu-
ation via only accessing source input. As the
performance of modern machine translation ap-
proaches increase (Vaswani et al., 2017; Lin et al.,
2022; Wei et al., 2022; Zhang et al., 2022), the
QE systems should better quantify the agreement
of cross-lingual semantics on source sentence and
translation hypothesis. The evaluation paradigm

∗Equal contribution. Work was done when Keqin Bao and
Yu Wan were interning at DAMO Academy, Alibaba Group.

of QE shows its own potential for real-world ap-
plications (Wang et al., 2021; Park et al., 2021;
Specia et al., 2021). This paper describes Alibaba
Translate China’s submission to the sentence-level
MQM benchmark at WMT 2022 Quality Estima-
tion Shared Task (Zerva et al., 2022).

In recent years, pre-trained language models
(PLMs) have shown their strong ability on extract-
ing cross-lingual information (Conneau et al., 2020;
Chi et al., 2021). To achieve a higher correlation
with human ratings on the quality of translation
outputs, plenty of trainable model-based QE ap-
proaches appear, e.g., COMET-QE (Rei et al.,
2020) and QEMIND (Wang et al., 2021). They
both first derive the embeddings assigned with
source and hypothesis sentence with given PLM,
then predict the overall score based on their embed-
dings with a followed feedforward network. Those
model-based approaches have greatly facilitated
the development of the QE community. However,
those models can only handle source-only input
format, which neglects the other two evaluation
scenarios, i.e., reference-only and source-reference-
combined evaluation. More importantly, training
with multiple input formats can achieve a higher
correlation with human assessments than individu-
ally training on specific evaluation scenarios (Wan
et al., 2021, 2022a). Those findings indicate that,
the QE and Metric tasks share plenty of knowledge
when identifying the quality of translated outputs,
and unifying the functionalities of three evaluation
scenarios into one model can also enhance the per-
formance of the evaluation model on each scenario.

As a consequence, when building a single model
for a sentence-level QE task, we use the pipeline
of UNITE (Wan et al., 2022a), which integrates
source-only, reference-only, and source-reference-
combined translation evaluation ability into one
single model. When collecting the system out-
puts for WMT 2022 Quality Estimation Shared
Task, we employ our UNITE models to predict
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the translation quality scores following a source-
only setting. As for the training data, we collect
synthetic data examples as supervision for con-
tinuous pre-training and apply a dataset pruning
strategy to increase the translation quality of the
training set. Also, during fine-tuning our QE model,
we use all available Direct Assessment (DA, Bo-
jar et al., 2017; Ma et al., 2018, 2019; Mathur
et al., 2020) and Multidimensional Quality Met-
rics datasets (MQM, Freitag et al., 2021a,b) from
previous WMT competitions to further improve the
performance of our model. Besides, regarding the
applied PLM for UNITE models, we find that for
English-Russian (En-Ru) and Chinese-English (Zh-
En) directions, PLM enhanced with cross-lingual
alignments (INFOXLM, Chi et al., 2021) can de-
liver better results than conventional ones (XLM-R,
Conneau et al., 2020). Moreover, for each subtask
including English to German (En-De), En-Ru, Zh-
En, and multilingual direction evaluations, we build
an ensembled QE system to derive more accurate
and convincing results as final predictions.

Our models show impressive performances in all
translation directions. When only considering the
primary metric – Spearman’s correlation, we get
2nd, 3rd, and 3rd place in En-Ru, Zh-En, and multi-
lingual direction, respectively. More notably, when
taking all metrics into account, despite the slight
decrease in Spearman’s correlations, our systems
show outstanding overall performance than other
systems, achieving 1st place in En-Ru and multilin-
gual, and 2nd in En-De and Zh-En direction.

2 Method

As outlined in §1, we apply the UNITE frame-
work (Wan et al., 2022a) to obtain QE models. We
unify three types of input formats (i.e., source-only,
reference-only, and source-reference-combined)
into one single model during training. While during
inference, we only use the source-only paradigm
to collect evaluation scores. In this section, we in-
troduce the applied model architecture (§2.1), syn-
thetic data construction method (§2.2), and model
training strategy (§2.3).

2.1 Model architecture

Input Format Following Wan et al. (2022a), we
design our QE model which is capable of pro-
cessing source-only, reference-only, and source-
reference-combined evaluation scenarios. Conse-
quently, for the consistency of training across all

input formats, we construct the input sequence for
source-only, reference-only, and source-reference-
combined input formats as follows:

xSRC = ⟨s⟩h⟨/s⟩⟨/s⟩s⟨/s⟩, (1)

xREF = ⟨s⟩h⟨/s⟩⟨/s⟩r⟨/s⟩, (2)

xSRC+REF = ⟨s⟩h⟨/s⟩⟨/s⟩s⟨/s⟩⟨/s⟩r⟨/s⟩,
(3)

where h, s, and r represent hypothesis, source,
and reference sentence, respectively. During the
pre-training phase, we apply all input formats to
enhance the performance of QE models. Notably,
we only use the source-only format setting when
fine-tuning on this year’s dev set and inferring the
test set.

Model Backbone Selection The core of quality
estimation aims at evaluating the translation quality
of output given source sentence. As the source and
hypothesis sentence are from different languages,
evaluating the translation quality requires the abil-
ity of multilingual processing. Furthermore, we be-
lieve that those PLMs which possess cross-lingual
semantic alignments can ease the learning of trans-
lation quality evaluation.

Referring to the setting of existing meth-
ods (Ranasinghe et al., 2020; Rei et al., 2020; Sel-
lam et al., 2020; Wan et al., 2022a), they often apply
XLM-R (Conneau et al., 2020) as the backbone of
evaluation models for better multilingual support.
To testify whether cross-lingual alignments can
help the evaluation model training, we further ap-
ply INFOXLM (Chi et al., 2021), which enhances
the XLM-R model with cross-lingual alignments,
as the backbone of evaluation models.

Model Training For the training dataset includ-
ing source, reference, and hypothesis sentences,
we first equally split all examples into three parts,
each of which only serves one input format training.
As to each training example, after concatenating
the required input sentences into one sequence and
feeding it to PLM, we collect the corresponding
representations – HREF,HSRC,HSRC+REF for each
input format, respectively. After that, we use the
output embedding assigned with CLS token h as
the sequence representation. Finally, a feedforward
network takes h as input and gives a scalar p as a
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prediction. Taking xSRC as an example:

HSRC = PLM(xSRC) ∈ R(lh+ls)×d, (4)

hSRC = CLS(HSRC) ∈ Rd, (5)

pSRC = FeedForward(hSRC) ∈ R1, (6)

where lh and ls are the lengths of h and s, respec-
tively.

For the learning objective, we apply the mean
squared error (MSE) as the loss function:

LSRC = (pSRC − q)2, (7)

where q is the given ground-truth score. Note that,
when training on three input formats, one single
step includes three substeps, each of which is ar-
ranged on one specific input format. Besides, the
batch size is the same across all input formats to
avoid the training imbalance. During each update,
the final learning objective can be written as the
sum of losses for each format:

L = LREF + LSRC + LSRC+REF. (8)

2.2 Constructing Synthetic Data

To better enhance the translation evaluation abil-
ity of pre-trained models, we first construct syn-
thetic dataset for continuous pre-training (Wan
et al., 2022a). The pipeline for obtaining such
dataset consists of the following steps: 1) collect-
ing synthetic data from parallel data provided by
the WMT Translation task; 2) labeling samples
with a ranking-based scoring strategy; 3) pruning
data samples to increase the quality of dataset; 4)
relabeling them with a ranking-based scoring strat-
egy.

Collecting Synthetic Data Pseudo datasets for
model pre-training has been proven effective for ob-
taining well-performed evaluation models (Sellam
et al., 2020; Wan et al., 2021, 2022a). Moreover,
as in Wan et al. (2022a), training on three input
formats requires massive pseudo examples. Specif-
ically, we first obtain parallel data from this year’s
WMT Translation task as the source-reference sen-
tence pairs, and translate the source using online
translation engines, e.g., Google Translate1

and Alibaba Translate2, to generate the hy-
pothesis sentence. As discussed in Sellam et al.
(2020), the conventional pseudo hypotheses are

1https://translate.google.com
2https://translate.alibaba.com
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Figure 1: The cumulative distribution of scores in WMT
2020 and 2021 MQM datasets. The x-axis represents
the annotated score while the y-axis represents the ratio.

usually of high translation quality. Consequently,
the dataset hardly possesses a higher level of trans-
lation quality diversity, making it difficult to train
evaluation models. We follow existing works (Wan
et al., 2022a; Sellam et al., 2020) to apply the word
and span dropping strategy to attenuate hypotheses
quality, increasing the ratio of training examples
consisting of bad translation outputs.

Data Labeling and Pruning After downgrading
the translation quality of synthetic hypothesis sen-
tences, we then collect predicted scores for each
triple as the learning supervision using checkpoint
from UNITE (Wan et al., 2022a).3 As discussed
in Wan et al. (2022a) and Sellam et al. (2020),
scores labeled by low-quality metrics have poor
consistency, confusing the model learning during
the training period. To increase the confidence
of pseudo-labeled scores, we use multiple UNITE
checkpoints trained with different random seeds to
label the synthetic data (Wan et al., 2022a). Be-
sides, to reduce the gap of predicted scores among
different translation directions, as well as alleviate
the bias among multiple evaluation approaches, we
follow the scoring methods in UNITE (Wan et al.,
2022a), using the idea of Borda count (Ho et al.,
1994; Emerson, 2013). After sorting the collected
prediction scores, we use their ranking indexes in-
stead, and apply the conventional Z-score strategy
to normalize them.

During our preliminary experiments, we find
that the quality of hypotheses in the MQM 2020
and 2021 dataset is generally high. As shown in
Figure 1, more than 64% of the human-annotated
scores are higher than 90. To further mitigate the
disagreement of translation quality distributions be-
tween pre-training and test datasets, we arrange

3https://github.com/wanyu2018umac/UniTE
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data pruning for synthetic data. Specifically, for
each language pair, we ascendingly sort the syn-
thetic examples by their scores, and split the ex-
amples into 5 bins. For the examples in each bin,
we randomly drop 90%, 80%, 60%, 20%, and 0%
data examples, yielding. We obtain 0.5M synthetic
data for each language pair, and renormalize our
prediction scores by the ranking-based manners as
described before. In total, we collect pseudo ex-
amples on 10 translation directions, i.e., English
↔ Czech/German/Japanese/Russian/Chinese, each
of which contains 0.5M data tuples formatted as
⟨h, s, r, q⟩.

2.3 Training Pipeline

To train UNITE models, the available datasets con-
sist of synthetic examples (as in §2.2), human anno-
tations (i.e., DA and MQM), as well as provided de-
velopment set for this year. In practice, we arrange
the training pipeline into three steps as follows.

Pre-train with Synthetic Data As illustrated in
§2.2, after collecting synthetic dataset, we use them
to continuously pre-train our UNITE models to en-
hance the evaluation ability on three input formats.

Fine-tune with DA Dataset After collecting pre-
trained checkpoints, we first fine-tune them with
human-annotated DA datasets. Although the DA
and MQM datasets have different scoring rules,
training UNITE models on DA as an additional
phase can enhance both the model robustness and
the support of multilinguality. In practice, we col-
lect all DA datasets from the year 2017 to 2020,
yielding 853k training examples. Notably, we leave
the year 2021 out of training due to the reported
bug from the organizational committee.

Fine-tune with MQM Dataset For the evalua-
tion test set which is assessed with MQM scoring
rules, we arrange the MQM dataset from the year
2020 and 2021 for fine-tuning models at the end
of the training phase, consisting of 75k examples.
Specifically, during this step, we first use the pro-
vided development set to tune hyper-parameters
for continuous pre-training and fine-tuning, and di-
rectly use all data examples to fine-tune our UNITE
models following the previous setting.

2.4 Results Conduction

To select appropriate checkpoints, we evaluate our
models on this year’s development set and select

top-3 models for each translation direction. Fur-
thermore, to fully utilize the development set, we
conduct a 5-fold cross-validation on the develop-
ment set to select the best hyper-parameters for
each top-3 model training on them. Finally, we use
the best hyper-parameters to fine-tune one single
model on the entire development set.

As to the results conduction, we first applied
multiple random seeds for each setting, and select
the checkpoint with the best performance for model
training. Besides, to further increase the accuracy
of ensembled scores, we choose two checkpoints
whose backbones are XLM-R and INFOXLM, re-
spectively.

Notably, uncertainty estimation has been verified
in Machine Translation and Translation Evaluation
communities (Wan et al., 2020; Zhou et al., 2020;
Glushkova et al., 2021). However, applying this
method is time consunming and we do not try it in
this year’s QE task.

3 Experiments

Experiment Settings We choose the large ver-
sion of XLM-R (Conneau et al., 2020) and IN-
FOXLM (Chi et al., 2021) as the PLM backbones
of all UNITE models. The feedforward network
contains three linear transition layers, whose out-
put dimensionalities are 3,072, 1,024, and 1, re-
spectively. Between any two adjacent layers, a
hyperbolic tangent is arranged as the activations.

During the pre-training phase, we use the WMT
2021 MQM dataset as the development set to tune
the hyper-parameters for continuous pre-training
and DA fine-tuning phases. For the XLM-R set-
ting, we apply the learning rate as 1.0 · 10−5 for
PLM, and 3.0 · 10−5 for the feedforward network.
Especially, for INFOXLM setting, we halve the cor-
responding learning rates to maintain the training
stability. Besides, we find that raising the batch
size can make the training more stable. In prac-
tice, we set the batch size for each input format as
1,024. For the following fine-tuning steps, we use
the batch size as 32 across all settings.

Evaluation Setup As requested by organizers,
we primarily evaluate our systems in terms of
Spearman’s correlation metric between the pre-
dicted scores and the human annotations for each
translation direction. Apart from that, we also take
other metrics, e.g., Pearson’s correlation, into ac-
count. Note that, during the evaluation of the multi-
lingual phase, we directly calculate the correlation
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Model Multilingual En-De En-Ru Zh-En

COMET-QE-21 (Zerva et al., 2021) 39.8 49.4 46.5 23.5
UNITE-pretrain 14.0 36.0 15.2 23.8
UNITE-pretrain-prune 28.5 41.5 22.2 20.4
UNITE-pretrain-prune + DA 44.5 49.3 50.3 25.2
UNITE-pretrain-prune + MQM 29.2 39.8 49.0 23.9
UNITE-pretrain-prune + DA + MQM 40.2 52.3 58.5 25.7
UNITE-INFOXLM-pretrain-prune + DA + MQM 32.2 47.7 59.0 27.1

Table 1: Spearman’s correlaion (%) on this year’s development dataset. The best result for each translation direction
are bolded. Applying both DA and MQM datasets for fine-tuning can achieve better results. Taking XLM-R as
backbone shows better result on En-De, and INFOXLM on Zh-En and En-Ru.

Model Multilingual En-De En-Ru Zh-En

Single model 41.1 46.1 47.4 31.3
5-fold ensembling 42.7 53.1 48.4 34.7
XLM-R + INFOXLM ensembling 45.6 55.0 50.5 33.6

Table 2: Spearman’s correlaion (%) on this year’s test set. The best results for each translation direction are viewed
in bold. Using 5-fold ensembling strategy delivers better correlation on Zh-En translation direction, and ensembling
models trained on different PLM backbones conducts better results on multilingual, En-De, and En-Ru setting.

score for all predictions instead of conducting that
for each language direction individually.

Baseline We introduce COMET-QE-21 (Zerva
et al., 2021), one of the best-performed QE models
as our strong baseline. COMET-QE-21 have shown
their strong performance in WMT 2021 QE (Spe-
cia et al., 2021) and Metrics Shared Task (Freitag
et al., 2021b) competitions. We directly apply the
official released COMET-21-QE baseline4, and use
the well-trained checkpoints to infer on this year’s
development set for comparison.

Main Results We first testify the effectiveness
of our systems on this year’s development set. As
shown in Table 1, our models outperform COMET-
QE-21 in all translation directions. As to the results
of final submissions, we list the results in Table 2.

4 Analysis

In this section, we discuss the effectiveness of all
strategies, i.e., data pruning (§4.1), training data
arrangement (§4.2), backbone selection (§4.3), and
model ensembling methods(§4.4).

4.1 Data pruning
We first investigate the impact of the data prun-
ing strategy in Table 1. When using the pruneped

4https://github.com/Unbabel/COMET/

data to train UNITE models, the performance gains
significant improvements, with 14.5, 5.5, and 7.0
Spearman’s correlation on Multilingual, En-De,
and En-Ru translation direction, respectively. As
discussed in §2.2, most training examples in MQM
dataset have a higher translation quality. The data
pruning method can reduce the ratio of training
examples that contains poorly translated hypothe-
ses. In contrast to the unpruneped synthetic dataset,
the ratio of those examples consisting of well-
translated outputs is raised. Consequently, we can
reduce the translation quality distribution gap be-
tween synthetic and MQM datasets, and continu-
ous pre-training and fine-tuning phases can share a
great deal of learned knowledge. The experimental
results validate our thinking, that the data pruning
strategy offers a higher transferability of quality
evaluation from synthetic to MQM data examples,
making the model learning easier on the latter.

4.2 Training Data

To identify which dataset among DA and MQM is
more important during fine-tuning, we conduct an
experiment for comparing the corresponding effec-
tiveness. As shown in Table 1, using DA or MQM
dataset can both give performance improvement
compared to only using synthetic data. Notably, the
combination of DA and MQM datasets can further

601



boost the performance in En-Ru/En-De/Zh-En di-
rections. However, when comparing UNITE-DA-
MQM to UNITE-DA, an unexpected performance
drop in the Multilingual setting is observed.

We think the reasons behind this phenomenon
are two-fold. On one hand, DA data has 34 trans-
lation directions, while MQM data only has three
specific directions (i.e., En-De, En-Ru, and Zh-
En). The annotation rules applied for those two
datasets are inconsistent with each other. Training
the model on MQM data can boost the performance
in a specific direction. While a model trained on
DA data is possessed with a more general evalu-
ation ability for more translation directions, thus
delivering more stable results on multilingual eval-
uation scenarios. On the other hand, for MQM
data items, even though the scores may be simi-
lar across translation directions and competition
years, the corresponding translation quality may
vary vastly. For example, a score of 0.3 may be
relatively a high score in MQM 2021 Zh-En subset,
while it is rather low in this year’s En-De direction.
This phenomenon is quite critical when handling
examples from multiple translation directions. As
scores from the involved two translation directions
are not compatible, training on those examples con-
currently may downgrade the multilingual perfor-
mance of our models.

4.3 Backbone Selection

As in Table 1, UniTE-pretrain-prune + DA + MQM
is trained with XLM-R backbone, while UNITE-
INFOXLM-pretrain-prune + DA + MQM is trained
with INFOXLM using the same hyper-parameters
and strategy. As seen, after updating the backbone
of UNITE model from XLM-R to INFOXLM, the
latter model outperforms the former in En-Ru and
Zh-En directions, with the improvement of Spear-
man’s correlation at 0.5 and 1.4, respectively. We
can see that the quality estimation model can ben-
efit from the cross-lingual alignment knowledge
during model training. However, as to the En-De
direction, the performance shows a significant drop
at 4.6. We attribute this to the reason, that English
and German are from the same language family,
where the two languages can obtain a great deal
of cross-lingual knowledge via similar tokens with
the same meaning. For Multilingual direction, we
claim that the impact of training data makes it un-
confident which has been discussed in §4.2.

4.4 Ensemble Methods

As in Table 2, the ensembled models show great
improvement on all translation directions. The dif-
ference between XLM-R and INFOXLM lies in the
training objective and applied training dataset. For
the quality estimation task whose core lies in the
semantic alignment across languages, the knowl-
edge engaged inside those two PLM models can
be complementary to each other. Except for Zh-En
direction, XLM + INFOXLM ensembling outper-
forms the 5-fold ensembling method in three tracks,
with the performance increase being 2.9, 1.9, and
2.1 for Multilingual, En-De, and En-Ru settings,
respectively. This demonstrates that, ensembling
models constructed with different backbones can
give better results compared to the k-fold ensem-
bling strategy.

5 Conclusion

In this paper, we describe our UNITE submission
for the sentence-level MQM task at WMT 2022.
We apply data pruning and a ranking-based scoring
strategy to collect massive synthetic data. During
training, we utilize three input formats to train our
models on our synthetic, DA, and MQM data se-
quentially. Besides, we ensemble the two models
which consist of two different backbones – XLM-
R and INFOXLM. Experiments show that, our uni-
fied training framework can deliver reliable eval-
uation results on QE tasks, showing the powerful
transferability of UNITE model.

For future work, we believe that exploring the
domain adaption problem for QE is an essential
task. The existing machine translation system has
made great progress in the field of domain trans-
ferablity (Lin et al., 2021; Yao et al., 2020; Wan
et al., 2022b). Nevertheless, the confident evalua-
tion metrics for those translation systems are few to
be explored. Apart from that, developing a unified
framework with high transferability for evaluating
translation and other natural language generation
tasks (Yang et al., 2021, 2022; Liu et al., 2022) is
quite an interesting direction.

Notably, we also participated in this year’s WMT
Metrics Shared Task with the same models. We be-
lieve that, the idea of unifying three kinds of trans-
lation evaluation functionalities (i.e., source-only,
reference-only, and source-reference-combined)
into one single model can deliver dominant results
on all scenarios. Better solutions for achieving this
goal are worth to be explored in the future.
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Abstract

This paper presents KU X Upstage’s submis-
sion to the quality estimation (QE): critical er-
ror detection (CED) shared task in WMT22.
We leverage the XLM-RoBERTa large model
without utilizing any additional parallel data.
To the best of our knowledge, we apply prompt-
based fine-tuning to the QE task for the first
time. To maximize the model’s language under-
standing capability, we reformulate the CED
task to be similar to the masked language model
objective, which is a pre-training strategy of the
language model. We design intuitive templates
and label words, and include auxiliary descrip-
tions such as demonstration or Google Trans-
late results in the input sequence. We further
improve the performance through the template
ensemble, and as a result of the shared task,
our approach achieve the best performance for
both English-German and Portuguese-English
language pairs in an unconstrained setting.

1 Introduction

This paper presents our submission to the critical
error detection (CED) shared task among the qual-
ity estimation (QE) tasks of WMT22 (Zerva et al.,
2022). CED is a task of detecting cases where
translation errors in source sentences or transla-
tion results distort meaning in terms of race, gen-
der, safety, law, finance, etc. (Specia et al., 2021;
Rubino et al., 2021; Jiang et al., 2021). Critical
translation errors in the shared task appear in the
form of mistranslation, hallucination, and deletion
in source sentences or translation results, and er-
rors can be classified into five categories: additions,
deletions, named entities, meaning, and numbers.
Even if machine translation (MT) systems produce
fluent translations, the fact that they cannot be free
from fatal semantic errors emphasizes the impor-
tance of preventing social repercussions from the er-
rors. Forbidding socially bad influences and losses

∗∗ Corresponding Author

from these meaning deviations is the purpose of
the CED task (Specia et al., 2021).

Participating systems distinguish only critical er-
rors, not correct translations or simple translation
errors. In contrast to last year, submissions should
be provided with continuous scores rather than bi-
nary labels. The official script calculates scores
with automatically assigned classes based on the
threshold value of the index corresponding to the
number of errors. Similar to last year, we partic-
ipated in unconstrained English-German (En-De)
and Portuguese-English (Pt-En) utilizing released
training datasets1.

To perform the CED task, we exploit the XLM-
RoBERTa large model (Conneau et al., 2019) as uti-
lized in the baseline without additional parallel data.
In addition, we adopt prompt-based fine-tuning to
mitigate catastrophic forgetting during fine-tuning
by maximizing the linguistic capability obtained
through pre-training. In prompt-based fine-tuning,
the downstream task is reformulated into a cloze-
style, which is consistent with the masked language
modeling objective. The word for the masked part
is predicted by the model based on the task-specific
template (Liu et al., 2021a). Recent studies have
demonstrated the remarkable effects of prompt-
based learning in the natural language processing
field (Brown et al., 2020; Gao et al., 2020; Schick
and Schütze, 2020; Liu et al., 2021b; Zhao and
Schütze, 2021), and we apply this new paradigm to
the QE task. We manually generate templates each
containing a source sentence, its translation result,
and a description with a mask token for the CED
task. Furthermore, we generate label words (Liu
et al., 2021b) to map the words to be filled in the
masked part and labels.

Exploring appropriate templates in prompt-
based fine-tuning is important because the perfor-
mance ranges widely depending on the template

1The following is the leaderboard of the CED task. https:
//codalab.lisn.upsaclay.fr/competitions/6893
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used. Therefore, we design multiple hard prompts
through prompt engineering, and these are config-
ured into three types of templates according to ad-
ditional information: plain template, template with
demonstration, and template with Google Trans-
late. Through answer engineering, we map con-
trastive words for each OK and BAD tag in diverse
combinations. To obtain the final score, we extract
probability for words mapped to BAD. We further
improve performance by ensembling values from
templates.

Our approach outperforms the baseline models
in En-De and Pt-En by a substantial margin and
achieves first place. Experimental results demon-
strate that simply setting up the training method
without modifying the model or augmenting the
data with additional parallel corpora significantly
affects the performance.

2 Proposed Method

2.1 Prompt-based Fine-tuning

We adopt prompt-based fine-tuning to diminish the
discrepancy between the training objectives of the
fine-tuning and pre-training (Shin et al., 2020). By
applying this, we induce our CED model to pre-
serve the linguistic capability obtained via the pre-
training phase.

In our task, we denote (src,mt, y) ∈ D for a
CED training dataset D, where src and mt denote
a source sentence and its translated sentence, re-
spectively, and y denotes its corresponding label
(e.g. OK, BAD). Furthermore, we define two map-
ping functions T, L that transform all the data in D
to implement prompt-based fine-tuning in the CED
task.

The template function T transforms each src
and mt into a single input sequence that contains
description with masked token. In generating the
input sequence, T also defines the placement of
a special <mask> token to fill in. During train-
ing, we induce the model to infer the appropriate
word suitable for the corresponding <mask> token
position that is coherent with the overall context.
Subsequently, the label word function, referred to
as verbalizer, L transforms the given label y into an
appropriate label word to be placed in the masked
position of the input sequence transformed through
T .

For example, given src as "indigenous peoples
constitute just 0.7% of the global population", mt
as "Indigene Völker machen nur 5% der Welt-

Template

<s> src </s> mt. <mask> translation.</s>
<s> src </s> mt. It was <mask> translation.</s>
<s> A <mask> translation of src is mt.</s>
<s> src </s> mt <mask></s>
<s> src </s> mt? <mask></s>
<s> src </s> mt? <mask>,</s>
<s> src </s> mt? "<mask>"</s>

Label Words

OK: "great", BAD: "terrible"
OK: "good", BAD: "bad"
OK: "!", BAD: "?"
OK: "nice", BAD: "poor"
OK: "yes", BAD: "no"

Table 1: Prompt templates and label words utilized in
our experiments. We denote a source sentence as src
and its translation result as mt.

bevölkerung aus", and their corresponding label
y as BAD with label words "OK:great, BAD:terrible",
T convert these sentences into "<s> indigenous
peoples constitute just 0.7% of the global popu-
lation </s> Indigene Völker machen nur 5% der
Weltbevölkerung aus </s>. It was <mask> transla-
tion." and L convert its label into "terrible". Then
the original fine-tuning objective of CED that de-
termines whether the label is "OK" or "BAD" is con-
verted to predict the correct word for the <mask>
token position. Specifically, the model is trained to
predict the following probability:

P (y|src,mt) = P (⟨mask⟩ = L(y)|T (src,mt)) (1)

Considering the scoring method of the WMT22
CED task, we do not binarize the model inference
results into a OK or a BAD tag. Instead, we use the
softmax function to normalize the overall score
as in Equation (2) and extract the probability that
the decoded token in the <mask> position will be
mapped to BAD. We regard this probability as the
estimated quality score of the mt.

score(src,mt) =
exp(P (BAD|src,mt))∑

y′∈{OK,BAD} exp(P (y′|src,mt))
(2)

2.2 Prompt and Answer Engineering

Because the effective prompt for the CED task has
not been revealed, we design various prompt can-
didates (Gao et al., 2020). We attempt to organize
the model input into a natural context, such as "src
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En-De Pt-En
Train Dev Test Train Dev Test

# of Sentences 155511 17280 500 39925 4437 500
Avg src Toks 22.98 23.07 24.15 25.49 25.5 26.63
Avg mt Toks 23.71 23.8 24.68 22.52 22.39 23.26
Min/Max src Toks 2/112 2/90 4/82 2/117 2/85 3/74
Min/Max mt Toks 2/106 2/109 4/80 1/107 2/82 3/69
% of BAD label 6.1 5.82 - 6.05 5.79 -

Table 2: Dataset statistics on WMT22 CED task

mt. It was <mask> translation, A <mask> transla-
tion of src is mt". For the label words, we select
two distinct words, such as "great/terrible", and
"good/bad". We intend to obviate ambiguity during
model training by establishing clear contrasting la-
bel words, although naive errors are not considered
a good translation result. All types of templates
and label words are listed in Table 1, and the en-
tire prompt used in our experiments is described in
Appendix A.

2.3 Auxiliary Description

We append auxiliary descriptions that provide sup-
plementary information to the model input (Gao
et al., 2020; Chen et al., 2021; Brown et al.,
2020). We select two types of auxiliary descrip-
tions: demonstration and Google Translate results.

The demonstration extracts a single example
for each class from the training data and concate-
nates them into the input sequence, similar to the
in-context learning approach proposed in GPT3
(Brown et al., 2020) and LM-BFF (Gao et al.,
2020). In contrast to LM-BFF, we randomly se-
lect training examples without any constraints on
sampling to avoid unintended bias that may occur
when extracting demonstrations based on semantic
similarity.

The Google Translate results append transla-
tion results from the commercialized MT system.
As demonstrated in previous studies (Chen et al.,
2021; Wang et al., 2020; Moon et al., 2021), adding
Google Translate results contributes to a significant
performance improvement. Regarding this, we use
Google Translate to generate mt′ by translating
each src in the entire data. By adding this to the
input sequence, we distill the knowledge of the
external MT system into the model.

Auxiliary descriptions are combined with each
example in D to compose a new input sequence.
Through this, we induce the model to determine
the critical errors by grounding more information.

2.4 Prompt Ensemble

As mentioned previously, prompt-based fine-tuning
shows various deviations in model performance
depending on the designed prompts (Shin et al.,
2020). We aim to boost performance by aggregat-
ing the results from multiple prompts to minimize
bias and distribute contributions per template. For
the ensemble, we add the top K values with high
Matthew’s correlation coefficient (MCC) results.

3 Experimental Setting

3.1 Dataset Details

We leverage the dataset provided by WMT222. The
dataset statistics for each language pair are reported
in Table 2. In summary, a sentence contains an aver-
age of 22 to 26 tokens, with a bad tag ratio of 5-6%.
When using auxiliary descriptions, we randomly
extract data corresponding to OK and BAD tags from
the training dataset to configure the demonstration.
When leveraging the commercialized MT result,
we translate source sentences using the most widely
adopted Google Translate3.

We tokenize sentences with the XLM-RoBERTa
tokenizer. Considering the average token and maxi-
mum sequence length of statistics, after concatenat-
ing src and mt, we filter cases where the tokenized
sentence length is over 250. We score our predic-
tions with the official script4 provided by WMT22
and MCC.

3.2 Model Details

We exploit the same multilingual language model,
XLM-RoBERTa large (Conneau et al., 2019), for
both En-De and Pt-En language pairs and leverage
the model and tokenizer5 distributed by Hugging-
face (Wolf et al., 2019). For conducting prompt-
based fine-tuning, we experiment after modifying
LM-BFF6 framework. In the case of hyperparam-
eters, the max sequence length is set to 256 and
batch size is set to 32 if auxiliary description is not
used in model training, otherwise we set the max
sequence length to 350 and batch size to 16. As
shown in Table 2, considering the total data size for
each language pair, we train Pt-En to 10K training

2https://github.com/WMT-QE-Task/
wmt-qe-2022-data

3https://translate.google.co.kr/
4https://github.com/WMT-QE-Task/

wmt-qe-2022-data/blob/main/
critical-errors-subtask/official_evaluation.py

5xlm-roberta-large
6https://github.com/princeton-nlp/LM-BFF.git
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En-De Pt-En
MCC (Binary) MCC P&R MCC (Binary) MCC P&R

Baseline - 0.8943 0.9001 - 0.8955 0.9012
Plain (Avg) 0.9161 ±0.0037 0.9117 ±0.0075 0.9166 ±0.0071 0.9223 ±0.0089 0.9042 ±0.0217 0.9095 ±0.0206
Demo (Avg) 0.9121 ±0.0062 0.9072 ±0.0115 0.9123 ±0.0109 0.9118 ±0.0113 0.9003 ±0.0266 0.9053 ±0.0246
Google MT (Avg) 0.9143 ±0.0272 0.9092 ±0.0217 0.9142 ±0.0205 0.9391 ±0.0331 0.9312 ±0.0444 0.9350 ±0.0238

Plain (Max) 0.9189 0.9153 0.9200 0.9312 0.9173 0.9218
Demo (Max) 0.9183 0.9187 0.9160 0.9231 0.9173 0.9177
Google MT (Max) 0.9218 0.9165 0.9211 0.9649 0.9565 0.9588

Table 3: Unconstrained En-De, Pt-En development (dev) set result on WMT22 CED task. We measure MCC from
the WMT22 official script. As the official script refines the inference results to have the same distribution of OK and
BAD with reference, precision and recall always indicate the same value. Therefore, we denote precision and recall
as P&R. We further present the MCC (Binary) result measured through the binary label. This result tends to be
higher than the official script.

En-De Pt-En
MCC P&R MCC P&R

All 0.9265 0.9305 0.9565 0.9588
Top 5 0.9309 0.9347 0.9695 0.9712
Top 10 0.9309 0.9347 0.9739 0.9753
Top 15 0.9321 0.9358 0.9652 0.9671

Truncate 0.9287 0.9326 0.9521 0.9547

Table 4: MCC results on top K template ensemble. Trun-
cate indicates an ensemble result only when the dev
MCC is over the baseline result.

steps and En-De to 35K. As a GPU setting, one
RTX 8000 is used for learning.

4 Experimental Results

4.1 Prompt-based Fine-tuning Results
We present the prompt-based fine-tuning results for
En-De and Pt-En language pairs in Table 3. We
mainly divide results into three categories: plain
template, template with demo, and template with
Google Translate according to the auxiliary descrip-
tion we used. Each consists of 8, 11, and 20 dif-
ferent templates, and we report the average and
max values in the table. Performances by lever-
aging each template is described in Appendix A.
The baseline is the official fine-tuning results for
the XLM-RoBERTa large model. Our approach
significantly outperforms the baseline performance
in average and maximum performance for all ex-
periments.

Specifically, templates with no auxiliary descrip-
tion (i.e. Plain) show comparatively high results
in En-De. When using demonstration (i.e. Demo)
and Google Translate (i.e. Google MT), the perfor-
mance is slightly decreased. However, templates

with a demonstration show effective benefits in the
max MCC. In addition, the best performance is
achieved in templates with Google Translate in the
case of MCC (Binary), which measured MCC by
comparing binary predictions and labels. Through
the results, we conclude that including additional
information in the input sequence leads to perfor-
mance improvement.

Pt-En Google MT MCC results strongly sup-
port our hypothesis. Additional translation re-
sults within the input sequence competitively con-
tribute to performance improvement in both aver-
age and max, outperforming +0.0392 MCC over
the Plain (Max). When comparing demonstration
and Google Translate, we infer that presenting in-
formation related to the input example has a better
effect on learning than providing representative ex-
amples of tasks.

In the average results (i.e. Avg), the performance
gap per template is indicated by ±. Under the
setting where the selected auxiliary description
is fixed, the performance of different templates
varies considerably, from 0.0037 to 0.0217 MCC
for En-De and from 0.0089 to 0.444 MCC for Pt-
En. Therefore, we perform ensembles to obtain the
final score by aggregating the top K predictions.

4.2 Template Ensemble Results

Table 4 is the ensemble results of the top K tem-
plates, showing notable performance. Ensembles
against the top 15 templates for En-De and the
top 10 templates for Pt-En yield the best MCC re-
sults. These show +0.0134 MCC higher in En-De
and +0.0174 MCC higher in Pt-En than the max
results listed in Table 3. This demonstrates that
the distributed contribution to multiple prompts per
example further improves the final performance.
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En-De Pt-En
MCC P&R MCC P&R

Baseline 0.855 0.873 0.934 0.944
aiXplain 0.219 0.318 0.179 0.296

Ours 0.964 0.968 0.984 0.986

Table 5: Official result on En-De, Pt-En CED blind test
set

Furthermore, we note All and Truncate in the
table. The former ensembles all results and the
latter removes templates with lower results than
the baseline evaluation MCC before ensembling.
Through this, we observe that including most of the
templates does not necessarily contribute to perfor-
mance improvement. High performance is obtained
by training models with various types of templates
and selecting appropriate predictions together.

4.3 Results on Test dataset
The experimental results for the test set are shown
in Table 5. We submit the final score obtained
through the ensemble. As a result, we significantly
outperform the baseline result, achieving +0.109
MCC in En-De and +0.05 MCC in Pt-En. This is a
notable margin because we use the same model as
the baseline without utilizing any supplementary
parallel data or scaling model parameters.

5 Conclusion

We applied prompt-based learning to the CED task
by forming a learning objective for the task sim-
ilar to that in pre-training. This method outper-
formed the baseline performance while preserving
the model parameters and data settings. We per-
formed manual prompt engineering and answer en-
gineering to explore intuitive hard prompts. In ad-
dition, because finding optimal prompts is difficult,
we ensembled predictions from diverse templates
to address the performance variation and achieve
additional performance boost. Our method is sim-
ple but powerful, and we hope that this method will
be actively introduced to QE tasks in future studies.

Limitations

This study used models trained only on English-
German and Portuguese-English language pairs.
Therefore, language extension is challenging be-
cause data for training the CED task must be pre-
pared for each language pair and direction. Non-

trivial costs may be incurred in the data construc-
tion process. Furthermore, because we manu-
ally generated prompts and answer engineering,
finding the optimal prompt is sub-optimal. Soft
prompts that leverage the trained embedding val-
ues in the prompt configuration can mitigate this
limitation. However, because embedding vectors in
soft prompt are not described in human words, and
we are the first to introduce prompt-based learning
in QE tasks, we focused on interpretability.

Ethics Statement

We created task-specific templates during prompt
engineering. We have not used problematic state-
ments at this time. In addition, when engineer-
ing label words, words without ethical issues were
used. However, unethical expressions such as so-
cially problematic words and abusive language are
included in the CED data. Owing to the nature of
the task, this is intentionally appended by annota-
tors to detect critical errors. The purpose of this
task is to classify and exclude ethical issues that
occur in the machine translation field.
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A Appendix

A.1 Results on Each Template
The evaluation MCC results for each template of the En-De and Pt-En pairs are shown in Tables 6 and 7.
Particularly in Pt-En, the performance of each template varies considerably, reporting significantly lower
or superior performance than the baseline result.
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Type Index Template Label Words MCC
(Binary) MCC P&R

Plain
Template

1 src mt. <mask>translation. great / terrible 0.9156 0.9153 0.9200
2 src mt. <mask>translation. good / bad 0.9158 0.9087 0.9137
3 src mt <mask> ! / ? 0.9153 0.9131 0.9179
4 A <mask>translation of src is mt. good / bad 0.9189 0.9142 0.9189
5 A <mask>translation of src is mt. great / terrible 0.9161 0.9131 0.9179
6 src mt. It was <mask>translation. great / terrible 0.9124 0.9042 0.9095
7 src mt. It was <mask>translation. nice / poor 0.9161 0.9131 0.9179
8 src mt? <mask> yes / no 0.9184 0.9120 0.9168

Template
with

Demo

1 demo_ok demo_bad srcmt. <mask>translation. great / terrible 0.9149 0.9064 0.9116
2 demo_ok demo_bad src mt. <mask>translation. good / bad 0.9089 0.9098 0.9147
3 demo_ok demo_bad src mt. It was <mask>translation. great / terrible 0.9125 0.9064 0.9116
4 demo_ok demo_bad src mt. It was <mask>translation. nice / poor 0.9183 0.9187 0.9232
5 demo_ok demo_bad src mt. It was <mask>translation. ! / ? 0.9084 0.9042 0.9095
6 demo_ok demo_bad src mt? <mask> yes / no 0.9109 0.9075 0.9126
7 src mt demo_ok demo_bad <mask>translation. great / terrible 0.9095 0.8964 0.9021
8 src mt demo_ok demo_bad <mask>translation. good / bad 0.9060 0.9042 0.9095
9 src mt demo_ok demo_bad . It was <mask>translation. great / terrible 0.9123 0.9064 0.9116
10 src mt demo_ok demo_bad . It was <mask>translation. nice / poor 0.9138 0.9098 0.9147
11 src mt demo_ok demo_bad ? <mask> yes / no 0.9175 0.9098 0.9147

Template
with

Google
Translate

1 src mt? <mask>gmt great / terrible 0.9161 0.9098 0.9147
2 src mt? <mask>gmt good / bad 0.9198 0.9165 0.9211
3 src mt? <mask>gmt ! / ? 0.9218 0.9165 0.9211
4 src mt? <mask>gmt yes / no 0.9121 0.9087 0.9137
5 src mt? It was <mask>. gmt great / terrible 0.9173 0.9053 0.9105
6 src mt? It was <mask>. gmt good / bad 0.9166 0.9087 0.9137
7 src mt? It was <mask>. gmt ! / ? 0.9172 0.9153 0.9200
8 src mt? It was <mask>. gmt yes / no 0.9158 0.9120 0.9168
9 src mt? "<mask>", gmt ! / ? 0.9176 0.9120 0.9168
10 src mt? "<mask>", gmt good / bad 0.9175 0.9064 0.9116
11 src mt? <mask>, gmt ! / ? 0.9103 0.9087 0.9137
12 src mt? <mask>, gmt good / bad 0.9111 0.9087 0.9137
13 src mt gmt. <mask>translation. great / terrible 0.9133 0.9009 0.9063
14 src mt gmt. <mask>translation. good / bad 0.8872 0.8875 0.8937
15 src mt gmt. <mask> ! / ? 0.9151 0.9064 0.9116
16 A <mask>translation of src is mt gmt. good / bad 0.9209 0.9165 0.9211
17 A <mask>translation of src is mt gmt. great / terrible 0.9134 0.9109 0.9158
18 src mt gmt. It was <mask>translation. great / terrible 0.9134 0.9075 0.9126
19 src mt gmt. It was <mask>translation. nice / poor 0.9160 0.9165 0.9211
20 src mt gmt? <mask> yes / no 0.9147 0.9098 0.9147

Table 6: En-De results for all templates. The top five MCCs are in red bold, the top 10 MCCs are in orange bold
and underlined, and the top 15 MCCs are in blue bold and italic. We indicate the MCC below the baseline as gray
bold and strikeouts.
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Type Index Template Label Words MCC
(Binary) MCC P&R

Plain
Template

1 src mt. <mask>translation. great / terrible 0.9312 0.9129 0.9177
2 src mt. <mask>translation. good / bad 0.9203 0.9173 0.9218
3 src mt <mask> ! / ? 0.9190 0.8825 0.8889
4 A <mask>translation of src is mt. good / bad 0.9250 0.9129 0.9177
5 A <mask>translation of src is mt. great / terrible 0.9246 0.9129 0.9177
6 src mt. It was <mask>translation. great / terrible 0.9170 0.8868 0.8930
7 src mt. It was <mask>translation. nice / poor 0.9264 0.9129 0.9177
8 src mt? <mask> yes / no 0.9150 0.8955 0.9012

Template
with

Demo

1 demo_ok demo_bad srcmt. <mask>translation. great / terrible 0.9080 0.8825 0.8889
2 demo_ok demo_bad src mt. <mask>translation. good / bad 0.9201 0.8999 0.9053
3 demo_ok demo_bad src mt. It was <mask>translation. great / terrible 0.9178 0.9042 0.9095
4 demo_ok demo_bad src mt. It was <mask>translation. nice / poor 0.9112 0.9042 0.9095
5 demo_ok demo_bad src mt. It was <mask>translation. ! / ? 0.9009 0.8999 0.9053
6 demo_ok demo_bad src mt? <mask> yes / no 0.9044 0.9129 0.9177
7 src mt demo_ok demo_bad <mask>translation. great / terrible 0.9131 0.9042 0.9095
8 src mt demo_ok demo_bad <mask>translation. good / bad 0.9056 0.8737 0.8807
9 src mt demo_ok demo_bad . It was <mask>translation. great / terrible 0.9199 0.9086 0.9136
10 src mt demo_ok demo_bad . It was <mask>translation. nice / poor 0.9231 0.9173 0.9173
11 src mt demo_ok demo_bad ? <mask> yes / no 0.9056 0.8955 0.9012

Template
with

Google
Translate

1 src mt? <mask>gmt great / terrible 0.9471 0.9390 0.9424
2 src mt? <mask>gmt good / bad 0.9558 0.9478 0.9506
3 src mt? <mask>gmt ! / ? 0.9537 0.9434 0.9465
4 src mt? <mask>gmt yes / no 0.9580 0.9565 0.9588
5 src mt? It was <mask>. gmt great / terrible 0.9515 0.9521 0.9547
6 src mt? It was <mask>. gmt good / bad 0.9649 0.9565 0.9588
7 src mt? It was <mask>. gmt ! / ? 0.9470 0.9521 0.9547
8 src mt? It was <mask>. gmt yes / no 0.9625 0.9521 0.9547
9 src mt? "<mask>", gmt ! / ? 0.9430 0.9390 0.9424
10 src mt? "<mask>", gmt good / bad 0.9603 0.9521 0.9547
11 src mt? <mask>, gmt ! / ? 0.9538 0.9521 0.9547
12 src mt? <mask>, gmt good / bad 0.9514 0.9478 0.9506
13 src mt gmt. <mask>translation. great / terrible 0.9252 0.9173 0.9218
14 src mt gmt. <mask>translation. good / bad 0.9219 0.9086 0.9136
15 src mt gmt. <mask> ! / ? 0.9269 0.9173 0.9218
16 A <mask>translation of src is mt gmt. good / bad 0.9060 0.8912 0.8971
17 A <mask>translation of src is mt gmt. great / terrible 0.9125 0.8868 0.8930
18 src mt gmt. It was <mask>translation. great / terrible 0.9073 0.9042 0.9095
19 src mt gmt. It was <mask>translation. nice / poor 0.9185 0.9086 0.9136
20 src mt gmt? <mask> yes / no 0.9147 0.8999 0.9053

Table 7: Pt-En results on all templates. The color and the style of top K performances are equivalent to Table 6.
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Abstract

This paper presents submissions of the
NJUNLP team in WMT 2022 Quality Estima-
tion shared task 1, where the goal is to pre-
dict the sentence-level and word-level quality
for target machine translations. Our system
explores pseudo data and multi-task learning.
We propose several novel methods to gener-
ate pseudo data for different annotations using
the conditional masked language model and
the neural machine translation model. The pro-
posed methods control the decoding process
to generate more real pseudo translations. We
pre-train the XLMR-large model with pseudo
data and then fine-tune this model with real
data both in the way of multi-task learning. We
jointly learn sentence-level scores (with regres-
sion and rank tasks) and word-level tags (with
a sequence tagging task). Our system obtains
competitive results on different language pairs
and ranks first place on both sentence- and
word-level sub-tasks of the English-German
language pair.

1 Introduction

Quality Estimation (QE) of Machine Translation
(MT) is a task to predict the quality of trans-
lations at run-time without relying on reference
translations (Specia et al., 2018). This paper de-
scribes the contribution of the NJUNLP team to the
WMT2022 QE Shared Task (Zerva et al., 2022) on
sentence- and word-level sub-tasks (task 1)1. For
the sentence-level task, participating systems are
required to predict the quality score for each trans-
lation output, and all scores are standardized using
the z-score by the rater. The result is evaluated
using Spearman’s rank correlation coefficient as
the primary metric. For the word-level task, par-
ticipating systems are required to tag each token
of the translation output with OK and BAD. The

∗* Corresponding Author.
1https://wmt-qe-task.github.io/subtasks/

task1/

BAD tag denotes this token is wrong, or there is
one or more missing token(s) on the left side. The
result is evaluated in terms of Matthews correlation
coefficient (MCC) as the primary metric.

Inspired by DirectQE(Cui et al., 2021), we fur-
ther explore pseudo data and multi-task learning
for the QE shared task. Our main contributions are
as follows:

• We propose several novel methods to gener-
ate pseudo data for different annotations using
the conditional masked language model (Cui
et al., 2021) and the neural machine transla-
tion model (Vaswani et al., 2017).

• We use the XLMR-large model (Conneau
et al., 2020) as the QE model rather than a
transformer base model with random initial-
ization in (Cui et al., 2021).

• We pre-train the QE model with pseudo data
and then fine-tune it with real data both in
the way of multi-task learning. We explore
the rank task in addition to commonly used
regression and sequence tagging tasks.

• We also explore post-editing annotation
data of the previous years for the multi-
dimensional quality metrics (MQM) annota-
tion sub-task.

• We propose a new ensemble technique for
combining the scores of models trained with
different sentence-level scores.

Our system obtains competitive results on differ-
ent language pairs. Moreover, we rank first place
on both sentence- and word-level of the English-
German language pair with the Spearman score
of 63.47 (+1.33 than the second best system) and
MCC score of 35.19 (+3.33).
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Source The light from the Earth, some of it falls in, but some of it gets lensed around and
brought back to us.

Translation Das Licht von der Erde, einiges davon fällt hinein, aber einiges davon wird
herumlinsiert und zu uns zurückgebracht.

Annotation ID Error Span Category Severity
Span 1 einiges davon fällt hinein, aber einiges davon Style/Awkward Major
Span 2 herumlinsiert und zu uns zurückgebracht Accuracy/Mistranslation Major
MQM 0.4444

Table 1: An example from the WMT2022 English-German MQM dataset. We mark the error span with an italic
font.

2 Sentence- and Word-Level Task

Formally, given a source language sentence X and
a target language translation Ŷ = {y1, y2, . . . , yn}
with n tokens. The sentence-level score m de-
notes the whole quality of the target Ŷ. The
word-level labels is a sequence of n tags G =
{g1, g2, . . . , gn}. gj is the quality label for the
word translation yj , which is a binary label (OK or
BAD).

In WMT2022, sentence scores are derived not
only using direct assessments (DA) (Graham et al.,
2013; Guzmán et al., 2019; Fomicheva et al., 2020)
but also multi-dimensional quality metrics (MQM)
(Burchardt and Lommel, 2014; Freitag et al., 2021).
Similarly, organizers derive word tags in two dif-
ferent ways: Post-Editing (PE) (Snover et al.,
2006; Fomicheva et al., 2020) and MQM. More-
over, MQM is introduced for the first time in the
sentence- and word-Level QE shared task. MQM
provides fine-grained error annotations produced
by human translators. Annotators are instructed to
span all errors in translation Ŷ given source sen-
tence X. Besides, they annotate categories and
severity levels (minor, major, and critical) for these
errors. According to the number of errors at differ-
ent severity levels, the MQM score can be calcu-
lated as follows:

MQM = 1− nminor + 5nmajor + 10ncritical

n
. (1)

We show an example in Table 1.

3 Methods

To handle the few-shot and zero-shot settings, we
follow DirectQE (Cui et al., 2021) framework.
Specifically, we first generate pseudo data using
parallel data, then pre-train the QE model with gen-
erated data, and fine-tune the pre-trained model
with real QE data if provided. We will describe
these steps as follows.

3.1 Pseudo Data
3.1.1 MQM Annotations
DirectQE randomly replaces some target tokens in
parallel pairs with tokens sampled from the con-
ditional masked language model. The replaced
tokens are annotated as BAD, and they denote the
ratio of BAD tokens as the pseudo sentence scores.
There are several gaps between DirectQE pseudo
data and MQM data:

• Error distribution: DirectQE generates er-
rors at the token-level while MQM annotates
translations with spans.

• Error severity levels: DirectQE uses the
same sampling strategy and assigns the same
weight for every pseudo error. As mentioned
above, MQM assigns different weights for er-
rors with varying levels of severity.

• Error categories: DirectQE does not involve
error types of over- and under-translations,
which are essential in real applications.

• Generator: DirectQE only uses a conditional
masked language model as the generator for
pseudo translations. This generator could per-
form quite differently from the target machine
translation system.

To handle these problems, we proposed two
novel methods to generate pseudo MQM data with
different generators: the conditional masked lan-
guage model and the neural machine translation
model. The conditional masked language model is
trained using masked language model task (Devlin
et al., 2019) conditioned on the source sentence.
Please refer DirectQE (Cui et al., 2021) for more
details. The neural machine translation model is a
common transformer base model as described in
(Vaswani et al., 2017).
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Sample the number of spans:

Sample the length of each span:

Sample the position of each span:

Sample the severity of each span:

Over- and under-translations:

Minor

Major

Critical

Omission

OK

Figure 1: Illustration of the proposed method for generating pseudo MQM data. Given a reference sentence with
eleven OK tokens, we randomly sample three error spans with a length of two, three, and one and the severity of
major, critical, and minor. Besides, we randomly insert one token in the second span and remove all tokens from the
first span to simulate over- and under-translations.

To simulate the target error distribution, we first
count the number of spans in each translation, the
length of each span, and the frequency of differ-
ent severity levels. Then, we can sample pseudo
errors according to the target error distribution as
shown in Figure 1. Finally, we use the generator
to generate these error tokens except for omissions.
The conditional masked language model generates
pseudo errors parallel, while the neural machine
translation model generates these errors from left
to the right in an autoregressive fashion. Similar
to DirectQE, we random sample one of the tokens
with the top k generation probability as the error
token. We use bigger k for graver pseudo errors to
simulate errors at different severity levels. Empiri-
cally, we set k as 2, 10, and 100 for minor, major,
and critical errors, respectively. The pseudo MQM
scores can be calculated according Eq. 1.

3.1.2 DA and PE Annotations

For DA and PE annotations, we also explore the
above two generators with different generation pro-
cesses. We use the conditional masked language
model as described in DirectQE. The only differ-
ence is that we normalize the pseudo sentence
scores using the z-score because these scores are
on a different scale from real scores.

We utilize the neural machine translation model
in quite a different way. Instead of replacing tar-
get tokens at random, we let the neural machine
translation model decide which tokens need to be
replaced. Specifically, we compare the genera-
tion probability Pi = logP (yi|X, y<i; θMT) of i-
th reference token with ϵ. If Pi < ϵ, we replace
yi with ymax = argmaxy logP (y|X, y<i; θMT)
whose generation probability is highest at this po-
sition and tag this token as BAD. Empirically, we

set ϵ according to the different corpus. In addition,
whatever the generation probability is, we have a
chance of forcing the generated token to be con-
sistent with the reference one. In this way, we can
avoid the phenomenon that the generation proba-
bilities of the reference token are always on a low
level because of continuous replacement.

3.2 Pre-training and Fine-tuning
3.2.1 QE Model
Recently, many QE works have focused on trans-
ferring knowledge from large pre-trained language
models for the QE task. In this study, we adopt
XLMR large model (Conneau et al., 2020) as our
QE model instead of a transformer base model with
random initialization as described in (Cui et al.,
2021). The XLMR large model, successfully used
in the QE task(Ranasinghe et al., 2020), is a cross
lingual pre-trained sentence encoder. Thus, we
concatenate both source and target sentences as
the input. We directly use the corresponding out-
puts from the last layer as token representations.
We average sub-tokens’ representations as the rep-
resentation of the whole word. We average the
representations of all target tokens as the score rep-
resentation. We use linear layers for predicting
sentence scores and word tags with these represen-
tations.

3.2.2 Multi-task Learning
Multi-task learning has been widely studied for QE
task (Fan et al., 2019; Cui et al., 2021). Usually,
the word-level task is formulated as a sequence
labeling problem using cross-entropy (CE) loss as
follows:

LCE =

n∑

i=1

CE(gi, ĝi), (2)
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Annotation Pair Spearman (Rank) MCC (Rank) F1-BAD F1-OK

MQM

EN-DE 63.47 (1) 35.19 (1) 35.09 98.03
EN-RU 47.42 (4) 38.98 (3) 43.96 94.90
EN-ZH 29.56 (7) 30.84 (3) 30.25 98.77

Multilingual 46.82 (2) - - -

PE and DA
EN-MR 58.47 (4) 41.16 (2) 47.22 93.86
KM-EN - 42.12 (3) 74.42 67.68

Table 2: Results on different test sets of WMT2022.

where ĝi denotes the tag predicted for i-th word.
Traditional methods formulate the sentence-level
task as a constraint regression problem with mean
square error (MSE) loss:

LMSE = MSE(m, m̂), (3)

where m̂ denotes the output score. However, the
ordinal relations between different translations are
more important in many real applications, such as
re-ranking for candidate translations and selecting
the best translation models. Therefore, we intro-
duce the additional rank loss to model the ordinal
information between translations:

LRank = max(0,−r(m̂i − m̂j) + ϵ), (4)

where m̂i and m̂j denote the output scores of i-th
and j-th translations from current batch; r denotes
the rank label, r = 1 if mi > mj , r = −1 if
mi < mj ; ϵ denotes the margin, we set ϵ = 0.03
for all experiments. Since sentence- and word-level
sub-tasks use the same source-target sentences, it
is convenient to learn these tasks jointly as follows:

LQE = LCE + αLMSE + βLRank. (5)

We use the same loss Eq. 5 for both pre-training
and fine-tuning. When pre-training, we use the
pseudo data as mentioned above. For fine-tuning,
we also explore PE annotation data of the previ-
ous years for the MQM sub-task (EN-DE language
pair). Target side word-level errors of PE annota-
tion consist of two types of labels: word tags and
gap tags (labeled BAD if one or more words should
be inserted in between two words). Word tags can
be directly converted to MQM tags. To convert gap
tags, we label the right word as BAD if the gap tag
is BAD. For sentence-level, we normalize the PE
sentence scores using the z-score. We mix the PE
data and MQM data and use them to fine-tune the
QE model.

3.3 Ensemble
We ensemble sentence-level results by averaging
all output scores and ensemble word-level results
by voting. We also train some models to predict
MQM scores without normalization for the EN-DE
language pair. To ensemble these models trained
with different sentence-level scores, we propose
calculating their z-scores and then averaging all
z-scores as the ensemble result.

4 Experiments

4.1 Data and Pre-processing
For training the generators and generating pseudo
data, we use several parallel data sets. We use
the parallel data provided by the WMT transla-
tion task 2 for EN-DE(9M), EN-RU(3M), and ZH-
EN(3M) language pairs. We use 660K parallel
data from OPUS3 for the KM-EN language pair.
Besides, 3.6M parallel data from the target trans-
lation model4 are used for the EN-MR language
pair. The PE data used for the EN-DE language
pair are provided by WMT2017, WMT2019, and
WMT2020.

For pseudo data generation, we learn the BPE
vocabulary (Sennrich et al., 2016) with 30K steps
using parallel data from each language pair. We can
directly use the vocabulary of the XLMR model 5

for pre-training and fine-tuning.

4.2 Implementation and Hyper-parameters
We implement our system with the open source
toolkit Fairseq(-py) (Ott et al., 2019). All experi-
ments were conducted on NVIDIA V100 GPUs.
Using grid search, we search hyper-parameters
(learning rate, weights for different losses). We

2https://www.statmt.org/wmt21/
translation-task.html

3https://opus.nlpl.eu/
4https://indicnlp.ai4bharat.org/indic-trans/
5https://dl.fbaipublicfiles.com/fairseq/

models/xlmr.large.tar.gz
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train epoch

train inner

valid

Figure 2: MSE score loss with z-score labels (above);
MSE score loss with MQM labels (bottom).

Data Loss Spearman
Real w/o rank 37.88

MLM + Real w/o rank 43.64
MLM + Real w/ rank 44.05

Table 3: Results on the validation set of WMT2022 QE
EN-DE task. MLM denotes the pseudo data generated
by the conditional masked language model.

perform early stopping if the performance does not
improve for the last 20 runs.

4.3 Results

We summarize our main results on the test set in Ta-
ble 2. Our system obtains competitive results over
different annotation and language pairs. Especially
when we use all techniques proposed in this paper,
we finished 1st at both sentence- and word-level on
the EN-DE pair.

4.4 Analysis

We conduct preliminary experiments on sentence-
level EN-DE sub-task to better reveal the factors
that contribute to the performance. Note that we
search hyper-parameters with a different scale be-
tween different analyses. Thus only results in the
same table are comparable.

As shown in Table 3, our pseudo data signif-
icantly improve the performance over the base-
line. Besides, the rank loss can further improve
performance. Table 4 shows that the neural ma-
chine translation model is better than the condi-

Data Spearman
MLM + Real 49.21
NMT + Real 51.01

MLM + WMT19 + Real 50.45
NMT + WMT19 + Real 51.37

NMT + WMT19,20 + Real 51.15
NMT + WMT19,20,17 + Real 51.24

Table 4: Results on the validation set of WMT2022 QE
EN-DE task. NMT denotes the pseudo data generated
by the neural machine translation model. WMT## de-
notes the PE data from WMT20##.

Data Label Spearman
NMT + Real z-score 51.01
NMT + Real MQM 52.80

Table 5: Results on the validation set of WMT2022 QE
EN-DE task with different labels.

tional masked language model for generating the
pseudo data. Moreover, PE data from WMT2019
is helpful for the MQM task. Surprisingly, PE data
from WMT2020 and WMT2017 do not further im-
prove the results. That may be because there are
more errors in translations from WMT2020, and
the translations from WMT2017 are generated by
a statistical machine translation system. We also
find that models trained with the MQM scores are
better than these using z-scores, shown in Table 5.
The MSE score loss seems more stable when using
the MQM label, as shown in Figure 2.

5 Conclusion

We present NJUNLP’s work to the WMT 2022
Shared Task on Quality Estimation. We propose
several novel pseudo data generation methods to
bridge the gaps between existing pseudo data and
real QE data. To learn the ordinal information, we
extend multi-task learning for the QE task with
the rank task. We also explore the PE data for
the MQM annotation sub-task and propose to en-
semble output scores with different scales using
the z-score. Experiments show that our pseudo
data significantly improve the performance over
the baseline. Meanwhile, rank loss and PE data
do help. In future research, we will conduct more
ablation studies to reveal the contributions of each
part.
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Abstract

This paper presents the BJTU-Toshiba joint
submission for WMT 2022 quality estimation
shared task. We only participate in Task 1
(quality prediction) of the shared task, focusing
on the sentence-level MQM prediction. The
techniques we experimented with include the
integration of monolingual language models
and the pre-finetuning of pre-trained represen-
tations. We tried two styles of pre-finetuning,
namely Translation Language Modeling and
Replaced Token Detection. We demonstrate
the competitiveness of our system compared
to the widely adopted XLM-RoBERTa base-
line. Our system is also the top-ranking system
on the Sentence-level MQM Prediction for the
English-German language pair1.

1 Introduction

Machine translation Quality Estimation (QE) aims
to evaluate the quality of machine translation auto-
matically without reference. Compared with com-
monly used machine translation metrics such as
BLEU (Papineni et al., 2002), QE can be applica-
ble to the case where references are unavailable. It
has a wide range of applications in post-editing and
quality control for machine translation.

This paper introduces in detail the joint submis-
sion of Beijing Jiaotong University and Toshiba
(China) Corporation to the quality estimation
shared task in the 7th Conference on Machine
Translation (WMT22), and we mainly focus on the
Task 1: quality prediction. This year, the quality
prediction task consists of two annotations (DA and
MQM) and two levels (sentence-level and word-
level), and we only participate in the Sentence-
level MQM prediction, of which the goal is to pre-
dict the MQM score (Freitag et al., 2021) for each
source-target sentence pair. Three language pairs
are involved: English-German, Chinese-English

1Our codes are openly available at the public repository
https://github.com/HuihuiChyan/AwesomeQE.

Figure 1: The three QE architectures we adopted.

and English-Russian, with roughly 10K-20k train-
ing pairs provided for each direction.

Our system is mainly based on the ensemble of
multiple pre-trained models, both monolingual and
multilingual. The monolingual models receive only
the target sequence to perform regression (only es-
timating the target fluency). The multilingual mod-
els receive both the source and target sequence to
perform regression. We also use in-domain paral-
lel data to pre-finetune the pre-trained models, to
adapt their representations to the target language
and domain. We try two styles of pre-finetuning,
namely Translation Language Model (TLM) and
Replaced Token Detection (RTD). The translation
language model is to predict the random masked
tokens based on the concatenation of source-target
pairs. The RTD is to first randomly replace some
tokens by another generator, then to detect which
token is replaced. Different models are ensembled
to get further improvement.
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Direction Model Type Input Spearman Pearson

En-De

mBERT multilingual understanding src-tgt 0.3621 0.3484
XLM multilingual understanding src-tgt 0.3692 0.3682
XLMR-large multilingual understanding src-tgt 0.4548 0.4235

mBART multilingual encoder-decoder src-tgt 0.3890 0.3946
OpusMT multilingual encoder-decoder src-tgt 0.3981 0.4184

BERT-base monolingual understanding tgt 0.4620 0.4381
BERT-large monolingual understanding tgt 0.4963 0.4574
Electra-base monolingual understanding tgt 0.5069 0.4654
Electra-large monolingual understanding tgt 0.5413 0.4974

Zh-En

XLM multilingual understanding src-tgt 0.2503 0.1494
XLMR-large multilingual understanding src-tgt 0.2614 0.1083
mBERT multilingual understanding src-tgt 0.2661 0.1439

mBART multilingual encoder-decoder src-tgt 0.2332 0.1021
OpusMT multilingual encoder-decoder src-tgt 0.2353 0.1196

Electra-base monolingual understanding tgt 0.2337 0.1412
BERT-large monolingual understanding tgt 0.2425 0.1149
Roberta-large monolingual understanding tgt 0.2523 0.0969
Deberta-large monolingual understanding tgt 0.2514 0.1024
Deberta-v3-large monolingual understanding tgt 0.2714 0.1486
Electra-large monolingual understanding tgt 0.2829 0.1475

En-Ru

mBERT multilingual understanding src-tgt 0.3897 0.3744
XLM multilingual understanding src-tgt 0.4281 0.4143
XLMR-large multilingual understanding src-tgt 0.4502 0.4144

mBART multilingual encoder-decoder src-tgt 0.4174 0.4137
OpusMT multilingual encoder-decoder src-tgt 0.4207 0.3884

BERT-base monolingual understanding tgt 0.4686 0.3964
BERT-large monolingual understanding tgt 0.4899 0.4280
Roberta-large monolingual understanding tgt 0.5175 0.4265

Table 1: Experiment results on the DEV set of multilingual and monolingual baselines. Results are presented in an
ascending order with respect to the spearman’s ranking correlation coefficient.

2 Methods

2.1 Architecture

In this work, we perform massive comparison be-
tween the multilingual models and monolingual
models on QE. Our backbone network is based on
several multilingual understanding models, includ-
ing Multilingual BERT (Devlin et al., 2018), XLM
(Lample and Conneau, 2019), XLM-RoBERTa
(Ruder et al., 2019), etc. Meanwhile, we inte-
grate several monolingual models, including BERT,
RoBERTa (Liu et al., 2020b), DeBERTa (He et al.,
2021b), DeBERTa-v3 (He et al., 2021a), Electra
(Clark et al., 2020), etc. We also perform esti-

mation on multilingual encoder-decoder models,
including Multilingual BART (Liu et al., 2020a)
and OpusMT (Tiedemann and Thottingal, 2020)2.

For multilingual understanding models, we feed
the concatenation of src (source sentence) and tgt
(machine translated sentence) to the model, and
take the first output hidden state for regression.
For monolingual understanding models, we simply
feed the tgt to the model, and take the first output
hidden state for regression. For encoder-decoder

2To be specific, we use the released models from
https://huggingface.co/Helsinki-NLP/opus-mt-en-de,
https://huggingface.co/Helsinki-NLP/opus-mt-zh-en, and
https://huggingface.co/Helsinki-NLP/opus-mt-en-ru for
En-De, Zh-En and En-Ru, respectively
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Figure 2: The two different pre-finetuning schemes. Notice for RTD, some masked tokens may be restored correctly
by the generator, and we only detect the mismatched tokens.

style models, we feed the src to the encoder, the tgt
to the decoder, and take the last hidden state corre-
sponding to the last token of the tgt for regression.
All three architectures are depicted in Figure 1.

As shown in Table 1, the monolingual baselines
can surpass the multilingual baselines in all direc-
tions. Although the alignment information is ab-
sent, estimation can still be performed solely on the
target text to estimate the fluency. In this year, the
MQM prediction data are actually the submissions
from the translation evaluation task, therefore most
tgts are roughly correct translations aligned with
the source sentence, and most translation errors
are very subtle. Therefore, it would be easier for
the model to estimate the fluency instead of the
alignment. With the help of powerful monolingual
models, we are able to achieve higher estimation
accuracy based solely on the target input.

2.2 Adaptative Pre-finetuning
Fine-tuning pre-trained language models on
domain-relevant unlabeled data has become a com-
mon strategy to adapt the pretrained parameters to
downstream tasks (Gururangan et al., 2020). Pre-
vious works also demonstrate the necessity of pre-
finetuning when performing QE on pretrained mod-
els (Kim et al., 2019; Hu et al., 2020). In this work,
we perform two methods to pre-finetune the pre-

trained models, namely Translation Language Mod-
eling (TLM) (Lample and Conneau, 2019) and Re-
placed Token Detection (RTD) (Clark et al., 2020),
as shown in Figure 2.

The TLM simply takes the concatenation of par-
allel sentence pairs as input, and perform masked
language modeling. Therefore, when predicting
the masked tokens in one side, the model could
utilize its context in the parallel side, learning the
bilingual alignment.

On the contrary, instead of masking, RTD cor-
rupts the input by replacing some tokens with sam-
ples from the output of a smaller masked language
model (Specifically, we use the first 1/3 layers of
the pre-trained model to initilize the generator).
Then the model is trained as a discriminator that
predicts for every token whether it is an original
or a replacement, learning to distinguish real input
tokens from plausible replacements.

Compared with TLM, RTD mainly has three
benefits: 1) The corruption procedure solves a mis-
match in MLM (or TLM) where the network sees
artificial [MASK] tokens during pre-training but
not when being fine-tuned on downstream tasks.
2) The loss is calculated on all tokens instead of a
subset, therefore improving the pre-finetuning effi-
ciency. 3) The mismatch produced by a language
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model is more subtle than random masking or re-
placement, therefore the pre-finetuning naturally
fits the final objective, whitch is to detect subtle
semantic mismatch.

Direction Model Spearman Pearson

En-De

XLM-R-large 0.4548 0.4235
w/ TLM 0.5084↑ 0.4959
w/ RTD 0.5109↑ 0.5024

BERT-large 0.4963 0.4574
w/ TLM 0.5033↑ 0.4593
w/ RTD 0.5127↑ 0.4704

Electra-large 0.5413 0.4974
w/ TLM 0.4748↓ 0.4396
w/ RTD 0.5220↓ 0.4871

Ensemble 0.5809 0.5313

Zh-En

XLM-R-large 0.2614 0.1083
w/ TLM 0.2590↓ 0.1167
w/ RTD 0.2888↑ 0.1332

mBERT 0.2661 0.1439
w/ TLM 0.2912↑ 0.1360
w/ RTD 0.2649↓ 0.1254

Deberta-v3-large 0.2714 0.1486
w/ TLM 0.2561↓ 0.1227
w/ RTD 0.3076↑ 0.1787

Electra-large 0.2829 0.1475
w/ TLM 0.2361↓ 0.1051
w/ RTD 0.2493↓ 0.1190

Ensemble 0.3231 0.1692

En-Ru

XLM-R-large 0.4502 0.4144
w/ TLM 0.4956↑ 0.3963
w/ RTD 0.5092↑ 0.3954

BERT-large 0.4986 0.3964
w/ TLM 0.5030↑ 0.4189
w/ RTD 0.5170↑ 0.4453

Roberta-large 0.5175 0.4265
w/ TLM 0.5129↓ 0.3979
w/ RTD 0.5321↑ 0.4171

Ensemble 0.5799 0.4544

Table 2: Experiment results on the DEV set of different
pre-finetuning methods and ensemble result.

Both methods are performed on millions of paral-
lel sentence pairs. We firstly train a BERT-based do-
main classifier to select the in-domain parallel data.

Direction Model Input Spearman

Zh-En
Deberta-v3-large tgt 0.2892
Deberta-v3-large src-tgt 0.3076↑

En-Ru
Roberta-large tgt 0.5245
Roberta-large src-tgt 0.5321↑

Table 3: Experiment results on the DEV set of pre-
finetuned models with bilingual or monolingual input.

Here we use the parallel data from the general trans-
lation task of WMT223, which contains roughly 20
million pairs for Zh-En and En-De, and 10 mil-
lion for En-Ru. Specifically, the sentence pairs in
the QE training set are deemed as in-domain data,
and we randomly sample the same size of data as
the general-domain data, and the BERT model is
fine-tuned on them as a binary classifier. After that,
we select roughly 1 million sentence pairs for each
direction.

Notice that for monolingual models we also per-
form TLM with bilingual input, expecting to intro-
duce further gain with the help of extra information.

As shown in Table 2, both TLM and RTD can
improve the estimation accuracy significantly. The
multilingual pre-trained model is trained on hun-
dreds of languages simultaneously without any
cross-lingual supervision. The monolingual pre-
trained model is trained only on the target language.
Therefore, adaptation is necessary for both models
to solve the language and domain mismatch. Also,
the RTD outperforms TLM in most cases, verify-
ing that RTD is more suitable as the pre-finetuning
scheme for QE task. Since QE is also targeted at de-
tecting mismatched and disfluent tokens, therefore
RTD is more in line with the QE objective.

We also found that after the pre-finetuning step,
it would be helpful to feed the bilingual input to
the monolingual models, as shown in Table 3. Al-
though monolingual models did not see any text
from the source language during pre-training, the
knowledge between different languages is trans-
ferrable (Artetxe et al., 2020), therefore the fine-
tuned model on the target side can also be used to
model the semantics of the source side. Besides,
subword segmentation also enables the model to
represent sequences from unseen language.

The only exception is on Electra, where pre-
finetuning brings degradation in all cases. It is pos-
sibly because we use the released generator instead

3https://www.statmt.org/wmt22/translation-task.html

624



of using the first few layers to initialize a generator,
but it is still confusing why their released generator
(which is also used to perform replacement during
pre-training stage) would lead to degradation.

2.3 Model Ensemble

Till now, we have obtained different QE models
trained with different data and strategies, which can
capture different information from the same text.
While previous work resort to statistical learning
methods to perform model ensemble (Kepler et al.,
2019), we think their methods might be overfitting.
Therefore, we simple take the average of different
predictions (normalized between 0 and 1) as the
ensemble result. More specifically, we try different
combinations of all available predictions (which
are all listed in the Table 2), and make submissions
based on the best ensemble result on the DEV set.
The performance gain compared to single model is
significant as can be seen in Table 2.

3 Conclusion

In this paper, we present our WMT22 QE shared
task submission to the sentence-level MQM predic-
tion. We perform massive comparison and demon-
strate the effectiveness of monolingual language
model. We verify that the pre-trained models can
be further improved on target language and target
domain via pre-finetuning, and we propose differ-
ent strategies to pre-finetune the model.

As the machine translation has been developing
rapidly, the translation errors current MT system
makes have also become more than shallow dis-
alignment. While MT systems are mostly trained
with massive parallel data, using the same amount
of parallel data to train another QE model seems
inefficient, and the monolingual knowledge con-
tained in monolingual models can be more helpful
than we expected. While previous work mainly
rely on the semantic alignment to perform QE, we
think it might be a better option to rely more on
monolingual fluency in real applications.
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Abstract

This paper describes anonymous submission
to the WMT 2022 Quality Estimation shared
task. We participate in Task 1: Quality
Prediction for both sentence and word-level
quality prediction tasks. Our system is a multi-
lingual and multi-task model, whereby a single
system can infer both sentence and word-level
quality on multiple language pairs. Our sys-
tem’s architecture consists of Pretrained Lan-
guage Model (PLM) and task layers, and is
jointly optimized for both sentence and word-
level quality prediction tasks using multilin-
gual dataset. We propose novel auxiliary tasks
for training and explore diverse sources of ad-
ditional data to demonstrate further improve-
ments on performance. Through ablation study,
we examine the effectiveness of proposed com-
ponents and find optimal configurations to train
our submission systems under each language
pair and task settings. Finally, submission sys-
tems are trained and inferenced using K-folds
ensemble. Our systems greatly outperform task
organizer’s baseline and achieve comparable
performance against other participants’ submis-
sions in both sentence and word-level quality
prediction tasks.

1 Introduction

Quality Estimation (QE) evaluates the quality of
machine translated output without human reference
translation (Blatz et al., 2004). Apart from QE
models’ most obvious usage as being reference-less
metrics for MT, it has variety of other applications
in Machine Translation (MT) pipeline including but
not limited to: parallel corpus filtering (Schwenk
et al., 2021), curriculum learning (Ramnath et al.,
2021) and decoding (Fernandes et al., 2022).

High performance in both sentence and word-
level quality prediction tasks is achieved by incor-
porating PLM as part of QE model architecture
as demonstrated in previous WMT QE findings

*These authors contributed equally to this work

(Specia et al., 2020, 2021). Previous years’ top
performers generally incorporate various data aug-
mentation techniques in order to account for lim-
ited amount of annotated gold data (Lim et al.,
2021; Chen et al., 2021). Multi-task training, en-
sembling, or incorporating features extracted from
external models are few other popular approaches
that proved to work well (Lim et al., 2021; Chen
et al., 2021; Zerva et al., 2021; Wang et al., 2021a).

Our system is a multilingual and multi-task
model, whereby a single system can infer both sen-
tence and word-level quality on multiple language
pairs. Our system’s architecture (§3.1) consists
of PLM and task layers, and is jointly optimized
for both sentence and word-level quality prediction
tasks (§3.2.1) using multilingual dataset. We pro-
pose novel auxiliary tasks (§3.2.2) for training and
explore diverse sources of additional data (§3.3) to
demonstrate further improvements on performance.
Through ablation study (§5), we evaluate each com-
ponents of our proposed model and use optimal
configurations to train our submission systems un-
der each language pair and task settings. Finally,
submission systems are trained and inferenced us-
ing K-folds ensemble (§3.4.2). Our systems greatly
outperform task organizer’s baseline and perform
very competitively against other participants’ sub-
missions in both sentence and word-level quality
prediction tasks.

2 Quality Prediction Task and Dataset

In this section we briefly overview two subtasks
and their datasets in Task 1. Apart from provided
Gold data as described below, participants are al-
lowed to leverage additional sources of data.

2.1 Sentence Level Quality Prediction

The goal of sentence-level quality prediction is
to predict the quality score for each (source, hy-
pothesis) sentence pair. Participants are provided
with two types of sentence-level quality prediction
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data depending on how annotations are created:
Multi-dimensional Quality Metrics (MQM)1

and Direct Assessments (DA)2. All three lan-
guage pairs in MQM, and En-Mr in DA are super-
vised, while remaining four language pairs in DA
are unsupervised. Submission systems are evalu-
ated on aforementioned eight language pairs and
one surprise language pair3. Note that MQM
scores are inverted in order to align MQM scores
with DA scores.

2.2 Word Level Quality Prediction

The goal of word-level quality prediction is to pre-
dict translations errors, assigning OK/BAD tags to
each word in hypothesis, given (source, hypothe-
sis) sentence pairs. Word-level tags are provided
for language pairs same as in sentence-level task,
and tags are derived from either MQM annotations
(MQM) or post-edited sentences (DA).

3 Approach

Below we describe relevant components of our pro-
posed QE model.

3.1 Model Architecture

Our system employs the Predictor-Estimator archi-
tecture (Kim et al., 2017). For our predictor we use
a PLM, and our choice of PLM is XLM-RoBERTa-
large (Conneau et al., 2020) due to its impressive
performance on crosslingual downstream tasks.
Given source sentence srcX in language X and
target sentence tgtY in language Y , the concatena-
tion of srcX and tgtY are fed as input to the PLM
and feature vectors relevant to each task are then
passed as inputs to the estimator. We utilize four
independent 2-layer feed-forward networks as esti-
mators, which are 1024 and 200 dimensions, and
are stacked in parallel above PLM. The Predictor-

1English-Russian (En-Ru), English-German En-De), and
Chinese-English (Zh-En)

2English-Marathi (En-Mr), English-Czech (En-Cs),
English-Japanese (En-Ja), Khmer-English (Km-En), and
Pashto-English (Ps-En)

3English-Yoruba (En-Yo), where no train and development
data is provided at all

Estimator architecture can be described as:

f(srcx, tgty)

= Hsent, Hword, Hsentaux, Hwordaux

Vsent = ϕsent(Hsent)

Vword = ϕword(Hword)

Vsentaux = ϕsentaux(Hsentaux)

Vwordaux = ϕwordaux(Hwordaux),

(1)

where f , H , ϕ, and V are predictor, feature ex-
tracted from predictor, estimator, and our final pre-
diction, respectively. We describe H , ϕ, and their
corresponding training objectives in §3.2.

3.2 Training Objective
The full training objective of our QE model is
shown below in equation (2),

L = (wsent · Lsent
+ (1− wsent) · Lsentaux)+
(wword · Lword

+ (1− wword) · Lwordaux).

(2)

L and w denote loss functions and loss weight val-
ues. wsent and wword are 0.6 and 0.7 respectively.
We describe each loss function components in the
following subsections.

3.2.1 Multi-task Training
To build a system that is capable of predicting both
sentence and word-level quality, our proposed train-
ing objective optimizes for Lsent and Lword jointly
as shown in equation (2). We use mean squared
error (MSE) and weighted cross entropy loss4 as
loss functions for Lsent and Lword respectively.
Therefore, ϕsent is a classification layer with input
Hsent, which is PLM’s last layer [CLS] represen-
tation; ϕword is a classification layer with input
Hword, which is created by mean pooling PLM’s
last layer token hidden states5. Since sentence and
word-level quality prediction tasks are two closely
related tasks, we assume some level of transferabil-
ity of task knowledge between the two when jointly
trained.

3.2.2 Auxiliary-task Training
Auxiliary-tasks are additional objectives that are
jointly optimized with losses described in §3.2.1.

4In order to reduce the problem of label imbalance be-
tween OK and BAD, we use weighted cross entropy with ratio
of OK:BAD = 1:3

5If wordn spans tokeni:j ,
then Hwordn = mean(Htokeni , ..., Htokenj )
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Task Train Data Train Method Train Objective En-De En-Ru Zh-En En-Mr Km-En Ps-En En-Ja En-Cs Multi

Sent

Gold Vanilla
Single 0.490 0.483 0.283 0.551 0.621 0.606 0.315 0.539 0.556

Multi (3.2.1) 0.493 0.529 0.261 0.552 0.644 0.614 0.301 0.548 0.562
Multi+Aux (3.2.1, 3.2.2) 0.499 0.516 0.252 0.555 0.633 0.617 0.319 0.570 0.573

Gold Vanilla
Multi + Aux

0.499 0.516 0.252 0.555 0.633 0.617 0.319 0.570 0.573
Augmented (§3.3) Vanilla 0.550 0.575 0.274 0.563 0.618 0.611 0.350 0.582 0.609

Augmented K-folds ensemble (§3.4.2) 0.576 0.584 0.287 0.682 0.639 0.627 0.385 0.594 0.611

Word

Gold Vanilla
Single 0.238 0.381 0.208 0.332 0.404 0.375 0.186 0.383 0.487
Multi 0.220 0.378 0.201 0.339 0.439 0.367 0.174 0.367 0.494

Multi+Aux 0.229 0.386 0.198 0.358 0.455 0.343 0.169 0.366 0.476
Gold Vanilla

Multi + Aux
0.229 0.386 0.198 0.358 0.455 0.343 0.169 0.366 0.476

Augmented Vanilla 0.285 0.363 0.397 0.443 0.412 0.351 0.153 0.332 0.507
Augmented K-folds ensemble (§3.4.2) 0.301 0.380 0.413 0.459 0.488 0.378 0.234 0.421 0.531

Table 1: Ablation on Train Data, Train Method, and Train Objective. Multi column contains development portion
of Gold for all 14 language pairs.

Our intuition is that quality prediction is inherently
a complex task even for humans such that human-
labels may contain noise. Hence, we appropriately
craft original gold labels into secondary labels and
use those labels during training as additional learn-
ing signals. We expect that training with auxiliary
labels can make training more robust and produce
a model that is more generalizable.

Sentence-level auxiliary task is a classification
task and labels are made as follows: given the
nth train set sample’s z-standardized score scoren,
we scale scoren by applying min-max normaliza-
tion and assign bin (class) labels to each sample.
For our experiments, the number of bins is set to
10. Note that min-max scaling is applied to each
language pair dataset in order to account for dif-
ferent scales of scoren per dataset. ϕsentaux is
a regression layer with input Hsentaux, which is
PLM’s last layer [CLS] representation. Likewise,
word-level auxiliary task is also a classification
task and labels are made as follows: given a sam-
ple’s word-level tags, a sample is assigned to BAD
if there exists at least one BAD tags in word-level
tags, else OK. ϕwordaux is a classification layer with
input Hwordaux, which is created by mean pooling
PLM’s last layer token hidden states, excluding
special tokens.

3.3 Data Augmentation

We augment training data with additional data,
which can be categorized as follows: task-related
or pseudo-generated. Task-related data are open
source data of other downstream tasks, but are
similar or can be useful to quality prediction task.
We collect data from previous years’ WMT Met-
rics Shared Task6 and WMT APE Task7. Since
WMT Metrics Shared Task data contain human DA

6WMT17-21 Metrics Shared Task
7WMT16-21 APE Shared Task

scores for (source, hypothesis) pairs, and WMT
APE Task data contain (source, hypothesis, post-
edited) triplets such that word-level quality annota-
tions can be built using provided word label tagging
conventions8, sentence or word quality labels for
this dataset type can be considered high quality.

Pseudo-generated data first assumes bitext9,
(source, reference) pairs. We then use NMT mod-
els provided by organizers to create (source, refer-
ence, hypothesis) triplets. Sentence quality labels
are generated using COMET10, which is an open
source reference-less QE model. Word quality la-
bels are generated adhering to word label tagging
conventions. Labels for pseudo-generated data are
considered less accurate compared to task-related
data since either labels are pseudo-generated via
external model instead being human generated
(sentence-level) or do not use actual (hypothesis,
post-edited) pairs to compute labels (word-level).
Refer to Appendix A for detailed list of augmented
data.

3.4 Final Model Training

3.4.1 Optimized Configuration
Although we can submit a single model for all lan-
guage pairs because all our models are multilingual,
we submit optimized models for each language pair
and task submissions. This is done by choosing
and training with optimal configuration for each
language pair and task as found in our ablation
study (§5, Table 1) or summarized in Appendix
B. Our final submissions are optimized for three
configurations: train data, train objective, and train
method. We further explain each configurations in
detail below.

8https://github.com/deep-spin/qe-corpus-builder#1
9Sources of bitext are Europarl, OPUS, Tatoeba and WMT

News Translation Task
10wmt21-comet-qe-da, https://github.com/Unbabel/COMET
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Figure 1: K-folds Ensemble

We have two sources of train data: Gold
which is data provided by task organizers, and
Additional as described in §3.3. This leads us
to experiment on two different compositions of
train data: Gold and Augmented, where the latter
is the aggregation of Gold and Additional.

There are three variants of train objective:
Single, Multi, and Multi+Aux. Single refers to
models that are trained with a single-task objec-
tive, either being Lsent or Lword. Multi are multi-
task models that are trained jointly on both sen-
tence and word-level quality prediction objectives
Lsent + Lword, as described in §3.2.1. Multi+Aux
refers to models that are trained with multi-task
and auxiliary objectives, as described in equation
(2).

For models trained with Vanilla train method,
we can train with variants of train data but always
select best checkpoint using the development set
portion of Gold. We explore advanced training
methods such as K-folds ensemble (§3.4.2) to
further improve model performance.

3.4.2 K-folds Ensemble
As demonstrated in Figure 1, K-folds ensemble
(Domingo et al., 2022) distributes the dataset in dif-
ferent training and validation folds such that each
individual model uses discrete dataset for training
and validation. Compared to vanilla ensembles,
where all models are trained using same train data,
we expect this method to generate more robust final
predictions and become less over-fitted to valida-
tion data.

Given a complete set of data11, we randomly se-
lect 1,000 samples for each supervised language
pair Gold dataset to create validation set, while the
rest are used for training. We repeat this process
N=5 times with the constraint that N=5 mutually
exclusive validation sets are created. We then train
and select best checkpoints for each partition using

11We concatenate train and development portion in the
case of Gold

discrete datasets. An ensemble of N=5 best mod-
els, one from each partition, are taken to make final
predictions. Prediction mean and majority voting
is used for sentence-level and word-level quality
prediction respectively.

4 Settings

For all training phases and experiments, we train
our model in data parallel on multiple NVIDIA
Tesla V100 GPUs for maximum 10 epochs with
batch size of 16 and is optimized with Adam
(Kingma and Ba, 2015) with a learning rate of
7e−6. Our implementation is based on PyTorch12

framework.
All models trained within the scope of this pa-

per are multilingual QE models. We concatenate
dataset of all individual language pairs to create
a multilingual train dataset for both sentence and
word-level quality prediction tasks. We apply the
same for development set and always perform
model selection using a multilingual dataset13.

5 Ablation

In this section, we present ablation study of individ-
ual components to our model described in §3. All
evaluations for ablation in Table 2 are conducted
on development portion of Gold.

5.1 Does multilingual training help?

Task Language En-De En-Ru En-Mr Ne-En Si-En

Sent
Single 0.491 0.399 0.560 0.798 0.538
Multi 0.499 0.516 0.555 0.805 0.550

Word
Single 0.225 0.306 0.360 0.438 0.408
Multi 0.229 0.386 0.358 0.469 0.452

Table 2: Ablation on multilingual training

Training multiple language pairs in a single
model through parameter sharing can significantly
reduce the cost of model training and maintenance
compared with training multiple separate models
(Wang et al., 2021b) in Neural Machine Transla-
tion. Moreover, we argue that multilingual QE
models can collectively learn knowledge from mul-
tiple language pairs, which can be particularly be
useful in this shared task scenario considering lim-
ited training data available per language pair. Table
2 compares the performance of single language pair

12https://pytorch.org/
13Checkpoints for our final submissions (Table 3, 4) are

selected base on performance on multilingual dataset
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QE models to multilingual QE models. We see that
the performance of multi models are higher than
or similar to the performance of single models.
Since the performance of multilingual models are
at least on par with separate models, this motivates
us to use multilingual training when considering
additional training and parameter costs of maintain-
ing multiple separate models.

5.2 Does multi-task or auxiliary-task training
help?

Row 1 to 3 and 7 to 9 in Table 1 demonstrates abla-
tion on different training objectives. For sentence-
level quality prediction tasks, we see that the per-
formance of Multi or Multi+Aux is higher than
that of single in all cases except for Zh-En. We
observe that adding auxiliary tasks to multi-tasking
can give further improvements in most cases. In
general, we argue that multi-tasking or adding aux-
iliary tasks help improve performance of sentence-
level QE models. The results for word-level quality
prediction tasks are a bit mixed; single achieves
highest performance compared to adding any addi-
tional training tasks at all for En-De, Zh-En, Ps-En,
En-Ja, and En-Cs. We conjecture that multi-tasking
or adding auxiliary tasks do not help in word-level
as much as they do in sentence-level quality predic-
tions tasks.

5.3 How does train data and train method
impact performance?

Row 4 to 6 and 10 to 12 in Table 1 demonstrates
ablation on train data and train method. Using ad-
ditional data (i.e Augmented) improves over Gold
in most cases, confirming the importance of us-
ing augmented data for quality prediction tasks
which mostly are low-resource condition. K-folds
ensemble14 further improves over Vanilla in all
cases, again confirming the widely accepted fact
that ensembling techniques are useful to give addi-
tional boost in performance.

6 Results

Table 3 and 4 demonstrate our final submission
systems for sentence-level and word-level quality
prediction task respectively. Refer to Appendix
B for detailed configurations used for each final
submission models.

14We leave out development portion of Gold for final eval-
uation within the scope of ablation

Our Submission Organizer’s Baseline
Spearman Rank Spearman Rank

Multi 0.4490 4th 0.3172 6th
En-De 0.5815 3rd 0.4548 10th
En-Ru 0.4963 3rd 0.3327 11th
Zh-En 0.3254 4th 0.1641 11th
Multi 0.5015 2nd 0.4148 5th

Multi (w/o En-Yo) 0.5710 3rd 0.4974 6th
En-Mr 0.6038 1st 0.4356 9th
En-Cs 0.6362 2nd 0.5598 7th
En-Ja 0.3266 4th 0.2716 9th

Km-En 0.6526 3rd 0.5788 7th
Ps-En 0.6713 3rd 0.6410 6th

# params 560M 564M
Disk space 2,243MB 2,280MB

Table 3: Submission results on Sentence-level Quality
Prediction Task

Our Submission Organizer’s Baseline
MCC Rank MCC Rank

Multi 0.3167 2nd 0.2345 3rd
Multi (w/o En-Yo) 0.3431 2nd 0.2569 3rd

En-De 0.3186 2nd 0.1824 5th
En-Ru 0.4207 2nd 0.2027 5th
Zh-En 0.3514 2nd 0.1036 5th
En-Mr 0.4178 1st 0.3058 5th
En-Cs 0.3961 3rd 0.3245 4rd
En-Ja 0.2573 2nd 0.1751 4th

Km-En 0.4291 1st 0.4016 4th
Ps-En 0.3735 2nd 0.3593 3rd

# params 560M 564M
Disk space 2,243MB 2,280MB

Table 4: Submission results on Word-level Quality Pre-
diction Task

7 Conclusions

In this work, we describe our system submission
to the WMT 2022 Quality Estimation shared task.
Our system is a multilingual and multi-task model
for both sentence and word level quality prediction
tasks. We demonstrate through ablation study that
additional training objectives and data can further
improve quality prediction performance. Our final
model is trained and inferenced using K-folds en-
semble which show remarkable performance in all
language pairs and tasks. However, we find that
multi-task or auxiliary-task training do not help in
word-level as much as they do in sentence-level
quality prediction. Further analysis to understand
the dynamics of training with multiple objectives
and improvements on word-level quality prediction
are challenges that we need to overcome in future
work.
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A Data Augmentation

Augment Data Type Label Type Language # of samples Original Source

Pseudo-generated Sent, Word

En-De 500,000

Europarl, OPUS, Tatoeba,

En-Ru 500,000

and WMT News Translation Task

Zh-En 500,000
En-Mr 500,000
Km-En 423,583
Ps-En 131,163
En-Ja 500,000
En-Cs 500,000

Task-related

Sent

En-De 78,616

WMT Metrics Shared Task Data

En-Ru 72,024
Zh-En 136,938
Km-En 4,722
Ps-En 4,611
En-Ja 24,429
En-Cs 70,911
En-Zh 94,667
De-En 109,907
Ru-En 70,276
Ja-En 23,399

Word

En-De 37,000

WMT APE Shared Task Data
En-Ru 17,112
En-Mr 19,000
De-En * 28,000
En-Zh * 9,000

Table 5: Details on augmented data

B Optimal Configuration

Task Label Type Language Pair Train Objective Train Data

Sent

MQM

Multi Multi+Aux Gold, Task-related
En-De Multi+Aux Gold, Task-related
En-Ru Multi Gold, Task-related
Zh-En Single Gold, Task-related

DA

Multi Multi+Aux Gold, Task-related
Multi (w/o En-Yo) Multi+Aux Gold, Task-related
En-Mr Multi+Aux Gold, Task-related
En-Cs Multi Gold, Task-related
En-Ja Multi+Aux Gold, Task-related
Km-En Multi+Aux Gold, Task-related
Ps-En Multi+Aux Gold, Task-related

Word

MQM + DA
Multi Multi Gold, Task-related, Pseudo-generated
Multi (w/o En-Yo) Multi Gold, Task-related, Pseudo-generated

MQM
En-De Single Gold, Task-related
En-Ru Multi+Aux Gold, Task-related
Zh-En Single Gold, Task-related

DA

En-Mr Multi+Aux Gold, Task-related
En-Cs Single Gold, Task-related, Pseudo-generated
En-Ja Single Gold, Task-related, Pseudo-generated
Km-En Multi+Aux Gold, Task-related, Pseudo-generated
Ps-En Single Gold, Task-related, Pseudo-generated

Table 6: Details on optimal configuration

633



Proceedings of the Seventh Conference on Machine Translation (WMT), pages 634–645
Abu Dhabi, December 7–8, 2022. ©2022 Association for Computational Linguistics

COMETKIWI:
IST-Unbabel 2022 Submission for the Quality Estimation Shared Task

Ricardo Rei∗1,2,4, Marcos Treviso∗3,4, Nuno M. Guerreiro∗3,4, Chrysoula Zerva∗3,4,
Ana C. Farinha1, Christine Maroti1, José G. C. de Souza1, Taisiya Glushkova3,4,

Duarte M. Alves1,4, Alon Lavie1, Luisa Coheur2,4, André F. T. Martins1,3,4
1Unbabel, Lisbon, Portugal, 2INESC-ID, Lisbon, Portugal

3Instituto de Telecomunicações, Lisbon, Portugal
4Instituto Superior Técnico, University of Lisbon, Portugal

Abstract

We present the joint contribution of IST and Un-
babel to the WMT 2022 Shared Task on Quality
Estimation (QE). Our team participated on all
three subtasks: (i) Sentence and Word-level
Quality Prediction; (ii) Explainable QE; and
(iii) Critical Error Detection. For all tasks we
build on top of the COMET framework, connect-
ing it with the predictor-estimator architecture
of OPENKIWI, and equipping it with a word-
level sequence tagger and an explanation extrac-
tor. Our results suggest that incorporating refer-
ences during pretraining improves performance
across several language pairs on downstream
tasks, and that jointly training with sentence
and word-level objectives yields a further boost.
Furthermore, combining attention and gradient
information proved to be the top strategy for
extracting good explanations of sentence-level
QE models. Overall, our submissions achieved
the best results for all three tasks for almost all
language pairs by a considerable margin.1

1 Introduction

Quality Estimation (QE) is the task of automati-
cally assigning a quality score to a machine trans-
lation output without depending on reference trans-
lations (Specia et al., 2018). In this paper, we de-
scribe the joint contribution of Instituto Superior
Técnico (IST) and Unbabel to the WMT22 Quality
Estimation shared task (Zerva et al., 2022), where
systems were submitted to three tasks: (i) Sentence
and Word-level Quality Prediction; (ii) Explainable
QE; and (iii) Critical Error Detection.

This year, we leverage the similarity between the
tasks of MT evaluation and QE and bring together
the strengths of two frameworks, COMET (Rei
et al., 2020), which has been originally devel-
oped for reference-based MT evaluation, and
OPENKIWI (Kepler et al., 2019), which has been
developed for word-level and sentence-level QE.

∗Equal contribution. � ricardo.rei@unbabel.com
1https://github.com/Unbabel/COMET

Namely, we implement some of the features of
the latter, as well as other new features, into the
COMET framework. The result is COMETKIWI,
which links the predictor-estimator architecture
with COMET training-style, and incorporates word-
level sequence tagging.

Given that some language pairs (LPs) in the test
set were not present in the training data, we aimed
at developing QE systems that achieve good multi-
lingual generalization and that are flexible enough
to account for unseen languages through few-shot
training. To do so, we start by pretraining our QE
models on Direct Assessments (DAs) annotations
from the previous year’s Metrics shared task as it
was shown to be beneficial in our previous submis-
sion (Zerva et al., 2021). Then we fine-tune our
models with the data made available by the shared
task.2 We experimented with different pretrained
multilingual transformers as the backbones of our
models, and we developed new explainability meth-
ods to interpret them. We describe our systems and
their training strategies in Section 3. Overall, our
main contributions are:

• We combine the strengths of COMET and
OPENKIWI, leading to COMETKIWI, a model
that adopts COMET training features useful
for multilingual generalization along with the
predictor-estimator architecture of OPENKIWI.

• Following our previous work (Zerva et al., 2021),
we show the importance of pretraining QE mod-
els on annotations from the Metrics shared task.

• We show that we can improve results for new
LPs with only 500 examples without harming
correlations for other LPs.

• We propose a new interpretability method that
uses attention and gradient information along

2For zero-shot LPs we use 500 training examples which
means we turn it into a few-shot setting. The only exception
is English→Yoruba which was kept zero-shot.
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with a head-level scalar mix module that further
refines the relevance of attention heads.

Our submitted systems achieve the best mul-
tilingual results on all tracks by a consider-
able margin: for sentence-level DA our system
achieved a 0.572 Spearman correlation (+7% than
the second best system); for word-level our sys-
tem achieved a 0.341 MCC score (+2.4% than the
second best system); and for Explainable QE our
system achieved 0.486 R@K score (+10% than the
second best system). The official results for all LPs
are presented in Table 6 in the appendix.

2 Background

Quality Estimation. QE systems are usually de-
signed according to the granularity in which pre-
dictions are made, such as sentence and word-level.
In sentence-level QE, the goal is to predict a single
quality score ŷ ∈ R given the whole source and
its translation as input. Word-level QE works in
a lower granularity level, with the goal of predict-
ing binary quality labels ŷi ∈ {OK, BAD} for all
1 ≤ i ≤ n machine-translated words, indicating
whether that word is a translation error or not.

Transformers. The multi-head attention mech-
anism is the key component in transformers, be-
ing responsible for contextualizing the informa-
tion within and across input sentences (Vaswani
et al., 2017). Concretely, given as input a matrix
Q ∈ Rn×d containing d-dimensional representa-
tions for n queries, and matrices K,V ∈ Rm×d

for m keys and values, the scaled dot-product at-
tention at a single head is computed as:

att(Q,K,V ) = π

(
QK⊤
√
d

)

︸ ︷︷ ︸
Z∈Rn×m

V ∈ Rn×d. (1)

The π transformation maps rows to distributions,
with softmax being the most common choice,
π(Z)ij = softmax(zi)j . Multi-head attention is
computed by evoking Eq. 1 in parallel for each
head h:

headh(Q,K,V ) = att(QWQ
h ,KWK

h ,V W V
h ),

where WQ
h , WK

h , W V
h are learnable linear trans-

formations. Finally, the output of the multi-head
attention module at the ℓ-th layer is a set of hidden
states Hℓ ∈ Rn×d formed via the concatenation of

[cls] target [sep] source [eos]

Pre-trained Encoder

Scalar Mix

[cls] First Piece Select.

Feed Forward Feed Forward

Sentence score
ŷ ∈ R

Word labels
ŷi ∈ {OK, BAD}

Figure 1: General architecture of COMETKIWI for
sentence-level (left part) and word-level QE (right part).

all hℓ,1, ...,hℓ,H heads in that layer followed by a
learnable linear transformation WO:

Hℓ = concat(hℓ,1, ...,hℓ,H)WO.

The hidden states are further refined through
position-wise feed-forward blocks and residual con-
nections to obtain a final representation: Hℓ =
FFN(Hℓ) +Hℓ. Transformers with only encoder-
blocks, such as BERT (Devlin et al., 2019) and
XLM (Conneau et al., 2020), have only the encoder
self-attention, and thus m = n.

3 Implemented Systems

The overall architecture of our models is shown
in Figure 1. The machine translated sentence t =
⟨t1, ..., tn⟩ and its source sentence counterpart s =
⟨s1, ..., sm⟩ are concatenated and passed as input to
the encoder, which produces d-dimensional hidden
state vectors H0, ...,HL for each layer 0 ≤ ℓ ≤ L,
where Hi ∈ R(n+m)×d, where ℓ = 0 corresponds
to the embedding layer. Next, all hidden states are
fed to a scalar mix module (Peters et al., 2018) that
learns a weighted sum of the hidden states of each
layer of the encoder, producing a new sequence of
aggregated hidden states Hmix as follows:

Hmix = λ

L∑

ℓ=0

βℓHℓ, (2)

where λ is a scalar trainable parameter, β ∈ △L,
is given by β = sparsemax(ϕ) using a sparse
transformation (Martins and Astudillo, 2016), with
ϕ ∈ RL as learnable parameters and△L := {β ∈
RL : 1⊤β = 1,β ≥ 0}3.

3As it has been shown in (Rei et al., 2022) not all layers are
relevant and thus, using sparsemax we learn to ignore layers
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For sentence-level models, the hidden state of
the first token (<cls>) is used as sentence repre-
sentation Hmix,0 ∈ Rd, which, in turn, is passed
to a 2-layered feed-forward module in order to get
a sentence score prediction ŷ ∈ R. For word-level
models, we first retrieve the hidden state vectors
associated with the first word piece of each ma-
chine translated token, and then pass them to a
linear projection to get word-level predictions ŷi ∈
{OK, BAD}, ∀1≤i≤n. Moreover, attention matrices
A1,1, ...,AL,H for all layers and heads are also re-
covered as a by-product of the forward propagation.

Pretraining on Metrics Data. Every year, the
WMT News Translation shared task organizers col-
lect human judgments in the form of DAs. The col-
lective corpora of 2017, 2018, and 2019 contain 24
LPs and a total of 657k samples with source, target,
reference, and DA score. We follow our experi-
ments from last year (Zerva et al., 2021) and start
by pretraining our QE models on this data using the
learning objective proposed by UniTE (Wan et al.,
2022), which incorporates reference translations
into training and thus acts as data augmentation.

Setting pretrained transformers as encoders.
We follow the recent trend (Kepler et al., 2019;
Ranasinghe et al., 2020) and experiment with
three different pretrained multilingual transform-
ers as the encoder layer of our models: XLM-
R Large (Conneau et al., 2020),4 InfoXLM
Large (Chi et al., 2021),5 and RemBERT (Chung
et al., 2021).6 XLM-R and InfoXLM consist of
24 encoder blocks with 16 attention heads each,
whereas RemBERT has 32 encoder blocks with 18
attention heads each.

3.1 Task 1: Quality prediction

After the pretraining phase, we adapt our models to
the released QE data using source and translation
(i.e., in this phase we do not include references) to
the different type of quality assessments provided,
namely, DA and HTER7 from the MLQE-PE cor-
pus (Fomicheva et al., 2022) and Multidimensional
Quality Metrics (MQM) annotations from WMT
2020 and 2021 (Freitag et al., 2021a,b).

that do not help in the task at hands
4https://huggingface.co/xlm-roberta-large
5https://huggingface.co/microsoft/

infoxlm-large
6https://huggingface.co/google/rembert
7HTERs are available only for word-level subtasks.

3.1.1 Sentence-level quality prediction
For the sentence-level QE task we consider a multi-
task setting (using sentence scores alongside su-
pervision from OK/BAD tags) and the sentence-
level only setting, with supervision only from the
sentence-level quality assessment y. We found
that adding the word-level supervision was benefi-
cial for models built on top of InfoXLM. For the
sentence-level supervision we used both DA and
MQM scores. In this multi-task setting we use a
combined loss as described in Eq. 5:

Lsent(θ) =
1

2
(y − ŷ(θ))2 (3)

Lword(θ) = −
1

n

n∑

i=1

wyi log pθ(yi) (4)

L(θ) = λsLsent(θ) + λwLword(θ), (5)

where w ∈ R2 represents the class weights given
for OK and BAD tags, and λs, λw are used to weigh
the combination of the sentence and word-level
losses, respectively. Note that λs = 1 and λw = 0
yields a fully sentence-level model.

Few-shot language adaptation. Since in this
shared task submissions are tested on 5 LPs for
which there is no official training data (km-en, ps-
en, en-ja, en-cs, en-yo), we experimented with few-
shot adaptation using half of the data released in
the official development set. The official develop-
ment set has 1K examples for each language pair
(except en-yo for which there is no available data).
To perform few-shot language adaptation we split
the data into two halves: one for fine-tuning and
another for validation.

Ensembling models. For our final submission
for Direct Assessments we combine six multilin-
gual systems using different hyperparameters by
computing an weighted average of their outputs,
where the weights for each language pair were
tuned with Optuna (Akiba et al., 2019). The major
difference between the ensembled models comes
from the underlying encoder and whether or not
they used word-level supervision. Three models
of our final ensemble use word-level supervision
while the other three use only sentence-level super-
vision. Regarding the encoder, three models use
InfoXLM, two models use RemBERT and a single
model uses XLM-R.

Our final submission for MQM predictions was
an ensemble of eleven multilingual systems, which
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combined the six systems used in the DA ensemble
as well as five additional systems. For these ad-
ditional systems, we made two major adjustments
to the fine-tuning process. First, we filtered the
DA data to the languages that were included in the
MQM LPs, namely ru-en, en-zh, and en-de. Sec-
ond, we incorporated the MQM data into the fine-
tuning process, either as an additional fine-tuning
step after fine-tuning on the language-filtered DA
data, or by concatenating the DA and MQM data
together. All additional systems used word-level
supervision in addition to sentence-level and used
InfoXLM as encoder.

3.1.2 Word-level quality prediction

Similarly, for the word-level QE tasks we experi-
mented with both the multi-task setting and word-
labels only (λs = 0 and λw = 1). Overall, we
found that adding the sentence-level supervision
was beneficial, especially for the languages pairs
included in the test-set. Nonetheless, for some LPs,
ignoring sentence-level supervision showed supe-
rior performance. Due to the mix of high-, mid- and
low-resource languages in the data, the distribution
of OK and BAD tags differs substantially between
LPs leading to inconsistent performance in terms
of MCC (see Table 5 in the appendix). To mitigate
this, for the word-level subtask, we prepend a lan-
guage prefix token to the beginning of the source
and target segments during training and testing.

Pretraining on post-edit corpora. Extending
the pretraining on Metrics data, we pretrain the
word-level models on two corpora that include
both word-level labels and sentence (HTER) scores,
namely QT21 (Specia et al., 2017) and APEQuest
(Ive et al., 2020). We compute the sentence-level
score, using translation edit rate (TER) (Snover
et al., 2006) between the target and the correspond-
ing post-edited sentence.

Ensembling models. For word-level we fol-
lowed a similar ensembling technique used for
sentence-level, namely we combine multiple sys-
tems trained with different hyperparameters, en-
coders and pre-training setups. In the case of word-
level predictions however, we need to resolve how
to aggregate multiple predictions into OK/BAD
tags. We use Optuna (Akiba et al., 2019) to choose
how to weight and combine the models based on
performance for each language pair on our internal
test-set and we compare three different approaches:

1. A naive “best-only” approach: we identify the
best model for each LP and use its predictions.

2. We ensemble the logits of each model: for each
input segment we compute an ensembles of log-
its as

∑
i∈Mwivi, whereM is the set of mod-

els, wi is the weight of each model and vi the
model logit vector. We use Optuna to find the
optimal weight wi for each model in each LP.

3. We ensemble the predicted tags of each model:
for each input segment we compute an ensem-
bles of tags as α

∑
i∈Mwici, where ci is the

predicted class and α is the weight given for the
BAD class. We use Optuna to find the optimal
weights wi for each model and the optimal BAD

weight α for each LP.

In the final submission we combine five mod-
els for the post-edit originated LPs: a RemBERT
based model, an InfoXLM based model pretrained
on APEQuest and QT21, and three checkpoints that
are based on InfoXLM but use different parameters
for the BAD/OK weights and learning rate that were
found via Optuna. For MQM we also combine
five models, but this time instead of choosing three
checkpoints based on optimising weights and learn-
ing rate, we use three different checkpoints with
different training data mix on the relevant DA LPs,
as this seemed to impact the performance on MQM
word-level more than the weight ratios. Refer to §4
and Table 3 for more details.

3.2 Task 2: Explainable QE
The goal of the Explainable QE task is to iden-
tify machine translation errors without relying on
word-level label information. In other words, it can
be cast as an unsupervised word-level quality esti-
mation problem, where explanations can be seen
as highlights, representing the relevance of input
words w.r.t. the model’s prediction via continuous
scores, aiming at identifying tokens that were not
properly translated.

Several explainability methods can be used to ex-
tract highlights from a sentence-level model, such
as post-hoc (Ribeiro et al., 2016; Arras et al., 2016)
or inherently interpretable methods (Lei et al.,
2016; Guerreiro and Martins, 2021). In our submis-
sion, we opted to use attention-based methods as
they achieved the best results in the previous con-
strained track of the Explainable QE shared task
(Fomicheva et al., 2021). Concretely, we take in-
spiration in the method developed by Treviso et al.
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Direct Assessment

Encoder km-en ps-en en-ja en-cs en-mr ru-en ro-en en-zh en-de et-en si-en ne-en avg.

Baseline (Zerva et al., 2021)
XLM-R 0.615 0.601 0.295 0.535 0.419 0.703 0.828 0.513 0.500 0.806 0.565 0.793 0.598

Pretrained models
InfoXLM 0.619 0.603 0.328 0.510 0.462 0.731 0.829 0.554 0.516 0.803 0.561 0.777 0.608
RemBERT 0.600 0.621 0.338 0.525 0.447 0.680 0.818 0.487 0.491 0.810 0.525 0.747 0.591
XLM-R 0.610 0.579 0.325 0.503 0.405 0.715 0.832 0.541 0.514 0.782 0.540 0.740 0.591

Sentence-level only
XLM-R 0.628 0.591 0.350 0.531 0.551 0.761 0.859 0.577 0.568 0.800 0.565 0.796 0.631
InfoXLM 0.629 0.623 0.348 0.515 0.574 0.747 0.858 0.586 0.551 0.828 0.568 0.790 0.635
RemBERT 0.634 0.631 0.346 0.570 0.564 0.754 0.862 0.534 0.531 0.822 0.550 0.782 0.632

Few-shot Language Adaptation
XLM-R 0.650 0.619 0.352 0.551 0.546 0.753 0.852 0.571 0.554 0.813 0.562 0.798 0.635
InfoXLM 0.641 0.650 0.367 0.549 0.549 0.751 0.855 0.591 0.565 0.824 0.563 0.803 0.642
RemBERT 0.625 0.641 0.367 0.568 0.563 0.756 0.857 0.540 0.527 0.824 0.568 0.796 0.636

Sentence + word-level training
InfoXLM 0.617 0.586 0.344 0.532 0.572 0.761 0.865 0.586 0.579 0.829 0.576 0.804 0.637
RemBERT 0.634 0.628 0.356 0.564 0.571 0.762 0.860 0.541 0.553 0.826 0.564 0.799 0.638

Few-shot Language Adaptation
InfoXLM 0.643 0.632 0.335 0.557 0.560 0.766 0.860 0.575 0.582 0.833 0.578 0.809 0.644
RemBERT 0.644 0.645 0.356 0.567 0.568 0.759 0.856 0.545 0.552 0.835 0.561 0.804 0.641

Final Ensemble
Ensemble 6x 0.664 0.669 0.380 0.591 0.593 0.782 0.871 0.597 0.593 0.845 0.588 0.820 0.666

Table 1: Results for sentence-level QE in terms of Spearman correlation for DA.

(2021), which consists of scaling attention weights
by the ℓ2-norm of value vectors (Kobayashi et al.,
2020) and finding the attention heads with the best
performance on the dev set, and propose two new
modifications:

• Attention×GradNorm: Following the findings
of Chrysostomou and Aletras (2022), we decided
to extract explanations that consider both atten-
tion and gradient information. More precisely,
we scale the attention weights by the ℓ2-norm of
the gradient of value vectors:

Aℓ,h

∥∥∇Vℓ,h

∥∥
2
. (6)

• Head Mix: We reformulate the scalar mix mod-
ule (Eq. 2) to consider different weights for repre-
sentations coming from different attention heads
as follows:

Hmix = λ

L∑

ℓ=0

βℓ

H∑

h=1

γℓ,hhℓ,h, (7)

where the layer mix coefficients β ∈ △L are
given by β = π(ϕ), and the head mix coeffi-
cients γℓ ∈ △H are given by γℓ = π(θℓ). λ ∈ R,
ϕ ∈ RL and θ ∈ RL×H are learnable parame-
ters. We experimented both with dense (π as
softmax) and sparse (π as sparsemax, Martins

and Astudillo 2016) transformations. After train-
ing, the Head Mix coefficients can help to find
attention heads with high validation performance,
which is helpful for explaining zero-shot LPs.

Furthermore, since all of our sentence-level mod-
els use subword tokenization, to get explanations
for an entire word we follow Treviso et al. (2021)
and sum the scores of its word pieces.

Ensembling explanations. In our final submis-
sions we average the explanation scores of different
attention heads and layers to create a final explainer.
We decided which heads and layers to aggregate
together by looking at their performance on the dev
set, selecting the top-5 with the highest explainabil-
ity score.

3.3 Task 3: Critical Error Detection
Critical translations are defined as translations
with strongly semantic deviations from the orig-
inal source sentence, with the potential to lead
to negative impacts in critical applications. The
goal of this task is to predict sentence-level scores
indicating whether a translation contains a criti-
cal error. Since the evaluation metrics automati-
cally account for different binarization thresholds
to separate good translations from bad ones, for this
task we employed a single sentence-level InfoXLM
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model from Task 1 that was trained on DA data.
Moreover, we participated only in the constrained
setting, meaning that we did not trained our sys-
tems specifically for this task. Therefore, our goal
for this task was to validate whether our QE system
from Task 1 was able to detect and differentiate
translations with critical errors.

4 Experimental Results

As we have seen in Section 3, for our experiments
we split the provided development sets into two
equal size halves creating a new internal devset and
an internal testset. The resulting sets contain≈ 500
segments per language pair for both DA and MQM,
word and sentence-level. As for baselines we used
our submitted systems from previous shared tasks:
for Task 1 we used the M1M-ADAPT (Zerva et al.,
2021), and for Task 2 we used the Attn × Norm
explainer (Treviso et al., 2021). The official results
for Task 1 and Task 2 are shown in Table 6.

4.1 Quality Estimation
Sentence-level submissions were evaluated using
the Spearman’s rank correlation. Pearson’s correla-
tion, MAE, and RMSE were also used as secondary
metrics, but here we report only Spearman corre-
lation since it was the primary metric used to rank
systems. Word-level submission were evaluated
using MCC, F1-OK, and F1-BAD, but we report
only MCC as it was considered the main metric.
The submitted systems were independently eval-
uated on in-domain and zero-shot LPs for direct
assessments and MQM.

Direct Assessments. Results for sentence-level
DAs can be seen in Table 1. The results show that
the training strategies employed in COMETKIWI,
namely (i) pretraining models using Metrics data
and (ii) incorporating references into training, lead
to a correlation close to our best system from last
year while disregarding the data from the MLQE-
PE corpus. When fine-tuning on MLQE-PE data,
we get overall improvements of ∼ 4%, and fur-
ther fine-tuning on new LPs gives ∼ 1% overall
improvement. Still, for the unseen LPs (km-en, ps-
en, en-ja, en-cs), we got improvements between
2-3% with just 500 samples. Among the three
backbone transformers, we noticed that InfoXLM
is the one that leads to a higher Spearman corre-
lation (+1.7% than XLM-R and RemBERT). Fur-
thermore, including word-level supervision always
maintains or improves the results, especially for

MQM

System (fine-tuned on) en-de en-ru zh-en avg.

Sentence-level only
DA 0.529 0.534 0.215 0.426
DA + MQM 0.531 0.552 0.250 0.444
DA (3 LPs) + MQM 0.538 0.550 0.262 0.450

Sentence + word-level training
DA 0.525 0.557 0.217 0.433
DA (3 LPs) 0.560 0.561 0.222 0.448
DA + MQM 0.540 0.568 0.262 0.457
DA (3 LPs) + MQM 0.553 0.569 0.268 0.463
DA (3 LPs) concat. MQM 0.578 0.547 0.278 0.468

Final Ensemble
Ensemble 11x 0.568 0.556 0.223 0.449

Table 2: Results for sentence-level QE in terms of Spear-
man correlation for MQM.

InfoXLM. In contrast, RemBERT does not seem
to benefit from this signal. We suspect that, for
this task, the benefit of word-level supervision is
not higher because the word-level information is
coming from post-editions, which are conceptually
different from DA annotations.

MQM. Results for sentence-level MQM systems
are shown in Table 2. The results show that the two
main techniques used for adapting to MQM data,
filtering DA data to the three MQM LPs and using
MQM data for fine-tuning, improved Spearman cor-
relations for all LPs over the pure DA baseline, for
both sentence-level and multi-task systems. How-
ever, these techniques improved certain LPs more
than others, so combining them together improved
multilingual scores even further. Overall, we no-
ticed that our results for MQM data have a high
variance. To mitigate this, we concatenated the
DA and MQM datasets together for a single fine-
tuning, resulting in our best individual system on
our internal test set. Due to these peculiarities in
the MQM LPs, we decided to ensemble systems
tuned on both DA and MQM data. Our final ensem-
ble did not have as strong results as the individual
systems on our internal test set, yet, it showed su-
perior performance upon submission to codalab
leader-board.

Word-level. For the word-level task we tuned
models separately for the LPs that consisted of post-
edit-derived word tags and the ones consisting of
MQM-derived word tags; we report the Matthew’s
correlation coefficient (MCC) in Table 3. We ex-
perimented with multi-tasking by adding sentence-
level supervision to the word-level task and found
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Post-edit MQM

Method en-cs en-ja en-mr km-en ps-en avg. en-de en-ru zh-en avg.

Baseline (Zerva et al., 2021) 0.272 0.154 0.326 0.427 0.348 0.305 0.176 0.177 0.065 0.139

InfoXLM as encoder
Word-level 0.351 0.183 0.337 0.443 0.372 0.337 - - - -

+ Sentence-level 0.410 0.230 0.368 0.436 0.369 0.363 0.294 0.256 0.399 0.316
+ LP prefix 0.371 0.202 0.391 0.512 0.411 0.377 0.259 0.440 0.211 0.303
+ APEQuest & QT21 0.414 0.245 0.372 0.494 0.389 0.383 0.246 0.382 0.209 0.279
+ tuned class-weights 0.389 0.218 0.421 0.499 0.391 0.384 0.285 0.404 0.172 0.287

DA (3LPs) + MQM - - - - - - 0.265 0.367 0.360 0.331
RemBERT as encoder
Word + sentence-level 0.353 0.163 0.303 0.443 0.369 0.326 0.262 0.309 0.147 0.240

+ LP prefix 0.384 0.257 0.375 0.460 0.370 0.369 0.288 0.356 0.297 0.313

Ensemble “best-only” 0.414 0.245 0.421 0.512 0.411 0.401 0.300 0.382 0.360 0.347
Ensemble logits 0.438 0.257 0.445 0.547 0.430 0.423 0.325 0.443 0.296 0.355
Ensemble tags 0.432 0.253 0.429 0.537 0.423 0.415 0.313 0.446 0.408 0.389

Table 3: Results for word-level QE in terms of MCC for the post-edit and MQM LPs. Note that in each row, we use
models trained separately on the MQM and non-MQM LPs.

that it boosts performance especially for the out-
of-English translations. For the non-MQM LPs we
used the HTER scores as sentence level targets as
we found they lead to significantly higher corre-
lations. We can also see that using the sentence-
mix and the language prefix boosted the perfor-
mance for all LPs, both in the MQM and post-edit
originated LPs. Overall, the results show further
improvements when we use the HTER scores of
APEQuest and QT21 as additional pretraining data,
but only for specific LPs. These findings merit fur-
ther investigation, since the directionality of the
LPs seems to have impacted our experiments. Fi-
nally, ensembling led to better results across all
languages. Ensembling the logits led to better re-
sults for the post-edit originated LPs, while word-
level ensembling helped more the MQM-originated
LPs. Yet, in the submitted versions we found that
the difference in performance between the three en-
sembling methods yielded similar results, with only
1-2% difference, while in the averaged multilingual
versions these differences were even smaller, vary-
ing less than 0.1%.

4.2 Explainable QE
Since the explanations are given as continuous
scores, they are evaluated against the ground-truth
word-level labels in terms of the Area Under the
Curve (AUC), Average Precision (AP), and Recall
at Top-K (R@K) metrics only on the subset of
translations that contain errors. Although R@K
was considered the main metric for this task, we
optimized internally for the average of all three
metrics. The results are shown in Table 4.

Discussion. The results highlight several con-
trasts between explanations for DA and MQM
data: (i) while RemBERT is useful as an encoder
for DA data (outperforms InfoXLM in 3 out of 5
LPs), it is outperformed by InfoXLM for all MQM
LPs; (ii) the Head Mix component improves per-
formance for DA, but it does not impact signifi-
cantly the scores for MQM; and (iii) the Sparse
Head Mix generally outperforms the Soft Head
Mix for DA, but the trend flips for MQM. On
what comes to the explainability methods, the base-
line method (Attn × Norm – scaling the attention
weights by the ℓ2-norm of value vectors), which ob-
tained the best results in last year’s Explainable QE
shared task, is outperformed by our new method
(Attn × GradNorm) for both DA and MQM data.
Moreover, ensembling explanations from differ-
ent heads brings further consistent improvements
across the board for all LPs. For the zero-shot set-
ting (en-yo), we build an ensemble of explanations
by using the heads that were more common among
the ensembles for all other LPs. This approach
might be worth researching further, since it is pos-
sible to study the Head Mix coefficients to select
good-performing attention heads.

5 Official Results

We present the official results of our submissions
alongside the results from other competitors in Sec-
tion B for all three tasks. For sentence-level, our
submissions achieved the best results for 6/9 LPs.
For word-level, we obtained the best results for 5/9
LPs. For the explainable QE track, we obtained the
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Direct Assessment MQM

Method en-cs en-ja en-mr km-en ps-en avg. en-de en-ru zh-en avg.

Baseline (Treviso et al., 2021)† 0.602 0.510 0.428 0.636 0.633 0.562 0.529 0.552 0.450 0.510

InfoXLM as encoder
Attn × GradNorm 0.602 0.495 0.417 0.653 0.648 0.563 0.539 0.559 0.474 0.524

+ Soft Head Mix 0.600 0.495 0.426 0.656 0.653 0.566 0.532 0.563 0.467 0.521
+ Sparse Head Mix 0.604 0.503 0.421 0.658 0.660 0.569 0.541 0.551 0.454 0.515

Ensemble 0.641 0.521 0.440 0.669 0.667 0.588 0.580 0.603 0.505 0.563
+ Soft Head Mix 0.621 0.501 0.432 0.681 0.661 0.579 0.567 0.588 0.504 0.553
+ Sparse Head Mix 0.645 0.519 0.450 0.688 0.675 0.595 0.574 0.582 0.484 0.547

RemBERT as encoder
Attn × GradNorm 0.596 0.511 0.427 0.675 0.676 0.577 0.474 0.532 0.448 0.485

+ Soft Head Mix 0.588 0.538 0.430 0.658 0.654 0.574 0.473 0.529 0.455 0.486
+ Sparse Head Mix 0.588 0.534 0.428 0.658 0.652 0.572 0.470 0.530 0.443 0.481

Ensemble 0.609 0.551 0.443 0.702 0.685 0.598 0.516 0.554 0.506 0.525
+ Soft Head Mix 0.613 0.561 0.448 0.699 0.692 0.603 0.521 0.558 0.498 0.526
+ Sparse Head Mix 0.620 0.557 0.447 0.702 0.691 0.604 0.511 0.551 0.503 0.522

Table 4: Explainable QE task results in terms of the average of AUC, AP and R@K. †We used InfoXLM to compute
the results for the baseline.

best results for all but two LPs (km-en and ps-en).
Although the critical error detection task had no
other competitor for the constrained setting, our
submission vastly surpassed the organizers’ base-
line. We also obtained the best results for the mul-
tilingual settings (including and excluding en-yo)
for all tasks. Finally, when averaging the results for
all LPs, our submissions place on top for all tasks.

6 Conclusions and Future Work

We presented the joint contribution of IST and Un-
babel to the WMT 2022 QE shared task. We found
that incorporating references during pretraining im-
proves performance across several LPs on down-
stream tasks, and that jointly training with sentence
and word-level objectives yields a further boost.
For Task 1, our final submissions were ensembles
of models finetuned with different pretrained lan-
guage models as encoders, boosting the results
when compared to the previous year submission.
For Task 2, we take inspiration on the literature
of explainability and propose to use gradient infor-
mation in tandem with attention weights, and to
further refine the impact of attention heads towards
the prediction via the Head Mix component. Be-
sides leading to better explainability performance
for some LPs, this strategy is potentially useful
to identify good attention heads at inference time
for zero-shot LPs, and deserves more investigation.
Overall, our submissions achieved the best results
for all tasks (including Task 3) for almost all LPs
by a considerable margin.

One of the challenges of leveraging big ensem-
bles is the burdensome weight of parameters and
inference time. For future work we will extend our
recent work, COMETINHO (Rei et al., 2022) and
explore how to effectively distill large ensembles
into small and more practical QE systems.
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A Data Information

The data used for finetuning our QE systems is
shown in Table 5. For DA data, we split the orig-
inal development set to generate a new dev/test
split, therefore the reported numbers in the table
correspond to this “internal” dev split.

Source Target Target
LP Samples Tokens Tokens OK / BAD

TRAIN
en-de 9000 147870 153656 0.84 / 0.16
en-mr 26000 690516 561371 0.90 / 0.10
en-zh 9000 148657 163308 0.65 / 0.35
et-en 9000 126877 185491 0.75 / 0.25
ne-en 9000 135205 181707 0.41 / 0.59
ro-en 9000 154538 167471 0.71 / 0.29
ru-en 9000 104423 132006 0.85 / 0.15
si-en 9000 141283 166914 0.42 / 0.58
en-de† 54681 1571090 1926444 0.90 / 0.10
en-ru† 15628 312185 354871 0.95 / 0.05
zh-en† 75327 134165 2789907 0.87 / 0.13

DEV
en-de 500 8262 8555 0.84 / 0.16
en-mr 500 13803 11216 0.91 / 0.09
en-zh 500 8422 9302 0.75 / 0.25
et-en 500 7081 10257 0.73 / 0.27
ne-en 500 7542 10247 0.38 / 0.62
ro-en 500 8550 9202 0.78 / 0.22
ru-en 500 5984 7511 0.84 / 0.16
si-en 500 7866 9415 0.41 / 0.59
en-cs 500 10302 9302 0.75 / 0.25
en-ja 500 10354 13287 0.73 / 0.27
km-en 495 9015 8843 0.45 / 0.55
ps-en 500 13463 12160 0.51 / 0.49
en-de† 503 10535 12454 0.96 / 0.04
en-ru† 503 10767 11911 0.91 / 0.09
zh-en† 509 980 19192 0.98 / 0.02

Table 5: DA and MQM (†) data for all LPs.

B Official Results

Critical Error Detection. Submissions for this
task were evaluated in terms of ranking using R@K
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and MCC as metrics. In Table 7, we report only
MCC scores as it was the main metric for this task.

QE and Explainable QE. Table 6 shows the offi-
cial results for sentence-level QE (top), word-level
QE (middle), and explainable QE (bottom).
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Direct Assessment MQM

Team en-cs en-ja en-mr en-yo km-en ps-en all all/yo en-ru en-de zh-en

Sentence-level QE
Baseline 0.560 0.272 0.436 0.002 0.579 0.641 0.415 0.497 0.333 0.455 0.164
Alibaba - - - - - - - - 0.505 0.550 0.347
NJUQE - - 0.585 - - - - - 0.474 0.635 0.296
Welocalize 0.563 0.276 0.444 - 0.623 - 0.448 0.506 - - -
joanne.wjy 0.635 0.348 0.597 - 0.657 0.697 - 0.587 - - -
HW-TSC 0.626 0.341 0.567 - 0.509 0.661 - - 0.433 0.494 0.369
Papago 0.636 0.327 0.604 0.121 0.653 0.671 0.502 0.571 0.496 0.582 0.325
IST-Unbabel 0.655 0.385 0.592 0.409 0.669 0.722 0.572 0.605 0.519 0.561 0.348

Word-level QE
Baseline 0.325 0.175 0.306 0.000 0.402 0.359 0.235 0.257 0.203 0.182 0.104
NJUQE - - 0.412 - 0.421 - - - 0.390 0.352 0.308
HW-TSC 0.424 0.258 0.351 - 0.353 0.358 - 0.218 0.343 0.274 0.246
Papago 0.396 0.257 0.418 0.028 0.429 0.374 0.317 0.343 0.421 0.319 0.351
IST-Unbabel 0.436 0.238 0.392 0.131 0.425 0.424 0.341 0.361 0.427 0.303 0.360

Explainable QE
Baseline 0.417 0.367 0.194 0.111 0.580 0.615 0.381 0.435 0.148 0.074 0.048
f.azadi - - - - 0.622 0.668 - - - - -
HW-TSC 0.536 0.462 0.280 - 0.686 0.715 - 0.535 0.313 0.252 0.220
IST-Unbabel 0.561 0.466 0.317 0.234 0.665 0.672 0.486 0.536 0.390 0.365 0.379

Table 6: Official results for sentence-level QE (top) in terms of Spearman’s correlation, word-level QE (middle) in
terms of MCC, and explainable QE (bottom) in terms of R@K. We estimated the numbers of en-yo for teams that
did not submit to en-yo directly but still submitted to all other LPs and to the multilingual (all) category.

Method en-de pt-en

Baseline 0.0738 -0.0013
InfoXLM finetuned on DAs 0.5641 0.7209

Table 7: Official results for the Critical Error Detection
task in terms of MCC.
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Abstract

Quality estimation (QE) is a crucial method to
investigate automatic methods for estimating
the quality of machine translation results with-
out reference translations. This paper presents
Huawei Translation Services Center’s (HW-
TSC’s) work called CrossQE in WMT 2022
QE shared tasks 1 and 2, namely sentence-
and word- level quality prediction and explain-
able QE. CrossQE employes the framework of
predictor-estimator for task 1, concretely with a
pre-trained cross-lingual XLM-RoBERTa large
as predictor and task-specific classifier or re-
gressor as estimator. An extensive set of exper-
imental results show that after adding bottle-
neck adapter layer, mean teacher loss, masked
language modeling task loss and MC dropout
methods in CrossQE, the performance has im-
proved to a certain extent. For task 2, CrossQE
calculated the cosine similarity between each
word feature in the target and each word fea-
ture in the source by task 1 sentence-level QE
system’s predictor, and used the inverse value
of maximum similarity between each word in
the target and the source as the word translation
error risk value. Moreover, CrossQE has out-
standing performance on QE test sets of WMT
2022.

1 Introduction

Quality estimation (QE) is the task of evaluating a
translation system’s quality without access to ref-
erence translations (Specia et al., 2018). In WMT
2022 QE shared task 1, there are three tasks —
Quality Prediction, Explainable QE and Critical Er-
ror Detection. Each task involves several language
pairs. Our team — Huawei Translation Services
Center (HW-TSC) — participated in quality pre-
diction and explainable QE tasks over all language
pairs.

This paper describes the HW-TSC’s systems
∗ Indicates equal contribution.

1https://wmt-qe-task.github.io/

called CrossQE submitted for these tasks. Some
key steps are summarized as follow:

• We used pre-trained Cross-lingual XLM-
Roberta large (Lample and Conneau, 2019;
Conneau et al., 2019) as predictor instead of
RNN-based model in the two-stage Predictor-
Estimator architecture (Kim et al., 2017). The
task-specific classifier or regressor is used as
quality estimator, and multitasks are trained
at the same time.

• The cross-lingual XLM-RoBERTa large
model is pre-trained on large-scale parallel
corpora where source and target tokens are
concatenated by MLM task. Shuffling those
tokens and predicting those tokens’ index by
the pre-trained model as an additional pre-
training task can improve the QE model’s ef-
fect.

• We build on the COMET architecture 2 by ex-
ploring adapter layers (Houlsby et al., 2019)
for quality estimation to eliminate the overfit-
ting problem instead of fine-tuning the whole
base pre-trained model for different NLP tasks
(He et al., 2021).

• In the training step, the Mean Teacher loss
(Baek et al., 2021) was added to improve
model’s over-fitting problem.

• We explored data augmentation a method
based on Monte Carlo (MC) dropout (Gal and
Ghahramani, 2016) which to enhance the per-
formance in sentence-level Direct Assessment
(DA) and Multidimentional Quality Metrics
(MQM) score task. During prediction, the
dropout function is still enabled, and the pre-
diction is performed for N times. The average
value of the prediction is the final prediction
value.

2https://github.com/Unbabel/COMET
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• We used QE model’s predictor of the sentence-
level quality prediction sub-task as a words’
features. extractor cosine similarity’s opposite
value of target words’ vectors extracted from
the predictor trained from sentence-level qual-
ity prediction sub-task between source and
target as the explainable QE task’s token-level
scores.

Our methods achieve impressive performance on
both sentence- and word- level tasks. Specifically,
we peak the top-1 on quality prediction sentence-
level sub-task over Chinese-English language pair
and word-level sub-task over English-Japanese lan-
guage pair. We also win the first place in explain-
able QE task in Khmer-English and Pashto-English
language pairs. We will describe the datasets and
our methods for those tasks in section 2 and section
3. Section 4 presents details of our experimental
setup and results. In section 5, a brief discussion
and conclusion are presented.

2 Task & Data Set

2.1 Task Description

Task 1
The quality prediction task follows the trend of

the previous years in comprising a sentence-level
sub-task where the goal is to predict the quality
score for each source-target sentence pair and a
word-level sub-task where the goal is to predict the
translation errors, assigning OK/BAD tags to each
word of the target. Both sub-tasks include annota-
tions derived in two different ways, depending on
the language pair: direct assessment (DA), follow-
ing the trend of the previous years, and multidimen-
sional quality metrics (MQM), introduced for the
first time in the QE shared task. The sentence- and
word-level sub-tasks use the same source-target
sentences for each language pair.
Task 2

The explainable QE task proposes to address
translation error identification as rationale extrac-
tion. Instead of training a dedicated word-level
model, to infer translation errors as an explanation
for sentence-level quality scores, a list of continu-
ous token-level scores where the tokens with the
highest scores are expected to correspond to trans-
lation errors should be calculated.

2.2 Data Set & Data Processing

Some information about the data set is as follow:

There are three language pairs annotated with
MQM annotations for training/development/test
set: English-Russian (En-Ru), English-German
(En-De), Chinese-English (Zh-En) and the one
language pair annotated with DA annotations for
training/development/test set: English-Marathi (En-
Mr).

The data set of these four language pairs contains
15k training data for En-Ru, 26k training data for
En-De, 31k training data for Zh-En, 26k training
data for En-Mr and 1k development data for each
language pair.

There are seven language pairs annotated with
DA annotations for training/development ser:
English-German (En-De), English-Chinese (En-
Zh), Esthonian-English (Et-En), Nepali-English
(Ne-En), Romanian-English (Ro-En), Russian-
English (Ru-En), Sinhala-English (Si-En), and four
zero-shot language pairs annotated with DA annota-
tions for test set: English-Czech (En-Cs), English-
Japanese (En-Ja), Khmer-English (Km-En) and
Pashto-English (Ps-En). The data set of these seven
language pairs contains 9k training data and 1k de-
velopment data.

The word-level sub-task data set consists of pre-
dicting word-level tags for the target side (to detect
mistranslated or missing words). Each token is
tagged as either OK or BAD. The OK/BAD tags
are provided for each of the language pairs of the
sentence-level task, and are derived from either
MQM annotations (En-De, Zh-En and En-Ru) or
post-edited sentences.

So for MQM language pairs, it is a few-shot task,
and for DA language pairs, it is a zeor-shot task.
For training data of each language pair, sentence
scores are linearly normalized from 0 to 1, and
can be restored to the original value, so a multilin-
gual sentence-level QE model can be trained for all
language pairs.

3 Methodology

3.1 System

Task 1
Our quality estimator system follows the two-

stage Predictor-Estimator architecture, which uses
a languange model encoder as predictor and us-
ing task-specific classifier or regressor as estimator
(Chen et al., 2021). In our system, the predictor is
a pre-trained cross-lingual XLM-RoBERTa model
(f ). For the sentence-level quality score prediction
task, the estimator is a regressor (σscore), and for
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the word-level quality label prediction task, the es-
timator is a classifier (σclass), as depicted in figure
1.

Sentence regression Word regression

Sentence score Word tags

Feed-forward

Pooling

Source feature Target feature

Cross-lingual Pre-trained Model 
Encoder (XLM-RoBERTa)

Adapter

Source TargetCLS

Figure 1: The architecture of CrossQE quality estimator
system

Sentence-level

After the predictor obtaining tokens embedding
features (Hs, Ht; where Hs for source embedding
features and Hs for target embedding features), we
use masked pooling p to calculate the entire source
or target sentence feature vector. In the experiment,
we put combination of [ source, target ] ([S, T ])
and [ target, source ] ([T, S]) as the input data into
the predictor, and get four types of sentence feature
vectors (FsA , FtA , FtB , FsB ). All the sentence fea-
ture vectors are combined to the estimator perform
score prediction, and the performance is improved
obviously.

Word-level

In the task, OK is set to 1 and BAD is set to
0, thus the word-level estimator becomes a binary
classification model. To avoid overfitting, the OK
label is set to 0.9, the BAD label is set to 0.1, and
the index 0’s value of outputs softmax logits is
used as the word quality score (Vw−score). The
mean squared error (MSE) loss is calculated on the
outputs and labels and the word-level QE model is
updated. In the prediction phase, if the output word
score is greater than 0.5, it is considered as an OK
label. Otherwise, it is considered as a BAD label.

The equation of task 1 is shown as equation 1:

HsA , HtA = f([S, T ]),

FsA , FtA = p(HsA , HtA),

HtB , HsB = f([T, S]),

FtB , FsB = p(HtB , HsB ),

Vscore = σscore([FsA , FtA , FsB , FtB ]),

Vclass = σclass([HsB , HtB ]),

Vw−score = softmax(Vclass)[0]

(1)

Where Vscore is output of the sentence-level esti-
mator and Vclass is logits of the word-level estima-
tor.
Task 2

We use the sentence-level QE model’s predictor
from task 1 as a sentence word embedding feature
extractor. Similarity is used as the possibility of
word translation (Yang et al., 2022). If a word in
target is highly similar to a word in source, the
word translation is correct. Otherwise, the word
translation is incorrect. The higher the similarity,
the higher the probability of correct translation, and
vice versa.

We extracted the source and target sentence em-
bedding features by word and calculated the cosine
similarity between each word feature in the target
and each word feature in the source. The maximum
similarity between each word in the target and the
source is used as the score of the word translation
quality. We used the inverse of the quality score of
each word in the target as the translation error risk
value, so each target sentence can obtain a word er-
ror risk value list, in which a higher score indicates
a higher probability of incorrect translation.

3.2 Model Pre-training

Cross-lingual Language Model
As XLM-RoBERTa, a multilingual model that

can override the QE tasks’ language pairs, does
a good job with language tasks, it was chosen
as the predictor. Cross-lingual language model
pre-training is outstanding in low-resource train-
ing data. We add [CLS] between the tokens of the
source text and the tokens of the target text and
input the combined tokens to the XLM-RoBERTa
model for masked language modeling (MLM) task
pre-training (Devlin et al., 2018) to enhance the
model’s ability to understand words and sentences
between languages. We sampled randomly 15% of
the sub-word tokens from the text streams, replaced
them by a [MASK] token in 80% probability, by a
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random token in 10% chance, and we keeped them
unchanged in 10% chance.
Token Shuffling Pre-training

We randomized the sequence of input tokens and
let the cross-lingual language model predict the se-
quence number of each token. This pre-training
task has an obvious positive effect on word-level
QE sub-task. Because the model has never done a
position prediction task, the training task is divided
into two stages for the sake of training stability. In
stage one, 50% of the tokens are selected and shuf-
fled, and in stage two, all the tokens are shuffled.

3.3 Bottleneck Adapter Layer
The provided training set is relatively small, mak-
ing the model to be easily over-fitted if all weights
are updated. Therefore, we decided to integrate
the Bottleneck Adapter Layers (BAL) (Wang et al.,
2020) while keeping parameters of the original
Transformer fixed (Yang et al., 2020). The bot-
tle with a "thick" neck could further improve the
performance without seriously sacrificing training
efficiency. By increasing the parameter size of
BALs, the performance also increased linearly, fi-
nally reaching the peak of 104% of the baseline
performance with the neck having twice the hidden
size.

3.4 Model Training
Mean Teacher Loss

Mean teacher is a method that uses consistency
regularization. As shown in figure 2, the process is
as follows:

1) Copy the predictor as a teacher model and the
original model as a student model.

2) At the training step, apply two random aug-
mentations η and η′ on the same mini-batch tokens’
embedding features.

3) Input the former data (Inputembedding +
η) to the student model and the latter data
(Inputembedding + η′) to the teacher model.

4) Calculate the MSE loss on their outputs.
5) Use the MSE loss to update the t th iter’s

parameters of the student model Pstu[t].
6) Use the exponential moving average (EMA)

method to update the t th iter’s parameters of the
teacher model Ptea[t] as shown in equation 2.

Ptea[t] = α×Ptea[t− 1]+ (1−α)×Pstu[t] (2)

Where, α is a hyperparameter (0.95 in this pa-
per).

Student model Teacher model

Copy

Inputs

Embedding

Prediction Prediction
MSE loss

EMA

+ η + η'

Figure 2: Mean teacher loss

MLM Task Loss
To further improve the language understanding

capability of the model, we add MLM task loss into
the training. We find adding MLM training task
during the training of sentence-level and word-level
QE models for multi-task training can improve the
model performance.

Total loss for the CrossQE system to update
model parameters is shown as equation 3:

Loss = α1 × [Losss|Lossw] +
α2 × LossMT + α3 × LossMLM

(3)

Where, α1, α2 and α3 are hyperparameters,
[Losss|Lossw] is the sentence-level or word-level
sub-task training loss, LossMT is the mean teacher
loss and LossMLM is the MLM task loss.

4 Experiments & Results

4.1 Model Settings
We followed the model settings of COMET (Rei
et al., 2022) to fine-tune our QE model based on
the XLM-RoBERTa large model 3 with a classifi-
cation/regression head on a single V100 GPU. The
XLM-RoBERTa large model pre-trained on 2.5TB
of filtered CommonCrawl data containing 100 lan-
guages is a multilingual version of RoBERTa which
is a transformers model pretrained on a large cor-
pus in a self-supervised fashion. It has approxi-
mately 550M parameters and 24 hidden encode
layers. The training batch size is set to 4, the gra-
dient accumulation number is set to 4 and it took
about 2 hours for the model to converge in the
training step. The XLM-RoBERTa large model
has been pre-trained on the WMT 2021 news trans-
lation shared task’s parallel corpora 4 by model
pre-training methods described in the section 3.2.

3https://huggingface.co/xlm-roberta-large
4https://www.statmt.org/wmt21/translation-task.html

649



model Language
En-Ru En-De Zh-En En-Mr En-Zh Et-En Ne-En Ro-En Ru-En Si-En

baseline 0.3852 0.4436 0.3148 0.5123 0.2437 0.4635 0.5379 0.3572 0.4699 0.6109
M-Cross 0.4403 0.4807 0.3796 0.5419 0.2911 0.4827 0.5744 0.3899 0.4712 0.6358
M-Adapter 0.4487 0.4926 0.3815 0.5547 0.2938 0.4913 0.5899 0.4003 0.4962 0.6471
M-MT 0.4531 0.4917 0.3827 0.5681 0.3094 0.5083 0.6092 0.4090 0.5101 0.6566
M-MLM 0.4599 0.4928 0.3812 0.5679 0.3008 0.5101 0.6044 0.4182 0.5062 0.6653
M-Final 0.4730 0.5228 0.4002 0.5937 0.3247 0.5336 0.6217 0.4483 0.5211 0.6973

Table 1: Results of the task 1 sentence-level’s spearman coefficient performance on development set over ten
language pairs.

model Language
En-Ru En-De Zh-En En-Mr En-Zh Et-En Ne-En Ro-En Ru-En Si-En

baseline 0.3182 0.2777 0.2643 0.3655 0.4007 0.2653 0.4432 0.3705 0.3642 0.4201
M-Adapter 0.3248 0.2796 0.2711 0.3681 0.4052 0.2714 0.4506 0.3832 0.3795 0.4588
M-MT 0.3274 0.3003 0.2807 0.3617 0.4201 0.2885 0.4494 0.3997 0.3814 0.4473
M-Final 0.3671 0.3112 0.2997 0.3872 0.4447 0.2963 0.4704 0.4041 0.3894 0.4960

Table 2: Results of the task 1 word-level’s target words’ MCC performance on development set over ten language
pairs.

4.2 Experiments of Sentence-level QE Task

In our experiment, we set α1 = 1.0, α2 = 0.5
and α3 = 0.5 (we also set α1 = 1.0, α2 = 1.0,
α3 = 1.0 or α1 = 0.5, α2 = 1.0, α3 = 0.5 or
α1 = 0.5, α2 = 0.5, α3 = 1.0 or α1 = 0.5,
α2 = 1.0, α3 = 1.0, but all of them can not get the
best result). Our baseline model is the COMET’s
open-source framework model with the self pre-
trained XLM-RoBERTa model as predictor. The
primary evaluation metric for the sentence-level
sub-task of Task 1 is the spearman r coefficient as
show in Table 1.

Obviously, the performance of the baseline
model is relatively poor. By leveraging Cross-
lingual language model as predictor (M-Cross
model), the model achieved much better perfor-
mance. Adding the BAL adapter (M-Adapter
model) into Cross-lingual language model, the ef-
fect is further improved. In the experiment, it is
found that excessive training leads to reduced ef-
fectiveness on development set, while the addition
of mean tearcher loss (M-MT model) can signifi-
cantly suppress the overfitting problem and further
improve the model performance. Adding the MLM
loss (M-MLM model) to the training process en-
hances the model performance to some degree. Fi-
nally, the MC dropout method is used to predict the
QE sentence-level scores (M-Final model), which
can improve the performance coefficient by at least
1%.

Language Spearman
En-Ru 0.4329
En-De 0.4939
Zh-En 0.3685
En-Mr 0.5672
En-Cs 0.6257
En-Ja 0.3409

Km-En 0.5087
Ps-En 0.6608

Table 3: Results of the task 1 sentence-level’s spearman
coefficient performance on the test set over eight lan-
guage pairs.

Finally, we committed our results of M-Final
model on the test set. The performance of the sys-
tem on the test set is shown in Table 3. For the
zero-shot data, the system also has good perfor-
mance. Specifically, we get the best performance
on Zh-En language pair.

4.3 Experiments of Word-level QE Task

In our experiment, we set α1 = 0.5, α2 = 1.0 and
α3 = 1.0 (we also set α1 = 1.0, α2 = 1.0, α3 =
1.0 or α1 = 0.5, α2 = 1.0, α3 = 0.5 or α1 = 0.5,
α2 = 0.5, α3 = 1.0 or α1 = 1.0, α2 = 0.5,
α3 = 0.5, but all of them can not get the best result).
Our baseline model is the cross-lingual language
model that is used as predictor by the COMET’s
open-source framework. The primary evaluation
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Language MCC
En-Ru 0.3425
En-De 0.2739
Zh-En 0.2457
En-Mr 0.3509
En-Cs 0.4239
En-Ja 0.2576

Km-En 0.3531
Ps-En 0.3576

Table 4: Results of the task 1 word-level’s target words’
MCC performance on the test set over eight language
pairs.

metric for the word-level sub-task of Task 1 is the
matthews correlation coefficient (MCC) as shown
in Table 1.

Compared with the baseline, the model has bet-
ter performance after the BAL adapter is added
(M-Adapter model). Also, the addition of mean
tearcher loss (M-MT model) can further improve
the model pereformance. However, we found after
adding the MLM loss to the training process (M-
Final model), there were no significant improve-
ment in pereformance.

Finally, we committed our results of M-Final
model on the test set. The performance of the sys-
tem on the test set is shown in Table 4. For the
zero-shot data, the system also has good perfor-
mance. Specifically, we get the best performance
on En-Ja language pair.

4.4 Experiments of Explainable QE Task

As stated in the mission requirements, the partic-
ipants are not allowed to supervise their models
with any token-level or word-level labels or signals
(whether they are from natural or synthetic data) in
order to directly predict word-level errors. We just
used the sentence-level quality prediction model’s
predictor as the sentence word embedding feature
extractor, and calculated the translation error risk
value as stated in section 3.1.

Finally, we committed our results on the test set.
The performance of the system on the test set is
shown in the Table 5. We get the best performance
on the Km-En and Ps-En language pairs.

5 Conclusion

This paper presents HW-TSC’s work called
CrossQE on WMT 2022 QE shared task. CrossQE
got the first place in four single projects. For

Language Recall
En-Ru 0.3126
En-De 0.2517
Zh-En 0.2203
En-Mr 0.2800
En-Cs 0.5356
En-Ja 0.4617

Km-En 0.6863
Ps-En 0.7151

Table 5: Results for the task 2 target recall at top-K’s
performance on the test set over eight language pairs.

the tasks 1, CrossQE employed the predictor-
estimator framework as baseline. To further boost
performance, we investigated the usage of pre-
trained cross-lingual XLM-RoBERTa large lan-
guage model as predictor, and added the bottleneck
adapter layer into the predictor to mitigate over-
fitting issues. For both sentence- and word- level
sub-task, we added mean teacher loss and MLM
task loss into model training step, and added MC
dropout at the inference step in sentence-level sub-
task. Those methods delivered a good performance
in all language pairs, including zero-shot language
pairs. For task 2, we used the sentence-level QE
model’s predictor from task 1 as a sentence word
embedding feature extractor, and used the inverse
value of maximum similarity between each word
in the target and the source as the word translation
error risk value. In future, we will invest time and
effort in studying the effect of involving additional
translations into QE tasks, for example, how the
additional translation quality will affect QE perfor-
mance.

References

Jeonghun Baek, Yusuke Matsui, and Kiyoharu Aizawa.
2021. What if we only use real datasets for scene
text recognition? toward scene text recognition with
fewer labels. In Proceedings of the IEEE/CVF Con-
ference on Computer Vision and Pattern Recognition,
pages 3113–3122.

Yimeng Chen, Chang Su, Yingtao Zhang, Yuxia Wang,
Xiang Geng, Hao Yang, Shimin Tao, Guo Jiaxin,
Wang Minghan, Min Zhang, et al. 2021. Hw-tsc’s
participation at wmt 2021 quality estimation shared
task. In Proceedings of the Sixth Conference on Ma-
chine Translation, pages 890–896.

Alexis Conneau, Kartikay Khandelwal, Naman Goyal,
Vishrav Chaudhary, Guillaume Wenzek, Francisco

651



Guzmán, Edouard Grave, Myle Ott, Luke Zettle-
moyer, and Veselin Stoyanov. 2019. Unsupervised
cross-lingual representation learning at scale. arXiv
preprint arXiv:1911.02116.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2018. Bert: Pre-training of deep
bidirectional transformers for language understand-
ing. arXiv preprint arXiv:1810.04805.

Yarin Gal and Zoubin Ghahramani. 2016. Dropout as
a bayesian approximation: Representing model un-
certainty in deep learning. In Proceedings of The
33rd International Conference on Machine Learn-
ing, volume 48 of Proceedings of Machine Learning
Research, pages 1050–1059, New York, New York,
USA. PMLR.

Ruidan He, Linlin Liu, Hai Ye, Qingyu Tan, Bosheng
Ding, Liying Cheng, Jia-Wei Low, Lidong Bing,
and Luo Si. 2021. On the effectiveness of adapter-
based tuning for pretrained language model adapta-
tion. arXiv preprint arXiv:2106.03164.

Neil Houlsby, Andrei Giurgiu, Stanislaw Jastrzebski,
Bruna Morrone, Quentin De Laroussilhe, Andrea
Gesmundo, Mona Attariyan, and Sylvain Gelly. 2019.
Parameter-efficient transfer learning for nlp. In In-
ternational Conference on Machine Learning, pages
2790–2799. PMLR.

Hyun Kim, Hun-Young Jung, Hongseok Kwon, Jong-
Hyeok Lee, and Seung-Hoon Na. 2017. Predictor-
estimator: Neural quality estimation based on tar-
get word prediction for machine translation. ACM
Transactions on Asian and Low-Resource Language
Information Processing, 17:1–22.

Guillaume Lample and Alexis Conneau. 2019. Cross-
lingual language model pretraining. arXiv preprint
arXiv:1901.07291.

Ricardo Rei, Ana C Farinha, José G.C. de Souza, Pe-
dro G. Ramos, André F.T. Martins, Luisa Coheur, and
Alon Lavie. 2022. Searching for COMETINHO: The
little metric that could. In Proceedings of the 23rd
Annual Conference of the European Association for
Machine Translation, pages 61–70, Ghent, Belgium.
European Association for Machine Translation.

Lucia Specia, Carolina Scarton, and Gustavo Henrique
Paetzold. 2018. Quality estimation for machine trans-
lation. Synthesis Lectures on Human Language Tech-
nologies, 11(1):1–162.

Minghan Wang, Hao Yang, Hengchao Shang, Daimeng
Wei, Jiaxin Guo, Lizhi Lei, Ying Qin, Shimin Tao,
Shiliang Sun, Yimeng Chen, et al. 2020. Hw-tsc’s
participation at wmt 2020 quality estimation shared
task. In Proceedings of the Fifth Conference on Ma-
chine Translation, pages 1056–1061.

Hao Yang, Minghan Wang, Ning Xie, Ying Qin, and Yao
Deng. 2020. Efficient transfer learning for quality
estimation with bottleneck adapter layer. In Proceed-
ings of the 22nd Annual Conference of the European
Association for Machine Translation, pages 29–34.

Hao Yang, Min Zhang, Shimin Tao, Miaomiao Ma,
Ying Qin, and Chang Su. 2022. TeacherSim: Cross-
lingual machine translation evaluation with monolin-
gual embedding as teacher. In The 2nd International
Conference on Electrical, Computer, Communica-
tions and Mechatronics Engineering (ICECCME).
To be publiushed.

652



Proceedings of the Seventh Conference on Machine Translation (WMT), pages 653–660
Abu Dhabi, December 7–8, 2022. ©2022 Association for Computational Linguistics

Welocalize-ARC/NKUA’s Submission to the WMT 2022 Quality Estimation
Shared Task

Eirini Zafeiridou1,2, Sokratis Sofianopoulos3
1Welocalize Inc / Frederick, MD, United States

2National and Kapodistrian University of Athens / Athens, Greece
3Institute for Language and Speech Processing - Athena RC / Athens, Greece

eirini.zafeiridou@welocalize.com, s_sofian@athenarc.gr

Abstract
This paper presents our submission to the
WMT 2022 quality estimation shared task
and more specifically to the quality prediction
sentence-level direct assessment (DA) subtask.
We build a multilingual system based on the
predictor–estimator architecture by using the
XLM-RoBERTa transformer for feature extrac-
tion and a regression head on top of the final
model to estimate the z-standardized DA la-
bels. Furthermore, we use pretrained models
to extract useful knowledge that reflect various
criteria of quality assessment and demonstrate
good correlation with human judgements. We
optimize the performance of our model by in-
corporating this information as additional exter-
nal features in the input data and by applying
Monte Carlo dropout during both training and
inference.

1 Introduction

Machine translation quality estimation (MTQE) is
the task of automatically estimating the quality of
the MT output without using reference translations
or any other human input (Blatz et al., 2004; Specia
et al., 2009, 2018). MTQE has many use cases and
can be applied in various settings (Specia and Shah,
2018). It can be used to estimate the post-editing
effort, to rank and compare outputs of different
MT systems or to classify the segments that need
post-editing. It can also be used to estimate the
quality of the final translations as well as to filter
out noisy segments from translation memories or
training datasets. MTQE techniques usually have
multiple granularity levels and can be applied to
a word, phrase, sentence or even to an entire doc-
ument. Such systems are highly efficient when a
vast amount of machine translated segments need
to be evaluated in less time, with less effort and
lower costs compared to traditional evaluation tech-
niques.

The WMT 2022 quality estimation shared task
includes the following separate tasks: quality pre-

diction, explainable QE and critical error detec-
tion. Our team participated in the quality predic-
tion sentence-level direct assessment (DA) subtask
with a multilingual MTQE system.

Specifically, we developed a cross-lingual
MTQE system following the predictor–estimator
architecture (Kim and Lee, 2016; Kim et al., 2017).
We used the large-scale pretrained XLM-RoBERTa
(XLM-R)1 model (Conneau et al., 2020) for fea-
ture extraction, similarly to Chen et al. (2021). We
combined the model’s output with additional ex-
ternal features that demonstrate good correlation
with the target variable. We then used the concate-
nated vector as input to our final MTQE regression
model. Our regressor is a feed-forward neural net-
work with a linear output layer used to estimate the
z-standardized DA labels.

2 Quality prediction: sentence-level direct
assessment

The quality prediction task of the WMT 2022 qual-
ity estimation shared task consists of a sentence-
level and a word-level subtask. Using the pro-
vided annotated training data, the objective of
the sentence-level direct assessment subtask is
to develop a system that automatically estimates
a quality score for each provided sentence pair
which is highly correlated with human-generated
z-standardized DA values.

2.1 Data
According to the instructions, for each language
pair, participants can use all the annotations of-
fered for the quality estimation shared tasks of the
preceding year(s) that are accessible through the
MLQE-PE GitHub page.2

MLQE-PE is a multilingual dataset for qual-
ity estimation which includes 11 language com-
binations covering low, medium and high re-

1https://huggingface.co/xlm-roberta-large
2https://github.com/sheffieldnlp/mlqe-pe
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source languages (Fomicheva et al., 2020a,c). The
dataset is mainly created by translating sentences
from Wikipedia articles using cutting-edge trans-
former NMT models, and by having expert lin-
guists annotate the translations based on a modified
version of DA ratings. Each sentence is annotated
individually using the FLORES setup (Guzmán
et al., 2019), in which three qualified translators
provide evaluations on a scale of 0–100 based on
their perceived translation quality. Raw DA scores
are then standardized and transformed into z-scores
by using the mean and standard deviation of every
single annotator. The z-standardized per-annotator
values are then averaged in order to get one final
score for every translation.

The organizers also provide additional train, de-
velopment, and test sets for the English–Marathi
language pair that is not included in the MLQE-PE
dataset.

language pair Train Dev. Test
en–mr 26000 1000 1000
en–cs – 1000 1000
en–ja – 1000 1000
km–en – 1000 1000
ps–en – 1000 1000
en–de 9000 1000 –
en–zh 9000 1000 –
et–en 9000 1000 –
ne–en 9000 1000 –
ro–en 9000 1000 –
ru–en 9000 1000 –
si–en 9000 1000 –
en–yo – – 1000
total 89000 12000 6000

Table 1: Size of the provided train, development and
test sets per language (in sentences)

The data for the sentence-level quality prediction
subtask can be downloaded from the task’s GitHub
page.3 The number of the available sentences per
language is illustrated in the Table 1.

According to the instructions, it is also feasible
to use the DA annotations that were generated for
the metrics shared tasks in previous years.

For the training of our models, we use only the
training part of the data provided by the organizers.
For the English–Japanese language pair, we also
use the training data of the 2020 metrics shared

3https://github.com/WMT-QE-Task/
wmt-qe-2022-data/

task.

2.2 Evaluation
This year, the primary evaluation metric for the
sentence-level DA subtask is the Spearman’s rank
correlation coefficient which is used to reflect the
correlation between the predicted scores and the
human annotated z-standardized DA labels. Sec-
ondary metrics also include MAE, RMSE, and
Pearson’s correlation coefficient.

3 Method

Figure 1: Model architecture

For the sentence-level direct assessment subtask
we build and use a system based on the predictor–
estimator architecture (Kim and Lee, 2016; Kim
et al., 2017). Following similar state-of-the-art ap-
proaches (Fomicheva et al., 2020b; Moura et al.,
2020; Rei et al., 2020; Zerva et al., 2021; Chen
et al., 2021; Wang et al., 2021) we choose the pre-
trained XLM-RoBERTa1 model (Conneau et al.,
2020) to encode the input sequences and predict
our features. We keep the XLM-R encoder frozen
during training and we use it to generate cross-
lingual representations over the source sentences
and their corresponding translations. We then con-
catenate the output with additional external fea-
tures and we feed the final feature vector to a feed-
forward layer to finally estimate the continuous
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z-standardized DA scores. We also employ Monte
Carlo dropout during both training and inference
to optimize the performance of our model. We
use the mean-squared-error loss function and the
AdamW (Loshchilov and Hutter, 2019) optimizer
with a learning rate of 10−5. The architecture of
our model is illustrated in the Figure 1.

3.1 Cross-lingual Representations

In order to extract cross-lingual representations
for each sentence pair, we start by encoding each
source sentence and its hypothesis separately. From
the output vectors, we extract the <s> classification
token (equivalent to the [CLS]) that corresponds to
the representation of the whole sequence (Ranas-
inghe et al., 2020). Then, similarly to the method-
ology proposed in RUSE (Shimanaka et al., 2018),
we use the following sentence embeddings:

• Source embedding representation: s⃗

• Hypothesis embedding representation: h⃗

• Element-wise product: s⃗ ◦ h⃗

• Element-wise absolute difference: | s⃗− h⃗ |

Motivated by the implementation of Rei et al.
(2020), we concatenate the above representations
into a single vector. Furthermore, we enrich the vec-
tor with additional external features f⃗ resulting in
a final feature vector x⃗ =

[
f⃗ ; h⃗; s⃗; s⃗ ◦ h⃗; |s⃗− h⃗|

]
,

which is used as input to the output layer of our
model.

3.2 Additional external features

Fomicheva et al. (2020c) suggested the use
of glass-box features to predict the quality of the
NMT outputs. Specifically, they proposed meth-
ods to quantify the model’s uncertainty in unsuper-
vised QE scenarios. Moura et al. (2020) and Zerva
et al. (2021) also used such glass-box features as
an effective strategy for the development of their
QE systems. In our approach, we use the sentence-
level NMT model scores included in the MLQE-PE
dataset (Fomicheva et al., 2020a,c) and we further
explore additional characteristics that can be effec-
tively used in similar QE settings. We suggest a
set of external features that reflect various criteria
of translation quality assessment and exhibit good
correlation with human judgements, as illustrated
in Table 2.

Masked Language Model scores
(features: src_ppl, hyp_ppl, diff_ppl)
According to Lau et al. (2017), language mod-
els (LMs) can be effectively used to estimate
linguistic acceptability judgements. Salazar et al.
(2020) showed that pseudo-log-likelihood scores
(PLLs) and their corresponding pseudo-perplexities
(PPPLs) derived from masked language models
(MLMs) can help to distinguish linguistically ac-
ceptable from unacceptable sentences in an un-
supervised way with comparable performance to
large unidirectional autoregressive LMs. Based
on the above observation, our primary objective is
to derive scores at the sentence level that reflect
the overall likelihood that the model gives to an
entire sentence. We choose the multilingual XLM-
RoBERTa1 model and compute PLL scores by it-
eratively masking all tokens of the sequence. We
generate PLL scores for both the source and the
hypothesis and then we also calculate their absolute
difference.
NMT Model scores
(features: model_scores)
According to Fomicheva et al. (2020c), seq2seq
NMT models can provide meaningful insights for
measuring the model’s uncertainty that can be ef-
fectively used to estimate translation quality. At
each timestep, the NMT system returns the proba-
bility distribution for every token in the sequence
by applying a softmax function over the target
language vocabulary. The token-level probabil-
ities are then used to compute a sentence-level
log-likelihood score. In our implementation we
extracted this feature directly from the MLQE-PE
dataset (Fomicheva et al., 2020a,c). Even if this
information is already included in the provided
dataset, we also decided to build another model,
similar to the one described in this paper, that pre-
dicts these specific values when there is no access
to the NMT system used to produce the transla-
tions.
Independent NMT Model scores
(features: M2M100_loss)
We use the pretrained M2M100 multilingual seq-
to-seq model (Fan et al., 2020) to re-score the pro-
vided NMT outputs for each sentence pair. Our
objective is not to generate a new hypothesis for
each source sentence, but to compare every given
hypothesis with the prediction produced by another
multilingual translation system. The final score
corresponds to the calculated cross-entropy loss
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when comparing the generated prediction of the
M2M100 model to the provided NMT hypothesis.
Semantic Textual Similarity scores
(features: cos_sim)
Sentence similarity corresponds to the task of au-
tomatically identifying how similar or dissimilar
two texts are. Neural models compare sentences
by initially transforming them into semantic vec-
tors, also known as sentence embeddings. We use
the LaBSE4 (Feng et al., 2022) pretrained model
through the sentence transformers library (Reimers
and Gurevych, 2019, 2020) to obtain a vector repre-
sentation for every source sentence and its hypoth-
esis. Then we compare their embeddings and get a
cosine similarity score at sentence level.
COMET scores
(features: COMET_qe)
COMET (Rei et al., 2020) is a multilingual MT
quality evaluation framework that demonstrates
high correlation with human judgements. In our
implementation, we use the reference-free wmt21-
comet-qe-mqm5 model (Rei et al., 2021), pre-
trained based on the MQM benchmark, which can
be computed automatically without having avail-
able any reference translation. In this way, we are
able to get one predicted score for every sentence
and use this value as an additional feature during
the training of our model.
HTER scores
(features: hter_scores)
The translation edit rate (TER) (Snover et al., 2006)
calculates the editing operations needed to trans-
form an MT output into a version that exactly
matches at least one candidate translation among
a list of gold-standard reference texts. The human-
targeted translation edit rate (HTER) (Snover et al.,
2006) is another version of the TER metric which
incorporates the human factor in the process and re-
quires human post-edits of the MT output. Even if
this information is already included in the MLQE-
PE dataset, we use the available HTER annota-
tions in order to train another model, similar to the
one described in this paper, that estimates the post-
editing effort by predicting HTER scores for each
source sentence and its translation. We finally use
this information as an additional external feature
for our final model.

The Spearman and Pearson correlation between
4https://huggingface.co/sentence-transformers/

LaBSE
5https://github.com/Unbabel/COMET/blob/master/

METRICS.md

features Spearman r Pearson r
src_ppl −0.15 −0.16
hyp_ppl −0.14 −0.14
diff_ppl −0.11 −0.13
M2M100_loss −0.29 −0.25
cos_sim 0.34 0.40
COMET_qe 0.42 0.41
model_scores 0.25 0.30
hter_scores −0.37 −0.37

Table 2: Spearman and Pearson correlation between the
external selected features and the z-standardized DA
scores. Features are described one by one in section 3.2.

all the aforementioned features and the target vari-
able can be found in the Table 2. Based on these
values, it seems that the features with the highest
correlation are the cosine similarity (cos_sim), the
COMET qe (COMET_qe), and the human-targeted
translation edit rate (hter_scores). The NMT model
scores (model_scores) and the independent NMT
model scores (M2M100_loss) also demonstrate a
moderate correlation with the z-standardized DA
scores, while the masked language model scores
(src_ppl, hyp_ppl, diff_ppl) have quite lower corre-
lation comparing to the rest.

3.3 Monte Carlo dropout

Dropout refers to randomly dropping nodes while
training a neural network (Srivastava et al., 2014)
and it is an effective strategy to prevent a model
from overfitting. During training we use Monte
Carlo dropout with a rate of 0.1 to mask random
neurons of the model. Likewise, during inference
we perform numerous iterations for each test in-
stance and in this way we obtain a different score
each time for the same instance by applying Monte
Carlo dropout. Then, we use all the model’s es-
timates to get an average score for every single
sentence.

4 Experimental Results

In this section we present the performance of our
model on the provided test dataset for the WMT
2022 shared task on quality evaluation for the pre-
diction of sentence-level direct assessments. In
particular, our model outperformed the baseline
system in terms of Spearman and Pearson correla-
tion in all the multilingual and bilingual tasks, in
which we participated, as illustrated in the Tables 3
and 4 respectively. In the multilingual (full) sub-
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Model Multi
(full)

Multi
(w/o
en–yo)

en–cs en–ja en–mr km–en

our model 0.448 0.506 0.563 0.276 0.444 0.623
baseline model 0.415 0.497 0.560 0.272 0.436 0.579

Table 3: Spearman’s correlations of the 2022 sentence-level DA subtask

Model Multi
(full)

Multi
(w/o
en–yo)

en–cs en–ja en–mr km–en

our model 0.455 0.535 0.592 0.281 0.586 0.618
baseline model 0.393 0.511 0.576 0.273 0.525 0.568

Table 4: Pearson’s correlations of the 2022 sentence-level DA subtask

task we were ranked 3rd while in the multilingual
(w/o en–yo) we got the 4th place.

Based on the official results, it seems that the
lowest performing language pair, for both our
model and the baseline, is English–Japanese while
the highest performing one is Khmer–English. We
did not further examine the reasons of this pattern,
as we considered this exercise out of the scope of
our study. In a future work, it would be useful
to investigate whether certain factors contribute to
this pattern (such as the source and target language
complexity, the writing script, the performance of
the pretrained models used to generate the features
for each language, or even the content of the test
dataset).

It is also worth mentioning that for most lan-
guage pairs of the test sets, as illustrated in the
Table 1, we did not have available training data. If
our model had explicitly seen all of these languages
during training, we would expect its performance
to be improved.

The results of the test set from the official leader-
board6 for each language pair, in which we par-
ticipated, can be found in the Official results of
the WMT 2022 QE Task 1 – Sentence-level Direct
Assessment. In these tables, our proposed model
is compared to the baseline system in terms of
RMSE, MAE, Spearman and Pearson correlation
coefficient.

6https://www.statmt.org/wmt22/
quality-estimation-task_results.html

5 Conclusions

This paper presents our submission to the WMT
2022 quality estimation Task 1 on sentence-level
direct assessment. We introduce a model trained
based on the predictor–estimator architecture using
the XLM-RoBERTa1 for feature prediction and a re-
gression head to finally estimate the z-standardized
DA values. We suggest the use of additional exter-
nal features that reflect different criteria of human
judgements and multiple levels of translation qual-
ity. These features exhibit good correlation with
the target variable and consequently with human
annotations. Our approach is applicable in mul-
tilingual settings even with languages or writing
scripts not explicitly seen during the training of the
MTQE model. Our system demonstrates compet-
itive results and a strong correlation with human
judgements of quality assessment outperforming
the baseline system in terms of both Spearman and
Pearson correlation coefficient.
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7 Official results of the WMT 2022 QE Task 1 – Sentence-level Direct Assessment

Model Spearman r Pearson r RMSE MAE Disk footprint
(bytes)

Model
params.

baseline 0.415 0.393 0.979 0.820 2,280,011,066 564,527,011
our model 0.448 0.455 0.794 0.632 2,307,101,417 576,733,248

Table 5: Evaluation of the Multilingual models in the 2022 DA subtask

Model Spearman r Pearson r RMSE MAE Disk footprint
(bytes)

Model
params.

baseline 0.497 0.511 0.748 0.585 2,280,011,066 564,527,011
our model 0.506 0.535 0.733 0.571 2,307,068,585 576,725,041

Table 6: Evaluation of the Multilingual models (without en–yo) in the 2022 DA subtask

Model Spearman r Pearson r RMSE MAE Disk footprint
(bytes)

Model
params.

baseline 0.560 0.576 0.804 0.608 2,280,011,066 564,527,011
our model 0.563 0.592 0.785 0.610 2,307,068,585 576,725,041

Table 7: Evaluation of the en–cs models in the 2022 DA subtask

Model Spearman r Pearson r RMSE MAE Disk footprint
(bytes)

Model
params.

baseline 0.272 0.273 0.747 0.576 2,280,011,066 564,527,011
our model 0.276 0.281 0.755 0.579 2,307,068,585 576,725,041

Table 8: Evaluation of the en–ja models in the 2022 DA subtask

Model Spearman r Pearson r RMSE MAE Disk footprint
(bytes)

Model
params.

baseline 0.436 0.525 0.628 0.461 2,280,011,066 564,527,011
our model 0.444 0.586 0.534 0.401 2,307,068,585 576,725,041

Table 9: Evaluation of the en–mr models in the 2022 DA subtask

Model Spearman r Pearson r RMSE MAE Disk footprint
(bytes)

Model
params.

baseline 0.579 0.568 0.774 0.616 2,280,011,066 564,527,011
our model 0.623 0.618 0.794 0.619 2,307,068,585 576,725,041

Table 10: Evaluation of the km–en models in the 2022 DA subtask
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Abstract

We participated in all tracks of the WMT 2022
efficient machine translation task: single-core
CPU, multi-core CPU, and GPU hardware with
throughput and latency conditions. Our sub-
missions explore a number of efficiency strate-
gies: knowledge distillation, a simpler simple
recurrent unit (SSRU) decoder with one or two
layers, shortlisting, deep encoder, shallow de-
coder, pruning and bidirectional decoder. For
the CPU track, we used quantized 8-bit models.
For the GPU track, we used FP16 quantisa-
tion. We explored various pruning strategies
and combination of one or more of the above
methods.

1 Introduction

This paper describes the University of Edinburgh’s
submission to Seventh Conference on Machine
Translation (WMT2022) Efficiency Task1, which
measures performance on latency and throughput
on both CPU and GPU, in addition to translation
quality. Our submission focused on the trade-off
between these metrics and quality.

Our submission builds upon the work of last
year’s submission (Behnke et al., 2021). We trained
our models in a teacher-student setting (Kim and
Rush, 2016), using the data provided by the organ-
isers. For the students, we used a Simpler Sim-
ple Recurrent Unit (SSRU) (Kim et al., 2019) de-
coder, used a target vocabulary shortlist, and ex-
perimented with pruning the student models by
removing component and block-level parameters
to improve speed. We used 8-bit quantisation for
the CPU submission and FP16 quantisation for the
GPU submission. We further experimented with
IBDecoder (Zhang et al., 2020).

For running our experiments, we improved upon
the Marian (Junczys-Dowmunt et al., 2018) ma-
chine translation framework by incorporating speed

1http://statmt.org/wmt22/
efficiency-task.html

ups for 8-bit matrix multiplication operations, opti-
mizations for pruning neural network parameters
on Intel CPUs, and profiler aided optimisation of
various components.

1.1 Efficiency Shared Task

The WMT22 efficiency shared task consists of two
sub-tasks: throughput and latency. Systems should
translate English to German under the constrained
conditions, where the teacher model and the dis-
tilled data are provided. For each task, systems are
provided 1 million lines of raw English input with
at most 150 space-separated words. The through-
put task receives this input directly. The latency
task, introduced in WMT21, is fed input one sen-
tence at a time, waiting for the translation output
before providing the next sentence.

Throughput is measured on multi-core CPU or
GPU system, and latency is measured on single-
core CPU or GPU systems. The CPU-based eval-
uations use an Intel Ice Lake system via Oracle
Cloud BM.Optimized3.36, while the GPU-based
use a single A100 via Oracle Cloud BM.GPU4.8.

Entries to both tasks are measured on quality,
approximated via COMET score (Rei et al., 2020),
speed, model size, Docker image size, and memory
consumption. We did not optimise specifically for
the latency task beyond configuring the relevant
batch sizes to one. We used Ubuntu 22.04 based
images for our systems, with standard Ubuntu
for CPU-only systems and NVIDIA’s Ubuntu-
based CUDA-11.7 docker for GPU-capable sys-
tems. Docker images were created using multi-
stage builds, with model disk size reduced by com-
pression with xzip.

2 Knowledge distillation

We used the provided distilled data to build dif-
ferent student systems. The provided data was dis-
tilled through two different processes; for the mono-
lingual input, distilled data was generated using a
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beam-size of 6. For the parallel data, the teacher
ensemble was used to produce the 6 best candi-
date translations for each input sentence, the candi-
date most similar to the parallel reference in BLEU
score was kept as the distilled sentence. We trained
student models using just the provided parallel data
and identical systems using parallel+monolingual
data. Our early comparisons showed that the full
corpora produced higher quality student systems
according to automatic metrics; submitted systems
therefore use both parallel and monolingual data.

The student models were trained using a valida-
tion set consisting of the subset of sentences in the
English-German WMT test sets from 2014–2019
that were originally in English. Training concluded
after reaching 20 consecutive validations without
an improvement in BLEU score. The student mod-
els all used the provided shared SentencePiece vo-
cabulary. We used the default training hyperparam-
eters from Marian for the transformer-base model
with the learning rate reduced to 0.0002.

We explored a number of different configuration
in order to find the optimal system on the Pareto
frontier for speed-quality. We experimented with
the following configurations:

Deep encoders/Shallow decoders The majority
of the computational cost of the machine transla-
tion system falls to the decoder. We can therefore
increase drastically the number of encoder layers
and decrease the decoder layers without noticeable
drop in quality (Kong et al., 2021).

Tied decoder layers Since matrix multiplication
is a memory bound problem, we can increase the
number of decoder layers, as long as we don’t add
extra parameters. Tied decoder layers allow us to
maintain the same memory footprint and keep all
the traversed matrices in cache.

SSRU We replace the self-attention in the de-
coder with an RNN using the less computation and
memory intensive cell SSRU.

Reduced model dimensions We reduce the
model dimensions, using several presets. See ta-
ble 1 for details.

Wide embeddings We increased the size of the
embedding dimension to match the FFN dimension.
While this produces models that are strictly larger
than their non-wide equivalent, the initial increased
capacity can yield competitive systems using fewer
layers.

Fewer heads We reduced the number of attention
heads for some of the smaller models. These have
the same number of parameters, but intermediate
computations have different shape inputs.

3 Pruning

Attention is a crucial part of the transformer ar-
chitecture, but it is also computationally expensive.
Research has shown that many heads can be pruned
after training; with further work suggesting that
pruning during training can be less damaging to
quality. Feedforward layers are also expensive and
could be reduced.

We expand upon our work from the previous
year on the group lasso regularisation. We build
upon the standard group lasso with a novel ap-
proach of aided regularisation. The idea behind
it is to use supplementary information to scale the
penalties per layer to steer them towards a specific
behaviour. In practice, it means adding a new scalar
γ alongside an already existing λ:

E(batch) = 1
|batch|

(
∑

x∈batch
CE(x) + λ

∑
l∈layers

γbatchl R(l)

)

As shown in the equation above, each layer has
its individual γ, which gets updated after every
backpropagation pass. In order to avoid sudden
shits in γ between individual batches, which could
make a ratio between perplexities and penalties
even more unstable, γ are exponentially smoothed
as training progresses:

γj ← αγj + (1− α) ∗ γj−1

After every batch i, we calculate a local scalar
γj for each layer j based on information gathered
during this specific update, which then updates a
smoothed global scalar. α is a constant used in
exponential average that controls the contribution
of a new element in a sequence towards the overall
average. We use α = 1e−4 in my experiments.

We explore gradient-aided regularisation which
scales penalties based on layer gradients. γ scalars
should increase as gradients stop flowing through
a layer since it indicates that this layer does not
contribute to training as much, possibly stopping
learning altogether. A layer with small gradients
is a good candidate to be regularised more aggres-
sively and vice versa.

With Wi being a regularised layer and ∇W as
accumulated gradients in a model, the gradient-
aided γ function is defined as:
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Layers Dimensions Size Quality Speed
Model Encoder Decoder Emb. FFN Att. heads Params Disk BLEU chrF COMET Time

Teacher 6 6 1024 4096 16 627.5M 3.19GB 43.37 67.39 0.5908 —

Large 12 1 1024 3072 8 171.4M 654MB 44.26 68.06 0.5901 170.4
Base 12 1 512 2048 8 57.9M 222MB 44.06 67.94 0.5842 57.7
Tiny 12 1 256 1536 8 22.0M 85MB 43.32 67.36 0.5516 23.4
Micro 12 1 256 1024 8 18.6M 72MB 43.00 67.16 0.5389 20.9

Base 6 2 512 2048 8 42.7M 163MB 44.04 67.90 0.5879 50.5
Tiny 6 2 256 1536 8 16.9M 65MB 42.76 67.12 0.5538 19.6
Tied.Tiny 6 2 256 1536 8 15.7M 61MB 42.72 67.08 0.5470 17.7

Tied.Tiny 8 4 256 1536 8 17.8M 69MB 43.22 67.38 0.5621 23.0

Base.Wide 12 1 2048 2048 8 401.5M 1.50GB 43.82 67.74 0.5773 395.4
Base.Wide 6 2 2048 2048 8 283.8M 1.1GB 44.28 68.14 0.5979 374.7

Table 1: Architectures for the different student models. The number of encoder/decoder layers are reported with
the size of the embedding and FFN layers, the total number of parameters and the model size on disk. Quality and
speed evaluated and averaged across WMT16–19.

Layers Sparsity Quality Speed
Model Encoder Decoder Attention FFN BLEU chrF COMET Time

Base 12 1 0% 0% 44.06 67.94 0.5842 57.7
+ pruning 12 1 63% 20% 43.92 67.86 0.5825 44.6
+ pruning + ft8bit 12 1 63% 20% 43.68 67.66 0.5710 18.6

Tiny 12 1 0% 0% 43.32 67.36 0.5516 23.4
+ pruning 12 1 74% 72% 41.54 66.16 0.4882 12.3
+ pruning + ft8bit 12 1 74% 72% 41.02 65.70 0.4615 5.8

Tied Tiny 8 4 0% 0% 43.22 67.38 0.5621 23.0
+ pruning 8 4 46% 20% 42.98 67.22 0.5584 19.3
+ pruning + ft8bit 8 4 46% 20% 42.36 66.78 0.5393 10.0

Table 2: The evaluation of student models pruned with aided regularisation and quantised to 8-bits. Both quality and
speed has been averaged over WMT16–20 testsets. Quantised models were finetuned shortly to help recover quality.

γi = −log
(
∥∂Wi

∂E ∥2
∥∇W∥2

)

We follow the training regime outlined by
Behnke et al. (2021):

1. Pretraining (50k batches)

2. Regularise (200/300k batches)

3. Slice and converge (200k+ batches)

All on-going training statistics including the
learning rate and Adam optimiser were refreshed
after each step. The results are presented in Tab. 2.
The results include quantised inference with mod-
els finetuned for the best quality performance. The
12-1.Base model was regularised for 300k batches
with λ = 0.05. The 12-1.Tiny model was reg-
ularised for 200k batches with λ = 0.5. Both
aforementioned models were pruned in the encoder
only. The 8-4.Tiny.Tied model was regularised for

200k batches with λ = 0.3 with both encoder and
decoder layers being penalised.

The quality gap becomes larger the harsher prun-
ing is. The base transformer model with 12 pruned
encoder layers gets 1.3× faster at the cost of 0.0017
COMET point. Applying quantisation on the top
of it makes translation 3.1× faster in exchange of
0.13 COMET points.

We applied regularisation onto both encoder and
decoder with the “8-4” tied tiny transformer archi-
tecture. This pruned and quantised model speeds
up by a factor of 2.3× at a 0.8 BLEU drop.

The most aggressive pruning among the pre-
sented results is a tiny transformer with 12 encoder
layers with more than 70% parameters removed.
This model is 4× faster in comparison to its base-
line with 3.3 BLEU and 0.09 COMET points drop.

We note that quantisation struggles with quality
on smaller models, both when trained from scratch
or pruned. Fine-tuning rectifies the problem to
some degree, but quality is sacrificed for faster
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translation in the end.

4 Fixed Point 8-bit Quantisation

Quantising FP32 models into 8-bit integers is a
known strategy to reduce decoding time, specifi-
cally on CPU, with a minimal impact on quality
(Kim et al., 2019; Bhandare et al., 2019; Rodriguez
et al., 2018). This year’s submission closely fol-
lows the quantisation scheme of last year’s work
(Behnke and Heafield, 2021).

Quantisation entails computing a scaling fac-
tor to collapse the range of values to [−127, 127].
For parameters, this scaling factor is computed
offline using the maximum absolute value but
activation tensors change at runtime. To com-
pute a scaling factor for them, we decoded the
WMT16-20 datasets and recorded the scaling fac-
tor α(Ai) = 127/max(|Ai|) for each instance Ai

of an activation tensor A. Then, for production, we
fixed the scaling factor for activation tensor A to
the mean scaling factor plus 1.1 standard deviation:
α(A) = µ({α(Ai)}) + 1.1 ∗ σ({α(Ai)}). These
scaling factors were baked into the model file so
that statistics were not computed at runtime.

We used predominantly intgemm2 for our 8-bit
GEMM operations, including for the shortlisted
output layer. All parameter matrices are quantised
to 8-bit offline and the activations get quantised dy-
namically before a GEMM operation. We only per-
form the GEMM operation and the following acti-
vation in 8-bit integer mode. After a GEMM opera-
tion, the output is de-quantized back to FP32. More
formally we perform dequantize(σ(A∗B+bias)),
where the addition of the bias, the activation func-
tion σ, and the de-quantisation are applied in a
streaming fashion to prevent a round trip to mem-
ory.

Furthermore we make use of Intel’s DNNL3 for
our pruned models, as it performs better than int-
gemm for irregular sized matrices. Unfortunately,
DNNL doesn’t support streaming de-quantisation,
bias addition or activation function application.

Quantisation does not extend to the attention
layer, which is still computed in FP32. The reason
being is that in the attention layer, both theA andB
matrices of the GEMM operation would need to be
quantised at runtime, which makes the quantisation
too expensive. We note that we only perform the
GEMM operations in 8-bit integers.

2https://github.com/kpu/intgemm
3https://github.com/oneapi-src/oneDNN

Similar to previous’ year’s submission, we per-
formed quantisation fine-tuning for some 8-bit
models, where we perform a small amount of train-
ing with low learning rate and a damaged GEMM
implementation that simulates the quantised out-
put. We found that this helps regain some quality,
especially in smaller models.

5 Shortlisting

The single most expensive computation in machine
translation is the cost of the output layer. We can
reduce the computation if we only take into account
likely output tokens, reducing the output layer size
from 32000 to something much more manageable
like 500-2000. We used IBM model based short-
listing (Kim et al., 2019).

This lexical shortlist is straightforward to work
with, but it is limiting in the sense that it doesn’t
capture well idioms and favours more literal trans-
lations. The hyper-parameters that control the size
of this shortlist are: the number of most frequently
targeted words included, and the number of prob-
able translations for each token in the input. This
year we increased the number of most-frequent and
aligned tokens to 100,100 (from 50,50 in the
previous year) in order to improve quality.

The shortlist is built using alignment models
trained on a specific corpora. The total number of
tokens in a shortlist considered is influenced by the
size of the current batch: The shortlist produced
is the union of probable translations for each in-
put token and overall most-likely candidates. In
latency scenarios, where batches are a single sen-
tence, a small shortlist is more detrimental to the
quality than for larger batches, such as in through-
put scenarios, that benefit from inclusion of more
candidate tokens. Similarly, this approach benefits
when inputs are batched.

6 IBDecoder

The sequential nature of autoregressive decoding
forms an inference bottleneck, hurting decoding
parallelisation and latency. A popular method to
break this bottleneck is to allow the parallel pre-
diction of multiple target tokens per step through
semi- or non-autoregressive modelling (Gu et al.,
2018; Wang et al., 2018) with a quality tradeoff.

We experimented with Interleaved Bidirectional
Decoder (Zhang et al., 2020), a variant of semi-
autoregressive decoder that predicts target tokens
from the left-to-right and the right-to-left directions
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Layers Size Quality Speed

Model Encoder Decoder Params Disk BLEU chrF COMET Time

Base 12 1 57.9M 222MB 44.06 67.94 0.5842 57.7
+ IBDecoder 12 1 57.9M 221MB 43.84 67.74 0.5605 51.6
+ 8bit quantisation 12 1 57.9M 221MB 43.50 67.48 0.5412 28.6

Base + IBDecoder 12 1 57.9M 221MB 43.84 67.74 0.5605 51.6
+ pruning 12 1 57.9M 168MB 43.50 67.48 0.5340 42.1
+ 8bit quantisation 12 1 57.9M 168MB 43.26 67.28 0.5166 18.8

Tiny 6 2 16.9M 65MB 42.76 67.12 0.5538 19.6
+ IBDecoder 6 2 16.9M 65MB 41.88 66.64 0.5074 17.1
+ 8bit quantisation 6 2 16.9M 65MB 41.00 65.94 0.4628 9.8

Tiny + IBDecoder 6 3 18.1M 69MB 42.48 66.98 0.5275 19.6
+ 8bit quantisation 6 3 18.1M 69MB 41.62 66.32 0.4971 11.2

Micro + IBDecoder 12 4 21.4M 82MB 42.96 67.28 0.5475 25.3
+ 8bit quantisation 12 4 21.4M 82MB 42.56 67.08 0.5338 15.4

Table 3: The evaluation of IBDecoder models and their 8-bit quantisation (without finetuning). Both quality and
speed has been averaged over WMT16–20 testsets.

simultaneously. Zhang et al. (2020) showed that
words from different directions are more loosely
dependent thus their parallel generation hurts qual-
ity less. IBDecoder produces one word in each
direction at a time, thus halving the total decoding
steps and approximately doubling speed.

The efficiency gains from IBDecoder decrease
when using deep encoders and shallow decoders
(Tab. 3). In general, IBDecoder delivers a speed-
up over our baseline system and is competitive at
BLEU scores but much worse at COMET scores.
IBDecoder shows higher sensitivity to model sizes,
where reducing model size dramatically hurts its
performance regardless of BLEU or COMET. We
also tried to initialise IBDecoder from the baseline
system which unfortunately doesn’t help. IBDe-
coder also benefits from pruning and quantisation
in speed, but at the cost of losing COMET.

7 Quality issues

Quantisation applied to small models, especially
those that were pruned, struggles with maintaining
the quality. For example, as can be seen in Tab. 2,
quantisation on top of pruned models damages the
quality from 0.1 to 0.3 COMET points. This gap
is more evident in smaller architectures such as
Tiny or Tied Tiny. We hypothesise that the fewer
parameters there are in a model, the more difficult it
is to optimise through pruning and/or quantisation,
or using a bidirectional generation.

IBDecoder suffers from the pruning and quanti-
sation particularly on the COMET scores as shown
in Tab. 3.

We compared several sentences that showed lit-
tle difference in BLEU but significant difference
in the COMET scores and tried to see what went
wrong (Table 4). We can see that the IBDecoder is
prone to pathological repetitions (Example 1) and
even more so when quantised (Examples 3 and 4).
Those repetitions, especially long ranged one don’t
hurt the BLEU score, but they get heavily penalised
by the COMET score (Example 3).

It seems quantisation doesn’t always result in
a a worse transaltion. In the second example the
quantised IBDecoder produces a more complicated,
but overall much better translation than the IBDe-
coder, which also suffers from a repetition error.
This suggests that the model is quite brittle and
very susceptible to small changes.

8 Software improvements

We built our work using the Marian machine trans-
lation framework, making some improvements on
top of the submission from last year:

AVX512 inrinsics We implemented hand crafted
intrinsics for various arithmetic operations, result-
ing in .5% improvement in performance.

Max element We identified via a profiler that the
max element implementation was taking more time
than usual so we implemented a hand optimised
version resulting in 5% performance improvement.
More details are available in Appendix A.

Thread configuration For the CPU_ALL
throughput track, we swept configurations of multi-
ple processes and threads on the platform, settling
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Reference Biotechnische Anwendungen
Baseline Biotech-Anwendungen (0.6632)
IBDecoder Anwendungen in der-Anwendungen (-1.4205)
IBDecoder-Quant Anwendungen in der-Anwendungen (-1.4205)

Reference Die nächste Show findet am 9. Oktober in San Francisco statt. Am 16. März 2020 wird die Band
ihre UK-Tournee in Manchester eröffnen.

Baseline Ihre nächste Show ist am 9. Oktober in San Francisco und die Band wird ihre UK-Tour in Manchester
am 16. März 2020 eröffnen. (0.7350)

IBDecoder Ihr nächster Auftritt ist am 9. Oktober in San Francisco und eröffnet eröffnet ihre UK-Tour in
Manchester am 16. März 2020. (-0.1582)

IBDecoder-Quant Ihre nächste Show findet am 9. Oktober in San Francisco statt, wo die Band ihre UK-Tournee in
Manchester am 16. März 2020 eröffnen wird. (0.7387)

Reference Die Herzogin von York schrieb auf Twitter: „ Ich kenne die Gefühle einer Mutter, deshalb weine ich
vor Freude. Ich freue mich sehr über diese sensationellen Neuigkeiten

Baseline Die Herzogin von York schrieb auf Twitter: "Ich weiß, was eine Mutter fühlt, also habe ich Tränen
der Freude. (0.4349)

IBDecoder Die Herzogin von York schrieb auf Twitter: "Ich weiß, was eine Mutter fühlt, also habe ich Tränen
der Freude. (0.4351)

IBDecoder-Quant Die Herzogin von York schrieb auf Twitter: "Ich weiß, was eine Mutter Freude, also habe ich Tränen
der Freude, also habe ich Tränen der Freude. (-0.9820)

Reference Meghan Markle bezüglich des Kurzauftritts bei Suits „nie gefragt“
Baseline Meghan Markle wurde nach Suits Cameo "nie gefragt" (0.1344)
IBDecoder Meghan Markle wurde "niemals" nach Suits Cameo gefragt (0.0509)
IBDecoder-Quant Meghan Markle wurde "nicht gefragt" nach Suits Cameo gefragt (-1.1194)

Table 4: Case study for IBDecoder models. All models are with 12 encoder layers and 1 decoder layer under the
base setup. IBDecoder-Quant denotes the quantised system. We show cases where IBDecoder and IBDecoder-Quant
performs worse than Baseline and IBDecoder, respectively, and the numbers in bracket shows the COMET scores.

on 4 processes with 9 threads each. The input
text is simply split into 4 pieces and parallelised
(Tange, 2011) over processes. The mini-batch sizes
past 16 did not impact performance substantially
but 32 was chosen as the best performing one. The
Hyperthreads do not increase performance. Each
process is bound to 9 cores assigned sequentially
and to the memory domain corresponding to the
socket with those cores using numactl. Output
from the data parallel run is then stitched together
to produce the final output.

For our GPU submission we reused the work
from the last year’s submission (Behnke et al.,
2021) with the improved models.

9 Conclusion

We participated in all tracks of the WMT 2022 ef-
ficiency task and we submitted multiple systems
that have different trade-offs between speed and
translation quality. For the CPU submission we
used 8-bit integer decoding and a combination of
pruned and non-pruned system, together with a lex-
ical shortlist in order to reduce the computational
cost of the output layer. We also experimented with
IBDecoder in both CPU and GPU setting.
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A Profiler aided optimisation

We used a profiler to identify hotspots for potential
software optimisations.

Max element improvements We identified that
the max element operation takes surprisingly large
amounts of runtime during decoding. max element
is used to select the next word to be produced from
the output layer during decoding with beam size
of 1. We explored various different implementa-
tions and achieved 10X performance improvement
compared to the standard library when using GCC
and 2X otherwise. This resulted in about 5% per-
formance improvement in the CPU setting. More
details about different implementations can be seen
on Table 5

GCC clang
std::max_element 2.670s 0.422s
sequential 1.083s 1.192s
AVX512 max + max_reduce 0.241s 0.215s
AVX512 max_reduce only 0.257s 0.263s
AVX512 cmp_ps_mask 0.188s 0.183s
AVX512 ^+ vectorized overhang0.210s 0.209s
AVX cmp_ps + movemask 0.218s 0.170s
SSE cmplt_psp + movemask 0.269s 0.205s

Table 5: Performance of max element with GCC
11.2 and clang 14 on Intel Cascade lake. For
more information check https://github.com/
XapaJIaMnu/maxelem_test.
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Abstract

We present a non-autoregressive system sub-
mission to the WMT 22 Efficient Translation
Shared Task. Our system was used by Helcl
et al. (2022) in an attempt to provide fair com-
parison between non-autoregressive and autore-
gressive models. This submission is an effort
to establish solid baselines along with sound
evaluation methodology, particularly in terms
of measuring the decoding speed. The model
itself is a 12-layer Transformer model trained
with connectionist temporal classification on
knowledge-distilled dataset by a strong autore-
gressive teacher model.

1 Introduction

In the past few years, non-autoregressive (NAR)
models for neural machine translation (NMT) at-
tracted interest from the research community (Gu
et al., 2018; Lee et al., 2018). Given the conditional
independence between the output states, the decod-
ing process can be parallelized across time steps.
In theory, this leads to higher decoding speeds.

Since efficient decoding is claimed to be the
main motivation of non-autoregressive models, the
Efficient Translation Shared Task seems to be the
appropriate venue to provide fair comparison be-
tween these models and their autoregressive coun-
terparts. However, all submissions to this task were
autoregressive so far (Birch et al., 2018; Hayashi
et al., 2019; Heafield et al., 2020, 2021).

Recently, Helcl et al. (2022) pointed out com-
mon flaws in the evaluation methodology of NAR
models. We found that optimized autoregressive
models still achieve superior performance over
NAR models. The only scenario where NAR mod-
els showed some potential is GPU decoding with
batch size of 1 (latency). Nevertheless, optimized
autoregressive models were still both faster and
better in terms of translation quality. The main pur-
pose of this submission is to provide a reasonable
baseline to future non-autoregressive submissions.

2 Model

In our experiments, we use the non-autoregressive
model proposed by Libovický and Helcl (2018)
based on Connectionist Temporal Classification
(CTC; Graves et al., 2006). We submit models that
have been trained as a part of Helcl (2022).

Architecture. The architecture is a 6-layer Trans-
former encoder, followed by a state-splitting layer
and another stack of 6 Transformer layers. The
state-splitting layer takes the encoder states, project
them into k-times wider states using an affine trans-
formation, and then split the states into k-times
longer sequence while retaining the original model
dimension. In the submitted model, we set k = 3.
The latter 6 layers cross-attend to the states imme-
diately after state-splitting. We use Transformer
model dimension of 1,024, 16 attention heads and
a dimension of 4,096 in the feed-forward sublayer.

The defining property of non-autoregressive
models is that the decoding process treats output
states as conditionally independent. In this archi-
tecture, we set the output sequence length to k×Tx
where Tx is the length of the source sentence. To
allow for shorter output sequences, the any output
state can produce an empty token. The training loss
is then computed using a dynamic programming
algorithm as a sum of losses of all possible empty
token alignments which lead to the same output
sentence. The schema of the architecture is shown
in Figure 1.

Training. We train our model on the knowledge-
distilled data generated by the provided teacher
(Chen et al., 2021). We use learning rate of 0.0001
in a inverse square-root decay scheme with 8,000
warm-up and decay steps.

Implementation. We implement and train our
model in the Marian toolkit (Junczys-Dowmunt
et al., 2018). For the CTC implementation,
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Figure 1: The CTC-based model architecture. We show
the original image from Libovický and Helcl (2018).

we use the warp-ctc library1. We release
our code at https://github.com/jindrahelcl/
marian-dev. The trained model (and a number
of different variants including models in oppo-
site translation direction) can be downloaded at
https://data.statmt.org/nar.

3 Results

We refer the reader to the original paper for more
details about the evaluation and its results. The
model we submitted is denoted in the paper as
“large”. A summary of the results follows.

Translation Quality. To summarize the main
findings, the model achieves a competitive BLEU
score (Papineni et al., 2002) on the WMT 14 news
test set (Bojar et al., 2014), which serves as a com-
parison to other non-autoregressive models that use
this test set as the de facto standard benchmark.
When evaluated on the WMT 19 news test set,
our model obtains BLEU of 47.8, and a COMET
score (Rei et al., 2020) of 0.1485. Compared to an
similarly-sized autoregressive teacher model with
50.5 BLEU and COMET of 0.4110, we see a some-
what surprising gap between the COMET scores
while BLEU scores are relatively close. We hy-
pothesize that the errors that the non-autoregressive
model makes are out of the training domain of the
COMET models, which makes them more sensitive
towards this kind of errors.

1https://github.com/baidu-research/warp-ctc

Decoding Time. We evaluated our models on the
one million sentences benchmark used in the previ-
ous editions of this task (Heafield et al., 2021), and
we tried to reproduce the official hardware setup
to large extent. For CPU decoding, we measured
time to translate the test set on an Intel Xeon 6354
server from Oracle Cloud, with 36 cores. We run
the evaluation only in the batch decoding mode,
as the models were too slow to decode with a sin-
gle sentence in batch. With the submitted model,
the translation on CPU took 7,434 seconds (using
batch of 16 sentences).

We used a single Nvidia A100 GPU for GPU
decoding. In the latency setup, the translation took
7,020 seconds, and the batched decoding (b = 128)
took 782 seconds. When compared with other sub-
missions to this task, we find that the smallest differ-
ence is indeed found in the GPU decoding latency
setting. However, the optimized models submit-
ted to last year’s round still achieved significantly
better decoding times.

4 Conclusions

We submit a non-autoregressive system to the Effi-
cient Translation Shared Task to the WMT 22. The
model is trained with connectionist temporal clas-
sification, which allows the generation of empty
tokens and thus making generation of sentences of
various length possible while retaining the condi-
tional independence among output tokens without
explicit length estimation.

The main motivation of this submission is to
provide a reasonable baseline system for future
research. We believe that the sub-field of non-
autoregressive NMT cannot progress without con-
trolled decoding speed evaluation, which is exactly
what the shared task organizers provide.
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Abstract

This paper describes the submission of the ROY-
ALFLUSH neural machine translation system
for the WMT 2022 translation efficiency task.
Unlike the commonly used autoregressive trans-
lation system, we adopted a two-stage transla-
tion paradigm called Hybrid Regression Trans-
lation (HRT) to combine the advantages of au-
toregressive and non-autoregressive translation.
Specifically, HRT first autoregressively gener-
ates a discontinuous sequence (e.g., make a
prediction every k tokens, k > 1) and then
fills in all previously skipped tokens at once
in a non-autoregressive manner. Thus, we
can easily trade off the translation quality and
speed by adjusting k. In addition, by integrat-
ing other modeling techniques (e.g., sequence-
level knowledge distillation and deep-encoder-
shallow-decoder layer allocation strategy) and
a mass of engineering efforts, HRT improves
80% inference speed and achieves equivalent
translation performance with the same-capacity
AT counterpart. Our fastest system reaches 6k+
words/second on the GPU latency setting, es-
timated to be about 3.1x faster than the last
year’s winner.

1 Introduction

Large-scale transformer models have made im-
pressive progress in past WMT translation tasks,
but it is still challenging for practical model de-
ployment due to time-consuming inference speed
(Wang et al., 2018b; Li et al., 2019). To build a
fast and accurate machine translation system, par-
ticipants in past WMT efficiency tasks developed
and validated many efficient techniques, such as
knowledge distillation (Hinton et al., 2015; Kim
and Rush, 2016), light network architecture (Ka-
sai et al., 2020), quantization (Lin et al., 2020)
etc. We noticed that all the above efforts are
aimed at autoregressive translation (AT) models.

∗Corresponding author.

In contrast, other translation paradigms, like non-
autoregressive translation (NAT) (Gu et al., 2017)
or semi-autoregressive translation (SAT) (Wang
et al., 2018a) etc., have not been well studied.

In this participation, we restrict ourselves to the
GPU latency track and attempt to investigate the
potential of non-standard translation paradigms.
However, replicating the vanilla non-autoregressive
or semi-autoregressive models degrades the trans-
lation quality severely in our preliminary experi-
ments. To this end, we explore hybrid-regressive
translation (HRT), the two-stage translation proto-
type, to better combine the advantages of autore-
gressive and non-autoregressive translation (Wang
et al., 2021b). Specifically, HRT first uses an au-
toregressive decoder to generate a discontinuous
target sequence with the interval k (k > 1). Then,
HRT fills the remaining slots at once with a non-
autoregressive decoder. The two decoders share the
same parameters without adding additional ones.
Thus, HRT can easily trade-off between transla-
tion quality and speed by adjusting k 1. Please
see Table 1 for the comparison between different
translation paradigms.

In addition to the change of translation paradigm,
we have also made a mass of other optimizations.
We use the widely used sequence-level knowl-
edge distillation (Kim and Rush, 2016) and deep-
encoder-shallow-decoder layer allocation strategy
(Kasai et al., 2020) to learn effective compact mod-
els. Moreover, on the engineering side, we cus-
tomized an efficient implementation of GPU mem-
ory reuse and kernel fusion for HRT following
LightSeq (Wang et al., 2021c).

Putting all the efforts together, our HRT model
achieves almost equivalent BLEU scores to the cor-
responding AT counterparts while improving the
inference speed by about 80%. Our best-BLEU

1A larger k implies that fewer autoregressive decoding
steps are required, resulting in faster inference speed but lower
translation quality.
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Source __The __Next __Big __Labor __ Strike __Hit s __Oregon

AT __Der→ __nächste→ __große→ __Arbeits→ streik→ __trifft→ __Oregon→ [EOS]
SAT __Der __nächste→ __große __Arbeits→ streik __trifft→ __Oregon [EOS]
NAT __Der __nächste __große __Arbeits streik __trifft __Oregon [EOS]
HRT (Stage I) __nächste→ __Arbeits→ __trifft→ [EOS]
HRT (Stage II) __Der __nächste __große __Arbeits streik __trifft __Oregon [EOS]

Table 1: Illustrations of different translation paradigms. __ is the special symbol for whitespace in sentencepiece.
→ denotes an autoregressive decoding step. Blue denotes that the token is generated in non-autoregressive way.
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Figure 1: Examples of training samples for four tasks, in which (a) and (b) are auxiliary tasks and (c) and (d) are
primary tasks. For the sake of clarity, we omit the source sequence. [B]/[E]/[P]/[M] represents the special token for
[BOS]/[EOS]/[PAD]/[MASK], respectively. [B2] is the [BOS] for k=2. Loss at [P] is ignored.

model drops an average of 0.9 BLEU points com-
pared to the teacher model, which ensembles four
transformer-big models. Moreover, our fastest
model decodes 6k+ source words per second, esti-
mated to be 3.1x faster than the winner in last year
2.

2 Hybrid-regressive translation

One of the most important highlights is the intro-
duction of the newly proposed two-stage translation
prototype——HRT. In this section, we will detail
the model, training, and decoding of HRT.

2.1 Model

HRT consists of three components: encoder, Skip-
AT decoder (for stage I), and Skip-CMLM decoder
(for stage II). All components adopt the Trans-
former architecture (Vaswani et al., 2017). The
two decoders have the same network structure, and
we share them to make the parameter size of HRT
the same as the vanilla Transformer. The only
difference between the two decoders lies in the
masking pattern in self-attention: The Skip-AT de-
coder masks future tokens to guarantee strict left-to-
right generation like an autoregressive Transformer

2We obtained the best decoding speed in last year’s compe-
tition according to Heafield et al. (2021): The fastest system
2.12_1.micro.rowcol-0.5 decodes 19,951,184 space-separated
words in 13665 seconds. Therefore, we estimated its inference
speed is 1460 words/second. We note that the acceleration
ratio is not an accurate value because we use slightly different
computation devices and test data to measure the speed.

(Vaswani et al., 2017). In contrast, the Skip-CMLM
decoder eliminates it to leverage the bi-directional
context like the standard conditional masked lan-
guage model (CMLM) (Ghazvininejad et al., 2019).
We note that there is no specific target length pre-
diction module in HRT because HRT can obtain the
translation length as the by-product of the Skip-AT
decoder: Nnat=k×Nat, whereNat is the sequence
length produced by Skip-AT.

2.2 Training
Multi-task framework. We learn HRT through
joint training of four tasks, including two pri-
mary tasks (SKIP-AT, SKIP-CMLM) and two aux-
iliary tasks (AT, CMLM). All tasks use cross-entropy
as the training objective. Figure 1 illustrates
the differences in training samples among these
tasks. It should be noted that, compared with AT,
SKIP-AT shrinks the sequence length from N to
N/k, whereas the token positions follow the orig-
inal sequence. For example, in Figure 1 (c), the
position of Skip-AT input ([B2], y2, y4) is (0, 2,
4) instead of (0, 1, 2). Involving auxiliary tasks
is necessary because the two primary tasks cannot
fully leverage all tokens in the sequence due to the
fixed k. For example, in Figure 1 (c) and (d), y1
and y3 have no chance to be learned as the decoder
input of either SKIP-AT or SKIP-CMLM.

Curriculum learning. To ensure that the model
is not overly biased towards auxiliary tasks, we pro-
pose gradually transferring the training tasks from
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auxiliary tasks to primary tasks through curriculum
learning (Bengio et al., 2009). More concretely,
given a batch of original sentence pairs B, and the
proportion of primary tasks in B is pk, we start
with pk=0 and construct the training samples of AT
and CMLM for all pairs. Then we gradually increase
pk to introduce more learning signals for SKIP-AT
and SKIP-CMLM until pk=1. In implementation, we
schedule pk by:

pk = (t/T )λ, (1)

where t and T are the current and total training
steps. λ is a hyperparameter, and we use λ=1 to
increase pk linearly for all experiments.

2.3 Decoding
HRT adopts two-stage generation strategy: In the
first stage, the Skip-AT decoder starts from [BOSk]
to autoregressively generate a discontinuous tar-
get sequence ŷat = (z1, z2, . . . , zm) with chunk
size k until meeting [EOS]. Then we construct the
input of Skip-CMLM decoder ynat by appending
k− 1 [MASK]s before every zi. The final translation
is generated by replacing all [MASK]s with the pre-
dicted tokens by the Skip-CMLM decoder with one
iteration. If there are multiple [EOS]s existing, we
truncate to the first [EOS]. Note that the beam size
bat in Skip-AT can be different from the beam size
bnat in Skip-CMLM as long as st. bat ≥ bnat: We
only feed the top bnat Skip-AT hypothesis to Skip-
CMLM decoder. Finally, we choose the translation
hypothesis with the highest score S(ŷ) by:

m∑

i=1

logP (zi|x, z<i)

︸ ︷︷ ︸
Skip-AT score

+

m−1∑

i=0

k−1∑

j=1

logP (ŷi×k+j |x,ynat)

︸ ︷︷ ︸
Skip-CMLM score

(2)

where zi=ŷi×k.

3 Optimization

Sequence-level knowledge distillation. Overall,
we use the teacher-student framework via sequence-
level knowledge distillation (SEQKD) to learn our
small HRT model (Kim and Rush, 2016). Specif-
ically, the ensemble of provided four transformer-
big models is our teacher, whose beam search re-
sults are used as our distillation data. There are
320M official distillation data composed of 80M
parallel and 240M monolingual datasets. We di-
rectly use the distillation data without further data
cleaning. We use the same sentencepiece vocabu-
lary as the teacher model to encode the text.

Encoder Newstest19 Newstest20 WPS

6 43.8 32.6 4.0k
12 45.6 33.9 3.8k
20 45.9 34.4 3.5k

Table 2: SacreBLEU and inference speed against the
number of encoder layers in HRT with a single-layer
decoder. All HRT models are trained with k=2. WPS
refers to source words per second, measured by the av-
erage five runs with a batch size of 1. Unless otherwise
stated, we measure WPS on Newstest20.

bat bnat Newstest19 Speedup

5 5 45.9 ref.
5 1 45.8 1.05x
1 1 45.6 1.33x

Table 3: Effects of different settings of beam size in
HRT.

Deep-encoder-shallow-decoder architecture.
Using deep-encoder-shallow-decoder network ar-
chitecture has been widely validated effectiveness
for transformer-based NMT systems (Wang et al.,
2021a; Kasai et al., 2020). Our HRT also follows
this guidance by using only one decoder layer.
We use the pre-norm transformer following Wang
et al. (2019) to learn deep encoder well. Intuitively,
the single-layer decoder may be insufficient for
HRT because the decoder is responsible for both
autoregressive and non-autoregressive generation.
However, as shown in Table 2, we found that HRT
enjoys the deep-encoder-shallow-decoder archi-
tecture. For example, compared to HRT_E6D1 3,
HRT_E12D1 and HRT_E20D1 improve +1.6/+2.0
BLEU score points on average, while the inference
speed decreases by 5% and 12.5%. Therefore,
we mainly investigate HRT with a 12-layer and
20-layer encoder due to the high BLEU scores.

Fully greedy search. Prior work has validated
that greedy search is sufficient for the autoregres-
sive distilled model to work well (Kim and Rush,
2016). Since HRT refers to two beam sizes (bat
and bnat), we test three settings as shown in Ta-
ble 3. It can be seen that using bat=1 and bnat=1
only decreases BLEU slightly but accelerates a
30%+ faster than that of bat=5 and bnat=5. Unless
otherwise stated, we use bat=1 and bnat=1 in the
following experiments.

3We use HRT_E{#1}D{#2} to denote the HRT model with
{#1}-layer encoder and {#2}-layer decoder.
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Model Param. Newstest19 Newstest20 Average WPS
BLEU COMET BLEU COMET BLEU COMET

Teacher (four transformer-big) 4×209.1M 47.1 - 35.0 - 41.1 - -
WMT21 fastest (Behnke et al., 2021) 9.0M - - 33.3 - - - 1.5k∗

AT_E6D1 39.5M 45.1 0.551 33.9 0.469 39.5 0.510 2.2k
AT_E12D1 58.4M 45.4 0.572 34.1 0.489 39.8 0.530 2.1k
AT_E20D1 83.6M 45.9 0.581 34.6 0.502 40.3 0.541 1.9k

HRT_E12D1 (k=2) 58.4M 45.6 0.547 33.9 0.454 39.8 0.500 3.8k
HRT_E12D1 (k=3) 58.4M 45.0 0.503 33.6 0.377 39.3 0.440 4.9k
HRT_E12D1 (k=4) 58.4M 44.1 0.432 32.9 0.267 38.5 0.350 6.1k

HRT_E20D1 (k=2) 83.6M 45.9 0.561 34.4 0.472 40.2 0.517 3.5k
HRT_E20D1 (k=3) 83.6M 45.3 0.524 34.0 0.406 39.7 0.465 4.5k
HRT_E20D1 (k=4) 83.6M 44.2 0.435 33.3 0.283 38.8 0.360 5.4k

Table 4: Compare different model variants with regard to SacreBLEU (Post, 2018), COMET (Rei et al., 2020) and
inference speed. ∗ denotes the number is not exactly comparable due to the difference in test data and GPU.

Maximum sequence length. We predefine the
maximum source/target sequence length L as 200.
Here the length is calculated based on the results
of sentencepiece. Once the sequence length ex-
ceeds L, we truncate the source/target sequence.
For HRT, we let the maximum decoding length in
the Skip-AT stage as L/k. In this way, the maxi-
mum target length in the Skip-CMLM stage can be
guaranteed not beyond L.

GPU memory reuse. Since we only participate
in the GPU latency track, given the predefined max-
imum sequence length L, we can estimate the max-
imum GPU memory buffer used in the encoder,
autoregressive decoder, and non-autoregressive de-
coder in advance, respectively. Then we only allo-
cate the maximum buffer size among them because
these three processes are memory-independent.
This memory-reuse method helps us reduce our
footprints and avoid frequent memory applications
and releases.

Kernel fusion. Too many fine-grained kernel
functions make modern GPU inefficient due to ker-
nel launching overhead and frequent memory I/O
addressing (Wang et al., 2021c; Wu et al., 2021).
We follow the good implementation in LightSeq
and use the general matrix multiply (GEMM) pro-
vided by cuBLAS as much as possible, with some
custom kernel functions. Please refer to Wang et al.
(2021c) for details.

FP16 inference. We also use the 16-bit floating-
point to utilize modern GPU hardware efficiently.
Previous study (Wang et al., 2021a) shows that
FP16 can bring significant acceleration in batch
decoding. In contrast, in our GPU latency task,

Model FP16 WPS

HRT_E12D1 (k=2) no 3.3k
HRT_E12D1 (k=2) yes 3.8k

Table 5: The effect of FP16 on HRT model in GPU
latency task.

we only observed about 15% speedup due to the
smaller computational burden, as shown in Table 5.

Docker submission. We use multistage builds to
reduce the docker image size. Specifically, we first
use static compilation to build our executable pro-
gram with CUDA 11.2. Then we add the built re-
sult and model into the 11.2.0-base-centos7 docker.
The model disk size is compressed by xz compres-
sion toolkit.

4 Experimental Results

Setup. We mainly compared HRT to the stan-
dard autoregressive baselines in Table 4. All mod-
els adopt transformer-base setting (Vaswani et al.,
2017): d=512, dff=2048, head=8. We validated
the following model variants:

• AT: We train three autoregressive baselines
with the number of encoder layers of 6, 12,
and 20, denoted as AT_E6D1, AT_E12D1,
and AT_E20D1, respectively. All AT models
are trained from scratch for 300k steps.

• HRT: HRT models are fine-tuned based on
the pre-trained AT counterparts for 300k steps.
We also try different chunk sizes k ∈ {2, 3, 4}
to trade off the translation quality and infer-
ence speed.
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Other training hyper-parameters are the same as
Wang et al. (2019). We ran all experiments on 8
GeForce 3090 GPUs. For decoding, the length
penalty is 0.6, and the batch size is 1. We report
the detokenized SacreBLEU score with the same
signature as the teacher. Besides, we also follow
Helcl et al. (2022)’s suggestion to provide COMET
score (Rei et al., 2020) for the evaluation of non-
autoregressive translation.

Translation quality. First, we can see that a
deeper encoder improves about 0.5 BLEU points
across the board. When using k=2 for HRT, both
12-layer and 20-layer HRT models have almost
equivalent BLEU scores to that of AT counter-
parts. Our best HRT model HRT_E20D1 with
k=2 only drops an average of 0.9 BLEU points
than the teacher using model ensemble. How-
ever, in line with Helcl et al. (2022), we find that
even when BLEU scores are close, HRT’s COMET
scores are significantly lower than those of AT, e.g.,
AT_E20D1 vs. HRT_E20D1 (k=2). Nevertheless,
HRT_E20D1 (k=2) still achieves higher BLEU and
COMET than AT_E6D1 with 60% acceleration.

Translation speed. We estimated the inference
speed of the fastest system last year according to
the data in Heafield et al. (2021). Supposing ig-
noring the difference in test data, our AT baselines
run about 40%+ faster than it. It indicates that our
AT engine is a strong baseline. Even so, we can
see that both 12-layer and 20-layer HRT with k=2
achieve approximated 80% acceleration than AT
without BLEU drop. Moreover, larger k further
reduces the autoregressive decoding steps: Our
fastest model, HRT_E12D1 (k=4), decodes 6k+
source words/second, which is 3.1 times faster than
the fastest system last year.

5 Conclusion

This paper presented the ROYALFLUSH system to
the GPU latency track of the WMT 2022 transla-
tion efficiency task. We proposed hybrid-regressive
translation, a novel two-stage prototype to replace
conventional autoregressive translation. With a
lot of development optimization, we showed that
our HRT with a chunk size of 2 achieves equiva-
lent translation performance to the AT counterpart
while accelerating 80% inference speed. By in-
creasing HRT’s chunk size, our system can further
speed up 60% to 6k+ words/second, estimated to
be about 3.1 times faster than the fastest system in

last year’s competition.
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Jindřich Helcl, Barry Haddow, and Alexandra Birch.
2022. Non-autoregressive machine translation: It’s
not as fast as it seems. In Proceedings of the 2022
Conference of the North American Chapter of the
Association for Computational Linguistics: Human
Language Technologies, pages 1780–1790, Seattle,
United States. Association for Computational Lin-
guistics.

Geoffrey Hinton, Oriol Vinyals, and Jeff Dean. 2015.
Distilling the knowledge in a neural network. arXiv
preprint arXiv:1503.02531.

Jungo Kasai, Nikolaos Pappas, Hao Peng, James Cross,
and Noah A. Smith. 2020. Deep encoder, shallow de-
coder: Reevaluating the speed-quality tradeoff in ma-
chine translation. arXiv preprint arXiv:2006.10369.

Yoon Kim and Alexander M Rush. 2016. Sequence-
level knowledge distillation. In Proceedings of the
2016 Conference on Empirical Methods in Natural
Language Processing, pages 1317–1327.

675



Bei Li, Yinqiao Li, Chen Xu, Ye Lin, Jiqiang Liu,
Hui Liu, Ziyang Wang, Yuhao Zhang, Nuo Xu,
Zeyang Wang, Kai Feng, Hexuan Chen, Tengbo Liu,
Yanyang Li, Qiang Wang, Tong Xiao, and Jingbo Zhu.
2019. The NiuTrans machine translation systems for
WMT19. In Proceedings of the Fourth Conference on
Machine Translation (Volume 2: Shared Task Papers,
Day 1), pages 257–266, Florence, Italy. Association
for Computational Linguistics.

Ye Lin, Yanyang Li, Tengbo Liu, Tong Xiao, Tongran
Liu, and Jingbo Zhu. 2020. Towards fully 8-bit in-
teger inference for the transformer model. ArXiv,
abs/2009.08034.

Matt Post. 2018. A call for clarity in reporting BLEU
scores. In Proceedings of the Third Conference on
Machine Translation: Research Papers, pages 186–
191, Brussels, Belgium. Association for Computa-
tional Linguistics.

Ricardo Rei, Craig Stewart, Ana C Farinha, and Alon
Lavie. 2020. COMET: A neural framework for MT
evaluation. In Proceedings of the 2020 Conference
on Empirical Methods in Natural Language Process-
ing (EMNLP), pages 2685–2702, Online. Association
for Computational Linguistics.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. In Advances in Neural Information Pro-
cessing Systems, pages 6000–6010.

Chenglong Wang, Chi Hu, Yongyu Mu, Zhongxiang
Yan, Siming Wu, Yimin Hu, Hang Cao, Bei Li,
Ye Lin, Tong Xiao, and Jingbo Zhu. 2021a. The
NiuTrans system for the WMT 2021 efficiency task.
In Proceedings of the Sixth Conference on Machine
Translation, pages 787–794, Online. Association for
Computational Linguistics.

Chunqi Wang, Ji Zhang, and Haiqing Chen. 2018a.
Semi-autoregressive neural machine translation. In
Proceedings of the 2018 Conference on Empirical
Methods in Natural Language Processing, pages 479–
488.

Qiang Wang, Bei Li, Jiqiang Liu, Bojian Jiang, Zheyang
Zhang, Yinqiao Li, Ye Lin, Tong Xiao, and Jingbo
Zhu. 2018b. The NiuTrans machine translation sys-
tem for WMT18. In Proceedings of the Third Con-
ference on Machine Translation: Shared Task Papers,
pages 528–534, Belgium, Brussels. Association for
Computational Linguistics.

Qiang Wang, Bei Li, Tong Xiao, Jingbo Zhu,
Changliang Li, Derek F. Wong, and Lidia S. Chao.
2019. Learning deep transformer models for machine
translation. In Proceedings of the 57th Annual Meet-
ing of the Association for Computational Linguistics,
pages 1810–1822, Florence, Italy.

Qiang Wang, Heng Yu, Shaohui Kuang, and Weihua
Luo. 2021b. Hybrid-regressive neural machine trans-
lation.

Xiaohui Wang, Ying Xiong, Yang Wei, Mingxuan Wang,
and Lei Li. 2021c. LightSeq: A high performance
inference library for transformers. In Proceedings of
the 2021 Conference of the North American Chapter
of the Association for Computational Linguistics: Hu-
man Language Technologies: Industry Papers, pages
113–120, Online. Association for Computational Lin-
guistics.

Kaixin Wu, Bojie Hu, and Qi Ju. 2021. TenTrans high-
performance inference toolkit for WMT2021 effi-
ciency task. In Proceedings of the Sixth Conference
on Machine Translation, pages 795–798, Online. As-
sociation for Computational Linguistics.

676



Proceedings of the Seventh Conference on Machine Translation (WMT), pages 677–681
Abu Dhabi, December 7–8, 2022. ©2022 Association for Computational Linguistics

HW-TSC’s Submissions to the WMT22 Efficiency Task
Hengchao Shang1, Ting Hu2, Daimeng Wei1, Zongyao Li1,

Xianzhi Yu2, Jianfei Feng2, Jinlong Yang1, Zhiqiang Rao1, Ting Zhu1,
Zhengzhe Yu1, Lizhi Lei1, Shimin Tao1, Hao Yang1, Ying Qin1

1Huawei Translation Service Center, Beijing, China
2Huawei Noah’s Ark Lab, Hong Kong, China

{shanghengchao,huting35,weidaimeng,lizongyao,yuxianzhi,
fengjianfei1,yangjinlong7,raozhiqiang,zhuting20,

yuzhengzhe,leilizhi,taoshimin,yanghao30,qinying}@huawei.com

Abstract

This paper presents the submissions of Huawei
Translation Services Center (HW-TSC) to
WMT 2022 Efficiency Shared Task. For this
year’s task, we still apply sentence-level distil-
lation strategy to train small models with differ-
ent configurations. Then, we integrate the av-
erage attention mechanism into the lightweight
RNN model to pursue more efficient decoding.
We add a retrain step to our 8-bit and 4-bit mod-
els to achieve a balance between model size
and translation quality. We still use Huawei
Noah’s Bolt1 for INT8 inference and 4-bit stor-
age. With Bolt’s support for batch inference
and multi-core parallel computing, we finally
submit models with different configurations to
the CPU latency and throughput tracks to ex-
plore the Pareto frontiers.

1 Introduction

Transformer and its variants (Vaswani et al., 2017;
Shaw et al., 2018; So et al., 2019; Dehghani et al.,
2019) have become benchmark models for machine
translation. A lot of innovations and engineering
optimizations (Tay et al., 2020) in this area are
based on Transformer. However, with the increase
of bilingual and monolingual data sizes used for
training, the size of the model expands and the
requirement of computing ability become higher.
Taking T5 (Raffel et al., 2020), GPT3 (Brown et al.,
2020) and a series of subsequent large models (Fe-
dus et al., 2021; Smith et al., 2022) as examples, al-
though they have achieved very good performances,
it is still difficult for ordinary practitioners to repro-
duce or use these models for research and industry
application. Especially in scenarios where hard-
ware capability is limited, models that balance size,
quality and power consumption is urgently needed.
The WMT Efficiency task is performed under such
constraints.

1https://github.com/huawei-noah/bolt

In this year’s task, we still focus on CPU infer-
ence optimization and participate in CPU latency
and multi-core throughput tracks.

We employ knowledge distillation (Hinton et al.,
2015) to train small models. The teacher models
and distillation data come from official website.
We only perform simple data cleaning, and all of
our experiments are conducted based on fariseq
(Ott et al., 2019).

Deep encoder and shallow deocder models can
balance quality and inference speed (Wang et al.,
2019). We follow this configuration for pursuing
extreme efficient decoding. Inspired by SRU++
(Lei, 2021) and AAN (Zhang et al., 2018), we in-
tegrate the average attention mechanism with a
lightweight RNN for more efficient decoding.

We retrain our 8-bit quantisation model (Jacob
et al., 2018), then compare its result with that of
direct post-quantization (Sung et al., 2015) model.
We finally find that in the distillation scenario, the
difference between the two is not obvious. We
apply 4-bit storage to obtain an extremely small
model size. Although our training and inference
strategies ensure basically the same model quality,
the gap in overall quality is large and the model
needs to be further optimized.

We still use Huawei Noah’s Bolt as the inference
library. This year, we implement batch inference
and parallel computing on multi-core CPUs for the
throughput track.

Finally, after performing some necessary engi-
neering optimizations, we submit four models with
different configurations to explore the Pareto fron-
tiers.

2 Teacher to Student Knowledge
Distillation

2.1 Data Process

The task is to translate English to German follow-
ing the constrained news task from WMT 2021.
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The teacher model, as well as bilingual data and
distillation data used in this task are provided by the
organizer. It makes everyone on the same start line
in the distillation experiment, avoiding the qual-
ity difference due to different teacher models. We
download the data and find it pretty much the same
as the data we used in the task last year. Accord-
ing to our distillation experiment last year, keeping
the ratio of bilingual data and distillation data as
1:2 can ensure that the student model inherits the
knowledge of the teacher model well. Except for
the generation of distillation data, other processing
strategies are the same as last year’s. For details,
please refer to our previous task report (Shang et al.,
2021).

2.2 Vocabulary
We build a joint subword segmentation model from
real parallel data using SentencePiece (Kudo and
Richardson, 2018) as last year. The vocabulary size
is set to 25k tokens.

2.3 Model Structure
The autoregressive module is based on the self-
attention in the Transformer decoder layer. The
decoding complexity increases as the decoding
length increases. Therefore, special processing
is required if we want to pursue extreme decod-
ing performance. The commonly used strategy is
to replace it with a fixed computational cost mod-
ule, such as LSTM, other RNN variants (Lei et al.,
2018), or AAN. These modules use a global cell to
store sentence-level information and perform the
same cell update actions as each token is decoded
without relying on the decoded sequence.

SRU++ (Lei, 2021) further replaces the heavy-
weight multiplication operation outside the cell
with a self-attention component to improve the
representation ability of the model. We use the
AAN to replace the standard self-attention module
for faster decoding while ensuring the expression
ability of the model. We call it the AASRU model.

The calculation formula in the cell is as follows:

f [t] = σ(U [t, 0]) + V ⊙ C[t− 1] + b)

r[t] = σ(U [t, 1]) + V
′ ⊙ C[t− 1] + b

′
)

c[t] = f [t]⊙ C[t− 1] + (1− f [t])⊙ C[t, 2]
h[t] = r[t]⊙ C[t] + (1− r[t])⊙ x[t]

The formula for calculating U is as follows:

Q =W qXT

V =W vXT

AT = AV ERAGE(V T )

UT =W olayernorm(Q+A)

where W q and W v ∈ Rd
′×d, W o ∈ R3d×d

′
, d

is the hidden state size, and d
′

is the attention di-
mension. The σ is the sigmode function, and ⊙
is the element-wise multiplication, t refer to the
time step, v and b are parameter vectors to be learnt
during training, c and h are the cell states and the
hidden states in RNN.

2.4 Training
Our distillation experiments are based on fairseq.
We implement the AASRU module by referring to
the open-source transformer-aan 2. Also, we do
not use regularization techniques such as dropout
and label smoothing. All our models are trained
using 8 Nvidia Tesla V100 for about two days. The
maximum number of tokens vary from 4096 to
10240 according to the model size, as we try to
keep the maximum GPU memory usage the same.

After that, we retrain our 8-bit quantization
model, constrain all Linear and Matual operator’s
inputs to the interval [-1, 1], add quantization and
inverse quantization operators to the model graph.
The retrain is performed after the base model has
been trained for 200K steps.

We compare the results of retrain and post-
quantization on the Base.12 model, and find almost
no difference in performances of the two models
under the current distillation experiment setting.
Therefore, we submit the post-quantized models.

Next, we apply 4-bit storage models to pursue
extreme model sizes. In order to achieve better
translation, we add retrain and verify the consis-
tency between training and inference. The transla-
tion quality obtained via Bolt inference and training
respectively is almost the same. However, the over-
all quality of our model declines greatly, requiring
further optimization.

2.5 Evaluation
We still use WMT 2019 and 2020 News Task
test sets to measure our models with SacreBLEU
(Post, 2018) this year. We perform a simple post-
processing (normalize the punctuation) on the Ger-
man translations, so the BLEU scores are slightly
higher than the officially provided one.

2https://github.com/bzhangGo/transformer-aan
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Model Emb. FFN Head Depth Params(M) Size(MB) wmt19 wmt20
Teacher*4 1024 4096 16 6/6 200 800 47.08 36.29
Base.12 512 2048 8 12/1 53 210 45.75 35.30
Base.12 + 8-bit 512 2048 8 12/1 53 210 45.89 35.20
Base.6 512 2048 8 6/1 35 140 44.78 34.59
Small.12 384 1536 6 12/1 33 132 45.03 34.89
Small.9 384 1536 6 9/1 28 112 44.62 34.40
Small.6 384 1536 6 6/1 22 88 43.80 34.26
Tiny.12 256 1024 4 12/1 17 68 43.84 33.62
Tiny.6 256 1024 4 6/1 13 52 42.15 32.27
Tiny.6 + 4-bit 256 1024 4 6/1 13 52 34.75 26.30

Table 1: Results of Distillation Training. 8-bit and 4-bit refer to retraining.

Overall, the results of our distillation experi-
ments are within our expectations. The Baseline
model has about 25% parameters as the teacher
model, and its performance is attenuated by about
1.5 BLEU. The 8-bit retraining model is basically
the same as the direct training one. However, we
observe over 5.0 BLEU decrease on our Tiny.6
model after adding 4-bit storage. The reason may
be that we treat every parameter the same way,
including embedding. As a result, more training
tricks and experiments are required in the future.

We also analyze the effect of the encoder’s height
and width on the model. Comparing Base.6 to
Small.12, and Small.6 to Tiny.12, we find that
deeper networks almost have equal or better qual-
ity even with less parameters except for Tiny.12’s
2020 test result.

Under the same height setting, models with dif-
ferent widths also perform differently. A wider
model seems to perform better. Comparing 12-
layer and 6-layer models, we observe less than 1
BLEU difference under the base setting, less than
1.2 BLEU difference under the small setting (and
only 0.7 BLEU difference on the WMT20 test set),
and only about 1.7 BLEU difference under the tiny
setting. Wider encoder means more parameters and
probably better quality.

Based on the above analysis and the quality gap
between the models, We finally decide to submit
four models including Base.12, Small.9, Tiny.12,
and Tiny.6 to explore the Pareto frontiers better.

3 Inference Optimizations

We use Bolt acceleration library as CPU optimiza-
tion backend to build the high-performance trans-
lation engine. Bolt has a standalone C++ run-
time, therefore it can perform fast inference without

any third-party dependencies. We use Bolt v1.4.0,
which will be available in October 2022.

3.1 8-bit Quantization

We still apply the post-training quantization
method this year. All parameters of the model
except the bias are quantized to 8-bit intergers by
absolute maximum quantization. All GEMM op-
erations in the attention layer are in 8-bit and well
optimized by Intel VNNI instructions, but the lay-
ernorm and softmax computations are back off to
FP32.

3.2 4-bit Storage

For this year’s submission, we employ 4-bit storage
to achieve almost 8x model compression. With 4-
bit storage, all parameters have to be converted to 8-
bit integers for calculation because of the hardware
limitations, so there is no performance advantage
compared with 8-bit storage.

3.3 Batch and Thread

For the throughput track, we support batch infer-
ence and merge multiple matrix calculations in at-
tention layer. Our experiments show an end-to-end
speedup of up to 20% on a single core. To further
increase the throughput, we divide the input text
into specified sizes and assign them to multiple
CPU cores for parallel computation. The input text
is sorted first to prevent the performance waste due
to the difference of data lengths within the batch. In
the submitted systems, we uniformly set the batch
size to 4.

3.4 Other Strategies

We apply some other commonly used strategies
such as greedy decoding, caching and shortlist,
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Model Precious Size WPS BLEU
Teacher FP32 2000 - 36.29
Base.12 FP32 212 237 35.30

INT8 53 815 35.20
+retrain INT8 53 815 35.19

Small.9 FP32 112 468 34.40
INT8 28 1129 34.29

Tiny.12 FP32 68 759 33.62
INT8 17 1693 33.39

Tiny.6 FP32 52 996 32.27
INT8 13 2001 31.92

+int4 INT8 6.5 1989 26.10

Table 2: Optimization results. The test set is WMT
2020 News test. The unit of size is MB. WPS refers
to the source side. The test environment is Intel(R)
Xeon(R) Gold 6278C CPU @ 2.60GH. We submit four
models: Base.12, Small.9, Tiny.12 and Tiny.6 and the
final Tiny.6+int4

which can improve the model decoding efficiency
to a certain extent. Details can be found in our last
year’s report.

4 Optimization Results

Our final optimization results are shown in Table 2.
We find that the inference speed of our models is
significantly improved through int8 inference, and
the overall improvement is 2-3 times that of FP32,
which is basically the same as last year’s results.

By analyzing the results of our comparative ex-
periments on Base.12, we find that BLEU is only
slightly decreased when we directly use the post-
quantization inference version. So there is not
much room left when optimizing the performance
of models that employ retraining. The reason may
be the limited diversity of the model under the
distillation setting. The post-quantization model
basically meet our requirement on quality.

We additionally employ 4-bit storage on the
Tiny.6 model for pursuing extreme model size. Af-
ter retraining, we successfully compress the model
to almost 1/8 of the original size, and maintain a
high degree of consistency between training (26.30
BLEU) and inference (26.10 BLEU) with slightly
BLEU score decrease. We also submit the model
for evaluation.

When preparing the model for the throughput
track, we need to set the batch size for batch trans-
lation. We compare the impact of different batch
sizes on throughput in detail using our Base.12
model. Results are shown in Table 3. When the

Batch Size BLEU Costs WPS
Base.12 35.30 - -
1 35.20 53 815
2 35.23 45 978
3 35.17 44 1000
4 35.22 44 1000
8 35.38 45 978
16 35.26 45 978

Table 3: The effect of batch size on throughput. WPS
refers to the source side.

batch size exceeds 3, the improvement becomes in-
significant. Considering that the hardware used in
the task may be different from our test environment,
we set the batch size to 4 for all of our submissions
for convenience.

5 Submitted Docker Images

Due to the simple runtime environment of Bolt, we
can choose a very basic image to run our system.
We still apply the ubuntu:18.04. Our inference
project is inherited from last year’s, adding support
of batch inference and using a thread pool to run
models in parallel on multiple CPU cores. Fol-
lowing the task requirements, our startup script is
/run.sh. Our model is stored in the /model directory,
which contains the converted Bolt model, vocab-
ulary, and shortlist files. The compressed file is
provided.

Our largest model volume is around 50M, and
the base image volume is around 60M. The space
occupied by our inference project is almost negligi-
ble, so the final image we submitted after compres-
sion still does not exceed 70M, and the smallest
one is about 35M.

6 Concolusion

In this year’s task, we follow some strategies from
last year, including data processing, basic distilla-
tion training, etc. In addition, we explore a new
and more efficient decoding structure, AASRU,
this year, which reduces the amount of computa-
tion while maintaining quality. We add 8-bit and
4-bit retrain to distillation training, and verify the
consistency of training and inference. Regarding
engineering, we add the relevant features of Batch
inference and multi-core parallel computing, and
finally submit several models with balanced quality
and speed for CPU latency and throughput tracks.

680



References
Tom Brown, Benjamin Mann, Nick Ryder, Melanie

Subbiah, Jared D Kaplan, Prafulla Dhariwal, Arvind
Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, Sandhini Agarwal, Ariel Herbert-Voss,
Gretchen Krueger, Tom Henighan, Rewon Child,
Aditya Ramesh, Daniel Ziegler, Jeffrey Wu, Clemens
Winter, Chris Hesse, Mark Chen, Eric Sigler, Ma-
teusz Litwin, Scott Gray, Benjamin Chess, Jack
Clark, Christopher Berner, Sam McCandlish, Alec
Radford, Ilya Sutskever, and Dario Amodei. 2020.
Language models are few-shot learners. In Ad-
vances in Neural Information Processing Systems,
volume 33, pages 1877–1901. Curran Associates,
Inc.

Mostafa Dehghani, Stephan Gouws, Oriol Vinyals,
Jakob Uszkoreit, and Łukasz Kaiser. 2019. Universal
transformers.

William Fedus, Barret Zoph, and Noam Shazeer. 2021.
Switch transformers: Scaling to trillion parameter
models with simple and efficient sparsity.

Geoffrey Hinton, Oriol Vinyals, and Jeff Dean. 2015.
Distilling the knowledge in a neural network.

Benoit Jacob, Skirmantas Kligys, Bo Chen, Meng-
long Zhu, Matthew Tang, Andrew Howard, Hartwig
Adam, and Dmitry Kalenichenko. 2018. Quanti-
zation and training of neural networks for efficient
integer-arithmetic-only inference. In Proceedings of
the IEEE conference on computer vision and pattern
recognition, pages 2704–2713.

Taku Kudo and John Richardson. 2018. Sentencepiece:
A simple and language independent subword tok-
enizer and detokenizer for neural text processing. In
Proceedings of the 2018 Conference on Empirical
Methods in Natural Language Processing, EMNLP
2018: System Demonstrations, Brussels, Belgium,
October 31 - November 4, 2018, pages 66–71.

Tao Lei. 2021. When attention meets fast recurrence:
Training language models with reduced compute.
arXiv preprint arXiv:2102.12459.

Tao Lei, Yu Zhang, Sida I. Wang, Hui Dai, and Yoav
Artzi. 2018. Simple recurrent units for highly paral-
lelizable recurrence.

Myle Ott, Sergey Edunov, Alexei Baevski, Angela Fan,
Sam Gross, Nathan Ng, David Grangier, and Michael
Auli. 2019. fairseq: A fast, extensible toolkit for
sequence modeling. In Proceedings of NAACL-HLT
2019: Demonstrations.

Matt Post. 2018. A call for clarity in reporting BLEU
scores. In Proceedings of the Third Conference on
Machine Translation: Research Papers, pages 186–
191, Brussels, Belgium. Association for Computa-
tional Linguistics.

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine
Lee, Sharan Narang, Michael Matena, Yanqi Zhou,

Wei Li, Peter J Liu, et al. 2020. Exploring the limits
of transfer learning with a unified text-to-text trans-
former. J. Mach. Learn. Res., 21(140):1–67.

Hengchao Shang, Ting Hu, Daimeng Wei, Zongyao
Li, Jianfei Feng, Zhengzhe Yu, Jiaxin Guo, Shaojun
Li, Lizhi Lei, Shimin Tao, et al. 2021. Hw-tsc’s
participation in the wmt 2021 efficiency shared task.
In Proceedings of the Sixth Conference on Machine
Translation, pages 781–786.

Peter Shaw, Jakob Uszkoreit, and Ashish Vaswani. 2018.
Self-attention with relative position representations.
In Proceedings of the 2018 Conference of the North
American Chapter of the Association for Computa-
tional Linguistics: Human Language Technologies,
Volume 2 (Short Papers), pages 464–468, New Or-
leans, Louisiana. Association for Computational Lin-
guistics.

Shaden Smith, Mostofa Patwary, Brandon Norick,
Patrick LeGresley, Samyam Rajbhandari, Jared
Casper, Zhun Liu, Shrimai Prabhumoye, George
Zerveas, Vijay Korthikanti, et al. 2022. Using deep-
speed and megatron to train megatron-turing nlg
530b, a large-scale generative language model. arXiv
preprint arXiv:2201.11990.

David R. So, Chen Liang, and Quoc V. Le. 2019. The
evolved transformer.

Wonyong Sung, Sungho Shin, and Kyuyeon Hwang.
2015. Resiliency of deep neural networks under
quantization. arXiv preprint arXiv:1511.06488.

Yi Tay, Mostafa Dehghani, Dara Bahri, and Donald
Metzler. 2020. Efficient transformers: A survey.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N. Gomez, Lukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need.

Qiang Wang, Bei Li, Tong Xiao, Jingbo Zhu,
Changliang Li, Derek F. Wong, and Lidia S. Chao.
2019. Learning deep transformer models for machine
translation. In Proceedings of the 57th Annual Meet-
ing of the Association for Computational Linguistics.

Biao Zhang, Deyi Xiong, and Jinsong Su. 2018. Accel-
erating neural transformer via an average attention
network. arXiv preprint arXiv:1805.00631.

681



Proceedings of the Seventh Conference on Machine Translation (WMT), pages 682–688
Abu Dhabi, December 7–8, 2022. ©2022 Association for Computational Linguistics

IIT Bombay’s WMT22 Automatic Post-Editing Shared Task Submission

Sourabh Deoghare and Pushpak Bhattacharyya
Computation for Indian Langauge Technology (CFILT)

IIT Bombay, India
{sourabhdeoghare, pb}@cse.iitb.ac.in

Abstract

This paper describes IIT Bombay’s submission
to the WMT-22 Automatic Post-Editing (APE)
shared task for the English-Marathi (En-Mr)
language pair. We follow the curriculum train-
ing strategy to train our APE system. First,
we train an encoder-decoder model to perform
translation from English to Marathi. Next, we
add another encoder to the model and train the
resulting dual-encoder single-decoder model
for the APE task. This involves training the
model using the synthetic APE data in multi-
ple training stages and then fine-tuning it using
the real APE data. We use the LaBSE tech-
nique to ensure the quality of the synthetic
APE data. For data augmentation, along with
using candidates obtained from an external ma-
chine translation (MT) system, we also use
the phrase-level APE triplets generated using
phrase table injection. As APE systems are
prone to the problem of ‘over-correction’, we
use a sentence-level quality estimation (QE)
system to select the final output between an
original translation and the corresponding out-
put generated by the APE model. Our approach
improves the TER and BLEU scores on the de-
velopment set by -3.92 and +4.36 points, re-
spectively. Also, the final results on the test
set show that our APE system outperforms the
baseline system by -3.49 TER points and +5.37
BLEU points.

1 Introduction

Automatic Post-Editing (APE) is a post-processing
task in a Machine Translation (MT) workflow. It
aims to automatically identify and correct errors in
MT outputs (Chatterjee et al., 2020). Läubli et al.
(2013) and Pal et al. (2016) show that APE systems
have the potential to reduce human effort by auto-
matically correcting repetitive translation errors.

The initial years of the WMT APE shared task
focused on correcting errors in Statistical Machine
Translation (SMT) translations, where participants

explored various statistical and neural APE ap-
proaches (Bojar et al., 2017). Although neural APE
approaches showed high potential for significantly
improving the quality of SMT translations, these
approaches faced challenges in improving transla-
tions obtained from relatively-more-robust neural
machine translation (NMT) systems (Chatterjee
et al., 2018). A possible reason for this could be
that correcting a high-quality translation requires
fewer edits, and therefore APE approaches need
to be precise in identifying and in correcting the
errors. Also, the neural APE approaches use large
neural networks that require significant training
data. APE training data consists of ‘triplets’ in the
form of source sentence (src), its translation gener-
ated using an MT system (mt), and a human post-
edited version of the translation (pe). Obtaining pe
is an expensive task in terms of time and money;
therefore, there is a lack of large APE datasets.

To deal with this problem, various data augmen-
tation techniques have been proposed (Junczys-
Dowmunt and Grundkiewicz, 2016; Negri et al.,
2018; Lee et al., 2020b). Wang et al. (2020) used
imitation learning to filter the APE data for tack-
ling the distributional difference between real and
synthetic APE data. Wei et al. (2020) augmented
the APE training data with translations generated
using a different MT system. Inspiring from the
work of Sen et al. (2021), we augment the APE
data by generating phrase-level APE triplets using
SMT phrase tables. To ensure the quality of the
synthetic data, we use the LaBSE technique (Feng
et al., 2022) and filter low-quality triplets.

Another effective approach for dealing with the
problem of data sparsity is transfer learning in
which pre-trained models are adapted to the APE
task (Lopes et al., 2019). An APE system needs to
understand both the source and target languages
to obtain joint encoding of src and mt. There-
fore, Lee et al. (2020a) uses a cross-lingual lan-
guage model instead of a monolingual one. Unlike
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these approaches, Wei et al. (2020); Sharma et al.
(2021) use a pre-trained NMT model and adapts it
to the APE task. Oh et al. (2021) has proposed the
Curriculum Training Strategy (CTS) that gradually
adapts pre-trained models to the APE task.

Although recent APE systems use a single en-
coder to encode both the source sentence and its
translation (Oh et al., 2021; Lee et al., 2020a), we
use separate encoders for encoding src and mt as
English and Marathi do not share much vocabu-
lary; and belong to different language families. We
use IndicBERT (Kakwani et al., 2020) to initial-
ize weights of our the src encoder and mt encoder.
We train and fine-tune our models using the CTS
over the good-quality APE data. The training data
is also augmented with external MT candidates
and phrase-level APE triplets. It is known that
APE systems are prone to making unnecessary ed-
its to translation output (Chatterjee et al., 2020).
To mitigate this issue of over-correction, we use a
sentence-level QE system to select the final output.
When evaluated on the development set, our ap-
proach improves the TER (Snover et al., 2006) by
-3.92 points and the BLEU (Papineni et al., 2002)
by +4.98 points. Similarly, the final results on the
test set show that our APE system outperforms the
baseline system by -3.49 TER points and +5.37
BLEU points. We summarize the main features of
our approach as follows:

• We use two separate encoders to generate rep-
resentations for src and mt. We also use the
IndicBERT language model to initialize the
weights for both our encoders.

• We filter low-quality APE triplets from the
synthetic data using LaBSE-based filtering.

• We divide the APE training step using CTS
into two phases. We train the APE model in
the first phase using out-of-domain synthetic
APE data. In the next phase, we train the APE
model using only the in-domain APE data.

• We follow two approaches for data augmenta-
tion: (1) As per the recent trend, we use exter-
nal MT candidates. (2) We generate phrase-
level APE triplets using SMT phrase tables.

• APE systems are prone to the problem of over-
correction. Therefore, we use a sentence-QE
system to select the final output between the
APE output and the original translation.

2 Approach

Figure 1: Dual-encoder Single Decoder Architecture.
Dashed arrows represent tied parameters and common
embedding matrices for encoders and decoder.(Junczys-
Dowmunt and Grundkiewicz, 2018)

Our APE model is based on the trans-
former (Vaswani et al., 2017) architecture. Figure
1 shows the architecture of our APE model. In this
section, we discuss the details of our approach.

2.1 Dual-Encoder Single-Decoder APE Model

The APE task is usually treated as an NMT-like
task. Recent approaches use a single encoder to en-
code a source sentence and its translation (Oh et al.,
2021; Lee et al., 2020a). Such an approach may
work well when the source and target languages
share the vocabulary (Kanojia et al., 2021). How-
ever, for English and Marathi, there is no vocabu-
lary overlap, and also, the script used in both lan-
guages is different (Kanojia et al., 2020). Therefore,
for developing an English-Marathi APE system,
we use two separate encoders to encode src and
mt (Junczys-Dowmunt and Grundkiewicz, 2018).

We apply transfer learning by using IndicBERT
to initialize weights of the src encoder and the mt
encoder. We choose IndicBERT as it is trained over
text in Indian languages and English. We use a sin-
gle transformer-based decoder that attends to repre-
sentations of both src and mt and generates a post-
edited version of the mt. We add one more cross-
attention layer above the available cross-attention
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layer in the decoder. We pass the representation
generated by mt encoder to the first cross-attention
layer. The newly-added cross-attention layer re-
ceives two inputs: output of the first attention layer
and representation generated by the mt encoder.
Such placement allows the decoder to first attend to
mt, which is prone to mistakes, and then it attends
to src, which doesn’t involve any errors. We share
parameters between encoders, but the encoders gen-
erate different activations, and different attention
layers receive the outputs of these encoders in the
decoder. During the fine-tuning phase, we concate-
nate mt and external MT candidate using a special
token ‘[SEP]’ and pass this concatenated sequence
to the mt encoder.

2.2 Sentence-Level Quality Estimation
In the Sentence-level Quality Estimation (QE) task,
the machine-translated sentence is evaluated by hu-
man annotators by providing each instance with
a Direct Assessment (DA) score (ranging from 0
to 100). These scores are then normalized using z-
score normalization. A source sentence and the cor-
responding machine-translated output are passed
to the sentence-level QE (sentence-QE) system as
inputs, and it predicts a z-standardized DA score
denoting the quality of translation.

We use the MonoTransquest (Ranasinghe et al.,
2020), a XLM-R (Conneau et al., 2020) based
model to obtain representations of the inputs. The
XLM-R model is trained using a 2.5TB multi-
lingual dataset retrieved from the CommonCrawl
databases, which includes 104 languages. It is
trained using the RoBERTa’s masked language
modelling (MLM) objective (Liu et al., 2019). We
use the training (18K samples), and development
(1K samples) sets shared in the WMT-22 Sentence-
QE English-Marathi sub-task to train our sentence-
QE model.

We use this sentence-QE model to rate the orig-
inal translation and the output generated by our
system. We then compare the ratings for both these
sequences and select the one with a higher rating
as the final output.

2.3 Curriculum Training Strategy (CTS)
We follow the CTS (Oh et al., 2021) to train our
APE model. It involves gradually adapting a model
to more complex tasks. In the first step, we train
an encoder-decoder model for performing English
to Marathi translation. We then add another en-
coder to the encoder-decoder model and train the re-

sulting dual-encoder single-decoder model for the
APE task using synthetic APE data in two phases.
In the first phase, we train the APE model using
APE triplets belonging to any domain except the
General, News, and Healthcare domains. In the
second phase, we train the model using synthetic
APE triplets of the General, News, and Healthcare
domains. Finally, we fine-tune the APE model
using in-domain real APE data and external MT
candidates.

2.4 Data Augmentation

Before using the synthetic APE data during the
training steps of the CTS, we filter the low-quality
triplets by using the LaBSE-based filtering (Feng
et al., 2022). We do this to ensure adequate quality
of the synthetic APE data. To do so, we first gener-
ate embeddings of the src and pe using the LaBSE
model and normalize them. Then, we compute the
cosine similarity between these normalized embed-
dings. If the cosine similarity is less than 0.91,
we discard the corresponding APE triplet. Our ex-
perimental results show the importance of using
good-quality APE data to train APE systems.

We also generate the phrase-level APE triplets
using the good-quality synthetic APE data and the
real APE data. We follow the procedure described
by Sen et al. (2021) and extend it for the phrase-
level triplet injection for APE. First, we use the
Moses (Koehn et al., 2007) SMT system and train
src-mt and src-pe phrase-based SMT systems. We
then extract these phrase pairs from both SMT sys-
tems. In the next step, we collect pairs of phrase-
pairs having same src from the src-mt and src-pe
phrase tables. Finally, we follow the steps used in
the LaBSE-based filtering and get cosine similarity
scores for both the phrase pairs having the same src.
If both the scores are more than 0.91, we combine
these two phrase pairs to form a triplet and add it
to the APE dataset.

To generate the external MT candidates, we
train an mT5 (Xue et al., 2021) based English-
Marathi NMT model over a publicly available
English-Marathi parallel corpora (Samanantar
(Ramesh et al., 2022), Anuvaad1, Tatoeba2, and
ILCI (Bansal et al., 2013)) of around 6M parallel
sentence pairs. We use the external MT candidates
during the fine-tuning phase.

1Anuvaad: Github Repo
2Tatoeba Project
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System TER
y BLEU

x
Do Nothing (Baseline) 22.93 64.51
+ CTS-based Training and External MT 20.08 67.39
+ LaBSE-based Data Filtering and in-domain training data 19.73 67.86
+ Phrase-level APE triplets 19.39 68.35
+ Sentence-level QE 19.01 68.87

Table 1: Results on the WMT-22 APE Development Set.

System TER
y BLEU

x
Do Nothing (Baseline) 20.28 67.55
IIT Bombay’s Submission 16.79 72.92

Table 2: Results on the WMT-22 APE Test Set.

3 Experimental Setup

3.1 Dataset
This year’s APE shared task focused only on the
English-Marathi language pair. The real APE
training data contains 18K APE triplets, and this
APE data belongs to the General, Healthcare, and
Tourism domains. The organizers also shared the
synthetic APE data of various domains totaling
around 25M APE triplets. As participants, we were
permitted to use external data for this task.

To train a translation model, we use the pub-
licly available English-Marathi parallel corpora of
size around 6M parallel sentence pairs. For data
augmentation, we first generate phrase-level APE
triplets using synthetic and real APE data and then
randomly select 50000 phrase-level APE pairs for
augmenting with the synthetic APE data and 10000
for augmenting with real APE data.

3.2 Training Hyperparameters
We used NVIDIA DGX A100 GPUs for our exper-
iments. We trained our models with a batch size
of 32. We set the number of maximum epochs to
1000 with early stopping patience of 5. We used
the Adam optimizer with a learning rate of 5 x
10−5, β1 = 0.9, and β2 = 0.997. We set the num-
ber of warmup steps to 25K. On the decoder side,
We used beam search with the beam size set to 5.
For the LaBSE-based filtering, we used a threshold
value of 0.91 for cosine similarity to ensure that mt
and textitpe are similar to each other.

4 Results

In Table 2, we report the results of our APE system
by evaluating it on the development set. To estimate
the quality of our APE system output compared to

the human-generated references, we use BLEU and
TER score between the APE output and pe. Table 2
compiles the results of our experiments performed
on the development set.

We compare the results of our experiments
against a ’Do Nothing’ APE baseline that sim-
ply outputs mt without any modification. When
we trained our model using CTS and external MT
candidates to increase feature diversity, the TER
and BLEU scores improved to 20.08 TER points
and 67.39 BLEU points from the baseline TER
and BLEU scores of 22.93 and 64.51, respectively.
The third row in the 2 shows the results of an ex-
periment where we use a good-quality synthetic
dataset for APE training obtained by filtering low-
quality triplets using LaBSE-based filtering. The
experiment also involves training the APE model
in two phases: first, the model is trained on out-
of-domain synthetic data and then on in-domain
synthetic data. This setting brings -3.2 and +3.35
TER and BLEU score improvements over the base-
line, and underlines the importance of using good-
quality in-domain APE data.

The only change we make for performing the
next experiment is augmenting the synthetic and
real APE data using phrase-level APE triplets. Re-
sults of this experiment show that performance im-
proves over the baseline by -3.54 TER points and
+3.84 BLEU points. Towards the end, we also used
a sentence-QE system to rate the original transla-
tion and the APE output. We then select one of
them with a higher rating as the final output of our
APE system. With the combination of the APE
model and sentence-QE system, we see that the
TER score improves to 19.01 points, and BLEU
score increases to 68.87 points; which shows that
using the sentence-level QE system is an effective
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approach to discard APE output, in cases of over-
correction.

As per the information received by the shared
task organizers, our APE system achieves a TER
score of 16.79 points and a BLEU score of 72.92
when evaluated on the official test set, which is
-3.49 TER points and +5.37 BLEU points improve-
ment over the baseline.

5 Conclusions and Future Work

This paper presents our APE system submitted to
the WMT-22 APE English-Marathi Shared task.
We use a dual-encoder single-decoder model where
both encoders are initialized using IndicBERT. We
propose a new way to generate artificial phrase-
level APE triplets by extending the phrase-pair in-
jection method used in MT for APE. We show that
augmenting APE training data with these phrase-
level triplets and training the model with the CTS
on good-quality in-domain APE data improves the
performance of the APE system. Furthermore, we
also explore using the sentence-level QE system to
discard low-quality APE outputs. Evaluation of our
APE system shows that our approach achieves sig-
nificant gains on the WMT-22 APE development
and test sets.

In future, we would like to extend this approach
for automatic post-editing with the help of word-
level quality estimation and come up with a single
architecture for performing both the QE tasks along
with APE. We would also like to attempt a multi-
lingual APE system with a shared decoder across
multiple languages.

6 Limitations

We use in-domain data to train the APE model
in the last training stage and the fine-tuning stage.
It makes the APE system robust in post-editing
in-domain translations, but it also makes it sophis-
ticated. We observe that the system’s performance
worsens when we pass out-of-domain translations
to the system. Similarly, we observe poor perfor-
mance when translations with distributional differ-
ences from the real APE data are passed to the
APE system. We use a sentence-level QE system
to compare the quality of the APE output and the
original translation. Even though it helps us to get
rid of poor-quality APE outputs, the APE system
itself does not get benefited from it.
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Abstract
By learning the human post-edits, the automatic
post-editing (APE) models are often used to
modify the output of the machine translation
(MT) system to make it as close as possible
to human translation. We introduce the sys-
tem used in our submission of WMT’22 Au-
tomatic Post-Editing (APE) English-Marathi
(En-Mr) shared task. In this task, we first train
the MT system of En-Mr to generate additional
machine-translation sentences. Then we use
the additional triple to bulid our APE model
and use APE dataset to further fine-tuning. In-
spired by the mixture of experts (MoE), we use
GMM algorithm to roughly divide the text of
APE dataset into three categories. After that,
the experts are added to the APE model and dif-
ferent domain data are sent to different experts.
Finally, we ensemble the models to get better
performance. Our APE system significantly im-
proves the translations of provided MT results
by -2.848 and +3.74 on the development dataset
in terms of TER and BLEU, respectively. Fi-
nally, the TER and BLEU scores are improved
by -1.22 and +2.41 respectively on the blind
test set.1

1 Introduction

Automatic Post-Editing (APE) is the task of au-
tomatically editing the translations of MT system.
By using APE models, we can transfer MT system
from general domain to specific domain and then
reduce the workload of human post-edits. WMT
has been holding APE task competitions in dif-
ferent languages and fields since 2015. Now the
APE models are often based on transformer and
improved on this basis.

WMT 2022’s Automatic Post-Editing task fo-
cused on English-Marathi language pairs. The
difference from the previous competition is that
the target language is changed to Marathi. Be-
sides, two new fields, medical care and tourism,

1Work performed during internship in Samsung Research
China - Beijing

are added. Participants are provided a training set
with 18000 instances, a development set and a test
set with 1000 instances respectively. Each dataset
consists of source, machine-translation and post-
edit triplets. The source sentences in English come
from the healthcare, tourism, and general/news do-
mains. The MT outputs are automatic translations
to Marathi. The post-edits are human revisions of
the target elements. This synthetic training data is
prepared as a part of the 2022 APE shared task. The
data is created by taking a parallel corpus, where
the source data is translated using an MT system,
and the references are considered as post-edits. Par-
ticipants are also allowed to use any additional data
for systems training.

Last year’s research mainly focused on trans-
fer learning and data augmentation. Sharma et al.
(2021) utilizes the most advanced En-De machine
translation model and further fine tune the APE
dataset on this basis. We adopted the same strat-
egy to train our baseline model with transfer learn-
ing and data augmentation. Due to the lack of a
ready-made machine translation model of En-Mr
as the basis of the APE model, we trained an APE
model by using synthetic data and additional data.
The APE model is then further fine-tuned with the
APE dataset, which is data enhanced. In order to
make use of the domain information in the train-
ing dataset, we use the mixture of experts structure
and add adapter modules in the transformer, so
that different adapters can learn the distribution of
different domain information, thus improving the
translation performance. The contributions of this
work are as follows. (1) Data augmentation. We
trained an external MT to obtain more data sets
consistent with ape tasks. At the same time, we
use Google translation to back translate the post-
edits in the training set. The dataset is composed
as follows: back translation <s> machine transla-
tion as input and post-edits as reference output. On
the other hand, we take source <s> post-edits as
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input and post-edits as reference output. (2) Mix-
ture of adaptors. We implement the mixture of
experts structure to deal with inputs from different
domains, in which we use lightweight adapters as
experts and introduce a classifier for expert rout-
ing. Considering the effect of directly initializing
the adapter for training is not good enough, so we
first set an adapter in the model and pre-train the
model to obtain the adapter weight W0. Since the
training set comes from three different fields, we
add two additional adapters, which will read W0 as
a parameter for initialization. We freeze all model
parameters when training the model, and only fine
tune the weights of the three adapters.

2 Related Work

Last year’s WMT’21 APE shared task proved that
both transfer learning and data augmentation were
very effective. Facebook Fair’s WMT19 news
translation model was used in Shinhyeok’s sys-
tem (Oh et al., 2021). By continuously adding
different levels of datasets, the model gradually
understood APE tasks. For further improvement,
Oh et al. (2021) used a multi-task learning strat-
egy with dynamic weight average. By adding re-
lated subtasks, the model can learn unified rep-
resentation. In addition, they also used the data
set provided by ape shared task in previous years.
Finally, their TER and BLEU scores were 17.28
and 71.55, respectively. Oh et al. (2021) used the
most advanced machine translation model as the
pre-trained model. The WikiMatrix dataset was
uesd to make the model distribution tend to match
the field. After that, APE samples from former
years were added for fine adjustment. Finally, their
model’s TER and BLEU scores were 17.85 and
70.5, respectively.

Considering the experience of previous com-
petitions, we used the existing data to train an
En-Mr translation model as a data augmentation
method due to the lack of advanced En-Mr trans-
lation model. Inspired by the MoE, the built-in
adapter module enables the model to learn three
data distributions at the same time to improve the
performance of translation.

3 Dataset

3.1 Data Source

We used the WMT22 official English-Marathi
APE dataset which consisted of a training

and development set. We also used syn-
thetic training data, which was prepared as a
part of the 2022 APE shared task. In addi-
tion, we collected LoResMT2021 Shared Task
(mac) data, CVIT PIBv1.3 (Philip et al., 2021),
bible-uedin (Christodouloupoulos and Steedman,
2015) as some additional data to train our mod-
els. The LoResMT2021 Shared Task focused
on machine translation of COVID-19 data for
both low-resource spoken and sign languages.
The LoResMT2021 dataset contains three parts:
English-Irish, English-Marathi, and Taiwanese
Sign language-Traditional Chinese. We only use its
English-Marathi parallel corpora. CVIT PIBv1.3 is
used in this work as a source for articles published
in several Indian Languages to extract a multiparal-
lel corpus. Sentences in CVIT PIBv1.3 aligned par-
allel corpus between 11 Indian languages, crawling
and extracting from the press information bureau
website. Bible-uedin is a multilingual parallel cor-
pus created from translations of the Bible compiled
by Christos Christodoulopoulos and Mark Steed-
man. The summary of the corpora used is provided
in Table 1.

3.2 Data augmentation

As shown in Table 1, we have collected lots
of parallel corpus but these corpus lack the MT
part (LoResMT2021, CVIT PIBv1.3, Bible-uedin,
and some synthetic training data). Following the
method of generating synthetic training data, we
first train a machine translation system, and then
use this system to translate the source data. To gen-
erate translation similar to synthetic training data
as much as possible, we did not use src-pe pairs but
src-mt pairs when training MT models. We use all
parallel corpus to train MT model. We are able to
achieve a BLEU score of 25.3 with our MT model.
Finally, we translate the sources we collected by
our MT model and achieve approximately 2500000
triplets.

Yang et al. (2020) utilized data augmentation
with external MT to generate the external trans-
lated sentence, which could help generate the post-
editing sentence. We take a similar line of approach
by leveraging external MT to generate the external
translated sentence but the result is not satisfac-
tory. So we utilize external MT to generate the
external back-translations. We’d like to use back-
translations to add a set of parallel corpora for the
model to learn the rules of post-edits. In addition,
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Source pairs type
APE dataset 18k src-mt-pe

Synthetic training data 2.57m src-mt-pe
LoResMT2021 21k src-pe
CVIT PIBv1.3 117k src-pe

Bible-uedin 60k src-pe

Table 1: Publicly available corpuses for Indian lan-
guages.

we also use sentence X that contains a source sen-
tence (src) and a post-editing sentence (pe) as input.
We assume that the model can learn the invariance
in post-editing rules by leaking some information
of pe.

In this paper, we use Dape for [src, <s>, mt],
Dbac for [src’, <s>, mt] and Dpe for [src and <s>,
pe].

4 Model

We describe our baseline model followed by the de-
tails of domain and task adaptation in this section.

4.1 Fine-tuned Transformer

Compared with previous APE tasks, this task fo-
cuses on English-Marathi language pairs. It is im-
possible to fine tune APE dataset on the basis of
MT model. We decided to solve the APE task as
NMT alike task. To adapt this idea with Trans-
former, we use a special token <s> to concatenate
src and mt to generate input sentence: [src, <s>,
mt]. We first trained the APE model with the stan-
dard Transformer (Vaswani et al., 2017) structure
using synthetic training data and additional data. In
order to fix the mismatch between the APE model
training data and the distribution in our task, we fur-
ther fine-tuned the APE model on the APE dataset.

To further solve the problem of limited data, we
use the data collected in the Data section to adopt
three data augmentation methods. First, we use
Google translation system to create the src’ from
the provided pe text. We simply concatenate the
src’ with mt to form the new input: [src’, <s>,
mt]. After this, the model input consists of [src,
<s>, mt] and [src’, <s>, mt], which contains 36000
triplets. The second method is to add [src, <s>,
pe] as the input on the basis of the original input
and the third method is to add the first two as input
at the same time. In the first way, we’d like to add
a group of parallel corpora for the rules in editing
after model learning. The second way is to think

Figure 1: Adapter overall framework.

that by adding PE, the model can learn the rules
of human post editing from SRC, MT and PE. The
purpose to adopt the third method is to combine the
first two methods for a better model performance.

4.2 Adapter

We found that the APE dataset contains medical,
tourism and general/news data. Inspired by the
mixture of experts (Jacobs et al., 1991), we intro-
duce adapters (Bapna and Firat, 2019; Pham et al.,
2020) to handle different domains. We suppose
that different adapters can process different domain
data, so as to keep other parameters unchanged to
improve the translation performance of the model
for each domain, thus improving the overall TER
and BLEU.

The structural diagram of the adapter is shown in
Figure 1, which is similar to the FFN layer in trans-
former, but has a low dimensional hidden layer
for nonlinear activation. In the experiment, we
add the adapter layer after the FFN layer for each
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block in the decoder. Each adapter layer consists
of three adapters. A classifier is introduced after
the encoder to generate domain information (Do-
main Info) and it decides which adapter is activated
during inference. Overall, in the inference phase,
the classifier first generates domain information
(Domain Info) by the encoder output, and then the
corresponding adapter in each decoder is activated
by the domain information. Finally, same with a
general NMT model, the output is generated with
an auto-regressive process.

The adapter model is trained with a pipe-line
training process. First, an APE model is trained as
the base model. Different from the original baseline
model, an adapter is injected to each decoder layer
and will be used to initialize the other two adapters
in the same decoder layer. Then the classifier is
trained by using a multi-classification task. Finally,
with all other parameters are frozen, the parameters
of the adapters are optimized by using the NMT
task.

5 Experiment and Results

5.1 Experimental Settings

Both our En-Mr MT model and APE model are
implemented with Fairseq framework (Ott et al.,
2019). The Transformer model used for both mod-
els is Transformer-base with 6 encoders and 6 de-
coders, and the hidden size is 2048 for FFN layers
and 512 for all other layers. The adapter used in our
model is also modified to have a larger parameter
size, where the hidden size of the inner layer is set
to 2048.

Because we lacked the MT model, we learned
the vocabulary of En and Mr by BPE. Specially,
for English, we use token first and then BPE, while
for Marathi, we directly conduct BPE. We believe
that if token is used for Marathi before BPE, the
model cannot learn the rules for punctuation after
manual post-edits. The thing we should notice
that the vocabulary of the En-Mr model cannot be
shared which contains 31K and 31K sub-tokens for
En and Mr respectively. Since the input of APE
model contains En and Mr, the joint vocabulary of
APE should be the total number of tokens in both
languages, about 58K sub-tokens. All models were
trained on NVIDIA Tesla V100. We use Adam
optimizer to optimize with a fixed learning rate of
5e-4. The max tokens are set to 4096, about 64
batch sizes.

System BLEU TER
baseline 64.62 19.93
+Fine-tuning (Dape) 66.19 18.71
+Fine-tuning (Dape+Dbac) 66.44 18.56
AVG_FT (Dape+Dbac) 66.94 18.06
+Fine-tuning (Dape+Dpe) 67.24 18.09
AVG_FT (Dape+Dpe) 67.37 17.91
+Fine-tuning (Dape+Dbac+Dpe) 66.93 18.30
AVG_FT (Dape+Dbac+Dpe) 67.22 17.93

Table 2: This is the experimental result of fine-tune.
AVG represents the weighted average of the model.

System BLEU TER
baseline 64.62 19.93
Adpt (Dape+Dbac) 66.89 18.34
AVG_Adpt (Dape+Dbac) 66.84 18.36
Adpt (Dape+Dpe) 67.55 17.90
AVG_Adpt (Dape+Dpe) 67.55 17.89
Adpt (Dape+Dbac+Dpe) 67.71 17.85
AVG_Adpt (Dape+Dbac+Dpe) 67.67 17.89

Table 3: This is the experimental result of adapter. AVG
represents the weighted average of the model.

5.2 Fine-tuned Transformer
Table 2 shows the experimental results of APE fine-
tune model, where the baseline result is produced
by directly calculating scores between the provided
mt and pe. The first experiment is performed by
fine-tuning all parameters of the pre-trained Trans-
former on the official training set. The TER and
BLEU on the 2022 dev set were 18.71 and 66.91,
which were -1.2 and + 1.57 better than baseline.
This demonstrates that fine-tuning the pre-trained
NMT model on the limited dataset can be useful.

The experiment of training model onDape+Dbac

and Dape+Dpe for data augmentation shows sig-
nificant improvements on the performance. How-
ever, after performing experiments with different
checkpoints of APE model, we find that the best
checkpoint is not the best saved checkpoint for
translation, which motivates us to average model
weight parameters near the best checkpoint. The
avg model results show averaging the model weight
parameters near the best checkpoint can help the
model to be closer to the convergence point locally.
The performance of the model is improved well.

5.3 Adapter
Table 3 shows the experimental results of APE
adapter model. For Dape+Dbac dataset, adding the
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System BLEU TER
baseline 67.55 20.28
Finetune_PRIMARY 69.66 19.36
Adapter_CONTRASTIVE 69.96 19.06

Table 4: Results on test dataset.Finetune_PRIMARY
ensembles AVG_FT (Dape+Dbac) and AVG_FT
(Dape+Dpe). Adapter_CONTRASTIVE ensembles
AVG_Adpt (Dape+Dbac) and AVG_Adpt (Dape+Dpe).

adapter does not improve the APE performance
of the model, but for Dape+Dpe dataset, adding
adapter makes the model reduce TER and improve
BLEU, reaching the lowest TER and the highest
BLEU respectively. The experimental results show
that the rough classification of data and the learning
of their respective distributions are more conducive
to the better APE performance of the model.

5.4 Results on Test set
Table 4 shows the official results of our proposed
methods on WMT22 test dataset with a baseline
scores of 20.28 and 67.55, which is higher than
the development dataset with 19.93 and 64.62 in
terms of TER and BLEU. Despite its high quality,
our proposed methods show effectiveness on this
test dataset. We find that there are some Arabic
numerals and Devanagari numerals in post-edits.
However, because we are not familiar with Marathi,
we do not know the number modification rules.
Therefore, we replace all Arabic numerals in test
results with Devanagari numerals to get the final
post-edits.

6 Conclusion

In this paper, we first use the data augmentation
method to build the src’ <s> mt and src <s> pe as
two additional training datasets. We suppose that
the enhanced datasets can effectively improve the
performance of the APE model. The experimental
results show that the data augmentation method we
used is effective. At the same time, it also shows
that adding pe can make the model automatically
learn the rules of human post-edits. After that,
we draw lessons from mixture of experts. We add
adapters in the APE baseline model. And we let the
training data be sent to different adapters through
the trained classifier so that the model can further
learn the post-editing rules in different translations.
The experimental results confirm that our system
can modify the output of MT system with high
efficiency and quality. Compared with baseline,

the TER and BLEU scores are improved by -1.22
and + 2.41 respectively.
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Abstract

In the seventh edition of the WMT Biomedical
Task, we addressed a total of seven language
pairs, namely English/German, English/French,
English/Spanish, English/Portuguese, En-
glish/Chinese, English/Russian, English/Italian.
This year’s test sets covered three types of
biomedical text genre. In addition to scientific
abstracts and terminology items used in previ-
ous editions, we released test sets of clinical
cases. The evaluation of clinical cases transla-
tions were given special attention by involving
clinicians in the preparation of reference trans-
lations and manual evaluation. For the main
MEDLINE test sets, we received a total of 609
submissions from 37 teams. For the ClinSpEn
sub-task, we had the participation of five teams.

∗The contribution of the authors are the following: MN
prepared the MEDLINE test sets, performed test set validation,
manual validation, and organized the task; AJY performed
test sets validation, manual validation and the automatic eval-
uation; RR, PT, MVN, LY, DW. GMDN, FV performed test
sets validation and manual validation; CGn created reference
translation and performed manual validation; RB performed
manual validation; DJE, SLL, EFM, MK organized the Clin-
SpEn sub-task; CGa created the baselines; and AN collected
information on participants’ methods, performed test sets val-
idation, manual validation and created reference translation.
All authors approved the final version of the manuscript. E-
mail for contact: mariana.lara-neves@bfr.bund.de

1 Introduction

This is the seventh edition of the biomedical trans-
lation task offered under the umbrella of the Con-
ference on Machine Translation (WMT22).1 This
shared task builds on the six previous editions of
the biomedical translation task (Bojar et al., 2016;
Jimeno Yepes et al., 2017; Neves et al., 2018; Baw-
den et al., 2019, 2020; Yeganova et al., 2021). Sim-
ilar to previous years, we addressed seven language
pairs, in both directions, namely: German/English
(de2en and en2de), Spanish/English (es2en and
en2es), French/English (fr2en and en2fr), Ital-
ian/English (it2en and en2it), Portuguese/English
(pt2en and en2pt), Russian/English (ru2en and
en2ru), and Chinese/English (zh2en and en2zh).

In the biomedical translation task this year, par-
ticipants were asked to translate shared test sets
(described in Section 2) comprising documents be-
longing to three different text genres: scientific ab-
stracts, clinical cases and terminology items. In to-
tal, seven language pairs (14 translation directions)
were included this year, with both low-resource and
high-resource pairs. For each language direction,
we provide baseline systems relying on pre-trained

1https://www.statmt.org/wmt22/
biomedical-translation-task.html
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neural translation models (described in Section 3).
In order to help gain insight into the system per-
formance, we collected information on the specific
material and methods used in the systems from
the participants (Section 4). System outputs for
each task were evaluated both automatically and
manually (as described in Section 5 and 6, respec-
tively). One particular growth direction that we
explored this year was the inclusion of full clinical
case descriptions. A small set of five clinical cases
in English were included in the MEDLINE test sets
from English and a larger clinical corpus corpus
was also included in the ClinSpEn track. We also
involved clinicians in the preparation of gold stan-
dard translations and manual evaluation of clinical
cases for en2fr and en2es.

Two types of submissions were received for the
MEDLINE test sets: those submitted using (i) our
submission system (hereafter called BioWMT), as
in previous years, and (ii) the OCELoT submission
system,2 which was also used in the WMT general
task.

In addition, an independent subtask was held as
part of the Shared Task: ClinSpEn.3 ClinSpEn
focuses on the automatic translation of clinical
content in both English and Spanish. Three sub-
tracks are proposed based on different possible
use cases: clinical case reports, clinical terminol-
ogy obtained from literature and Electronic Health
Records (EHR) and ontology concepts. Unlike the
rest of the tasks, ClinSpEn’s evaluation was done
through CodaLab4 and new submissions can still
be made.

2 Test sets

In this section we describe the various test sets that
we released for this year’s edition of the WMT
Biomedical task.

2.1 MEDLINE test sets

The MEDLINE test sets consisted of abstracts and
case reports from the MEDLINE database. We
aimed to retrieve 50 articles for each language di-
rection. For the directions into English, the test
sets consisted only of parallel abstracts. For the
directions from English, we manually selected five
clinical case reports, which were only available in

2https://github.com/AppraiseDev/OCELoT
3https://temu.bsc.es/clinspen
4https://codalab.lisn.upsaclay.fr/

competitions/6696

English and which were the same across all lan-
guage pairs. We completed each of these test sets
with parallel abstracts. Table 1 summarizes the
MEDLINE test sets as released in our submission
system and in OCELoT. The only difference be-
tween the test sets released in our submission sys-
tem and in OCELoT was that the latter contained
aligned sentences, as provided by the automatic
alignment. We describe the construction of the
parallel abstracts and clinical case reports below.

2.1.1 Parallel abstracts
For the parallel abstracts, we downloaded the MED-
LINE database5 around the end of February and
selected parallel abstracts for each language pair.
We targeted publications whose PMID (PubMed
identifier) was not included in any of our previ-
ous test sets and training data. We processed the
abstracts using the same tools for sentence split-
ting and sentence alignment as in previous years
(Yeganova et al., 2021). We manually checked the
quality of the alignment using the Appraise tool
(Federmann, 2010) and present results in Table 2.

2.1.2 Clinical case reports
For test sets from English, we decided to select
clinical case presentations in order to include docu-
ments that would be closer in genre to clinical nar-
ratives found in patient records. Five clinical cases6

were selected from publications of the Journal of
Medical Case Reports (an open access publication)
according to the following criteria:

• Reports a case related to oncology (based on
the expertise of clinicians that agreed to con-
tribute to the evaluation);

• Reports containing specific values such as lab
results;

• Reports containing a limited amount of ref-
erences to images and tables (to maximize
resemblance with EHR narrative);

Both the abstract of the article and the full case
presentation were included in the test set.

A gold standard translation of the clinical cases
(both abstract and full case presentations) was cre-
ated for French. We used the free version of

5https://www.nlm.nih.gov/databases/download/
pubmed_medline.html

6PMIDs: 19144122, 21838907, 35303936, 35313981,
35144678
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Pairs Documents Sentences (WMTBio) Sentences (OCELoT)
Mono. Parallel Total Mono. Parallel Mono. Parallel

de2en - 50 50 - 434/453 - 419
en2de 5 45 50 210/- 462/467 210 435

es2en - 50 50 - 459/461 - 436
en2es 5 45 50 210/- 397/404 210 377

fr2en - 50 50 - 319/325 - 308
en2fr 5 45 50 210/- 608/609 210 590

it2en - 43 43 - 457/461 - 427
en2it 5 39 44 210/- 372/364 210 327

pt2en - 50 50 - 459/478 - 454
en2pt 5 45 50 210/- 465/454 210 443

ru2en - 50 50 - 408/398 - 351
en2ru 5 45 50 210/- 526/545 210 453

zh2en - 48 48 - 281/409 - 277
en2zh 5 45 50 210/- 424/362 210 359

Table 1: Number of documents and sentences in the MEDLINE test sets. For the Ocelot test sets, the test sets have
the same number of sentences for both languages in a pair.

Language OK Source>Target Target>Source Overlap No Align. Total

de2en 358 (85.2%) 26 (6.2%) 14 (3.3%) 7 (1.7%) 15 (3.6%) 420
en2de 383 (87.0%) 28 (6.4%) 13 (3.0%) 4 (0.9%) 12 (2.7%) 440

es2en 367 (83.4%) 32 (7.3%) 11 (2.5%) 11 (2.5%) 19 (4.3%) 440
en2es 350 (90.9%) 11 (2.9%) 14 (3.6%) 2 (0.5%) 8 (2.1%) 385

fr2en 253 (84.7%) 21 (7.0%) 6 (2.0%) 1 (0.3%) 18 (6.0%) 299
fr2en § 288 (93.6%) 5 (1.6%) 5 (1.6%) 2 (0.6%) 8 (2.6%) 308
en2fr 450 (86.8%) 64 (12.4%) 1 (0.2%) - 3 (0.6%) 518

en2fr § 590 (97.8%) 13 (2.2%) - - - 603

it2en 340 (79.0%) 44 (10.2%) 19 (4.4%) 14 (3.2%) 14 (3.2%) 431
en2it 261 (75.9%) 21 (6.1%) 16 (4.6%) 4 (1.2%) 42 (12.2%) 344

pt2en 426 (93.8%) 17 (3.7%) 8 (1.8%) 3 (0.7%) - 454
en2pt 365 (82.2%) 36 (8.2%) 14 (3.1%) 7 (1.6%) 22 (4.9%) 444

ru2en 226 (64.4%) 25 (7.1%) 17 (4.8%) 7 (2.0%) 76 (21.7%) 351
en2ru 281 (61.2%) 32 (7.0%) 30 (6.5%) 25 (5.5%) 91 (19.8%) 459

zh2en 264 (94.0%) 4 (1.4%) 8 (2.8%) - 5 (1.8%) 281
en2zh 346 (95.9%) 3 (0.8%) 5 (1.4%) - 7 (1.9%) 361

Table 2: Statistics (number of sentences and percentages) of the quality of the automatic alignment for the MEDLINE
test sets. § Results after manual correction of sentence segmentation and/or alignment.

DeepL7 followed by two rounds of post-edition:
first, a native French speaker with formal transla-
tion training and knowledge of clinical text (AN)
post-edited the machine translation (MT) focusing
on linguistic quality and fluidity of the translation;
second, a clinician (CG) post-edited the revised
text focusing on clinical correctness and adequacy
of the text with the French clinical narrative genre.
In this second step, special attention was given to
values such as lab results, which can be expressed
using different units in English vs. French. The

7http://www.DeepL.com/Translator

goal was to produce a translation that would con-
vey properly processed information for direct use
by a clinician. We computed BLEU scores between
the original machine translated text and successive
rounds of post-edition. BLEU between MT and
the final gold standard translation was 38 for ab-
stracts and 42 for full texts, while BLEU between
the translator post-edited text and final gold stan-
dard translation was 63 for abstracts and 85 for full
texts.
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2.2 ClinSpEn test sets

For each of the ClinSpEn sub-tracks, a gold stan-
dard dataset was prepared with human translations
created by domain experts. Additionally, a big col-
lection of monolingual background data was pro-
vided for each subtrack so that participants could
test the scalability of their systems or use them for
other purposes.

Sub-track 1: Clinical case reports. This sub-
track deals with the translation of clinical case re-
ports. Clinical cases are a text genre where a pa-
tient’s current condition, medical history, clinical
presentation, examinations, treatment and diagno-
sis are described. They can be pretty similar to
EHR both in form and content. However, unlike
EHR, clinical cases are often free of privacy-related
issues. This means that they can be used as substi-
tute to train NLP systems for the clinical domain.

The gold standard dataset’s clinical cases were
carefully selected to cover a wide range of as-
pects related to COVID-19: different types of pa-
tients (children, adults, elderly and pregnant peo-
ple, babies), different comorbidities (cancer, men-
tal health issues, immunosuppressed patients) and
symptomatology (mild and severe presentations,
dermatologic, immunologic and psychiatric man-
ifestations, thrombosis, etc.). The reports were
translated from English to Spanish by a profes-
sional medical translator in a first step and revised
by a clinical expert in a second step. The back-
ground set includes around 3,800 clinical case re-
ports in English extracted from PubMed Central.

The dataset includes a total of 202 COVID-19
clinical case reports (50 for the dev set, 152 for the
test set) and the direction of this sub-track is en2es.

Sub-track 2: Clinical terminology. This sub-
track deals with the translation of clinical termi-
nology. Translating clinical terminology is very
relevant due to the existence of many established
concepts and multi-word expressions (MWE) that
need to be translated not only correctly but also
consistently. Systems able to consider not only full
sentences but also specific terms are able to provide
more accurate translations, something fundamental
in the clinical domain.

The gold standard terms were extracted from
biomedical literature and electronic health records
using information retrieval systems, filtered and
translated and revised by professional medical
translators. Amongst other semantic classes, the se-

lected terms include diseases, symptoms and find-
ings, procedures, drugs and species. The back-
ground set includes over 200,000 concepts in Span-
ish from the same sources.

The dataset includes a total of 19,128 terms
(7,000 for the dev set and 12,128 for the test set).
The direction of this sub-track is es2en.

Sub-track 3: Ontology concepts. This sub-track
deals with the translation of concepts extracted
from ontologies. Ontologies are one of the main
ways of structuring knowledge. In the clinical do-
main, they are widely used mainly to normalize
the content of electronic health records. However,
their everyday use can be greatly limited by their
unavailability in languages other than English. MT
systems specifically trained for this type of data
can be of great help to improve the impact of these
ontologies or to ease a manual translation process.

The gold standard for this task is made up of con-
cepts extracted from various free-access biomedi-
cal ontologies and taxonomies and then manually
translated by a professional medical translator. Due
to their origin, these concepts may present differ-
ent challenges than terms extracted from free text,
such as semi-structured concepts. The background
set includes 300,000 concepts in English extracted
from the same sources.

The dataset includes a total of 2,189 concepts
(300 for the dev set and 1,789 for the test set). The
direction of this sub-track is en2es.

3 Baselines

The baselines for en2de, en2fr, en2es, en2pt, de2en,
fr2en, es2en, and pt2en were computed using mod-
els we trained ourselves in the previous years us-
ing Marian NMT (Junczys-Dowmunt et al., 2018).
The baselines for en2zh, en2it, en2ru, zh2en, it2en,
zh2en were computed using pre-trained Marian
models distributed as HuggingFace “Transformers”
library models,8 without trying to increase their
performance on the biomedical texts through fur-
ther fine-tuning. The computation was performed
on a single Nvidia A5000 GPU card.

The baselines are strongly outperformed by the
participants of the biomedical task, with the excep-
tion of en2it where all reach similar and very high
levels, in excess of 47 BLEU. Especially our zh2en
baseline needs improvement.

8https://huggingface.co/Helsinki-NLP
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4 Teams and systems

In this section we describe the teams and the num-
ber of submissions that we received from our two
submission systems. When considering both the
MEDLINE and the ClinSpEn sub-task, we had a
total of 40 participating teams. We describe the
submissions for each of them below.

4.1 MEDLINE participation

This year, we received a total of 609 submissions
from 37 teams (see Table 3), from the following
countries: China (7), France (2), Poland (1), Rus-
sia (1), and South Korea (1). Most teams (N=25),
however, did not report a country of affiliation.

The number of submissions for each of the MED-
LINE test sets are split into to parts: from English
in Table 4 and into English in Table 5. We received
around 100 more submissions for the test sets into
English (354 vs. 255).

As in the 2020 and 2021 editions, we asked par-
ticipants to fill out a survey with key information
regarding the specific material and methods used in
their self-identified primary runs used for manual
evaluation. The survey comprised 15 questions cov-
ering the translation methods and corpora used. For
consistency with previous years, the only change
to the questionnaire was the addition of a question
regarding the method used by teams to estimate
the environmental impact of their experiments. We
included the CO2 measurement methods identified
in (Bannour et al., 2021) as options.

Only six teams supplied information about their
“best run”, and none reported measuring the envi-
ronmental impact of their participation to the task.
On average, the time spent by participants to supply
information for one language pair was 7 minutes
and 13 seconds (median: 3 minutes and 27 sec-
onds). This is consistent with the previous survey
statistics and suggests that the time commitment
for supplying this information is limited, even for
teams addressing more than one language pair.

All teams used transformer-based neural MT
(NMT), relying mostly on existing implementa-
tions. Contrarily to last year, teams addressing sev-
eral language pairs adapted their setup across them.
See Table 6 for details of the teams’ methods.

For in-domain data, teams used the training data
distributed as part of the task as well as many of
the sources described in (Névéol et al., 2018). Ad-
ditional corpora used for Chinese were prepared by
the teams but are not always available or described

in detail, except for ParaMed, which relied on the
New England Journal of Medicine to create a par-
allel corpus (Liu and Huang, 2021). Terminologies
used by team Summer are available online.9 The
in-domain monolingual corpora used often use dif-
ferent selections of MEDLINE. We can also notice
that the use or pre-processing of the same resources
can differ between teams as the size reported for
seemingly similar data can differ significantly. Ta-
ble 7 provides details of the in-domain data used
by the teams.

For relevant language pairs, parallel data from
other WMT tracks (e.g. General or News Task) was
used. Out-of-domain data was also used in the form
of pre-trained base models. Table 8 shows details
of the out-of-domain data used by the teams.

4.2 ClinSpEn Participation

In total, 11 different teams both from academia
and industry registered for the ClinSpEn subtask,
although only 5 teams ended up submitting their
predictions. Four of them participated in all sub-
tracks, with one of them participating only in sub-
track 2 (clinical terminology translation). Table 9
presents an overview of the teams who submitted
their predictions to the task.

5 Automatic evaluation

In this section we present the automatic evalua-
tion that we performed for the MEDLINE and the
ClinSpEn test sets.

5.1 MEDLINE test sets

For the MEDLINE test sets, we calculated the
BLEU scores in the same way as previous years
(Yeganova et al., 2021). We split the runs that
we received into three groups: (i) runs to our
BioWMT submission system; (ii) runs to the
OCELoT Biomedical Task; and (iii) runs to the
OCELoT General Task. As already discussed
above, the only difference between the test sets
in OCELoT and the ones in our submission system
is that the sentences are aligned in OCELoT.

Results for runs to our BioWMT submission sys-
tems are presented in Tables 10 and 11. Runs for
the Biomedical Task in OCELoT are shown in Ta-
bles 12 and 13. The run identifiers were mapped
to names (e.g. run1, run2), and the mapping is pre-
sented in the Appendix (Tables 23 and 24). Finally,

9https://github.com/neulab/covid19-datashare/
tree/master/parallel/terminologies
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Team ID Institution Lime Survey Publication

AISP-SJTU AI Speech Co. and Shanghai Jiao Tong
University, China

ALMAnaCH-Inria Inria, France
aoligei -
bhcs-mt -
ChicHealth ChicHealth, China
DLUT -
DTrans -
DTranx -
ECNU-MT East China Normal University, China (Zheng et al., 2022)
eTranslation European Commission
GTCOM -
Huawei-BabelTar Huawei Technologies (Wang et al., 2022)
Huawei-TSC Huawei Technologies (Wu et al., 2022)
JDExploreAcademy.Vega-MT -
KwaiMT -
Lan-BridgeMT Lan-Bridge, China
LanguageX -
LT22 -
Manifold -
MeteorMan -
neunlplab -
njupt-mtt -
ONLINE-A -
ONLINE-B -
Online-G -
ONLINE-W -
ONLINE-Y -
OpenNMT -
PAHT -
PROMT PROject MT, Russia
SPECTRANS Université Paris Cité, France (Ballier et al., 2022)
SRPOL Samsung Research, Poland
SRT Samsung Research, South Korea (Choi et al., 2022)
Summer Tencent, China (Li et al., 2022)
super_star -
szdx -
taicangshaxigaozhong -
ustc-mt -
V2ray -

Table 3: List of the participating teams.

due to the large number of teams and runs, we split
the General Task runs into various results tables.
The from-English submissions are split into two
parts in Tables 14 and 15, while the identifier map-
ping is provided in Tables 25 and 26. Similarly, the
into-English submissions are split into two parts
in Table 16 and 17, while the identifier mapping is
provided in Tables 27 and 28.

In general, the scores were much higher for runs
to the BioWMT submission system than for the
ones from the OCELoT test sets. All runs for the
BioWMT submissions system outperformed our
baseline. We did not provide a baseline for the
OCELoT test sets.

5.2 ClinSpEn - CodaLab

The ClinSpEn subtask was evaluated in the Co-
daLab platform (Pavao et al., 2022). CodaLab is
an open-source platform for running competitions,
with some of its main advantages being automatic
scoring and leaderboard building.

ClinSpEn submissions were evaluated using five
common MT metrics: COMET (Rei et al., 2020),
METEOR (Banerjee and Lavie, 2005), SacreBLEU
(Post, 2018), BLEU (Papineni et al., 2002) and
ROUGE (Lin, 2004). The main metric used for
comparison is SacreBLEU, which is the same as
OCELoT uses, and the other metrics are given so
that participants are able to evaluate their systems
from different perspectives. Part of the evaluation
scripts were shared by the MedMTEval organizers
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Teams en2de en2es en2fr en2it en2pt en2ru en2zh Total

AISP-SJTU - - - - - - G2 2
ALMAnaCH-Inria - - - - - G2 - 2
aoligei - - - - - - O2G2 4
bhcs-mt - - - - - - G4 4
ChicHealth - - - - - - B1 1
DLUT - - - - - - G4 4
Dtranx O1G3 O2 O3 O3 O3 O2G2 O2G2 23
eTranslation - - - - - G3 - 3
ECNU-MT - - - - - - B1 1
GTCOM - - - - - - G3 3
Huawei-BabelTar B3 B3 B3 B3 B3 B3 B3 21
Huawei-TSC B3O6 - B3O4 - - B3O3 B3O6G7 38
JDExploreAcademy.Vega-MT G2 - - - - G2 G7 11
KwaiMT - - - - - - G3 3
Lan-BridgeMT O2G4 - - - - O2G4 O4G4 20
LanguageX - - - - - - G4 4
Manifold - - - - - - G7 7
MeteorMan - - - - - - G1 1
neunlplab - - - - - - G6 6
njupt-mtt O1 - O3 - - O3G4 O3G7 21
ONLINE-A G1 - - - - G2 G1 4
ONLINE-B G1 - - - - G1 G2 4
Online-G G1 - - - - G1 G1 3
ONLINE-W G2 - - - - G1 G1 4
ONLINE-Y G2 - - - - G2 G2 6
OpenNMT G5 - - - - - - 5
PAHT - - - - - - B1 1
PROMT G3 - - - - G5 - 8
SPECTRANS - - O4 - - - - 4
SRPOL - - - - - G6 - 6
SRT - B3 - - - - - 3
super_star - - - - - G2 - 2
szdx - - - - - - G7 7
taicangshaxigaozhong - - - - - - G2 2
ustc-mt - - O6 - - O2 O2G6 16
V2ray - - - - - - G1 1

Total 40 8 26 6 6 55 114 255

Table 4: Overview of the submissions from all teams and test sets translating from English. We identify submissions
using the WMT Biomedical Submission System (WMTBio) with a “B”, the ones for OCELoT Biomedical Task
with an “O”, and the ones for OCELoT General Task with an “G”. The value next to the letter indicates the number
of runs for the corresponding test set, language pair, and team.

(Ezhergina et al., 2022), who used the HuggingFace
datasets library (Lhoest et al., 2021). Multiple tests
were performed to check that the results of our
evaluation scripts are comparable to those returned
by OCELoT and the WMT submission system. In
total, participants were allowed to upload up to 7
predictions for each sub-track.

Tables 18, 19 and 20 show the overall results of
each of the three sub-tracks. Only each team’s best
run is presented.

6 Manual evaluation

For the MEDLINE test sets, we performed a man-
ual evaluation for some selected runs from some
of the teams. In this section we describe how the
teams and runs were selected, the results of the

manual evaluation, and our observations on the
quality of the translations.

6.1 Selected teams and submissions

A team qualified for manual evaluation if the par-
ticipants either submitted a survey or a publications
with details about their submission (see Section 4).
Only the following six teams complied with this re-
quirement: ECNU-MT, Huawei-BabelTar, Huawei-
TSC, SPECTRANS, SRT, and Summer.

During the submission, we asked the participants
to identify a primary submission for each language
pair, as indicated in Tables 10, 11, 12, 13, 14, 15,
16, and 17. For those teams who submitted runs to
both submission systems, we chose the ones sent
to the BioWMT submission system. The Huawei-
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Teams de2en es2en fr2en it2en pt2en ru2en zh2en Total

AISP-SJTU - - - - - - G1 1
ALMAnaCH-Inria - - - - - G2 - 2
aoligei - - - - - - O4G5 9
bhcs-mt - - - - - - G5 5
bymt - - - - - - G1 1
ChicHealth - - - - - - B3 3
Dtranx O3G3 O1 O3 O3 O3 O2G2 O2G2 24
DLUT - - - - - - G3 3
ECNU-MT - - - - - - B2 2
Huawei-BabelTar B3 B3 B3 B3 B3 B3 B3 21
Huawei-TSC B3O4 - B3O3 - - B3O4 B3O6G4 33
JDExploreAcademy.Vega-MT G2 - - - - G3 G7 12
KwaiMT - - - - - - G3 3
Lan-BridgeMT O2G3 - - - - O2G3 O6G4 20
LanguageX - - - - - - G6 6
Liaoning University - - - - - - G3 3
LT22 G5 - - - - - - 5
neunlplab - - - - - - G6 6
njupt-mtt O1 - O3 - - O2G3 O2G7 18
ONLINE-A G1 - - - - G1 G1 3
ONLINE-B G1 - - - - G1 G1 3
Online-G G1 - - - - G1 G1 3
ONLINE-W G2 - - - - G1 G1 4
ONLINE-Y G2 - - - - G2 G2 6
PAHT - - - - - - B1 1
pingan_mt - - - - - - G1 1
PROMT G2 - - - - G1 - 3
SRPOL - - - - - G7 - 7
SPECTRANS - - O4 - - - - 4
SRT - B3 - - - - - 3
star - - - - - - G4 4
super_star - - - - - - G6 6
szdx - - - - - - O1G7 8
Summer - - - - - - B3 3
taicangshaxigaozhong - - - - - - G4 4
ustc-mt - - O5 - - O2 O1G5 13
V2ray - - - - - - G1 1

Total 38 7 62 6 6 107 128 354

Table 5: Overview of the submissions from all teams and test sets translating into English. We identify submissions
using the WMT Biomedical Submission System (WMTBio) with a “B”, the ones for OCELoT Biomedical Task
with an “O”, and the ones for OCELoT General Task with an “G”. The value next to the letter indicates the number
of runs for the corresponding test set, language pair, and team.

Team ID Language pair NMT imple-
mentation

Trained Fine-
Tuned

BT LM

ECNU_MT en2zh, zh2en fairseq No Yes Yes Yes
Huawei_BabelTar en/de,es,fr,zh fairseq No Yes Yes, into en No
Huawei_BabelTar en/it fairseq No Yes Yes, for it2en Yes, for it2en
Huawei_BabelTar en/pt,ru fairseq No Yes Yes, from en Yes, into en

Huawei_TSC en/ru Fairseq No Yes Yes No
Huawei_TSC en/de, en/zh Marian, Fairseq No Yes Yes No
Huawei_TSC en/fr Marian, Fairseq Yes No Yes No
SPECTRANS en2fr SYSTRAN

Pure Neural
Server 9.8

No Yes No Yes

SRT es2en Fairseq Yes No Yes No
Summer zh2en Fairseq Yes No Yes No

Table 6: Overview of methods used by participating teams. Information is self-reported through the dedicated
survey for each selected “best run”. BT indicates if backtranslation is used and LM if language models were used.
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Language
pair

team Parallel corpus size (sentence
pairs)

Monolingual
corpus

size (sen-
tences)

de/en Huawei_BabelTar MEDLINE corpus supplied by WMT biomedical task
organizers

2.4 M Yes 53 M (en)

Huawei_TSC UFAL corpus and "internal corpus" 2.75M No -

es/en Huawei_BabelTar MEDLINE corpus supplied by WMT biomedical task
organizers

1.1 M Yes 52.5 M (en)

Huawei_TSC corpus provided by WMT biomedical task organizers 8.1 M Yes 8 M (en)
SRT MEDLINE, UFAL, MeSpEN and Scielo 3.47 M Yes 3.5M (es),

13.9M (en)

fr/en Huawei_BabelTar MEDLINE corpus supplied by WMT biomedical task
organizers

2.8 M Yes 53 M (en)

Huawei_TSC corpus provided by WMT biomedical task organizers 6 M Yes 2 M (en)
45M (en)

SPECTRANS in-house translation memory on diabetes and UFAL 2,700 (TM) No -

it/en Huawei_BabelTar MEDLINE corpus supplied by WMT biomedical task
organizers

139 K Yes 55 M (en)

pt/en Huawei_BabelTar MEDLINE corpus supplied by WMT biomedical task
organizers

7.1 M Yes 52.5 M (en)

en/ru Huawei_BabelTar Corpus supplied by WMT biomedical task organizers. 32 K Yes 52.5 M (en)
Huawei_TSC Corpus supplied by organizers 24 K Yes 46 M (en)

en/zh ECNU_MT NEJM en-zh corpus 66 K Yes 40 M (en)
Huawei_BabelTar TAUS corpus 847 K Yes 53 M (en)
Huawei_TSC UFAL and in-house corpus (unspecified) 10.87M No -
Summer MEDLINE, TAUS and covid-19 terminology by Google

and Facebook
0.5 M Yes 6.9 M (en)

Table 7: Overview of in-domain corpora used by participating teams. Information is self reported through our
survey for each selected "best run" (information on the NVIDIA model is inferred from their task paper).

Language
pair

team Parallel corpus size (sentence
pairs)

Monolingual
corpus

size
(sen-
tences)

en/de Huawei_BabelTar "in house data" 6 M No -
Huawei_TSC WMT general corpus and "internal corpus" 200 M Yes 10M

(de)
46M
(en)

en/es Huawei_BabelTar WikiMatrix 3.3 M No -
Huawei_TSC WMT general corpus and "internal corpus" 200 M No -
SRT ParaCrawl, CommonCrawl, Europarl, News Commen-

tary, Tatoeba, and UN Corpus
518 M No -

en/fr Huawei_BabelTar "in house corpus" 3 M No -
Huawei_TSC "in house data" 600 M No -
SPECTRANS UFAL Corpus 2,7 M No -

en/it Huawei_BabelTar "in house data" 6 M No -

en/pt Huawei_BabelTar WikiMatrix 3 M No -

en/ru Huawei_BabelTar "in house data" 3 M No -
Huawei_TSC Corpus supplied by the WMT 2022 general task 200 M Yes 46 M

(en) 40
M (ru)

en/zh ECNU_MT NA - No -
Huawei_BabelTar "in house corpus" 3 M No -
Huawei_TSC "in house data" 200 M Yes 46M

(en)
92M
(zh)

Summer Corpus supplied by the WMT 2021 News task 30.6 M Yes 132 M
(en)

Table 8: Overview of out-of-domain (OOD) corpora used by participating teams. Information is self reported
through our survey for each selected "best run".
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Team ID Affiliation Clinical Cases Terminology Ontology
(en2es) (es2en) (en2es)

Avellana Translation Avellana Translation
DtranX DtranX
Huawei Huawei Technologies

Logrum_UoM University of Manchester
Optum Optum

Table 9: List of the participating teams who submitted results to the ClinSpEn subtask.

Teams Runs en2de en2es en2fr en2it en2pt en2ru en2zh

ChicHealth run1 - - - - - - 55.71
ECNU-MT run1 - - - - - - 39.85
HuaweiTSC run1 39.00 - 40.17* - - 41.27 50.79

run2 39.14* - 38.81 - - 40.53 50.78*
run3 38.91 - 39.00 - - 40.63* 50.68

Huawei-BabelTar run1 33.42 44.70 37.85 46.49 52.55 36.97 47.68
run2 33.13 44.15 37.49 47.83 51.74 36.74 47.30
run3 33.04 44.75 36.21 48.48 51.47 37.03 45.13

PAHT run1 - - - - - - 48.26
SRT run1 - 52.14 - - - - -

run2 - 51.96* - - - - -
run3 - 52.35 - - - - -

Baseline - 29.43 39.15 28.12 47.13 42.39 27.59 39.79

Table 10: BLEU scores for "OK" aligned MEDLINE test sentences, from English, for submissions to the BioWMT
Biomedical system. Primary runs are marked by *.

Teams Runs de2en es2en fr2en it2en pt2en ru2en zh2en

ChicHealth run1 - - - - - - 34.27
run2 - - - - - - 36.48
run3 - - - - - - 46.14*

ECNU-MT run1 - - - - - - 24.75*
run2 - - - - - - 24.49

HuaweiTSC run1 46.95 - 50.95* - - 48.86 42.69
run2 47.12* - 50.36 - - 50.01* 42.56*
run3 46.82 - 50.48 - - 49.58 42.76

Huawei-BabelTar run1 43.10 56.60 49.08 48.83 56.03 46.16 46.12
run2 43.75 59.02 48.86 49.16 55.44 46.26 42.49
run3 43.38 58.64 49.36 49.89 55.63 46.75 41.80

PAHT run1 - - - - - - 31.16
SRT run1 - 59.54 - - - - -

run2 - 59.43 - - - - -
run3 - 60.45* - - - - -

Summer run1 - - - - - - 44.39*
run2 - - - - - - 44.31
run3 - - - - - - 46.17

Baseline - 33.28 40.42 37.29 42.98 47.57 31.23 20.41

Table 11: BLEU scores for “OK” aligned MEDLINE test sentences, into English, for submissions to the BioWMT
Biomedical system. Primary runs are marked by *.

BabelTar did not not indicate their primary run for
some languages, and so we chose the ones with
the highest scores, namely: run1 for en2de, en2fr,
pt2en, and en2pt; run2 for de2en and es2en; and
run3 for en2es, fr2en, it2en, en2it, ru2en, en2ru,
zh2en, en2zh.

For submissions into English, we randomly se-

lected the abstracts until we achieved at least 100
perfectly aligned (OK) sentences (see Table 2). We
performed pairwise comparison between the refer-
ence translation and the selected submissions. The
results from the manual validation are presented
in Table 21. Unfortunately, we could not perform
manual validation for submissions for de2en and
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Teams Runs en2de en2es en2fr en2it en2pt en2ru en2zh

aoligei run1 - - - - - - 38.71
run1 - - - - - - 38.25*

Dtranx run1 34.84* 49.18* 34.73 48.92 47.83 30.78* 41.14
run2 - 49.18 35.18 47.52 37.84 17.45 36.25*
run3 - - 23.84* 29.20* 24.44* - -

Huawei-TSC run1 34.15 - 35.02 - - 26.88 40.25
run2 34.04 - 34.98 - - 30.59 40.13
run3 34.28 - 35.56 - - 26.73* 40.21
run4 33.97 - 36.13* - - - 39.99
run5 34.28 - - - - - 40.12
run6 34.28* - - - - - 39.42

Lan-BridgeMT run1 31.10 - - - - 25.52* 37.86
run2 31.67* - - - - 25.28 36.90
run3 - - - - - - 37.99
run4 - - - - - - 37.98*

njupt-mtt run1 33.94 - 35.41 - - 25.64 36.53
run2 - - 35.07 - - 27.09 40.25
run3 - - 34.69 - - 26.73 39.87

SPECTRANS run1 - - 20.68 - - - -
run2 - - 31.63* - - - -
run3 - - 7.32 - - - -
run4 - - 20.34 - - - -

ustc-mt run1 - - 33.69 - - 26.97 40.02
run2 - - 34.40 - - 30.95 39.63
run3 - - 35.30 - - - -
run4 - - 34.91 - - - -
run5 - - 35.41 - - - -
run6 - - 35.55 - - - -

Table 12: BLEU scores for the OCELoT Biomedical Task, from English. An asterisk * indicates the primary run.

it2en.
For submissions from English, we manually se-

lected 19 sentences from one of the clinical case
reports, namely, PMID 35144678. Subsequently,
we completed the sets with abstracts from the re-
spective test sets. For the abstracts and exclusively
for en2fr, for which a reference translation for the
clinical case reports is available, we carry out a
pairwise comparison between the reference trans-
lation and the selected submissions. For the case
report for the remaining languages, we could only
perform pairwise comparisons between teams’ sub-
missions. The results from the manual validation
are presented in Table 22.

In both tables, we show in bold the comparisons
in which one of the teams (or the reference transla-
tion) was statistically significant, according to the
Wilcoxon test. The reference translation had a sim-
ilar quality to many of the submissions. However,
none of the teams was (statistically significant) su-
perior than the reference translation.

6.2 Quality of the translations
Here we discuss the quality of the translations af-
ter manual validation of the selected abstracts and
clinical case report.

en2fr As in previous years, the overall transla-
tion quality was high, with many automatically
produced sentences exhibiting only small differ-
ences with the reference translation. In the exam-
ples shown below, correct translations are shown
in black font while incorrect ones appear in red
fond. Passages underlined within the same exam-
ple block mark text that should carry the same
meaning across statements.

(1) en: risk of short-term stroke
fr1: risque d’AVC à court terme
fr2: risque d’accident vasculaire cérébral
de courte durée

(2) en: the long-term stroke ARD
fr1: la DRA de l’AVC à long terme
fr2: la maladie d’Alzheimer et les démences
apparentées à long terme

However, longer or more complex sentences
seemed more difficult to address for automatic sys-
tems. For examples, acronym modifiers were some-
times translated erroneously 1. We also noticed
recurring issues pertaining to acronym translation
(Example 2) as well as consistency throughout an
entire document.
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Teams Runs de2en es2en fr2en it2en pt2en ru2en zh2en

aoligei run1 - - - - - - 40.85
run2 - - - - - - 39.75
run3 - - - - - - 41.26*
run4 - - - - - - 40.24

DTranx run1 35.55 54.21* 44.94 45.85 54.89 38.40 41.27
run2 22.60* - 46.38 42.04 53.67 19.34* 39.22*
run3 37.28 - 26.91* 25.28* 28.06* - -

Huawei-TSC run1 37.59 - 45.66 - - 35.57 41.25
run2 37.49 - 51.86 - - 36.33 41.50*
run3 37.62 - 46.76 - - 35.85 41.33
run4 37.60* - - - - 36.33* 41.33
run5 - - - - - - 41.66
run6 - - - - - - 41.46

Lan-BridgeMT run1 35.09 - - - - 31.71* 40.64
run2 34.99* - - - - 31.24 40.09
run3 - - - - - - 39.78
run4 - - - - - - 39.31
run5 - - - - - - 40.73*

njupt-mtt run1 37.09 - 45.68 - - 35.05 41.39
run2 - - 44.85 - - 35.87 41.32
run3 - - 44.94 - - - -

SPECTRANS run1 - - 25.81 - - - -
run2 - - 40.10* - - - -
run3 - - 25.87 - - - -
run4 - - 9.69 - - - -

ustc-mt run1 - - 45.11 - - 35.39 41.05
run2 - - 44.81 - - 38.48 -
run3 - - 45.77 - - - -
run4 - - 45.27 - - - -
run5 - - 0.02 - - - -

szdx - - - - - - - 36.00

Table 13: BLEU scores for the OCELoT Biomedical Task, into English. An asterisk * indicates the primary run.

For example, the acronym POAF, corresponding
to the term Perioperative atrial fibrillation, was
translated as POAF, FOPA, FPO or FAPO. Sys-
tems commonly used a combination of two or more
of these solutions throughout a whole document,
while the reference translation consistently used
the correct translation, FAPO.

This year, manual validation for en2fr was per-
formed by one evaluator with translation training
and one clinician. The overall agreement on indi-
vidual pair comparison was moderate at 64%. How-
ever, the overall ordering of systems and reference
according to both annotator remained unchanged.

fr2en As in previous years, translation quality
was high, resulting in many automatically produced
translations whose quality was indistinguishable
from that of reference translations. Concerning
the quality of this year’s references, they gener-
ally corresponded better to direct (as opposed to
approximate) translations of the source abstracts,
with respect to previous years. This is reflected by
the pairwise comparison, which shows that the ref-
erence translation is systematically preferred over

automatic translations. The most common transla-
tion errors were in term and acronym translation
(Examples 3-6), prepositional and adjectival attach-
ment (Examples 7 and 8 and in lack of capitalisa-
tion (of terms and in particular of acronyms). Term
translation was particularly important for overall
translation quality, often counterbalancing other
more minor errors such as the naturalness of lexi-
cal and syntactic choices and correct capitalisation.

(3) fr: polyradiculonévrite inflammatoire
démyélinisante chronique
en1: chronic inflammatory demyelinating
polyradiculoneuropathy
en2: *chronic inflammatory demyelinating
polyradiculoneuritis

(4) fr: défaut de croissance staturo-pondérale
en1: failure to thrive
en2: *staturo-weight growth defect

(5) fr: les inhibiteurs des cotransporteurs sodium-
glucose de type 2 (iSGLT2, gliflozines)
en1: sodium-glucose cotransporter type 2 in-
hibitors (SGLT2i, gliflozins)
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Teams Runs en2de en2ru en2zh

AISP-SJTU run1 - - 37.74
run2 - - 37.70

ALMAnaCH-Inria run1 - 20.22 -
run2 - 9.77 -

aoligei run1 - - 38.71
run2 - - 38.25

bhcs-mt run1 - - 33.61
run2 - - 34.34
run3 - - 39.82
run4 - - 39.82

DLUT run1 - - 36.22
run2 - - 35.58
run3 - - 36.32
run4 - - 30.54

Dtranx run1 0.03 30.78 41.14
run2 34.84 17.45 37.98
run3 34.43 - - -

eTranslation run1 - 27.53 -
run2 - 27.28 -
run3 - 27.53 -

GTCOM run1 - - 38.18
run2 - - 37.06
run3 - - 36.94

HuaweiTSC run1 - - 36.36
run2 - - 35.72
run3 - - 35.89
run4 - - 37.95
run5 - - 35.66
run6 - - 37.95
run7 - - 39.42

JDExploreAcademy.Vega-MT run1 33.32 29.77 39.24
run2 33.50 29.49 41.16
run3 - - 41.16
run4 - - 41.16
run5 - - 40.40
run6 - - 40.63
run7 - - 39.82

KwaiMT run1 - - 37.34
run2 - - 41.06
run3 - - 41.06

Lan-Bridge run1 31.10 25.52 37.86
run2 31.67 25.28 37.86
run3 31.84 25.38 36.90
run4 34.43 30.91 37.97

LanguageX run1 - - 42.17
run2 - - 41.79
run3 - - 41.35
run4 - - 41.57

Manifold run1 - - 38.00
run2 - - 38.40
run3 - - 37.99
run4 - - 38.10
run5 - - 38.15
run6 - - 38.21
run7 - - 38.31

MeteorMan run1 - - 38.58
neunlplab run1 - - 34.76

run2 - - 35.21
run3 - - 35.21
run4 - - 35.03
run5 - - 35.14
run6 - - 35.30

Table 14: BLEU scores for OCELoT General Task, from English (part 1/2).
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Teams Runs en2de en2ru en2zh

njupt-mtt run1 - 26.43 40.25
run2 - 27.20 36.53
run3 - 30.95 41.16
run4 - 25.36 37.19
run5 - - 37.09
run6 - - 37.03
run7 - - 37.99

ONLINE-A run1 33.21 28.04 37.94
run2 - 28.04 -

ONLINE-B run1 34.88 30.90 41.17
run2 - - 41.17

Online-G run1 33.76 29.68 37.31
ONLINE-W run1 34.88 31.59 39.42

run2 37.37 - -
ONLINE-Y run1 34.88 30.90 41.17

run2 33.38 28.23 37.79
OpenNMT run1 30.72 - -

run2 30.92 - -
run3 30.47 - -
run4 29.48 - -
run5 30.89 - -

PROMT run1 32.82 29.18 -
run2 32.70 31.13 -
run3 32.70 31.07 -
run4 - 29.68 -
run5 - 29.18 -

SRPOL run1 - 27.78 -
run2 - 27.61 -
run3 - 27.24 -
run4 - 27.62 -
run5 - 27.52 -
run6 - 27.58 -

super_star run1 - - 36.94
run2 - - 41.06

szdx run1 - - 38.58
run2 - - 38.23
run3 - - 38.25
run4 - - 38.25
run5 - - 38.25
run6 - - 38.25
run7 - - 38.25

taicangshaxigaozhong run1 - - 13.75
run2 - - 38.58

ustc-mt run1 - - 36.45
run2 - - 32.60
run3 - - 31.31
run4 - - 38.01
run5 - - 35.46
run6 - - 38.45

V2ray run1 - - 41.16

Table 15: BLEU scores for OCELoT General Task, from English (part 2/2).

en2: *type 2 sodium glucose co-transporter
inhibitors (iSGLT2, gliflozins)

(6) fr: une VCE pour OGIB en pratique courante
en1: VCE for OGIB in routine practice
en2: *an ECV for OGIB in current practice10

10This example is interesting, since the original French uses
English acronyms rather than French ones, presumably as they
are well-known terms that have been borrowed into scientific
French. The correct English translation is therefore to use the

(7) fr: pour les migraines et céphalées en grappe
en1: for migraines and cluster headaches
en2: *for cluster migraines and headaches

(8) fr: les personnes non diabétiques
en1: non-diabetic people
en2: *non-people with diabetes

As an additional comment, some of the MT out-

same acronyms as the French.
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Teams Runs de2en ru2en zh2en

AISP-SJTU run1 - - 39.22
ALMAnaCH-Inria run1 - 25.64 -

run2 - 21.69 -
aoligei run1 - - 40.85

run2 - - 41.45
run3 - - 40.03
run4 - - 40.34
run5 - - 40.85

bhcs-mt run1 - - 31.75
run2 - - 39.09
run3 - - 39.46
run4 - - 40.95
run5 - - 41.03

bymt run1 - - 39.22
Dtranx run1 35.55 38.40 41.27

run2 37.28 19.34 39.22
run3 22.60 - -

DLUT run1 - - 33.10
run2 - - 32.95
run3 - - 33.22

HuaweiTSC run1 - - 36.85
run2 - - 34.63
run3 - - 36.73
run4 - - 36.73

JDExploreAcademy.Vega-MT run1 35.92 37.90 39.03
run2 36.24 37.85 40.63
run3 - 37.90 40.73
run4 - - 40.48
run5 - - 41.14
run6 - - 41.41
run7 - - 41.27

KwaiMT run1 - - 41.09
run2 - - 39.89
run3 - - 39.88

Lan-Bridge run1 35.09 31.71 40.64
run2 34.99 31.24 40.37
run3 35.62 38.86 40.31
run4 - - 40.73

LanguageX run1 - - 41.95
run2 - - 39.50
run3 - - 41.21
run4 - - 40.57
run5 - - 41.38
run6 - - 41.08

Liaoning University run1 - - 39.44
run2 - - 34.62
run3 - - 34.67

LT22 run1 24.69 - -
run2 24.59 - -
run3 24.22 - -
run4 23.19 - -
run5 23.19 - -

neunlplab run1 - - 34.76
run2 - - 35.21
run3 - - 35.21
run4 - - 35.03
run5 - - 35.14
run6 - - 35.30

Table 16: BLEU scores for OCELoT General Task, into English (part 1/2).

puts appeared robust to unexpected variation in the
source texts, such as rare cases of odd capitalisa-
tion, additional spaces within words and the use

of inclusive writing, as can be seen in Example 5
with the word patient.e.s ‘patient (m/f)’, indicating
the masculine and feminine forms simultaneously.
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Teams Runs de2en ru2en zh2en

njupt-mtt run1 - 35.53 34.51
run2 - 35.66 41.38
run3 - 33.09 34.56
run4 - - 35.63
run5 - - 36.40
run6 - - 0.5
run7 - - 35.05

ONLINE-A run1 35.76 36.72 36.67
ONLINE-B run1 35.50 38.27 41.03
Online-G run1 35.30 37.69 35.88

ONLINE-W run1 35.50 32.51 37.41
run2 37.62 - -

ONLINE-Y run1 35.50 38.27 41.03
run2 35.64 36.05 36.89

pingan_mt run1 - - 41.86
PROMT run1 35.06 33.10 -

run2 35.06 - -
SRPOL run1 - 33.68 -

run2 - 34.22 -
run3 - 33.77 -
run4 - 34.54 -
run5 - 34.58 -
run6 - 34.83 -
run7 - 34.85 -

star run1 - - 41.26
run2 - - 41.71
run3 - - 40.20
run4 - - 40.85

super_star run1 - - 40.42
run2 - - 39.48
run3 - - 41.07
run4 - - 41.59
run5 - - 38.80
run6 - - 40.85

szdx run1 - - 36.00
run2 - - 39.22
run3 - - 39.20
run4 - - 39.22
run5 - - 39.22
run6 - - 11.95
run7 - - 39.22

taicangshaxigaozhong run1 - - 39.22
run2 - - 39.22
run3 - - 14.77
run4 - - 39.22

ustc-mt run1 - - 23.17
run2 - - 25.00
run3 - - 34.96
run4 - - 35.71
run5 - - 36.68

V2ray run1 - - 41.17

Table 17: BLEU scores for the OCELoT General Task, into English (part 2/2).

Teams Run COMET METEOR SacreBLEU BLEU ROUGE

Avellana Translation run1 0.392 0.643 36.64 35.19 0.633
DtranX run1 0.461 0.663 41.06 39.36 0.649

Logrus_UoM run1 0.423 0.633 38.17 36.50 0.627
Optum run4 0.442 0.644 38.12 36.42 0.628

Table 18: Results for the first ClinSpEn sub-track (en2es clinical case report translation).
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Teams Run COMET METEOR SacreBLEU BLEU ROUGE

Avellana Translation run1 0.196 0.570 15.88 15.65 0.686
DtranX run1 1.115 0.611 35.84 35.21 0.701
Huawei run7 1.190 0.624 41.57 41.32 0.721

Logrus_UoM run1 0.979 0.588 26.87 26.67 0.671
Optum run2 0.982 0.574 27.94 27.57 0.656

Table 19: Results for the second ClinSpEn sub-track (es2en clinical terminology translation).

Teams Run COMET METEOR SacreBLEU BLEU ROUGE

Avellana Translation run1 0.384 0.570 31.72 30.42 0.762
DtranX run1 1.249 0.627 58.24 57.24 0.783

Logrus_UoM run1 0.949 0.626 39.10 36.74 0.768
Optum run1 1.119 0.588 44.97 43.96 0.747

Table 20: Results for the third ClinSpEn sub-track (en2es ontology concept translation).

Lang. dir. Pair Abstracts Sentences
Total A>B A=B A<B Total A>B A=B A<B

es2en reference vs. Huawei-BabelTar 14 6 4 4 106 23 47 36
reference vs. SRT 14 3 3 8 106 14 45 47
Huawei-BabelTar vs. SRT 14 3 7 4 106 11 73 22

fr2en SPECTRANS vs. Huawei-TSC 18 5 0 13 103 23 34 46
SPECTRANS vs. Huawei-BabelTar 18 3 2 13 103 24 33 46
SPECTRANS vs. reference 18 3 0 15 103 23 12 68
Huawei-TSC vs. Huawei-BabelTar 18 11 3 4 103 40 44 19
Huawei-TSC vs. reference 18 6 1 11 103 35 24 44
Huawei-BabelTar vs. reference 18 2 5 11 103 29 22 52

pt2en Huawei-BabelTar vs. reference 12 1 10 1 101 18 70 13

ru2en reference vs. Huawei-BabelTar 14 7 6 1 108 31 59 18
reference vs. Huawei-TSC 14 8 3 3 108 44 54 10
Huawei-BabelTar vs. Huawei-TSC 14 1 11 2 108 7 87 14

zh2en Summer vs. Huawei-BabelTar 17 12 2 3 - - - -
Summer vs. reference 17 6 7 4 - - - -
Summer vs. Huawei-TSC 17 2 11 4 - - - -
Summer vs. ECNU-MT 17 14 2 1 - - - -
Huawei-BabelTar vs. reference 17 1 9 7 - - - -
Huawei-BabelTar vs. Huawei-TSC 17 1 4 12 - - - -
Huawei-BabelTar vs. ECNU-MT 17 11 0 6 - - - -
reference vs. Huawei-TSC 17 4 9 4 - - - -
reference vs. ECNU-MT 17 16 1 0 - - - -
Huawei-TSC vs. ECNU-MT 17 14 3 0 - - - -

Table 21: Pairwise manual evaluation results for the MEDLINE abstracts test set (into English). We show in bold
the values which were statistically significant (Wilcoxon test). We only show the team (or reference) in bold, if both
the abstracts and sentences were statistically significant (bold).

Nevertheless, most systems struggled to deal with
the ambiguity linked to the translation of personal
pronouns sa, son, ses ‘his/her’ in a context where it
refers to an unspecified individual (e.g. the teenager,
the child, etc.); most systems chose the masculine
‘his’, whereas the correct translation would either
be gender neutral ‘they’ or ‘his or her’.

From the manual evaluation results (cf. Ta-
ble 21), it appears that Huawei-TSC is the superior

system; although results are not significant for com-
parisons against the other two systems), it is the
only system of the three that is not significantly
worse than the reference translation. Results for
abstracts and for sentences appear to correlate, al-
though it was possible on occasions for an abstract
to be of better quality than another despite hav-
ing fewer better individual sentences (due to the
differing importance of different errors).

710



Lang. dir. Pair Abstracts Sentences
Total A>B A=B A<B Total A>B A=B A<B

en2de reference vs. Huawei-TSC 11 2 5 4 79 12 50 17
reference vs. Huawei-BabelTar 11 10 0 1 79 57 20 2
Huawei-TSC vs. Huawei-BabelTar 12 9 3 0 96 70 24 2

en2es Huawei-BabelTar vs. SRT 11 1 2 8 115 11 35 57
reference vs. Huawei-BabelTar 11 7 2 1 86 51 25 10
reference vs. SRT 10 0 7 3 86 16 50 20

en2fr reference vs SPECTRANS 6 6 0 0 87 79 7 0
reference vs. Huawei-TSC 6 6 0 0 87 76 10 0
reference vs. Huawei-BabelTar 6 6 0 0 87 75 10 1
SPECTRANS vs. Huawei-TSC 6 1 1 4 87 27 20 40
SPECTRANS vs. Huawei-BabelTar 6 5 1 0 87 63 18 6
Huawei-TSC vs. Huawei-BabelTar 6 6 0 0 87 59 25 3

en2it Huawei-BabelTar vs. reference 11 3 3 5 100 18 56 26

en2pt reference vs. Huawei-BabelTar 6 0 6 5 105 19 54 32

en2ru Huawei-TSC vs. Huawei-BabelTar 9 3 4 2 102 15 66 16
Huawei-TSC vs. reference 8 3 2 3 84 14 56 13
Huawei-BabelTar vs. reference 8 2 2 4 84 15 55 13

en2zh Huawei-BabelTar vs. ECNU-MT 14 8 3 3 - - - -
Huawei-BabelTar vs. Huawei-TSC 14 10 1 3 - - - -
Huawei-BabelTar vs. reference 13 3 2 8 - - - -
ECNU-MT vs. Huawei-TSC 14 7 4 3 - - - -
ECNU-MT vs. reference 13 2 5 6 - - - -
Huawei-TSC vs. reference 13 2 1 10 - - - -

Table 22: Pairwise manual evaluation results for the MEDLINE abstracts test set (from English). We show in bold
the values which were statistically significant (Wilcoxon test). We only show the team (or reference) in bold, if both
the abstracts and sentences were statistically significant (bold).

en2pt As shown in Table 22, the translations
from the Huawei-BabelTar team achieved a simi-
lar quality as the reference translation. Similar to
previous years, the translations had a good quality
and we found just some few mistakes. For instance,
errors in acronyms are still present, e.g. “Reforma
Psiquiátrica Brasileira (RBP)” instead of “Reforma
Psiquiátrica Brasileira (RPB)”. Some translations
might not include mistakes, but we thought that
one of them was clearer than the other, e.g. “desfe-
chos desfavoráveis tanto para a mãe quanto para o
feto” (unfavorable outcomes for both mother and
fetus) instead of “maus desfechos maternos e fetais”
(poor maternal and fetal outcomes). Finally, we
found it interesting that all query terms remained in
English, namely “status epilepticus”, “refractory”,
“treatment” and “topiramate”, for both translations,
in one particular sentence that discussed queries to
a search tool.

pt2en As shown in Table 21, the translations
from the Huawei-BabelTar team achieved a similar
quality as the reference translation. The quality of
both translations were usually good, but we found
some differences in some situations in which we

preferred one translation over the other. For in-
stance, in cases such as “out of 100” instead of
“of 100”. Further, in one particular sentence, “rule
out” was used as a translation for “discutir”, while
the other used “discuss”. In many situations, we
preferred translations that placed the verbs at the
beginning of the sentence, such as in “We exam-
ined the absenteeism parameters...” instead of at
the end, such as in “the parameters for granting
time off work .... were analyzed”. Further, we
find that the use of a specific and more suitable
terms, such as “absenteeism”, “productivity”, and
“control” are preferred to a longer or informal ex-
pression, such as “granting time off work”, “being
productive” and “combat”, respectively.

en2es This year the overall quality of the trans-
lations was mixed. Both SRT and reference trans-
lations were of very good quality, and SRT was
in many occasions indistinguishable to reference
translations in the manual evaluation when it came
to quality. However, the Huawei-BabelTar system
had a mixed result with very good translations and
translations of doubtful quality that clearly affected
the fluency and readability of the output.
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Capitalization and word separation were the
main issues encountered when evaluating Huawei-
BabelTar’s output at a sentence level e.g. “La pan-
demia de covid-19 ofreció a la humanidad un portal
a través del cual podemos romper con el pasado e
imaginar nuestromundo de nuevo.”

As in past years, the translation of acronyms and
out-of-dictionary terminology remains a challenge
for MT systems, Huwaei-BabelTar being a perfect
example of such issues: “Describimos el caso de
una cirrosis descompensada que desarrolló hpp y
se resolvió con trasplante hepático, permaneciendo
asintomática tras diez años de seguimiento.”

When dealing with long named entities, word or-
der remained a challenge for both SRT and Huawei-
BabelTar, as in the following example where the
numbers relate to the acronym “MMPs”, and not
to the noun “haplotypes”:

(9) Source: To evaluate MMPs 7, 8, 12, and 13
haplotypes and their association with CRC.

Reference: Evaluar haplotipos de las MMP 7,
8, 12, y 13 y su asociación con CCR.

Huawei-BabelTar: Evaluar los haplotipos
7,8, 12 y 13 (incorrect word order and word
separation) delmmp (word separation and cap-
italization) y su asociación con el ccr (capital-
ization of acronyms).

SRT: Evaluar los haplotipos 7, 8, 12 y 13 (in-
correct word order) de MMP y su asociación
con el CCR.

The reference translations were of very high
quality overall, creating readable and fluent out-
puts at the level of sentences and abstracts. The
main thing that differentiated reference translations
from machine translations was the fact that they
were less literal and followed writing conventions
in Spanish for the domain, such as the use of pas-
sive reflexive tense which is more common in Span-
ish medical and scientific writings. However, the
reference translation omitted relevant information
or added implicit information from the text, which
affect the overall quality of those translations when
compared with the MT systems.

es2en This year the overall quality of the trans-
lations was mixed, with some very good quality
translations coming from the MT systems (which
made them nearly indistinguishable from the refer-
ence translations) to poorly written translations (in-
cluding reference translations). Such is the case as

well for the source text, which included some very
high quality abstracts and also some poorly writ-
ten abstractsn which contained grammatical errors
such as lack of capitalization, wrong punctuation
or word separation as in the following example:

(10) estudio observacional, relacional, transversal,
en 185 derechohabientes de una unidad de
medicina familiar del 15 de junio al 15 de
agosto de 2020

This affected the quality of the output of both
MT systems, Huwaei-BabelTar and SRT, which
closely followed the source text:

(11) Huwaei-BabelTar: observational, relational,
cross-sectional study in 185 beneficiaries of a
family medicine unit from June 15 to August
15, 2020.

SRT: observational, relational, cross-sectional
study in 185 beneficiaries of a family
medicine unit from June 15 to August 15,
2020.

On the other hand, SRT proved to be more robst
than Huwaei-BabelTar and the reference transla-
tion, and was able to deal with poor source text
much more consistently such as in the example:

(12) Source: Existen múltiples causas delesiones
ureterales, siendo la principal yatrogénica.

SRT: There are multiple causes of uretral in-
juries, the main one being iatrogenic.

Word order in longer sentences still remains a
challenge for MT systems, which do not always
correctly identify adverbs modifying long named
entities as seen the following example, where “mu-
chos” modifies the noun “biomarcadores”:

(13) Source : La expansión y el descubrimiento
de nuevas posibilidades de diagnóstico para
el uso de muchos biomarcadores de enfer-
medades cardiovasculares (ECV), incluidas
las isoformas de troponina cardioespecíficas
(cTnI, cTnT), se debe a la mejora de los méto-
dos de laboratorio para su determinación.

Huawei-BabelTar: The expansion and dis-
covery of new diagnostic possibilities for the
use of many cardiovascular disease (CVD)
biomarkers, including cardio-specific tro-
ponin isoforms (cTnI, cTnT), is due to im-
proved laboratory methods for their determi-
nation.
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SRT: The expansion and discovery of new
diagnostic possibilities for the use of many
cardiovascular disease (CVD) biomarkers,
including cardio-specific troponin isoforms
(cTnI, cTnT), is due to improved laboratory
methods for their determination.

Both SRT and Huawei-BabelTar create sen-
tences where “many” modifies “cardiovascular dis-
eases”, which changes the meaning of the transla-
tion in both cases.

However, the reference translations also had a
mixed quality when compared to the MT systems,
and presented issues such as poor capitalization or
incorrect word separation, as seen in the following
example: “There are many causesof ureteral injury
being the main one iatrogenic”.

Unlike previous years, SRT performed best in
the three-way manual evaluation, coming close to
the reference translation, due to the references’ var-
ied quality.

en2de Similarly to the last few years, the qual-
ity of the translations into German was very high.
Both participants provided mostly convincing trans-
lations - partially including slight restructurings
of the sentences. However, although the Huawei-
BabelTar team performed lower in comparison to
Huawei-TSC, the translations were in most cases
not necessarily of lower quality. Instead, the
Huawei-BabelTar system made two crucial errors,
namely a) translations tend to ignore the capitaliza-
tion of some German words, as well as b) single
words were sometimes written together (without
whitespace). Without those two error patterns, the
quality of both translation systems would be closer
to each other. Sometimes the systems used literal
translatations, which impacted the quality of the
translated text. For instance, “real-data” was trans-
lated into “reale Daten” (instead of “Daten aus der
Praxis”) or “essential” was translated into “essen-
tiell” instead of “unerlässlich”.

en2zh The translation quality this year was high.
Unlike last year where few sentences were so awk-
wardly translated that a reader could hardly guess
the original meaning, there were essentially no such
sentences this year.

The biggest factor that reduced translation qual-
ity was the treatment of biomedical terms. This
phenomenon came in two categories. The first
category was straightforward, where the correct
Chinese term was imprecise or downright wrong.

For instance, poor outcomes of medical treatments
was imprecisely translated as 不良结局 (poor end
results), when the precise Chinese medical term
was 不良预后 . In another example, Rights-based
Approaches (RBAs) was translated as 基于权利
的方法（非洲区域局） in which the full name
of the term was correctly translated, but the ab-
breviation in brackets was incorrectly translated as
Regional Bureau Africa.

The second category is more subtle, where the
translated Chinese term was correct, but the pres-
ence of the original English term (or lack thereof)
impacted readability. As an example, Diabetic
Retinopathy (DR) was ideally translated as 糖尿
病视网膜病变 (Diabetic Retinopathy, DR), where
the Chinese term, the English term, as well as the
English abbreviation in the source text were all
present. Another translation omitted the full En-
glish term, yielding 糖尿病视网膜病变 (DR),
which was still easily understandable. In another
case, however, healthcare workers (HCWs) was
translated to 医护人员 (HCW). Here, the abbrevi-
ation was translated in singular form, conflicting
with the plural form in the source text.

An interesting observation was that conventional,
typical wording and punctuation in the translation
significantly improved its quality. As a simple ex-
ample, experts disagreed was translated by one
system as 专家意见有分歧 (expert opinions dif-
fer) and by another as 专家们持不同看法 (ex-
perts have different opinions) . Both translations
conveyed the same information, but the first trans-
lation was much more typical – refined even, as
one would expect in a scientific publication. In
terms of punctuation, the 、 is unique to the Chi-
nese language when listing items. Hence when
given three overall reactions (positive, negative,
and ambivalent), the translation 三种总体反应
（积极、消极和矛盾） (note the punctuation be-
tween the first and second items) read much more
naturally than 三种总体反应（积极，消极和矛
盾） (exactly the same text, but a comma was used
instead). In these cases, the less typical writing
style was strictly speaking not wrong, but immedi-
ately hinted at the possibility that the text was not
written by a native speaker.

Finally, the conversion between Western and
Chinese number systems remained a challenge
for some systems. The amount 598.851 billion
yuan referred to a billion as 109. The closest Chi-
nese word to billion is 亿 , which is one order of
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magnitude smaller at 108. This particular amount
(598,851,000,000) was incorrectly converted to
598851 亿元 (59,885,100,000,000) by one sys-
tem, and correctly though confusingly converted to
558851 m 元 (558,851 million) by another.

zh2en Continuing the trend from the previous
two years, the translations this year are again of
high quality. Nevertheless, a few common types of
error still provide room for improvement.

Presumably, when a technical or medical term is
missing from the system’s dictionary, the individual
Chinese characters in the term are translated liter-
ally. For instance, 清零 (zero-COVID policy) was
translated by multiple systems as zeroing, which,
despite the context of a COVID-related abstract,
was hardly guessable. In another instance, 增强
现实 (augmented reality) is arguably a technical
term outside of the biomedical domain, but was
still successfully translated as augmented reality
by most systems and only one system produced
augmented real-world.

In other cases, when a Chinese word has a gen-
eral, non-biomedical meaning as well as a biomed-
ical one, a system might incorrectly opt for the
biomedical meaning. 服务阵地不断萎缩 (the
continuous shrinking/decline of the service loca-
tions) is an example, where 萎缩 should be given
the general translation of decline instead of the
biomedical translation of atrophy.

When a translation overly preserves the fidelity
of the source phrase, the resulting translation can
be awkward. Take 在明确针刺可调节神经、
血管这一共识的基础上 as an example. A more
readable and thus preferable translation was based
on the consensus that acupuncture can regulate
nerves and blood vessels, even though a word-for-
word translation would produce on the basis of the
consensus that acupuncture can regulate nerves
and blood vessels instead.

Similar to en2zh translations, numerical values
also proved challenging for some systems in zh2en.
4.26 万 (one 万 is 10,000) is equivalent to 42,600,
but the systems translated that variously to 4.26,000
or even 426 million.

6.3 Targeted evaluation in clinical cases

This year, special attention was given to the evalu-
ation of translations submitted by systems for the
clinical case reports, from English into French.

The manual evaluation focused on the crite-
ria that were used to select the clinical case:

(1) acronyms; (2) numeric values including lab val-
ues; and (3) clinical correctness. Examples 14 and
16 illustrate erroneous translations produced by au-
tomatic systems while example 15 illustrates a case
of an untranslated value. In the examples correct
translations are shown in black font while incorrect
ones appear in red fond. An asterisk indicates un-
grammatical segments. Passages underlined within
the same example block mark text that should carry
the same meaning across statements.

(14) en: screening test for SARS-CoV-2
fr1: dépistage systématique du SARS-CoV-2
en2: *dépistage systématique du
CoV-2 du SARS

(15) en: the platelet count was 113 × 10E9/L
fr1: les plaquettes sont à 113 000/mm3

en2: numération plaquettaire de 113 10E09/L

(16) en: General examination revealed
a wasted man
fr1: L’examen clinique objective
une dénutrition
en2: L’examen général a révélé
un homme obèse

Specifically, the translations were annotated us-
ing BRAT11 and aimed to assess the systems’ per-
formance on the specific aims. Annotations were
produced independently by one annotator with for-
mal translation training (AN) and one clinician
(CG). For annotations on the full-text case de-
scriptions, inter-annotator agreement on entities
was high overall (above 0.75 F-measure) for “val-
ues” and “acronyms” and lower for “errors” (above
0.35 F-measure), mainly due to the identification
of more errors by the clinician, which was ex-
pected. Inter-annotator agreement on attributes was
medium overall (above 0.55 F-measure) mainly
due to disagreements on “unclear” and “erroneous”
translations, while agreement was much higher for
“correct” and “untranslated” cases.

While the “correct” translation category was
the most prevalent for all systems for values and
acronyms, it can be noted that SPECTRANS pro-
duced more “Untranslated” occurrences. Overall,
Huawei-BabelTar produced more "Errors" than the
other two systems.

This analysis suggests that, in spite of high
BLEU scores, the automatic translations can con-
tain serious translation errors (e.g. Example 16)

11Brat Rapid Annotation Tool https://brat.nlplab.
org/(Stenetorp et al., 2012)
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and information that is not directly actionable for
clinicians (e.g. Example 15).

7 Conclusions

We presented an overview of this year’s edition of
the WMT Biomedical Task. We released test sets
for seven language pairs, and addressed a variety of
textual sources, such as scientific abstracts, clinical
case reports, and terminologies. We had a record
number of participating teams and of submissions.
All submissions were automatically evaluated in
terms of BLEU scores, with respect to reference
translations, whenever available. We also manually
evaluated a selection of the submissions, and sim-
ilar to previous years, the translations from some
teams achieved a similar quality to the reference
translations.

Limitations

The scope of the biomedical task has been growing
over the years. While each new edition builds on
the experience of the previous one, the scale of
operations implies a number of limitations from
operational and theoretic perspectives. One major
limitation is the comparison between translation
approaches used by the teams. The information
we collect through the participant survey attempts
to document the material and methods used by the
participants’ systems. However, it can be noted that
only a subset of teams do supply details of their sys-
tems. Furthermore, some descriptions such as the
training corpus size or content could be clarified.
A closed task, where all participants are limited
to using specific training material, could help im-
prove comparability but would require additional
work from participants and organizers. Another
limitation is the imbalance between language pairs,
which attracts different levels of effort from both
participants and organizers.

MT can be computationally intensive and the en-
vironmental impact of experiments should be mea-
sured. While no measure of impact was conducted
this year, we included this aspect in the participant
survey, which included a list of tools that can be
used to measure impact. A future growth direction
to increase awareness of impact can be to ask par-
ticipants to supply a measure of CO2 impact along
with their results.

Ethics Statement

This task mainly focuses on translation using the
MEDLINE corpus, which is openly available for
research. The test corpora used in the task were
selected based on publication date and linguistic
criteria. Any imbalance regarding the demograph-
ics of populations represented in the corpus is in-
voluntary.

The intended use of this task is to contribute to
the evaluation and training of MT systems in the
biomedical domain. We do not recommend the
use of MT without expert validation in a medical
context, as machine translated text could contain
errors impacting patients’ health outcomes.
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A Mapping of runs in OCELoT
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Teams Runs en2de en2es en2fr en2it en2pt en2ru en2zh

aoligei run1 - - - - - - 24
run1 - - - - - - 25*

Dtranx run1 360* 283* 277 304 305 352* 355*
run2 - 291 416 418 421 469 379
run3 - - 448* 449* 450* - -

Huawei-TSC run1 251 - 517 - - 659 249
run2 395 - 534 - - 663 396
run3 480 - 645 - - 671* 478
run4 520 - 774* - - - 536
run5 832 - - - - - 636
run6 837* - - - - - 778

Lan-BridgeMT run1 115 - - - - 113* 9
run2 201* - - - - 198 177
run3 - - - - - - 202
run4 - - - - - - 388*

njupt-mtt run1 140 - 124 - - 142 88
run2 - - 128 - - 155 90
run3 - - 579 - - 163 93

SPECTRANS run1 - - 398 - - - -
run2 - - 460* - - - -
run3 - - 484 - - - -
run4 - - 486 - - - -

ustc-mt run1 - - 312 - - 345 722
run2 - - 314 - - 369 764
run3 - - 542 - - - -
run4 - - 543 - - - -
run5 - - 544 - - - -
run6 - - 569 - - - -

Table 23: Mapping of the MEDLINE runs to the submission ids in OCELoT Biomedical Task, from English. An
asterisk * indicates the primary run.
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Teams Runs de2en es2en fr2en it2en pt2en ru2en zh2en

aoligei run1 - - - - - - 17
run2 - - - - - - 20
run3 - - - - - - 21*
run4 - - - - - - 23

DTranx run1 357 303* 306 307 308 353 356
run2 472* - 422 423 425 470* 471*
run3 473 - 451* 452* 453* - -

Huawei-TSC run1 252 - 646 - - 596 250
run2 411 - 732 - - 597 397*
run3 481 - 750 - - 600 479
run4 537* - - - - 601* 523
run5 - - - - - - 638
run6 - - - - - - 781

Lan-BridgeMT run1 104 - - - - 105* 19
run2 200* - - - - 199 203
run3 - - - - - - 220
run4 - - - - - - 221
run5 - - - - - - 387*

njupt-mtt run1 139 - 125 - - 145 89
run2 - - 129 - - 156 95
run3 - - 580 - - - -

SPECTRANS run1 - - 399 - - - -
run2 - - 462* - - - -
run3 - - 487 - - - -
run4 - - 492 - - - -

ustc-mt run1 - - 316 - - 346 724
run2 - - 317 - - 371 -
run3 - - 565 - - - -
run4 - - 567 - - - -
run5 - - 568 - - - -

szdx - - - - - - - 97

Table 24: Mapping of the runs to the submission ids in OCELoT Biomedical task, into English. An asterisk *
indicates the primary run.
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Teams Runs en2de en2ru en2zh

AISP-SJTU run1 - - 31
run2 - - 611

ALMAnaCH-Inria run1 - 381 -
run2 - 711 -

aoligei run1 - - 26
run2 - - 27

bhcs-mt run1 - - 43
run2 - - 44
run3 - - 170
run4 - - 172

DLUT run1 - - 430
run2 - - 649
run3 - - 651
run4 - - 721

Dtranx run1 319 329 333
run2 325 461 354
run3 765 - -

eTranslation run1 - 337 -
run2 - 339 -
run3 - 341 -

GTCOM run1 - - 521
run2 - - 733
run3 - - 853

HuaweiTSC run1 - - 236
run2 - - 465
run3 - - 476
run4 - - 557
run5 - - 575
run6 - - 630
run7 - - 776

JDExploreAcademy.Vega-MT run1 507 509 59
run2 843 690 98
run3 - - 102
run4 - - 833
run5 - - 652
run6 - - 706
run7 - - 834

KwaiMT run1 - - 794
run2 - - 797
run3 - - 799

Lan-Bridge run1 114 112 12
run2 191 197 162
run3 393 409 175
run4 549 556 714

LanguageX run1 - - 150
run2 - - 692
run3 - - 701
run4 - - 716

Manifold run1 - - 28
run2 - - 136
run3 - - 231
run4 - - 336
run5 - - 440
run6 - - 604
run7 - - 820

MeteorMan run1 - - 230
neunlplab run1 - - 14

run2 - - 67
run3 - - 570
run4 - - 760
run5 - - 798
run6 - - 847

Table 25: Mapping of the runs to the submission ids in OCELoT General Task, from English (part 1/2).
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Teams Runs en2de en2ru en2zh

njupt-mtt run1 - 137 85
run2 - 147 92
run3 - 213 144
run4 - 243 211
run5 - - 214
run6 - - 216
run7 - - 232

ONLINE-A run1 901 912 914
run2 - 911 -

ONLINE-B run1 920 930 931
run2 - - 932

Online-G run1 865 876 878
ONLINE-W run1 954 966 968

run2 959 - -
ONLINE-Y run1 939 949 951

run2 973 983 985
OpenNMT run1 207 - -

run2 210 - -
run3 321 - -
run4 493 - -
run5 746 - -

PROMT run1 68 42 -
run2 334 71 -
run3 694 72 -
run4 - 73 -
run5 - 804 -

SRPOL run1 - 157 -
run2 - 160 -
run3 - 265 -
run4 - 496 -
run5 - 497 -
run6 - 501 -

super_star run1 - - 228
run2 - - 229

szdx run1 - - 119
run2 - - 338
run3 - - 436
run4 - - 438
run5 - - 439
run6 - - 441
run7 - - 442

taicangshaxigaozhong run1 - - 788
run2 - - 811

ustc-mt run1 - - 276
run2 - - 279
run3 - - 281
run4 - - 293
run5 - - 328
run6 - - 373

V2ray run1 - - 47

Table 26: Mapping of the runs to the submission ids in OCELoT General Task, from English (part 2/2).
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Teams Runs de2en ru2en zh2en

AISP-SJTU - - - 648
ALMAnaCH-Inria run1 - 382 -

run2 - 710 -
aoligei run1 - - 11

run2 - - 146
run3 - - 151
run4 - - 154
run5 - - 295

bhcs-mt run1 - - 45
run2 - - 171
run3 - - 173
run4 - - 737
run5 - - 810

bymt run1 - - 294
Dtranx run1 315 343 349

run2 429 463 468
run3 456 - -

DLUT run1 - - 432
run2 - - 653
run3 - - 654

HuaweiTSC run1 - - 245
run2 - - 467
run3 - - 571
run4 - - 626

JDExploreAcademy.Vega-MT run1 508 510 58
run2 809 769 99
run3 - 844 101
run4 - - 656
run5 - - 658
run6 - - 708
run7 - - 736

KwaiMT run1 - - 415
run2 - - 790
run3 - - 792

Lan-Bridge run1 103 86 10
run2 188 187 222
run3 587 589 223
run4 - - 386

LanguageX run1 - - 168
run2 - - 218
run3 - - 219
run4 - - 400
run5 - - 412
run6 - - 417

Liaoning University run1 - - 152
run2 - - 498
run3 - - 830

LT22 run1 605 - -
run2 608 - -
run3 612 - -
run4 614 - -
run5 617 - -

neunlplab run1 - - 14
run2 - - 67
run3 - - 570
run4 - - 760
run5 - - 798
run6 - - 847

Table 27: Mapping of the runs to the submission ids in OCELoT General Task, into English (part 1/2).
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Teams Runs de2en ru2en zh2en

njupt-mtt run1 - 138 87
run2 - 153 143
run3 - 254 212
run4 - - 215
run5 - - 217
run6 - - 237
run7 - - 244

ONLINE-A run1 903 913 915
ONLINE-B run1 923 934 935
Online-G run1 868 861 879

ONLINE-W run1 956 967 969
run2 961 - -

ONLINE-Y run1 941 950 952
run2 975 984 986

pingan_mt - - - 494
PROMT run1 29 70 -

run2 796 - -
SRPOL run1 - 272 -

run2 - 359 -
run3 - 361 -
run4 - 661 -
run5 - 664 -
run6 - 666 -
run7 - 697 -

star run1 - - 296
run2 - - 297
run3 - - 602
run4 - - 665

super_star run1 - - 159
run2 - - 166
run3 - - 165
run4 - - 167
run5 - - 227
run6 - - 242
run2 - - 166
run3 - - 165
run4 - - 167
run5 - - 227
run6 - - 242

szdx run1 - - 100
run2 - - 123
run3 - - 134
run4 - - 599
run5 - - 631
run6 - - 634
run7 - - 635

taicangshaxigaozhong run1 - - 618
run2 - - 640
run3 - - 791
run4 - - 813

ustc-mt run1 - - 280
run2 - - 282
run3 - - 292
run4 - - 327
run5 - - 477

V2ray run1 - - 48

Table 28: Mapping of the runs to the submission ids in OCELoT General Task, into English (part 2/2).
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Abstract

This paper reports the findings of the sec-
ond edition of the Chat Translation Shared
Task. Similarly to the previous WMT 2020 edi-
tion, the task consisted of translating bilingual
customer support conversational text. How-
ever, unlike the previous edition, in which
the bilingual data was created from a syn-
thetic monolingual English corpus, this year
we used a portion of the newly released Un-
babel’s MAIA corpus, which contains genuine
bilingual conversations between agents and cus-
tomers. We also expanded the language pairs to
English↔German (en↔de), English↔French
(en↔fr), and English↔Brazilian Portuguese
(en↔pt-br).

Given that the main goal of the shared task is to
translate bilingual conversations, participants
were encouraged to train and test their mod-
els specifically for this environment. In total,
we received 18 submissions from 4 different
teams. All teams participated in both directions
of en↔de. One of the teams also participated in
en↔fr and en↔pt-br. We evaluated the submis-
sions with automatic metrics as well as human
judgments via Multidimensional Quality Met-
rics (MQM) on both directions. The official
ranking of the systems is based on the overall
MQM scores of the participating systems on
both directions, i.e. agent and customer.

1 Introduction

With the significant translation quality improve-
ments brought by newer machine translation (MT)
approaches in the last years, we can start using MT
to translate non-conventional content types such
as bilingual and multilingual conversations. These
new applications pose new challenges to MT sys-
tems and require new solutions to deal with them.

∗These authors contributed equally.

In this shared task, we focus on the automatic trans-
lation of conversational text, in particular customer
support chats, an important and challenging content
due to their particular characteristics (Gonçalves
et al., 2022; Wang et al., 2021; Farajian et al., 2020):
In contrast to content types such as news articles
and software manuals, among others, in which the
text is carefully authored and well formatted, chat
conversations are less planned, more informal, and
often present ungrammatical linguistic structures.
Furthermore, such conversations are usually on-
the-fly production of text with very fuzzy fron-
tiers with speech and mimicking speech production.
Due to time requirements, since in dialogues turn-
exchange need to be dynamic, the conversations
may also have typos, abbreviations and ellipses.
The conversations are also characterized by stress-
ful moments, which in turn is represented by the
capitalization of the entire word or turn, emoticons
or emojis, and multiple punctuation marks.

Furthermore, Gonçalves et al. describe several
factors that often lead to poor quality of the written
text in this content type, resulting in lower quality
of the MT outputs. They highlight the fact that the
clients requiring customer support usually demon-
strate high levels of impatience and frustration, re-
sulting in typos, profanities, as well as variable
capitalization and punctuation. They also mention
that text is often times left unstructured, informal
and agrammatical, factors that further increase the
challenges of dealing with this particular content.

Given the limited number of parallel data for this
domain, the main motivation for the Chat Transla-
tion Shared Task is to provide a common ground
for evaluating and analyzing the challenges posed
by conversational data as a content type, which has
broad application in industry-level services. Fol-
lowing the success of the first edition of the Chat
Translation Shared Task (Farajian et al., 2020), this
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customer source_segment: Ola, tudo bem?
target_segment: Hello! How are you?

customer source_segment: Alguns meses atras, precisei restaurar o aplicativo da #PRS_ORG# para PC.
target_segment: A few months ago, I needed to restore the #PRS_ORG# PC App.

customer source_segment: Quando fiz isso, perdi todos os meus livros comprados.
target_segment: When I did that, I lost all my purchased books.

customer source_segment: Gostaria de saber como recupera-los.
target_segment: I would like to know how to recover them.

customer source_segment: Obrigada.
target_segment: Thank you.

customer source_segment: Celular para contato: #PHONENUMBER#.
target_segment: Mobile for contact: #PHONENUMBER#

agent source_segment: Thank you for the information.
target_segment: Agradeço pela informação.

agent source_segment: I will be more than happy to assist you.
target_segment: Terei todo o prazer em ajudar você.

agent source_segment: I see all your books are in the account linked to the #EMAIL#
target_segment: Vejo que todos os seus livros estão na conta vinculada ao #EMAIL#

Table 1: Excerpt of a en↔pt-br conversation between a customer and an agent.

year we organized the second edition of the task
with the following improvements:

• We released a genuine bilingual corpus, the
Unbabel’s MAIA Dataset. This consists
of customer support dialogues in which the
speakers (i.e. customer and agent) speak in
their own language.

• We expanded the number of language pairs
to three: English-German (en↔de), English-
French (en↔fr), and English-Brazilian Por-
tuguese (en↔pt-br).

• We performed manual evaluation on both di-
rections of agent and customer, and we ranked
the systems based on their overall perfor-
mance in both directions, by using an adapta-
tion of the multidimensional quality metrics
(MQM) (Lommel et al., 2014) that is tailored
to assess customer support translated content.

Similarly to the first edition of the task, we asked
the participants to translate dialogues between two
parties (i.e. customer and agent), where the agent
writes in English and the customer writes in either
German, French, or Brazilian Portuguese, depend-
ing on the language pair.

In order to evaluate the translation quality of the
participating systems we used both automatic evalu-
ation metrics and human judgement through MQM
annotations. For the automatic evaluation metrics
we used COMET (Rei et al., 2020), chrF (Popović,

2015), and SacreBLEU (Post, 2018), and for the
human evaluation we used MQM (Lommel et al.,
2014) performed with annotators specialized in
explicit knowledge of translation errors and linguis-
tics. Compared to the direct assessment evaluation
(Graham et al., 2013, 2014, 2015) used in the pre-
vious edition, MQM annotations provide a more
detailed analysis of the types and severities of the
errors produced by the MT systems. MQM has also
been shown to have a higher correlation with state-
of-the-art metrics than direct assessments (Freitag
et al., 2021).

This year, 18 submissions were received from 4
different teams, which have submitted outputs for
both directions (i.e. agent and customer). Among
these 4 teams, one team participated in all the three
available language pairs, while the others focused
only on en↔de. Details of their submissions and
evaluation are described in §4 and §5.

2 The MAIA corpus

One of the biggest challenges of bilingual conver-
sation translation, especially for Customer Support
conversations, is the lack of appropriate publicly
available datasets. To alleviate this issue, in the
first edition of the Chat Translation Shared Task,
Farajian et al. introduced the BCONTRAST corpus
that was based on a monolingual English corpus,
Taskmaster-1 (Byrne et al., 2019). They translated
the selected conversations into German mimicking
a scenario in which an agent and a customer are
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communicating in their native languages. However,
even this dataset was just an approximation of a real
Customer Support conversation due to the fact that:
1) the original conversations in the Taskmaster-1
corpus were created by using crowdsourced work-
ers interacting with each other to complete a spe-
cific task; and 2) the conversations were not truly
genuine bilingual conversations since German seg-
ments were all just translations of the original En-
glish sentences.

This year, we made advancements by releasing
the Unbabel’s MAIA Dataset: a corpus that is truly
composed of entire, genuine and original bilingual
conversations from four different clients of the Un-
babel database. The conversations are from clients
that gave written consent on using this data for re-
search purposes as long as in accordance with the
General Data Protection Regulation (GDPR). In
this corpus, the original segments of customers and
agents are translated into their corresponding tar-
get languages via the MTPE process1, done by the
experienced translators of the Unbabel Community
that have demonstrated consistently high quality
within the respective language pair. MT segments
were produced with a mixed of online MT services
and internal ones. The corpus is released under
the Creative Commons public license Attribution-
NoDerivatives 4.0 International (CC BY-ND 4.0)
and can be freely used for research purposes only.
Please note that, as the license states, no commer-
cial uses are permitted for this corpus. This data
was collected within the MAIA Project (Martins
et al., 2020).

The Unbabel’s MAIA Dataset2 contains more
than 40k segments from more than 900 conver-
sations in three language pairs (and a total of 6
language directions): English↔ German (en↔de),
English ↔ French (en↔fr) and English ↔ Por-
tuguese (Brazil) (en↔pt-br). The breakdown of the
corpus by language pair and direction is presented
in Table 2. A sample conversation is presented in
Table 1 and it shows that a conversation usually
starts by the customer explaining the problem that
led them to contact the customer support and is
followed by the agent asking for more details in
order to provide the necessary assistance.

Anonymization process. To make the conversa-
tions publicly available and in accordance with the

1Machine Translation followed by a Post-Editing step.
2The full corpus can be downloaded from https://

github.com/Unbabel/MAIA

General Data Protection Regulation (GDPR), we
anonymized them first automatically by using the
Unbabel proprietary anonymization tool and then
by manually verifying the data. This resulted in
12 different anonymization categories, each pre-
sented by a specific token that are presented in
Table 3. Importantly, Unbabel is also certified for
ISO/IEC 27001:2013 Information Security Man-
agement Certification3.

3 Task Description

Similarly to the first edition of the Chat Transla-
tion Shared Task, in this edition we focused on a
critical challenge faced by international companies
that are providing customer support in several dif-
ferent languages. One common approach to deal
with this challenging requirement is centralizing
the customer support with English speaking agents
and having a translation layer in the middle to trans-
late from the customer’s language into the agent’s
language (e.g. English) and vice versa. The ideal
solution for this environment needs to be able to
properly handle all its aforementioned issues in-
cluding the context-related challenges, the noisy
inputs and multilingualism, among others.

In the second edition of the Chat Translation
Shared Task we provide real genuine bilingual data
for three different language pairs and encouraged
the participants to make use of the bilingual context
present in the conversations and to submit transla-
tions for both directions of the three language pairs.
To emphasize on the importance of this aspect, we
decided to rank the participating teams based on
the overall quality of their primary submissions on
both directions using a manual quality evaluation
methodology through MQM annotations.

And, finally, we asked the participants to sub-
mit a maximum of three MT outputs per language
pair direction, one primary and a maximum of two
contrastive outputs. Due to time and budget con-
straints we performed the manual evaluation only
for the primary submissions, while all the systems
are evaluated using the automatic evaluation met-
rics (COMET, chrF, and SacreBLEU). For more
details on the evaluation process please see §5.

3.1 Data
In the domain of customer support usually there
is a very small amount of publicly available par-

3https://resources.unbabel.com/blog/
unbabel-awarded-iso-iec-27001-2013-infor\
mation-security-management-certification
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MAIA corpus en↔de en↔fr en↔pt-br

Number of conversations 496 264 164
Number of agent segments 8,509 9,911 4,741
Number of customer segments 9,468 5,115 3,674
Number of total (customer and agent) segments 17,977 15,026 8,415

Table 2: Number of conversations and segments in the MAIA corpus.

Token Description

#NAME# Person’s names
#PRS_ORG# Products, Services,

and Organizations
#ADDRESS# Address
#EMAIL# E-mail address
#IP# IP Address
#PASSWORD# Password
#PHONENUMBER# Phone number
#CREDITCARD# Credit card number
#URL# URL Address
#IBAN# IBAN Address
#NUMBER# Any number (all digits)
#ALPHANUMERIC_ID# Any alphanumeric ID

Table 3: Anonymization tokens and their description.

allel data because of privacy and copyright issues
that make releasing this kind of data difficult. In
order to provide a more realistic setting, and due
to the constraints outlined above, in this edition
of the shared task, we provided participants with
development and test sets only. The development
sets can be divided into two types: SOURCE-ONLY,
which that contains conversations without the hu-
man translations and PARALLEL, which that con-
tains a smaller set of conversations with their cor-
responding human post-edited translations. The
number of conversations and segments of the test
and development sets per language pair and direc-
tion are presented in Table 4.

For training and validation purposes, participants
were also allowed to use the training data of the
general task (including the data of the previous edi-
tions), the data of the other tracks (eg. biomedical)
and the other corpora (either parallel or monolin-
gual) that are publicly available for research pur-
poses including the data of the previous edition of
the Chat Translation Task, BCONTRAST, as well
as the corpora available on OPUS4.

3.2 Baselines
In order to have a reasonable term of compari-
son for all the language direction, we used the
large multilingual pre-trained M2M-100 model

4https://opus.nlpl.eu

(Fan et al., 2021) with 418 million parameters.
M2M is a multilingual MT model that supports all
languages considered in this shared task. Moreover,
since handling the context is one of the important
challenges of the task we tried two baselines:

• A sentence-level baseline, where each utter-
ance is passed separately to the model.

• A context-level baseline, where N consecu-
tive utterances from the same conversation
(and from the same direction) are passed and
translated jointly by the model. In this paper
we report the results of N = 2, that based on
the automatic metrics performed the best on
our validation sets.

While these models are not fine-tuned for chat con-
versation, they achieve good scores with automatic
evaluation metrics and show the benefits of using
context for this domain, even if they were not orig-
inally trained to use context.

We also report results of a larger version of the
model (1B parameters) and different context sizes
in Appendix A. In addition to these baselines, we
also evaluated the results of four publicly available
online MT systems on our test sets. In this paper
we refer to them as Online-A, B, C, and D.

4 Participants

The participants were asked to submit at most three
systems per language pair direction, one primary
and a maximum of two contrastive ones. Moreover,
the submitting team was required to explicitly in-
dicate their primary and contrastive submissions.
We received eighteen submissions from four dif-
ferent teams: BJTU-WeChat (two primaries and
four contrastives), IITP-Flipkart (two primaries and
four contrastives), HW-TSC (one primary and two
contrastives), and Unbabel-IST (one primary and
two contrastives). The first three teams participated
only for en↔de, while the last team participated in
all the language pairs and directions (i.e. en↔de,
en↔fr, and en↔pt-br). Table 5 summarizes the
participants and their affiliations.
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en↔de en↔fr en↔pt-br

source-
only

dev set

parallel
dev set

parallel
test set

source-
only

dev set

parallel
dev set

parallel
test set

source-
only

dev set

parallel
dev set

parallel
test set

Number of conversations 355 70 71 84 59 51 57 47 60
Number of total seg. 13,400 2,109 2,488 5,239 2,753 3,065 3,672 2,359 2,384
Number of agent seg. 6,389 1,006 1,113 3,305 1,750 1,937 2,007 1,353 1,381
Number of customer seg. 7,011 1,103 1,375 1,934 1,003 1,128 1,665 1,006 1,003

Table 4: Number of conversations and segments provided in the WMT 2022 Chat Translation Shared Task.

Team Institution Directions

BJTU-WeChat Beijing Jiaotong University and WeChat en↔de
HW-TSC Huawei Translation Services Center en↔de
IITP-Flipkart, Indian Institute of Technology and Flipkart en↔de
Unbabel-IST Unbabel and Instituto Superior Técnico en↔de, en↔fr, en↔pt-br

Online-A A free publicly available online MT system en↔de, en↔fr, en↔pt-br
Online-B A free publicly available online MT system en↔de, en↔fr, en↔pt-br
Online-C A free publicly available online MT system en↔de, en↔fr, en↔pt-br
Online-D A free publicly available online MT system en↔de, en↔fr, en↔pt-br

Table 5: The participating teams, their affiliations, and the directions that they participated.

All the participating systems follow a two step
training in which a generic model is trained first
on a large amount of publicly available data and
then fine-tuned on the task data. The systems
are different in the following aspects: i) the pre-
training step, in which some use the publicly avail-
able models like mBART and Facebook-FAIR’s
WMT 2019, and the others train their own generic
models, ii) the model architecture, in which some
use deep encoder-decoder transformers, and others
use multi-encoder transformers, iii) the fine-tuning
stage and the data used in that step, and iv) the
translation directions, in which some use bilingual
models for each direction and some use a single
multilingual model to cover all the language pairs
and directions.

4.1 Systems

Here we briefly detail each participant’s systems as
described by the authors and refer the reader to the
participant’s submission for further details.

4.1.1 BJTU-WeChat
The joint submission of Beijing Jiaotong University
and WeChat is an ensemble of deep Transformer
models with 20 layers of encoder and 10 layers
of decoder. Their models are firstly trained on
the training corpora provided by the general track
of WMT 2022. They are then fine-tuned on the
training data of the chat translation track of WMT
2020 with several strategies to incorporate the po-

tential context including the multi-encoder frame-
work, speaker tag, and prompt-based fine-tuning.

Inspired by (Zhu et al., 2018) they proposed a
Boosted Self-COMET-based Ensemble metric to
evaluate the diversity of the generated hypotheses.
As they report, it allows them to select some di-
verse, yet effective models from more than 100
models. Regarding the size of their models, the au-
thors reports numbers that vary from 6.075 Billion
to 6.881 Billion parameters.

4.1.2 IITP-Flipkart
IITP-Flipkart uses the Facebook-FAIR’s WMT
2019 publicly available pre-trained models for
en-de and de-en (Ng et al., 2019).5 The mod-
els are based on the Transformer-big architecture
(Vaswani et al., 2017). To fine-tune these models
they follow a two-step procedure in which they
first fine-tune the models on the training data of
the Chat Translation track of WMT 2020 and then
fine-tune the resulting models on the parallel val-
idation set provided in the Chat Translation track
of WMT 2022. To deal with the data scarcity is-
sue of the task they combine the segments of agent
and customer. To do so, for en-de, they use the
agent subset of the above mentioned datasets as
well as the customer segments by reversing their
translation direction. The same applies to other
direction.

5https://github.com/facebookresearch/
fairseq/tree/main/examples/wmt19
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For their primary submission they use a dual-
encoder version of the WMT 2019 pre-trained
FAIR model in which one encoder is used to en-
code the source context and the other one encodes
the source segment. They use the weights of the
encoder part of the pre-trained model to initialise
the context-encoder weights. For the cross atten-
tion they use a weighted average of source-encoder
and context-encoder attention. And for context
they use the immediate previous source segment.
Thus, the context can be either English or German,
depending on the speaker of the previous utterance.

To analyze the impact of the context on the trans-
lation quality they experiment with a model that is
trained with context and during inference it only
uses the current sentence without any context. As
they report, the results of this contrastive model
confirm the observation of Li et al. that the im-
provement of the results are in some cases due to
the fact that context acts as noise generator during
training that makes the models more robust. And
finally, their second contrastive model is a simple
sentence level model that similarly as their primary
model uses the Facebook-FAIR’s WMT 2019 pre-
trained model to initialise the weights. This model
does not use any context.

As they reported, their primary submission is a
model with 358 Million parameters. Their first con-
trastive model has the same number of parameters
during training since it uses context, while during
inference it uses only 312 million parameters since
it does not use the context. This is the same num-
ber of parameters used by their second contrastive
model that does not use any context at all.

4.1.3 HW-TSC
The Huawei Translation Services Center (HW-
TSC)) team uses a deep transformer model with
25 layers of encoder and 6 layers of decoder. The
model is pre-trained on the training data of the
news track of WMT 2021. They used the bilingual
validation set of the task to select in-domain data
from the bilingual samples of the generic domain
data. They reported the usage of self-training (i.e.
forward translation), backward translation, model
averaging, and context-aware translation.

4.1.4 Team Unbabel-IST
The joint submission of Unbabel and IST (Insti-
tuto Superior Técnico) uses the mBART50 model
that has 12 layers of encoder and 12 layers of de-
coder. They fine-tuned the mBART50 model on a

combination of the following two datasets: i) the
in-domain parallel validation set, and ii) the sam-
ples similar to the validation set retrieved from the
parallel generics corpus provided by the general
track of WMT 2022. To find the similar samples
they used LASER (Schwenk and Douze, 2017). At
the inference time, their primary submission uses
a retrieval-based approach in which for each seg-
ment of the test set the top-k nearest neighbors are
retrieved from the following two data stores: i) the
parallel in-domain validation set and ii) pool of the
back-translated in-domain monolingual validation
set of the task as well as the samples retrieved from
the generic dataset that were used in the first stage
of fine-tuning. Their first contrastive submission
only uses the parallel validation set. Their second
contrastive submission is the vanilla mBART50
model fine-tuned on the in-domain data, without
the retrieval component.

Finally, concerning the model size, as they report
it has the same number of parameters as mBART50,
i.e. 761 million parameters.

5 Evaluation Procedures

Similarly to the previous edition, we evaluated the
systems’ performance both automatically and man-
ually. This year we used COMET, chrF and Sacre-
BLEU as the automatic metrics and MQM (Lom-
mel et al., 2014) for the human evaluation. Due
to time and budget constraints, the manual MQM
evaluation was performed on the primary submis-
sions only while all the submissions were evaluated
using the automatic metrics. As mentioned earlier,
the official rankings of the participating teams were
based on the overall MQM score of their transla-
tions for the whole conversation, i.e. both customer
and agent sides.

5.1 Automatic Evaluation

For the automatic evaluation of the systems’ out-
puts we used COMET (wmt20-comet-da) (Rei
et al., 2020), chrF (Popović, 2015), and Sacre-
BLEU6 (Post, 2018).

5.2 Human Evaluation

The human evaluation was performed by profes-
sional linguists and translators using an adapta-
tion of the MQM framework (Lommel et al., 2014)

6We used version 2.1.0 with the signature
nrefs:1|case:mixed|eff:no|tok:13a|smooth:exp|
version:2.1.0
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Figure 1: The human evaluation was performed on the Unbabel’s proprietary Annotation Tool by showing the
annotations the whole conversation. The figure refers to an excerpt of an en↔pt-br conversation annotation.

en→de (agent) de→en (customer)

COMET ↑ chrF ↑ BLEU ↑ COMET ↑ chrF ↑ BLEU ↑
Baselines

Baseline without context 0.403 0.550 0.325 0.588 0.621 0.472
Baseline with context (N=2) 0.376 0.537 0.308 0.680 0.642 0.493

Primary submissions

BJTU-WeChat 0.810 0.735 0.557 0.946 0.775 0.644
Unbabel-IST 0.774 0.733 0.557 0.915 0.737 0.612
IITP-Flipkart 0.768 0.730 0.549 0.907 0.729 0.582
HW-TSC 0.704 0.725 0.553 0.918 0.766 0.639

Contrastive submissions

BJTU-WeChat, C1 0.804 0.731 0.551 0.948 0.780 0.646
BJTU-WeChat, C2 0.805 0.738 0.561 0.951 0.778 0.648

Unbabel-IST, C1 0.780 0.737 0.559 0.924 0.741 0.617
Unbabel-IST, C2 0.778 0.734 0.556 0.925 0.743 0.616

IITP-Flipkart, C1 0.769 0.730 0.550 0.905 0.729 0.582
IITP-Flipkart, C2 0.765 0.729 0.544 0.902 0.731 0.586

HW-TSC, C1 0.649 0.670 0.473 0.909 0.755 0.614
HW-TSC, C2 0.726 0.732 0.560 0.929 0.767 0.638

Online systems

Online-A 0.758 0.747 0.598 0.903 0.733 0.579
Online-B 0.744 0.722 0.534 0.890 0.720 0.569
Online-C 0.717 0.707 0.515 0.877 0.730 0.575
Online-D 0.712 0.712 0.516 0.920 0.765 0.630

Table 6: Automatic metrics results for en↔de. The COMET scores are calculated with model wmt20-comet-da,
and to calculate chrF and BLEU scores we used SacreBLEU.

that is tailored to assess Customer Support trans-
lated content (Gonçalves et al., 2022). The MQM-
compliant typology used for this purpose is com-
posed by:

• 8 parent categories, compliant with the newest

version of the MQM framework7: Accuracy,
Linguistic Conventions, Terminology, Style,
Locale Conventions, Audience Appropriate-
ness, Design and Markup, Custom;

7https://themqm.info/typology/
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(a) en→de (b) de→en

(c) en→fr (d) fr→en

(e) en→ pt-br (f) pt-br→en

Figure 2: Count of errors per severity for (a) en→de, (b) de→en, (c) en→fr, (d) fr→en, (e) en→pt-br, and (f)
pt-br→en.
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en→fr (agent) fr→en (customer)

COMET ↑ chrF ↑ BLEU ↑ COMET ↑ chrF ↑ BLEU ↑
Baselines

Baseline without context 0.644 0.640 0.481 0.574 0.587 0.425
Baseline with context (N=2) 0.664 0.631 0.478 0.600 0.602 0.452

Primary

Unbabel-IST 1.086 0.838 0.716 0.838 0.677 0.544

Contrastive

Unbabel-IST, C1 1.082 0.836 0.712 0.840 0.676 0.542
Unbabel-IST, C2 1.094 0.841 0.718 0.846 0.675 0.542

Online systems

Online-A 1.036 0.795 0.656 0.846 0.678 0.532
Online-B 1.085 0.838 0.721 0.827 0.669 0.517
Online-C 1.035 0.807 0.686 0.830 0.670 0.509
Online-D 1.044 0.788 0.618 0.819 0.673 0.521

Table 7: Automatic metrics results for en↔fr. The COMET scores are calculated with model wmt20-comet-da,
and to calculate chrF and BLEU scores we used SacreBLEU.

en→pt-br (agent) pt-br→en (customer)

COMET ↑ chrF ↑ BLEU ↑ COMET ↑ chrF ↑ BLEU ↑
Baselines

Baseline without context 0.824 0.681 0.495 0.610 0.631 0.471
Baseline with context (N=2) 0.863 0.675 0.493 0.675 0.653 0.496

Primary

Unbabel-IST 1.077 0.771 0.621 0.849 0.689 0.547
Contrastive

Unbabel-IST, C1 1.072 0.767 0.615 0.872 0.705 0.561
Unbabel-IST, C2 1.079 0.770 0.618 0.872 0.708 0.564

Online systems

Online-A 0.965 0.725 0.551 0.914 0.728 0.579
Online-B 1.084 0.791 0.647 0.882 0.721 0.563
Online-C 1.069 0.791 0.643 0.887 0.726 0.559
Online-D 1.020 0.749 0.583 0.845 0.710 0.535

Table 8: Automatic metrics results for en↔pt-br. The COMET scores are calculated with model
wmt20-comet-da, and to calculate chrF and BLEU scores we used SacreBLEU.

• 31 terminal nodes, including error types that
are specific to MT, such as MT Hallucination8

and customer support, such as Source Issue9;

8The MT Hallucination issue type is used when the MT
generates a completely different translation that has no rela-
tion with the source text; the translation can still sound fluent
and natural without reading the source, but the meaning is
completely different. It is also used when the MT generates a
chunk of repetitions in the target text or when the content is
translated into gibberish: in other words, the machine gener-
ates an output made of non-words or repeated symbols.

9The Source Issue issue type needs to be used when there
is an error in the target text and this is due to an issue in the
source text. It can also be used when a part of the source text
is written in the target language or in a different language, and
the result is a mistranslation in the target.

• 2 levels of granularity, composed by the 8
parent categories and the actual 31 terminal
nodes (issue types) that annotators can use
during the annotation process.

Regarding the severities attribution, we followed
the same schema proposed in the MQM framework
(Lommel et al., 2014), including a fourth severity,
Neutral, to account for Source Issue errors. The
definition of severities used in this evaluation are
the following:

• Neutral: This severity degree is reserved only
for the Source Issue category. This is used for
linguistic issues that occur in the source text

732



en↔de en↔fr en↔pt-br

agent customer overall agent customer overall agent customer overall

Baseline with context (N=2) 38.71 39.60 39.16 46.95 52.43 49.69 57.96 40.58 49.27

BJTU-WeChat 96.44 80.09 88.27 - - - - -

Huawei 88.33 79.02 83.68 - - - - -

Unbabel-IST 91.09 74.67 82.88 90.08 77.21 83.65 84.16 69.01 76.59

IITP-Flipkart 91.59 71.72 81.66 - - - - -

Table 9: MQM scores of the primary submissions of the participating teams, as well as the baseline MT systems.

that may have impact on the target translation
and it is a signal of the overall quality of the
source text to be translated;

• Minor: An error should be rated as minor
if it does not lead to a loss of meaning and
it does not confuse or mislead the user. It
may, however, decrease the stylistic quality or
fluency of the text, or make the content less
appealing;

• Major: The usability or understandability of
the content is impacted but it is still not unfit
for purpose and the meaning of the content
can be perceived as difficult to understand;

• Critical: The error severely changes the mean-
ing of the original text. The reader cannot re-
cover the actual meaning of the original text
and the error carries health, safety, legal or fi-
nancial implications to the end user/reader.
In addition to this, a critical error also vi-
olates geopolitical usage guidelines, causes
the application to crash or negatively mod-
ifies/misrepresents the functionality of the
product or service. Finally, it can be offensive
towards an individual or a group (a religion,
race, gender, etc.).

To calculate the final MQM score per conversa-
tion the formula below is used:

MQM = 100− IMinor + 5× IMajor + 10× ICrit.

Sentence Length× 100
(1)

where IMinor denotes the number of minor errors,
IMajor the number of major errors and ICrit. the num-
ber of critical errors.

Figure 1 shows an excerpt of a pt-br customer
conversation annotation, performed on a propri-
etary translation errors annotation tool from Unba-
bel. In this example, two Source Issue annotations

are showcased, proprio and and that caused one
Critical Untranslated error and one Critical Gram-
mar error in the target text. In both cases, these
examples outline some of the specificities of chat
language and user-generated content, such as the
lack of diacritics (Gonçalves et al., 2022) that can
be observed in proprio and e on the source side (left
pane) of the conversation. In the first case, proprio,
a non-existent word in Portuguese, should have
been written as próprio. As for the second case,
e is a Portuguese conjunction that was translated
literally into English, and, while the correct form
should have been the verb ser (to be in English),
conjugated in the 3rd person singular, é. The third
error shown in Figure 1 shows yet another example
of chat-specific language, such as the usage of a
more idiomatic style (Gonçalves et al., 2022). The
expression como baixo? refers to how something
can be downloaded from somewhere and, besides
its well-formedness in Portuguese, the style is id-
iomatic and conversational. The result is a Mis-
translation error that refers to a literal translation
into English. In this case, the meaning of the source
text is completely lost and cannot be inferred by
the reader.

Finally, as in the previous edition, we evaluated
only a subsample of the full test set. For this, we
randomly sampled conversations until the number
of segments per direction was, at least, 500. We
performed the annotations on both sides and calcu-
lated the overall conversation MQM score of each
submission as the final score to use for the official
ranking of the teams.

5.2.1 Customer Utility Analysis (CUA)

Besides reporting the overall MQM scores—the
average MQM scores across conversations—, we
decided to report, as a complement, a utility frame-
work called Customer Utility Analysis (CUA)
(Stewart et al., 2022). We decided to add this com-
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plementary analysis for two main reasons: 1) it
gives us an idea of the quality across individual
conversations; and 2) since MQM scores can be
hardly understood without the context of a scale of
reference or any direct connection the task-specific
utility or value, CUA plots allow a better quality in-
terpretation. This is possible because, as mentioned
in §5.2, MQM is calculated by taking into account
several factors, such as the total number of words
of a conversation, the number of minor, major and
critical errors and a severity multiplier. After the
computation of the MQM scores at the conversation
level, these are mapped into four different MQM
buckets. In order to render this analysis more un-
derstandable from a visual point of view, we used a
four color schema with the following MQM ranges:

• Weak: Dark Red (negative - 39 MQM)

• Moderate: Light Red (40 - 59 MQM)

• Good: Light Green (60 - 79 MQM)

• Excellent: Dark Green (80 - 100 MQM)

Ideally, we want the MT systems to have larger
green and smaller red buckets, indicating less errors
in the MT outputs and higher MQM scores.

6 Discussion

In this section we analyze the results of the auto-
matic and human evaluation of the systems from
different aspects.

6.1 Official ranking of the systems
The MQM scores of all the primary submissions
as well the baselines (with context size 2) are pre-
sented in Table 9. As can be observed, in addition
to the MQM score of each direction, the overall
conversation-level MQM scores are also reported
for each system.

Based on the overall MQM scores, the BJTU-
WeChat team ranks first for the en↔de language
pair, achieving higher MQM scores for both direc-
tions. This is consistent with the automatic scores
of the systems reported in Table 6. BJTU-WeChat
is followed by Huawei, Unbabel-IST, and IITP-
Flipkart. As we can see in the distribution of the er-
ror severities in Figure 2, BJTU-WeChat produces
significantly less critical and major errors in both
directions. In the Neutral category we can see that
all the systems perform almost the same, including
the baselines. Based on this observation and the

definition of this severity category (§5.2) we can
infer that all the systems handle source-related is-
sues more or less similarly. This calls for methods
that are more reliable to source sentence issues,
in particular for the customer side in which we
have a significantly larger amount of issues when
compared to the agent side.

By looking at the distribution of the error types
presented in Table 15 we can see that “Mistransla-
tion” is the most frequent error for all the systems.
Given the definition of this error10 and the fact that
there was no in-domain training data for the given
domain it was expected to see a large number of
these errors in the outputs of all the MT systems.

For the en↔de language pair we received sub-
missions from four teams, however, for en↔fr and
en↔pt-br we received the outputs of one partici-
pating team only, making it more difficult to do an
in-depth analysis on the results. The MQM scores
of the baselines and the participating team are re-
ported in Table 9, and their automatic scores can
be found in Tables 7 and 8, respectively. As we
can see, the Unbabel-IST systems outperform the
baselines significantly both in terms of the manual
MQM scores as well as the automatic metrics.

6.2 Computational efficiency of the
approaches

The results of the primary submissions and the on-
line systems (Table 6) shows that there is a big
difference between the BJTU-WeChat submission
and the other systems. As reported by the par-
ticipants, this system is the only submission that
uses an ensemble of a large number of models that
makes it the least computationally efficient solu-
tion for the problem. The other submissions obtain
results similar or better than the online systems and
do not resort to model ensembling, making them
more computationally efficient than the winning
submission. The applicability and the computa-
tional efficiency of the models is one of the factors
that we plan to pay more attention to in the future
editions of the shared task.

6.3 Noisy source and its impact on MT quality

By comparing the MQM scores of the two direc-
tions (i.e. agent and customer) we can see that
independently of the language pair, the scores of
the customer side are significantly lower than the

10The word or phrase being translated wrongly according
to the domain of interest.
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(a) en→de (b) de→en

Figure 3: COMET scores of the segments in different buckets based on the number of words in the source for
(a) agent direction (en→de) and (b) customer direction (de→en).

scores of the agent side. This is in contrast to
the previous observations that translating into En-
glish is usually easier than translating from English
(Akhbardeh et al., 2021). We assume this is par-
tially due to the different amounts of noise in the
source segments of each direction and their impact
on the final quality of the MT systems. To sup-
port our claim, we analyzed the source side of all
the text conversations with a proprietary rule-based
tool developed at Unbabel to detect spelling and
grammatical errors, perform writing style checks
(related to the formality of the text), among the de-
tection of other types of issues that are specific to
the content type of customer service conversations.
As we can see in Table 10 the customer segments
contain a larger degree of noise, up to 4 times,
with respect to the agent side. We then proceeded
by splitting the source segments of each direction
into two sets of noisy and non-noisy categories and
analyzed the quality of the models on each set sep-
arately. As we can see in Figure 5 the quality of
the models on the noisy samples is significantly
lower compared to the non-noisy samples. This
is in line with the findings of Gonçalves et al., in
which customers requiring customer support help
usually exhibit high levels of impatience and frus-
tration, that might be translated into agrammatical
and unstructured text with lexical choices that often
result in a degradation of the machine translation
output.

6.4 Sentence length and MT quality

Looking at the test sets we can see varying lengths
of source sentences, with the majority of them be-
ing very short segments (see Figure 6). To under-
stand the impact of the sentence lengths on the

agent customer

en↔de 55 105
en↔fr 40 116
en↔pt-br 24 95

Table 10: The number of noisy source segments in each
side of the test conversations.

final quality of the MT systems we grouped the
input sentences into six buckets and measured the
COMET score of each bucket (see Figure 3 for
the COMET scores of the primary submissions of
en→de and de→en). Independently of the direc-
tion, we can see that: 1) systems perform fairly
similarly within each bucket; and 2) systems’ per-
formances tend to decrease as the number of source
words increases. The pattern is very similar for the
other language pairs and directions.

6.5 MT systems and CUA analysis

As mentioned in §5.2.1, CUA analysis provides
complementary information to have a more clear
understanding on the distribution of MQM scores.
The bucketing approach used in CUA helps to eas-
ily interpret the quality of the MT systems. By
looking into the de→en primary submissions, we
can see that the BJTU-WeChat system not only out-
performs the other systems significantly, but also
produces the highest number of excellent transla-
tions. We can also see that, in general, the agent
directions are easier to translate. In fact, no system
produces any Weak or Moderate translations for
this direction, while we can see a large number of
Weak or Moderate ones in the outputs of all the
systems for the customer direction.
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(a) en→de (b) de→en

(c) en→fr (d) fr→en

(e) en→pt-br (f) ptbr→en

Figure 4: CUA plots for (a) en→de, (b) de→en, (c) en→fr, (d) fr→en, (e) en→ptbr, and (f) ptbr→en. Color schema:
dark red (weak), light red (moderate), light green (good), and dark green (excellent).
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(a) en→de (b) de→en

(c) fr (d) pt-br

Figure 5: COMET scores of the primary submissions on the noisy (in green) and non-noisy samples (in blue) of the
test sets. The noises were detected by a proprietary tool developed at Unbabel. (a) shows the results on the agent
direction (en→de), (b) shows the results on the customer direction (de→en), while (c) and (d) show the results of
the only primary submissions (i.e. Unbabel-IST) for en↔fr and en↔pt-br, respectively.

6.6 Usage of context

All the four participating teams reported the in-
corporation of context in their experiments. But,
depending on the approach, and the data they used
as the context, they obtained different results and
draw different conclusions. BJTU-WeChat used
a simple prompt learning approach in which they
add two preceding bilingual contexts at the tail of
each utterance with a special token to indicate the
boundary of the context. Their results show slight
performance gains over the models that do not use
the context. HW-TSC explores a similar approach
but no promising results can be observed. This can
be due to different factors like implementation de-
tails, the size and the combination of the data used
as context, among other factors. For more details
about the approaches and their difference please
refer to their system description papers.

Differently than the BJTU-WeChat and the HW-
TSC teams that use variations of the concatenation
approach, IITP-Flipkart reports using an additional
context encoder for incorporating context informa-
tion. However, based on the test sets results we
cannot observe any meaningful improvement over

the system that does not incorporate the context, at
least with automatic evaluation metrics.

Finally, Unbabel-IST report that in the few ex-
periments they performed using context they did
not observe any meaningful improvement on the
performance of their models.

7 Conclusions

We presented the results of the WMT 2022 Chat
Translation Shared Task. This year, we provided
the participants with anonymized genuine bilingual
Customer Support conversations for development
and test sets. The conversations are part of the
MAIA corpus, a corpus that we introduced here for
the first time that aim to provide the best possible
research ground for this very particular domain.

Four different teams participated in en↔de
and one team participated also for en↔fr, and
en↔pt-br. All participants covered both direc-
tions (i.e. customer and agent). We evaluated
submissions with automatic metrics (i.e. COMET,
chrF, and SacreBLEU) and primary submissions
with MQM human evaluation. The MQM evalu-
ations were conducted under an adaptation of the
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Figure 6: Percentage of segments when bucked according to the number of source words per lp and direction.

MQM framework (Lommel et al., 2014), that is tai-
lored to assess Customer Support translated content
(Gonçalves et al., 2022), providing a rich analysis
of the type of errors that, we hope, will foster future
MT research in this domain.
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Maja Popović. 2015. chrF: character n-gram F-score
for automatic MT evaluation. In Proceedings of the
Tenth Workshop on Statistical Machine Translation,

pages 392–395, Lisbon, Portugal. Association for
Computational Linguistics.

Matt Post. 2018. A call for clarity in reporting BLEU
scores. In Proceedings of the Third Conference on
Machine Translation: Research Papers, pages 186–
191, Brussels, Belgium. Association for Computa-
tional Linguistics.

Ricardo Rei, Craig Stewart, Ana C Farinha, and Alon
Lavie. 2020. COMET: A neural framework for MT
evaluation. In Proceedings of the 2020 Conference
on Empirical Methods in Natural Language Process-
ing (EMNLP), pages 2685–2702, Online. Association
for Computational Linguistics.

Holger Schwenk and Matthijs Douze. 2017. Learn-
ing joint multilingual sentence representations with
neural machine translation. In Proceedings of the
2nd Workshop on Representation Learning for NLP,
Rep4NLP@ACL 2017, Vancouver, Canada, August 3,
2017, pages 157–167. Association for Computational
Linguistics.

Craig A Stewart, Madalena Gonçalves, Marianna
Buchicchio, and Alon Lavie. 2022. Business critical
errors: A framework for adaptive quality feedback.
In Proceedings of the 15th Biennial Conference of the
Association for Machine Translation in the Americas
(Volume 2: Users and Providers Track and Govern-
ment Track), pages 231–256, Orlando, USA. Associ-
ation for Machine Translation in the Americas.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, Lukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. In Proceedings of the 31st Conference on
Neural Information Processing Systems, volume 30.

Tao Wang, Chengqi Zhao, Mingxuan Wang, Lei Li,
and Deyi Xiong. 2021. Autocorrect in the process
of translation — multi-task learning improves dia-
logue machine translation. In Proceedings of the
2021 Conference of the North American Chapter of
the Association for Computational Linguistics: Hu-
man Language Technologies: Industry Papers, pages
105–112, Online. Association for Computational Lin-
guistics.

Yaoming Zhu, Sidi Lu, Lei Zheng, Jiaxian Guo, Weinan
Zhang, Jun Wang, and Yong Yu. 2018. Texygen: A
benchmarking platform for text generation models.
The 41st International ACM SIGIR Conference on
Research & Development in Information Retrieval.

739



A Baseline Results with Other Context
Sizes

Table 11: M2M-418M results on the development set
with various context sizes

Lang Direction Context Size BLEU ChrF COMET

de

agent

all 31.94 53.25 0.2504
0 35.24 57.17 0.4168
1 33.80 56.05 0.3910
2 33.89 55.96 0.3811
3 33.40 55.76 0.3648
5 33.07 55.23 0.3493

customer

all 47.14 62.05 0.6114
0 45.98 60.81 0.5426
1 48.28 62.80 0.6326
2 47.11 62.06 0.6163
3 47.23 62.08 0.6073
5 47.52 62.41 0.6225

fr

agent

all 45.67 61.02 0.5105
0 54.14 69.47 0.7984
1 54.72 69.83 0.8173
2 53.58 68.81 0.7978
3 53.68 69.00 0.7973
5 52.69 68.00 0.7750

customer

all 48.14 63.77 0.6784
0 46.51 62.29 0.6382
1 48.35 63.53 0.6526
2 48.05 63.61 0.6834
3 48.52 64.06 0.6786
5 48.17 63.74 0.6753

pt-br

agent

all 45.60 63.25 0.7801
0 50.38 68.84 0.8645
1 49.67 67.95 0.9129
2 49.94 67.95 0.9029
3 49.11 67.41 0.9116
5 48.67 66.95 0.8935

customer

all 47.10 62.29 0.6449
0 44.71 59.95 0.5851
1 46.88 62.06 0.6332
2 47.24 62.31 0.6437
3 46.96 62.31 0.6491
5 47.30 62.53 0.6514

Table 12: M2M-1B results on the development set with
various context sizes

Lang Direction Context Size BLEU ChrF COMET

de

agent

all 33.64 50.81 0.0070
0 43.36 63.90 0.4696
1 39.86 59.56 0.2938
2 36.96 54.70 0.1669
3 35.04 52.66 0.0926
5 34.52 51.63 0.0505

customer

all 49.84 64.41 0.5192
0 60.20 74.03 0.8307
1 59.44 72.44 0.7976
2 57.08 70.71 0.7620
3 57.87 71.52 0.7889
5 57.18 70.73 0.7554

fr

agent

all 48.67 65.78 0.7100
0 55.16 72.33 0.8718
1 52.67 70.21 0.8857
2 51.75 69.47 0.8873
3 52.58 70.45 0.8988
5 49.89 68.94 0.8122

customer

all 50.02 64.56 0.6510
0 50.33 64.73 0.6434
1 50.18 64.79 0.6626
2 50.57 65.21 0.6550
3 50.24 64.86 0.6546
5 50.31 64.86 0.6551

pt-br

agent

all 48.63 64.10 0.6409
0 49.26 64.31 0.6884
1 49.51 64.46 0.6362
2 49.76 64.92 0.6449
3 49.79 65.21 0.6597
5 48.56 64.03 0.6422

customer

all 48.48 63.51 0.6401
0 45.99 61.18 0.6427
1 48.98 63.89 0.6424
2 48.22 62.57 0.6167
3 48.30 63.17 0.6415
5 48.25 63.13 0.6241
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en→fr (agent) fr→en (customer)

Baseline-N2 Unbabel-IST Baseline-N2 Unbabel-IST

Addition 39 17 37 12

Agreement 6 6 2 3

Capitalization 55 32 12 0

Currency Format 0 2 0 0

Date/Time Format 2 2 4 2

Grammar 90 24 36 22

MT Halucination 8 0 19 0

Mistranslation 469 60 113 83

Omission 21 11 42 28

Punctuation 170 98 18 4

Register 2 0 0 0

Source Issue 50 22 46 29

Spelling 19 20 2 0

Unnatural Flow 3 1 0 0

Untranslated 207 2 25 7

Whitespace 86 161 2 0

Word Order 26 18 16 4

Wrong Named Entity 0 0 13 10

Table 13: Counts per error type for fr .
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en→pt-br (agent) pt-br→en (customer)

Baseline-N2 Unbabel-IST Baseline-N2 Unbabel-IST

Addition 14 8 47 13

Agreement 9 1 0 1

Capitalization 24 18 27 19

Currency Format 3 2 0 0

Grammar 53 31 54 28

MT Halucination 1 0 28 6

Mistranslation 224 99 145 100

Omission 25 30 84 42

Punctuation 131 109 19 15

Register 2 0 0 0

Source Issue 32 25 46 23

Spelling 2 2 0 0

Unnatural Flow 8 2 0 0

Untranslated 97 5 22 4

Whitespace 4 5 8 4

Word Order 10 4 25 15

Wrong Language Variety 1 6 0 0

Wrong Named Entity 2 6 12 5

Table 14: Counts per error type for pt-br.
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Abstract

This paper presents the results of the First
WMT Shared Task on Sign Language Trans-
lation (WMT-SLT22)1. This shared task is
concerned with automatic translation between
signed and spoken2 languages. The task is
novel in the sense that it requires process-
ing visual information (such as video frames
or human pose estimation) beyond the well-
known paradigm of text-to-text machine trans-
lation (MT). The task featured two tracks,
translating from Swiss German Sign Language
(DSGS) to German and vice versa. Seven
teams participated in this first edition of the
task, all submitting to the DSGS-to-German
track. Besides a system ranking and sys-
tem papers describing state-of-the-art tech-
niques, this shared task makes the following
scientific contributions: novel corpora, repro-
ducible baseline systems and new protocols
and software for human evaluation. Finally,
the task also resulted in the first publicly avail-
able set of system outputs and human evalua-
tion scores for sign language translation.

1 Introduction

This paper presents the outcome of the First
WMT Shared Task on Sign Language Transla-
tion (WMT-SLT22). The focus of this shared
task is automatic translation between signed and

1https://www.wmt-slt.com/
2In this paper we use the word “spoken” to refer to any

language that is not signed, no matter whether it is repre-
sented as text or audio, and no matter whether the discourse
is formal (e.g. writing) or informal (e.g. dialogue).

spoken languages. Recently, Yin et al. (2021)
called for including signed languages in NLP re-
search. We regard our shared task as a direct an-
swer to this call. While WMT has a long history
of shared tasks for spoken languages (Akhbardeh
et al., 2021), this is the first time that signed lan-
guages are included in a WMT shared task.

Sign language translation requires processing
visual information (such as video frames or human
pose estimation) beyond the well-known paradigm
of text-to-text machine translation (MT). As a con-
sequence, solutions need to consider a combina-
tion of Natural Language Processing (NLP) and
computer vision (CV) techniques.

In the field of sign language MT there is a gen-
eral lack of suitable and freely available datasets
and code. For this reason it was necessary for
us to build and distribute novel training corpora
and we also published reproducible baseline code.
Likewise, existing protocols and toolkits for hu-
man evaluation had to be adapted to support sign
languages.

In this first edition of the shared task we con-
sidered one language pair: Swiss German Sign
Language (DSGS) and German. We offered two
tracks: DSGS-to-German translation and German-
to-DSGS translation.

Seven teams participated in the task, which we
consider a success. All teams submitted to the
DSGS-to-German track, while there were no sub-
missions to the German-to-DSGS track.

The remainder of this paper is organized as fol-
lows:
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• We give some background on sign languages
and sign language processing in §2.

• We describe the shared task tracks and sub-
mission procedure in §3.

• We report on the corpora we built and dis-
tributed specifically for this task in §4 and §5.

• We describe all submitted systems, including
our baseline in §6.

• We ran both an automatic and a human eval-
uation. We explain our evaluation in §7.

• We share the main outcomes in §8 and dis-
cuss in §9.

2 Background

We consider sign language processing (SLP) a
sub-area of Natural Language Processing (NLP),
and automatic sign language translation (SLT), a
more narrowly focused discipline within SLP.

We first give an introduction to sign languages
(§2.1) and describe the societal and academic rele-
vance of SLP (§2.2). Then we give an overview of
SLP in general (§2.3), of SLT in particular (§2.4)
and finally motivate this shared task (§2.5).

2.1 Sign languages

Sign languages (SLs) are the natural languages
used in deaf communities. Contrary to the popular
belief that sign language is universal, hundreds of
different SLs have been documented so far. They
are still scarcely described and under-resourced.
For example, few reference grammars exist, lex-
icons only have partial coverage and existing cor-
pora are small.

Nature of sign languages Sign languages are
visuo-gestural languages. A person expresses
themselves using many parts of the body (hands
and arms, but also face, mouthing, gaze, shoul-
ders, torso, etc.) while the interlocutor perceives
the message through the visual channel. The lin-
guistic system of SLs makes use of these specific
linguistic cues. Information is expressed simul-
taneously (as opposed to the sequential nature of
spoken language), organized in three-dimensional
space, and iconicity plays a central role (Woll,
2013; Perniss et al., 2015; Slonimska et al., 2021).

Writing systems To date, SLs do not have a
written form or graphical system for transcrip-
tion that is universally accepted (Pizzuto and
Pietrandrea, 2001; Filhol, 2020). Several nota-
tion systems, such as HamNoSys (Hanke, 2004)
or SignWriting (Sutton, 1990; Bianchini and Bor-
gia, 2012), are used in research or teaching but are
rarely adopted as a writing system in everyday life.

A common misconception among MT re-
searchers is that transcribed glosses are a full-
flegded writing system for sign languages. In re-
ality, glossing is a linguistic tool, useful for an-
notating corpora for linguistic studies (Johnston,
2010). Glosses are not a means of writing SL, and
they do not adequately represent the meaning of
an SL utterance. Importantly, “deaf people do not
read or write glosses” in everyday life (Anony-
mous, 2022). Moreover, glosses mostly consist
of words taken from the surrounding spoken lan-
guage, which is generally only a second language
to deaf signers (§2.2, societal relevance).

2.2 Relevance of sign language processing

SLP is a research area with high potential impact,
as it is relevant in a societal and academic sense.

Societal relevance The overall aim of SLP is to
provide language technology for sign languages,
which currently are somewhat overlooked. The
vast majority of NLP systems are designed for
spoken languages, not for signed languages. This
means that more research in SLP could result in
more equal access to language technology.

The more specific goal of SLT is to facilitate
communication between deaf and hearing commu-
nities. There is a need for this because speakers
of spoken languages and signers of sign languages
experience communication difficulties (the same
kind of difficulties encountered by speakers of dif-
ferent spoken languages). We emphasize that deaf
and hearing people could benefit from such tech-
nologies in equal measure.3

Besides aiding direct communication, SLT
would improve accessibility to spoken language
content, given that spoken languages are often a
second language for deaf people, where they ex-
hibit varying proficiency. The reverse direction
can also be useful, for example to automatically

3We distance ourselves from the harmful view that only
deaf people are in need (of access to spoken language dis-
course). Language barriers are inherently two-way, and ad-
dressing them involves both parties.
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subtitle signed content to make it accessible to
people who do not know SLs (Bragg et al., 2019).

Academic relevance In the field of Natural Lan-
guage Processing (NLP), working on SLs is highly
innovative and timely. Recently, a call for more
inclusion of signed languages in NLP (Yin et al.,
2021) was widely publicized, and an ACL initia-
tive for Diversity and Inclusion4 targets SL pro-
cessing as well.

2.3 Sign language processing

Sign language processing is an interdisciplinary
field, bringing together research on NLP and com-
puter vision, among other disciplines (Bragg et al.,
2019). For a general overview in the context of
NLP see Yin et al. (2021); Moryossef and Gold-
berg (2021).

Tasks SLP involves a variety of (sub)tasks with
individual challenges. Widely known tasks are
sign language recognition, sign language transla-
tion and sign language production (or synthesis).
Sign language recognition usually refers to iden-
tifying individual signs from videos, see Koller
(2020) for an overview. Sign language translation
refers to systems that transform sign language data
to a second language, no matter whether signed or
spoken, see De Coster et al. (2022) for a compre-
hensive survey. Finally, sign language production
refers to rendering sign language as a video, us-
ing methods such as avatar animation (Wolfe et al.,
2022) or video generation.

SLP research is challenging for a number of dif-
ferent reasons. The ones we chose to highlight
here are linguistic properties, availability of data
and availability of basic NLP tools.

Linguistic challenges SLP is challenging be-
cause of the characteristics of sign languages
(§2.1), for instance multilinearity, use of the sign-
ing space and iconicity. As explained earlier, SLP
needs to take into account manual and non-manual
cues in order to capture a complete linguistic pic-
ture of an SL utterance (Crasborn, 2006). Infor-
mation is presented simultaneously, rather than
sequentially. Signing makes frequent use of in-
dexing strategies for example to identify referents
introduced earlier in the discourse or timelines
(Engberg-Pedersen, 1993).

4https://www.2022.aclweb.org/
dispecialinitiative

Sign languages have an established vocabulary
but are also lexically productive to allow for defi-
nition of new signs or constructions to be used to
depict entities or situations (Johnston, 2011).

Availability of data Given the current research
landscape in NLP, sign languages are under-
resourced. An analysis by Joshi et al. (2020)
places all sign languages considered in this study
in the category “left behind” (together with many
spoken languages). Existing resources are small
and also heterogeneous. They are created under a
variety of circumstances and vary in quality (e.g.
video resolution), signer demographics (e.g. deaf
vs. hearing signers), richness of annotation (e.g.
glosses, sentence segmentation, translation to a
spoken language) and linguistic domain (e.g. only
weather reports).

Also, not all corpora are easily accessible on-
line and some have restrictive licenses that disal-
low NLP research. A survey of SL corpora avail-
able in Europe can be found in Kopf et al. (2021).

Lack of basic linguistic tools SLP currently
lacks fundamental NLP tools that are readily
available for spoken languages. Such tools in-
clude automatic language identification (Monteiro
et al., 2016), sign segmentation (De Sisto et al.,
2021), sentence segmentation (Ormel and Cras-
born, 2012; Bull et al., 2020) and sentence align-
ment (Varol et al., 2021). Although there are ex-
perimental solutions, they are not yet viable in
practice.

Tools like these would be crucial to create better
corpora by constructing them automatically, as is
routinely done for spoken languages (Bañón et al.,
2020), and develop better high-level NLP solu-
tions.

2.4 Sign language translation

In recent years, different methods to tackle SLT
have been proposed, most of them suggesting a
cascaded system where a signed video is first con-
verted to an intermediate representation and then
to spoken text (similarly for text-to-video transla-
tion). Intermediate representations (with individ-
ual strengths and weaknesses) include pose esti-
mation (§5.3), glosses or writing systems such as
HamNoSys (§2.1, writing systems).

There is existing work on gloss-to-text trans-
lation and vice versa (e.g. Camgöz et al. 2018;
Yin and Read 2020), pose-to-text translation and
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vice versa (e.g. Ko et al. 2019; Saunders et al.
2020a,b,c) and systems involving HamNoSys (e.g.
Morrissey 2011; Walsh et al. 2022). Recently, di-
rect video-to-text translation was also proposed by
Camgöz et al. (2020a,b). For rendering sign lan-
guage output, avatars are commonly used (Wolfe
et al., 2022), as well as methods to generate videos
of realistic signers (e.g. Saunders et al. 2022).

Parallel datasets In terms of datasets, past
work in SLT can be characterized as focus-
ing very much on a narrow linguistic domain,
most of the work was done on one single data
set called RWTH-PHOENIX Weather 2014T
(Forster et al., 2014). PHOENIX has a size of 8k
sentence pairs and contains only weather reports.
The biggest parallel sign language corpus to date,
the Public DGS Corpus (Hanke et al., 2020), con-
tains roughly 70k sentence pairs.

Thus, there is a clear shortage of usable paral-
lel corpora and existing ones are orders of magni-
tude smaller than what is considered an acceptable
size for spoken language MT (as a rule of thumb,
at least hundreds of thousands of sentence pairs).
Nevertheless, there are plenty of spoken languages
that also have little parallel data and MT methods
have been developed specifically for low-resource
MT (Sennrich and Zhang, 2019).

Evaluation For spoken language MT a vari-
ety of automatic metrics exist. These include
more conventional, string-based metrics such as
BLEU (Papineni et al., 2002) or chrF (Popović,
2015), as well as recent, learned metrics based on
embeddings like COMET (Rei et al., 2020). In the
context of SLT, no automatic metrics are validated
empirically, but if the target language is spoken,
many existing metrics are reasonable to use. How-
ever, if sign language is the target language, no au-
tomatic metric is known at the time of writing and
the only viable evaluation method is human eval-
uation. A human evaluation of SLT systems has
never been conducted on a large scale before, and
there are open questions regarding the exact evalu-
ation methodology and what the ideal profile (e.g.
hearing status, language proficiency) for evalua-
tors should be.

2.5 Motivation for this shared task

Our main motivation is that sign languages are nat-
ural languages (§2.1) that are currently overlooked
in NLP and SLT research (§2.3, §2.4). The shared

task brings this topic to the attention of MT re-
searchers. We decided to create a new shared task
as opposed to other activities since we believe this
format has a unique potential to foster progress in
MT and to also make progress measurable over
time.

Concrete ways in which the shared task might
boost research is by creating public benchmark
data, translations by many state-of-the-art systems
and judgements of translation quality by humans
(see also §9.4 on ways we are adding value).

3 Tracks and submission procedure

We offered two translation directions (“tracks”):
translation from Swiss German Sign Language
(DSGS) to German and vice versa.

Translation from DSGS to German was our pri-
mary translation direction in the sense that sub-
mitted systems were ranked on a leaderboard and
we provided baseline systems. Systems translat-
ing from German to DSGS were not ranked on the
leaderboard while the task was running, but we
still encouraged participants to submit such sys-
tems. We were prepared to provide human evalu-
ation for all submitted systems, regardless of the
translation direction.

We deliberately did not limit the shared task
to any particular kind of SL representation as in-
put or output of an MT system. For DSGS-to-
German translation participants were free to use
video frames, pose estimation or something else.
For German-to-DSGS participants were free to
submit a video showing pose estimation output, an
avatar or a photo-realistic signer.

Participants submitted translations on the
OCELoT platform5 which has a public leader-
board. We modified OCELoT slightly in order to
disable automatic metrics on the leaderboard for
German-to-DSGS, since currently no automatic
metrics exist for SL output. Participants were al-
lowed to make up to seven submissions, one of
them the primary submission.

Main outcome Seven teams (including one
from the University of Zurich whose submission
we consider a baseline) participated in our task.
All of them submitted to the DSGS-to-German
track, while there were no submissions for the sec-
ond translation direction.

5https://ocelot-wmt22.azurewebsites.
net/
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SRF FocusNews Total

direction episodes segments episodes segments segments

training (both) 29 7071 197 10136 17207

development (both) 1 287 3 133 420

test DSGS-to-German 1 242 5 246 488
German-to-DSGS 1 183 5 228 411

Table 1: Overview of training, development and test data. SRF and FocusNews are two different training corpora
(§4.2). Segment count for the training corpora is after automatic sentence segmentation. The development data for
both translation directions is identical, while the test data is different for DSGS-DE and DE-DSGS.

4 Data

For this task we provided separate training, devel-
opment and test data, where the training data was
available from the beginning while the develop-
ment and test data were released in several stages.

Table 1 gives a high-level overview of our train-
ing, development and test data.

Necessity of creating training data The data
we provided are new corpora that we built and
published. This was necessary because existing
datasets for SL machine translation did not meet
our requirements. Existing datasets either have
a license that is too restrictive, are not parallel
enough in the sense of being only “comparable
corpora”, are too small or have a very limited lin-
guistic domain. For example, the most widely
used dataset in SL machine translation research,
PHOENIX (introduced in §2.4), has a size of 8k
sentence pairs and contains only weather reports.

Following the long history of WMT shared
tasks for spoken language machine translation
(Akhbardeh et al., 2021), we opted for data that
contains general news, hence a more open domain.

4.1 Licensing and attribution

Our training corpora have different licenses that
are summarized here. This overview paper must
be cited if the corpora are used.

FocusNews corpus This dataset can be used
only for this shared task or its future iterations.
Other uses of the data require express permission
by the data owners. Interested parties should con-
tact the organizers for further information.

SRF corpus This dataset can be used for
non-commercial research under an Attribution-

NonCommercial-ShareAlike 4.0 International li-
cense (CC BY-NC-SA 4.0)6.

4.2 Training Data

The training data comprises two corpora, called
FocusNews and SRF. The linguistic domain of
both corpora is general news, and both contain
parallel data between DSGS and German. The
corpora are distributed through Zenodo7.

The statistics of the two corpora are summarised
in Table 2.

Training corpus 1: FocusNews 8 The Focus-
News data originates from a former deaf online
TV channel, FocusFive9. We provide the news
episodes (FocusNews), as opposed to other pro-
grams. The data consists of 197 videos with asso-
ciated subtitles of approximately 5 minutes each.
The videos feature deaf signers of DSGS and rep-
resent the source for translation. The German sub-
titles were created in post-production by hearing
SL interpreters.

We provide episodes within the time range of
2008 (starting with episode 43) to 2014 (up to
episode 278). The videos were recorded with dif-
ferent framerates, either 25, 30 or 50 fps. The
video resolution is 1280 x 720.

While this data set is small (by today’s stan-
dards in spoken language machine translation), we
emphasize the importance of using deaf signer
data for shared tasks like ours. There are crucial
differences between the signing of hearing inter-
preters and deaf signers, and interpreted signing

6https://creativecommons.org/licenses/
by-nc-sa/4.0/

7https://zenodo.org/
8Here we describe Zenodo release version 1.3 of the cor-

pus.
9https://www.youtube.com/c/focusfivetv
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FocusNews (release 1.3) SRF (release 1.2)

Number of episodes 197 29
Time span of episodes 2008 – 2014 March 2020 – March 2021
Length of 1 episode ∼ 5 minutes ∼ 30 minutes

Number of signers 12 3
Signer status deaf hearing
Signing mode Live signing from teleprompter (show-

ing German text or glosses)
Live sign language interpretation

Translation source DSGS German

Total duration videos 19 hours 16 hours
Video resolution 1280 × 720 1280 × 720
Video framerate 25, 30 or 50 25

Number of parallel subtitles∗ 9943 / 10136 14265 / 7071
Number of monolingual subtitles∗ (none) 883754 / 577418
Subtitle format SRT SRT
Sentence segmentation automatic manual
Subtitling mode In post-production, after signing is al-

ready recorded
Pre-produced or live subtitles (using re-
speaking with ASR)

Table 2: Data statistics and characteristics of our training corpora. *= before / after automatic sentence segmenta-
tion.

may bear more resemblance to spoken language
structures (Janzen, 2005).

Training corpus 2: SRF 10 The dataset con-
tains daily national news and weather forecast
episodes broadcast by the Swiss National TV
(Schweizerisches Radio und Fernsehen, SRF)11.
The episodes are narrated in Standard German of
Switzerland (different from Standard German of
Germany, and different from Swiss German di-
alects) and interpreted into DSGS. The interpreters
are hearing individuals, some of them children of
deaf adults (CODAs).

The subtitles are partly preproduced, partly cre-
ated live via respeaking based on automatic speech
recognition.

While both the subtitles and the signing are
based on the original speech (audio), due to the
live subtitling and live interpreting scenario, a
temporal offset between audio and subtitles as
well as audio and signing is inevitable. This offset
or “alignment shift” is visualized in Figure 1.

Manual alignment In our training corpus, the
offset between the signing and the subtitles was
manually corrected by deaf signers with a good
command of German. The live interview and

10Here we describe Zenodo release version 1.2 of the cor-
pus. The data provided here is an extended version of the
dataset published as part of the Content4All project (EU
Horizon 2020, grant agreement no. 762021).

11https://www.srf.ch/play/tv/sendung/
tagesschau-in-gebaerdensprache?id=
c40bed81-b150-0001-2b5a-1e90e100c1c0

weather forecast parts of each episode were ig-
nored, as the quality of the subtitles tends to be
noticeably lower for these parts.

The parallel data comprises 29 episodes of ap-
proximately 30 minutes each with the SL videos
(without audio track) and the corresponding sub-
titles. We selected episodes from two time
spans: 13/03/2020 to 19/06/2020 and 04/01/2021
to 26/02/2021, featuring three different SL in-
terpreters. (Three interpreters consented to hav-
ing their likeness used for this shared task.) The
videos have a framerate of 25 fps and a resolution
of 1280 x 720.

In addition to the parallel data we provided all
available German subtitles from 2014 to 2021 as
monolingual data. In total, there are 1949 subti-
tle files with a total of 570k sentences (count after
automatic segmentation).

4.3 Development data

The development data consists of segments ex-
tracted from undisclosed SRF and FocusNews
episodes (see §4.2 for a general description). This
data was also manually aligned and the signer is a
“known” person that appeared in the training set.
The framerate of development videos is 25 fps for
SRF and 50 fps for FocusNews.

4.4 Test data

We distribute separate test data for our two trans-
lation directions.
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Figure 1: Illustration of alignment shift in sign language corpora. From top to bottom: a sign language video, an
audio track with speech, a spoken language subtitle in German. Information in these three modalities do not start
and end at the same time, adjusting their start and end times is referred to as alignment.

DSGS-to-German Additional, undisclosed
SRF and FocusNews episodes that are manually
aligned. As for the development data, the signers
are “known” persons and the framerate of videos
is 25 fps for SRF and 50 fps otherwise.

German-to-DSGS This subset of the test data
has two distinct parts:

1. Additional, undisclosed FocusNews episodes
that are manually aligned. As for the devel-
opment data, the signers are “known” persons
and the framerate of videos is 50 fps.

2. New translations created specifically for this
shared task. The domain is identical to the
training data (general news). In this case Ger-
man subtitles are the source for human trans-
lation, DSGS videos are the target. The hu-
man translator is deaf (in contrast to all of
the SRF data, where signers are hearing inter-
preters). The framerate of these videos is 50
fps and they are recorded with a green screen.

For German-to-DSGS translation we consider it
important that the reference translations are cre-
ated by deaf signers instead of hearing inter-
preters.

4.5 Automated access to training data
Our baseline system described in §6.1 automati-
cally downloads all subsets of the data.

In addition, we added our training corpora to the
Sign Language Datasets library (Moryossef and
Müller, 2021b). The datasets can now be loaded
automatically as a Tensorflow data set, provided
that the user has previously obtained Zenodo ac-
cess tokens.

5 Data preprocessing

For each data set described in §4 we provided
videos and corresponding subtitles. In addition,
we included pose estimates (location of body key-
points in each frame) as a convenience.

5.1 Video processing
Videos are re-encoded with lossless H264 and use
an mp4 container. The framerate of videos is un-
changed, meaning either 25, 30 or 50. We are not
distributing the original videos but ones that are
preprocessed in a particular way so that they only
show the part of each frame where the signer is
located (cropping) and the background is replaced
with a monochrome color (signer masking), see
Figure 2 for examples.

Cropping We manually annotate a rectangle
(bounding box) around where the signer is located
for each video. We then crop the video to only
keep this region using the FFMPEG library.

Signer segmentation and masking To the
cropped video we apply an instance segmentation
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Figure 2: Illustration of video preprocessing steps (cropping, instance segmentation and masking). From left to
right: original frame, cropped frame, masked frame.

model, Solo V2 (Wang et al., 2020), to separate the
background from the signer. This produces a mask
that can be superimposed on the cropped video to
replace each background pixel in a frame with a
grey color ([127,127,127] in RGB).

5.2 Subtitle processing

For subtitles that are not manually aligned (all
of FocusNews and monolingual SRF data), au-
tomatic sentence segmentation is used to re-
distribute text across subtitle segments, see Figure
3 for examples.

This process also adjusts timecodes in a heuris-
tic manner if needed. For instance, if automatic
sentence segmentation detects that a well-formed
sentence stops in the middle of a subtitle, a new
end time will be computed. The end time is pro-
portional to the location of the last character of the
sentence, relative to the entire length of the subti-
tle. See Example 2 in Table 3 for an illustration of
this case.

5.3 Pose processing

“Poses” are an estimate of the location of body
keypoints in video frames. The exact set of
keypoints depends on the pose estimation sys-
tem, well known ones are OpenPose (Cao et al.,
2019)12 and MediaPipe Holistic (Lugaresi et al.,
2019)13. Usually such a system provides 2D or
3D coordinates of keypoints in each frame, plus a
confidence value for each keypoint.

The input for pose processing are cropped and
masked videos (§5.1). See Figure 3 for examples
of pose estimation on our data.

12https://github.com/
CMU-Perceptual-Computing-Lab/openpose

13https://ai.googleblog.com/2020/12/
mediapipe-holistic-simultaneous-face.
html

OpenPose We are using the OpenPose Body135
model. OpenPose often detects several people in
our videos, even though there is only one single
person present. We distribute the original predic-
tions which contain all people that OpenPose de-
tected.

MediaPipe Holistic As an alternative, we also
estimate signers’ poses with the MediaPipe Holis-
tic system developed by Google. Unlike our
OpenPose model, which only provides 2D joint lo-
cations, MediaPipe produces both 2D and 3D joint
location coordinates. Values from Holistic are nor-
malized between 0 and 1, instead of referring to
actual video coordinates.

6 Baseline and submitted systems

In this section we describe all submissions to our
shared task. In case there are substantial differ-
ences between the primary and secondary sub-
missions of a team we opted to describe the pri-
mary submission here. At the time of writing this
overview paper six out of seven teams have given
us detailed information about their submissions.
The submissions are summarized in Table 4.

Overall, the participating teams have diverse
academic backgrounds, most of them combine
computer vision and NLP expertise. All submitted
systems are sequence-to-sequence models based
on Transformers (Vaswani et al., 2017). Partici-
pants chose to represent sign language data as ei-
ther video frames (using a visual feature extractor
on the encoder side) or pose features, with no clear
majority in this regard.

Two systems, by LATTIC and MSMUNICH,
are unconstrained because their visual encoder
component is pretrained on WSASL (Li et al.,
2020) or is an existing model taken from Varol
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Example 1

Original subtitle After automatic segmentation

81
00:05:22,607 -> 00:05:24,687
Die Jury war beeindruckt

82
00:05:24,687 -> 00:05:28,127
und begeistert von dieser gehörlosen
Frau.

48
00:05:22,607 -> 00:05:28,127
Die Jury war beeindruckt und
begeistert von dieser gehörlosen
Frau.

Example 2

Original subtitle After automatic segmentation

7
00:00:24,708 -> 00:00:27,268
Die Invalidenversicherung Region Bern
startete

8
00:00:27,268 -> 00:00:29,860
dieses Pilotprojekt und will
herausfinden, ob man es

9
00:00:29,860 -> 00:00:33,460
zukünftig umsetzen kann. Es geht um
die Umsetzung

4
00:00:24,708 -> 00:00:31,720
Die Invalidenversicherung Region Bern
startete dieses Pilotprojekt und will
herausfinden, ob man es zukünftig
umsetzen kann.

Table 3: Examples of automatic sentence segmentation for German subtitles. The subtitles are formatted as SRT,
a common subtitle format.

Figure 3: Examples of the output of pose estimation systems overlaid over the original video frames. Left: Open-
Pose, right: MediaPipe Holistic.
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BASELINE LATTIC MSMUNICH UPC DFKI-SLT DFKI-MLT NJUP-MTT

Constrained ✔ - - ✔ ✔ ✔ ?
Multilingual - - - - - - ?
Document-level - - - - - - ?
Model ensemble - - - - - - ?

Pretrained components - ✔ ✔ - - - ?
Monolingual data - - - - - - ?
Synthetic data - - - - ✔ - ?

Signed language representation OP Video frames Video frames MH MH Video frames ?
Spoken language representation SP SP other1 SP other2 - ?

Open-source code ✔ (✔) - ✔ ✔ (✔) ?

Table 4: Overview of characteristics of submitted systems. NJUP-MTT did not disclose any information. In the
code row, checkmarks are clickable links. OP=OpenPose, MH=MediaPipe Holistic, SP=Sentencepiece, (✔)=au-
thors plan to publish the code, other1=text is normalized, but not segmented, other2=text is lowercased, but not
segmented

et al. (2021). Only one team (DFKI-SLT) used
synthetic parallel data and no submission used the
monolingual subtitles we distributed.

Three teams have published their code, with two
other teams planning to do so in the future.

6.1 Submission by UZH (baseline system)
We provided code to train baseline systems for
DSGS to German in a public Github repository
(Müller et al., 2022)14. The codebase contains
scripts to preprocess data, train, translate and eval-
uate models and should allow to reproduce our re-
sults exactly.

The underlying sequence-to-sequence toolkit is
Sockeye (Hieber et al., 2022) which is based on
Pytorch (Paszke et al., 2019). We adapted Sock-
eye so that it supports encoding or decoding con-
tinuous vectors instead of discrete sequences of
tokens. Our system is a pose-to-text translation
model that reads a sequence of pose frames and
converts them to the model size with a simple
learned projection. The baseline does not involve
pretraining or additional data and is therefore a
constrained submission.

Preprocessing We used OpenPose (Cao et al.,
2019) predictions (as opposed to MediaPipe
Holistic or a third option). If OpenPose predicted
several people in a frame, we simply chose the first
one and ignored all other values. Poses are nor-
malized by shoulder width. We convert all pose
sequences to a framerate of 25 fps. On the spoken
language side we do not apply any preprocessing
except learning and applying a Sentencepiece seg-
mentation model (Kudo, 2018) with a vocabulary
size of 1000.

14https://github.com/bricksdont/
sign-sockeye-baselines

For training and translation we used one Tesla
V100-32GB GPU and the training took between
two and four hours.

6.2 Submission by LATTIC (Shi et al., 2022)

The system submitted by LATTIC is a
Transformer-based sequence-to-sequence model
which uses as input visual representations derived
from an Inflated 3D ConvNet (I3D) (Carreira and
Zisserman, 2017) and text as the target. The I3D
models is pretrained on the WLASL15 dataset
(an isolated sign dataset). The input represen-
tation is resized video frames, the frames were
resized to 224x224. For the spoken language side
Sentencepiece (Kudo and Richardson, 2018) was
used to generate a vocabulary of 18k tokens. The
system is developed from scratch, without the use
of existing MT software, and has a Transformer
architecture (Vaswani et al., 2017). The I3D
model is first trained on Kinetics, an action
recognition dataset (Carreira and Zisserman,
2017), then it is trained for isolated sign language
recognition. Before feeding input to the model,
each isolated sign video is truncated, resized,
randomly cropped to 224x224 and horizontally
flipped with probability 0.5. Models were trained
on several GPU types (A4000, A6000 and Titan
RTX) and the training took roughly four hours per
model.

6.3 Submission by MSMUNICH (Dey et al.,
2022)

Microsoft’s submission to WMT-SLT is a
sequence-to-sequence Transformer model. It is
based on an existing model pretrained on the

15https://github.com/dxli94/WLASL
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BSL1K dataset (Varol et al., 2021)16. Similar
to the submission of LATTIC, this system also
uses a pretrained I3D model. The system takes as
input consecutive video frames and predicts over
1000 signs. For the text side, text normalisation
such as lowercasing, conversion of numerals
and data cleaning were applied. The authors
emphasize that such careful data preprocessing
and postprocessing was crucial. The underlying
MT framework is Fairseq (Ott et al., 2019).

6.4 Submission by SLT-UPC (Tarrés et al.,
2022)

The submission of UPC17 is also a Transformer-
based sequence-to-sequence model, based on a
smaller Transformer architecture. To pretrain the
model, PHOENIX (Forster et al., 2014) data was
used. However, the results achieved with pretrain-
ing were no better than the primary submission
(without pretraining). The authors built indepen-
dent vocabularies for each training corpus. The
best results were obtained by only training on the
FocusNews dataset.

As a representation for the SL side, MediaPipe
Holistic was used, re-extracting the features using
the pose library by Moryossef and Müller (2021a).
The authors interpolated the pose sequences to
unify the framerate to 25fps and used data aug-
mentation on the poses (using pose libary aug-
mentation functions such as rotation, scaling and
shear). For the text side Sentencepiece was used
to generate vocabularies of 1000, 2000 and 4000.
Their main submission had a vocabulary of 1000.
The code is based on Fairseq and is available
on GitHub18. To train their models, one Nvidia
GeForce RTX 3090 was used and training for the
main submission took roughly 3.5 hours.

6.5 Submission by DFKI-SLT (Hufe and
Avramidis, 2022)

The submission of DFKI-SLT is a sequence-to-
sequence model trained with JoeyNMT (Kreutzer
et al., 2019), using chrF as the validation metric.
The authors describe their system as having three
main modules. In the first, SL images are con-
verted into intermediate pose keypoint representa-
tions; the second module employs data augmen-

16https://www.robots.ox.ac.uk/~vgg/
research/bslattend/

17https://www.upc.edu/ca
18https://github.com/mt-upc/fairseq/

tree/wmt-slt22

tation (geometrical transformations) to increase
sample efficiency and decrease the effect of spu-
rious feature correlations; and the third employs a
Transformer network to perform translation.

The system is trained only on FocusNews. The
representation of the SL side was based on Me-
diaPipe Holistic. The text side was only lower-
cased and the maximum sentence length was set
to 400. The models were trained on an Nvidia
RTXA6000.

6.6 Submission by DFKI-MLT (Hamidullah
et al., 2022)

The main idea behind the DFKI-MLT approach is
to learn feature representation and translation in a
single model, and to train them together. The sys-
tem architecture consists of two connected blocks:
the first block, implemented using CNNs, is in-
tended to capture visual representations and the
second one, implemented with Transformers, aims
to capture language. The visual component is
based on a ResNet (Hara et al., 2017). In partic-
ular, the visual encoding in the submitted system
consists of the original 3D ResNet10 with output
conversion. The conversion creates a sequence of
vectors from the single output vector to adapt to
the Transformer encoder input. The visual vector
is projected through a linear layer which is con-
nected directly to the language block. The lan-
guage block is a simple Transformer. The train-
ing is end-to-end, aiming to force the visual block
to take into account the language representation
when building the visual embedding.

6.7 Submission by NJUPT-MTT
Finally, we received submissions from the ma-
chine translation lab at Nanjing University of
Posts and Telecommunications (NJUPT-MTT).
No system paper was submitted and the authors
did not provide further information.

7 Evaluation Protocols

We performed both a human (§7.1) and an auto-
matic (§7.2) evaluation of translation quality. Our
final system ranking is based on the human evalu-
ation only.

7.1 Human evaluation
In our human evaluation, we followed the set-
ting established by the recent WMT21 conference
(Akhbardeh et al., 2021) and adapted it to the re-
quirements of SLT evaluation.
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We employed the source-based direct assess-
ment (DA; Graham et al., 2013; Cettolo et al.,
2017) methodology with document context, ex-
tended with Scalar Quality Metric (SQM; Freitag
et al., 2021), which was piloted at the IWSLT
2022 evaluation campaign (Anastasopoulos et al.,
2022). Assessments were performed on a contin-
uous scale between 0 and 100 as in traditional DA
but with 0-6 markings on the analogue slider and
custom annotator guidelines specifically designed
for our task.

Human evaluation settings We used the Ap-
praise evaluation framework19 (Federmann, 2018)
for collecting segment-level judgements within
document context. As there were submissions in
the DSGS-to-German direction only (§3), we only
set up a sign-to-text human evaluation campaign.
Annotators were presented with video fragments
as source context and translation outputs of a ran-
dom document from an MT system. The reference
translation and the official baseline were included
as additional system outputs. Documents longer
than ten segments were split into document snip-
pets with ten or fewer consecutive segments. A
screenshot of an example annotation in Appraise
is presented in Figure 4.

We hired four evaluators who were native
German speakers and trained DSGS interpreters.
They did not have prior experience with evalua-
tion of MT output. Each evaluator was assigned an
identical set of annotation tasks comprising docu-
ments from the entire test set and all participat-
ing systems, including the baseline system and the
reference translation. 196 segments were given to
each annotator more than once to conform to Ap-
praise’s requirement of 100 segments per task and
in order to measure intra-annotator agreement.

We did not include any quality control items
in the annotation tasks as we had multiple inde-
pendent annotations of the entire test set and be-
cause of the very low quality of translations, which
would make them indistinguishable from seg-
ments with randomly replaced words or phrases
used as quality control items.

Justification for custom guidelines We de-
signed custom guidelines to account for differ-
ent modalities (e.g. avoid confusing mentions of
“text” in the instructions when the source or tar-

19https://github.com/AppraiseDev/
Appraise

get is in fact a video) and to tailor them towards
SL content. For example, we added naturalness
of motion as an evaluation criterion for evalua-
tions with SL output. Following IWSLT 2022, we
also removed any mention of “grammar” to shift
emphasis away from grammatical issues towards
translation-breaking differences in meaning. The
full instructions to evaluators in English and Ger-
man are listed in Appendix A.

Data and scripts used for generating tasks and
computing the final system rankings are publicly
available in a Github repository.20

7.2 Automatic evaluation
To complement our human evaluation (which pro-
vides the main ranking) we also provide an au-
tomatic evaluation. We evaluate the submissions
and the baseline system from DSGS into Ger-
man using three automatic metrics: BLEU (Pa-
pineni et al., 2002), chrF (Popović, 2015) and
BLEURT (Sellam et al., 2020). We note that
learned, semantic metrics correlate better with hu-
man judgement (Kocmi et al., 2021), but if they
consider the source text as an input (e.g. COMET;
Rei et al., 2020), they cannot be used in our con-
text because our source is video and not text.
We use sacreBLEU (Post, 2018) for BLEU21 and
chrF22 and the python library for BLEURT.23 In
all cases, we estimate 95% confidence intervals
via bootstrap resampling (Koehn, 2004) with 1000
samples.

8 Results

8.1 Human evaluation
Assessment scores Three out of the four evalu-
ators completed all tasks, which gave us at least
three independent judgements for each segment
from the official test set. In total, for the output
of eight systems, we collected 133,000 segment-
level and 1,191 document-level assessment scores,
which averages to 1,811.4 scores per system.

System ranking The system ranking is based
on the average DA segment-level scores computed
from the human assessment scores. We did not

20https://github.com/WMT-SLT/wmt-slt22
21BLEU|nrefs:1|bs:1000|seed:12345|case:

mixed|eff:no|tok:13a|smooth:exp|version:
2.2.0

22chrF2|nrefs:1|bs:1000|seed:12345|case:
mixed|eff:yes|nc:6|nw:0|space:no|version:
2.2.0

23BLEURT v0.0.2 using checkpoint BLEURT-20.
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Figure 4: A screenshot of an example sign-to-text annotation task in Appraise featuring document-level source-
based direct assessment (DA) with scalar quality metrics (SQM) and custom annotator guidelines in German.
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make any distinction between segment-level and
document-level scores, simply including the lat-
ter as additional data for computing the average
scores.

The official system ranking is presented in Ta-
ble 5. Systems which significantly outperform all
others, according to Wilcoxon rank-sum test p <
0.05, are grouped into clusters, which is indicated
by horizontal lines. Rank ranges giving an indi-
cation of the respective system’s translation qual-
ity within a cluster are based on the same head-
to-head statistical significance tests. Contrary to
previous evaluation campaigns (Akhbardeh et al.,
2021) which calculate the rankings based on stan-
dardized scores (z-scores), we decided to not do
so, because the large number of zero-scored items
led to a rather skewed standardization scale which
affected the calculation of the clusters.

According to our human evaluation (Table 5),
MSMUNICH and LATTIC have the highest qual-
ity score among all MT systems. All other systems
ended up in the same cluster with overall lower
translation quality. Both winning systems are un-
constrained, having been pretrained on other SL
datasets, and achieve an average score of 2 in the
continuous range of [0, 100], as compared to a a
score of 87 for human translations and 0.52 for
the baseline system. By looking at the domain-
specific results, however, one can see that the per-
formance of these two systems is around 3.5 for
the FocusNews part of the test set and only 0.28-
0.38 for the SRF part.

We show an additional analysis of the score dis-
tribution for each system in Appendix D.

Annotator agreement In Table 6 we are re-
porting intra-annotator agreement, measured with
Fleiss κ (Fleiss, 1971) only as an approximation,
noting the concerns of Ma et al. (2017) that kappa
coefficients are not suitable for continuous scales.
In order to calculate the coefficient, the values
have been discretized in seven bins in the scale 0-
6, since those were the scores marked on the con-
tinuous evaluation bar that was given to the anno-
tators. One can observe that the intra-annotator
agreement for raters 1 and 2 is good whereas for
raters 3 and 4 is very good (Landis and Koch,
1977; Agresti, 1996).

In order to ensure the agreement between the
annotators, we computed the ranks with different
combinations of annotators and we did not observe
changes in the ranks.
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Figure 5: Number of task completion times (a task con-
sists of 100 segments) grouped into 20-minute buckets,
after removing top and bottom 5-percentiles.

Evaluation speed Three evaluators have com-
pleted the entire evaluation. A single task requir-
ing 100 segment-level and about 12 document-
level annotations took on average 45 minutes
to complete, after excluding 5% of slowest and
fastest task annotations. The majority of tasks
were finished in between 20 and 40 minutes as
shown in Figure 5.

On average, evaluators judged with a speed of
200 to 250 sentence pairs per hour. This is in
line with previous evaluations for spoken language
MT. We believe having such an estimate of evalu-
ation speed is useful for future evaluations.

Feedback from evaluators After completing
the evaluation two out of four evaluators filled in a
form meant for feedback regarding the evaluation
procedure and the Appraise platform. All evalua-
tors gave us additional informal feedback.

In general, evaluators reported that their experi-
ence with Appraise was positive, and that our in-
structions were clear. At least two people would
be willing to do similar work in the future. Con-
cerning Appraise development, at least two peo-
ple experienced technical problems24 and evalua-
tors suggested that the user interface could be im-
proved in some places. For instance, automatically
playing videos could make evaluations more effi-
cient.

24During the evaluation period there were major outages
on Azure and the technical issues reported by our evaluators
may be unrelated to the user interface or evaluation task.
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all

Rank Ave. System

1 87.051 HUMAN
2-3 2.075 MSMUNICH
2-3 2.008 SLATTIC
4-5 0.520 UZH (baseline)
4-8 0.437 DFKI-MLT
5-8 0.339 DFKI-SLT
5-8 0.207 UPC
5-8 0.041 NJUPT-MTT

SRF

Rank Ave. System

1 87.051 HUMAN
2-3 2.075 MSMUNICH
2-3 2.008 SLATTIC
4-5 0.520 UZH (baseline)
4-8 0.437 DFKI-MLT
5-8 0.339 DFKI-SLT
5-8 0.207 UPC
5-8 0.041 NJUPT-MTT

FN

Rank Ave. System

1 93.568 HUMAN
2-3 3.833 MSMUNICH
2-3 3.610 SLATTIC
4-6 1.028 UZH (baseline)
4-7 0.853 DFKI-MLT
4-7 0.671 DFKI-SLT
5-8 0.407 UPC
7-8 0.033 NJUPT-MTT

Table 5: Official results of the WMT22 Sign Language Translation task for translation from Swiss German Sign
Language to German. Systems are ordered by averaged (non-standardized) human score in the percentage scale.
Lines indicate clusters according to a Wilcoxon rank-sum test p < 0.05. Gray rows indicate unconstrained systems.

annotator κ items

1 0.77±0.07 235
2 0.76±0.13 62
3 0.90±0.06 235
4 0.88±0.06 235

Table 6: Intra-annotator agreement based on the Fleiss
κ coefficient for reliability of agreement (with scores
discretized in the scale 0-6).

Informally, evaluators have told us that some
videos do not have ideal cuts, in the sense that the
beginning or end are slightly cut off. This is per-
haps inevitable in continuous signing, or a prob-
lem in our manual alignment process. They have
also pointed out that showing machine-translated
target context can be confusing because for our use
case quality is so low.

More detailed feedback forms submitted by
evaluators are listed in Appendix C.

8.2 Automatic Evaluation

Table 7 summarises the results of the automatic
evaluation. We report the scores for the full test
set and also for the SRF and FocusNews subsets
and boldface the primary submissions that have
been evaluated manually. The low scores for all
systems and metrics demonstrate the difficulty of
the task. For most systems but SLATTIC with
BLEU, translation quality is higher for Focus-
News than for SRF. This might be an effect of the
length of the source videos: SRF videos are six
times longer than FocusNews, which might make
the alignment with the textual part more difficult
at sentence level.

The best system in the automatic evaluation de-
pends on the evaluation metric. MSMUNICH.2
is the best system according to BLEU, SLAT-
TIC.4 according to chrF and MSMUNICH.1 ac-

cording to BLEURT. Notice that only the best sys-
tem according to BLEU among these three was
submitted as primary system and therefore manu-
ally evaluated. This shows that participants proba-
bly used mainly BLEU as the metric for develop-
ment, except DFKI-SLT who reported that they
used chrF because BLEU was always zero.

The correlation between human rankings and
automatic metrics is delicate because we only have
seven data points. The metric that correlates best
with human scores at system level is BLEU (r =
0.510, ρ = 0.571) followed by chrF (r = 0.508,
ρ = 0.214). BLEURT shows only a weak cor-
relation with r = 0.314 and ρ = 0.286. In our
scenario, translation quality is really low, and the
sentences that have been properly translated are
very short (e.g. Bis nächste Woche.). In this case,
n-gram matching metrics perform better than se-
mantic metrics.

See Appendix B for an extended discussion
of the correlation between all automatic metrics
(BLEU, chrF, BLEURT).

9 Discussion

9.1 General translation quality
Overall, all systems perform poorly in our shared
task, as there is an extreme difference in average
score between all systems and the human refer-
ence translation. The systems exhibit well-known
problems of natural language generation such as
overfitting to few high-probability hypotheses and
hallucination (Lee et al., 2018; Raunak et al.,
2021).

The best submitted system in the best case
achieves an average score of about 4 out of 100,
which indicates that current automatic translations
are not usable in practice, unlike spoken language
MT where in specific scenarios experiments have
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BLEU chrF BLEURT

Submission all SRF FN all SRF FN all SRF FN

UZH (baseline) 0.12±0.06 0.09±0.03 0.19±0.11 5.5±0.5 5.2±0.5 5.8±0.8 0.102±0.006 0.095±0.006 0.110±0.009

DFKI-SLT 0.08±0.01 0.10±0.04 0.11±0.02 18.2±0.4 17.9±0.5 18.7±0.6 0.109±0.006 0.093±0.004 0.122±0.009

DFKI-MLT.1 0.07±0.05 0.05±0.02 0.12±0.10 6.6±0.5 6.4±0.6 6.9±0.6 0.100±0.008 0.097±0.009 0.100±0.012
DFKI-MLT.2 0.11±0.06 0.08±0.03 0.17±0.13 6.8±0.5 7.0±0.7 6.5±0.7 0.083±0.008 0.074±0.008 0.091±0.013
DFKI-MLT.3 0.08±0.04 0.06±0.02 0.13±0.10 6.5±0.5 6.8±0.8 6.2±0.7 0.075±0.009 0.067±0.009 0.081±0.014
DFKI-MLT.4 0.02±0.01 0.02±0.01 0.04±0.02 3.6±0.2 3.4±0.3 3.8±0.3 0.066±0.004 0.063±0.004 0.070±0.008
DFKI-MLT.5 0.04±0.02 0.03±0.00 0.08±0.04 5.4±0.3 5.1±0.3 5.6±0.4 0.078±0.004 0.074±0.005 0.080±0.007

MSMUNICH.1 0.44±0.21 0.34±0.18 0.63±0.35 17.1±0.5 16.3±0.7 17.8±0.9 0.166±0.013 0.147±0.012 0.179±0.022
MSMUNICH.2 0.56±0.30 0.28±0.13 0.84±0.51 17.4±0.5 17.0±0.5 17.9±0.8 0.150±0.011 0.132±0.008 0.163±0.019

NJUPT-MTT.1 0.09±0.01 0.13±0.03 0.13±0.03 14.6±0.5 14.8±0.7 14.4±0.8 0.127±0.006 0.125±0.007 0.130±0.009
NJUPT-MTT.2 0.10±0.01 0.13±0.03 0.14±0.03 14.1±0.5 14.2±0.7 14.0±0.7 0.117±0.006 0.117±0.007 0.117±0.009

SLATTIC.1 0.25±0.12 0.30±0.18 0.24±0.10 19.5±0.4 19.2±0.5 19.8±0.7 0.074±0.010 0.055±0.007 0.090±0.016
SLATTIC.2 0.20±0.14 0.32±0.23 0.10±0.02 17.9±0.5 17.4±0.7 18.5±0.8 0.092±0.012 0.080±0.010 0.098±0.017
SLATTIC.3 0.14±0.09 0.21±0.16 0.09±0.06 17.4±0.5 17.0±0.6 17.8±0.7 0.096±0.012 0.081±0.010 0.106±0.019
SLATTIC.4 0.19±0.15 0.28±0.23 0.11±0.02 19.9±0.5 19.9±0.6 19.8±0.8 0.088±0.011 0.067±0.006 0.107±0.019
SLATTIC.5 0.18±0.06 0.21±0.09 0.19±0.10 17.9±0.5 17.4±0.6 18.3±0.8 0.107±0.011 0.093±0.007 0.119±0.019
SLATTIC.6 0.07±0.03 0.15±0.07 0.04±0.01 15.0±0.4 14.8±0.5 15.0±0.6 0.103±0.010 0.094±0.006 0.110±0.017

SLT-UPC.1 0.34±0.22 0.29±0.14 0.43±0.33 15.6±0.6 15.4±0.8 15.8±0.8 0.131±0.005 0.126±0.006 0.136±0.008
SLT-UPC.2 0.35±0.21 0.29±0.14 0.43±0.30 16.2±0.6 15.4±0.8 17.0±0.9 0.136±0.004 0.126±0.006 0.145±0.007
SLT-UPC.3 0.41±0.33 0.24±0.10 0.54±0.47 15.5±0.6 15.1±0.8 16.0±0.9 0.144±0.006 0.131±0.006 0.157±0.010
SLT-UPC.4 0.28±0.09 0.26±0.11 0.37±0.16 12.2±0.4 12.3±0.6 12.1±0.6 0.113±0.004 0.122±0.006 0.103±0.006
SLT-UPC.5 0.24±0.10 0.32±0.14 0.25±0.12 12.0±0.4 12.1±0.6 11.9±0.5 0.102±0.004 0.110±0.006 0.094±0.006
SLT-UPC.6 0.28±0.09 0.26±0.11 0.37±0.16 12.2±0.4 12.3±0.6 12.1±0.6 0.113±0.004 0.122±0.006 0.103±0.006
SLT-UPC.7 0.50±0.26 0.37±0.13 0.61±0.38 12.3±0.5 11.9±0.7 12.7±0.8 0.111±0.006 0.110±0.007 0.111±0.011

Table 7: Automatic evaluation of all the submission for the full WMT-SLT test set (all), the SRF subset and
the FocusNews (FN) subset. Mean and 95% confidence intervals obtained via bootstrap resampling are shown.
Primary submissions manually evaluated are boldfaced. Note that the official ranking is given by the human
evaluation (Table 5).

shown systems to be on par with human transla-
tion (Hassan et al., 2018; Popel et al., 2020). In
the following paragraphs we discuss potential rea-
sons for this outcome.

Size of training data The corpora we have built
for this shared task (§4) are superior to existing
datasets (in terms of size, license, linguistic do-
main and alignment quality), but are still small.
Taken together our corpora contain 20k parallel
sentence pairs only, and 600k monolingual Ger-
man sentences. This limits the optimal transla-
tion quality that could in theory be obtained in a
constrained setup. This is corroborated by the fact
that the two unconstrained systems have won the
shared task (§8).

Building larger parallel SL corpora in itself is
challenging. Even though recently steps were
taken to collect larger amounts of data (e.g. in
the projects EASIER and SignON), such resources
are not immediately useful because basic linguis-
tic tools used to prepare parallel corpora are not
available (§2.3, lack of basic linguistic tools). For
spoken language NLP, such tools are common-

place, work well and are used to automatically
compile large corpora. For example, Bitextor25,
a tool developed in the Paracrawl project (Bañón
et al., 2020), relies on the automatic alignment tool
BleuAlign (Sennrich and Volk, 2011).

Modality gap But even if much more training
data was available, it is likely that current MT
methods are not adapted well enough to SL data.
NLP methods in general are tailored towards text
and may perform worse or not be applicable at
all to other modalities. For example, there are
currently no efficient tools for automatic SL seg-
mentation (Yin et al., 2021), while for text-based
MT, subword segmentation (Sennrich et al., 2016;
Kudo, 2018) has become a staple in research.

While all systems submitted this year are
signed-to-spoken systems, the modality gap is
more apparent for automatic spoken-to-sign trans-
lation because generating continuous outputs re-
quires more fundamental changes to existing MT
toolkits (as opposed to the changes necessary for
continuous inputs).

25https://github.com/bitextor/bitextor
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The proclivity of existing MT research for
text data is confirmed by the number of recent
works that chose to represent SL content as (tex-
tual) gloss sequences, despite the fact that glosses
are not an adequate representation of meaning
(Anonymous, 2022).

9.2 Reliability of evaluation procedure

Our evaluation is reliable since we conduct a hu-
man evaluation (compared to other shared tasks
which produce official rankings based on auto-
matic metrics). But even compared to shared tasks
that do offer human evaluation (such as the Gen-
eral task this year), we believe that our evalu-
ation is strong, since we have three to four (at
least three) independent judgements for each sys-
tem output across the entire test set.

9.3 Limitations of shared task setup

We note several limitations of the specific experi-
mental setup in this year’s shared task.

Generalization As explained in §4 all signers
that appear in the development and test sets are
known, in the sense of also being present in the
training data. It is therefore important to empha-
size that our shared task evaluates the performance
of systems on familiar signers, and does not test
generalization to unseen individuals.

Recording conditions Since our training data is
derived from news broadcasts, the recording con-
ditions and video quality are favourable. For ex-
ample, the signer is always recorded against a
monochrome and static background. The record-
ing angle is very consistent, as cameras are
mounted on a fixed rig. Signers always directly
face the camera. The recording conditions there-
fore resemble laboratory conditions.

This means that our shared task does not eval-
uate “signing in the wild” (examples: mobile
recordings of varying quality, varying angles,
moving background including other people) and
it is likely that the outcome would be different in
that case.

Interpretation vs. translation Some of our
training material is interpreted live (§4). Interpre-
tation has constraints that are very different from
offline translation, most notably, interpreters are
under severe time pressure. This has consequences
for the resulting signed material, which may some-
times omit phrases to keep up with the narrative,

or interpreters would sign an utterance differently
if they could give it a second thought.

A general property of SL interpretation (and
hearing signers in general, as opposed to deaf sign-
ers) is that its linguistic structure tends to follow
the structure imposed by the spoken language be-
ing translated (Janzen, 2005). This means that sys-
tems trained on such material may resemble hear-
ing interpreters more than deaf translators.

9.4 Value created by this shared task
This shared task provides new insights and re-
sources that previously did not exist for SLT, and
that are valuable for the community.

We provided new training corpora and an offi-
cial development and test set. We open-sourced
a baseline system and code that is fully repro-
ducible. We design protocols for human evalu-
ation and adapt existing evaluation software ac-
cordingly. Lastly, the shared task resulted in the
first openly available set of human judgements of
automatic SL translations. Future work could use
these scores for metric development, for instance.

10 Conclusion and future directions

In this paper we present the first WMT Shared
Task on Sign Language Translation (WMT-
SLT22). We consider automatic sign language
translation, and sign language processing in gen-
eral, to be of wide public interest and to have a
high potential impact (§2).

Seven teams participated in this first edition of
the shared task. Overall, we observed low sys-
tem performance with an average human evalu-
ation score of about 4 out of 100 (for the best-
performing system), which is not usable in prac-
tice. The main reasons for this outcome are a lack
of usable training data, a modality gap (consider-
ing that most existing work in MT is based on text)
and a lack of basic NLP tools specifically for sign
languages.

Future of the shared task Future iterations of
the shared task could introduce more language
pairs and larger training data. Since this year
all submissions are signed-to-spoken systems, the
shared task could also focus more on sign lan-
guage generation going forward.

Furthermore, we will consider introducing ad-
ditional MT-related tasks such as a sign language
version of the metrics task. This perhaps requires
a better distribution of human evaluation scores,
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as our current set of scores very much focuses on
both ends of the score spectrum (we do not have
many mid-range scores).

Finally, future human evaluation experiments
for spoken-to-signed translation could be run dif-
ferently than explained in this paper. Namely,
for campaigns where a sign language is the target
language the evaluation could be reference-based
instead of source-based. The advantage of this
change would be that deaf evaluators can perform
this evaluation, instead of hearing interpreters for
whom in this case the target language is not their
first language.

11 Ethical statement

Within this shared task, two main ethical consid-
erations emerge: the potential impact of SL tech-
nology on target users and privacy considerations.

Research in sign language processing, if not ex-
ecuted carefully, may inadvertently cause harm to
end users, especially members of deaf communi-
ties. Hearing scientists should refrain from pre-
scribing what sort of language technology should
be accepted by deaf individuals and should avoid
claiming that their approach “solves” any particu-
lar problem. Ideally, research of this nature should
include deaf people, not only at evaluation time,
but in the entire development cycle.

Secondly, there is a concern for the privacy
of individuals depicted in SLP datasets. For the
specific use case of sign language data, proper
anonymisation is impossible since identifying de-
tails such as facial expressions are crucial for sign
language communication. We have obtained writ-
ten permission of all individuals shown in our
datasets. Storing and processing pose estimation
features instead of raw videos may be an alterna-
tive that provides anonymity (and has other gen-
eralization effects such as ignoring differences in
race, gender, clothing, background etc.). How-
ever, in our shared task and related literature
(Moryossef et al., 2021) video features outperform
pose features.
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A Appraise instructions to human evaluators

A.1 Sign-to-text direction

A.1.1 English
Below you see a document with 10 sentences in Swiss-German Sign Language (Deutschschweizer
Gebärdensprache (DSGS)) (left columns) and their corresponding candidate translations in German
(Deutsch) (right columns). Score each candidate sentence translation in the document context. You
may revisit already scored sentences and update their scores at any time by clicking on a source video.

Assess the translation quality on a continuous scale using the quality levels described as follows:

• 0: Nonsense/No meaning preserved: Nearly all information is lost between the translation and
source. Grammar is irrelevant.

• 2: Some Meaning Preserved: The translation preserves some of the meaning of the source but
misses significant parts. The narrative is hard to follow due to fundamental errors. Grammar may
be poor.

• 4: Most Meaning Preserved and Few Grammar Mistakes: The translation retains most of the mean-
ing of the source. It may have some grammar mistakes or minor contextual inconsistencies.

• 6: Perfect Meaning and Grammar: The meaning of the translation is completely consistent with the
source and the surrounding context. The grammar is also correct.

Please score the overall document translation quality (you can score the whole document only after
scoring all individual sentences first). Assess the translation quality on a continuous scale using the
quality levels described as follows:

• 0: Nonsense/No meaning preserved: Nearly all information is lost between the translation and
source. Grammar is irrelevant.

• 2: Some Meaning Preserved: The translation preserves some of the meaning of the source but
misses significant parts. The narrative is hard to follow due to fundamental errors. Grammar may
be poor.

• 4: Most Meaning Preserved and Few Grammar Mistakes: The translation retains most of the mean-
ing of the source. It may have some grammar mistakes or minor contextual inconsistencies.

• 6: Perfect Meaning and Grammar: The meaning of the translation is completely consistent with the
source and the surrounding context. The grammar is also correct.

A.1.2 German
Unten sehen Sie ein Dokument mit 10 Sätzen in Deutschschweizer Gebärdensprache (DSGS) (linke
Spalten) und die entsprechenden möglichen Übersetzungen auf Deutsch (rechte Spalten). Bewerten Sie
jede mögliche Übersetzung des Satzes im Kontext des Dokuments. Sie können bereits bewertete Sätze
jederzeit durch Anklicken eines Eingabevideos erneut aufrufen und die Bewertung aktualisieren.

Bewerten Sie die Übersetzungsqualität auf einer kontinuierlichen Skala mit Hilfe der nachfolgend
beschriebenen Qualitätsstufen:

• 0: Unsinn/Bedeutung nicht erhalten: Fast alle Informationen zwischen Übersetzung und Eingabev-
ideo sind verloren gegangen. Die Grammatik ist irrelevant.

• 2: Ein Teil der Bedeutung ist erhalten: Die Übersetzung behält einen Teil der Bedeutung der Quelle
bei, lässt aber wichtige Teile aus. Die Erzählung ist aufgrund von grundlegenden Fehlern schwer zu
verstehen. Die Grammatik kann mangelhaft sein.
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• 4: Der grösste Teil der Bedeutung ist erhalten und es gibt nur wenige Grammatikfehler: Die Über-
setzung behält den grössten Teil der Bedeutung der Quelle bei. Sie kann einige Grammatikfehler
oder kleinere kontextuelle Unstimmigkeiten aufweisen.

• 6: Perfekte Bedeutung und Grammatik: Die Bedeutung der Übersetzung stimmt vollständig mit der
Quelle und dem umgebenden Kontext (falls zutreffend) überein. Auch die Grammatik ist korrekt.

Bitte bewerten Sie die Übersetzungsqualität des gesamten Dokuments. (Sie können das Dokument erst
bewerten, nachdem Sie zuvor alle Sätze einzeln bewertet haben.) Bewerten Sie die Übersetzungsqualität
auf einer kontinuierlichen Skala mit Hilfe der nachfolgend beschriebenen Qualitätsstufen:

• 0: Unsinn/Bedeutung nicht erhalten: Fast alle Informationen zwischen Übersetzung und Eingabev-
ideo sind verloren gegangen. Die Grammatik ist irrelevant.

• 2: Ein Teil der Bedeutung ist erhalten: Die Übersetzung behält einen Teil der Bedeutung der Quelle
bei, lässt aber wichtige Teile aus. Die Erzählung ist aufgrund von grundlegenden Fehlern schwer zu
verstehen. Die Grammatik kann mangelhaft sein.

• 4: Der grösste Teil der Bedeutung ist erhalten und es gibt nur wenige Grammatikfehler: Die Über-
setzung behält den grössten Teil der Bedeutung der Quelle bei. Sie kann einige Grammatikfehler
oder kleinere kontextuelle Unstimmigkeiten aufweisen.

• 6: Perfekte Bedeutung und Grammatik: Die Bedeutung der Übersetzung stimmt vollständig mit der
Quelle und dem umgebenden Kontext (falls zutreffend) überein. Auch die Grammatik ist korrekt.

A.2 Text-to-sign direction
A.2.1 English
Below you see a document with 10 sentences in German (Deutsch) (left columns) and their corresponding
candidate translations in Swiss-German Sign Language (Deutschschweizer Gebärdensprache (DSGS))
(right columns). Score each candidate sentence translation in the document context. You may revisit
already scored sentences and update their scores at any time by clicking at a source text.

Assess the translation quality on a continuous scale using the quality levels described as follows:

• 0: Nonsense/No meaning preserved: Nearly all information is lost between the translation and
source. Naturalness of motion is irrelevant.

• 2: Some Meaning Preserved: The translation preserves some of the meaning of the source but
misses significant parts. The narrative is hard to follow due to fundamental errors. Naturalness of
motion may be poor.

• 4: Most Meaning Preserved and Acceptable Natural Motion: The translation retains most of the
meaning of the source. It may have some minor mistakes or contextual inconsistencies. Motion
may appear unnatural.

• 6: Perfect Meaning and Naturalness: The meaning of the translation is completely consistent with
the source and the surrounding context. Motion is natural.

Please score the overall document translation quality (you can score the whole document only after
scoring all individual sentences first). Assess the translation quality on a continuous scale using the
quality levels described as follows:

• 0: Nonsense/No meaning preserved: Nearly all information is lost between the translation and
source. Naturalness of motion is irrelevant.

• 2: Some Meaning Preserved: The translation preserves some of the meaning of the source but
misses significant parts. The narrative is hard to follow due to fundamental errors. Naturalness of
motion may be poor.
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• 4: Most Meaning Preserved and Acceptable Natural Motion: The translation retains most of the
meaning of the source. It may have some minor mistakes or contextual inconsistencies. Motion
may appear unnatural.

• 6: Perfect Meaning and Naturalness: The meaning of the translation is completely consistent with
the source. Motion is natural.

A.2.2 German
Unten sehen Sie ein Dokument mit 10 Sätzen auf Deutsch (linke Spalten) und die entsprechenden
möglichen Übersetzungen in Deutschschweizer Gebärdensprache (DSGS) (rechte Spalten). Bewerten
Sie jede mögliche Übersetzung des Satzes im Kontext des Dokuments. Sie können bereits bewertete
Sätze jederzeit durch Anklicken eines Quelltextes erneut aufrufen und die Bewertung aktualisieren.

Bewerten Sie die Übersetzungsqualität auf einer kontinuierlichen Skala mit Hilfe der nachfolgend
beschriebenen Qualitätsstufen:

• 0: Unsinn/Bedeutung nicht erhalten: Fast alle Informationen zwischen Übersetzung und Ausgang-
stext sind verloren gegangen. Es ist irrelevant, ob die Bewegungen natürlich sind.

• 2: Ein Teil der Bedeutung ist erhalten: Die Übersetzung behält einen Teil der Bedeutung der Quelle
bei, lässt aber wichtige Teile aus. Die Erzählung ist aufgrund von grundlegenden Fehlern schwer zu
verstehen. Bewegungen können mangelhaft sein.

• 4: Der grösste Teil der Bedeutung ist erhalten und die Bewegungen sind akzeptabel: Die Überset-
zung behält den grössten Teil der Bedeutung der Quelle bei. Sie kann kleine Fehler oder kleinere
kontextuelle Unstimmigkeiten aufweisen. Bewegungen sehen teilweise nicht natürlich aus.

• 6: Perfekte Bedeutung und Natürlichkeit: Die Bedeutung der Übersetzung stimmt vollständig mit
der Quelle und dem umgebenden Kontext (falls zutreffend) überein. Bewegungen wirken natürlich.

Bitte bewerten Sie die Übersetzungsqualität des gesamten Dokuments. (Sie können das Dokument erst
bewerten, nachdem Sie zuvor alle Sätze einzeln bewertet haben.) Bewerten Sie die Übersetzungsqualität
auf einer kontinuierlichen Skala mit Hilfe der nachfolgend beschriebenen Qualitätsstufen:

• 0: Unsinn/Bedeutung nicht erhalten: Fast alle Informationen zwischen Übersetzung und Ausgang-
stext sind verloren gegangen. Es ist irrelevant, ob die Bewegungen natürlich sind.

• 2: Ein Teil der Bedeutung ist erhalten: Die Übersetzung behält einen Teil der Bedeutung der Quelle
bei, lässt aber wichtige Teile aus. Die Erzählung ist aufgrund von grundlegenden Fehlern schwer zu
verstehen. Bewegungen können mangelhaft sein.

• 4: Der grösste Teil der Bedeutung ist erhalten und die Bewegungen sind akzeptabel: Die Überset-
zung behält den grössten Teil der Bedeutung der Quelle bei. Sie kann kleine Fehler oder kleinere
kontextuelle Unstimmigkeiten aufweisen. Bewegungen sehen teilweise nicht natürlich aus.

• 6: Perfekte Bedeutung und Natürlichkeit: Die Bedeutung der Übersetzung stimmt vollständig mit
der Quelle und dem umgebenden Kontext (falls zutreffend) überein. Bewegungen wirken natürlich.
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Figure 6: Correlation between the metrics used in the automatic evaluation. Automatic evaluation scores projected
into the 2D spaces for BLEU–chrF (black crosses, r = 0.447), BLEU–BLEURT (red stars, r = 0.703) and chrF–
BLEURT (green dots, r = 0.443).

B Correlation between automatic metrics

Metrics do not correlate well with each other, especially if chrF is compared to a second metric. Figure 6
plots the projection for the scores on the full test set by metric pair for the 23 submissions and the
baseline. The Pearson correlation shows that metrics are far from a linear relation: BLEU–chrF has r =
0.447, BLEU–BLEURT r = 0.703 and chrF–BLEURT r = 0.443. Spearman correlation, accounting
only for monotonicity, is lower in the three cases specially for chrF–BLEURT (ρ = 0.259), with ρ =
0.421 for BLEU–chrF and ρ = 0.633 for BLEU–BLEURT.

C Feedback from evaluators

Table 8 lists detailed by evaluators regarding the human evaluation procedure and the Appraise system.
Two out of four evaluators submitted a response.
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Answer 1 Answer 2

What is your experience in assessing machine translation outputs?

None: this was my first time Low: I have done it once or a long time
ago

Please specify how much you agree or disagree with the following statements.

Generally, my experience with the tool
was positive

Agree Strongly agree

Instructions were clear Agree Strongly agree

Quality levels 0-6 were helpful to me Agree Strongly Agree

Source videos/texts were understand-
able

Neutral Strongly Agree

There was too much repetitiveness Disagree Agree

Documents were too long Disagree Strongly Disagree

Segments were too short Neutral Disagree

In some cases, the context was insuffi-
cient

Strongly Agree Disagree

I experienced technical issues Agree Agree

I would be willing to do similar work in
future

Strongly agree Agree

Please provide more details related to the statements above that you think can be useful to us.
What was most troublesome? What could we improve?

it would be very helpful, if the video
started automatically when moving to
the next segment. (some did, but many
more did not) It would save a click.
Also, the submit button could be on the
left side under the 0 score (at the mo-
ment, as most translation are not yet
good quality)

-

What were the main or most common issues with the automatic translations?

This question is not clear to me. You
mean on a technical level or something
else? meaning was garbage, some did
not know the German Umlaute äüö

-

This evaluation campaign featured the Direct Assessment with Scalar Quality Metrics method.
What do you think about this method? On a scale between -3 (negative) and 3 (positive) it was...

difficult/easy 2 2

stressful/relaxed 2 -2

laborious/effortless 1 2

slow/fast 0 0

inefficient/efficient 2 2

boring/exciting -2 3

complicated/simple 2 2

annoying/enjoyable 0 1

limiting/creative -2 0

impractical/practical 2 0

Table 8: Feedback from evaluators about the human evaluation setup and the Appraise platform.
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D Human evaluation score distribution

To complement our analysis we show the distribution of scores for each system in Figure 7. The set of
scores (excluding zero scores, which are not shown in the figure) resembles a bimodal distribution, with
most of the scores residing at both ends of the spectrum. MSMUNICH is the system with the most scores
in the highest-quality bucket.
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Figure 7: Distribution of human evaluation scores for all submitted systems discretized in seven bins, excluding
scores of bin 0 (lowest quality).
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Abstract

We present the results of the WMT’22 Shared
Task on Large-Scale Machine Translation Eval-
uation for African Languages. The shared task
included both a data and a systems track, along
with additional innovations, such as a focus on
African languages and extensive human eval-
uation of submitted systems. We received 14
system submissions from 8 teams, as well as
6 data track contributions. We report a large
progress in the quality of translation for African
languages since the last iteration of this shared
task: there is an increase of about 7.5 BLEU
points across 72 language pairs, and the aver-
age BLEU scores went from 15.09 to 22.60.

1 Introduction

A large portion of the world’s population speak
low-resource languages, and would benefit from
improvements in translation quality on their na-
tive languages. Recent advances in translation
quality, particularly from massively multilingual
models (Fan et al.; Ma et al., 2021), have enabled
progress in the translation quality of low-resource
languages. However, many languages have seen
little to no progress. This is particularly true for
African languages. For example, in the 2021 Large
Scale Multilingual Evaluation shared task (Wenzek
et al., 2021), there was a progress2 of +19.3 avg.
BLEU when translating into languages like Irish
and Welsh (included in the Other Indo-European
grouping), but only a progress of +3.5 avg. BLEU
when translating into languages like Fula and Igbo
(included in the Nilotic/Atlantic Congo grouping).

The African continent is home to a rich diversity
of languages. Around a third of the world’s living
languages are from Africa and only a small fraction

Author names are sorted in alphabetical order.
2Progress was determined by comparing the average

BLEU score between the best system in the task vs. the
baseline.

of the resources in NLP and Machine translation
are dedicated to them (Orife et al., 2020). As a re-
sult, African language speakers do not benefit from
language technologies similarly to other Global
North language speakers (Blasi et al., 2022). A ma-
jor (but not the sole) hurdle to building language
technologies for African languages is data avail-
ability (Joshi et al., 2021), with significant efforts
underway stemming –importantly– from Africa it-
self (Nekoto et al., 2020).

To bring attention of the research community to
the challenges of translating African Languages,
this year we focus on the multilingual evaluation
of 24 African Languages together with French and
English. We base our evaluation on the benchmark
provided by FLORES (Goyal et al., 2022), and
its recent expansion to more African languages
(NLLB Team et al., 2022).

In this second multilingual large-scale shared
task, we evaluate the progress on massively mul-
tilingual translation for African Languages in a
non-English-centric way. We propose 100 eval-
uation language pairs, based on regional clus-
ters (South/South-East Africa, Horn of Africa and
Central/East Africa, Nigeria and Gulf of Guinea,
and Central Africa; and pivot languages (English,
French). This year is characterized by two further
innovations: first, a data track is included, in which
participants share corpora to be used during the
shared task; second, we perform human evaluation
for a subset of the language pairs.

In the remainder of this paper, we describe the
task setup, the participants, and the official results
for the task. We also analyze the results to under-
stand better the languages for which progress has
been attained, and those where a gap in quality is
still observed. Finally, we propose future directions
for other tasks in the future.
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2 Shared Task and Tracks

This year’s task focuses on the 24 African lan-
guages listed in Table 1, along with French and
English which are included as colonial linguae fran-
cae for evaluation purposes. These languages are
all supported by the FLORES benchmark in its most
recent expansion (NLLB Team et al., 2022).

Afrikaans afr Oromo orm
Amharic amh Shona sna
Chichewa nya Somali som
Nigerian Fulfulde fuv Swahili swh
Hausa hau Swati ssw
Igbo ibo Tswana tsn
Kamba kam Umbundu umb
Kinyarwanda kin Wolof wol
Lingala lin Xhosa xho
Luganda lug Xitsonga tso
Luo luo Yorùbá yor
Northern Sotho nso Zulu zul

Table 1: Focus African languages for this shared task.
In addition to these, we also include French and English.

The human and automatic evaluation is based
around 100 language directions, selected based on
translator and annotator availability:

• Languages of South and Southeast Africa:
xho-zul, zul-sna, sna-afr, afr-ssw,
ssw-tsn, tsn-tso, tso-nso, nso-xho (8 di-
rections).

• Languages of the Horn of Africa: swh-amh,
amh-swh, luo-orm, som-amh, orm-som,
swh-luo, amh-luo, luo-som (8 directions).

• Languages of West Africa: hau-ibo,
ibo-yor, yor-fuv, fuv-hau, ibo-hau,
yor-ibo, fuv-yor, hau-fuv, wol-hau,
hau-wol, fuv-wol, wol-fuv (12 directions).

• Languages of Central Africa: kin-swh,
lug-lin, nya-kin, swh-lug, lin-nya,
lin-kin, kin-lug, nya-swh (8 directions).

• Cross-regional pairs: amh-zul, yor-swh,
swh-yor, zul-amh, kin-hau, hau-kin,
nya-som, som-nya, xho-lug, lug-xho,
wol-swh, swh-wol (12 directions)

• English pivots: 22 languages translated into
and from eng: afr, amh, nya, fuv, hau, ibo,
kam, kin, lug, luo, nso, orm, sna, som, swh,
ssw, tsn, umb, xho, tso, yor, zul (44 direc-
tions).

• French pivots: 4 languages translated into

and from fra: kin, lin, swh, wol (8 direc-
tions).

3 Data Track

The data track focused on the contribution of novel
corpora. Participants were welcomed to open-
source and share monolingual, bilingual or mul-
tilingual datasets relevant to the training of MT
models for this year’s set of languages. There were
seven submissions in this track:

LAVA3 LAVA Corpus contains millions of par-
allel bilingual sentences, which are mined from
Common Crawl. It covers five African languages.

MAFAND-MT (Adelani et al., 2022)4 contains
a few thousand high-quality and human translated
parallel sentences for 21 African languages in
the news domain. Each language has between
1,400 - 34,500 parallel sentences for training and/or
evaluation. The languages covered are Amharic,
Bambara, Ghomala, Ewe, Fon, Hausa, Igbo, Kin-
yarwanda, Luganda, Dholuo, Mossi, Chichewa,
Nigerian-Pidgin, chiShona, Swahili, Setswana,
Twi, Wolof, Yorùbá, isiXhosa, and isiZulu. These
languages include 7 languages which were not
present in the Shared task (and which are not re-
ported therefore in Table 2).

KenTrans5 This project produced a parallel cor-
pus between Swahili and 2 other Kenya Languages:
Dholuo and Luhya. The Luhya Language has sev-
eral dialects. In the project 3 dialects were cho-
sen as a start: Lumarachi, Logooli and Lubukusi.
A total of 12,400 sentences were translated to
Kiswahili from a sample of Dholuo and Luhya
(1500 Dholuo-Kiswahili sentence pairs and 10,900
Luhya-Kiswahili sentence pairs). This corpus has
an extension to speech in the version of Kencor-
pus (Wanjawa et al., 2022)6.

Monolingual African languages from
ParaCrawl7 This release contains derived
corpora built from language classified extracts
of the ParaCrawl project. Monolingual data in
this release comes from the Internet Archives and
targeted crawls performed in the paracrawl project
with document level language classification.

3https://drive.google.com/drive/folders/
\179AkJ0P3fZMFS0rIyEBBDZ-WICs2wpWU

4https://github.com/masakhane-io/lafand-mt
5https://doi.org/10.7910/DVN/NOAT0W
6https://doi.org/10.7910/DVN/6N5V1K
7https://data.statmt.org/martin/
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Dataset African languages covered No. of sentences Participating Teams

LAVA afr, kin, lug, nya, swa 3,225,801 Bytedance, GMU, ANVITA
MAFAND-MT amh, hau, ibo, kin, lug, luo, nya, sna,

swh, tsn, wol, xho, yor, zul
102,135 Bytedance, Tencent, DENTRA, ANVITA,

Masakhane, GMU
KenTrans luy, luo, swa 12,400 Bytedance, Tencent, DENTRA, ANVITA
ParaCrawl afr, amh, fuv, hau, ibo, kam, lin, lug,

luo, nso, nya, orm, sna, ssw, swh,
tsn, tso, umb, wol, xho, yor, zul

22,349,179 Bytedance, Tencent, DENTRA, GMU

SA corpus nso, tsn, xho, zul 160,035 Bytedance, Tencent, DENTRA, ANVITA
WebCrawlAfrican afr, ling, ssw, amh, lug, tsn, nya, hau,

orm, xho, ibo, tso, yor, swh, zul
695,000 Bytedance, Tencent, DENTRA, ANVITA

Table 2: Dataset submissions: covered Shared task languages, dataset sizes (i.e. number of parallel sentences in all
translation directions), and participating teams that made use of the dataset in their submission.

SA Languages8 The dataset was constructed
using public available data mostly from South
African Government websites.

WebCrawlAfrican (Vegi et al., 2022b) 9 Web
Crawl African is a collection of African Multi-
lingual parallel corpora comprising of 695,000
(approx) sentence pairs, covering 15 African lan-
guages plus English and 73 language pairs. African
languages covered include Afrikaans, Lingala,
Swati, Amharic, Luganda, Tswana, Chichewa,
Hausa, Oroma, Xhosa, Igbo, Xitsonga, Yoruba,
Swahili, Zulu. It covers variety of domains polit-
ical, stories, religious and songs. Corpora have
sentences covering both formal and informal writ-
ing styles.

This participation is summarised in Table 2
which includes language covered, dataset size and
participating teams that currently used the dataset
for their submission. All datasets where at least
used by 3 teams in the evaluation. Note that the
most used corpus was MAFAND-MT which was
used by 6 different teams.

4 System Track

We provided a selection of training corpora, i.e.
parallel sentences, to enable training of the MT
systems. Submissions in the constrained transla-
tion track were only allowed to use data from the
following sources:

• all corpora from the data track (see section 3);

• parallel corpora from OPUS (Tiedemann,
2012);10

8https://drive.google.com/drive/folders\
/1jYwpxEdRxqXlB7BSmE6JxDar61U91xfI

9https://github.com/pavanpankaj/
Web-Crawl-African

10https://opus.nlpl.eu/

• parallel corpora mined from Common Crawl
using the LASER3 multilingual sentence en-
coder.

Participants who used other resources, had to sub-
mit to the unconstrained translation track.

Publicly available resources for African lan-
guages are very limited, for some of them less than
fifty thousand sentences of bitexts are available.
In addition to human translated sentences, several
approaches were proposed to automatically mine
parallel sentence from large collections of mono-
lingual data. Unfortunately, recent approaches like
ParaCrawl or CCMatrix (Schwenk et al., 2021)
cover only few African languages. We extended the
basic idea of mining based on a similarity measure
in an multilingual embedding space (Artetxe and
Schwenk, 2019) and developed sentence encoders
for all African languages of this evaluation. We
then performed bitext mining against 21.5 billion
English sentences from Common Crawl, and 3.3
million sentences in French, respectively. These re-
sources as well as the sentence encoders were made
available to the participants of this evaluation. A
detailed description of this mining approach can be
found in Heffernan et al. (2022).

4.1 Participating Teams
CAIR ANVITA (Vegi et al., 2022a). The
ANVITA-1.0 MT system is an English-centric mul-
tilingual transformer model for 24 African lan-
guages. The authors applied several heuristics to
filter the data released for the shared task. They
showed that that using larger Transformer model
(24 encoder, 6 decoder) performs much better than
smaller Transformer model (6 encoder, 6 decoder).
Furthermore, they obtained some improvements
by using an ensemble of last two epochs of Deep
Transformer (24 encoder, 6 decoder).
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Cape Town (Elmadani et al., 2022). This sys-
tem was focused on eight South and South-East
African languages. The authors trained a multilin-
gual NMT system (foreign to English and English
to foreign, with some non English directions). The
authors focused on exploring the best sub-word rep-
resentation (BPE vs overlap-based BPE) and its ef-
fects on downstream performance for low-resource
languages. Further, the authors explore creating
synthetic data through back-translation and explore
sampling techniques to balance the corpora.

GMU (Ibn Alam and Anastasopoulos, 2022).
This system was based on on fine-tuning pre-
trained multilingual DeltaLM on 26 languages (625
translation directions). The fine-tuning was based
on language- and language-family- (phylogeny) in-
spired adapter units (Faisal and Anastasopoulos,
2022) to improve its performance for African lan-
guages. The results show that a language-adapter-
based fine-tuning significantly out-performs direct
fine-tuning, but making use of family/sub-family
adapters only helps in a few cases.

IIAI DenTra (Kamboj et al., 2022). This mul-
tilingual model combines a traditional translation
loss with self-supervised tasks that can make use of
unlabeled monolingual data. The resulting model
performs denoising tasks (shuffling, masking) in
conjunction with both translation and backtransla-
tion. It then fine-tunes the model to in-domain data
and covers 24 languages.

Masakhane (Abdulmumin et al., 2022). This
model is based on M2M-100 which is fine-tuned
on training data hat has been cleaned by an aux-
iliary language models. The pre-trained language
models were fine-tuned on positive samples (clean
data) vs. negative samples coming from automat-
ically aligned data. The authors find significant
improvements from using the filtered data.

Tencent Borderline (Jiao et al., 2022). The bor-
derline model is a large transformer model (1.02B
params.) which is augmented with data for zero-
shot pairs through tagged back-translation and self-
translation. In addition, it uses distributionally ro-
bust optimization (DRO) to alleviate the data im-
balance. Finally it also uses family language in-
formation to group target languages and finetune
separate models for each group.

Bytedance VolcTrans (Qian et al., 2022). This
is an unconstrained system that uses different

sources of parallel data (constrained data, NLLB,
self-procured data) and monolingual data (e.g.
VOA news, Wikipedia). This model is also trained
on data cleaned through a rich set of heuristic
rules to prevent punctuation mismatches, overly
short/long sentences, among others; together with
an approach based on minimum description length
(MDL) that removes noisy sentences. The data
is augmented with back-translation coming from
pivot languages (Eng/Fra). The model is trained
with target language tags added to both the en-
coder and decoder inputs. Finally, it includes post-
processing rules for Yoruba accents.

SRPH-DAI (Cruz and Sutawika, 2022). This
model is based on mT5, with additional adapters
fine-tuned to each translation task, and then merged
using adapter fusion to perform task-composition.
The model is trained over data that is filtered using
a set of heuristics. This model doesn’t use other
data-augmentation techniques (e.g. BT).

4.2 Automatic Evaluation

We follow last year’s shared task in relying in sp-
BLEU (Goyal et al., 2022) due to the well-known
limitations of traditional BLEU. In particular we
use a sentencepiece (Kudo and Richardson, 2018)
tokenizer trained on all FLORES-200, in the hope of
producing a universal tokenizer that can adequately
handle all languages we are dealing with. Finally,
to compute BLEU, we apply SPM tokenization to
the system output and the reference, and then cal-
culate BLEU at the sentence-piece level. For read-
ability, in this paper we use BLEU and spBLEU
interchangeably.

We additionally report chrF++ (Popović, 2017),
another metric relying on character n-gram F-score
(chrF) alongside word-level unigram and bigram
F-score. This metric has been shown to correlate
particularly well with human judgments for lan-
guages with rich morphology.

For all results we rely on statistical significance
tests, using paired bootstrap resampling (Koehn,
2004) with 1000 samples. We first rank all the
systems with spBLEU then we take the highest-
scored system as a baseline and compare it with
systems that are below its rank. If the p-value is
greater than 0.05 we bundle those systems together.
If for a system the p-value is less than 0.05 that
means we have found a statistically significantly
worse system and we make that system the new
baseline system and continue to go on.

776



4.3 Human Evaluation
A fixed sample of the outputs of the primary sub-
missions was grouped by the language pairs and
split into tasks for evaluation by crowd human an-
notators. Each task comprised the source sentence
and two translations of the source sentence that
were to be scored from 0 to 100 indicating the gen-
eral quality of the translations.

The annotation was conducted via crowdsourc-
ing on the Toloka platform 11 where a crowd label-
ing project was set up for each language pair.

Guidelines for Evaluation The guidelines for
the scale were roughly based on the theory of levels
of translation equivalence by Komissarov (1990)
and were simplified in order to facilitate their usage
by annotators without linguistic background . The
crowd annotators were asked to evaluate the trans-
lations on a 0..100 continuous rating scale (Graham
et al., 2013) where 0 was considered a very bad and
100 — a very good translation (see Figure 1). The
scale represents a combined approach that requires
the annotators to give each translation one score
assessing both accuracy and fluency at the same
time and taking into account factors like grammat-
icality, naturalness, conveying the same meaning,
having the same communicative goal, representing
the same situation, having the same style and pre-
serving as many shades of meaning of the source
sentence as possible. The annotators were asked
to evaluate the sentences as a whole and not word
by word, pay attention to unmotivated additions of
omissions, grammatical mistakes and untranslated
parts, check if set expressions and metaphors were
translated according to the expressions used in the
target language and use their feel for the language
in general.

Annotator Selection We ran the crowd annota-
tion projects in Toloka and used the following cri-
teria for annotator selection:

• Location: Africa according to the evaluator’s
IP address

• Both languages of the respective pair should
have been among the list of languages known
by the annotator as they had specified in their
Profile

• Wherever possible, we showed the projects
only to those annotators who had passed the
respective language tests built in Toloka. The
platform asks the annotators to verify their

11https://toloka.ai

language skills via tests to get access to tasks
with this prerequisite and it had such tests for
English and French.

Potential annotators did not know about the re-
quirements and did not see the projects if they did
not meet the criteria. This approach prevented them
from deliberate manipulation of their user settings
to get access to the projects.

Quality Control The annotators whose profile
matched our requirements, were shown the guide-
lines. The guidelines were translated into the target
language of the respective pair as another way of
testing the annotator’s language skills.

Then the annotators were given an exam to test
their ability to complete the task. The exam con-
sisted of five tasks structurally identical to the main
ones (see Figure 1). Thus each task consisted of the
source sentence, two translations and a continuous
scale for scoring. The exams were generated auto-
matically from the list of source sentences paired
with target sentences. The target sentences for the
exam comprised:

• Reference translations
• Reference translations with randomized word

order (while still having correct capitalization
when needed and ending with the respective
punctuation mark)

• "Gibberish" sentences. Being potentially un-
known to virtually any annotator, Sumerian
was chosen as the source of "gibberish" con-
trol sentences 12 for eliminating cheaters. Fur-
thermore, being unrelated to the languages in
the dataset, it didn’t confuse diligent annota-
tors in terms of what pair of languages needs
to be evaluated.

Each translation was assigned a golden score to
be used as a control answer (Chida et al., 2022).
Since the evaluation scale used is subjective and
can show high variance, control intervals were in-
troduced with the matching interval scores (score
0–33 = 0, 34–66 = 50, 66+ = 100). Randomized
sentences as well as sentences in Sumerian were
given golden scores 0 and reference translations
were given a 100. Thus, if the annotator scored a
bad sentence in a range of 0-33 it meant that they
gave a correct answer and so on.

The task was accepted if both translations were
given correct scores and rejected otherwise. The
accuracy of the performer in an exam was calcu-

12https://etcsl.orinst.ox.ac.uk/cgi-bin/etcsl.
cgi?text=c.1.8.1.1
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Figure 1: Screenshot of the interface with an annotated task comprising the source sentence and two translations
randomly chosen from the outputs of the submitted models for the respective language pair (Afrikaans – English in
the screenshot).

lated as the rate of accepted tasks among the five
comprising the examination set. Exams where one
of the languages (English or French) had been veri-
fied by the platform test required a 100% accuracy
of completion (5/5 accepted tasks). For other lan-
guages the accuracy threshold was 80% to neutral-
ize potential variance introduced by the automated
creation of exams. These accuracy scores given in
the exam were used as filters for the main pools of
tasks, giving access to the main labeling only to the
annotators who had passed the exam.

Another way of eliminating potential low-
performers used both during the exam and the main
set of tasks was banning the annotators for very
fast responses. If an annotator submitted a page of
five tasks within twenty seconds or less two times
or more, they were banned from working on the
project.

Score Normalization We convert the raw human
scores to Z-scores:

z =
x− µ
σ

Note that we perform this operation at the annota-
tor level; that means we compute the mean µ and
standard deviation σ separately for each annotator
and apply the transformation only on their scores.

Language Pairs Due to annotator availability,
we only perform human evaluations in a smaller
subset of our 100 language pairs. Hence the human
score averages presented in all results only reflect
averages for this subset, not all language pairs. The
list of pairs is available in Table 15 in the Appendix.

5 Results

In this section we analyze both the human scores
and automatic metrics for all the participants. We

present the results and official ranking for the
main task; the analysis of the performance from/to
English, an to/from African languages; and the
progress in performance w.r.t. to the previous
year’s task.

5.1 Main Results
The average results across the 100 evaluation lan-
guage pairs are reported in Table 4. Note that we
primarily only rank the constrained systems that
were able to handle all language pairs.

System # of pairs

Unconstrained
Bytedancep 52
Bytedancec 48

Constrained
Tencentp 39
Tencentc 26
GMUp 17
DENTRAp 9
GMUc 7
Masakhanec 1
SPRH-DAIc 1
ANVITA, Masakhanep 0
CapeTown, SPRH-DAIp

Table 3: Number of evaluation language pairs (out of
100 total) that a system ranks (or ties for) best perfor-
mance (spBLEU).

The best-performing constrained system on aver-
age is the Borderline (Tencent) system, followed by
the GMU system with a little over 1 BLEU point
difference between them. The only unconstrained
submission is Bytedance’s Volctrans, outperform-
ing other systems by a significant margin of more
than 4 BLEU points, but note however that it uses
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Rank System Human BLEU spBLEU chrF2

Systems handling all language pairs
Constrained

1 Tencentp 0.39 ± 0.15 14.1 ± 1.1 17.6 ± 1.2 37.4 ± 1.3
Tencentc 14.0 ± 1.0 17.5 ± 1.2 37.2 ± 1.4
GMUc 13.3 ± 1.1 16.2 ± 1.1 35.4 ± 1.4

2 GMUp 0.16 ± 0.28 13.3 ± 1.1 16.2 ± 1.1 35.4 ± 1.4
3 DENTRAp 0.02 ± 0.51 10.4 ± 1.1 12.7 ± 1.2 30.5 ± 1.5

SPRH-DAIc 1.6 ± 1.2 2.0 ± 1.5 11.5 ± 0.4
4 SPRH-DAIp -1.4 ± 0.24 1.5 ± 1.6 1.8 ± 1.8 10.4 ± 0.5

Unconstrained
U ByteDancep 0.53 ± 0.19 17.3 ± 1.2 21.9 ± 1.1 41.9 ± 1.2
U ByteDancec 17.3 ± 1.2 21.8 ± 1.1 41.7 ± 1.2

Systems handling partial language pairs
P ANVITAp 0.24 ± 0.19 24.3 ± 1.1 26.3 ± 1.2 44.9 ± 1.2
P ANVITAc 23.8 ± 1.1 25.9 ± 1.2 44.5 ± 1.2
P Capetownp 0.09 ± 0.24 17.4 ± 1.0 21.3 ± 0.8 43.7 ± 0.7
P Masakhanep 0.05 ± 0.13 16.6 ± 1.0 19.0 ± 1.0 39.3 ± 1.1
P Masakhanec 11.9 ± 0.7 14.1 ± 0.7 35.0 ± 0.8

Table 4: Average results (presented here: mean ± standard error across all 100 evaluation language pairs), sorted by
spBLEU. We only ranked constrained systems that handle all language pairs. We denote unconstrained submissions
with U, and systems covering partial language pairs with P.

unconstrained data. All metrics, including human
evaluation, result in a similar ranking among the 4
systems handling all language pairs.13

Table 3 lists the number of evaluation pairs for
which each system ranks or ties for best perfor-
mance. Among the constrained systems, the Ten-
cent ones rank first for 39 language pairs, with
the GMU one following with 17, and DENTRA
with 9. The Masakhane and SPRH-DAI contrastive
systems also rank first in one language pair each.

5.2 Performance by Language

Table 5 presents the best and worst performing
language pairs. As shown, some language pairs
end up with very good systems (e.g. Afrikaans,
Swahili, Northern Sotho – at least when pairing
with English). Wolof, Umbundu, and Kamba are
the languages that most often show up as targets
in the language pairs that systems struggle in, with
BLEU scores below 10.

Results by for each individual language pair can
be found in the Appendix Tables 16–115.

5.3 Performance by Groups

Table 6 presents the best performance across all sys-
tems, averaged over the different language groups
we defined above. Note that having colonial lan-
guages (English and French) as the target perhaps

13For a fair comparison, Appendix Tables 13 and 14
present average scores for the partial language pairs that the
Masakhane and CapeTown systems handle.

Source Target spBLEU

eng umb 4.1
eng kam 5.9
fra wol 8.3
swh wol 8.5
hau wol 8.6

afr eng 60.1
swh eng 49.0
eng afr 46.0
nso eng 43.5
eng swh 42.0

Table 5: Top-5 worst (top) and best (bottom) language
pairs (result from best system).

unsurprisingly leads to generally high performance
(average more than 33 BLEU). Languages from
South Africa seem to be easier to translate (average
∼29 BLEU) while languages from West Africa,
and especially Wolof, lead to worse performance
as targets (average ∼15 BLEU).

5.4 Progress from Last Year

To assess the progress made in African lan-
guages, we compare this year’s best results with
DeltaLM (Yang et al., 2021), the best system from
last year’s shared task. Note that this analysis only
includes 72 of our 100 evaluation pairs, as some of
the languages (e.g. Kinyarwanda or Swati) were
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Group as src as trg as both

South 29.4 22.8 19.9
Horn 21.9 20.0 16.5
West 20.3 15.1 14.4
Central 21.7 20.0 16.2
Colonial 22.3 33.7 N/A

Table 6: Average spBLEU of the best performing system
summarized per language group.

added this year. In addition, note that last year’s sys-
tems were scored using a different sentencepiece
tokenizer than this year’s ones.14

Across all 72 pairs, the average improvement
is around 7.5 BLEU points. For around 93% of
the 72 language pairs (67 pairs), there are improve-
ments over last year’s best system. We show the
top-10 improved language pairs in Table 7. Most of
the English-centric language pairs improve signifi-
cantly, but african-to-african pairs benefit too, like
the Swahili to Dholuo (swh-luo) pair which shows
more than 12 BLEU points improvement. When in-
deed improving, the average improvement is more
than 8 BLEU points (max: 33.5, min: 0.94).

Source Target 2021 2022 ∆

nso eng 9.9 43.5 33.5
eng nso 9.5 30.5 21.1
yor eng 7.1 25.1 18.0
hau eng 22.2 40.0 17.8
orm eng 10.6 28.3 17.7
eng hau 16.4 31.5 15.1
som eng 20.8 35.0 14.2
eng luo 3.5 16.6 13.1
swh luo 2.8 15.0 12.2
eng som 8.7 20.8 12.1

Average (72 pairs) 15.1 22.6 7.5

Table 7: The top-10 language pairs with the largest
improvement over last year’s best result. Average refers
to all 72 language pairs.

On the other hand, 5 language pairs do not im-
prove from last year. Importantly, though, the
largest drop is a mere 1.9 BLEU points for English
to Afrikaans, and around 1 BLEU point reduction
for the opposite direction as well as English to
Kamba. For the few cases where we indeed ob-

14last year: spm tokenizer from FLORES-101; this year:
spm tokenizer from FLORES-200.

serve a reduction, the average reduction is only 1
BLEU point (min: -0.46, max: -1.9).

Source Target 2021 2022 ∆

eng afr 47.9 46.0 -1.9
eng kam 6.9 5.9 -1.0
afr eng 61.0 60.1 -1.0
fra lin 20.7 20.0 -0.7
eng umb 4.6 4.1 -0.5

Table 8: The bottom-5 language pairs with the largest
performance degradation over last year’s best result.

5.5 X-eng and eng-X results

Rk System Human BLEU spBLEU chrF2

Systems handling all language pairs
Constrained

1 Tencentp 0.40 26.0 28.5 47.6
Tencentc 25.8 28.3 47.5
GMUc 25.9 28.0 46.6

2 GMUp 0.22 25.8 28.0 47.0
3 ANVITAp 0.24 24.3 26.3 44.9

ANVITAc 23.8 25.9 44.5
4 DENTRAp 0.13 23.2 24.9 43.9

SPRH-DAIc 2.5 3.2 14.0
5 SPRH-DAIp -1.43 2.5 3.0 13.7

Unconstrained
U ByteDancep 0.51 31.2 33.8 52.0
U ByteDancec 31.2 33.7 52.0

Systems handling partial language pairs
P Capetownp -0.04 25.3 27.4 47.8
P Masakhanep -0.01 22.3 24.3 44.3
P Masakhanec 15.3 17.0 37.5

Table 9: Average results in all X-eng pairs, sorted by sp-
BLEU. We only ranked constrained systems that handle
all language pairs. We denote unconstrained submis-
sions with U, and systems covering partial language
pairs with P.

English-centric results (focusing on translating
to and from English) are presented in Tables 10
and 9. The ranking of the system does not change
depending on the direction. Note, however, that
according to all metrics (including human evalua-
tion) translating out of English and into the African
languages is harder than the reverse direction for
all systems.

5.6 Results on translation between African
languages

Last, we present summary results on the average
quality for translating between African languages,
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Rk System Human BLEU spBLEU chrF2

Systems handling all language pairs
Constrained

1 Tencentp 0.33 14.1 18.8 39.5
Tencentc 13.9 18.5 39.1

2 DENTRAp 0.22 12.8 16.7 37.5
3 GMUp 0.02 12.0 15.2 35.3

GMUc 12.0 15.1 35.3
SPRH-DAIc 0.8 0.9 9.0

4 SPRH-DAIp -1.38 0.6 0.6 7.1

Unonstrained
U ByteDancep 0.55 16.6 22.7 43.5
U ByteDancec 16.6 22.6 43.4

Systems handling partial language pairs
P Capetownp 0.13 16.6 22.1 45.4
P Masakhanep 0.11 14.5 17.5 39.0
P Masakhanec 10.2 13.2 34.8

Table 10: Average results in all eng-X pairs, sorted
by spBLEU. We only ranked constrained systems that
handle all language pairs. We denote unconstrained sub-
missions with U, and systems covering partial language
pairs with P.

shown in Table 11. It is worth noting that, al-
though the automatic metrics score imply that the
systems are much worse than in the English-centric
directions (compare, for example, spBLEU scores
of 22.7 on eng-X to 15.5 on african-to-arfican
for the ByteDance system), the human evaluation
scores are not too different. For instance, the
ByteDance system receives an average human Z-
score of 0.55 on eng-X and 0.51 on african-african;
the Tencent system, with respective scores of 0.33
and 0.40, receives even higher Z-scores for african-
to-african languages.

6 Conclusion and Future Work

In this paper, we presented the results of the second
shared task on Large-Scale Machine Translation
Evaluation. In this edition of the shared task, we
evaluate the progress on massively multilingual
translation for African Languages in a non-English-
centric way. From our findings, we observe that
data is still an important factor in translation perfor-
mance, and that systems that used more data, either
in an unconstrained way, or through data augmenta-
tion techniques made the most progress.The quality
of the data is also important, as most participants
developed a set of heuristics to clean it. We also
observed the popularity of pre-trained translation
models such as: DeltaLM, M2M-100 and mT5,
as most systems used a version of these when de-
veloping their final model. We observe that there

Rk System Human BLEU spBLEU chrF2

Systems handling all language pairs
Constrained

1 Tencentp 0.40 8.0 11.5 31.0
Tencentc 8.0 11.4 30.9

2 GMUp 0.33 7.7 10.9 29.9
GMUc 7.7 10.8 29.9

3 DENTRAp -0.64 2.6 4.2 19.5

Unconstrained
U ByteDancep 0.51 10.6 15.5 35.7
U ByteDancec 10.5 15.4 35.6

Systems handling partial language pairs
P Capetownp 0.24 10.2 14.4 37.9

Table 11: Average results in all African-African pairs,
sorted by spBLEU. We only ranked constrained systems
that handle all language pairs. We denote unconstrained
submissions with U, and systems covering partial lan-
guage pairs with P.

has been a large progress in the quality of transla-
tion in since the last iteration of this shared task:
there is an improvement of about 7.5 BLEU points
across 72 language pairs, and the average BLEU
scores went from 15.09 to 22.60. We observe that
it is usually harder to translate into than out of
African Languages, and it is particularly difficult to
translate into West African Languages like Wolof.
We also observed that there has been significant
progress translating into and out of Northern Sotho,
Hausa, and Somali.
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A Appendix: Improvement over Last Year

Table 12 compares the performance of last year’s best system to this year’s best system for the 72 language
pairs that intersect between the two.

Lang Pair 2021 2022 ∆ Lang Pair 2021 2022 ∆

eng-afr 47.9 46.0 -1.9 fra-wol 5.8 8.3 2.5
eng-amh 23.4 31.1 7.7 lin-fra 19.7 26.6 6.9
eng-hau 16.4 31.5 15.1 swh-fra 28.0 39.9 11.8
eng-ibo 17.9 23.5 5.6 wol-fra 11.2 21.6 10.4

eng-kam 6.9 5.9 -1.0 xho-zul 17.5 21.0 3.5
eng-lug 10.6 15.4 4.8 zul-sna 15.5 17.1 1.6
eng-luo 3.5 16.6 13.1 sna-afr 18.6 21.6 3.0
eng-nso 9.5 30.5 21.1 nso-xho 6.6 17.9 11.3
eng-nya 17.6 20.3 2.7 swh-amh 17.5 24.4 6.9
eng-orm 9.2 14.6 5.4 amh-swh 19.2 26.6 7.4
eng-sna 20.4 21.3 0.9 luo-orm 5.8 9.3 3.5

eng-som 8.7 20.8 12.1 som-amh 11.0 18.9 7.9
eng-swh 32.8 42.0 9.2 orm-som 3.3 12.9 9.6
eng-umb 4.6 4.1 -0.5 swh-luo 2.8 15.0 12.2
eng-xho 20.8 23.0 2.2 amh-luo 2.0 12.0 10.0
eng-yor 3.9 12.3 8.4 luo-som 5.0 12.7 7.7
eng-zul 22.3 28.4 6.1 hau-ibo 10.6 17.9 7.3
afr-eng 61.0 60.1 -1.0 ibo-yor 5.8 9.9 4.1

amh-eng 30.8 39.5 8.7 ibo-hau 10.3 21.6 11.3
hau-eng 22.2 40.0 17.8 yor-ibo 5.7 13.5 7.8
ibo-eng 25.3 36.4 11.1 wol-hau 6.6 14.6 8.0

kam-eng 11.2 18.3 7.1 hau-wol 4.6 8.6 4.0
lug-eng 16.6 26.2 9.6 lug-lin 13.3 14.8 1.5
luo-eng 20.0 27.5 7.5 swh-lug 8.5 13.0 4.5
nso-eng 10.0 43.5 33.5 lin-nya 11.5 13.8 2.3
nya-eng 23.0 32.7 9.7 nya-swh 16.2 23.0 6.8
orm-eng 10.6 28.3 17.7 amh-zul 14.0 18.7 4.7
sna-eng 25.5 31.8 6.4 yor-swh 5.8 17.9 12.1

som-eng 20.8 35.0 14.2 swh-yor 6.2 11.0 4.7
swh-eng 37.8 49.0 11.2 zul-amh 14.7 21.2 6.4
umb-eng 9.4 11.9 2.5 nya-som 5.3 13.9 8.6
xho-eng 30.7 38.3 7.6 som-nya 10.7 14.4 3.7
yor-eng 7.1 25.1 18.0 xho-lug 8.6 12.1 3.5
zul-eng 31.2 41.4 10.2 lug-xho 9.1 13.0 3.9

fra-lin 20.7 20.0 -0.7 wol-swh 8.5 16.5 8.0
fra-swh 24.7 30.8 6.1 swh-wol 5.6 8.5 2.9

Average (72 pairs) 15.09 22.60 7.51

Table 12: Results on African languages on the FLORES-200 test set from last year to this year.
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B Appendix: Comparisons for Masakhane and Capetown Models

Two submitted systems (Masakhane and Capetown) only handled some of our 100 evaluation language
pairs. For a fair comparison, Tables 13 and 14 present average scores for the language pairs these systems
handle. Overall, systems rankings do not change.

Rank System Human BLEU spBLEU chrF2

Systems handling all language pairs
U ByteDance_pr* 0.54 25.1 28.9 48.2
U ByteDance_contr* 25.1 28.8 48.1

1 Tencent_pr 0.37 21.3 24.5 44.6
Tencent_contr 21.0 24.2 44.2

2 DENTRA_pr 0.23 19.1 21.8 42.2
GMU_contr 19.5 21.5 41.0

3 GMU_pr 0.07 19.4 21.4 40.8
4 Masakhane_pr 0.05 16.6 19.0 39.3

Masakhane_contr 11.9 14.1 35.0

Systems handling partial language pairs
P ANVITA_pr 0.23 26.9 29.0 48.2
P ANVITA_contr 26.1 28.2 47.6
P Capetown_pr 0.00 19.3 23.3 45.3
P SPRH-DAI_contr 1.6 2.0 11.7
P SPRH-DAI_pr -1.42 1.4 1.8 10.6

Table 13: Average results in all pairs where Masakhane system participated, sorted by spBLEU. We only ranked
constrained systems that handle all language pairs. We denote unconstrained submissions with U, and systems
covering partial language pairs with P.

Rank System Human BLEU spBLEU chrF2

Systems handling all language pairs
U ByteDance_contr* 24.2 29.5 50.0
U ByteDance_pr* 0.41 24.1 29.5 50.1

1 Tencent_pr 0.41 21.9 27.0 48.6
Tencent_contr 21.7 26.8 48.4

2 GMU_pr 0.21 20.7 24.8 46.0
GMU_contr 20.7 24.7 46.0

3 Capetown_pr 0.09 17.4 21.3 43.7
4 DENTRA_pr 0.12 17.5 21.1 41.5

Systems handling partial language pairs
P ANVITA_pr 0.36 32.0 34.3 52.7
P ANVITA_contr 31.6 33.9 52.4
P Masakhane_pr 0.05 19.2 23.1 44.9
P Masakhane_contr 11.1 14.0 35.8
P SPRH-DAI_pr -1.45 2.2 2.6 12.8
P SPRH-DAI_contr 2.1 2.5 13.0

Table 14: Average results in all pairs where CapeTown system participated, sorted by spBLEU. We only ranked
constrained systems that handle all language pairs. We denote unconstrained submissions with U, and systems
covering partial language pairs with P.
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C Appendix: Human Evaluation Guidelines

C.1 About
In the interface you will see a source sentence and two translations. Your task is to evaluate the quality of
translations on a 0-100 scale where 0 is ridiculously bad and 100 is a perfect translation.

By doing this you will help us a lot to improve the quality of machine translation for African languages
in all their glory and diversity.

C.2 How To Evaluate
The evaluation slider can go from 0 to 100. While choosing the most appropriate score, please consider
the following features of a good translation starting from the most important:

1. Acceptable translation is grammatically correct, looks natural and makes sense to the
reader.

2. Acceptable translation also has the same general meaning and communicative goal (what
did it want to say?) as the source sentence

3. OK translation must be completely fluent and natural in addition to the above

4. Good translation keeps the style of the source sentence (e.g. formal or informal, colloquial
style) in addition to being fluent and conveying the same meaning

5. Great translation keeps as much meaning and nuances as the source sentence in addition to
being perfectly fluent.

6. Amazing translation also chooses the same means to describe the situation as the source
sentence wherever the destination language has the same ways of doing it: the same
metaphors, set expressions and such.

While performing the task, please do not use any automatic translation as the goal is to evaluate it with
the help of human experts. You can use a dictionary if you found a word that you don’t know.

C.2.1 Tips
• Evaluate the phrases as a whole and not word by word

• Check if any meaning was lost or unnecessarily added

• Check if there are any grammatical mistakes

• Check if anything remained untranslated

• Check if set expressions and metaphors were translated simply word by word (bad) or as a
whole and according to the expressions used in the destination language (good)

• Use your own feeling as the speaker: do you consider the translation good, natural, clear
and easily understandable
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Language Pairs used in Evaluation

eng-afr eng-xho som-eng swh-fra
eng-amh eng-yor ssw-eng xho-zul
eng-hau eng-zul swh-eng zul-sna
eng-ibo afr-eng tsn-eng afr-ssw
eng-lug amh-eng tso-eng ssw-tsn
eng-nya hau-eng xho-eng tsn-tso
eng-orm ibo-eng yor-eng hau-ibo
eng-kin lug-eng zul-eng ibo-yor
eng-sna nya-eng fra-lin ibo-hau
eng-ssw orm-eng fra-swh yor-ibo
eng-swh kin-eng fra-wol swh-lug
eng-tsn sna-eng lin-fra

Table 15: List of languages used for human evalulation

D Appendix: Individual Language Pair
Results

System Rank spBLEU BLEU chrF2

Tencent_pr 1-3 46.0 40.2 68.0
ByteDance_pr 1-3 45.9 39.6 67.9
ByteDance_contr 1-3 45.7 39.3 67.8
Tencent_contr 4-6 45.5 40.0 67.6
DENTRA_pr 4-6 45.2 39.7 67.8
GMU_contr 4-6 45.2 39.8 67.5
GMU_pr 7 44.9 39.6 67.3
CapeTown_pr 8 40.4 35.9 64.3
SPRH-DAI_pr 9 4.3 4.0 21.8
SPRH-DAI_contr 10 3.0 2.6 19.6

Table 16: Results in eng-afr, sorted by spBLEU.

System Rank spBLEU BLEU chrF2

ByteDance_contr 1-2 31.1 12.9 42.4
ByteDance_pr 1-2 30.9 12.5 42.3
Tencent_pr 3 23.5 8.2 37.6
GMU_contr 4-5 22.0 7.6 35.5
Tencent_contr 4-5 21.9 7.7 36.5
GMU_pr 6 21.4 7.3 35.0
DENTRA_pr 7 15.2 5.2 29.4
SPRH-DAI_contr 8 0.2 0.3 0.5
SPRH-DAI_pr 9 0.0 0.1 2.9

Table 17: Results in eng-amh, sorted by spBLEU.

System Rank spBLEU BLEU chrF2

ByteDance_pr 1-2 5.4 3.8 24.7
ByteDance_contr 1-2 5.3 3.8 24.5
SPRH-DAI_contr 3-4 1.2 0.9 11.9
DENTRA_pr 3-4 1.1 0.7 14.0
Tencent_pr 5-6 0.9 0.5 14.8
Tencent_contr 5-6 0.8 0.4 14.7
GMU_pr 7-8 0.5 0.3 14.4
GMU_contr 7-8 0.5 0.3 14.0
SPRH-DAI_pr 9 0.1 0.1 4.8

Table 18: Results in eng-fuv, sorted by spBLEU.

System Rank spBLEU BLEU chrF2

ByteDance_pr 1 31.4 28.3 54.9
ByteDance_contr 2 30.9 27.9 54.8
Tencent_contr 3-4 28.7 25.4 53.9
Tencent_pr 3-4 28.7 25.5 53.9
DENTRA_pr 5 25.0 22.9 51.4
Masakhane_pr 6 19.7 17.7 45.8
Masakhane_contr 7 12.2 10.7 38.4
GMU_pr 8 5.2 14.5 30.0
GMU_contr 9 4.5 13.3 27.7
SPRH-DAI_contr 10 1.0 0.5 10.8
SPRH-DAI_pr 11 0.5 0.3 9.7

Table 19: Results in eng-hau, sorted by spBLEU.

System Rank spBLEU BLEU chrF2

Tencent_pr 1 23.6 20.1 45.9
ByteDance_pr 2-4 23.2 19.7 45.6
ByteDance_contr 2-4 23.0 19.6 45.5
Tencent_contr 2-4 23.0 19.6 45.3
GMU_pr 5-6 19.6 17.3 42.4
GMU_contr 5-6 19.6 17.3 42.7
DENTRA_pr 7 18.0 16.4 42.0
Masakhane_pr 8 17.7 15.2 40.4
Masakhane_contr 9 14.7 11.9 36.5
SPRH-DAI_contr 10 0.8 0.6 10.4
SPRH-DAI_pr 11 0.1 0.2 5.0

Table 20: Results in eng-ibo, sorted by spBLEU.

System Rank spBLEU BLEU chrF2

ByteDance_pr 1 5.9 4.7 26.2
ByteDance_contr 2 5.3 4.1 25.4
GMU_pr 3-4 4.0 3.0 21.6
GMU_contr 3-4 4.0 2.9 21.6
DENTRA_pr 5-6 3.0 2.5 20.8
Tencent_pr 5-6 2.8 2.0 20.9
Tencent_contr 7 2.5 1.8 20.2
SPRH-DAI_contr 8 0.8 0.6 9.3
SPRH-DAI_pr 9 0.1 0.1 3.0

Table 21: Results in eng-kam, sorted by spBLEU.
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System Rank spBLEU BLEU chrF2

ByteDance_pr 1 15.4 9.8 45.5
ByteDance_contr 2 15.2 9.7 45.4
DENTRA_pr 3-5 7.8 5.2 35.2
Tencent_pr 3-5 7.8 5.9 36.5
GMU_contr 3-5 7.5 5.8 34.8
GMU_pr 6-7 7.0 5.6 33.6
Tencent_contr 6-7 7.0 5.5 35.2
Masakhane_contr 8 6.2 4.5 33.1
Masakhane_pr 9 5.4 4.6 31.0
SPRH-DAI_contr 10 0.9 1.1 10.0
SPRH-DAI_pr 11 0.3 0.2 4.7

Table 22: Results in eng-lug, sorted by spBLEU.

System Rank spBLEU BLEU chrF2

ByteDance_pr 1 16.6 12.6 42.6
ByteDance_contr 2 16.4 12.4 42.4
GMU_pr 3-4 10.4 8.1 33.8
GMU_contr 3-4 10.4 8.0 33.9
DENTRA_pr 5 7.7 6.1 29.7
Tencent_pr 6 6.5 4.9 28.3
Tencent_contr 7 5.7 4.4 27.2
SPRH-DAI_contr 8 1.4 1.0 11.9
SPRH-DAI_pr 9 0.6 0.5 6.3

Table 23: Results in eng-luo, sorted by spBLEU.

System Rank spBLEU BLEU chrF2

ByteDance_contr 1-2 30.5 27.9 54.6
ByteDance_pr 1-2 30.4 27.7 54.6
Tencent_pr 3 28.5 25.4 53.8
Tencent_contr 4 28.0 24.9 53.3
DENTRA_pr 5 26.3 24.7 51.5
GMU_contr 6 24.8 23.5 49.9
GMU_pr 7-8 24.4 23.0 49.1
CapeTown_pr 7-8 24.1 22.7 50.0
SPRH-DAI_contr 9 0.9 0.4 9.7
SPRH-DAI_pr 10 0.4 0.3 6.0

Table 24: Results in eng-nso, sorted by spBLEU.

System Rank spBLEU BLEU chrF2

ByteDance_pr 1-3 20.3 15.4 50.2
ByteDance_contr 1-3 20.2 15.4 50.2
Tencent_contr 1-3 20.0 15.6 51.4
Tencent_pr 4 19.8 15.3 51.3
GMU_pr 5-6 17.2 13.4 48.4
GMU_contr 5-6 17.2 13.3 48.5
DENTRA_pr 7 16.3 13.3 48.0
SPRH-DAI_contr 8 1.4 1.4 13.2
SPRH-DAI_pr 9 0.8 1.1 12.2

Table 25: Results in eng-nya, sorted by spBLEU.

System Rank spBLEU BLEU chrF2

ByteDance_contr 1-2 14.6 6.7 45.1
ByteDance_pr 1-2 14.6 6.8 45.0
DENTRA_pr 3 4.4 2.1 28.3
Tencent_pr 4 2.8 1.4 25.2
GMU_pr 5-7 2.4 1.5 21.4
GMU_contr 5-7 2.4 1.4 21.6
Tencent_contr 5-7 2.4 1.2 23.4
SPRH-DAI_contr 8 0.1 0.1 5.8
SPRH-DAI_pr 9 0.0 0.0 2.9

Table 26: Results in eng-orm, sorted by spBLEU.

System Rank spBLEU BLEU chrF2

ByteDance_pr 1 29.6 23.3 55.5
ByteDance_contr 2 29.4 23.2 55.2
Tencent_pr 3 22.6 18.1 49.4
Tencent_contr 4 21.9 17.8 48.7
DENTRA_pr 5 18.5 14.4 45.8
GMU_contr 6 16.4 13.2 41.7
GMU_pr 7 16.2 12.8 41.2
SPRH-DAI_contr 8 0.4 0.4 9.6
SPRH-DAI_pr 9 0.4 0.3 6.4

Table 27: Results in eng-kin, sorted by spBLEU.

System Rank spBLEU BLEU chrF2

ByteDance_contr 1 21.3 13.3 47.8
ByteDance_pr 2-3 21.1 13.1 47.8
Tencent_pr 2-3 20.8 12.9 49.3
Tencent_contr 4 20.5 12.7 49.1
DENTRA_pr 5 18.8 11.9 47.4
CapeTown_pr 6 17.6 10.3 46.4
GMU_contr 7-8 16.8 10.6 46.1
GMU_pr 7-8 16.7 10.6 46.1
SPRH-DAI_contr 9 0.8 1.0 10.8
SPRH-DAI_pr 10 0.8 1.1 13.9

Table 28: Results in eng-sna, sorted by spBLEU.

System Rank spBLEU BLEU chrF2

ByteDance_contr 1-2 20.8 15.0 48.2
ByteDance_pr 1-2 20.8 14.9 48.2
Tencent_pr 3 17.8 12.2 47.1
GMU_contr 4-6 17.5 11.9 45.8
Tencent_contr 4-6 17.5 11.9 46.9
GMU_pr 4-6 17.3 11.9 45.7
DENTRA_pr 7 15.1 10.4 43.5
SPRH-DAI_contr 8 0.5 0.4 8.8
SPRH-DAI_pr 9 0.1 0.3 8.0

Table 29: Results in eng-som, sorted by spBLEU.
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System Rank spBLEU BLEU chrF2

ByteDance_contr 1-2 22.2 11.1 52.2
ByteDance_pr 1-2 22.0 11.3 52.6
Tencent_pr 3 19.2 9.6 49.4
Tencent_contr 4 18.8 9.5 48.9
DENTRA_pr 5 16.4 8.3 46.0
CapeTown_pr 6 15.5 7.6 44.9
GMU_contr 7 15.1 7.2 45.4
GMU_pr 8 14.4 6.8 44.4
SPRH-DAI_contr 9-10 0.8 1.1 10.8
SPRH-DAI_pr 9-10 0.8 0.7 10.9

Table 30: Results in eng-ssw, sorted by spBLEU.

System Rank spBLEU BLEU chrF2

ByteDance_contr 1-2 42.0 37.4 63.8
ByteDance_pr 1-2 42.0 37.2 63.7
Tencent_pr 3 39.2 34.8 62.8
Tencent_contr 4 38.8 34.4 62.5
DENTRA_pr 5 37.2 33.3 61.6
GMU_contr 6 36.5 32.7 61.2
GMU_pr 7 36.2 32.6 60.8
Masakhane_pr 8 35.1 31.5 60.2
Masakhane_contr 9 27.8 24.3 55.0
SPRH-DAI_contr 10 1.6 1.1 15.2
SPRH-DAI_pr 11 1.4 1.3 17.0

Table 31: Results in eng-swh, sorted by spBLEU.

System Rank spBLEU BLEU chrF2

ByteDance_contr 1-2 28.5 25.9 53.2
ByteDance_pr 1-2 28.4 25.9 53.1
Tencent_pr 3-4 25.6 22.9 50.3
Tencent_contr 3-4 25.3 22.7 49.9
DENTRA_pr 5 21.2 20.1 46.7
GMU_contr 6 20.7 19.7 46.0
GMU_pr 7 20.1 19.1 45.3
CapeTown_pr 8 19.7 18.8 45.3
Masakhane_pr 9 19.0 17.8 44.2
Masakhane_contr 10 11.0 10.1 36.0
SPRH-DAI_contr 11 0.7 0.3 9.1
SPRH-DAI_pr 12 0.3 0.3 5.9

Table 32: Results in eng-tsn, sorted by spBLEU.

System Rank spBLEU BLEU chrF2

ByteDance_contr 1-2 28.0 23.3 53.1
ByteDance_pr 1-2 27.8 23.0 53.2
Tencent_contr 3-4 21.7 18.8 49.5
Tencent_pr 3-4 21.4 18.8 49.6
GMU_contr 5-6 20.5 17.4 47.6
GMU_pr 5-6 20.1 17.2 47.2
DENTRA_pr 7 19.2 16.9 45.8
CapeTown_pr 8 17.9 15.8 44.7
SPRH-DAI_contr 9 1.1 0.7 10.5
SPRH-DAI_pr 10 0.4 0.3 4.2

Table 33: Results in eng-tso, sorted by spBLEU.

System Rank spBLEU BLEU chrF2

ByteDance_pr 1 4.1 2.0 31.3
ByteDance_contr 2 4.0 2.0 30.3
GMU_pr 3-4 2.2 0.9 23.3
GMU_contr 3-4 2.1 0.8 22.8
DENTRA_pr 5 2.0 1.2 22.9
Tencent_pr 6 1.8 0.9 22.6
Tencent_contr 7 1.6 0.9 21.8
SPRH-DAI_contr 8 0.7 0.6 9.8
SPRH-DAI_pr 9 0.2 0.3 3.7

Table 34: Results in eng-umb, sorted by spBLEU.

System Rank spBLEU BLEU chrF2

ByteDance_contr 1-2 23.0 12.1 51.2
ByteDance_pr 1-2 22.9 12.1 51.0
Tencent_contr 3 22.3 11.7 52.1
Tencent_pr 4 21.9 11.4 52.0
DENTRA_pr 5 20.2 10.2 50.1
CapeTown_pr 6 18.6 9.4 48.7
GMU_pr 7 3.5 1.4 20.2
GMU_contr 8 2.7 1.0 17.5
SPRH-DAI_pr 9 0.9 0.6 13.5
SPRH-DAI_contr 10 0.6 0.6 13.4

Table 35: Results in eng-xho, sorted by spBLEU.

System Rank spBLEU BLEU chrF2

ByteDance_contr 1-2 12.3 5.6 28.2
ByteDance_pr 1-2 12.3 5.5 28.2
Masakhane_contr 3 7.7 4.2 23.5
Tencent_pr 4 6.5 3.4 22.7
Tencent_contr 5 5.7 3.0 21.8
Masakhane_pr 6-8 5.0 3.2 21.5
GMU_pr 6-8 4.9 3.2 21.9
GMU_contr 6-8 4.8 3.2 21.8
DENTRA_pr 9 4.4 3.1 21.8
SPRH-DAI_contr 10 0.3 0.3 7.5
SPRH-DAI_pr 11 0.0 0.1 5.1

Table 36: Results in eng-yor, sorted by spBLEU.

System Rank spBLEU BLEU chrF2

ByteDance_pr 1-2 28.4 16.4 54.9
ByteDance_contr 1-2 28.3 16.4 54.9
Tencent_pr 3 26.8 14.9 55.3
Tencent_contr 4 26.4 14.5 55.0
GMU_pr 5-7 24.0 13.5 53.5
DENTRA_pr 5-7 24.0 12.7 53.1
GMU_contr 5-7 23.9 13.2 53.6
CapeTown_pr 8 22.8 11.9 52.0
Masakhane_pr 9 20.9 11.0 50.6
Masakhane_contr 10 13.1 6.0 41.8
SPRH-DAI_pr 11 0.8 0.5 13.0
SPRH-DAI_contr 12 0.5 0.6 12.4

Table 37: Results in eng-zul, sorted by spBLEU.
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System Rank spBLEU BLEU chrF2

ByteDance_contr 1-4 60.1 57.4 75.5
ByteDance_pr 1-4 60.0 57.4 75.6
GMU_contr 1-4 60.0 56.9 76.1
GMU_pr 1-4 59.9 57.0 76.1
ANVITA_contr 5 58.7 55.7 75.5
Tencent_pr 6 58.1 55.0 75.2
DENTRA_pr 7-8 57.4 54.6 74.5
Tencent_contr 7-8 57.4 54.3 74.8
CapeTown_pr 9 46.4 44.6 67.4
SPRH-DAI_pr 10 9.0 8.3 27.3
SPRH-DAI_contr 11 7.1 6.1 22.9

Table 38: Results in afr-eng, sorted by spBLEU.

System Rank spBLEU BLEU chrF2

ByteDance_pr 1 39.5 36.3 61.6
ByteDance_contr 2 39.2 36.2 61.4
GMU_contr 3 32.2 30.7 55.7
GMU_pr 4 31.6 30.1 55.3
Tencent_contr 5 29.0 27.6 53.6
Tencent_pr 6 28.6 26.7 53.2
ANVITA_contr 7 25.2 24.1 49.4
DENTRA_pr 8 23.3 22.5 48.4
SPRH-DAI_contr 9 1.0 0.9 12.4
SPRH-DAI_pr 10 0.8 0.7 12.2

Table 39: Results in amh-eng, sorted by spBLEU.

System Rank spBLEU BLEU chrF2

ByteDance_pr 1-2 13.8 11.4 33.4
ByteDance_contr 1-2 13.7 11.3 33.2
GMU_pr 3-6 8.5 6.7 24.3
GMU_contr 3-6 8.5 6.9 25.0
Tencent_pr 3-6 8.5 6.5 25.2
DENTRA_pr 3-6 8.2 6.6 24.2
Tencent_contr 7-8 8.1 6.2 25.0
ANVITA_contr 7-8 7.9 6.1 23.4
SPRH-DAI_contr 9 2.0 1.4 12.1
SPRH-DAI_pr 10 1.8 1.3 11.7

Table 40: Results in fuv-eng, sorted by spBLEU.

System Rank spBLEU BLEU chrF2

ByteDance_pr 1-2 40.0 37.7 58.8
ByteDance_contr 1-2 39.8 37.6 58.7
Tencent_pr 3 33.5 30.6 54.9
Tencent_contr 4-5 33.2 30.3 54.7
GMU_contr 4-5 32.4 29.6 52.6
GMU_pr 6-7 31.8 29.1 52.1
ANVITA_contr 6-7 31.3 28.8 52.3
DENTRA_pr 8 30.4 28.2 51.5
Masakhane_pr 9 25.1 22.7 46.5
Masakhane_contr 10 17.3 15.6 39.4
SPRH-DAI_pr 11-12 3.7 2.7 15.8
SPRH-DAI_contr 11-12 3.6 2.5 15.7

Table 41: Results in hau-eng, sorted by spBLEU.

System Rank spBLEU BLEU chrF2

ByteDance_contr 1-2 36.4 33.6 56.7
ByteDance_pr 1-2 36.4 33.5 56.8
GMU_pr 3-4 30.8 28.2 51.6
GMU_contr 3-4 30.8 28.3 51.8
Tencent_contr 5 29.1 26.8 51.7
Tencent_pr 6 28.6 26.3 51.2
ANVITA_contr 7 25.8 23.6 47.5
DENTRA_pr 8 25.2 22.6 47.1
Masakhane_pr 9 23.2 20.9 45.9
Masakhane_contr 10 16.8 15.0 39.6
SPRH-DAI_contr 11 3.0 2.1 13.7
SPRH-DAI_pr 12 2.6 1.9 13.2

Table 42: Results in ibo-eng, sorted by spBLEU.

System Rank spBLEU BLEU chrF2

ByteDance_contr 1-2 18.3 15.7 35.9
ByteDance_pr 1-2 18.3 15.7 36.6
GMU_pr 3-4 13.2 10.8 30.6
GMU_contr 3-4 13.2 10.9 30.5
ANVITA_contr 5-6 12.4 10.3 29.9
Tencent_pr 5-6 12.3 9.9 30.5
DENTRA_pr 7-8 11.9 9.8 29.2
Tencent_contr 7-8 11.7 9.4 30.3
SPRH-DAI_contr 9-10 2.9 2.1 13.6
SPRH-DAI_pr 9-10 2.8 2.1 13.2

Table 43: Results in kam-eng, sorted by spBLEU.

System Rank spBLEU BLEU chrF2

ByteDance_pr 1-2 26.2 24.2 46.8
ByteDance_contr 1-2 26.1 24.2 46.6
Tencent_pr 3-4 21.8 19.7 41.9
Tencent_contr 3-4 21.6 19.7 41.8
GMU_pr 5 19.0 17.2 38.3
GMU_contr 6-7 18.7 16.8 37.8
ANVITA_contr 6-7 18.5 16.5 38.0
DENTRA_pr 8 18.1 16.4 37.7
Masakhane_pr 9 16.9 14.9 36.8
Masakhane_contr 10 13.9 12.2 35.0
SPRH-DAI_contr 11 2.6 2.0 14.1
SPRH-DAI_pr 12 2.4 1.8 13.0

Table 44: Results in lug-eng, sorted by spBLEU.

System Rank spBLEU BLEU chrF2

ByteDance_contr 1-2 27.5 24.8 48.6
ByteDance_pr 1-2 27.4 24.7 48.6
Tencent_pr 3 22.0 19.3 43.0
Tencent_contr 4-6 21.5 18.8 42.8
GMU_contr 4-6 21.2 19.2 41.0
GMU_pr 4-6 21.0 19.1 40.7
DENTRA_pr 7-8 19.6 17.9 39.2
ANVITA_contr 7-8 19.5 17.6 39.3
SPRH-DAI_contr 9 2.4 1.8 12.7
SPRH-DAI_pr 10 2.2 1.8 12.0

Table 45: Results in luo-eng, sorted by spBLEU.
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System Rank spBLEU BLEU chrF2

ByteDance_pr 1 43.5 41.2 61.0
ByteDance_contr 2 43.1 40.7 60.7
Tencent_pr 3 39.6 37.1 58.5
Tencent_contr 4 39.2 36.7 58.2
GMU_pr 5 37.1 35.2 56.2
GMU_contr 6 36.7 34.6 55.8
ANVITA_contr 7 35.5 33.7 54.5
DENTRA_pr 8 33.8 32.2 53.8
CapeTown_pr 9 28.0 26.5 49.3
SPRH-DAI_contr 10 4.1 3.1 16.1
SPRH-DAI_pr 11 3.6 2.8 15.3

Table 46: Results in nso-eng, sorted by spBLEU.

System Rank spBLEU BLEU chrF2

ByteDance_contr 1-2 32.7 28.9 53.0
ByteDance_pr 1-2 32.6 28.9 52.9
GMU_pr 3-4 29.0 25.8 49.6
GMU_contr 3-4 28.8 25.8 49.5
Tencent_pr 5-6 28.0 24.6 48.9
Tencent_contr 5-6 27.9 24.4 49.1
ANVITA_contr 7 26.2 23.1 47.1
DENTRA_pr 8 25.3 22.7 46.3
SPRH-DAI_contr 9 4.1 3.1 17.1
SPRH-DAI_pr 10 3.9 3.0 16.5

Table 47: Results in nya-eng, sorted by spBLEU.

792



System Rank spBLEU BLEU chrF2

ByteDance_pr 1-2 28.3 26.3 50.9
ByteDance_contr 1-2 28.0 26.0 50.7
Tencent_contr 3-4 17.6 16.6 40.9
Tencent_pr 3-4 17.6 16.6 40.6
GMU_contr 5-6 15.3 14.6 36.8
GMU_pr 5-6 15.2 14.6 36.6
ANVITA_contr 7-8 12.0 11.2 32.9
DENTRA_pr 7-8 11.8 11.3 32.8
SPRH-DAI_contr 9 0.9 0.6 10.2
SPRH-DAI_pr 10 0.7 0.5 9.5

Table 48: Results in orm-eng, sorted by spBLEU.

System Rank spBLEU BLEU chrF2

ByteDance_contr 1-2 38.7 35.8 58.5
ByteDance_pr 1-2 38.7 36.0 58.6
Tencent_pr 3-4 32.8 30.6 53.7
Tencent_contr 3-4 32.6 30.5 53.6
GMU_contr 5 30.2 28.4 51.3
GMU_pr 6 30.0 28.3 51.1
ANVITA_contr 7 28.9 27.4 50.1
DENTRA_pr 8 26.1 24.8 47.2
SPRH-DAI_contr 9 3.4 2.7 16.0
SPRH-DAI_pr 10 3.1 2.3 15.1

Table 49: Results in kin-eng, sorted by spBLEU.

System Rank spBLEU BLEU chrF2

ByteDance_contr 1 31.8 28.1 52.0
ByteDance_pr 2 31.4 27.8 51.8
GMU_pr 3-5 29.4 26.3 49.8
GMU_contr 3-5 29.3 26.1 49.5
Tencent_pr 3-5 29.1 25.6 49.6
Tencent_contr 6 28.5 24.9 49.4
ANVITA_contr 7 27.6 24.6 47.7
DENTRA_pr 8 26.0 23.2 46.9
CapeTown_pr 9 22.1 18.7 44.6
SPRH-DAI_contr 10-11 3.7 3.0 16.6
SPRH-DAI_pr 10-11 3.7 3.0 16.1

Table 50: Results in sna-eng, sorted by spBLEU.

System Rank spBLEU BLEU chrF2

ByteDance_pr 1 35.0 32.9 55.1
ByteDance_contr 2 34.6 32.5 54.7
Tencent_pr 3-4 28.4 26.5 49.8
Tencent_contr 3-4 28.2 26.4 49.8
GMU_pr 5-6 27.8 26.4 48.1
GMU_contr 5-6 27.8 26.4 48.0
DENTRA_pr 7 23.4 21.9 44.6
ANVITA_contr 8 22.2 20.6 42.7
SPRH-DAI_contr 9 3.0 2.3 15.0
SPRH-DAI_pr 10 2.5 2.0 13.6

Table 51: Results in som-eng, sorted by spBLEU.

System Rank spBLEU BLEU chrF2

ByteDance_contr 1 36.8 34.3 56.5
ByteDance_pr 2 36.5 33.9 56.2
Tencent_pr 3 32.9 30.1 53.0
Tencent_contr 4 32.3 29.5 52.8
GMU_pr 5-6 29.2 27.1 49.8
GMU_contr 5-6 29.0 27.1 49.5
ANVITA_contr 7-8 27.5 25.5 47.5
DENTRA_pr 7-8 27.5 25.8 48.5
CapeTown_pr 9 23.5 21.5 45.2
SPRH-DAI_pr 10 3.5 2.6 14.9
SPRH-DAI_contr 11 3.3 2.6 15.0

Table 52: Results in ssw-eng, sorted by spBLEU.

System Rank spBLEU BLEU chrF2

ByteDance_pr 1 49.0 47.4 67.7
ByteDance_contr 2 48.6 47.0 67.4
GMU_pr 3-6 42.8 41.0 62.8
Tencent_pr 3-6 42.8 41.1 62.9
GMU_contr 3-6 42.7 41.1 62.8
Tencent_contr 3-6 42.7 40.9 62.8
ANVITA_contr 7 41.7 40.4 62.2
DENTRA_pr 8 39.8 38.9 60.7
Masakhane_pr 9 36.4 35.2 58.4
Masakhane_contr 10 28.2 27.5 51.7
SPRH-DAI_contr 11-12 4.5 3.9 18.8
SPRH-DAI_pr 11-12 4.4 4.1 19.0

Table 53: Results in swh-eng, sorted by spBLEU.

System Rank spBLEU BLEU chrF2

ByteDance_contr 1 34.4 31.8 54.5
ByteDance_pr 2 34.2 31.6 54.4
Tencent_pr 3 30.3 27.5 51.7
Tencent_contr 4 29.8 26.9 51.5
GMU_pr 5 29.3 26.6 50.3
GMU_contr 6 28.2 25.6 48.9
ANVITA_contr 7 27.5 25.4 48.5
DENTRA_pr 8 26.2 23.9 47.6
Masakhane_pr 9 23.5 21.2 45.1
CapeTown_pr 10 22.1 19.8 44.2
Masakhane_contr 11 11.3 9.7 33.3
SPRH-DAI_contr 12 3.3 2.6 15.1
SPRH-DAI_pr 13 2.9 2.3 14.4

Table 54: Results in tsn-eng, sorted by spBLEU.
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System Rank spBLEU BLEU chrF2

ByteDance_contr 1-2 35.6 32.8 54.6
ByteDance_pr 1-2 35.6 32.8 54.7
Tencent_contr 3-4 31.9 29.6 52.1
Tencent_pr 3-4 31.9 29.7 52.1
GMU_pr 5-6 30.4 28.3 50.6
GMU_contr 5-6 30.2 28.1 50.2
ANVITA_contr 7-8 27.2 25.3 47.3
DENTRA_pr 7-8 27.2 25.6 47.7
CapeTown_pr 9 21.8 20.3 43.2
SPRH-DAI_contr 10 3.0 2.4 14.3
SPRH-DAI_pr 11 2.8 2.1 13.4

Table 55: Results in tso-eng, sorted by spBLEU.

System Rank spBLEU BLEU chrF2

ByteDance_contr 1-2 11.9 9.7 31.0
ByteDance_pr 1-2 11.8 9.7 31.3
GMU_pr 3 9.9 8.0 28.0
GMU_contr 4-6 9.6 7.7 27.7
Tencent_contr 4-6 9.4 7.0 27.7
Tencent_pr 4-6 9.4 7.1 27.6
ANVITA_contr 7 8.1 6.2 26.4
DENTRA_pr 8 7.4 5.8 25.1
SPRH-DAI_contr 9-10 1.5 0.9 12.3
SPRH-DAI_pr 9-10 1.5 1.0 11.8

Table 56: Results in umb-eng, sorted by spBLEU.

System Rank spBLEU BLEU chrF2

ByteDance_pr 1-2 38.3 35.4 57.7
ByteDance_contr 1-2 38.2 35.3 57.6
Tencent_pr 3-5 34.2 31.1 54.6
Tencent_contr 3-5 34.1 31.0 54.4
GMU_contr 3-5 33.9 31.3 54.3
GMU_pr 6 33.7 31.3 54.2
ANVITA_contr 7 32.4 29.8 52.9
DENTRA_pr 8 30.8 28.8 51.8
CapeTown_pr 9 26.7 24.3 49.2
SPRH-DAI_pr 10-11 4.1 3.3 17.5
SPRH-DAI_contr 10-11 4.0 3.2 17.5

Table 57: Results in xho-eng, sorted by spBLEU.

System Rank spBLEU BLEU chrF2

ByteDance_pr 1-2 25.1 22.9 46.4
ByteDance_contr 1-2 24.9 22.6 46.0
Tencent_contr 3-4 20.2 17.4 41.3
Tencent_pr 3-4 20.2 17.5 41.5
GMU_contr 5-6 19.7 17.6 40.2
GMU_pr 5-6 19.6 17.6 40.1
ANVITA_contr 7 17.9 15.8 38.5
DENTRA_pr 8 16.4 14.5 37.2
Masakhane_pr 9 16.1 14.2 36.9
Masakhane_contr 10 10.9 8.8 31.2
SPRH-DAI_contr 11 2.5 1.8 13.3
SPRH-DAI_pr 12 2.1 1.5 12.1

Table 58: Results in yor-eng, sorted by spBLEU.

System Rank spBLEU BLEU chrF2

ByteDance_contr 1-2 41.4 39.2 60.4
ByteDance_pr 1-2 41.3 39.0 60.4
GMU_pr 3-5 36.8 34.6 56.9
GMU_contr 3-5 36.8 34.4 56.9
Tencent_pr 3-5 36.6 34.0 56.6
Tencent_contr 6 36.1 33.3 56.4
ANVITA_contr 7 34.9 32.5 55.2
DENTRA_pr 8 32.7 31.1 53.5
Masakhane_pr 9 29.0 26.8 50.5
CapeTown_pr 10 28.5 26.7 50.7
Masakhane_contr 11 20.4 18.5 43.1
SPRH-DAI_contr 12-13 3.5 2.9 16.5
SPRH-DAI_pr 12-13 3.5 2.9 16.4

Table 59: Results in zul-eng, sorted by spBLEU.

System Rank spBLEU BLEU chrF2

ByteDance_pr 1 25.3 18.4 52.1
ByteDance_contr 2 25.1 18.3 51.9
Tencent_pr 3-4 19.3 14.1 47.0
Tencent_contr 3-4 19.0 14.4 46.6
DENTRA_pr 5-6 14.9 10.7 41.8
GMU_contr 5-6 14.4 10.3 41.3
GMU_pr 7 13.9 10.1 40.4

Table 60: Results in fra-kin, sorted by spBLEU.

System Rank spBLEU BLEU chrF2

ByteDance_pr 1 20.0 16.6 50.8
ByteDance_contr 2 19.7 16.2 50.7
DENTRA_pr 3 17.1 14.7 45.9
Tencent_pr 4-5 16.4 14.1 46.1
Tencent_contr 4-5 16.3 13.8 45.8
GMU_pr 6-7 10.1 7.5 37.4
GMU_contr 6-7 10.1 7.2 37.1

Table 61: Results in fra-lin, sorted by spBLEU.

System Rank spBLEU BLEU chrF2

ByteDance_pr 1 30.7 25.0 56.3
ByteDance_contr 2 30.2 24.5 56.0
Tencent_pr 3 29.2 24.1 55.2
Tencent_contr 4 28.8 23.8 54.9
GMU_pr 5 27.6 23.4 53.2
GMU_contr 6 27.1 22.8 52.8
DENTRA_pr 7 24.9 21.2 50.8

Table 62: Results in fra-swh, sorted by spBLEU.

System Rank spBLEU BLEU chrF2

DENTRA_pr 1 8.3 5.6 28.2
ByteDance_pr 2-3 7.3 5.2 27.6
ByteDance_contr 2-3 7.1 5.0 27.5
Masakhane_contr 4 6.3 4.4 27.4
Tencent_pr 5 4.8 3.9 23.2
Tencent_contr 6 4.2 3.4 22.0
GMU_pr 7 3.0 2.0 15.9
GMU_contr 8 2.6 1.8 14.0
Masakhane_pr 9 2.2 1.5 19.5

Table 63: Results in fra-wol, sorted by spBLEU.
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System Rank spBLEU BLEU chrF2

ByteDance_contr 1-2 33.7 29.1 54.1
ByteDance_pr 1-2 33.7 29.1 54.2
Tencent_pr 3 27.2 23.6 49.4
Tencent_contr 4 26.8 23.1 49.2
GMU_pr 5 26.4 23.0 48.0
GMU_contr 6 26.0 22.7 47.8
DENTRA_pr 7 22.2 18.5 43.4

Table 64: Results in kin-fra, sorted by spBLEU.

System Rank spBLEU BLEU chrF2

ByteDance_contr 1-2 26.6 22.7 46.9
ByteDance_pr 1-2 26.5 22.6 46.8
Tencent_contr 3-4 23.8 19.7 44.8
Tencent_pr 3-4 23.6 19.6 44.6
GMU_contr 5-6 22.9 19.1 43.1
GMU_pr 5-6 22.8 18.8 42.7
DENTRA_pr 7 20.7 16.9 41.7

Table 65: Results in lin-fra, sorted by spBLEU.

System Rank spBLEU BLEU chrF2

ByteDance_pr 1 39.9 35.5 60.0
ByteDance_contr 2 39.6 35.2 59.7
GMU_contr 3-4 35.0 31.0 56.0
GMU_pr 3-4 34.9 30.8 56.0
Tencent_pr 5-6 33.6 29.2 55.1
Tencent_contr 5-6 33.4 29.1 55.0
DENTRA_pr 7 31.1 26.8 53.0

Table 66: Results in swh-fra, sorted by spBLEU.

System Rank spBLEU BLEU chrF2

ByteDance_pr 1 21.6 17.8 41.7
ByteDance_contr 2 21.2 17.6 41.2
Tencent_contr 3-5 14.6 12.0 36.0
Tencent_pr 3-5 14.5 12.1 35.8
DENTRA_pr 3-5 14.4 11.2 35.1
GMU_contr 6-7 13.2 10.5 31.1
GMU_pr 6-7 13.0 10.3 30.6
Masakhane_pr 8 9.2 7.5 29.7
Masakhane_contr 9 8.3 7.0 30.2

Table 67: Results in wol-fra, sorted by spBLEU.

System Rank spBLEU BLEU chrF2

ByteDance_pr 1-3 21.0 10.3 48.1
ByteDance_contr 1-3 20.9 10.4 47.9
Tencent_pr 1-3 20.5 9.9 49.2
Tencent_contr 4-5 20.4 9.8 49.0
GMU_contr 4-5 20.1 10.0 49.1
GMU_pr 6 20.0 9.9 48.9
CapeTown_pr 7 18.0 8.5 47.4
DENTRA_pr 8 10.6 4.1 38.2

Table 68: Results in xho-zul, sorted by spBLEU.

System Rank spBLEU BLEU chrF2

ByteDance_contr 1-5 17.1 10.1 44.1
ByteDance_pr 1-5 17.1 10.0 44.3
Tencent_contr 1-5 17.0 9.9 45.7
Tencent_pr 1-5 17.0 10.0 45.8
GMU_pr 1-5 16.7 9.9 45.8
GMU_contr 6 16.6 9.9 45.8
CapeTown_pr 7 15.0 8.5 44.2
DENTRA_pr 8 4.4 2.1 25.2

Table 69: Results in zul-sna, sorted by spBLEU.

System Rank spBLEU BLEU chrF2

ByteDance_contr 1-2 21.6 17.3 45.6
ByteDance_pr 1-2 21.5 17.2 45.4
GMU_pr 3-4 20.1 17.0 43.8
GMU_contr 3-4 20.0 17.0 43.8
Tencent_contr 5-6 19.1 15.7 43.1
Tencent_pr 5-6 19.0 15.5 43.2
CapeTown_pr 7 15.1 12.0 40.1
DENTRA_pr 8 13.9 11.2 38.1

Table 70: Results in sna-afr, sorted by spBLEU.

System Rank spBLEU BLEU chrF2

ByteDance_pr 1-2 18.9 9.2 48.7
ByteDance_contr 1-2 18.7 8.9 48.4
Tencent_pr 3 17.3 7.8 47.9
Tencent_contr 4 16.6 7.9 46.5
GMU_contr 5 14.7 6.7 45.2
GMU_pr 6 14.3 6.5 44.7
CapeTown_pr 7 11.2 5.4 40.0
DENTRA_pr 8 8.3 4.3 36.1

Table 71: Results in afr-ssw, sorted by spBLEU.

System Rank spBLEU BLEU chrF2

ByteDance_contr 1-2 21.6 19.1 46.8
ByteDance_pr 1-2 21.6 19.2 46.9
Tencent_contr 3-4 19.1 17.1 44.1
Tencent_pr 3-4 19.0 16.8 44.3
GMU_contr 5 17.7 16.5 43.2
GMU_pr 6 17.1 15.9 42.7
CapeTown_pr 7 15.4 14.4 41.2
DENTRA_pr 8 3.5 1.8 24.8

Table 72: Results in ssw-tsn, sorted by spBLEU.

System Rank spBLEU BLEU chrF2

ByteDance_contr 1-2 20.5 16.5 46.5
ByteDance_pr 1-2 20.5 16.5 46.5
Tencent_pr 3 16.9 13.9 44.3
GMU_contr 4-5 16.2 13.5 44.0
Tencent_contr 4-5 16.2 13.6 44.1
GMU_pr 6-7 15.4 13.0 43.8
CapeTown_pr 6-7 15.1 13.2 41.9
DENTRA_pr 8 4.1 2.4 24.6

Table 73: Results in tsn-tso, sorted by spBLEU.
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System Rank spBLEU BLEU chrF2

ByteDance_contr 1-3 21.0 18.3 45.7
ByteDance_pr 1-3 20.9 18.4 45.9
Tencent_contr 1-3 20.3 17.6 44.6
Tencent_pr 4-5 19.7 17.4 44.4
GMU_pr 4-5 19.2 17.9 44.5
GMU_contr 6 18.9 17.8 44.4
CapeTown_pr 7 12.0 13.1 38.7
DENTRA_pr 8 5.6 3.6 26.2

Table 74: Results in tso-nso, sorted by spBLEU.

System Rank spBLEU BLEU chrF2

ByteDance_contr 1-3 17.9 8.8 46.0
ByteDance_pr 1-3 17.8 8.5 46.1
Tencent_contr 1-3 17.5 8.4 46.8
Tencent_pr 4 16.8 8.5 46.1
GMU_contr 5-6 16.0 8.5 46.2
GMU_pr 5-6 15.9 8.7 46.3
CapeTown_pr 7 13.7 6.6 42.7
DENTRA_pr 8 3.0 1.4 24.3

Table 75: Results in nso-xho, sorted by spBLEU.

System Rank spBLEU BLEU chrF2

ByteDance_pr 1 24.4 9.1 35.9
ByteDance_contr 2 23.9 8.6 35.5
Tencent_pr 3-5 18.6 6.0 31.8
GMU_contr 3-5 18.5 5.9 32.0
GMU_pr 3-5 18.3 5.8 32.0
Tencent_contr 6 18.2 5.5 31.6
DENTRA_pr 7 3.1 1.3 10.1

Table 76: Results in swh-amh, sorted by spBLEU.

System Rank spBLEU BLEU chrF2

ByteDance_contr 1-2 26.6 21.8 52.8
ByteDance_pr 1-2 26.5 21.8 52.7
GMU_pr 3-5 21.9 18.6 49.5
GMU_contr 3-5 21.7 18.5 49.5
Tencent_contr 3-5 21.6 18.3 49.7
Tencent_pr 6 21.0 17.7 49.0
DENTRA_pr 7 11.7 10.0 38.8

Table 77: Results in amh-swh, sorted by spBLEU.

System Rank spBLEU BLEU chrF2

ByteDance_contr 1-2 9.3 3.9 37.2
ByteDance_pr 1-2 9.3 3.9 37.2
Tencent_pr 3 1.9 0.9 23.1
Tencent_contr 4 1.7 0.8 22.1
GMU_pr 5-7 1.3 0.7 18.5
GMU_contr 5-7 1.3 0.7 18.5
DENTRA_pr 5-7 1.2 0.8 16.3

Table 78: Results in luo-orm, sorted by spBLEU.

System Rank spBLEU BLEU chrF2

ByteDance_pr 1-2 18.9 6.7 29.9
ByteDance_contr 1-2 18.7 6.6 29.6
Tencent_pr 3-4 13.7 4.4 25.7
GMU_pr 3-4 13.3 4.1 25.7
GMU_contr 5-6 13.2 4.1 25.5
Tencent_contr 5-6 13.2 4.3 25.3
DENTRA_pr 7 0.6 0.4 1.8

Table 79: Results in som-amh, sorted by spBLEU.

System Rank spBLEU BLEU chrF2

ByteDance_pr 1-2 12.9 8.5 39.7
ByteDance_contr 1-2 12.8 8.6 39.5
Tencent_contr 3-4 8.5 5.5 35.3
Tencent_pr 3-4 8.5 5.5 35.4
GMU_pr 5-6 7.9 5.4 33.5
GMU_contr 5-6 7.8 5.4 33.2
DENTRA_pr 7 1.3 0.9 21.8

Table 80: Results in orm-som, sorted by spBLEU.

System Rank spBLEU BLEU chrF2

ByteDance_pr 1 15.0 11.3 41.4
ByteDance_contr 2 14.7 11.2 40.9
GMU_pr 3-4 8.8 6.6 31.9
GMU_contr 3-4 8.7 6.5 31.9
Tencent_pr 5-6 5.3 3.8 26.2
Tencent_contr 5-6 5.2 3.8 25.6
DENTRA_pr 7 3.9 2.5 21.7

Table 81: Results in swh-luo, sorted by spBLEU.

System Rank spBLEU BLEU chrF2

ByteDance_contr 1-2 12.0 8.8 38.4
ByteDance_pr 1-2 12.0 8.7 38.6
GMU_contr 3 6.4 5.0 29.5
GMU_pr 4 6.1 4.7 29.1
DENTRA_pr 5 3.1 2.8 24.7
Tencent_contr 6-7 2.8 2.0 21.2
Tencent_pr 6-7 2.8 2.1 21.4

Table 82: Results in amh-luo, sorted by spBLEU.

System Rank spBLEU BLEU chrF2

ByteDance_contr 1-2 12.7 8.5 39.0
ByteDance_pr 1-2 12.6 8.5 39.0
GMU_contr 3-5 9.1 6.3 34.7
Tencent_contr 3-5 9.0 6.2 35.8
GMU_pr 3-5 8.9 6.1 34.2
Tencent_pr 6 8.5 5.6 34.8
DENTRA_pr 7 4.1 2.8 20.4

Table 83: Results in luo-som, sorted by spBLEU.
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System Rank spBLEU BLEU chrF2

Tencent_contr 1-4 17.9 14.6 39.7
ByteDance_contr 1-4 17.8 14.9 39.8
Tencent_pr 1-4 17.8 14.7 39.4
ByteDance_pr 1-4 17.7 14.9 39.8
GMU_pr 5-6 15.7 13.5 37.5
GMU_contr 5-6 15.7 13.4 37.4
DENTRA_pr 7 4.2 2.7 19.2

Table 84: Results in hau-ibo, sorted by spBLEU.

System Rank spBLEU BLEU chrF2

ByteDance_pr 1 10.0 4.6 25.5
ByteDance_contr 2 9.7 4.5 25.6
Tencent_pr 3-4 5.2 2.9 21.4
Tencent_contr 3-4 5.1 2.8 20.8
GMU_pr 5 4.0 2.5 20.5
GMU_contr 6 3.9 2.5 20.3
DENTRA_pr 7 2.3 1.2 13.8

Table 85: Results in ibo-yor, sorted by spBLEU.

System Rank spBLEU BLEU chrF2

ByteDance_contr 1-2 4.0 2.7 22.3
ByteDance_pr 1-2 4.0 2.7 22.4
DENTRA_pr 3 1.9 0.9 13.7
Tencent_pr 4-7 0.5 0.2 13.9
GMU_pr 4-7 0.4 0.3 13.6
GMU_contr 4-7 0.4 0.3 13.5
Tencent_contr 4-7 0.3 0.2 14.0

Table 86: Results in yor-fuv, sorted by spBLEU.

System Rank spBLEU BLEU chrF2

ByteDance_pr 1-2 9.5 7.3 32.1
ByteDance_contr 1-2 9.4 7.2 31.9
Tencent_contr 3-4 3.4 2.8 22.4
Tencent_pr 3-4 3.4 2.9 23.1
GMU_pr 5-7 3.1 2.5 18.8
DENTRA_pr 5-7 3.1 1.7 19.5
GMU_contr 5-7 3.1 2.7 19.6

Table 87: Results in fuv-hau, sorted by spBLEU.

System Rank spBLEU BLEU chrF2

ByteDance_contr 1-2 21.6 18.8 46.7
ByteDance_pr 1-2 21.5 18.7 46.3
Tencent_pr 3-4 17.8 15.6 44.2
Tencent_contr 3-4 17.1 15.0 44.1
GMU_pr 5 17.0 14.9 42.6
GMU_contr 6 16.7 14.7 42.3
DENTRA_pr 7 3.8 2.2 20.0

Table 88: Results in ibo-hau, sorted by spBLEU.

System Rank spBLEU BLEU chrF2

ByteDance_contr 1 13.5 10.9 35.0
ByteDance_pr 2 13.2 10.6 34.7
Tencent_contr 3 12.6 9.5 33.1
Tencent_pr 4 12.2 9.3 33.1
GMU_pr 5-6 11.5 9.3 32.2
GMU_contr 5-6 11.5 9.3 32.3
DENTRA_pr 7 2.4 1.0 13.1

Table 89: Results in yor-ibo, sorted by spBLEU.

System Rank spBLEU BLEU chrF2

ByteDance_pr 1-2 5.7 2.3 20.1
ByteDance_contr 1-2 5.6 2.2 19.8
DENTRA_pr 3 2.0 1.2 13.4
GMU_pr 4-5 1.0 0.6 9.2
Tencent_pr 4-5 0.9 0.4 10.2
Tencent_contr 6-7 0.8 0.4 9.4
GMU_contr 6-7 0.7 0.4 8.0

Table 90: Results in fuv-yor, sorted by spBLEU.

System Rank spBLEU BLEU chrF2

ByteDance_pr 1 5.0 3.5 23.8
ByteDance_contr 2 4.7 3.4 23.5
DENTRA_pr 3 3.0 1.5 21.1
GMU_pr 4 0.4 0.3 13.9
GMU_contr 5-7 0.4 0.3 13.6
Tencent_contr 5-7 0.4 0.2 14.0
Tencent_pr 5-7 0.4 0.1 14.0

Table 91: Results in hau-fuv, sorted by spBLEU.
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System Rank spBLEU BLEU chrF2

ByteDance_pr 1-2 14.6 12.1 38.4
ByteDance_contr 1-2 14.4 11.9 38.1
Tencent_contr 3 9.1 7.6 34.1
Tencent_pr 4 8.5 7.2 32.8
GMU_pr 5 7.2 5.8 25.4
GMU_contr 6 6.9 5.7 26.4
DENTRA_pr 7 3.8 2.3 20.3

Table 92: Results in wol-hau, sorted by spBLEU.

System Rank spBLEU BLEU chrF2

ByteDance_pr 1 8.6 5.9 27.5
ByteDance_contr 2 8.2 5.6 27.1
Tencent_pr 3-4 3.8 3.1 20.0
GMU_pr 3-4 3.7 2.4 15.7
GMU_contr 5-6 3.5 2.3 14.9
Tencent_contr 5-6 3.4 2.7 18.8
DENTRA_pr 7 3.2 1.6 19.2

Table 93: Results in hau-wol, sorted by spBLEU.

System Rank spBLEU BLEU chrF2

ByteDance_pr 1 5.2 3.4 22.3
ByteDance_contr 2 5.0 3.3 21.9
DENTRA_pr 3 2.5 1.4 18.4
GMU_pr 4 1.3 0.9 10.7
GMU_contr 5 1.1 0.8 10.4
Tencent_pr 6-7 1.0 0.9 10.8
Tencent_contr 6-7 0.9 0.9 10.6

Table 94: Results in fuv-wol, sorted by spBLEU.

System Rank spBLEU BLEU chrF2

ByteDance_pr 1 4.4 3.0 23.0
ByteDance_contr 2 4.2 2.8 22.5
DENTRA_pr 3 2.5 1.3 19.3
GMU_pr 4-7 0.4 0.3 14.3
GMU_contr 4-7 0.4 0.3 13.9
Tencent_pr 4-7 0.4 0.3 14.4
Tencent_contr 4-7 0.3 0.2 14.6

Table 95: Results in wol-fuv, sorted by spBLEU.

System Rank spBLEU BLEU chrF2

ByteDance_pr 1 27.9 23.5 52.9
ByteDance_contr 2 27.5 23.1 52.7
Tencent_contr 3-4 24.2 20.8 50.7
Tencent_pr 3-4 24.2 20.8 50.4
GMU_contr 5-6 22.6 19.3 49.4
GMU_pr 5-6 22.4 19.3 49.0
DENTRA_pr 7 4.5 3.7 25.2

Table 96: Results in kin-swh, sorted by spBLEU.

System Rank spBLEU BLEU chrF2

ByteDance_pr 1-2 14.9 11.9 41.2
ByteDance_contr 1-2 14.8 11.8 41.0
Tencent_pr 3-4 9.1 7.9 32.7
Tencent_contr 3-4 9.0 7.8 32.9
GMU_contr 5-6 7.2 5.7 32.5
GMU_pr 5-6 7.0 5.5 32.0
DENTRA_pr 7 3.2 1.7 22.9

Table 97: Results in lug-lin, sorted by spBLEU.

System Rank spBLEU BLEU chrF2

ByteDance_pr 1-2 18.5 13.3 44.2
ByteDance_contr 1-2 18.3 13.2 44.1
Tencent_contr 3 15.8 11.9 41.9
Tencent_pr 4 15.0 10.9 41.5
GMU_contr 5 12.4 9.4 39.0
GMU_pr 6 11.9 9.0 38.5
DENTRA_pr 7 3.7 2.5 21.9

Table 98: Results in nya-kin, sorted by spBLEU.

System Rank spBLEU BLEU chrF2

ByteDance_contr 1-2 13.0 7.9 43.3
ByteDance_pr 1-2 13.0 8.0 43.6
Tencent_pr 3 8.4 5.9 37.1
Tencent_contr 4-5 7.5 5.6 35.9
GMU_pr 4-5 7.2 5.5 34.5
GMU_contr 6 6.5 5.0 33.6
DENTRA_pr 7 3.0 1.9 21.9

Table 99: Results in swh-lug, sorted by spBLEU.

System Rank spBLEU BLEU chrF2

ByteDance_contr 1-2 13.8 10.4 42.2
ByteDance_pr 1-2 13.7 10.1 42.0
Tencent_pr 3-4 11.6 8.6 39.4
Tencent_contr 3-4 11.5 8.8 38.9
GMU_pr 5-6 10.6 8.1 39.8
GMU_contr 5-6 10.5 8.0 39.4
DENTRA_pr 7 4.4 2.3 26.0

Table 100: Results in lin-nya, sorted by spBLEU.

System Rank spBLEU BLEU chrF2

ByteDance_contr 1-2 17.7 13.6 43.1
ByteDance_pr 1-2 17.6 13.6 42.9
Tencent_pr 3-5 11.2 9.0 34.8
GMU_contr 3-5 11.0 8.4 36.9
GMU_pr 3-5 10.5 7.9 36.5
Tencent_contr 6 10.4 8.8 33.8
DENTRA_pr 7 4.0 2.4 22.4

Table 101: Results in lin-kin, sorted by spBLEU.
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System Rank spBLEU BLEU chrF2

ByteDance_contr 1-2 12.1 7.4 42.0
ByteDance_pr 1-2 12.0 7.2 42.0
Tencent_contr 3-4 7.1 4.8 35.2
Tencent_pr 3-4 7.1 5.0 34.8
GMU_pr 5-7 3.2 2.0 22.4
DENTRA_pr 5-7 3.2 1.8 23.9
GMU_contr 5-7 3.2 1.9 22.5

Table 102: Results in kin-lug, sorted by spBLEU.

System Rank spBLEU BLEU chrF2

ByteDance_contr 1-2 23.0 18.6 48.4
ByteDance_pr 1-2 23.0 18.6 48.6
GMU_pr 3-5 20.7 17.2 47.8
GMU_contr 3-5 20.7 17.2 47.8
Tencent_contr 3-5 20.5 17.1 47.1
Tencent_pr 6 20.3 16.9 47.1
DENTRA_pr 7 4.7 3.1 26.4

Table 103: Results in nya-swh, sorted by spBLEU.

System Rank spBLEU BLEU chrF2

ByteDance_contr 1-2 18.6 9.0 47.6
ByteDance_pr 1-2 18.6 9.1 47.6
GMU_contr 3-4 15.8 7.3 46.4
GMU_pr 3-4 15.7 7.4 46.3
Tencent_pr 5-6 14.8 6.8 45.7
Tencent_contr 5-6 14.7 6.8 45.3
DENTRA_pr 7 7.1 3.5 35.5

Table 104: Results in amh-zul, sorted by spBLEU.

System Rank spBLEU BLEU chrF2

ByteDance_pr 1-2 17.9 14.7 43.4
ByteDance_contr 1-2 17.7 14.5 43.3
Tencent_contr 3-5 14.1 11.6 40.4
GMU_contr 3-5 14.0 11.6 40.2
Tencent_pr 3-5 14.0 11.6 40.5
GMU_pr 6 13.7 11.5 39.7
DENTRA_pr 7 6.7 5.0 29.3

Table 105: Results in yor-swh, sorted by spBLEU.

System Rank spBLEU BLEU chrF2

ByteDance_pr 1 11.1 4.9 26.9
ByteDance_contr 2 10.9 4.8 26.6
Tencent_pr 3-4 5.2 3.2 21.8
Tencent_contr 3-4 5.0 3.0 21.5
GMU_contr 5 3.9 2.8 20.9
GMU_pr 6 3.7 2.7 20.8
DENTRA_pr 7 2.3 1.5 14.8

Table 106: Results in swh-yor, sorted by spBLEU.

System Rank spBLEU BLEU chrF2

ByteDance_contr 1-2 21.2 7.1 32.3
ByteDance_pr 1-2 21.1 7.2 32.2
GMU_pr 3 16.6 5.1 29.3
GMU_contr 4-5 16.4 5.0 29.3
Tencent_pr 4-5 16.4 5.3 28.8
Tencent_contr 6 15.5 4.9 28.1
DENTRA_pr 7 3.1 1.2 11.4

Table 107: Results in zul-amh, sorted by spBLEU.

System Rank spBLEU BLEU chrF2

ByteDance_pr 1 22.9 19.9 48.0
ByteDance_contr 2 22.6 19.6 47.9
Tencent_pr 3-4 20.0 17.5 45.3
Tencent_contr 3-4 19.8 17.1 45.9
GMU_pr 5-6 18.9 16.7 44.0
GMU_contr 5-6 18.7 16.5 43.9
DENTRA_pr 7 4.2 2.6 22.7

Table 108: Results in kin-hau, sorted by spBLEU.

System Rank spBLEU BLEU chrF2

ByteDance_contr 1-2 21.5 16.1 47.1
ByteDance_pr 1-2 21.4 16.0 47.1
Tencent_contr 3-4 18.0 13.6 44.0
Tencent_pr 3-4 17.8 13.3 43.5
GMU_pr 5 14.3 11.1 40.8
GMU_contr 6 14.2 10.9 40.6
DENTRA_pr 7 3.7 1.9 20.2

Table 109: Results in hau-kin, sorted by spBLEU.

System Rank spBLEU BLEU chrF2

ByteDance_pr 1 13.9 9.1 40.9
ByteDance_contr 2 13.7 9.1 40.7
GMU_contr 3 12.6 8.1 40.3
GMU_pr 4-6 12.4 8.0 40.3
Tencent_pr 4-6 12.4 8.0 40.5
Tencent_contr 4-6 12.3 8.1 40.0
DENTRA_pr 7 5.6 4.0 27.5

Table 110: Results in nya-som, sorted by spBLEU.

System Rank spBLEU BLEU chrF2

ByteDance_contr 1-2 14.4 10.7 43.1
ByteDance_pr 1-2 14.4 10.7 43.4
Tencent_contr 3 13.3 10.1 42.5
Tencent_pr 4 13.1 9.9 42.4
GMU_pr 5-6 12.8 9.7 42.5
GMU_contr 5-6 12.8 9.7 42.4
DENTRA_pr 7 6.2 4.6 30.3

Table 111: Results in som-nya, sorted by spBLEU.
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System Rank spBLEU BLEU chrF2

ByteDance_pr 1-2 12.1 7.3 41.2
ByteDance_contr 1-2 12.0 7.3 41.2
Tencent_pr 3 7.3 5.2 35.2
Tencent_contr 4 7.0 5.2 34.7
GMU_pr 5-6 5.7 4.4 31.4
GMU_contr 5-6 5.5 4.2 31.0
DENTRA_pr 7 2.3 1.5 23.2

Table 112: Results in xho-lug, sorted by spBLEU.

System Rank spBLEU BLEU chrF2

ByteDance_pr 1-2 13.0 6.1 40.0
ByteDance_contr 1-2 12.9 6.1 39.8
Tencent_contr 3-4 11.2 5.0 37.6
Tencent_pr 3-4 11.1 5.1 37.8
GMU_pr 5-6 9.6 4.6 36.0
GMU_contr 5-6 9.5 4.7 36.0
DENTRA_pr 7 2.3 1.4 22.9

Table 113: Results in lug-xho, sorted by spBLEU.

System Rank spBLEU BLEU chrF2

ByteDance_pr 1 16.5 13.5 40.1
ByteDance_contr 2 15.9 13.0 39.6
Tencent_contr 3-4 11.7 9.0 36.3
Tencent_pr 3-4 11.6 9.1 36.5
GMU_contr 5 8.7 6.9 31.1
GMU_pr 6 8.3 6.6 30.0
DENTRA_pr 7 5.6 4.3 26.1

Table 114: Results in wol-swh, sorted by spBLEU.

System Rank spBLEU BLEU chrF2

ByteDance_pr 1 8.5 5.9 28.5
ByteDance_contr 2 8.3 5.9 28.0
GMU_pr 3-5 3.5 2.5 15.9
GMU_contr 3-5 3.4 2.3 15.0
Tencent_pr 3-5 3.4 2.7 19.1
DENTRA_pr 6-7 3.0 1.8 18.8
Tencent_contr 6-7 3.0 2.4 18.0

Table 115: Results in swh-wol, sorted by spBLEU.
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Abstract

We present the findings of the WMT2022
Shared Tasks in Unsupervised MT and Very
Low Resource Supervised MT with experi-
ments on the language pairs German to/from
Upper Sorbian, German to/from Lower Sor-
bian and Lower Sorbian to/from Upper Sor-
bian. Upper and Lower Sorbian are minority
languages spoken in the Eastern parts of Ger-
many. There are active language communities
working on the preservation of the languages
who also made the data used in this Shared Task
available.

In total, four teams participated on this Shared
Task, with submissions from three teams for the
unsupervised sub task, and submissions from
all four teams for the supervised sub task. In
this overview paper, we present and discuss the
results.

1 Introduction

For a large majority of the world’s languages, only
limited resources are available to train and provide
NLP tools. The need for parallel data in a (super-
vised) translation scenario aggravates this problem
further. The Shared Tasks in Unsupervised MT and
Very Low Resource Supervised MT aim at promot-
ing the research on translating low and very low
resourced languages.

Following the Shared Tasks in the two previous
years (Libovický and Fraser, 2021; Fraser, 2020),
we continue to cooperate with the Sorbian commu-
nity, namely the Sorbian Institute1 and the Witaj
Sprachzentrum (Witaj Language Center)2 for this
year’s Shared Task. We offer all translation direc-
tions between the languages Upper Sorbian, Lower
Sorbian and German, for both supervised and un-
supervised translation.

Upper and Lower Sorbian are minority lan-
guages spoken in the eastern part of Germany in the

1https://www.serbski-institut.de/en/Institute/
2https://www.witaj-sprachzentrum.de/

federal states of Saxony and Brandenburg. With
only 30k and 7k native speakers, there are only few
resources available. However, as western Slavic
languages, Upper and Lower Sorbian are closely
related to Polish and Czech and can thus make use
of the comparatively large data sets available for
those languages.

In this year, four teams participated in the Shared
Task, resulting in three to four submissions for
each language pair for both the supervised and
unsupervised variants.

2 Tasks and Evaluation

In contrast to the previous Shared Tasks, all
language combinations between Upper Sorbian,
Lower Sorbian and German are considered, result-
ing in the six following translation pairs:

• Upper Sorbian↔ German

• Lower Sorbian↔ German

• Upper Sorbian↔ Lower Sorbian

Factoring in the variants supervised and unsuper-
vised translation for each language pair, there is a
total of 12 translation pairs.

For the evaluation, we follow the strategy em-
ployed in the previous Shared Task and use BLEU
scores (Papineni et al., 2002) and chrF scores
(Popović, 2015) as implemented in sacreBLEU
(Post, 2018).3 Furthermore, we evaluate the sub-
missions using BERTScore (Zhang et al., 2020)4

with XLM-RoBERTa Large (Conneau et al., 2020)
as an underlying model for translations into Ger-
man5.

3BLEU score signature: nrefs:1|case:mixed|eff:no|
tok:13a|smooth:exp|version:2.2.0
chrf2 score signature: nrefs:1|case:mixed|eff:yes|nc:6|
nw:0|space:no|version:2.2.0

4https://github.com/Tiiiger/bert_score
5BERTScore signatures: xlm-roberta-large_L17_

no-idf_version=0.3.11(hug_trans=4.22.2)_fast-
tokenizer and xlm-roberta-large_L17_idf_version=
0.3.11(hug_trans=4.22.2)_fast-tokenizer
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HSB↔ DE 449.057 parallel sentences
DSB↔ DE 40.193 parallel sentences
DSB↔ HSB 62.564 parallel sentences

DSB 220.419 monolingual sentences
HSB 1.132.850 monolingual sentences

Table 1: Training data per language pair. The data
sets have been made available by the Sorbian Institute
(monolingual data) and The Witaj Sprachzentrum (both
parallel and monolingual data).

We decided against using COMET Scores (Rei
et al., 2020). This metric considers both the source
language and the target language, but because it
relies on XLM-R models, it does not support the
Sorbian languages.

3 Data

To allow for a direct comparison between the dif-
ferent submissions, we only allowed training based
on the resources released for the task, as well as re-
sources for related languages (German, Czech and
Polish data from the WMT news tasks6 or avail-
able in the OPUS project7). In particular, the use
of large models pre-trained on large data sets was
not allowed. Table 1 gives an overview of the par-
allel and monolingual training data for the Sorbian
languages.

For the unsupervised translation sub-task, we
restricted the the data set as follows: all released
Upper/Lower Sorbian data could be used, with the
exception of the parallel Upper Sorbian↔ Lower
Sorbian corpus. Furthermore, the German side of
the parallel German↔ Upper Sorbian and German
↔ Lower Sorbian training corpora was excluded.
This setup allowed us to make maximum use of the
low-resourced languages without providing parallel
data.

4 Submitted Systems

Four teams participated in the supervised sub-task8,
and three teams participated in the unsupervised
sub-task. We present a brief system description
of each team’s submission, with an overview of
the results listed in tables 2 to 7. Table 8 gives a
brief overview of some relevant details; for more

6https://www.statmt.org/wmt22/translation-task.html
7https://opus.nlpl.eu/
8There were submissions by a fifth team in for the super-

vised task. We do not have system descriptions for this team’s
submissions, and thus listed their results separately in table 9.

detailed information, we refer the reader to the
respective system description papers.

AIC (Shapiro et al., 2022) For the unsupervised
system, they trained an unsupervised phrase-based
statistical machine translation (UPBSMT) system
on each pair independently. They trained a De-
Slavic mBART model from Scratch (Random ini-
tialization) on the following languages: Polish (pl),
Czech (cs), German (de), Upper Sorbian (hsb), and
Lower Sorbian (dsb). They then fine-tuned their
mBART on the synthetic parallel data generated by
the UPBSMT model along with authentic parallel
data (de↔ pl, de↔ cs). They further fine-tuned
their unsupervised system on authentic parallel data
(hsb ↔ dsb, de ↔ dsb, de ↔ hsb) to submit the
supervised low-resource system.

MUNI NLP (Signoroni and Rychlý, 2022) This
team submitted supervised NMT systems for the
Lower Sorbian-German and Lower Sorbian-Upper
Sorbian language pairs, in both translation direc-
tions. They employed a new subword tokenization
algorithm, High Frequency Tokenizer (HFT), to ob-
tain more meaningful subword vocabularies. They
tested this against BPE in the first round of exper-
iments where they trained two different models
on the data tokenized with each tokenizer, so four
systems in total: two standard Transformers and
two Transformers with hyperparameters optimized
for the dataset size. They then followed the Data
Diversification procedure (Nguyen et al., 2020)
generating and collating authentic and synthetic
data alternatively from each previous system and
the original parallel data to create an augmented
dataset. Then, they trained a Transformer model
on these new data, tokenized with HFT, to obtain
the final system. Thus, the approach is based only
on the original parallel corpus.

Huawei TSC (Li et al., 2022) Huawei Transla-
tion Services Center participated in all 6 supervised
tracks. Their systems are build on deep Trans-
former models with a large filter size. First, they
selected a base multilingual model with German-
Czech (DE-CS) and German-Polish (DE-PL) par-
allel data for all of the 6 tracks. They then uti-
lized regularized dropout (R-Drop), back transla-
tion, fine-tuning and ensemble multilingual models
to improve on the best individual system perfor-
mance. For the unsupervised task submission, they
applied their pre-trained multilingual system with
zero-shot.
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DE-DSB
System BLEU chrF2

HuaweiTSC 73.9 87.1
MUNI-NLP 50.5 74.1

AIC 48.2 73.0
PICT-NLP 20.8 44.1

DSB-DE
System BLEU chrF2 BERTF BERTF_IDF

HuaweiTSC 62.5 80.9 0.9792 0.9764
MUNI-NLP 49.5 73.0 0.9664 0.9613

AIC 39.4 66.2 0.9542 0.9463
PICT-NLP 25.4 51.3 0.9246 0.9125

Table 2: Results for supervised DE-DSB and DSB-DE translation.

DE-HSB
System BLEU chrF2

HuaweiTSC 70.7 85.5
AIC 51.0 73.7

PICT-NLP 25.7 49.1

HSB-DE
System BLEU chrF2 BERTF BERTF_IDF

HuaweiTSC 71.9 85.3 0.9843 0.9825
AIC 47.5 71.4 0.9637 0.9574

PICT-NLP 29.7 53.8 0.9317 0.9207

Table 3: Results for supervised DE-HSB and HSB-DE translation.

DSB-HSB
System BLEU chrF2

HuaweiTSC 86.8 94.0
MUNI-NLP 72.2 87.5

AIC 65.8 83.9
PICT-NLP 49.1 65.5

HSB-DSB
System BLEU chrF2

HuaweiTSC 88.0 94.4
MUNI-NLP 72.3 87.5

AIC 66.6 84.3
PICT-NLP 50.7 66.9

Table 4: Results for supervised DSB-HSB and HSB-DSB translation.

DE-DSB
System BLEU chrF2

HuaweiTSC 9.0 32.6
AIC 1.2 22.1

PICT-NLP 0.2 8.1

DSB-DE
System BLEU chrF2 BERTF BERTF_IDF

HuaweiTSC 11.5 33.9 0.9141 0.8970
AIC 4.0 26.9 0.8567 0.8434

PICT-NLP 0.0 5.0 0.7822 0.7693

Table 5: Results for unsupervised DE-DSB and DSB-DE translation.

DE-HSB
System BLEU chrF2

AIC 17.9 48.5
HuaweiTSC 10.4 33.4

PICT-NLP 0.5 14.3

HSB-DE
System BLEU chrF2 BERTF BERTF_IDF

AIC 18.0 46.9 0.9046 0.8937
HuaweiTSC 13.5 35.8 0.9162 0.8996

PICT-NLP 0.3 13.6 0.8306 0.8194

Table 6: Results for unsupervised DE-HSB and HSB-DE translation.

DSB-HSB
System BLEU chrF2

AIC 44.2 72.9
HuaweiTSC – –

PICT-NLP 10.4 48.6

HSB-DSB
System BLEU chrF2

AIC 35.9 67.4
PICT-NLP 9.3 44.2

HuaweiTSC 2.4 16.1

Table 7: Results for unsupervised DSB-HSB and HSB-DSB translation.
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team data synthetic data/ segmentation toolkits
(in addition to the pro- back translation (vocab. size)
vided de/hsb/dsb corpora)

AIC DE (431.4M), CS (111.1M) synthetic data SentencePiece Fairseq
PL (13.4M), PL-DE (12.4M) through UPBSMT (32k)
CS-DE (12.4M)

HUAWEI DE-CS (55.9M), back-translation SentencePiece Fairseq
DE-PL (66.5M), with sampling (40k) Marian
DE (20M) (Graça et al., 2019)

MUNI – Data diversification High Frequency Fairseq
(Nguyen et al., 2020) Tokenizer (4k)

PICT DE (53.3k) – BPE Fairseq
Facebook’s XLM

Table 8: Overview of methods and data.

PICT NLP (Vyawahare et al., 2022) They im-
plemented the XLM’s Masked Language Model
(MLM) for unsupervised learning. They trained it
only using the monolingual data provided by the
organizers and the OPUS project. Finally, they
also applied XLM preprocessing to the data before
training.

For supervised learning, they trained language
models such as LSTM and attention based trans-
former models with the help of the Fairseq library.
They trained it using monolingual data provided by
the organizers. They applied the inbuilt tokeniza-
tion provided by Fairseq on the data.

5 System Results

Tables 2 to 7 list the results of the submitted sys-
tems in terms of BLEU and chrF2 for all systems,
and additionally BERT scores for those translating
into German. For the BERT scores, we list both
BERTF and BERTF with idf weighting to give less
weight to commonly occuring words. The ordering
of the systems is consistent across all metrics.

The supervised systems obtain higher results
than the unsupervised systems. The language pair
DSB↔ HSB obtained comparatively high scores
for both supervised and unsupervised translation
which is very probably due to the high similarity
between the two languages.

Overall, we see no winner across all tasks:
HuaweiTSC has the best scores across all super-
vised translation tasks, followed by MUNI-NLP
for the DE-to/from-DSB and DSB-to/from-HSB
translations. These two language pairs only have
comparably small parallel data sets which are, no-
tably, the sole basis of MUNI-NLP’s submissions.

For the unsupervised translation (where MUNI-
NLP did not participate), AIC has the strongest re-
sults with the exception of DSB-to/from-DE, where
HuaweiTSC is leading.

6 Conclusion

In the WMT 2022 Shared Task on Unsupervised
and Very Low Resource MT, we provided the par-
ticipants with resources for all possible translation
directions for the three languages Upper Sorbian,
Lower Sorbian and German, of which Upper Sor-
bian↔ Lower Sorbian is a new language pair in
comparison to last year’s shared task.

The participating teams submitted strong sys-
tems relying on a wide range of methods. Using
modeling techniques such as pre-training on par-
allel data of related languages is important, as is
the creation of synthetic data for which we saw the
application of different methods. However we also
saw that careful modeling on a small data set only
can lead to good results.

We hope that this Shared Task will continue to
increase the interest in research on methods for
under-resourced languages, both for supervised and
unsupervised approaches.
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A Further Results

Table 9 lists the results of another submission that
did not provide further details.

BLEU chrF2 BERTF BERTF_IDF

DE-DSB 58.2 79.5 – –
DSB-DE 61.5 80.4 0.9784 0.9755
DE-HSB 67.3 83.9 – –
HSB-DE 71.2 85.1 0.9840 0.9821
DSB-HSB 72.8 87.7 – –
HSB-DSB 72.2 87.6 – –

Table 9: Results for supervised translation of a team
that we were not able to contact.
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Abstract

In this paper, we present an overview of the
WMT 2022 shared task on code-mixed ma-
chine translation (MixMT). In this shared task,
we hosted two code-mixed machine translation
subtasks in the following settings: (i) monolin-
gual to code-mixed translation and (ii) code-
mixed to monolingual translation. In both the
subtasks, we received registration and partici-
pation from teams across the globe showing an
interest and need to immediately address the
challenges with machine translation involving
code-mixed and low-resource languages.

1 Introduction

Code-mixing (or code-switching) is an interesting
manifestation of multilingualism in communities
across the globe. Lately, we observe an uptick in
the interest and efforts of the computational linguis-
tic community to solve a multitude of challenges
with code-mixed languages. Several interesting
resources and computational models have been pro-
posed for problems such as language identification
(Barman et al., 2014; Thara and Poornachandran,
2021), text generation (Gupta et al., 2020; Rizvi
et al., 2021), and sentiment analysis (Chakravarthi
et al., 2020; Patwa et al., 2020).

Machine translation which is an active area of re-
search and development for monolingual languages
is at the outset for code-mixed languages (Chen
et al., 2022). In this shared task, we aim to explore
the machine translation task involving a popular
code-mixed language i.e., Hinglish (code-mixing
of Hindi and English). Through both subtasks, we
aim to address the challenges in building a real-
world multilingual translation system involving
code-mixed language as the source/target.

Similar to the recent events on code-mixed lan-
guages (Chen et al., 2022; Srivastava and Singh,
2021b; Patwa et al., 2020), the MixMT shared task
has received participation and engagement with
teams from across the globe. In total, we received

registration from 38 teams. Throughout the com-
petition, seven teams actively participated and sub-
mitted their system for the development phase, test
phase, and human evaluation phase.

2 MixMT: Code-mixed Machine
Translation

2.1 The two subtasks

In the MixMT shared task, we hosted two subtasks
involving a code-mixed language i.e. Hinglish. A
brief description of both subtasks is given below:
1. Monolingual to code-mixed machine transla-

tion (M2CM): In this subtask, Hindi and En-
glish are the two source languages and the target
language is Hinglish. The source Hindi and En-
glish sentences are translations of each other.
The Hindi language sentences are written in the
Devanagari script whereas the target Hinglish
language text is written in the Roman script.

2. Code-mixed to monolingual machine transla-
tion (CM2M): In this subtask, Hinglish is the
source language and the target language is En-
glish. Both the English and Hinglish text are
written in Roman script.

2.2 Dataset

Training datasets: We provide the following train-
ing datasets for both subtasks:
1. M2CM: For this subtask, HinGE (Srivastava

and Singh, 2021a) is the primary training dataset.
It contains parallel English-Hindi sentences
along with multiple human-generated Hinglish
sentences. For each data instance, it also con-
tains two synthetically generated Hinglish sen-
tences. The dataset was also used as part of the
HinglishEval shared task (Srivastava and Singh,
2021b). We provide the entire HinglishEval
data of ≈ 2k samples (train, validation, and test
set together) as part of the training data for the
MixMT shared task.
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2. CM2M: For this subtask, PHINC (Srivastava
and Singh, 2020) is the primary training dataset.
It contains 13,738 parallel sentences in the
Hinglish and English languages.

Evaluation datasets: To evaluate both the sub-
tasks, we have created an in-house hidden eval-
uation dataset. For both subtasks, the validation
dataset contains 500 samples and the test dataset
has 1500 samples. The evaluation dataset is avail-
able here: bit.ly/3UZLdFm.

2.3 Baseline system and evaluation

We use Google Translate as a baseline for both sub-
tasks. For M2CM subtask, we translate Hindi sen-
tences (in Devanagari script) into English and eval-
uate them against the reference Hinglish sentences.
For CM2M subtask, we translate the Hinglish sen-
tences into English by setting the language of the
Hinglish text as Hindi.
Evaluation: We use two evaluation metrics for
both the subtasks: ROUGE-L (F1-score) and Word
Error Rate (WER). Also, we perform a human-
based qualitative evaluation of both subtasks. Table
1 shows the policy of the human-based evaluation
of both subtasks.

2.4 Constrained system

We distinguish between the constrained and uncon-
strained systems based on the following criteria:
1. The system using an external dataset (apart from

HinGE and PHINC datasets) will be considered
unconstrained.

2. We allow public pre-trained models in a con-
strained system given that it is accessible to all
the teams.

3 Submissions

We received the submissions from seven teams
(listed alphabetically):
1. CNLP-NITS-PP (Laskar et al., 2022): They

leverage the external parallel corpus (Samanan-
tar (Ramesh et al., 2022)) to train their trans-
lation model which is built using OpenNMT-
py framework (Klein et al., 2017) with the de-
fault setting. To generate the synthetic dataset,
they transliterate and align the words in parallel
sentences. Finally, they augment the provided
dataset with the synthetic dataset to train their
model.

2. Domain Curricula for Code-switched MT
(DC) (Raheem and Elrashid, 2022): They ex-

periment with different combinations of pre-
training fine-tuning setups. They leverage
the synthetic code-mixed dataset generated us-
ing the IIT-B parallel corpus (Kunchukuttan
et al., 2018) and matrix language theory (Myers-
Scotton). Further, the mixed data pretraining
with synthetic and task-specific data shows the
best result on the evaluation dataset. To build
the translation model, they use transformers
(Vaswani et al., 2017) and fairseq toolkit (Ott
et al., 2019).

3. Gui (Gahoi et al., 2022): They leverage the
multilingual pre-trained models to build their
translation system. For M2CM task, they fine-
tune multilingual-BART (Liu et al., 2020) on
the task-specific data with reduced vocabulary.
They reduce the vocabulary using the tokens
present in the task dataset, IIT-B parallel cor-
pus (Kunchukuttan et al., 2018), and the Dak-
shina dataset (Roark et al., 2020). They also
perform the post-processing on the output gener-
ated from the fine-tuned model. For CM2M task,
they finetune Salesken.AI’s pre-trained model
provided on Huggingface Transformers which
is a finetuned Helsinki’s OPUS-MT model on
AI4Bharat’s Samanantar dataset (Ramesh et al.,
2022).

4. MUCS (Hegde and Shashirekha, 2022): Their
translation model for both the task is built
around transliteration (Bhat et al., 2015) and
fine-tuning the IndicTrans pre-trained model
(Ramesh et al., 2022). They generate syn-
thetic parallel data using the Samanantar corpus
(Ramesh et al., 2022). They further fine-tune
the IndicTrans model jointly with the synthetic
and task-specific datasets.

5. NICT (Dabre, 2022): They propose a syn-
thetic code-mixed data based pre-training and
a multi-way fine-tuning strategy. To gener-
ate the synthetic dataset, they leverage the
Samanantar corpus (Ramesh et al., 2022), the
transliteration toolkit1, and a min-max based ap-
proach for word alignment (Zenkel et al., 2021).
They pre-train a multilingual model on the syn-
thetic Hinglish-English and English-synthetic
Hinglish dataset. To perform the multi-way
fine-tuning, they fine-tune the pre-trained model
on Hinglish to English and English to Hinglish
jointly using a small subset of the English side

1https://github.com/anoopkunchukuttan/indic_
nlp_library
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Rating M2CM CM2M

5 Best Generated Hinglish sentence
Correctly translated sentence conveying the exact

same information as the source sentence

4
A Hinglish sentence with minimal grammtical

mistakes but less likely in general parlance
A translated sentence with minimal grammatical

mistakes

3
A Hinglish sentence that contains mainly

grammtical mistakes
A translated sentence that contains mainly

grammatical mistakes

2
A Hinglish sentence containing fairly large volumes

of lexical and grammatical mistakes
A translated sentence containing fairly large
volumes of lexical and grammatical mistakes

1
Worst Generated Sentence. They are monolingual

either in Romanized Hindi or English
A translated sentence with poor semantics

and irrelevant to the source sentence

Table 1: Human-based evaluation policy for M2CM and CM2M subtasks. The underlined phrase highlights the
center of attention for the corresponding rating.

of the synthetic data and the entire parallel cor-
pus (PHINC & HinGE) together. They use a de-
noising strategy similar to BART (Lewis et al.,
2020) by randomly masking English words in
the source sentence. They use the YANMTT
toolkit (Dabre and Sumita, 2021) to their trans-
lation model.

6. SIT-NMT (Khan et al., 2022): They experiment
with a variety of multilingual pre-trained mod-
els such as multilingual BART (Liu et al., 2020)
and multilingual T5 (Xue et al., 2021). They
fine-tune these pre-trained models on external
datasets. For M2CM task, they use Kaggle Hi-
En (Chokhra, 2020) and MUSE Hi-En dictio-
nary (Lample et al., 2018). For CM2M task, they
use CMU movie reviews data (Zhou et al., 2018)
and CALCS’21 dataset (Chen et al., 2022).
They also use selected WMT’14 News Hi-En
sentences (Bojar et al., 2014) and the MTNT Fr-
En and Ja-En data (Michel and Neubig, 2018).
In addition, they also increase the size of the
dataset by back-translating samples of the En-
glish side of Tatoeba Spanish dataset to the En-
glish (Project, 2022) and Sentiment140 dataset
(Go et al., 2009) into Hinglish using Google
translate. Further, to enhance the model’s per-
formance, they perform the validation tuning
on the task-specific validation dataset and use a
multi-run ensemble (Koehn, 2020) to combine
multiple model’s best checkpoints.

7. UEDIN (Kirefu et al., 2022): Their submis-
sion focuses on data generation using back-
translation from monolingual resources. For
M2CM subtask, they explore the impact of

constrained and unconstrained decoding strate-
gies. They use the Samanantar corpus (Ramesh
et al., 2022) as an external resource for back-
translation. For CM2M subtask, they explore
several pretraining techniques, ranging from
simple initialization from existing machine
translation models to aligned augmentation (Pan
et al., 2021) which is a denoising-based pre-
training technique.

4 Results and Analysis

In this section, we present the results from auto-
matic and human-based evaluation of the submis-
sions from the seven teams. As discussed in Sec-
tion 2.3, we use ROUGE-L F1 score (R-L) and
Word Error Rate (WER) for automatic evaluation.
R-L score can vary from 0 to 1 whereas WER can
take a value greater than or equal to 0. A high R-L
score and a low WER score are preferred.

Table 2 shows the results of the automatic evalua-
tion for both subtasks. For M2CM subtask, the Gui
team’s submission achieves best R-L score whereas
the team UEDIN and SIT-NMT achieve the sec-
ond and third best R-L scores respectively. SIT-
NMT’s submission outperforms the other systems
and scores the lowest WER for this subtask. For
CM2M subtask, SIT-NMT is the best-performing
team followed by UEDIN and MUCS on both met-
rics.

Table 3 shows the human-based evaluation of the
submissions from different teams. The evaluation
policy is given in Table 1. Following the evaluation
policy, we evaluate the output of 20 samples for
each subtask from each team. SIT-NMT ranks first
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Team
M2CM CM2M

R-L WER R-L WER
Baseline 0.280 0.926 0.250 1.021
CNLP 0.238 0.926 0.330 0.88
DC 0.033 1.560 0.061 1.694
Gui 0.616 0.633 0.414 0.808
MUCS 0.358 0.760 0.550 0.647
NICT 0.462 0.792 0.528 0.715
SIT-NMT 0.57 0.547 0.629 0.607
UEDIN 0.579 0.561 0.621 0.624

Table 2: Evaluation results on the test set. We color
code the best, second best, and third best team on a
given metric for a subtask.

on both subtasks followed by UEDIN. Gui stood at
the third position for M2CM task whereas MUCS
is ranked third for CM2M subtask. Interestingly,
MUCS and NICT get a consistent one score show-
ing poor quality output consisting of lexical and
grammatical mistakes. It further highlights the inef-
ficacy of evaluation metrics for code-mixed natural
language generation tasks as pointed out in several
previous works (Garg et al., 2021; Srivastava and
Singh, 2022).

Team M2CM CM2M
CNLP 2.1 ± 0.64 1.35 ± 0.74
DC 1.75 ± 0.71 1.55 ± 1.09
Gui 3.75 ± 1.20 1.8 ± 1.1
MUCS 1 ± 0 2.9 ± 1.51
NICT 1 ± 0 2.85 ± 1.30
SIT-NMT 3.85 ± 1.38 4.1 ± 1.07
UEDIN 3.85 + 1.53 3.75 + 1.16

Table 3: Human-based evaluation of submitted systems
on the test set. We color code the best, second best, and
third best team for a subtask.

Further, we analyze the submissions based on
the dataset and the models used in the experiment.
In Section 2.4, we have highlighted the two criteria
for the submission to be considered as constrained.
In Table 4, we summarize the submissions based
on these two criteria.

We observe that almost all the teams have used
at least one external dataset for both subtasks with
Gui’s submission for CM2M subtask being the only
exception. We attribute this behavior to the fact we
designed both subtasks in a low-resource setting.
The submissions by four teams (i.e., CNLP, DC,
NICT, and UEDIN) are completely unconstrained
for both subtasks as they are using an external

dataset and training their own system from scratch.

Team
M2CM CM2M

OD PAM OD PAM
CNLP ✗ ✗ ✗ ✗

DC ✗ ✗ ✗ ✗

Gui ✗ ✓ ✓ ✓

MUCS ✗ ✓ ✗ ✓

NICT ✗ ✗ ✗ ✗

SIT-NMT ✗ ✓ ✗ ✓

UEDIN ✗ ✗ ✗ ✗

Table 4: Analysis of datasets and models used across
submissions. Here, OD: organizer’s dataset only and
PAM: publicly available models.

5 Discussion

In this paper, we present the findings from the
MixMT shared task. We hosted two subtasks
involving a code-mixed language i.e. Hinglish.
Given the low-resource nature of the code-mixed
languages (and the subtasks), the majority of the
submissions rely on data augmentation either syn-
thetically or from other external sources. The lack
of dedicated pre-trained models for code-mixed lan-
guages pushed the teams to explore the available
alternatives along with bold attempts to train the
models from scratch. We posit several open chal-
lenges with code-mixed machine translation such
as creating large-scale parallel data, efficient data
augmentation strategies, and robust evaluation mea-
sures. The insights and findings from this task will
be useful to future works on machine translation
involving code-mixed and low-resource languages.
They will broaden the horizon for works on multi-
lingual machine translation.
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Abstract

Recent years have witnessed rapid advance-
ments in machine translation, but the state-of-
the-art machine translation system still can not
satisfy the high requirements in some rigorous
translation scenarios. Computer-aided transla-
tion (CAT) provides a promising solution to
yield a high-quality translation with a guaran-
tee. Unfortunately, due to the lack of popular
benchmarks, the research on CAT is not well
developed compared with machine translation.
In this year, we hold a new shared task called
Word-level AutoCompletion (WLAC) for CAT
in WMT. Specifically, we introduce some re-
sources to train a WLAC model, and partic-
ularly we collect data from CAT systems as
a part of test data for this shared task. In ad-
dition, we employ both automatic and human
evaluations to measure the performance of the
submitted systems, and our final evaluation re-
sults reveal some findings for the WLAC task.

1 Introduction

In past decades, the machine translation community
has witnessed a significant evolution from statisti-
cal machine translation (Koehn et al., 2003; Chi-
ang, 2005; Koehn, 2009b) to neural machine trans-
lation (NMT) (Sutskever et al., 2014; Bahdanau
et al., 2015; Wu et al., 2016; Gehring et al., 2017;
Vaswani et al., 2017). NMT has achieved a rapid
and tremendous advancement in translation perfor-
mance (Barrault et al., 2019). Despite its success in
many real-world applications, its translation quality
still can not satisfy the high requirements in some
scenarios. In such rigorous scenarios, one promis-
ing approach is to leverage machines to assist hu-
man translation, such as Computer-aided Transla-
tion (CAT) (Bowker, 2002; Koehn, 2009a; Foster
et al., 1997; Langlais et al., 2000; Barrachina et al.,
2009; Alabau et al., 2014; Knowles and Koehn,
2016; Santy et al., 2019).

∗ The authors are listed alphabetically.

However, the development in CAT is much
slower than in machine translation. For example,
there are hundreds of research papers on machine
translation in natural language processing confer-
ences each year, whereas only a few papers on CAT
are published. One of the main reasons is that there
are few popular benchmarks or shared tasks for
CAT research, which enable researchers to make
continuous progress in this area. Consequently, in
WMT this year, we hold a new shared task, Word-
level AutoCompletion (WLAC), to facilitate the
research in CAT. Generally, WLAC aims to auto-
complete a word when a human translator types
a sequence of characters (Huang et al., 2015; Li
et al., 2021). As a basic functionality in many CAT
systems, WLAC is used to accelerate the editing
process for human translators and it plays an im-
portant role in CAT.

In this paper, we describe the overview for the
shared task of WLAC in WMT 2022, such as task
description, datasets, participants and their evalua-
tions. The shared task involves two language pairs,
including Chinese-English and German-English
and it contains four subtasks corresponding to all
four directional pairs. For data preparation, since
it is too costly to collect realistic data with a con-
siderable scale to train WLAC models, we follow
the standard practice to construct the training data
from a bilingual corpus by simulation. Moreover,
to make the testing stage resemble the realistic sce-
nario in CAT, we collect some data from two CAT
systems as a part of test data. In this shared task, we
receive 27 submissions in total for all subtasks from
five participants which are quickly summarized in
this paper. To evaluate the submissions, we par-
ticularly conduct human evaluation in addition to
automatic evaluation. After evaluation, we finally
obtain some findings from the submission results,
which we hope may inspire future advancements
for the WLAC task.
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Figure 1: Illustration of WLAC task. The translation context
c for a source sentence x includes the left context cl and right
context cr , underlined text “sp” is the human typed characters
s and the words in the rounded rectangles are word-level
autocompletion candidates.

2 Task Description and Data Preparation

2.1 Task Description

Suppose x is a source sequence, s is a sequence
of human typed characters and c = (cl, cr) is a
translation context. The translation pieces cl and
cr are on the left and right hand sides of s, re-
spectively. Formally, given the tuple (x, c, s), the
WLAC task aims to predict the target word w with
s as its prefix, which is the most appropriate to be
placed between cl and cr (Huang et al., 2015; Li
et al., 2021).

To make the task more general in real-world
scenarios, WLAC task assumes that the left context
cl and right context cr can be empty, which leads
to the following four types of context:
• Zero-context: both cl and cr are empty;
• Suffix: cl is empty;
• Prefix: cr is empty;
• Bi-context: neither cl nor cr is empty.

Figure 1 a⃝ and b⃝ show two examples about the
WLAC task. According to the above criterion, Fig-
ure 1 a⃝ belongs to Prefix type and Figure 1 b⃝
belongs to Bi-context type.

2.2 Data Preparation

The WLAC task in WMT2022 involves follow-
ing two language pairs: English⇔Chinese and
English⇔German. Each language pair corre-
sponds to two directional subtasks, leading to four
subtasks.

Training Data In fact, it is too costly to manually
annotate the training dataset consisting of tuples
⟨x, c, s, w⟩ for WALC task. We alternatively fol-
low Li et al. (2021) to construct the simulated train-

En-De En-Zh

Sentences 4,465,840 15,886,041
Words 120M/114M 441M/395M

Table 1: The statistics of English-German and English-
Chinese bilingual datasets for training.

ing data for WLAC from existing bilingual data.1

The key idea of such simulation is that it randomly
samples a target word w and context c from the ref-
erence translation y of x, a human typed sequence
c for the target word w to obtain an example, e.g.,
a tuple of ⟨x, c, s, w⟩.

For training on English-German language pair,
we use the WMT14 En-De training dataset pre-
processed by Stanford NLP Group2, which con-
sists of about 4.5M sentence pairs. For training
on English-Chinese language pair, we take the
“UN Parallel Corpus V1.0” dataset3 from WMT17
consisting of 15M sentence pairs. We use Moses
scripts4 to tokenize English and German sentences
and jieba5 to segment Chinese words for each sen-
tence. The detailed statistics of bilingual datasets
are shown in Table 1.

Note that in this shared task, participants must
use the above bilingual data and it is illegal to
any other bilingual data beyond. However, to
achieve better performance, any monolingual data
is allowed as well as the pre-trained language
models such as BERT (Devlin et al., 2018) and
RoBERTa (Liu et al., 2019).

Test Data To ensure authenticity and reliability,
the test data for WLAC is not from existing open-
source bilingual data. We create the test data by
ourselves: the test datasets are obtained in two
different ways, leading to two types of test data.
One type (Type I) is the simulation on bilingual
data similar to the creation of training data and
the other type (Type II) is from CAT translation
systems.

For the Type I test data, we first create a new
bilingual dataset and then obtain the simulated tu-
ples ⟨x, c, s, w⟩ from the bilingual dataset. Specif-
ically, to ensure that the ground-truth word w is not

1The scripts for simulation is available at https://
github.com/lemaoliu/WLAC.

2https://nlp.stanford.edu/projects/nmt/data
3https://conferences.unite.un.org/UNCorpus/

Home/DownloadOverview
4https://github.com/moses-smt/mosesdecoder
5https://github.com/fxsjy/jieba
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Zh⇒En En⇒Zh De⇒En En⇒De

Sentences
Type I 5434 6122 5700 -
Type II 2109 1953 1996 13418
Overall 7543 8075 7696 13418

Words
Type I 615K/115K 662K/109K 519K/96K -
Type II 242K/45K 237K/38K 203K/38K 437K/85K
Overall 857K/161K 899K/147K 722K/134K 437K/85K

Table 2: The statistics (number of sentences and words) of Zh⇒En, En⇒Zh, De⇒En and En⇒De test datasets. A/B denotes
that A is the total number of source words in the source sentences and B is the total number of target words in the context.

Zh⇒En En⇒Zh De⇒En En⇒De

Bi-context
Type I 5102 5137 5313 -
Type II 2092 1676 1950 6514
Overall 7194 6813 7263 6514

Prefix
Type I 5330 5249 5686 -
Type II 2087 1645 1968 6319
Overall 7417 6894 7654 6319

Suffix
Type I 5053 5156 5382 -
Type II 2089 1674 1994 6571
Overall 7142 6830 7376 6571

Zero-context
Type I 5200 5137 5256 -
Type II 2098 1622 2047 6491
Overall 7298 6759 7303 6491

Table 3: The statistics (number of ⟨x, c, s, w⟩ tuples) of
different context types on WLAC test datasets (including both
Type I and Type II parts).

exposed to the training data, we first crawl bilingual
news from Internet websites in the latest 3 years.
After crawling the raw bilingual data, we employ
professional translators to check and screen the low
quality bilingual data to obtain high-quality bilin-
gual sentences. Finally, we follow the simulation
way to obtain the training tuples ⟨x, c, s, w⟩ based
on the crawled bilingual data described above.

The Type II test data is collected from two
CAT systems LILT6 and TranSmart7 (Huang et al.,
2021). Specifically, given a source sentence x, a
human translator works on a CAT system to gen-

6https://lilt.com
7https://transmart.qq.com
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Figure 2: The proportion of the bins of w typed by human
translators from CAT systems according to word frequency in
bilingual corpus on German-English language pair. Bin 1 and
Bin 10 respectively denote the most infrequent word bin and
the most frequent bin.

erate a translation y. In the log file from the CAT
system, only the information about w ∈ y typed by
human is stored, while other dynamic information
such as typed characters and context for each w is
not available. Therefore, we create both c and s
from y for each w by simulation as before. In other
words, for each example ⟨x, c, s, w⟩, both c and
s are simulated but w is realistic. Note that each
sentence from the Type II data is also not included
in the training data.

For En⇒De task, the entire test data is the type II
from the CAT system LILT. For Zh⇒En, En⇒Zh
and De⇒En tasks, the test data is the combination
of both types, i.e., some test data is Type I from
the simulation over bilingual data and the other test
data is Type II from the CAT system TranSmart.

To pre-process the test data (e.g., word tokeniza-
tion), we adopt the same pre-processing way as
used in training data. Table 2 summarizes the de-
tailed statistics in terms of sentences and words for
the test data, and Table 3 reports the number of ex-
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Figure 3: The proportion of the bins of w typed by human
translators from CAT systems according to word frequency in
bilingual corpus on German-English language pair. Bin 1 and
Bin 10 respectively denote the most infrequent word bin and
the most frequent bin.

amples for four different context types in test data.
Note that each source sentence x may correspond
to multiple examples ⟨x, c, s, w⟩ and thus, the total
number of sentences in Table 2 is not the same as
the total number of examples in Table 3.

Furthermore, one may be curious about the char-
acteristics of the words typed by human translators.
We understand the human typed words from the
perspective of word frequency. We first group the
target vocabulary into ten bins with equal size ac-
cording to word frequency computed in the bilin-
gual corpus, we collect all typed words w together
and then assign a bin for each word, and finally
we calculate the proportion of each bin. The statis-
tics are shown in Table 2 and Table 3, where bin 1
denotes the most infrequent words while bin 10 de-
notes the most frequent words. From these tables,
it is observed that human translators usually type
infrequent words. This observation is reasonable
because it is easy for machine translation systems
to make a correct translation decision on a frequent
word.

3 Evaluation Metric

We use both automatic evaluation and human eval-
uation to measure all submitted systems.

Automatic Evaluation To measure the perfor-
mance of the submitted systems, we choose accu-
racy as the automatic evaluation metric (Li et al.,
2021) as follows :

ACC =
Nmatch

Nall
(1)

where Nmatch is the number of correct predicted
words and Nall is the number of all test examples.

Although automatic evaluation is convenient, it
still has some limitations because there may be
multiple ground-truth words w (i.e., ground truth is
a word set) which suffice to the constraint of s and
are compatible with ⟨x, c⟩, especially for a short
c and s. For instance, when c and s are empty,
any translation of a source word in x may be a
ground-truth word if it suffices to the constraint
of s. Therefore, we additionally conduct human
evaluation for more faithful evaluation on the sub-
missions.

Human Evaluation Human evaluation is appeal-
ing, but it is too costly to evaluate all testing ex-
amples. Instead, we conduct human evaluation on
a small subset of test data for efficiency. Specif-
ically, for all four subtasks, we randomly sample
400 test examples derived from the Type II part of
the test data as the human evaluation dataset. After
participants submit their systems, we gather their
predicted words to constitute a prediction set for
each test example. Then we hire professional trans-
lators to annotate the correct ones in the prediction
set. Finally, we use the manually annotated ground-
truth word set to re-evaluate submitted systems and
the human score is defined by the percentage of pre-
dicted words annotated as correct words by human.
Since more than one target word can be annotated
as the correct word, the human evaluation score is
higher than the automatic score in general.

4 Submitted Systems and Results

In this year, there are five teams participating in this
shared task and we receive 27 submissions from
them. In this section, first, we quickly describe
the participants and their submitted systems, then
we present their evaluation results in terms of both
automatic and human evaluations, and finally, we
shed light on some findings according to evaluation
results.

4.1 Participants and Submitted Systems
HW-TSC (Yang et al., 2022b) The Huawei
Translation Services Center (HW-TSC) participates
in Zh⇒En, De⇒En and En⇒De language direc-
tions. They model the WLAC task as a structured
prediction (or generation) task, which iteratively
generates a subword to compose the prediction
word. Specifically, they first train a vanilla Trans-
former on machine translation task as a baseline.
Then they fine-tune the baseline with WLAC data
and BERT-style MLM data to get the final model.
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Systems Fullset Subset

Acc. (Rank) Human. (Rank) Acc. (Rank)

HW-TSC 59.40 (#1) 91.25 (#1) 69.25 (#1)
THU IIGroup-1 54.05 (#2) 85.00 (#6) 59.75 (#6)
THU IIGroup-2 51.11 (#3) 83.75 (#7) 57.25 (#7)
DCU-NCI-4 50.41 (#4) 86.75 (#3) 63.25 (#2)
DCU-NCI-3 50.26 (#5) 86.75 (#3) 62.25 (#3)
DCU-NCI-2 49.35 (#6) 86.00 (#5) 61.75 (#5)
DCU-NCI-1 49.06 (#7) 87.00 (#2) 62.00 (#4)

Table 4: Official results of WLAC task for Zh⇒En. Acc. and Human. represent automatic and human evaluations, respectively.
Rank denotes the ranking according to the corresponding metric.

Systems Fullset Subset

Acc. (Rank) Human. (Rank) Acc. (Rank)

THU IIGroup-1 53.98 (#1) 83.25 (#1) 54.50 (#1)
THU IIGroup-2 48.90 (#2) 77.50 (#2) 48.75 (#2)
DCU-NCI-2 31.94 (#3) 57.75 (#3) 37.75 (#4)
DCU-NCI-1 31.94 (#4) 57.25 (#4) 38.00 (#3)

Table 5: Official results of WLAC task for En⇒Zh. Acc. and Human. represent automatic and human evaluations, respectively.
Rank denotes the ranking according to the corresponding metric.

It is worth noting that they use a character embed-
ding method to encode the information of a human
typed sequence to the model. Moreover, they adopt
some basic strategies to improve the performance,
including back translation, averaging and ensemble
techniques.

PRHLT (Ángel Navarro et al., 2022) The team
of PRHLT submits their systems for De⇒En and
En⇒De subtasks. They first cast the WLAC task as
a segment-based IMT task. More concretely, they
consider the translation context as the sequence
of segments validated by the user in IMT and the
sequence of human typed characters as partially-
typed word correction. They experiment with both
RNN architecture and Transformer architecture.

DCU-NCI (Moslem et al., 2022) DCU-NCI pro-
poses to address the WLAC task with the help of
pre-trained NMT models and available libraries,
which is a new way to solve the WLAC task. Their
systems do not need any additional training to ad-
dress the WLAC task.Specifically, they use OPUS
pre-trained models8 and employ CTranslate2 9 as
an inference engine. During the decoding stage,

8https://github.com/Helsinki-NLP/
Tatoeba-Challenge

9https://github.com/OpenNMT/CTranslate2

they find that random sampling restricted with
the best 10 candidates perform better than beam
search. Furthermore, they also try to adopt dif-
ferent sampling temperatures (ST) to change the
randomness of the generation. We denote the sys-
tem trained with ST=1.0 as DCU-NCI-1, the sys-
tem with ST=1.3 as DCU-NCI-2, the system with
ST=1.3 and detokenization as DCU-NCI-3 and the
system trained with ST=1.0 and detokenization as
DCU-NCI-4.

Lingua Custodia (Ailem et al., 2022) The team
of Lingua Custodia submits systems for De⇒En
and En⇒De tracks. They also treat the WLAC
task as a structured prediction task and adopt the
Transformer architecture for generation. Specifi-
cally, they use a Transformer Encoder to encode
the source sentence, translation context and human
typed characters, and a Transformer Decoder to
generate a sequence of subwords to constitute a
target word step by step. In addition, they propose
several data-cleaning strategies to pre-process the
bilingual translation data. We denote the system
trained with the initial corpus as Lingua Custodia-1
and the system trained with the cleaned corpus as
Lingua Custodia-2.
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Systems Fullset Subset

Acc. (Rank) Human. (Rank) Acc. (Rank)

HW-TSC 62.06 (#1) 87.50 (#3) 78.00 (#3)
DCU-NCI-1 61.44 (#2) 88.50 (#2) 80.50 (#1)
DCU-NCI-2 60.92 (#3) 88.75 (#1) 79.00 (#2)
Lingua Custodia-1 57.36 (#4) 76.75 (#5) 67.50 (#5)
THU IIGroup-1 57.27 (#5) 78.75 (#4) 69.75 (#4)
Lingua Custodia-2 54.85 (#6) 74.50 (#7) 63.50 (#7)
THU IIGroup-2 54.32 (#7) 76.25 (#6) 66.50 (#6)
PRHLT 39.02 (#8) 51.25 (#8) 44.25 (#8)

Table 6: Official results of WLAC task for De⇒En. Acc. and Human. represent automatic and human evaluations, respectively.
Rank denotes the ranking according to the corresponding metric.

Systems Fullset Subset

Acc. (Rank) Human. (Rank) Acc. (Rank)

HW-TSC 63.82 (#1) 79.00 (#1) 66.75 (#1)
DCU-NCI-1 58.94 (#2) 67.25 (#2) 56.00 (#2)
DCU-NCI-2 58.49 (#3) 65.50 (#3) 56.75 (#3)
Lingua Custodia-1 48.97 (#4) 61.75 (#4) 52.25 (#4)
Lingua Custodia-2 48.44 (#5) 61.00 (#5) 50.75 (#5)
THU IIGroup-1 41.83 (#6) 55.50 (#6) 46.00 (#6)
THU IIGroup-2 40.69 (#7) 53.50 (#7) 44.75 (#7)
PRHLT 33.97 (#8) 45.75 (#8) 37.00 (#8)

Table 7: Official results of WLAC task for En⇒De. Acc. and Human. represent automatic and human evaluations, respectively.
Rank denotes the ranking according to the corresponding metric.

THU IIGroup (Yang et al., 2022a) THU
IIGroup participates in Zh⇒En, En⇒Zh, De⇒En
and En⇒De directions. They propose a generator-
reranker framework to tackle the WLAC task.
Specifically, they adopt the baseline model based
on Transformer as a generator to yield a set of can-
didate words. Moreover, they additionally train
a reranking model to rerank the candidate words
to get the final prediction. We denote the gener-
ator as THU IIGroup-1 and the reranker as THU
IIGroup-2.

Summary on submitted systems All submitted
systems in this year choose the powerful Trans-
former architecture by stacking multiple layers of
attention as the backbone for the WLAC task. To
tackle the constraint of the human typed character
sequence, some submitted systems consider it as a
hard constraint while others (HW-TSC and Lingua
Custodia) considering it as a soft constraint: they
differ in that the model architecture in the former
is aware of the constraints but the later matters. In

addition, most systems formalize the WLAC task
as a classification task where the target word w is
actually a label, but one system (HW-TSC) treats
WLAC as a structured prediction task: the target
w is decomposed into a sequence of BPE units
and it is beneficial to predict the out-of-vocabulary
words.

4.2 Evaluation Results
Since human evaluation is only conducted on the
partial test dataset consisting of 400 examples and
automatic evaluation can be evaluated on both the
full and partial test datasets, we evaluate all the
submitted systems on two different types of test
data, i.e., full test data set and partial test data set
as follows. All of their results on Zh⇒En, En⇒Zh,
De⇒En and En⇒De are listed in Table 4,5,6 and
7.

Results on Full Test Set From the four tables, it
can be shown that the systems of HW-TSC shows
impressive performance and achieve the best for
Zh⇒En, De⇒En and En⇒De, and THU IIGroup
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yields the best performance for En⇒Zh. As we can
see, there are some gaps in performance among dif-
ferent systems, which means there is a significant
opportunity for growth in the WLAC task.

Results on Partial Test Set As described in Sec-
tion 3, it is not surprising that human evaluation
scores are much higher than automatic evaluation
scores. In addition, it is observed that on the partial
test set, the human evaluation results are almost in
line with the automatic evaluation result although
there indeed is a slight inconsistency. This fact
demonstrates that automatic evaluation metric can
act as a good alternative for evaluation. Moreover,
it is interesting that, in terms of automatic evalua-
tion, the rankings between the full and partial test
datasets are clearly different on Zh⇒En, although
they are mostly consistent on other tasks. This
observation indicates that a small test dataset may
lead to a biased conclusion.

4.3 Discussion

In this section, we shed light on some key findings
among all the submitted systems which we hope
will push forward the development of the WLAC
task in the future.

First, it would be preferable to treat the WLAC
task as a structured prediction task rather than a
classification task according to the prediction ac-
curacy. One advantage of the structured prediction
perspective is that it can decompose the predicted
word into a sequence of tokens at the subword level
to tackle out-of-vocabulary words. This is appeal-
ing specially because most of the typed words by
human translators are low frequent words as ob-
served in our analysis. However, it is noteworthy
that a structured predition model requires more
computing time than a classification model during
the inference stage.

Second, WLAC task may benefit from NMT
based pre-training. It is noticed that one participant
employs such a pre-training strategy: it first trains
a standard NMT model on the bilingual dataset and
then it fine-tunes the model with the WLAC data
to obtain a WLAC model. It is reasonable since
in NMT task, every token in the target-side serves
as a label, while in WLAC task, only the target
token serves as a label. The former can facilitate
the training procedure and provide a good weight
initialization for WLAC tailored model.

Third, leveraging monolingual data is a common
practice to improve the performance in many NLP

tasks, including machine translation. For example,
a pre-trained model trained on monolingual data
such as XLM (Lample and Conneau, 2019) and
MASS (Song et al., 2019) are successful to im-
prove translation quality, and back translation (Sen-
nrich et al., 2015; Edunov et al., 2018) is also an
effective strategy by construction synthetic bilin-
gual data from target monolingual data. In WLAC
task, one participant tries to enhance the WLAC
model by using back translation similar to NMT
and it is promising to design new ways customized
for WLAC.

5 Conclusion

Word-level AutoCompletion is a basic functional-
ity in computer-aided translation systems to facili-
tate the editing efficiency for translators. In WMT
this year, the Word-level AutoCompletion shared
task is introduced and it covers two language pairs
including four directional subtasks. We provide
high-quality test datasets and human evaluation to
evaluate different systems fairly. On all subtasks
we receive 27 submissions from five participants
which address the WLAC task from different per-
spectives. Automatic and human evaluations on
these submissions reveal some key findings which
may provide valuable insights for future research
on this task. Finally, we hope that WLAC task
will attract more researchers to participate in the
exploration of computer-aided translation.
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Abstract
We report the result of the first edition of the
WMT shared task on Translation Suggestion
(TS). The task aims to provide alternatives for
specific words or phrases given the entire docu-
ments generated by machine translation (MT).
It consists two sub-tasks, namely, the naive
translation suggestion and translation sugges-
tion with hints. The main difference is that
some hints are provided in sub-task two, there-
fore, it is easier for the model to generate
more accurate suggestions. For sub-task one,
we provide the corpus for the language pairs
English-German and English-Chinese. And
only English-Chinese corpus is provided for
the sub-task two.

We received 92 submissions from 5 participat-
ing teams in sub-task one and 6 submissions for
the sub-task 2, most of them covering all of the
translation directions. We used the automatic
metric BLEU for evaluating the performance
of each submission.

1 Introduction

Computer-aided translation (CAT) (Barrachina
et al., 2009; Green et al., 2014; Knowles and Koehn,
2016; Santy et al., 2019) has attained more and
more attention for its promising ability in combin-
ing the high efficiency of machine translation (MT)
(Cho et al., 2014; Bahdanau et al., 2015; Vaswani
et al., 2017) and high accuracy of human transla-
tion (HT). A typical way for CAT tools to combine
MT and HT is PE (Green et al., 2013; Zouhar et al.,
2021), where the human translators are asked to
provide alternatives for the incorrect word spans in
the results generated by MT. To further reduce the
post-editing time, researchers propose to apply TS
into PE, where TS provides the sub-segment sug-
gestions for the annotated incorrect word spans in
the results of MT, and their extensive experiments
show that TS can substantially reduce translators’
cognitive loads and the post-editing time (Wang
et al., 2020; Lee et al., 2021).

As there is no explicit and formal definition for
TS, we observe that some previous works simi-
lar or related to TS have been proposed (Alabau
et al., 2014; Santy et al., 2019; Wang et al., 2020;
Lee et al., 2021). However, there are two main
pitfalls for these works in this line. First, most
conventional works only focus on the overall per-
formance of PE but ignore the exact performance
of TS. This is mainly because the golden corpus
for TS is relatively hard to collect. As TS is an im-
portant sub-module in PE, paying more attention to
the exact performance of TS can boost the perfor-
mance and interpretability of PE. Second, almost
all of the previous works conduct experiments on
their in-house datasets or the noisy datasets built
automatically, which makes their experiments hard
to be followed and compared. Additionally, ex-
perimental results on the noisy datasets may not
truly reflect the model’s ability on generating the
right predictions, making the research deviate from
the correct direction. Therefore, the community
is in dire need of a benchmark for TS to enhance
the research in this area. To address the limita-
tions mentioned above and spur the research in
TS, we make our efforts to construct a high-quality
benchmark dataset with human annotation, named
WeTS,1 which covers four different translation di-
rections.

The main motivation of this shared task is two-
fold. The first goal is to analyze the challenges
in the area of TS, which can provide some new
directions for the further researches and applica-
tions in this area. Secondly, we want to make the
researchers notice the gaps between the golden and
automatically generated synthetic corpus. And we
want to see the performance of different techniques
on the golden corpus. As the source and translation
sentence are both the inputs of TS, it is interesting
to see how the interactions between the source and

1WeTS: We Establish a benchmark for Translation Sugges-
tion

821



translation sentences can improve the final sugges-
tions.

In order to evaluate the quality of the participat-
ing systems, we use the automatic metric, BLEU
(Papineni et al., 2002). Specifically, we adopt the
widely used toolkit, sacrebleu (Post, 2018) to cal-
culate the BLEU score for the top-1 suggestion
against the reference sentences.2 For Chinese, the
BLEU score is calculated on teh character with
the default tokenizer for Chinese. As for English,
the BLEU score is calcualted on the case-sensitive
words with the default tokenizer 13a.

Five teams participated in this first campaign
of the Translation Suggestion shred task, most of
them cover the four translation directions. We will
describe each system which submits the technical
paper in detail.

2 Task Description

This section describes the task definition in the first
edition of TS shared task. We finely divide the task
of TS into two sub-tasks, namely vanilla TS and
TS with hints, according to whether the translators’
hints are considered.

Vanilla TS. Given the source sentence x =
(x1, . . . , xs), the translation sentence m =
(m1, . . . ,mt), the incorrect words or phrases w =
mi:j where 1 ≤ i ≤ j ≤ t, and the correct alter-
native y for w, the task of vanilla TS is optimized
to maximize the conditional probability of y as
follows:

P (y|x,m−w, θ) (1)

where θ represents the model parameter, and m−w

is the masked translation where the incorrect word
span w is replaced with a placeholder. 3

TS with Hints. In the sub-task TS with hints, the
hints of translators are considered as some soft con-
straints for the model, and the model is expected
to generate suggestions meeting these constraints.
The format of the translator’s hint is very flexi-
ble, which usually requires only a few types on
the keyboard by the translator. For English and
German, the hints can be the character sequence
which includes the initials of words in the correct
alternative. As for Chinese, the hints can be the
character sequence which includes the initials of

2https://github.com/mjpost/sacrebleu
3w is null if i equals j, and the model will predict whether

some words need to be inserted in position i.

the phonetics of words in the correct alternative. In
this setting, the model is optimized as:

P (y|x,m−w,h, θ) (2)

where h indicates the hints provided by translators.

Related tasks. Some similar techniques have
been explored in CAT. Green et al. (2014) and
Knowles and Koehn (2016) study the task of so-
called translation prediction, which provides pre-
dictions of the next word (or phrase) given a prefix.
Huang et al. (2015) and Santy et al. (2019) further
consider the hints of the translator in the task of
translation prediction. Compared to TS, the most
significant difference is the strict assumption of the
translation context, i.e., the prefix context, which
severely impedes the use of their methods under
the scenarios of PE. Lexically constrained decoding
which completes a translation based on some un-
ordered words, relaxes the constraints provided by
human translators from prefixes to general forms
(Hokamp and Liu, 2017; Post and Vilar, 2018; Kaji-
wara, 2019; Susanto et al., 2020). Although it does
not need to re-train the model, its low efficiency
makes it only applicable in scenarios where only
a few constraints need to be applied. Recently, Li
et al. (2021) study the problem of auto-completion
with different context types. However, they only
focus on the word-level auto-completion, and their
experiments are also conducted on the automati-
cally constructed datasets.

3 Data Description

This section introduces the proposed dataset WeTS
used in the shred task, which is a golden corpus for
four translation directions, including English-to-
German, German-to-English, Chinese-to-English
and English-to-Chinese.

Translation Direction Train Valid Test

En⇒De 14,957 1000 1000
De⇒En 11,777 1000 1000
Zh⇒En 21,213 1000 1000
En⇒Zh 15,769 1000 1000

Table 1: The sizes for cases in train/valid/test sets.
“En⇒De” refers to the direction of English-to-German,
and “En⇒Zh” refers to English-to-Chinese.
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Source Sentence 

他们也许并不知道这是一个“假理财”骗局，但也察觉到了诸多可疑之 
ta men ye xu bing bu zhi dao zhe shi yi ge jia li cai pian ju, dan ye cha jue dao le zhu duo ke yi zhi chu 

处，然而最终还是按照张颖的指使进行了违法违规操作。 
ran er zui zhong hai shi an zhao zhang ying de zhi shi jin xing le wei fa wei gui cao zuo 

Translation 
They may not know this is a "fake financial management" scam, but also aware 
of many suspicious, and ultimately conduct illegal operations according to 
Zhang Ying's instructions. 

Suggestions 1. suspects  2. doubtful points  3. questionable points 

 
Figure 1: One training example in WeTS. For the incorrect word "suspicious" (in red color), there are three correct
suggestions. For readability, we also provide the Chinese pinyin format for the Chinese sentence (in blue color).
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Figure 2: The number of incorrect span in each annotated example.

3.1 Annotation Guidelines
It is non-trivial for annotators to locate the incor-
rect word spans in the MT sentence. The main
difficulty is that, the concept of “translation error"
is ambiguous and each translator has his own un-
derstanding about translation errors. To easier the
annotation workload and reduce the possibility of
making errors, we group the translation errors on
which we aim to focus into three macro categories:

• Under-translation or over-translation: While
the problem of under-translation or over-
translation has been alleviated with the popu-
larity of Transformer, it is still one of the main
mistakes in NMT and seriously destroys the
readability of the translation.

• Semantic errors: For the semantic error, we
mean that some source words are incorrectly
translated according to the semantic context,
such as the incorrect translations for entities,
proper nouns, and ambiguous words. Another

branch of semantic mistake is that the source
words or phrases are only translated superfi-
cially and the semantics behind are not trans-
lated well.

• Grammatical or syntactic errors: Such errors
usually appear in translations of long sen-
tences, including the improper use of tenses,
passive voice, syntactic structures, etc.

Another key rule for translators is that annotating
the incorrect span as local as possible, as generat-
ing correct alternatives for long sequences is much
harder than that of shorter sequences.

3.2 Data Construction
As the starting point, we collect the monolingual
corpora for English and German from the raw
Wikipedia dumps, and extract Chinese monolin-
gual corpus from various online news publications.
We first clean the monolingual corpora with a lan-
guage detector to remove sentences belonging to
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Figure 3: The length of the incorrect span.

other languages.4 For all monolingual corpora, we
remove sentences that are shorter than 20 words or
longer than 80 words. In addition, sentences which
exist in the available parallel corpora are also re-
moved. Then, we get the translations by feeding the
cleaned monolingual corpus into the corresponding
fully-trained NMT model. The NMT models for
English-German language pairs are trained on the
parallel corpus of WMT14 English-German. For
Chinese-English directions, the NMT models are
trained with the combination between the WMT19
English-Chinese5 and the same amount of in-house
corpus. 6

Finally, the translators are required to mark the
incorrect word spans in the translation sentence and
provide at least one alternative for each incorrect
span, by using the annotation guidelines. The team
is composed by eight annotators with high expertise
in translation and each example has been assigned
to three experts. There are two phases of agreement
computations. In the first phase, an annotation is
considered in agreement among the experts if and
only if they capture the same incorrect word spans.
If one annotation passes the first agreement com-
putation, it will be assigned to other three experts
in charge of selecting the right alternatives from
the previous annotation. In the second phase of
agreement computation, an annotation is consid-
ered in agreement among the experts if and only

4https://github.com/Mimino666/langdetect
5https://www.statmt.org/wmt19/

translation-task.html
6We have released the models and inference scripts utilized

here to make our results easy reproduced.

if they select the same right alternatives. With the
two-phase agreement checking, we ensure the high
quality of the annotated examples. For the anno-
tated examples with multiple incorrect word spans,
we can extract multiple examples which have the
same source and translation sentences, but different
incorrect word span and the corresponding sugges-
tions. Finally the extracted examples are randomly
shuffled and then split into the training, validation
and test sets.7 One training example for the transla-
tion direction of Chinese-to-English is presented in
Figure 1 and the sizes for the train/valid/test sets in
WeTS are collected in Table 1.

3.3 Detailed Statistics
The number of the incorrect span Each anno-
tated example may contain multiple incorrect spans,
we show the number of the incorrect span in each
annotated example as Figure 2. We can see that
most examples have only a few incorrect spans, and
there are more than 70 percent examples contain-
ing less than 3 incorrect spans for each translation
direction.

The length of the incorrect span Figure 3 repre-
sents the length distribution of the incorrect spans.
We can find that most of the incorrect spans con-
tain less than 3 words or Chinese characters. This
is mainly because of our key rule for annotating
the incorrect span as local as possible. Addition-
ally, for all of the four translation directions, the

7To keep the fairness of WeTS, we ensure the examples
among the training, validation and test sets have different
source and translation sentences.
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Figure 4: The length of the suggestion.

number of the incorrect spans with length 0 ranks
top-2 among all the length buckets. This shows
that under-translation is still a frequent error of the
existing NMT models.

The length of the suggestions Figure 4 shows
the length distribution of the suggestions. We can
see that in English-to-German, German-to-English
and Chinese-to-English, most of the suggestions
contain only one word. For English-to-Chinese,
most suggestions contain two Chinese characters.
Additionally, we can also find that there are quite a
few of suggestions with length zero in each trans-
lation direction. This shows that over-translation
is a non-negligible problem for the existing NMT
models.

4 Participants

Five participants submitted their systems to the sub-
task one of TS shared task. And two participants
submitted their systems to the second sub-task. In
sub-task one, 92 runs were submitted in total (each
team is only allowed to submit less than 15 runs).
Table 2 summarizes the participants and their affili-
ations.

4.1 Systems

Here we briefly describe each participant’s systems
as described by the authors and refer the reader
to the participant’s submission for further details.
Since some participants did not submit their pa-
pers, we only describe the systems in the submitted
papers.

Team Institution

mind-ts Soochow University and Alibaba
suda-hlt Soochow University

Avocados Beijing Jiaotong University
IOL Research Transn IOL Technology CO., Ltd.

Slack Zhejiang University

Table 2: The participating teams and their affiliations.

4.1.1 Baseline
We take the naive Transformer-base (Vaswani et al.,
2017) as the baseline and directly apply the imple-
mentation of the open-source toolkit, fiarseq.8 We
construct the synthetic corpus based on the WMT
parallel corpus, and we refer the readers for details
about constructing the synthetic corpus in the pa-
per (Yang et al., 2021). For training, we apply the
two-state training pipeline, where we pre-train the
model on the synthetic corpus in the first stage, and
then fine-tune the model on the golden corpus in
the second stage.

4.1.2 IOL Research
The team of IOL Research participates the two
sub-tasks and focuses on the En-Zh and Zh-En
translation directions. They use the ∆LM as their
backbone model. ∆LM is a pre-trained multilin-
gual encoder-decoder model, which outperforms
various strong baselines on both natural language
generation and translation tasks (Ma et al., 2021).
Its encoder and decoder are initialized with the

8https://github.com/pytorch/fairseq
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pre-trained multilingual encoder InfoXLM (Chi
et al., 2020). Their model has 360M parameters,
12-6 encoder-decoder layers, 768 hidden size, 12
attention heads and 3072 FFN dimension. For the
training data, they construct the synthetic data with
two different methods according to its constructing
complexity. During training, they use the two-stage
fine-tuning, where they apply the synthetic data to
fine-tune the original ∆LM in the first stage and
then fine-tune the result of the first stage with the
golden corpus. In their experiments, they find that
the accuracy indicator of TS can be helpful for ef-
ficient PE in practice. Overall, they achieved the
best scores on 3 tracks and comparable result on
another track.

4.1.3 Avocados

The team of Avocados tries different model struc-
tures, such as Transformer-base (Vaswani et al.,
2017), Transformer-big (Vaswani et al., 2017), SA-
Transformer (Yang et al., 2021) and DynamicConv
(Wu et al., 2019). They test different ensemble
approaches for better performance. For more de-
tails, we refer the readers to their paper (Zhang
et al., 2022). Their main efforts are paid on build-
ing the synthetic corpus. They apply three different
ways to construct the synthetic corpus. Firstly, they
randomly sample a sub-segment in each target sen-
tence of the golden parallel data, mask the sampled
sub-segment to simulate an incorrect span, and
use the sub-segment as an alternative suggestion.
Secondly, the same strategy as above is used for
pseudo-parallel data with the target side substituted
by machine translation results. Finally, they use a
quality estimation model to estimate the translation
quality of words in translation output sentence and
select the span with low confidence for masking.
Then, an alignment tool to find the sub-segment
corresponding to the span in the reference sentence
and use it as the alternative suggestion for the span.
To bridge the domain difference between the large-
scale synthetic data and human-annotated golden
corpus, they apply the pre-trained BERT to filter
data similar to the golden corpus as in-domain data,
which are used as pre-training for the next phase af-
ter pre-training model with a large-scale synthetic
corpus. Overall, they rank second and third on the
English-German and English-Chinese bidirectional
tasks respectively.

4.1.4 mind-ts
The team of mind-ts participate in the English-
German and English-Chinese translation directions
in the sub-task one, and their submissions are
ranked first in three of four language directions. For
English-German, they initialize the weights with
NMT models released by teh winner of WMT19
(Ng et al., 2019). For English-Chinese, the one-
to-many and many-to-one mBART50 models are
used (Tang et al., 2020). Their main contribution is
to construct the synthetic corpus with word align-
ment. They use the well-trained alignment mod-
els between source and target languages to filter
out high-quality augment data. Specifically, they
first use the Fast Align toolkit to extract the token
alignments. Then, they remove tokens that appear
in both MT and reference to get the trimmed re-
sult. They trim these common tokens because they
want the model to focus more on the incorrect span
and its alternative. Additionally, they use the dual
conditional cross-entropy model to calculate the
quality score of the pair between the source and
masked translation sentences. If the cross-entropy
quality score meets the threshold, they treat the
masked translation and the alignment segments as
the good examples for TS. Similarly, they also use
the two-phase pre-training pipeline to get the final
models.

4.2 Submission Summary

The submissions for this year’s TS shared task
cover different approaches from the pre-trained
LMs and the encoder-decode NMT models. From
the submissions, we find that the pre-trained mod-
els are very useful for the final performance. Ad-
ditionally, almost all of the submissions have tried
different approaches for constructing the synthetic
corpus. As the amount of the golden corpus is lim-
ited, it is very important to find efficient ways to
construct the synthetic corpus. The main problem
for constructing synthetic corpus is how to make
the synthetic corpus similar to the golden corpus in
domain or other aspects. Finally, how to efficiently
apply the synthetic corpus also needs much more
efforts to investigate. All submissions adopt the
two-stage training pipeline to train the models.

4.3 Evaluation Results

We report the BLEU scores of the submissions.
The BLEU is calculated automatically with the
sacrebleu toolkit. For each run, the participating
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team need to submit their top-1 suggestions for
each sentence in the test set. Each participating
team can submit at most 15 times for each track.
We only report the best score for each team. Table
3 and 4 report the results on English-Chinese and
English-German respectively in the sub-task one.
Table 5 report the results on English-Chinese in the
sub-task two.

Team En-Zh Zh-En

Baseline 31.02 25.84
mind-ts 33.92(2) 30.07 (1)

Avocados 33.33 (3) 28.56 (3)
IOL Research 39.71 (1) 28.42 (4)

Table 3: Evaluation results on the language pair for
English-Chinese in the sub-task one. The number in
bracket is the ranked position.

Team En-De De-En

Baseline 35.07 37.61
mind-ts 42.91(1) 47.04 (1)

Avocados 42.61 (2) 36.30 (2)

Table 4: Evaluation results on the language pair for
English-German in the sub-task one. The number in
bracket is the ranked position.

Team En-Zh Zh-En

Baseline 41.83 35.02
IOL Research 48.60 (1) 39.95 (1)

Table 5: Evaluation results on the language pair for
English-Chinese in the sub-task two. The number in
bracket is the ranked position.

5 Discussion and Analysis

Comparing the results of the BLEU scores of all
submissions with our baseline systems, there is a
significant gap between the submitted and baseline
systems. This shows that there is a large space
for us to try different techniques to improve the
performance of TS. By comparing the results of
different submitted systems, we find that different
pre-training models have a large difference on the
final performance. This is a similar trend with other
NLP tasks. Therefore, we believe that this is an

interesting and promising direction for us to pay
much more efforts.

All submitted systems have investigated differ-
ent approaches for constructing the synthetic cor-
pus and almost all of them have achieved much
improvements with the synthetic corpus. The noise
in the synthetic corpus is a major problem which
negatively affects the final performance. Therefore,
how to filter or decrease the noise is an open ques-
tion. The team of mind-ts applies the pre-trained
LM to filter the synthetic corpus and obtain better
performance on 3 out of 4 tracks based on the high-
quality synthetic corpus. We can investigate more
effective approaches to detect and filter the noise
in the synthetic corpus.

However, another interesting direction which are
not investigated by the submissions is modeling
the interaction between the source and translation
sentences efficiently. Compared to MT, the main
difference for TS is that the input for TS is dual-
source, namely the source and translation sentence.
We believe that efficiently modeling the interaction
between the source and translation sentences can
improve the final performance.

6 Conclusion

We present the results of first edition of the Trans-
lation Suggestion shared task. For the goal of
this task, we create and release the first golden
benchmark dataset, called WeTS, which covers the
language pairs for English-Chinese and English-
German. We wish the released corpus can spur the
researches in this area. This year we received 92
submissions from 5 participating teaming in the
sub-task one and 6 submissions for the sub-task 2,
most of them covering the two translation direc-
tions. Results of these submissions show that the
pre-trained models and synthetic corpus are two
important factors for the final performance.
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Abstract

A straightforward approach to context-aware
neural machine translation consists in feeding
the standard encoder-decoder architecture with
a window of consecutive sentences, formed
by the current sentence and a number of sen-
tences from its context concatenated to it. In
this work, we propose an improved concate-
nation approach that encourages the model to
focus on the translation of the current sentence,
discounting the loss generated by target con-
text. We also propose an additional improve-
ment that strengthen the notion of sentence
boundaries and of relative sentence distance,
facilitating model compliance to the context-
discounted objective. We evaluate our approach
with both average-translation quality metrics
and contrastive test sets for the translation of
inter-sentential discourse phenomena, proving
its superiority to the vanilla concatenation ap-
proach and other sophisticated context-aware
systems.

1 Introduction

While current neural machine translation (NMT)
systems have reached close-to-human quality in
the translation of decontextualized sentences (Wu
et al., 2016), they still have a wide margin of im-
provement ahead when it comes to translating full
documents (Läubli et al., 2018). Many works
tried to reduce this margin, proposing various ap-
proaches to context-aware NMT (CANMT)1. A
common taxonomy (Kim et al., 2019; Li et al.,
2020) divides them in two broad categories: multi-
encoding approaches and concatenation (single-
encoding) approaches. Despite its simplicity, the
concatenation approaches have been shown to
achieve competitive or superior performance to
more sophisticated, multi-encoding systems (Lopes
et al., 2020; Ma et al., 2021). Nonetheless, it

1Unless otherwise specified, we refer to context as the
sentences that precede or follow a current sentence to be
translated, within the same document.

Figure 1: Example of the proposed approach applied
over a window of 2 sentences, with context discount CD
and segment-shifted positions by a factor of 10.

has been shown that Transformer-based NMT sys-
tems (Vaswani et al., 2017) struggle to learn locality
properties (Hardmeier, 2012; Rizzi, 2013) of both
the language itself and the source-target alignment
when the input sequence grows in length, as in the
case of concatenation (Bao et al., 2021). Unsur-
prisingly, the presence of context makes learning
harder for concatenation models by distracting at-
tention. Moreover, we know from recent litera-
ture that NMT systems require context for a sparse
set of inter-sentential discourse phenomena only
(Voita et al., 2019; Lupo et al., 2022). Therefore, it
is desirable to make concatenation models more fo-
cused on local linguistic phenomena, belonging to
the current sentence, while also processing its con-
text for enabling inter-sentential contextualization
whenever it is needed. We propose an improved
concatenation approach to CANMT that is more
focused on the translation of the current sentence
by means of two simple, parameter-free solutions:

• Context-discounting: a simple modification
of the NMT loss that improves context-aware
translation of a sentence by making the model
less distracted by its concatenated context;

• Segment-shifted positions: a simple,
parameter-free modification of position
embeddings, that facilitates the achievement
of the context-discounted objective by
supporting the learning of locality properties
in the document translation task.

We support our solutions with extensive experi-
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ments, analysis and benchmarking.

2 Background

2.1 Multi-encoding approaches
Multi-encoding models couple a self-standing
sentence-level NMT system, with parameters θS ,
with additional parameters θC that encode and inte-
grate the context of the current sentence, either on
source side, target side, or both. The full context-
aware architecture has parameters Θ = [θS ; θC ].
Multi-encoding models differ from each other in
the way they encode the context or integrate its rep-
resentations with those of the current sentence. For
instance, the representations coming from the con-
text encoder can be integrated with the encoding
of the current sentence outside the decoder (Maruf
et al., 2018; Voita et al., 2018; Zhang et al., 2018;
Miculicich et al., 2018; Maruf et al., 2019; Zheng
et al., 2020) or inside the decoder (Tu et al., 2018;
Kuang et al., 2018; Bawden et al., 2018; Voita et al.,
2019; Tan et al., 2019), by making it attending to
the context representations directly, using its inter-
nal representation of the decoded history as query.

2.2 Single-encoder approaches
The concatenation approaches are the simplest in
terms of architecture, as they mainly consist in con-
catenating each (current) source sentence with its
context before feeding it to the standard encoder-
decoder architecture (Tiedemann and Scherrer,
2017; Junczys-Dowmunt, 2019; Agrawal et al.,
2018; Ma et al., 2020), without the addition of
extra learnable parameters. The decoding can then
be limited to the current sentence, although de-
coding the full target concatenation is more effec-
tive thanks to the availability of target context. A
typical strategy to train a concatenation approach
and generate translations is by sliding windows
(Tiedemann and Scherrer, 2017). An sKtoK model
decodes the translation yj

K of a source window
xj
K , formed by K consecutive sentences belonging

to the same document: the current (jth) sentence
and K − 1 sentences concatenated as source-side
context. Besides the end-of-sequence token <E>,
another special token <S> is introduced to mark
sentence boundaries in the concatenation:

xj
K = xj−K+1

<S>xj−K+2
<S>...<S>xj−1

<S>xj
<E>

yj
K = yj−K+1

<S>yj−K+2
<S>...<S>yj−1

<S>yj
<E>

Both past and future contexts can be concatenated
to the current pair xj ,yj , although in this work we

consider only the past context, for simplicity. At
training time, the loss is calculated over the whole
output yj

K , but only the translation yj of the cur-
rent sentence is kept at inference time, while the
translation of the context is discarded. Then, the
window is slid by one position forward to repeat the
process for the (j + 1)th sentence and its context.
Concatenation approaches are trained by optimiz-
ing the same objective function as standard NMT
over a window of sentences:

L(xj
K ,y

j
K) =

|yj
K |∑

t=1

logP (yjK,t|y
j
K,<t,x

j
K), (1)

so that the likelihood of the current target sen-
tence is conditioned on source and target context.

2.3 Closing the gap
Concatenation approaches have the advantage of
treating the task of CANMT in the same way
as context-agnostic NMT, which eases learning
because the learnable parameters responsible for
inter-sentential contextualization are the same that
undertake intra-sentential contextualization. In-
deed, learning the parameters responsible for inter-
sentential contextualization in multi-encoding ap-
proaches (θC) has been shown to be challenging
because the training signal is sparse and the task of
retrieving useful context elements difficult (Lupo
et al., 2022). Nonetheless, encoding current and
context sentences together comes at a cost. In fact,
when sequences are long the risk of paying atten-
tion to irrelevant elements increases. Paying at-
tention to the "wrong tokens" can harm their intra
and inter-sentential contextualization, associating
them to the wrong latent features. Indeed, Liu et al.
(2020) and Sun et al. (2022) showed that learning
to translate long sequences, comprised of many
sentences, fails without the use of large-scale pre-
training or data-augmentation (e.g., like Junczys-
Dowmunt (2019) and Ma et al. (2021) did). Bao
et al. (2021) provided some evidence about this
leaning difficulty, showing that failed models, i.e.,
models stuck in local minima with a high validation
loss, present a distribution of attention weights that
is flatter (with higher entropy), both in the encoder
and the decoder, than the distribution occurring in
models that converge to lower validation loss. In
other words, attention struggles to learn the local-
ity properties of both the language itself and the
source-target alignment (Hardmeier, 2012; Rizzi,
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2013). As a solution, Zhang et al. (2020) and Bao
et al. (2021) propose two slightly different mask-
ing methods that allow both the encoding of the
current sentence concatenated with context, and
the separate encoding of each sentence in window.
The representations generated by the two encoding
schemes are then integrated together, at the cost of
adding extra learnable parameters to the standard
Transformer architecture.

3 Proposed approach

3.1 Context discounting
Evidently, Equation 1 defines an objective function
that does not factor in the fact that we only care
about the translation of the current sentence xj ,
because the context translation will be discarded
during inference. Moreover, as discussed above,
we need attention to stay focused locally, relying
on context only for the disambiguation of relatively
sparse inter-sentential discourse phenomena that
are ambiguous at sentence level. Hence, we pro-
pose to encourage the model to focus on the trans-
lation of the current sentence xj by applying a
discount 0 ≤ CD < 1 to the loss generated by
context tokens:

LCD(x
j
K ,y

j
K) = CD·Lcontext + Lcurrent (2)

= CD·L(xj−1
K−1,y

j−1
K−1) + L(xj ,yj).

This is equivalent to consider an sKtoK con-
catenation approach as the result of a multi-task
sequence-to-sequence setting (Luong et al., 2016),
where an sKto1 model performs the reference task
of translating the current sentence given a concate-
nation of its source with K-1 context sentences,
while the translation of the context sentences is
added as a secondary, complementary task. The
reference task is assigned a bigger weight than the
secondary task in the multi-task composite loss. As
we will see in Section 4.5, this simple modification
of the loss allows the model to learn a self-attentive
mechanism that is less distracted by noisy context
information, thus achieving net improvements in
the translation of inter-sentential discourse phenom-
ena occurring in the current sentence (Section 4.3),
and helping concatenation systems to generalize to
wider context after training (Section 4.5.3).

3.2 Segment-shifted positions
Context discounting pushes the model to discrim-
inate between the current sentence and the con-

text. Such discrimination can be undertaken by
cross-referencing the information provided by two
elements: sentence separation tokens <S>, and sinu-
soidal position encodings, as defined in (Vaswani
et al., 2017). In order to facilitate this task, we
propose to provide the model with extra informa-
tion about sentence boundaries and their relative
distance. (Devlin et al., 2019) achieve this goal by
adding segment embeddings to every token repre-
sentation in input to the model, on top of token and
position embeddings, such that every segment em-
bedding represents the sentence position in the win-
dow of sentences. However, we propose an alterna-
tive solution that does not require any extra learn-
able parameter nor memory allocation: segment-
shifted positions. As shown in Figure 1, we apply a
constant shift after every separation token <S>, so
that the resulting token position is equal to its origi-
nal position plus a total shift depending on the cho-
sen constant shift and the index k = 1, 2, ...,K of
the sentence the token belongs to: t′ = t+k∗shift.
As a result, the position distance between tokens
belonging to different sentences is increased. For
example, the distance between the first token of the
current sentence and the last token of the preceding
context sentence increases from 1 to 1 + shift. By
increasing the distance between sinusoidal position
embeddings2 of tokens belonging to different sen-
tences, their dot product, which is at the core of the
attention mechanism, becomes smaller, possibly re-
sulting in smaller attention weights. In other words,
the resulting attention becomes more localized, as
confirmed by the empirical analysis reported in
Section 4.6.1. In Section 4.3, we present results
of segment-shifted positions, and then compare
them with both sinusoidal segment embeddings
and learned segment embeddings in Section 4.6.2.

4 Experiments

4.1 Setup3

We conduct experiments with two language pairs
and domains. For En→Ru, we adopt a document-
level corpus released by Voita et al. (2019), based
on OpenSubtitles2018 (with dev and test sets), com-
prised of 1.5M parallel sentences. For En→De, we
train models on TED talks subtitles released by
IWSLT17 (Cettolo et al., 2012). Models are tested

2Positions can be shifted by segment also in the case of
learned position embeddings, both absolute and relative. We
leave such experiments for future works.

3See Appendix A for more details.
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on IWSLT17’s test set 2015, while test-sets 2011-
2014 are used for development, following related
works in the literature.

Besides evaluating average translation qual-
ity with BLEU4 (Papineni et al., 2002) and
COMET5 (Rei et al., 2020), we employ two con-
trastive test suites for the evaluation of the transla-
tion of inter-sentential discourse phenomena. For
En→Ru, we adopt Voita et al. (2019)’s test suite for
evaluation on deixis, lexical cohesion, verb-phrase
ellipsis and inflection ellipsis. This test suite is com-
prised of a development set with examples of deixis
and lexical cohesion, that we adopted for a prelimi-
nary analysis of context discounting. For En→De,
we evaluate models on ambiguous pronoun transla-
tion with ContraPro (Müller et al., 2018), a large
contrastive set of ambiguous pronouns whose an-
tecedents belong to context. In order to validate the
improvements achieved by our approaches on the
test sets, we perform statistical significance tests,
detailed in Annex A.1.

We experiment with two models: 1) base: a
context-agnostic baseline following Transformer-
base (Vaswani et al., 2017); 2) s4to4: a context-
aware concatenation approach with the exact same
architecture as base, but that adopts sliding win-
dows of 4 concatenated sentences as source and
target. An implementation of these models and the
proposed approach can be found on github.6

4.2 Preliminary analysis

As a preliminary analysis, we evaluate the im-
pact of various values of context discounting
on the performance of concatenation approaches
with sliding windows, in order to choose one
value for all the subsequent experiments. We
train En→Ru s4to4 models with context dis-
counts ranging from 1 (no context discount-
ing) to 0 (context loss is completely ignored):
CD = 1.0, 0.9, 0.7, 0.5, 0.3, 0.1, 0.01, 0. We evalu-
ate these models on the development sets by means
of their average loss calculated over the current
target sentence (current loss) and the average accu-
racy on the disambiguation of discourse phenom-
ena. The results are plotted on Figure 2. We find
out that the stronger the context discounting, the
better the performance, with an improving trend
from CD = 1 to CD = 0.01. Performance drops

4Moses’ multi-bleu-detok (Koehn et al., 2007) for De,
multi-bleu for lowercased Ru as Voita et al. (2019).

5Default model: wmt20-comet-da.
6https://github.com/lorelupo/focused-concat
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Figure 2: Evaluation of En→Ru s4to4 trained with vari-
ous levels of context discounting, ranging from 1 to 0.
We plot the best current loss obtained by each model
on the development set (red), and its average accuracy
on the development portion of the contrastive set on
discourse phenomena (blue). In yellow, the average por-
tion of attention that is focused on the current sentence
(see Section 4.5.2).

on the extreme case of CD = 0, likely because too
much training signal is lost in this situation (all
the training signal coming from the context is com-
pletely ignored). As such, we set CD = 0.01 for all
of our following experiments.

4.3 Main results
Tables 1 and 2 display the main evaluation re-
sults measured in terms of accuracy on contrastive
test sets (Disc.) and BLEU, for the En→Ru and
En→De language pairs, respectively. We first ob-
serve that s4to4 is a strong context-aware base-
line as it improves accuracy on contrastive sets by
a large margin compared to the context-agnostic
base, as already reported by previous works (Voita
et al., 2019; Zhang et al., 2020; Lopes et al., 2020).

Average translation quality as measured by
BLEU is virtually the same for all models. Indeed,
our main focus is on contrastive evaluation of dis-
course translation, since average translation quality
metrics like BLEU have been repeatedly shown to
be ill-equipped to detect improvements in CANMT
(Hardmeier, 2012). Learned average translation
quality metrics like COMET might be more sensi-
tive to inter-sentential discourse phenomena when
applied at document-level, as we do. However,
COMET differences are also negligible: all models
perform on par according to statistical significance
tests, except for the En→Ru model with context
discount and segment shifting, that outperforms all
the others with statistical significance.

When evaluating the accuracy on inter-sentential
discourse phenomena, instead, we remark relevant
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En→Ru system Deixis Lex co. Ell. inf Ell. vp Disc. BLEU COMET

base 50.00 45.87 51.80 27.00 46.64 31.98 0.321
s4to4 85.80 46.13 79.60 73.20 72.02 32.45 0.329
s4to4 + CD 87.16* 46.40 81.00 78.20* 73.42* 32.37 0.328
s4to4 + shift + CD 85.76 48.33* 81.40 80.40* 73.55* 32.37 0.334*

Table 1: Accuracy on the En→Ru contrastive set for the evaluation of discourse phenomena (Disc., %), and BLEU
score on the corresponding test set. The accuracy on Disc. is detailed on its left with the accuracy on each of the
4 discourse phenomena evaluated in the contrastive set. The symbol * denotes statistically significant (p < 0.05)
improvements w.r.t. base and s4to4.

En→De system d = 1 d = 2 d = 3 d > 3 Disc. BLEU COMET

base 32.89 43.97 47.99 70.58 37.27 29.63 0.546
s4to4 68.89 74.96 79.58 87.78 71.35 29.48 0.536
s4to4 + CD 72.86* 75.96 80.10 84.38 74.31* 29.32 0.522
s4to4 + shift + CD 72.56* 77.15* 80.27 86.65 74.39* 29.20 0.528

Table 2: Accuracy on the En→De contrastive sets for the evaluation of discourse phenomena (Disc., %), and BLEU
score on the corresponding test sets. The accuracy on Disc. is detailed on its left with the accuracy on anaphoric
pronouns with antecedents at different distances d = 1, 2, ... (in number of sentences). The symbol * denotes
statistically significant (p < 0.05) improvements w.r.t. base and s4to4.

performance improvements. In fact, adding a 0.01
context discounting (+ CD) improves the accuracy
on all of the 4 discourse phenomena under evalua-
tion in En→Ru, and for all distances of pronoun’s
antecedents in En→De, with the sole exception of
d > 3, proving to be an effective solution. Adding
segment-shifted positions further improves perfor-
mance for 3 discourse phenomena out of 4, and for
pronouns with antecedents at distances d = 1, 2,
showing that sliding windows systems often ben-
efit from enhanced sentence position information
in order to achieve the discounted CANMT objec-
tive. For both language pairs, we adopt a segment-
shifting equal to the average sentence length, cal-
culated over the entire training corpus, i.e., +8 po-
sitions for En→Ru and +21 positions for En→De.
Experiments with other shifting values are reported
in Section 4.6.3.

As a further experiment, we apply our solutions
to concatenation models with concatenated
windows shorter than 4 sentences,7 and evaluate
them in the En→Ru setting. The results presented
in Table 3 show that context discounting is
effective for s2to2 and s3to3 too, while adding
segment-shifted positions only helps s2to2 + CD.
As in the case of s4to4, BLEU only displays
negligible fluctuations.

7We cannot evaluate with more sentences because 4 is the
maximum size of documents in the test sets specialized on
discourse phenomena.

System Disc. BLEU

s2to2 59.10 32.73
s2to2 + CD 60.28* 32.69
s2to2 + shift + CD 60.54* 32.41

s3to3 65.58 32.34
s3to3 + CD 67.02* 32.42
s3to3 + shift + CD 66.98* 32.45

Table 3: Accuracy on the En→Ru contrastive set for
the evaluation of discourse phenomena (Disc., %), and
BLEU score on the test set. The symbol * denotes
statistically significant (p < 0.05) improvements w.r.t.
s2to2/s3to3. Our approach is effective for different con-
catenation windows.

4.4 Benchmarking

For a wider contextualization of our results, we
compare in Table 4 our best system with other
CANMT systems from the literature. For the
En→Ru language pair, we compare with all the
systems from the literature that were trained and
evaluated under the same experimental conditions
as ours, to the best of our knowledge. In particular,
we report the results by Chen et al. (2021), Sun
et al. (2022)’ MR Doc2Doc, Zheng et al. (2020),
Kang et al. (2020)’s CADec + DCS-pf and Zhang
et al. (2020). All of them are sophisticated CANMT
systems that add extra trainable parameters to the
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System En→Ru En→De
Deixis Lex co. Ell. inf Ell. vp Disc. d=1 d=2 d=3 d>3 Disc.

Chen et al. (2021) 62.30 47.90 64.90 36.00 55.61 n.a. n.a. n.a. n.a. n.a.
Sun et al. (2022) 64.70 46.30 65.90 53.00 58.13 n.a. n.a. n.a. n.a. n.a.
Zheng et al. (2020) 61.30 58.10 72.20 80.00 63.30 n.a. n.a. n.a. n.a. n.a.
Kang et al. (2020) 79.20 62.00 71.80 80.80 73.46 n.a. n.a. n.a. n.a. n.a.
Zhang et al. (2020) 91.00 46.90 78.20 82.20 75.61 n.a. n.a. n.a. n.a. n.a.
Maruf et al. (2019) n.a. n.a. n.a. n.a. n.a. 34.70 46.40 51.10 70.10 39.15
Voita et al. (2018) n.a. n.a. n.a. n.a. n.a. 39.00 48.00 54.00 66.00 42.55
Stojanovski and Fraser (2019) n.a. n.a. n.a. n.a. n.a. 53.00 46.00 50.00 71.00 52.55
Lupo et al. (2022) n.a. n.a. n.a. n.a. n.a. 56.50 44.90 48.70 73.30 54.98
Müller et al. (2018) n.a. n.a. n.a. n.a. n.a. 58.00 55.00 55.00 75.00 58.13
s4to4 + shift + CD (ours) 85.76 48.33 81.40 80.40 73.56 72.56 77.15 80.27 86.65 74.39

Table 4: Benchmarking: accuracy (%) on the contrastive sets for the evaluation of discourse phenomena (Disc., %).

Transformer architecture. Despite being the sim-
plest and the only parameter free approach, our
method outperforms all the others on lexical cohe-
sion and noun phrase inflection based on elided con-
text, while it is only second to Zhang et al. (2020)
on deixis and verb-phrase ellipsis. BLEU scores
were not available for comparison on the same test
set, except for Zhang et al. (2020), which scored
31.84 BLEU points against the 32.45 BLEU points
of our method.

For the En→De language pair, we compare to
the literature performing evaluation on Müller et al.
(2018)’s test set and providing details about their
accuracy on pronouns with antecedents at d > 1. In
particular: Maruf et al. (2019)’s best offline system,
Stojanovski and Fraser (2019)’s pron-25→pron-0*,
Lupo et al. (2022)’s K1-d&r, Müller et al. (2018)’s
s-hier-to-2.tied and their evaluation of Voita et al.
(2018)’s architecture.8 All of these works but
Maruf et al. (2019) adopt the much larger WMT179

dataset for training. Despite this advantage, our sys-
tem outperforms each of them on all the discourse
phenomena under evaluation, by a large margin.

Notably, from this comparison it might seem
that our approach is proposed in opposition to the
others reported in Table 4, but it can actually be
complimentary to many of them, such as (Zhang
et al., 2020)’s, hopefully in a synergistic way. We
encourage future research to investigate this possi-
bility.

8Whenever the cited works present and evaluate multiple
systems, we compare to the best performing one. To the best
of our knowledge, we are including all the relevant works
available in the literature. BLEU scores are not compared
because, besides using different training data, the cited works
don’t adopt the same test set neither, with the sole exception
of (Lupo et al., 2022).

9http://www.statmt.org/wmt17/translation-task.html

4.5 Analysis of context-discounting
4.5.1 Loss distribution
In this section, we analyze the impact of context
discounting on the ability of the model to predict
the translation of the current sentence. On the left
side of Figure 3 we plotted the evolution along
training epochs of the loss calculated on the current
target sentence (current loss), for the En→Ru lan-
guage pair. The right side, instead, represents the
ratio between the current loss and the average loss-
per-sentence calculated on the context sentences be-
longing to the same sliding window. These results
support empirically our idea of context discounting
as a solution to improve model performance on the
current sentence. They also confirm that a strong
discounting works best. Interestingly, predictions
are improved on the current sentence (left) partially
as a result of a trade-off with context quality (right).
In fact, the current/context loss ratio of context-
discounted models increases along training even
when the current loss is decreasing, indicating that,
at the beginning of training, context discounting
pushes the model to only care about current pre-
dictions, but later it allows for good predictions
of the context too. Such behavior is in line with
the intuition that a good translation of the current
sentence, even if strongly prioritized, also requires
a good translation of the context. Otherwise, it is
not possible to systematically solve the translation
ambiguities referring to context.

4.5.2 Attention distribution
In this section we show some empirical evidence
in favor of our intuition that context-discounting
improves performance by helping the self-attentive
mechanism to be more focused on the current
sentence (less distracted by context). We analyzed
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Figure 3: Context discounting enables better predictions of the current sentence (lower validation loss, on the left) at
the expense of context sentences (lower current/context validation loss ratio, on the right). Language pair: En→Ru.

the distribution of the self-attention weights
generated by the queries belonging to the current
sentence (current queries), and how it is impacted
by context discounting. Figure 2 clearly shows
that context-discounting impacts the distribution
of attention weights by skewing it towards the
current sentence: a higher percentage of the total
attention from current queries is directed towards
tokens belonging to the (same) current sentence.
As expected, the higher the context-discounting,
the higher the portion of attention that is not
dispersed towards context. The limit case of
CD = 0 is not aligned with this trend, however.
We suspect that the attention distribution is more
flat in this case because the model encounters
learning difficulties due to the training signal
from the context being completely ignored (c.f.
Bao et al. (2021) on non-fully-converged models
having a flatter attention distribution).

4.5.3 Robustness

Figure 4 shows that the s2to2 model is not robust
to the translation of concatenation windows longer
than those seen during training, i.e. longer than 2
sentences. Indeed, s2to2 loses 9.23 BLEU points
when translating the same test set with windows of
3 sentences, and 12.14 BLEU points when trans-
lating with windows of 4. Instead, the context dis-
counted model (blue bars) is very robust to unseen
context lengths, being capable of translating them
with minor degradation in average translation qual-
ity (−0.68 and−1.06 BLEU points for windows of
3 and 4, respectively). We observe a similar trend
for s3to3, that loses 1.74 BLEU points when tested
with windows of size 4, but recovers completely
when equipped with context-discounting. The in-
creased robustness of the concatenation models
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Figure 4: Our approach improves robustness of En→Ru
s2to2 to window sizes unseen during training.

w.r.t. context size suggests once again that con-
text discounting helps the models focusing on the
current sentence.

4.6 Analysis of segment-shifted positions

4.6.1 Attention distribution
As a complementary evaluation, we tested if
segment-shifted positions work as intended, i.e., by
helping context-discounted models to learn the lo-
cality properties of both the language itself and the
source-target alignment (Hardmeier, 2012; Rizzi,
2013). In other words, we expect segment-shifted
positions to result in a more localized attention-
distribution, in each of the sentences belonging to
the concatenated sequence. To this aim, we com-
puted the average entropy of the distribution of
attention weights generated by all queries (both
from current and context sentences), in both self
and cross-attention. Results are shown in Table 5:
context-discounting slightly reduces the average
entropy, and this effect is amplified with the adop-
tion of segment-shifted positions. Segment-shifted
positions make attention more focused locally, as
intended, which explains why the job of context
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System Attn entropy

s4to4 2.293
s4to4 + CD 2.276
s4to4 + shift + CD 2.251

Table 5: Average entropy of self and cross-attention
weights decreases with the help of context-discounting
and segment-shifted positions. All of the three values
are different from one another with statistical signifi-
cance (p<0.01).

En→Ru En→De
System Disc. BLEU Disc. BLEU

s4to4 + shift + CD 73.56 32.45 74.39 29.20
s4to4 + lrn + CD 73.68 32.45 72.14 28.35
s4to4 + sin + CD 73.48 32.53 73.88 29.23

Table 6: Comparison between segment-shifted positions,
learned segment embeddings and sinusoidal segment
embeddings. Approaches are evaluated with accuracy
on contrastive sets for the evaluation of discourse phe-
nomena (Disc., %), and BLEU score on test sets. Dif-
ferences across models are not statistically significant
(p>0.05), except for s4to4+lrn+CD on En→De.

discounting is eased by this solution.

4.6.2 Comparison with segment-embeddings

In this section we compare our parameter-free ap-
proach to include explicit information on segment
position (segment-shifted positions), with learned
segment embeddings (Devlin et al., 2019), and
sinusoidal segment embeddings. The latter are
added to token and position embeddings at input,
in the very same way as learned segment embed-
dings, with the only difference that their parame-
ters are not learned but defined in the same way
as sinusoidal position embeddings (Vaswani et al.,
2017). In order to evaluate which approach helps
best with context-discounting, we trained a context-
discounted concatenation model with learned seg-
ment embeddings (s4to4+lrn+CD), and one with si-
nusoidal segment embeddings (s4to4+sin+CD), and
compared them with s4to4+shift+CD. The results
reported in Table 6 do not display any statistically
significant differences across the three alternatives
(p>0.05), except for learned embeddings, that un-
derperform with statistical significance the other
two variants on En→De. Instead, sinusoidal seg-
ment embeddings are competitive with segment-
shifted positions on both language pairs. We leave
a more in-depth analysis of segment-embeddings
for concatenation approaches to future works.

System Shift Disc. BLEU

s4to4 + shift + CD 100.00 73.46 32.41
s4to4 + shift + CD avg-sequence 73.86 32.37
s4to4 + shift + CD avg-corpus 73.56 32.45

Table 7: Accuracy on the En→Ru contrastive set for
the evaluation of discourse phenomena (Disc., %), and
BLEU score on the test set. Differences across models
are not statistically significant (p>0.05).

4.6.3 Segment-shifting variants

In the experiments reported above, we always adopt
a shifting value equal to the average sentence length
calculated over the entire training corpus (avg-
corpus), i.e., +8 positions for En→Ru, +21 po-
sitions for En→De. In this section we evaluate two
alternative strategies for the selection of the shifting
value: 1) applying a big shift of 100 units, one or-
der of magnitude bigger than the average sentence
length in the corpus (100); 2) applying a shifting
value equal to the average sentence length of each
window, calculated dynamically for each window
of 4 concatenated sentences (avg-sequence). The
results of this study are reported in Table 7. We do
not observe relevant differences in average transla-
tion quality (BLEU) nor accuracy on the translation
of discourse phenomena, and therefore confirm that
the avg-corpus approach is a good alternative.

5 Conclusions

We presented a simple, parameter-free modification
of the NMT objective for context-aware translation
with sliding windows of concatenated sentences:
context discounting. We analyzed the impact of
our approach in the trade-off between current sen-
tence predictions and context sentence predictions,
showing that context discounting helps the model
to focus on the current sentence, as intended. As
a result, the concatenation model significantly im-
proves its ability to disambiguate inter-sentential
discourse phenomena, and becomes more robust
to different context sizes. As an additional induc-
tive bias towards locality, we equipped our model
with segment-shifted positions, marking more ex-
plicitly the boundaries between sentences. This
solution brings further improvements on targeted
evaluation metrics. In the attempt of explaining
the empirical functioning of the proposed solutions,
we analysed their impact on the distribution of the
attention weights, showing that they make it more
focused and skewed towards the current sentence,
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as intended.

Limitations and future works

Our experiments are limited to the use case of
short concatenated windows (up to 4 sentences).
This is enough for capturing most of the ambigu-
ous inter-sentential discourse phenomena, that usu-
ally span across a few sentences only (Müller
et al., 2018; Voita et al., 2019; Lupo et al., 2022).
However, recent works suggest that longer con-
text windows might be helpful to increase aver-
age translation quality (BLEU) of concatenation
approaches (Junczys-Dowmunt, 2019; Bao et al.,
2021; Sun et al., 2022), and long-range discourse
phenomena could be handled. We hope to investi-
gate the impact of context discounting on longer se-
quences in future works. We also encourage to test
the effectiveness of our approach on a wider range
of data scenarios: from very limited document-
level data to very abundant, including back transla-
tion (Ma et al., 2021) and monolingual pre-training
techniques (Junczys-Dowmunt, 2019; Sun et al.,
2022), to understand whether these methods are
only alternative to context discounting or there exist
synergies. Furthermore, experimenting with future
context is also needed (c.f. Wong et al. (2020)).
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A Details on experimental setup

All models are implemented in fairseq (Ott et al.,
2019) and follow the Transformer-base architec-
ture (Vaswani et al., 2017): hidden size of 512, feed
forward size of 2048, 6 layers, 8 attention heads, to-
tal 60.7M parameters. They are trained on 4 Tesla
V100, with a fixed batch size of approximately 32k
tokens for En→Ru and 16k for En→De. As it has
been shown that Transformers need a large batch
size for achieving the best performance (Popel and
Bojar, 2018). We stop training after 12 consecu-
tive non-improving validation steps (in terms of
loss on dev), and we average the weights of the
5 checkpoints that are closest to the best perform-
ing checkpoint, included. We train models with
the optimizer configuration and learning rate (LR)
schedule described in Vaswani et al. (2017). The
maximum LR is optimized for each model over
the search space {7e− 4, 9e− 4, 1e− 3, 3e− 3}.
The LR achieving the best loss on the validation
set after convergence was selected. We use label
smoothing with an epsilon value of 0.1 (Pereyra
et al., 2017) for all settings. We adopt strong model
regularization (dropout=0.3) following Kim et al.
(2019) and Ma et al. (2021). At inference time, we
use beam search with a beam of 4 for all models.
We adopt a length penalty 0.6 for all models. The
other hyperparameters were set according to the
relevant literature (Vaswani et al., 2017; Popel and
Bojar, 2018; Voita et al., 2019; Ma et al., 2021;
Lopes et al., 2020).

A.1 Statistical hypothesis tests

We perform statistical hypothesis testing with Mc-
Nemar’s test McNemar (1947) for comparing ac-
curacy results on the contrastive test sets. For com-
paring BLEU performances and mean entropy (Ta-
ble 5), we use approximate randomization (Riezler
and Maxwell, 2005) with 10000 and 1000 permu-
tations, respectively. For COMET, the official li-
brary10 has a built in tool for the calculation of
statistical significance with Paired T-Test and boot-
strap resampling (Koehn, 2004).

10https://github.com/Unbabel/COMET

B Details on experimental results

In this section, we report more details about the
results presented in our Tables.

B.1 Evaluation of the translation of discourse
phenomena

For each model that we evaluated by its accuracy on
the contrastive sets for the evaluation of discourse
phenomena (Disc., %), we include in Table 8 the
accuracy achieved on the different subsets of the
contrastive sets, as already done for Tables 1, 2 and
4. For the En→Ru set (Voita et al., 2019), we report
the accuracy on each of the 4 discourse phenomena
under evaluation; for the En→De test set (Müller
et al., 2018), the accuracy on anaphoric pronouns
with antecedents at different distances d = 1, 2, ...
(in number of sentences). As it can be noticed, our
approach mostly outperform baselines and other
variants on the majority of the evaluation subsets.
We also include the column Discavg, which is cal-
culated, for both language pairs, as the average of
the 4 columns before the vertical dashed line.

Disc. =
d1 ∗ 7075 + d2 ∗ 1510 + d3 ∗ 573 + (d > 3) ∗ 442

9600
,

Discavg =
d1 + d2 + d3 + d > 3

4
.

Discavg represents the average accuracy on
the disambiguation of the discourse phenomena
present in the contrastive sets, as if they were all
present with the same frequency. Instead, Disc.
represents the overall accuracy on the contrastive
set, which is equivalent to the average over the
same 4 columns, but weighted by the sample size
(last row) of each penomenon represented by the
columns. While Disc. is a proxy of the ability to
correctly translate a distribution of inter-sentential
discourse phenomena as represented in the con-
trastive set, Discavg is a proxy for the average abil-
ity to translate each of the inter-sentential phenom-
ena under evaluation. Interestingly, Discavg cap-
tures more evidently than Disc. the improvement
achieved by adding segment-shifted positions to
the context-discounted concatenation models. Fi-
nally, Discall−d is calculated like Disc. but it also
take into account pronouns whose antecedent be-
long to the same sentence (d = 0, i.e., they don’t
require context).
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En→Ru En→De

System Deixis Lex co. Ell. inf Ell. vp Disc. Discavg d=0 d=1 d=2 d=3 d>3 Disc. Discavg Discall−d

base 50.00 45.87 51.80 27.00 46.64 47.67 68.75 32.89 43.97 47.99 70.58 37.27 48.86 43.57
s4to4 85.80 46.13 79.60 73.20 72.02 71.18 75.20 68.89 74.96 79.58 87.78 71.35 77.80 72.12
s4to4 + CD 87.16 46.40 81.00 78.20 73.42 73.19 76.66 72.86 75.96 80.10 84.38 74.31 78.33 74.78
s4to4 + shift + CD 85.76 48.33 81.40 80.40 73.56 73.97 75.25 72.56 77.15 80.27 86.65 74.39 79.16 74.56
s4to4 + sin + CD 87.96 46.80 78.00 76.60 73.48 72.34 76.75 71.83 76.82 80.97 87.55 73.88 79.29 74.46
s4to4 + lrn + CD 88.12 46.47 81.20 75.60 73.68 72.85 73.91 70.21 75.29 77.66 85.06 72.14 77.06 72.49
s4to4 + 100 + CD 85.60 48.73 80.80 79.60 73.46 73.68 n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a.
s4to4 + avg-seq + CD 84.84 46.20 77.60 73.00 71.34 70.41 n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a.
s2to2 61.84 46.07 74.60 69.00 59.10 62.88 n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a.
s2to2 + CD 62.88 46.27 78.00 71.60 60.28 64.69 n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a.
s2to2 + shift + CD 62.60 46.60 81.20 71.40 60.54 65.45 n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a.
s3to3 73.52 45.87 78.00 72.60 65.58 66.45 n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a.
s3to3 + CD 73.88 46.80 82.40 78.00 67.02 67.45 n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a.
s3to3 + shift + CD 75.24 46.07 79.40 76.00 66.98 68.45 n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a.
Chen et al. (2021) 62.30 47.90 64.90 36.00 55.61 52.78 n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a.
Sun et al. (2022) 64.70 46.30 65.90 53.00 58.13 57.48 n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a.
Zheng et al. (2020) 61.30 58.10 72.20 80.00 63.30 67.90 n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a.
Kang et al. (2020) 79.20 62.00 71.80 80.80 73.46 73.45 n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a.
Zhang et al. (2020) 91.00 46.90 78.20 82.20 75.61 74.58 n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a.
(Maruf et al., 2019) n.a. n.a. n.a. n.a. n.a. n.a. 68.60 34.70 46.40 51.10 70.10 39.15 50.58 45.04
(Müller et al., 2018) n.a. n.a. n.a. n.a. n.a. n.a. 75.00 39.00 48.00 54.00 66.00 42.55 51.75 49.04
(Stojanovski and Fraser, 2019) n.a. n.a. n.a. n.a. n.a. n.a. 74.00 53.00 46.00 50.00 71.00 52.55 55.00 56.84
(Lupo et al., 2022) n.a. n.a. n.a. n.a. n.a. n.a. 81.10 56.50 44.90 48.70 73.30 54.98 55.85 60.21
(Müller et al., 2018) n.a. n.a. n.a. n.a. n.a. n.a. 65.00 58.00 55.00 55.00 75.00 58.13 60.75 59.51

Sample size 2500 1500 500 500 5000 5000 2400 7075 1510 573 442 9600 9600 12000

Table 8: Accuracy on contrastive sets for the evaluation of discourse phenomena (Disc., %) and on their subsets:
for En→Ru, the accuracy on each of the 4 discourse phenomena under evaluation; for En→De, the accuracy on
anaphoric pronouns with antecedents at different distances d = 1, 2, ... (in number of sentences). Discall−d, includes
also d = 0. Discavg denotes the average of the 4 accuracies before the dashed line.
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Abstract

For the most part, NLP applications operate at
the sentence level. Since sentences occur most
naturally not on their own but embedded in doc-
uments, they must be extracted and segmented
via the use of a segmenter, of which there are a
handful of options. There has been some work
evaluating the performance of segmenters on
intrinsic metrics, that look at their ability to re-
cover human-segmented sentence boundaries,
but there has been no work looking at the ef-
fect of segmenters on downstream tasks. We
ask the question, “does segmentation matter?"
and attempt to answer it on the task of machine
translation. We consider two settings: the in-
ference scenario, where sentences are passed
into a black-box system whose training seg-
mentation is mostly unknown, and the train-
ing setting, where researchers have full control
over the process. We find that the choice of
segmenter largely does not matter, so long as
its behavior is not one of extreme under- or
over-segmentation. For such settings, we pro-
vide some qualitative analysis examining their
harms, and point the way towards document-
level processing.

1 Introduction

Contemporary machine translation assumes a
sentence-level paradigm. However, data doesn’t
exist naturally at the sentence level, requiring the
use of automatic segmenters to split the data at
both training and inference time. Training data
is prepared with the use of sentence segmenters,1

which are preprocessing steps that occur prior to
alignment and bitext creation. At test time, de-
ployed models also require the use of a segmenter.
Many times, for downloaded models, especially,
this inference-time application must be made with-
out knowing what segmenter was used to train the
model, introducing a potential misalignment or dis-
crepancy and resulting performance degradation.

1Sometimes called sentence breakers.

Sentence segmentation itself has received only a
little attention in the research literature, although
there has been a recent uptick (Moore, 2021; Wicks
and Post, 2021). But to our knowledge, no work
has been done investigating the effects of segmenta-
tion on machine translation. In fact, most research
papers do not deal with the question at all, rely-
ing as they do on pre-segmented parallel data for
both training and test time. This is a practical prob-
lem for deployment scenarios, where segmentation
must be considered. It is also a deeper problem,
since segmentation is ultimately a modeling deci-
sion that should be noted and made available with
any published models, such as is done for other
modeling decisions affecting input text, such as
normalization, tokenization, and subword process-
ing.

To understand whether and to what extent seg-
mentation matters, we ask a series of questions: (1)
What segmenter is best used at inference time? (2)
When training a model, how important is the choice
of segmenter? We break down this last question
into two settings: (i) the standard training proce-
dure in which sentences from parallel documents
are aligned (Gale and Church, 1993), and (ii) more
recent “mining” approaches, which use sentence
representations to find sentence pairs without re-
gard for document boundaries.

We find that

• for two black-box models trained with un-
known segmentation, inference-time segmen-
tation largely does not matter;

• when training new models, more aggres-
sive segmentation generally produces better
models, but these models are less robust
to training-/inference-time segmentation mis-
match;

• Global bitext mining approaches generally
outperform document-based alignment tech-
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niques, but the latter is more robust to under-
segmented data at inference.

2 Evaluation

Our research questions address two scenarios. In
the first, a researcher has downloaded a shared
model and wishes to use it to translate new data. In
many instances—perhaps most—the providers of
the model have neither shared nor reported what
segmenter they used. Likely the model was trained
on “standard” provided datasets such as those from
WMT. We would like to have some understanding
of the effect of different segmentations when we
don’t have control over the training segmentation.

Alternatively, we have a “glass box” model. In
this setting, we are training the model, and have
full flexibility over the choice of segmentation. By
reconstructing the entire NMT pipeline with seg-
mentation as the first step of dataset preprocessing,
the researcher has complete control over the result-
ing model. This settings provides us with a more
granular look at the effect of segmenter choice.

2.1 Metric Settings
In order to evaluate in either of these settings, we
need to address a difficulty: automatic metrics
for machine translation, whether source-based or
reference-based, compare the machine translation
output for sentences on a pre-segmented. For ex-
ample, the WMT20 en-de test set (Barrault et al.,
2020) has 1,418 pre-segmented sentences,2. In or-
der to evaluate the effect of segmenters, we need to
run three steps:

1. Remove the provided segmentation

2. Re-segment and translate

3. Align the translation outputs to the original
references

This alignment step is necessary because metric
scores cannot be compared across different refer-
ence segmentations. And it is complicated because
we have no guarantee that the new segmentation
will line up cleanly with the existing one.

We address this problem with three different
alignment approaches.

Preserve keeps the provided segmentation, skip-
ping step (1) above. Segmenters are applied to each
sentence separately. It is easy to restore the original

2In en-de the “sentences" are typically several sentences
to promote document translation

segmentation by simply keeping track of the num-
ber of sub-splits that were created with each line.
On the downside, it does not allow the segmenter
its full flexibility.

Document is possible when the sentences of a
test set are grouped into documents. In this setting,
step (1) above is done, but only at the document
level. The segmenter is applied to the sentences in
each document. Step (3) is undertaken by treating
each document as a single line. Because of this,
the number of references changes, and numbers
computed from this approach cannot be compared
to the other two.

Realign provides full flexibility to each seg-
menter. For step (3), we concatenate all outputs,
and then align its words to the original reference
segmentation using a search algorithm described in
Section 2.2.

As many of the test sets originate from news
articles and include header information (which typ-
ically includes a designated line break), we addi-
tionally insert sentence-final punctuation where it is
not provided. This allows all segmenters to recover
this segmentation.

2.2 Aligning outputs to references

Assume a source sequence (S) comprising tokens
(s1, s2, s3, ...sn), which aligns to reference ri and
a subsequent source sequence (T ) comprised of
(t1, t2, t3, ....tm), which aligns to reference rj . In
the released test set, there exists an explicit seg-
mentation between sn and t1. If we maintain this
segmentation, the realignment of the translated to-
kens is obvious: any sub-sequence spawned from
S aligns to ri and we can re-concatenate the trans-
lations for scoring.

However, in production, there isn’t an explicit
segmentation between these tokens. Therefore,
to give the segmenters the full degree-of-freedom
that one would find in production, we must re-
move these segmentations. In this scenario, a seg-
menter may create the subsequences of (s1, s2, s3),
(s4, ...sn, t1, t2), and (t3, t4, ...tm). Translation
can also re-order tokens which makes the re-
alignment non-obvious.

The realignment can be reduced to a search prob-
lem. To limit the search, we can impose hard con-
straints on the alignment based on subsequence
matching. The field of Biomedical Engineering
has a similar problem when trying to align two
similar (but not identical) DNA sequences. We
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This is an example sequence . While this is a following sentence . Where will this align ?

r1 r2 r2

Reference:

Input stream: Here I’ll an example sentence , but there is a next sentence . How will we align this ?give

Hard 

Constraints:
r1 r1 r2 r2 r2 r2 r3 r3___ _ _ _ _ _ _ _ _ _

Sub-search over {r1} Sub-search over {r1,r2} Sub-search over {r2} Sub-search over {r2, r3} Sub-search over {r3}

Figure 1: Example of the realignment method. Top row indicates the reference with grouped tokens each belonging
to r1, r2, and r3. The hard constraints are determined via longest subsequence matching (indicated with underlines).
Note that not all matching surface forms may be determined as hard constraints based on token ordering. These hard
constraints fix certain alignment points so the search algorithm (described in Section 2.2) has a limited reference set.

use an off-the-shelf capability3 which maximizes
subsequence matching length. This aligns some
tokens to references so we search between the al-
ready aligned tokens. This is further illustrated in
Figure 1.

Between a start and end token (ti and tj respec-
tively) that are aligned to two references (rx and
ry), we search for the best alignment of all interme-
diate tokens (tk such that i < k < j) to a reference
(rz such that x < z < y). Plainly, this maintains
a monotonicity: subsequent tokens can only be
aligned to the same or a future reference.

We additionally require alignments to be con-
secutive sequences–no produced alignment to a
reference can be a subsequence of an alignment to
a different reference.

We optimize the alignment via the following
costs:

• Length-Ratio: An optimal alignment should
be the same length as the reference. This fea-
ture is the ratio of the shorter sequence to the
longer sequence.

• Final Punctuation: A binary feature that de-
termines if the aligned sentence and the origi-
nal reference both end in punctuation.

• N-gram Probability: For unigrams and bi-
grams, the p(tk|rz) or p(tk−1, tk|rz), respec-
tively.

• Start Word: A binary feature that determines
if the aligned sentence and the original refer-
ence both start with the same word.

• End Word: A binary feature that determines
if the aligned sentence and the original refer-
ence both end with the same word.

3https://biopython.org

• Initial Capitalization: A binary feature that
determines if the aligned sentence and the
original reference both start with a capitalized
word.

We let the alignment cost be:

ak =
k∑

i=0

ai +
∑

j

wj ∗ fj(alignment of tk)

where wj is an associated weight on feature fj . We
perform a beam search with these features, expand-
ing with each token tk.

We use this methodology to re-align translations
to references when the original segmentations are
not maintained. We also note that this technique
and toolkit can be used to reproduce alignments in
other fields when the model’s segmentation is not
identical to that of the test sets as one might see in
speech translation.

3 Experimental Setup

We focus on our investigation on English and Ger-
man. We make this choice because this language
pair has sufficient document-level information in
datasets released by WMT. For many language
pairs, datasets with true document pairs do not
exist. A wider consideration of language pairs
is not possible without further work to cultivate
document-pair datasets.

Given document pairs in German and English,
we extract sentences with a variety of segmenters
and apply a typical document-based aligner to cre-
ate bitext. Each segmenter creates a unique training
set which we use to train a neural machine transla-
tion model.

Traditional alignment methodologies assume
true document pairs. A search through both the
source and target assumes alignments will be found
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in roughly sentence order. Vecalign (Thompson
and Koehn, 2019) is an example of one of these
document-based aligners. This method has the
benefit of being capable of recovering erroneous
segmentation because over-segmented sequences
will still be consecutive during the search.

The growing field of bitext alignment has created
new trends that search for sentence pairs outside the
context of a document. One method of extracting
sentences from all documents and searching glob-
ally for a sentence pair has created massive datasets
such as CCMatrix (Schwenk et al., 2021b), Wiki-
Matrix (Schwenk et al., 2021a), and CCAligned
(El-Kishky et al., 2020). To compare the effects
of segmentation in conjunction with both align-
ment techniques, we train models on data produced
from all segmenters using both a document-based
alignment method and a global, context-less based
aligner.

3.1 Data
German–English has three datasets that preserve
document-level boundaries in German-English—
Europarl v10.4 News Commentary v16.5 and
DGT6 available through OPUS (Tiedemann, 2012).
We find these datasets sufficient to train NMT mod-
els without other supplementary data.

Europarl comes from proceedings of the Euro-
pean Parliament. Aligned sentences are released
as well as document IDs. The aligned sentences
are roughly sentence-level. News Commentary is
similarly produced from news articles.

DGT is a set of manually produced transla-
tions released by the European Commission’s
Directorate-General for Translation (DGT) from
their translation memory. This dataset has substan-
tial over-segmentation where one clause or phrase
may be segmented onto its own line.

We use the Workshop on Machine Translation
2020 (WMT20) news task test sets and sacre-
BLEU7 (Post, 2018) to score.

The sizes of the data before and after segmenta-
tion are available in Table 6 in the Appendix.

3.2 Segmentation models
We compare the following segmenters:

4https://www.statmt.org/europarl/v10/
training/

5https://data.statmt.org/
news-commentary/v16/training/

6https://opus.nlpl.eu/DGT.php
7We considered COMET (Rei et al., 2020) as an alternative

but did not find significant differences in trends

• ORIGINAL: The provided segmentations.

• ALWAYS: An over-segmentation approach
that treats every piece of potentially sentence-
ending punctuation as unambiguous.

• ERSATZ: A neural model that uses context
windows to produce segmentations (Wicks
and Post, 2021).

• MOSES: Always splits on punctuation, un-
less the previous token is in a pre-defined list
of acronyms and abbreviations (Koehn et al.,
2007).

• PUNKT: An unsupervised approach that uses
thresholding to produce segmentations based
on features such as casing, token length, and
word frequency (Kiss and Strunk, 2006).

• SPACY: A “Rule-based” technique that varies
on language.8

• PAIRS: The DGT dataset is oversegmented,
and many lines contain less than one whole
sentence. Lines must be merged in order to
have complete sentences. In this setting, we
merge the original bitext (instead of insert-
ing segmentations). To implement, we simply
combine every two lines together and treat as
one “sentence." This merging also adds many-
to-many sentence alignments for training in
the Europarl and News Commentary datasets.
We only consider this "segmentation" method
at training as the test data is sufficiently un-
dersegmented.

4 Segmentation at Inference with a Black
Box System

In order to replicate a real-world use-case, we use
an off-the-shelf pre-trained model. Datasets used
to train these models are reported, but for the most-
part, segmentation is unknown. We consider test
sets in a variety of language pairs9 for comprehen-
siveness. For model consistency, we chose a multi-
lingual NMT model. We use the Prism (Thompson
and Post, 2020) as a blackbox translation model,

After applying the segmentation methods de-
scribed in Section 2, we translate with Prism.

8v2.3.5, https://spacy.io
9cs-en, de-en, en-cs, en-de, en-pl, en-ru,

en-zh, pl-en, ru-en, zh-en
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PRESERVE REALIGN DOCUMENT
PRISM PRISM PRISM

ORIGINAL 27.1 27.5 28.9
ALWAYS 28.7 29.1 30.5
ERSATZ 29.0 29.4 30.8
MOSES 29.0 29.5 30.8
PUNKT 29.0 29.4 30.8
SPACY 28.7 29.3 30.6

Table 1: PRESERVE maintains original segmentations
before applying the segmenter and aligns all produced
sentences to the original corresponding reference. DOC-
UMENT removes segmentations from the original source
before applying segmenter and aligns all translations to
a single reference sentence (the entire document). RE-
ALIGN removes original segmentations and applies the
alignment technique in Section 2.2 before scoring. Note
that columns are not directly comparable. Differences
between segmenters are not statistically significant.

We report results in Table 1 by averaging BLEU
scores across the languages. As shown in the ta-
ble, different segmenters are consistent within each
alignment technique. The original test sets from
some language pairs (namely cs-en, en-cs,
de-en, and en-de) were undersegmented in the
release to encourage document-level MT. For this
reason, the average with the ORIGINAL segmenta-
tion is lower—the Prism model trained primarily
on sentence-level data does not generalize as well
to multiple sentence inputs. PRESERVE and RE-
ALIGN have the same number of references while
DOCUMENT doesn’t. PRESERVE and REALIGN

are more directly comparable but REALIGN still
may introduce realignment errors. DOCUMENT

is used as an additional score to contextualize the
performance. More about the realignment method-
ologies is in Section 2.

5 Segmentation at Training with a Glass
Box System

Segmentation occurs at an early stage in the NMT
pipeline, so it is intuitive to think it could have a
large effect: Incorrect segmentations can lead to
incorrect alignments; incorrect alignments lowers
the quality of the training data; and low quality
training data will produce worse models.

In order to study the effects on training, we recre-
ate the NMT pipeline by segmenting documents
and aligning bitext to train models. We apply each
segmenter to the training data resulting in a new
unique set of “sentences" for each segmenter. We
can then align these sentences to create a unique

dataset.

5.1 Document-based Alignment

The standard training paradigm for machine trans-
lation identifies bilingual document pairs, segments
the sentences on both sides, and then aligns. The
alignments are ideally one-to-one, but often many-
to-one (or one-to-many) alignments are also permit-
ted. The product of this is (ideally) tens of millions
of sentence pairs that can be used to train machine
translation models.

To replicate this, we take monolingual datasets
that we know to contain parallel documents. The
document alignment is known and labelled. Using
these document alignments, we segment and manu-
ally re-align the sentences using a document-based
aligner.

The document-based aligner we use is Ve-
calign (Thompson and Koehn, 2019) which uses
LASER10 (Artetxe and Schwenk, 2019) sentence
embeddings to compute alignment and also consid-
ers many-to-one or one-to-many alignments. This
system is a document aligner because it aligns
within document context–considering surround-
ing sentences for many-to-one (or one-to-many)
alignments and also constrains the search to align-
ments along the diagonal (i.e., sentences aligned to
each other should occur within a similar placement
within their documents).

The number of sentences recovered from the
alignment, as well as the average length of source
and target in the resulting dataset is shown in Table
2. The difference in size of the resulting datasets is
important to note and likely explains the differences
in models.

5.2 Global Search Alignment

Recent releases of WikiMatrix (Schwenk et al.,
2021a), CCMatrix (Schwenk et al., 2021b), and
CCAligned11 (El-Kishky et al., 2020) have in-
creased the scaling of bitext mining by doing away
with the need for bilingual documents.

These techniques extract sentences from mono-
lingual data and attempt to align them with tech-
niques by combining sentence embeddings and
clever search algorithms. In such settings, it stands
to reason that proper segmentation might be even

10https://github.com/facebookresearch/
LASER

11CCAligned somewhat limits the globalness of the search
by aligning pseudo documents based on domains.
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Unaligned Aligned Bitext

Document-Based Global Search

total sents toks avg. sents toks avg.

ORIGINAL
7.5M 7.3M 183.8M 25.0 5.3M 155.1M 29.4
8.3M 182.6M 24.9 150.9M 28.6

ALWAYS
6.5M 5.2M 177.1M 33.8 4.1M 144.6M 35.5
5.9M 188.5M 35.9 150.1M 36.8

ERSATZ
4.9M 4.5M 181.2M 40.4 3.9M 155.3M 39.8
5.1M 184.5M 41.1 154.8M 39.7

MOSES
4.7M 4.3M 182.2M 41.9 3.7M 155.9M 41.8
5.2M 181.8M 41.8 153.1M 41.1

PUNKT
5.0M 4.5M 181.7M 40.1 3.9M 157.0M 39.9
5.3M 183.4M 40.5 155.5M 39.5

SPACY
5.8M 5.4M 183.1M 34.0 4.5M 154.7M 34.0
6.5M 182.3M 33.9 150.7M 33.1

PAIRS
3.7M 3.6M 183.8M 51.5 3.0M 160.1M 53.2
4.2M 185.2M 51.9 156.7M 52.1

Table 2: Training data sizes before (left, Unaligned) and after (right, Aligned Bitext) segmentation and alignment.
For each row, the top number denotes the source (de) size while the bottom denotes the target (en) size. For each
segmentation method, displays the total number of retrieved sentence pairs, the total number of tokens (based on
white-space), and the average number of tokens in a sentence.

more important, since all alignments are one-to-
one. The scaling potential of this technique allows
for massive datasets with billions of aligned sen-
tences to produced in many languages. We use the
same toolkit used to produce these datasets which
uses LASER embeddings and FAISS indexing for
quick retrieval.12

5.3 Experimental Details

We train a 32,000 joint unigram subword vocab-
ulary using SentencePiece13 (Kudo, 2018; Kudo
and Richardson, 2018) using the original data. We
use a Transformer (Vaswani et al., 2017) architec-
ture with 6 encoder and 6 decoder layers. We train
with a batch size of 16k tokens validating at the
end of each epoch and stopping if the validation
has not improved after 10 validations. We vali-
date on WMT19 test sets (with original segmenta-
tions). For a comprehensive list of hyperparame-
ters, please Table 7 in the Appendix.

5.4 Results

The amount of data produced by each segmenter
and alignment method varied significantly. Data
quantity after segmentation and alignment is dis-
played in Table 2. Vecalign is fairly consistent
in the amount of data aligned—roughly 180M to-
kens with ALWAYS creating the highest variance.

12https://github.com/facebookresearch/
LASER/blob/main/source/mine_bitexts.py

13https://github.com/google/
sentencepiece

Vecalign also produces more data in terms of num-
ber of sentences compared to the alternative global
search method. The global search also varies more
significantly with a 10M token difference between
the smallest and largest datasets (excluding AL-
WAYS).14

We compute the full cross-product of segmenta-
tions at training and inference. Results are reported
in Table 3. Once again, we find that within a given
model, performance is relatively consistent at in-
ference regardless of segmentation. The exception
is the ORIGINAL row as these inputs are under-
segmented. This strong mismatch between training
and testing points to hallucinations which are fur-
ther explored in Section 6.

Generally, we see more variation in model perfor-
mance based on training data segmentation rather
than inference segmentation. One of the best per-
forming models was the model trained on the ORIG-
INAL data—made by preserving the original seg-
mentations. The prominent feature of its training
data was the prevalence of sub-sentence segmenta-
tions. We hypothesize this helped in two ways: 1)
it was not reliant on a strong end-of-sentence signal
(§ 6) and 2) the true alignments were more likely
to exist in the training set. If errors in segmentation
make alignment difficult, it is beneficial to have
segments that are guaranteed to correctly align to
something. Because the DGT dataset was transla-

14The default mine_bitexts.py setting was used for
LASER. The parameters for Vecalign are listed in Table 8 in
the Appendix.
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ORIGINAL ALWAYS ERSATZ MOSES PUNKT SPACY PAIRS
Vec. Global Vec. Global Vec. Global Vec. Global Vec. Global Vec. Global Vec. Global

ORIGINAL 25.6 24.9 24.7 16.4 25.0 9.4 22.1 9.8 25.0 11.6 23.8 8.7 28.2 28.9
ALWAYS 31.2 31.7 30.8 31.2 30.4 31.3 30.8 30.9 31.3 31.0 30.2 29.8 30.6 31.4
ERSATZ 31.3 31.9 30.9 31.3 30.6 31.4 31.0 31.1 31.3 31.2 30.4 29.9 30.7 31.5
MOSES 31.4 31.9 30.9 31.3 30.6 31.4 31.0 31.1 31.3 31.2 30.4 29.9 30.8 31.6
PUNKT 31.3 31.9 30.9 31.3 30.6 31.5 31.0 31.1 31.3 31.2 30.4 29.9 30.7 31.5
SPACY 31.4 31.8 30.9 31.3 30.7 31.4 30.9 31.1 31.4 31.3 30.8 31.2 30.5 31.6

Table 3: German–English (de-en) results. The rows denote the segmenter used at inference while the columns
denote the segmenter used to create the training data. The diagonal, thus, has a matching segmenter for both training
and inference. The LASER global search alignment method was used to create bitext. Bold denotes significance (p
< 0.05) run by paired bootstrapping with sacreBLEU.

tion memory, most segments had a true alignment.
In the ORIGINAL inference-time setting, models

trained with Vecalign-produced bitext performed
better than their Global counterparts. We hypoth-
esize this is because Vecalign was able to recover
many-to-one or one-to-many alignments where the
Global aligner was not. This made the models more
robust to many-sentence inputs and outputs.

Lastly, we note that the choice of segmenter does
affect the training data, and thus the final trained
model. The ORIGINAL model often had the highest
BLEU score across inference-time segmentations.
The differences between the ORIGINAL model, and
the ERSATZ and PAIRS models were not statisti-
cally significant in most cases. Models trained on
data created by PUNKT, SPACY, or MOSES (often
used to create MT datasets) were not as competi-
tive.

6 Qualitative Analysis

Hallucinations, or addition of content during trans-
lation, and deletions are common in neural machine
translation. These models are no exception. Quali-
tative analysis reveals two types of errors that are
worth investigating further: 1) seemingly arbitrary
deletion of content when the input is unsegmented
2) addition of content without a true signal in the
source. We suspect the explanations for these be-
haviors are 1) a lack of many-sentence inputs occur-
ing in training data and 2) incorrect segmentations
leading to poorly aligned data. We display some
examples in Table 4.

6.1 Deletion
Almost all models fail when given unsegmented
data at inference (the ORIGINAL row). Upon in-
spection of these translations, it is obvious the rea-
sons for these scores. In Table 4, we show an
instance of this in the first column. The source

input has three sentences. Some models trained
with segmenters (ERSATZ, MOSES, PUNKT, and
SPACY) drop the majority of these sentences. The
models trained with the ORIGINAL segmentations
and the ALWAYS segmentation method incorpo-
rate information across sentences and hallucinate
new conjunction methods (inserting “with" or us-
ing commas). The model trained with the PAIRS

setting does a combination. As this setting often
has two sentences per line in the bitext, this trans-
lation also is limited to two lines and similar, to
PUNKT and ORIGINAL, hallucinates ways to com-
bine these sentences. We can infer the reason for
the drop in BLEU scores in the unsegmented set-
ting is because most models are deleting content.
In order to report the prevalence of deletion, we
report how many sentences were deleted during
translation.

There are 785 lines in the test data but most
of the lines contain more than one sentence. We
can use Moses (one of the segmenters that is quite
conservative—prone to undersegmenting) to count
how many sentences occur in the source input as
well as how many sentences occur in the translated
outputs. In Table 5, we display this information.

The fact that PAIRS translates more sentences is
logical as its training data often had pairs of sen-
tences in the training data. The ORIGINAL setting
translating more sentences than other models seems
counterintuitive as the training data was shorter on
average (see Table 2). We suspect that the reason
for this is more related to the fact that many train-
ing examples in the ORIGINAL setting did not end
in punctuation since they were below the sentence
level. In the ERSATZ training data, for example,
98% of training example’s target sequences end
with a period. Conversely, 62% of the ORIGINAL

data ended with a period. We reason that the model
was not highly likely to end the sequence after de-
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DELETION ADDITION

SOURCE Für Online-Händler sind viele zurückgeschickte
Pakete verlorene Ware. Rund 20 Millionen
Retouren landen so auf den Müll. Doch gibt es eine
Alternative.

Der Premier droht damit, das Land am 31.
[Oktober ohne Abkommen aus der EU zu führen...]

ORIGINAL For online traders, many returned packages are lost
commodities, with around 20 million retours
pouring into the rubbish, but there is an alternative.

The Prime Minister is threatening the country on 31
December.

ALWAYS For online traders, many returned packages are lost,
but there is an alternative.

The Prime Minister is threatening to leave the
country on 31 December.

ERSATZ Some 20 million retours thus end up in the rubbish. The Prime Minister is threatening to hold the
country on 31 May.

MOSES For online traders, many returned packages are lost
goods.

The Prime Minister is threatening to do so, the
country on 31 December.

PUNKT For online dealers, many returned packages are lost
goods.

The Prime Minister is threatening to see the country
on the 31st day of the month.

SPACY For online traders, many returned packages are lost
goods.

The Prime Minister is threatening the country on 31
December.

PAIRS For online traders, many returned packages are lost
goods, with some 20 million retours ending up in
rubbish. But there is an alternative.

The Prime Minister is threatening the country on 31
December.

Table 4: Examples of differences in translations. The SOURCE denotes input to the model. Content in square
brackets was not part of input but has been included for context to reader. The DELETION column shows examples
of different models deleting content during translation due to unsegmented input. The ADDITION column shows
models hallucinating content when an incomplete input was given.

MODEL SENTENCES

REFERENCE 1959
ORIGINAL 1009
ALWAYS 785
ERSATZ 793
MOSES 790
PUNKT 830
SPACY 790
PAIRS 1399

Table 5: Number of sentences (as counted by Moses
segmenter) generated on the WMT20 de-en test set.
The model is each translation system trained on data
segmented by the specified segmenter.

coding a period due to these trends.
All segmenter models were affected by this be-

havior, but SPACY had more issues. SPACY, in
a manner different to the other segmenters, also
includes punctuation such as ‘:’ as final punctua-
tion meaning it oversegments in many scenarios.
In sentences including colons, we see similar dele-
tion from SPACY. For instance, the SPACY model
translates “Katastrophe abgewendet: Großbrand
in französischem Chemiewerk gelöscht." simply
as “Avoiding disaster:"

Of the 157 sentences in the test data that included

a colon, SPACY translated only the first segment
in 78 of them; in 52 it translated only the second
segment; in 27 it translated parts of both.

6.2 Additions

When Raunak et al. (2021) studied the causes of
hallucinations, they attributed hallucinations to er-
rors in bitext alignment. It follows that segmen-
tation, as a precursor to bitext alignment, might
also affect hallucinations. The most obvious hallu-
cination we see in the translations is surrounding
dates. German often uses a format of “Freitag, 27.
September 2019" for “Friday, September 27, 2019".
Erroneous segmentation around the punctuation in
the date causes alignment issues or bad input to the
translation model. We see the effects of both.

The former, bad alignment, we see in the case
of the overly-aggressive segmenter (ALWAYS). Be-
cause the data was always split on the date in this
construction, the alignment suffers severely. We
see examples in the training data such as:

Source: Juli 2016 an.
Target: Done at Brussels, 20 July 2016.

The training data frequently contains dates like
this and the global search aligner was unable to
detect that additional information appeared on the
target side. The ALWAYS model memorized this
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extraneous information and generated it 8 times in
these experiments.

In the second case, where the input to the model
has been over-segmented, we see a similar effect.
When an ALWAYS segmenter is used at inference,
the models struggle on the incomplete information.
In the second column of Table 4, a complete sen-
tence has been segmented erroneously into two
incomplete sentences. For clarity the end of the
sentence (which was segmented into a separate in-
put) is included in square brackets. The incomplete
input has a two-fold effect: 1) the models hallu-
cinate months to attach to the date 2) ALWAYS,
ERSATZ, and PUNKT hallucinate verbs (to leave,
to hold, to see respectively).

7 Related Works

To the best of our knowledge, not much work has
been done about the effects of segmentation on
down stream tasks. Raunak et al. (2021) investi-
gates corpus-level noise and empirically links noise
patterns to types of NMT hallucinations. Other
work has focused on the effects that punctuation
has on neural language models (Ek et al., 2020;
Karami et al., 2021). In online simultaneous speech
segmentation, Wang et al. (2019) proposes an on-
line sentence segmentation approach which im-
proves downstream BLEU scores.

There is much more work pushing away from
the sentence-level paradigm and encouraging doc-
ument translation. Sun et al. (2022) has re-
cently shown that modern neural architectures still
achieve strong performance with longer, multi-
sentence inputs. A spate of recent work has gone
into better document evaluation metrics (Jiang
et al., 2022; Vernikos et al., 2022). Document
pairs contain the additional context needed to cor-
rectly translate certain discourse phenomenon such
as coreference resolution and consistent lexical
choices. Further, mining documents instead of
sentences circumvents the error propagation from
using various segmentation methodologies during
bitext mining.

8 Conclusion

An NMT system trained on segmented data re-
quires segmentation at inference; however, the ex-
act method of segmentation at inference seems to
have little quantitative effect. The larger impact of
segmentation occurs during the creation of bitext.
Whether the effect stems from the quality of the

produced sentence pairs or the limitations of differ-
ent alignment methods cannot be determined based
on these results. Despite this, various segmentation
and alignment method combinations create signifi-
cantly different amounts of bitext to train models
on–something that needs to be investigated further.
The differences in the resulting data produce mod-
els that perform differently. Lastly, we note that
when models are trained on segmented data, they
dramatically hallucinate at inference with unseg-
mented data by deleting long segments. By adding
some amount of unsegmented data in the training
data, this effect can be mitigated to recover upwards
of 4 BLEU points.

Together, we might conclude that avoiding seg-
mentation is the path forward. When the segmen-
tation and alignment techniques failed, half a mil-
lion sentence pairs were sometimes lost or left un-
aligned. Additionally, we see that less-segmented
bitext produces models that are more robust to un-
segmented data at inference. The biggest hurdle in
training document-level models is the lack of suffi-
cient document-level annotations. If true document
pairs exist in larger web-scraped corpora, most of
the original document structure (and informative
context) has been removed via bitext filtering and
deduplication. Future work might explore poten-
tial solutions to mining document-level data, and
circumvent these segmentation tools and their re-
spective noise.

9 Limitations

Most of this work relies on interactions between the
segmenters and the aligners. It’s the production of
training data—and the resulting quality and quan-
tity that is causing the differences in models. We
used off-the-shelf configurations for these aligners
and didn’t do significant hyper-parameter search-
ing. It’s possible that other toolkits or different
hyperparameters might normalize the effects of er-
roneous segmentation.

We also noted that Vecalign was able to recover
erroneous segmentation in the one-to-many and
many-to-one settings while showing that the global
method was not. Having a global search method
does not directly preclude these recoveries, but to
the best of our knowledge it hasn’t been investi-
gated.

Lastly, we limit ourselves to de-en as a lan-
guage pair here because of the availability of docu-
ment pairs. The ambiguity in puncutation surround-
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ing these two languages make them interesting for
segmentation. Also, German often uses a different
word order than English which can make aligning
erroneous segmentations difficult. These effects
might be minimized or non-existant in other lan-
guage pairs.
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A Appendix

A.1 Data
In Table 6 is a further breakdown if the amount
of sentences extracted from the datasets via each
segmenter. In most cases, a segmenter produces
more segmentations than the ORIGINAL dataset.
This is not true of the DGT dataset which shows
how over-segmented it was. Moses is the most
conservative segmenter with high-precision and
lower recall.

A.2 Hyperparameters
In Table 7, the hyperparameters used to train the
Fairseq NMT models are listed. When the parame-
ters are not listed, the defaults were used. Further,
we also list the settings used with the Vecalign
aligner in Table 8.
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DGT EUROPARL NEWS WMT20

de en de en de en totals all

ORIGINAL 5.24M 6.12M 1.83M 1.83M 0.39M 0.39M 15.80M 12517
ALWAYS 4.06M 3.66M 2.06M 1.89M 0.41M 0.39M 12.47M 17434
ERSATZ 2.62M 2.88M 1.93M 1.83M 0.40M 0.39M 10.04M 16132
MOSES 2.37M 3.05M 1.90M 1.79M 0.39M 0.39M 9.89M 15915
PUNKT 2.63M 3.01M 1.97M 1.86M 0.40M 0.38M 10.25M 16137
SPACY 3.33M 4.15M 2.06M 1.97M 0.43M 0.42M 12.35M 17342
PAIRS 2.63M 3.07M 0.92M 0.92M 0.20M 0.20M 7.94M -

Table 6: Sizes of the source (de) and target (en) after applying segmentation techniques described in Section
2. These sizes are before alignment. To the right (WMT20), we list the sizes of the segmented test sets (all 12
languages together).

Parameter Value

Architecture Transformer
Encoder Layers 6
Decoder Layers 6
Embed Dim 512
FFN Dim 512
Attention Heads 8
Dropout 0.1
Attn. Dropout 0.1
ReLU Dropout 0.1
Label Smoothing 0.1
Adam Betas (0.9, 0.98)
Clip Norm 2.0
Lr Scheduler Inverse Sqrt
Warmup Updates 4000
Initial LR 1e-7
LR 0.0005
Min LR 1e-9
Batch Size 16k tok
Patience 10

Table 7: Values for the hyperparameters used during
training. Can be traced to the Fairseq parameters. If not
listed, default was used.

Parameter Value

Overlap 6
Max Alignment 4
Embedding Model LASER (93 langs)

Table 8: Settings used with the Vecalign alignment
toolkit.
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Abstract
Neural machine translation models often con-
tain large target vocabularies. The calculation
of logits, softmax and beam search is compu-
tationally costly over so many classes. We
investigate the use of locality sensitive hash-
ing (LSH) to reduce the number of vocabulary
items that must be evaluated and explore the re-
lationship between the hashing algorithm, trans-
lation speed and quality. Compared to prior
work, our LSH-based solution does not require
additional augmentation via word-frequency
lists or alignments. We propose a training pro-
cedure that produces models, which, when com-
bined with our LSH inference algorithm in-
crease translation speed by up to 87% over the
baseline, while maintaining translation quality
as measured by BLEU. Apart from just using
BLEU, we focus on minimizing search errors
compared to the full softmax, a much harsher
quality criterion.

1 Introduction

The computation of the output logit, softmax and
beam search (the output layer) are some of the most
compute-intensive tasks in current Neural Machine
Translation (NMT) models, often taking the major-
ity of inference time for many models, on many
hardware architectures, especially in deployment
settings. This is mainly due to the large vocabu-
lary size relative to other dimensions in the model.
Methods that reduce the effective vocabulary size
can have a major impact on inference speed. Vo-
cabulary selection is one such method.

However, a known downside of vocabulary se-
lection methods is the risk of search errors if the
desired output token ŷt is not a member of the re-
duced vocabulary V , forcing the beam search to
choose a sub-optimal token. Even when the impact
of such search errors on BLEU is minimal, search
errors caused by lexical shortlisting degrade human
judgements of quality (Domhan et al., 2022).

∗These authors contributed equally to this work.

Figure 1: Search errors vs. decrease in BLEU for all
experiments in the paper. We vary the two main hy-
perparameters of our LSH implementation: number of
hash functions and the size k of our selected vocabulary
subset. 60% of sentences have a search error before we
observe a 1 BLEU point degradation.

The degradation in human judgement is less sur-
prising if we inspect Figure 1 which shows that
translation quality, as measured by BLEU, is re-
silient to search errors caused by LSH. Only when
over 60% of translations exhibit search errors is
there significant BLEU degradation.

We examine vocabulary selection using Locality
Sensitive Hashing (LSH), and evaluate specifically
in the context of Neural Machine Translation. We
introduce an LSH-based vocabulary selection algo-
rithm and compatible models such that:1

1. the models have translation quality that is bet-
ter than or comparable to the baseline model;

2. the LSH-based vocabulary selection algorithm
introduces minimal search errors across a
number of models and language pairs, includ-
ing no search errors at all for certain configu-
rations;

3. inference is up to 87% faster than the baseline.
1We release code in Marian; see Section 7.1 for details.
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2 Methods of vocabulary selection

The output layer for a target vocabulary V , per-
forms the following computations:

p(yt|y1:t−1, x; θ) = softmax(Wh+ b)

ŷt = argmax p(yt|y1:t−1, x; θ),

(1)

where W ∈ R|V |×d is the weight matrix, b ∈
R|V | is the bias vector, h ∈ Rd, d is the hid-
den dimension size of the decoder state, and
p(yt|y1:t−1, x; θ) ∈ R|V | is the softmax probabili-
ties. This is computationally expensive due to the
target vocabulary size, |V |.

Vocabulary selection create a small subset, V ⊂
V . This will reduce the size of weight matrix, W ,
and bias vector, b, where |V | ≪ |V |, W ∈ R|V |×d

and b ∈ R|V |.
Equation 1 is then replaced with the more effi-

cient Equation 2 which uses W and b instead.

p(yt|y1:t−1, x; θ) = softmax(Wh+ b)

ŷt = argmax p(yt|y1:t−1, x; θ),

(2)

The aim is now to find the subset, V , such that
ŷt = ŷt.

Depending on the method, vocabulary selection
(and therefore construction of V , W and b) can
be static or happen dynamically per sentence (or
batch), per decoder time step, or even per individual
decoder hypothesis.

We restrict our overview of the concept of vocab-
ulary selection to the case where the original soft-
max layer remains largely unmodified except for
sub-selection. Methods that require complex struc-
tural reformulations of the softmax layer during
training like hierarchical softmax (Morin and Ben-
gio, 2005), adaptive softmax (Grave et al., 2016)
or binary code prediction (Oda et al., 2017) are
outside the scope of this work.

In-depth overviews of past and current vocab-
ulary selection methods are provided by L’Hostis
et al. (2016), Shi and Knight (2017), and more
recently Domhan et al. (2022). We only repeat
concepts that are either common or required to dif-
ferentiate our work from previous approaches.

2.1 Word frequency-based methods
For simplicity’s sake, when describing word
frequency-based methods, we assume that vocab-

ulary identifiers correspond to frequency rank (ac-
cording to a training corpus or other reference cor-
pus) and hence the top-K first items in a vocabulary
list are the top-K most frequent words/segments
from the training corpus. The choice of K deter-
mines a static subset Vf of V where |Vf | = K.
Then V = Vf and the parameters W, b of the soft-
max output layer are sub-selected accordingly.

Word frequency-based vocabulary selection is
not a viable method on its own — the quality degra-
dation is simply too large to be acceptable (Shi and
Knight, 2017) — but it constitutes an important
common back-bone for several of the more accu-
rate methods discussed below as it is an easy way
to include common segments like function words,
punctuation, etc. in the output vocabulary.

2.2 Word alignment-based methods
Word alignment-based vocabulary selection (Jean
et al., 2015a) has been part of the NMT toolbox
since the earliest competitive NMT systems. Jean
et al. (2015b) first introduce the concept in essen-
tially the form it is widely being used today2 in their
submission to the WMT15 shared task (Bojar et al.,
2015). Later work (Mi et al., 2016; L’Hostis et al.,
2016; Shi and Knight, 2017) rediscover mostly the
same setup or confirm it to be one of the strongest
methods amongst a number of other approaches.

Given a source sentence x1:m and a word-
alignment dictionary with alignment probabilities
between source and target segments pa(y|x), this
method creates Va =

⋃
t∈1:m Va(xt), where for

instance Va(xt) = {y ∈ V : pa(y|xt) ≥ p} for
a given threshold p. Other criteria for construct-
ing Va(xt) are possible: such as K ′ most probable
aligned target words or combinations of multiple
criteria.

Finally, the alignment-based method is typically
combined with the frequency-based method as
V = Vf ∪ Va. Word alignment thus extends and
refines the target word-frequency method by map-
ping source sentence context to plausible target lan-
guage vocabulary candidates (ranked or selected
by translation probability). Note, that Va is con-
structed dynamically once per source sentence or
batch which forces a dynamic construction of V .

2.3 Earlier LSH-based approaches
Locality Sensitive Hashing (LSH) as a way to accel-
erate the computation of inner products has been

2See submissions to the recent shared tasks on efficient
NMT (Hayashi et al., 2019; Heafield et al., 2020, 2021).
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investigated as early as 2014 (Vijayanarasimhan
et al.) for handling large vocabularies and remains
an active area of research for more general neural
network training (see e.g. Chen et al., 2020).

Previous work on using LSH in NMT (Shi and
Knight, 2017; Shi et al., 2018) takes an approach
that is analogous to the alignment-based methods
in the sense that a static vocabulary based on word
frequency is extended with target vocabulary items
that are plausible in the dynamic context of the
decoded sentence. However, instead of mapping
source segments to target segments via alignment
dictionary look-up, the decoder hypothesis state
vector h is used to find set Vl(h) of the k target
vocabulary items y with the corresponding output
layer embedding vector wy most similar to h. As
before, the static word-frequency based vocabu-
lary set is merged with the contextual set to form
V (h) = Vf ∪ Vl(h). Note however, that V now
depends dynamically on each decoder state h.

The specifics of how similarity between the vec-
tors is defined determine the speed and accuracy of
the method. The output layer itself can be seen as
a similarity function (inner product with softmax
normalization) that has perfect accuracy but is least
interesting in terms of speed.

Shi and Knight (2017) and Shi et al. (2018) use
Winner-Take-All (WTA; Yagnik et al., 2011) hash-
ing with banding to approximate the output layer.
However, the type of similarity as expressed via
WTA hashing seems to result in fairly low accu-
racy and therefore needs to be merged with several
thousand most frequent vocabulary items to remain
competitive in terms of translation quality com-
pared to the full vocabulary.

2.4 Selection as binary classification

L’Hostis et al. (2016) and more recently Domhan
et al. (2022) propose to approach the vocabulary
selection problem as a per target vocabulary item
binary classification problem where each of |V | bi-
nary classifiers decides if the corresponding target
vocabulary item should be included in the sentence-
level (or batch-level) target vocabulary.

L’Hostis et al. (2016) train a suite of |V | binary
SVM classifiers which are learned independently
from the neural model. The set of words in the
source sentence serves as a sparse bag-of-words
feature set.

Domhan et al. (2022) train their "neural vocab-
ulary selection" model jointly with the translation

model via a multi-objective cost function. They
construct z = σ(maxpool(WH + b)) where H ∈
Rd×m is the hidden encoder context, W ∈ R|V |×d,
b ∈ R|V | and z ∈ R|V |.

Generally, for both methods, given the binary
classifier zy corresponding to the vocabulary entry
y, we have V = {y ∈ V : zy(x1:m) ≥ λ} where
λ is the decision threshold for including y in V .
V is constructed dynamically once per sentence
and both methods do not need to be merged with
the word-frequency-based vocabulary list Vf . The
threshold λ seems to be sufficient to control for
speed versus accuracy trade-offs.

3 Our LSH-based method

Our work contrasts with prior research on LSH for
NMT by Shi and Knight (2017); Shi et al. (2018)
in that:

1. We use SimHash hash instead of WTA hash.

2. We do not need to expand the LSH vocabulary
subset V by merging with a static list of the
most frequent words.

3. We do not need to merge V across batch and
beam entries.

4. We create V by finding the top-k small-
est Hamming distances, rather than banding
hashes and Cuckoo lookups.

5. Our target vocabulary is smaller than most
experiments in the above works which exper-
imented with target vocabulary sizes of 66k,
50k, 40k and 25k. We believe larger vocab-
ularies are unnecessary as a result of the use
of sub-word units (Sennrich et al., 2016) and
their variants. We use sub-word units while
the above works do not.

6. We are concerned with search errors intro-
duced by vocabulary selection as well as with
translation quality degradation. Quality met-
rics are often insensitive to errors caused by
deviation from an otherwise unfiltered vocab-
ulary.

3.1 SimHash for Softmax approximation

Prior research on the application of LSH for NMT
by Shi and Knight (2017); Shi et al. (2018) relies
on WTA hashing. We found SimHash (Charikar,
2002) to result in much lower search error.
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For a random normal vector r ∈ Rd and an
input vector v (of the same size as r), SimHash
introduces the following hash function Hr:

Hr(v) =

{
1 if v · r ≥ 0
0 if v · r < 0

which maps v to a single bit. The above is general-
ized to c bits by generating and applying c different
random vectors and concatenating the results. This
can be simplified via multiplying with a projection
matrix R ∈ Rd×c and the same dimension-wise
mapping to bits of the result.3 We call this function
HR(v) : Rd → {0, 1}c and use it to obtain the LSH
representation of v. Further, D(HR(u),HR(v)) de-
notes the bit-wise Hamming distance between the
hashed binary representations of vectors u, v.

SimHash has been designed in such a way that
for two vectors u, v for which the angle θ(u, v)
between these vectors is small, the Hamming dis-
tance D over their hashed binary vectors should
be small as well.4 Naturally, the cosine similarity
cos (θ(u, v)) will be high for such cases.

It is this property which allows us to apply a
series of transformations and approximations to
find a promising candidate for the most probable
vocabulary item î for a decoder state vector h (and
the output layer parameters W and b) using fast
Hamming distance computation:

î = argmax
i∈V

softmax
i

(Wh+ b) (3)

= argmax
i∈V

wi · h+ bi (4)

≈ argmax
i∈V

wi · h (5)

≈ argmax
i∈V

cos (θ(wi, h)) (6)

≈ argmax
i∈V

cos
(
D(HR(wi),HR(h))

π

c

)
(7)

= argmin
i∈V

D(HR(wi),HR(h)). (8)

In every step above which leads with ≈, we in-
troduce a new approximation to the previous step,
potentially reducing the accuracy of the search for

3Following the LSH implementation in FAISS, we use a
Gaussian random rotation matrix R ∈ Rd×c. If c ≥ d, FAISS
constructs a matrix R ∈ Rc×c composed of c orthonormal
column vectors via QR factorization and then drops rows until
we have R ∈ Rd×c.

4See Charikar (2002) for details. In short, the probability
that the hash values for two vectors u, v match is given as
Pr(Hr(u) = Hr(v)) = 1 − θ(u,v)

π
. When hashing to bit

vectors of length c, the Hamming distance between these bit
vectors D(HR(u),HR(v)) approximates θ(u,v)

π
c.

î. When moving from Equation 4 to Equation 5, we
drop the bias term bi as it cannot be easily incorpo-
rated in the search in Hamming space. For models
with large values in the bias vector b, this will inad-
vertently lead to search errors. The easy solution to
this problem is to drop the bias term during training
as well. More on this in Section 5.1.

In Equation 6 we ignore the magnitude of the
vectors. This seems to not matter much for the
search and we leave investigating the effects or
potential mitigation for future work.5

Equation 7 sees the introduction of the SimHash
LSH as we approximate the angle θ via the Ham-
ming distance. Finally, in Equation 8 we can find
the most promising vocabulary candidate by di-
rectly minimizing the Hamming distance; note that
we flipped from argmax to argmin.

3.2 Integrating LSH with beam search

In Section 2, we categorized methods of vocabulary
selection by how and when they construct the set
of subselected vocabulary V .

Before translation begins, the output embedding
weights W are hashed once using the SimHash
function HR(W ) to create a set L ∈ {0, 1}|V |×c

of LSH keys, one for each target vocabulary entry
from V :

L = {l1, . . . , l|V |} = HR(W ). (9)

Similar to the other LSH-based methods from
Section 2.3, we construct V (h) dynamically for
every decoder state h. During each decoding step
the same hash function is applied to the decoder
state h to obtain a hashed binary query q ∈ {0, 1}c:

q = HR(h).

If the transformations in Equation 3 to Equa-
tion 8 were exact, we would only need to find the
vocabulary candidate i corresponding to key li ∈ L
with the lowest Hamming distance from the query
q (in the case of greedy decoding). However, all
the approximations lead to search errors and we in-
vestigate a set of k best scoring candidates. This set

5The magnitudes of decoder states and weight vectors
probably do not vary a lot. However, decoder states h would
be normalized to norm

√
d via layer normalization at no ad-

ditional computational cost if we dropped the affine transfor-
mation after layer normalization. The weight vectors of the
output layer could be normalized to unit length after each
parameter update during training or via weight normalization
(Salimans and Kingma, 2016).
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#sentences
Dataset de-en fr-en es-en

Europarl (Train) 1,920,209 2,007,723 1,965,734
dev2006 (Dev) 2,000 2,000 2,000
nc-dev2007 (Test) 1057 1,057 1,057

Table 1: Data used for training, validation and testing.

is our per decoder state vocabulary subset V (h):

V (h) = argmin
V ′⊂V
|V ′|=k

∑

i∈V ′
D(q, li).

In cases where there are more than k elements that
would qualify based on their Hamming distance,
we retrieve only the first k found. Note, this con-
cludes our construction of V and unlike Shi et al.
(2018), we do not need to extend V with a large
word-frequency list.

Next, for every decoder state h, W ∈ R|V |×d

and b ∈ R|V | are subselected from the output layer
parameters W and b, respectively, by restricting en-
tries to those corresponding to vocabulary indices
in V . W and b replace W and b in calculating soft-
max and the best output token, ŷt, replacing the
standard output layer computation in Equation 1
with Equation 2.

The number of hashes per input vector c and the
number of target vocabulary to keep k are hyperpa-
rameters in our LSH implementation.

4 Experimental Setup

We train a model with 6-layer Trans-
former (Vaswani et al., 2017) encoder with
6-layer SSRU (Kim et al., 2019) decoder, trained
using Marian (Junczys-Dowmunt et al., 2018)
and using the same toolkit for inference. This is
a strong and realistic model for production MT
environments which balances translation quality
and efficiency.

We use SentencePiece (Kudo and Richardson,
2018) with 32,000 tokens for all models, shared
between both source and target language.

We use the FAISS (Johnson et al., 2019) im-
plementation of SimHash hash described in Sec-
tion 3.1.

We trained with four translation directions
(German-English, English-German, Spanish-
English, and French-English) Europarl cor-
pus (Koehn, 2005), validated on the held out
development set from the same corpus (‘dev2006’)

and tested on the out-of-domain New Commentary
test set (‘nc-dev2007’). See Table 1 for data set
sizes. Results are reported for German-English
in Section 5, results for other language pairs are
available in the Appendix 7.2.

We use a two stage training procedure. In the
first stage, we train a translation model directly on
the parallel data. We create a synthetic parallel
corpus by translating the source side of the parallel
corpus with the initial model. The original source
is paired with these translations to form the syn-
thetic corpus for stage two. For the second stage
of training, we then consider two cases: (1) where
the 2nd stage model topology is identical (i.e. the
original model and the new model both have or
lack the output bias) and (2) where there is some
change in model topology.

For case (1), we use self-training: the first-stage
model are fine-tuned using the synthetic corpus.
For case (2): we use sequence-level knowledge
distillation: new models are distilled (Hinton et al.,
2015) by training from scratch on the synthetic
corpus. By abuse of terminology, in both scenarios,
we call the first-stage model the teacher, and the
fine-tuned or distilled model the student.

Translation quality was measured using Sacre-
BLEU (Post, 2018). We define search errors as the
number of lines changed in the translation output
when vocabulary selection is applied.

We measure the time taken to do inference on
one core of a 12 core Intel Xeon CPU, on a PC
with 16GB RAM, running Ubuntu 20.04 within a
WSL2 hypervisor.

For short listing, we create a candidate list of tar-
get sub-word translations for each source sub-word
by using word alignments obtained from FastAl-
ign (Dyer et al., 2013). A shortlist of target sub-
words is created before the translation of each sen-
tence to constrain the possible output sub-words.

5 Results and analysis

Table 2 shows results on the full teacher-student
training procedure, compared to the baseline,
teacher, and lexical shortlisting. Our proposed
method maintains the same translation quality as
greedy search, with a 57% to 80% speedup. By
contrast, shortlisting has search errors in 12% to
25% of sentences, with a speedup of between 67%
to 74%.
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de-en fr-en es-en

speed ↑ BLEU ↑ search
error

↓ speed ↑ BLEU ↑ search
error

↓ speed ↑ BLEU ↑ search
error

↓

Teacher 2.84 28.9 2.73 31.0 2.72 40.5
Student 2.71 (-5%) 29.9 2.91 (+7%) 31.9 3.01 (+11%) 42.2

Student w/ shortlist (baseline) 4.76 (+68%) 29.6 25% 4.69 (+72%) 31.8 12% 4.73 (+74%) 42.0 17%
Student w/ LSH (this work) 4.46 (+57%) 29.9 0% 4.92 (+80%) 31.9 0% 5.08 (+87%) 42.2 0%

Table 2: Translation speed (sent./sec.), quality (BLEU) and search error for the teacher model, student model with
full vocabulary, student model with the shortlist, and student model with LSH vocabulary selection. Hyperparameters
chosen for lowest possible search error. Models trained with no bias and with label smoothing, and use a beam size
of 1.

Baseline Using LSH
Model BLEU ↑ BLEU ↑ search error ↓
With bias 28.9 0.1 100%
With bias LS 29.7 0.0 100%

No bias 29.1 29.1 7%
No bias LS 29.2 29.2 6%

Table 3: Translation quality (BLEU) for baseline teacher
models, and when using LSH (k = 1024, c = 2048).

In order to understand the contributions of differ-
ent aspects of the method, we perform additional
experiments for analysis.

5.1 The effect of output bias

While the softmax of Equation 1 is dependent on
the output bias b as well as output weightsW , there
is no easy way to include the bias b in the hashed
representation of L in Equation 9. To see what ef-
fect this omission by the LSH hashing function has
on translation, we will train and evaluate models
with and without the output bias.

The first column in Table 3 compares the trans-
lation quality between models with and without
output bias, based on BLEU scores. Models with
output bias and training with label smoothing (LS)
of 0.1 improve translation quality.

Column two and three in Table 3 show the con-
sequences of applying LSH with the output vocabu-
lary size of k = 1024 and the number of hashes set
to c = 2048 to the baseline models. LSH causes
overwhelming search errors in models with output
biases, leading to catastrophic collapse in BLEU.
This is unsurprising as the LSH does not take the
bias into account when computing similarity. On
the other hand, models without output bias are not
hugely affected by LSH. Between 2% to 7% of the
translations suffer from search errors but this has a
negligible affect on translation quality.

Model Beam 1 Beam 4

Teacher with bias 28.9 29.9
+ Student no bias 29.1 29.9
+ Student no bias LS 29.6 30.4

Teacher with bias LS 29.7 30.3
+ Student no bias 28.7 29.3
+ Student no bias LS 29.6 30.2

Teacher no bias 29.1 29.8
+ Student no bias 30.1 30.9
+ Student no bias LS 30.2 30.8

Teacher no bias LS 29.2 29.9
+ Student no bias 30.0 30.4
+ Student no bias LS 29.9 30.5

Table 4: Translation quality of distilled models on held-
out test set (BLEU) with different beam widths.

Based on these results, further experiments with
LSH only use models without output bias.

5.2 Comparison with lexical shortlisting

Figure 2: Comparison of translation speed (sent./sec.)
vs search error between LSH and lexical shortlisting.
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Beam 1 Beam 4

speed ↑ BLEU ↑ search
error

↓ speed ↑ BLEU ↑ search
error

↓

Teacher model 2.84 29.2 1.52 29.9
Student model 2.71 (-5%) 29.9 1.47 (-3%) 30.5

LSH 3.94 (+39%) 29.9 0% 2.01 (+32%) 30.5 13%

Table 5: Translation speed (sent./sec.), quality (BLEU) and search error for student model (trained and distilled with
label smoothing, without bias). Compared with teacher without bias or label smoothing. LSH is using parameters
1024-best vocab items, and a hash size of 2048.

Figure 2 shows the translation speed / search
error trade-off for LSH and lexical shortlisting
for various hyperparameter settings. For short-
listing, We experimented with |Vf | = 100 and
|Va| = 10, 25, 50, 75 and 100. We have not ob-
served significant changes for larger |Va|. The
methods were applied to a model trained, then dis-
tilled with no output bias and with layer normal-
ization. Our training procedure and LSH inference
algorithm is not only faster than shortlisting but
also result in less search errors.

5.3 LSH in teacher-student training
The Hamming distance of the hash vectors in Equa-
tion 7 is used in an approximate similarity measure
between the decoder state h and each embedding
vector corresponding to vocabulary items in V . We
would like to increase this similarity for the correct
output and decrease it for incorrect output at each
time step. Kim and Rush (2016) demonstrated that
knowledge distillation create student models with a
more peaked distribution, i.e. the probability mass
is concentrated around only few vocabulary words.
This likely carries over into the space of Hamming
distances, separating similar vector pairs from dis-
similar ones, a potentially useful phenomenon that
the search can take advantage of. See also Sec-
tion 5.6 for similar considerations on the effects of
label smoothing.

Figure 3 shows the trade-off between the LSH
top-k versus search errors, for teacher models with-
out and with output bias, and student models with-
out bias, respectively. Similarly, Figure 4 shows
the trade-off with the number of hashes c used in
LSH. These plots also show that:

1. teacher-student training significantly reduces
LSH search errors,

2. teacher models with label smoothing have
lower search errors,

3. student models without label smoothing have
lower search errors,

4. all student models converges to minimal, or
even zero, search errors with increased top-k.

5.4 Translation speed vs hash size
Predictably, translation speed increases if the LSH
parameters decreases. For example, Figure 5 shows
the translation speed when the number of hashes
are varied. At very low hash counts, the systems of-
ten output lengthy sentences with repetitive gibber-
ish, lowering speed. Of course, this has a negative
impact on search errors and translation quality.

5.5 Larger beam size
Table 5 shows translation quality when using a
larger beam which, as expected, is higher in all
cases than using beam width 1.

However, LSH vocabulary selection causes more
search errors for larger beam sizes. Figure 6 com-
pare the search errors for the same model using
beam width 1 and 4 by varying the LSH hyperpa-
rameters. The same conclusion can be drawn from
Table 5 (Beam 4).

A possible cause for this increased search error
is in the calculation of the softmax denominator.
The denominator for each beam is the sum of logits
in the beam. When using vocabulary selection,
the denominator is approximated by calculating it
only over a k-best subset of the logits. The softmax
probability would be distorted if the excluded logits
contain significant probability mass.

This is not an issue with beam size 1 as an ap-
proximation error in the denominator would change
the absolute probabilities but won’t affect the rela-
tive probabilities within the beam.

However, for beam size larger than one, probabil-
ities across different beams are compared. A logit
approximation error in this case would distort the
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(a) without output bias (b) with output bias

Figure 3: LSH k-best vs. search errors.

(a) without output bias
(b) with output bias

Figure 4: LSH #hashes vs. search errors.

(a) Without bias (b) With bias

Figure 5: Translation speed (sent./sec.) vs #hashes
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(a) Search error vs. #hashes (b) Search error vs. LSH k-best

Figure 6: Search error for beam size 1 & 4: teacher LS + student LS.

(a) teacher without output bias (b) teacher with output bias

Figure 7: LSH #hashes vs. search errors for teacher models, beam width 4.

comparison between vocabulary items in different
beam, leading to search errors.

5.6 Label smoothing
While label smoothing (Szegedy et al., 2016) can
improve translation quality—by spreading the prob-
ability over many output classes to avoid over-
fitting— models with label smoothing are detrimen-
tally affected by larger beam widths when LSH is
used. Figure 7 shows that both student and teacher
models have higher search errors when trained with
label smoothing. Since label smoothing distributes
a portion of the probability mass over the entire vo-
cabulary, the excluded logits will contain a larger
amount of the total probability mass, exacerbat-
ing the problem caused by the larger beam size.
Since label smoothing may also reduce informa-
tion transfer in knowledge distillation (Müller et al.,

2019), we recommend training students without la-
bel smoothing, especially when using larger beams.

5.7 Self-training vs distillation

Thus far, we have fined-tuned (’self-trained’) mod-
els where the second stage model is architecturally
identical to the first, otherwise we distilled a stu-
dent model from the first stage model.

For first stage models with no bias, Table 6
shows that fine-tuning result in better translation
quality than training from scratch with the synthetic
data.

However, the fine-tuned models have slightly
higher search errors, nevertheless both training
strategies result in models which have much lower
search errors than the original first stage model,
Figure 8.
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(a) no label smoothing (b) label smoothing 0.1

Figure 8: LSH Fine-tuned vs. distilled models. Both are teachers & student with no bias

Model Beam 1 Beam 4

Teacher no bias 29.1 29.8

+ Self-trained no bias 30.1 30.9
+ Self-trained no bias LS 30.2 30.8

+ Distilled no bias 29.3 29.9
+ Distilled no bias LS 29.5 30.5

Teacher no bias LS 29.2 29.9

+ Self-trained no bias 30.0 30.4
+ Self-trained no bias LS 29.9 30.5

+ Distilled no bias 29.5 30.3
+ Distilled no bias LS 29.8 30.3

Table 6: Translation quality of fine-tuned vs. distilled
models (BLEU).

6 Conclusion

We demonstrate that, with the proper training pro-
cedure, using locality sensitive hashing for vo-
cabulary selection can significantly boost transla-
tion speed while consistently producing negligible
search errors.

We make the following recommendations for use
in practice:

For existing models and greedy search, perhaps
where we may not know the exact training proce-
dure and model, we can create a model that works
with LSH vocabulary selection by distilling the
original model to a comparable model without out-
put bias. Using label smoothing in the distillation
can improve its translation quality if the original

model was not trained with it. There will be min-
imal search errors in using LSH while achieving
significant speed improvement.

To train a new model for use with greedy search,
a two stage procedure should also be used where
the second stage is fine-tuned on the output of
the first. Both stages should train models with-
out output bias. Again, the fine-tuned models can
be trained with label smoothing without affecting
the effectiveness of LSH.

LSH vocabulary selection introduce search er-
rors for larger beam sizes, especially when label
smoothing is used during fine-tuning. Therefore, if
using larger beams in inference, it is recommended
not to use label smoothing in the distillation or
fine-tuning step.
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7 Appendix

7.1 Practical Considerations

Here, we discuss some practical considerations for
use of the LSH decoding.

To train a Marian model without an output bias,
add the following switches.
Marian training command:6

--output-omit-bias

To train without label smoothing:

--label-smoothing 0

To use the LSH vocabulary selection during infer-
ence, execute marian-decoder with the following
switches:

--output-approx-knn [k] [c]

where [k] is the number of k-best vocabulary items
and [c] is the number of hashes to use.

7.2 Results for Additional Language Pairs

Model de-en fr-en es-en
With bias 28.9 31.0 40.5
With bias LS 29.7 31.4 41.3
No bias 29.1 31.3 41.0
No bias LS 29.2 31.2 41.1

Table 7: Baseline translation quality (BLEU) w/ & w/o
bias and w/ or w/o label smoothing.

Model de-en fr-en es-en

With bias-
0.1

100%
0.1

100%
0.0

100%

With bias LS-
0.0

100%
0.0

100%
0.0

100%

No bias-
29.1
7%

31.2
4%

41.0
2%

No bias LS-
29.2
6%

31.1
4%

41.1
2%

Table 8: Translation quality (BLEU) & search errors
(percentages) when using LSH (k = 1024, c = 2048).

6github.com/marian-nmt/marian

Beam 1 Beam 4
Model de-en fr-en es-en de-en fr-en es-en
Teacher with bias 28.9 31.0 40.5 29.9 31.6 41.4
+ Student no bias 29.1 31.3 40.1 29.9 31.8 40.9
+ Student no bias LS 29.6 31.6 41.4 30.4 32.5 42.0
Teacher with bias LS 29.7 31.4 41.3 30.3 32.4 42.2
+ Student no bias 28.7 31.2 40.8 29.3 31.8 41.3
+ Student no bias LS 29.6 31.5 41.0 30.2 32.1 41.9
Teacher no bias 29.1 31.3 41.0 29.8 31.8 41.5
+ Student no bias 30.1 31.4 41.8 30.9 32.1 42.2
+ Student no bias LS 30.2 32.2 41.8 30.8 32.4 42.5
Teacher no bias LS 29.2 31.2 41.1 29.9 32.3 41.8
+ Student no bias 30.0 32.5 41.9 30.4 32.8 42.3
+ Student no bias LS 29.9 31.9 42.2 30.5 32.8 42.7

Table 9: Translation quality of distilled models on held-
out test set (BLEU) with different beam widths.

Our results thus far have been on language pairs
with English as the target language. We trained and
finetuned English to German models, both without
output bias and label smoothing. Figure 17 shows
that LSH vocabulary selection works just as well
when German is the target language.
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(a) de-en (b) fr-en (c) es-en

Figure 9: LSH k-best vs. search errors for models without output bias.

(a) de-en (b) fr-en (c) es-en

Figure 10: LSH k-best vs. search errors for models with output bias.

(a) de-en (b) fr-en (c) es-en

Figure 11: LSH #hashes vs. search errors for models without output bias.

(a) de-en (b) fr-en (c) es-en

Figure 12: LSH #hashes vs. search errors for models with output bias.

(a) de-en (b) fr-en (c) es-en

Figure 13: Search errors vs. decrease in BLEU.
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(a) de-en (b) fr-en (c) es-en

Figure 14: LSH #hashes vs. search errors for teacher models without output bias using beam width of 4.

(a) de-en (b) fr-en (c) es-en

Figure 15: LSH #hashes vs. search errors for teacher models with output bias using beam width of 4.

(a) de-en
(b) fr-en (c) es-en

Figure 16: Comparison of translation speed (sent./sec.) vs search error between LSH and lexical shortlisting.

Figure 17: English-German results
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Abstract
Leveraging shared learning through Massively
Multilingual Models, state-of-the-art machine
translation (MT) models are often able to adapt
to the paucity of data for low-resource lan-
guages. However, this performance comes at
the cost of significantly bloated models which
are not practically deployable. Knowledge Dis-
tillation is one popular technique to develop
competitive lightweight models: In this work,
we first evaluate it’s use to compress MT mod-
els focusing specifically on languages with ex-
tremely limited training data. Through our
analysis across 8 languages, we find that the
variance in the performance of the distilled
models due to their dependence on priors in-
cluding the amount of synthetic data used for
distillation, the student architecture, training
hyper-parameters and confidence of the teacher
models, makes distillation a brittle compression
mechanism. To mitigate this, we explore the
use of post-training quantization for the com-
pression of these models. Here, we find that
while distillation provides gains across some
low-resource languages, quantization provides
more consistent performance trends for the en-
tire range of languages, especially the lowest-
resource languages in our target set.

1 Introduction

While NLP has made giant strides in producing
more accurate models, these benefits are often
not transferred representatively to end-users who
would eventually use a language-technology (Etha-
yarajh and Jurafsky, 2020; Caselli et al., 2021).
Bloated sizes, cumbersome inference times (Tao
et al., 2022a) and a limited set of languages that
these models serve are a few reasons for this. More
specifically, their usage is hindered by access bot-
tlenecks such as (a) Infrastructural Obstacles:
A large percentage of end-users do not have sus-
tained access to internet or high-compute devices
to enjoy a stable access to cloud-inferencing of cur-
rent NLP models (Ranathunga and de Silva, 2022;

Diddee et al., 2022), (b) Latency Requirements:
Certain NLP services (chat-bots, real-time assis-
tance interfaces, etc.) require very low-inference
time which requisite lightweight-models (c) Pri-
vacy Constraints: The outflow of sensitive user
data which is fed for inferencing to remotely hosted
NLP models also has well documented issues (Sri-
nath et al., 2021; Huang and Chen, 2021; Huang
et al., 2020; Diddee and Kansra, 2020).

Within the research that focuses on evaluating
and mitigating these practical constraints, the focus
on low-resource language setups has been fairly
limited (Ganesh et al., 2021). For instance, while
the compression of large language models has re-
ceived consistent attention through analysis of prun-
ing (Behnke and Heafield, 2020; Behnke et al.,
2021), distillation (Bapna et al., 2022; Mghab-
bar and Ratnamogan, 2020; Kim and Rush, 2016;
Junczys-Dowmunt et al., 2018) and even quantiza-
tion (Bondarenko et al., 2021; Zadeh et al., 2020)
- much of this work has focused on compressing
language models for high-resource languages.

In this paper, we report the results of a compara-
tive analysis of the performance of distillation and
quantization. By focusing on compressing seq2seq
multilingual models across a range of languages
with data ranging from 7000 to 3M samples - we es-
pecially demonstrate the different priors that need
to be ascertained for the successful distillation of
the model. We are unaware of any previous study
that demonstrates the performance of these mecha-
nisms on such low resource languages.

The utility of this work is in commenting on the
feasibility of these two compression techniques for
rapid development and deployment of MT Mod-
els for low resource languages (Joshi et al., 2020).
More specifically, we believe that distillation’s re-
liance on several priors can be addressed naively
through a resource-intensive exercise, where the
optimal values of these priors are computed exhaus-
tively. However, in the absence of such a budget,
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we expect this to be a major impediment in the
development of lightweight models for such lan-
guages. Since low resource language communities
may also be marginalised in other ways, exhaustive
investment of data and compute might not be feasi-
ble for such communities as well as the language
technologists working on these languages (Zhang
et al., 2022; Diddee et al., 2022; Markl, 2022).

The main contributions of this work are:

1. We distill competitive baseline models for
8 low-resource languages (Bribri, Wixarica,
Gondi, Mundari, Assamesse, Odia, Punjabi
and Gujarati) and evaluate the sensitivity of
the generated models to priors including (a)
amount of synthetic Data being used for train-
ing (b) The architecture of the student model
(c) the training hyper-parameter configuration
and (d) the confidence of the teacher models.

2. We, then, quantize these models to observe
if quantization provides a more consistent
compression mechanism for these languages.
Based on our analysis, we conclude that
the suprising stability of naive Post-Training
Quantization, especially in the compression
of extremely-low resource languages (training
data between 5000 and 25000 samples) over
distillation.

We release a combination of lightweight, offline
support MT models for these languages along with
the scripts for generation and offline inference to
further reproducible research in this domain1.

2 Approach - Model and Size Adaptations

In this section, we describe the languages (2.1),
architectures under consideration (2.1), the adap-
tations that we make for training and fine-tuning
these models (2.2) and the adaptations we make to
compress their size.

2.1 Languages
We perform our analysis on the eight languages
shown in Table 1. These languages cover a wide
range of availability of monolingual and parallel
data, spanning from classes 0 to 3 as defined in
Joshi et al. (2020). Additionally, they differ in
scripts and their inclusion in pretraining corpus
which result in interesting modelling adaptions that
are needed to be performed for the development

1Codebase and Open-Sourced Models

of their baselines. In this work, we only study the
High-Resource Language (HRL)→ Low-Resource
Language (LRL) translation direction. The source
languages for all our target languages are men-
tioned in Table 1.

Family of Models For this work, we leverage
two model classes to carry out our analysis: I)
seq2seq transformer (Vaswani et al., 2017), here-
after referred to as vanilla transformer: With 6 En-
coder and Decoder Layers, Vocabulary size - vary-
ing between 8k to 32k and 8 attention heads. and
II) mT5-small (Xue et al., 2021): With 8 Encoder
and Decoder Layers, Vocabulary Size - 250100 and
6 attention heads.

We train the vanilla transformer from scratch,
hereafter referred to as transformer, to develop a
naive baseline for our experiments, and further fine-
tune the mT5-small, hereafter referred to as mT5,
with certain adaptations for all the languages, as
discussed in section 2.2.

For ease of reporting, we define the highest-
performing-model (denoted by HM) over our fam-
ily of models as:

HM = argmax
M

A(M)

where M is a model class with performance
A(M) after training (where A is a metric like
BLEU (Papineni et al., 2002) or chrF (Popović,
2016) used to monitor the task-specific perfor-
mance of the model).

2.2 Model Adaptations: Language Specific
Approaches

Here we describe the strategies required to adapt
these models to different low-resource languages:
During fine-tuning, we adapt the pretrained mT5 to-
kenizer to unseen scripts (encountered for Odia) by
transliterating it to the closest, highest-resource lan-
guage included in the pretraining corpus of the pre-
trained model (Khemchandani et al., 2021; Ramesh
et al., 2021, 2022). For our extremely low-resource
languages, we used Lexicon-Adaption (Wang et al.,
2022) for the augmentation of target-side monolin-
gual data for languages wherever a bilingual lexi-
con could be leveraged - Detailed performance with
Hindi-Gondi is provided in the Appendix section
A.2. However since such methods were not exten-
sible to all the languages in our target language set,
we report final experimental results on the models
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Language Class Source Language Data Constraints Model Constraints
Monolingual Data Parallel Data Shared Script Included in Pretraining

Bribri 0 Spanish
Wixarica 0 Spanish
Mundari 0 Hindi

Gondi 0 Hindi
Assammese 1 English

Odia 1 English
Punjabi 2 English
Gujarati 1 English

Table 1: Languages Under Consideration: Note that the except the language’s inclusion in the pretraining corpus of
our chosen pretrained language models, all factors are independent of our experimental setup. Source language
column enlists the source language of the translation pairs

which did not leverage any additional data other
than the data mentioned in A.1. Since we analyze
the HRL to LRL direction and 4 out of 8 (Bribri,
Wixarica, Gondi and Mundari) of our target lan-
guages have little to negligible monolingual data -
we were also unable to leverage Back-Translation
to augment our language-specific parallel corpus
(Edunov et al., 2018).

2.3 Size Adaptation: Knowledge Distillation

Knowledge distillation involves training a smaller
student network to mimic the token level proba-
bilities of a larger, more accurate teacher model.
We distill our models using Hard Distillation (Kim
and Rush, 2016): we utilize a set of monolingual
sentences in the HRL - and forward translate using
the HM to generate synthetic labels that a lighter
student model is then trained on.

2.3.1 Estimation of Optimal Values for Priors

We define a prior as any attribute of the compres-
sion mechanism that needs to be initialized mean-
ingfully and/or optimized for optimal performance
- akin to hyperparameters. We use this term specifi-
cally so as to put all the dependent variables - such
as training data, prediction confidence of the un-
compressed models, etc in a single bucket: rather
than using a term like hyperparameters that already
holds traditional significance in literature. The ex-
perimental sweeps for these priors are briefly ex-
plained in this section. Note that we focus largely
on distillation while estimating for these priors, be-
cause quantization provides competitive models
even with the default choices established by lit-
erature whereas with distillation - the estimation
of these priors is critical to achieve a competitive
compressed model variant in most cases.

Prior 1: Optimal Student Architecture Fol-
lowing prior work like Bapna et al. (2022), we
experimented with 3 candidate architectures, two
of which used deep encoders and shallower de-
coders. We sweeped across 3 candidate architec-
tures - all variants of a seq2seq transformers with
(a) 8 Encoder + 6 Decoder Layers (b) 6 Encoder +
4 Decoder Layers and (c) 6 Encoder + 3 Decoder
Layers. We chose the architecture that gave the
best BLEU performance after 30 epochs. Sweeps
for the architecture were done across each of the
following languages - Gondi, Assamesse and Odia
as they covered a wide range of training data.

Prior 2: Optimal Training Hyperparameters
We sweeped across a set of hyper-parameter sets
for Bribri, Gondi, Assamesse and Gujarati to iden-
tify the optimal set for the distilled student models.
Our goal here was to specifically study the trans-
ferability of a hyperparameter set which performed
competitively for one or more languages, to all the
languages in our target set.

Prior 3: Amount of Training Data for the Stu-
dent We sweeped across 3 candidate sizes of our
synthetic dataset: 100K, 250K and 500K pseudo-
labels. Since this decision could also be greatly
dependent on the quality of the labels generated
per language - we ran this sweep for Bribri, Gondi,
Odia and Gujarati, as the quality of the labels gen-
erated by the teachers for these languages would
be expected to demonstrate significant variation.

Prior 4: Optimal Teacher Architecture To do
a preliminary quantification of the effect of the
choice of a teacher architecture and the quantity of
data that a teacher is trained for on the compress-
ibility of the model - we decided to evaluate the
confidence of our teacher models on the predictions
they generated. For this, we sampled 100 instances
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from each of our testsets and monitored the logit
distribution of our teacher models. Specifically,
we calculated the average of the softmax entropy
of the token-level softmax distributions for a se-
quence. Taking inspiration from the unsupervised
estimation of quality of machine translation outputs
(Fomicheva et al., 2020) through similar methods,
we hypothesised that the lower the entropy of our
model, the more confident it would be in its pre-
dictions for a given sample. The intuition here was
that if a model is confident about its prediction,
its logit distribution would be highly-skewed, and
not resemble a uniform distribution (which would
indicate its indecisiveness in being able to predict
the right token - and therefore, the right sequence).
Eventually, this could be used to gauge the quality
of the pseudo labels that are student were being
trained on.

2.4 Size Adaptation: Quantization

Quantization is a common way to reduce the com-
putational time and memory consumption of neu-
ral networks (Wu et al., 2020). Here, a lower-bit
representation of weights and activation functions
is used to achieve a lower memory footprint. In
this work, we perform post-training quantization,
where after training the base model with full pre-
cision of floating point 32 bits (fp-32), we convert
the weights and activations of the model to 8 bit
integers (int-8). Note that during inference, we
still preserve the precision of the input and output
encoder-decoder distributions as fp-32. In theory,
this brings down the memory consumption of the
model by nearly 4x times, though we see an effec-
tive reduction of about 3x in practice. More details
on the memory-reductions achieved are specified
in the Appendix A.4

3 Experimental Setup

3.1 Data

(a) Bribri and Wixarica: We use the training data
7K and 8K sentences, respectively from Feldman
and Coto-Solano (2020) and evaluate on test data
from Mager et al. (2021). (b) Gondi: We use 26k
sentences from the data opensourced by CGNET
Swara (CGNET, 2019) and split it into training
and test sets.2 (c) Mundari: We use a dataset

2To avoid any test-set leaks, we deduplicate the data by
removing tuples (Si, T i) where Si is the ith sentence in
the source language and T i is iththe sentence in the target
language, between the train and the test set.

of 10K sentences provided by Indian Institute of
Technology, Kharagpur3, and split it into training
and test sets.1 (d) Assamesse, Odia, Punjabi and
Gujarati: We use the training data from Ramesh
et al. (2022) (with 0.14M, 1M, 2.4M and 3M sen-
tences, respectively) and evaluate on test data from
FLORES200 Goyal et al. (2022) for Assamese and
WAT2021 Nakazawa et al. (2021) for the remaining
languages. Additional details about datasets (sizes
and splits) are mentioned in the Appendix A.1.

3.2 Training Setup

Hyperparameters: We use the transformer and
mT5 as our model classes as described previously
in Section 2. The hyperparameters for our trans-
former model was optimized for fine-tuning of
Odia, trained on 1M sentence pairs. For fine-
tuning, we use the Adafactor optimizer (Shazeer
and Stern, 2018), with a linearly decaying learning
rate of 1e-3. Since training with smaller batches
is known to be more effective for extremely low-
resource language training (Atrio and Popescu-
Belis, 2022), we tuned the training batch size for
every language - varying from 32 to 256 (with gra-
dient accumulation as 2) though we did not see very
significant variation in the performance on the basis
of this tuning. For our stopping criteria: we fine-
tuned all models for 60 epochs (which concluded
with considerably overfit models) and then selected
models by we picking the checkpoint which had the
best validation performance on BLEU (with only
the 13a tokenizer which mimics the mteval-v13a
script from Moses) (Post, 2018).

We use the sentencepiece tokenizer to build tok-
enizers for training the baselines for each of the lan-
guages (Kudo and Richardson, 2018). We use the
per-token cross-entropy loss for fine-tuning all our
models. Following Xu et al. (2021), we opt for a
relatively smaller vocabulary size with the intent of
learning more meaningful subword representations
for our extremely low-resource languages. Specif-
ically, we use a vocabulary size of 8K for Gondi,
Mundari, Bribri and Wixarica, compared to 32K
used for Assamesse, Odia Punjabi and Gujarati.

Experimental Setup for Distillation For
Mundari and Gondi we utilize 500K Hindi sen-
tences sampled from the Samanantar corpus
(Ramesh et al., 2022); We use the corresponding
English corpus to sample English sentences for
generating the pseudo labels for Assamesse, Odia,

3Data to be released soon;
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Punjabi and Gujarati. For Bribri and Wixarica -
We use Spanish data made available by the Tatoeba
Challenge (Tiedemann, 2020). We use the per-
token cross-entropy loss for training our distilled
models.

Evaluation Metrics: We use BLEU (sacrebleu
with spm pre-tokenization (version 2.2.0)) (Post,
2018) for all our evaluations (Goyal et al., 2020).
In addition to this, we also report chrF2 (Popović,
2016) for all our experiments for a more compre-
hensive comparison between the models.

4 Results

In section 4.1, we present the performances of our
base models in Table 2. In the following section
4.2, we report the performances of the distilled
HM in Table 3. Using these empirical results we
focus on answering the following questions (a) To
what degree can scaling the student training data
improve the performance of the student model?
(4.3) (b) How sensitive is distillation to the choice
of the architecture of the student model? (4.4) (c)
How can we choose an optimal teacher that is most
suitable for compression? (4.5) (d) To what degree
does the hyperparameter set suitable for distilling
a model for one language transfer to another lan-
guage? (4.6)

While answering these questions, we also ana-
lyze in parallel the performance of the quantized
variants of these models implicitly indicating the
reduced sensitivity of these variants from most of
the previously discussed priors in spite of their
competitive performances.

Language Data Vanilla transformer mT5

spBLEU chrF2 spBLEU chrF2

Bribri 7K 1.7 11.6 6.4 19.3
Wixarica 8K 2.2 14.1 6.2 28.0
Mundari 10k 0.1 5.6 15.9 33.7
Gondi 26K 1.2 7.9 14.3 32.5
Assamesse 140K 0.8 12.4 10.7 30.4
Odia 1M 23.7 43.6 27.4 47.6
Punjabi 2.4M 38.4 50.6 34.8 44.1
Gujarati 3.05M 35.9 53.4 35.7 49.8

Table 2: Performance of our base models (transformer
and mT5) without quantization or distillation. Best per-
forming models out of the two architectures are marked
in bold.

4.1 Analyzing the Baseline Models
As expected, the transformer models for target lan-
guages start competing (and outperforming) once

an adequate amount of data is available for training
the vanilla transformers. In addition to the obvious
gain for being only optimized for target languages,
the performance gains of these baselines can also
be attributed to the language-specific tokenizer that
they utilize, in contrast to the pretrained mT5 to-
kenizer that might be sub-optimal for language-
specific generation. For our low-resource lan-
guages though, the advantage of transfer learning
is clearly evident: all languages achieve a mini-
mum and maximum performance improvement of
4 and 16 BLEU points. Gondi and Mundari, de-
spite having relatively low-amount of data, perform
well - though we expect an overestimation of their
performance due to the homogenity between the
train and the test set. Additionally though, both
languages share scripts with a dominant language
script i.e., Devanagari and hence, can be expected
to gain because of that.

4.2 Analyzing the Compressed Models

In Table 3, we briefly present the performances
of our distilled and quantized models. As evi-
dent, especially for the lowest-resource models,
both distillation and quantization give competitive
performance in addition to providing a significant
size reduction. Note that Table 3 does not report
the performance of the quantization of the vanilla
transformer models for Odia, Gujarati and Punjabi
even though they had competed or outperformed
the mT5 variants. This is because they suffered a
significant drop in performance - Odia dropped in
performance to 8.4 BLEU/30.5 chrF2 in contrast
to its HM scores of 23.7 BLEU/ 43.6 chrF2 respec-
tively. Gujarati and Punjabi also dropped to 16
BLEU/31.2 chrF2 and 19.1/36.0 , respectively. To
explain this we note what distinguishes these two
architectures: (a) mT5 is deeper than transformer
having 2 extra layers on the encoder’s side than
the vanilla transformer and (b) leverages multilin-
gual pretraining. These attributes become useful
in interpreting mT5 robustness to compression. In
agreement with prior work like Li et al. (2020),
deeper models can be expected to be more immune
to compression. In fact, these models can be ex-
pected to be regularized by a certain degree through
quantization, and we posit that we might be adopt-
ing a sub-optimal fine-tuning hyperparameter set
for the initial fine-tuning of these models, conse-
quently generating potentially overfit models and
this gets mitigated to some extent upon quantiza-
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tion. Taking into consideration the lack of prior
work on fine-tuning large LMs on such extremely
low-resource languages and the infeasibility of run-
ning intricate hyperparameter sweeps per language
with such large models, this can also be expected
to degrade the quality of the labels generated for
training the distilled models - ultimately affecting
the performance that the distilled models achieve.

Language HM Distilled HM Quantized HM

spBLEU spBLEU chrF2 spBLEU chrF2

Bribri 6.4 6.8 13.2 7.4 19.4
Wixarica 6.2 4.1 17.3 7.2 26.8
Mundari 15.9 18.2 32.7 15.7 29.3
Gondi 14.3 14.2 32.8 13.8 31.1
Assamesse 10.7 9.6 27.4 6.2 25.7
Odia 27.4 20.2 40.7 21.0 41.3
Punjabi 38.4 32.8 46.6 27.0 48.0
Gujarati 35.9 29.8 48.6 28.4 51.4

Table 3: Performance of the HM for all languages after
applying Distillation and Quantization. Best performing
models out of both of the size adaptations are marked
in bold.

In the following sections we focus on presenting
our analysis of distillation’s sensitivity to certain
priors. In each section, we also discuss an analysis
of the same priors’ effect on quantization. Note that
since the mT5 outperformed the vanilla transformer
variants for all languages up till Odia - we distilled
and quantized them for these languages. Also note
that the HM for these languages is hence, mT5.
Additionally, for Odia, Gujarati and Punjabi, we
quantized both the mT5 and the vanilla transformer
variants of the models.

4.3 Sensitivity to Priors: Data

The quality, quantity and the domain of data that
the teacher or uncompressed variant of the model is
trained on, appears to impact both the mechanisms
of compression: For distillation the gold training
data as well as the monolingual data utilized for
generating student labels is of relevance, and for
quantization only the gold data that the teacher is
fine-tuned for, is of relevance.

Quantity of Training Data Interestingly, quan-
tization displayed consistent performance varia-
tions across the entire range of our low-resource
language sets (all languages up till Odia), giving
marginally close scores to the HM so at least within
the data sparse languages we did not see any di-
rect variation in the performance according to the

amount of training data used. Both mechanisms
show nearly equal degradation in performance for
the HRL.

Quality of Training Data The quality of the data
that the teacher is trained on affects the model’s
immunity to compression. This is best demon-
strated by the post-compression performances of
Gondi and Mundari in Table 3: In Gondi - the train
set has nearly 26K sentences, which by the virtue
of being collected via crowd-sourcing may be ex-
pected to be noisy. Mundari’s training data, though
also crowd-sourced, claims to have been validated
manually after its collection by the providers to
generate the final corpus of about 10K sentences.
The observed difference where Gondi suffers a
slight performance degradation post-compression
and Mundari experiences a significant performance
gain, may be attributed to the difference in the qual-
ity of their training data. Note that both languages
are being translated from the same source language,
share the same script and are being tested on a cor-
related test set - so the quality and quantity of train-
ing data are expected to be major contributors to
the variations in their performance.4

Quantity of Pseudo-Labels used for Student’s
Training Results of our analysis of scaling stu-
dent data between 100K to 500K are presented in
Figure 1. More data seemed to help for the entire
spectrum of languages - though it is evident that the
gain in the performance diminished in proportion
to the amount of added data as we approached the
lowest-resource languages in our set. The gain in
performance upon the addition to 250K samples to
a HRL like Odia or Punjabi is significantly more
pronounced than the gain in performance for Bribri
or Gondi - where there is a very marginal improve-
ment in the performance upon the addition of 250K
samples. This could be indicative of the dimin-
ishing efficacy of the increasingly noisy data that
was generated by the lowest-resource teachers. We
explore this notion in more depth in Section 4.5.

Domain of Data While we do not perform any
targeted experiments to evaluate the domain depen-
dence of the two compression mechanisms - we
posit that the distilled models’ significantly bet-
ter performance than its quantized variant in As-

4The two languages do belong to two different language
families - Gondi belonging to the Dravidian language family
which has a higher representation in the pretraining corpus for
mT5, and Mundari being Austro-Asiatic

875



(a) Variation in the efficacy of pseudo-
labels between Bribri and Odia

(b) Variation in the efficacy of pseudo-
labels between Punjabi and Gondi

Figure 1: Min/Max range curves of the performance of
the models trained on scaled data: The shaded range is
considerably lower for the lowest-resource languages
indicating reduced efficacy of scaling student data.

samesse could be attributed to the distilled model’s
exposure to the diverse-domain data during the
student’s training. Note that the testset used in
Assamesse, FLORES 200 (Goyal et al., 2022),
is claimed to be of a very diverse-domain origin.
Given this, the process of training a student on
monolingual data of a potentially more diverse ori-
gin to that of the native training set - would ex-
plain the gain that the language demonstrates on
a domain-agnostic testset. Prior work like Mghab-
bar and Ratnamogan (2020) already shows distil-
lation’s efficacy in enabling students to adapt to
out-of-domain data that the teacher may not have
ever been exposed to. Quantization on the other
hand, has no opportunity for exposure to any out-
of-domain data - so its adaptation and performance
across a domain-agnostic testset can be expected
to only degrade.

4.4 Sensitivity to Priors: Student Architecture

We find that distilled student models could be ad-
versely sub-optimal for a given language, despite
being sub-optimal or even an optimal choice for
a large subset of languages. To demonstrate this

Figure 2: Variation in BLEU due to difference in the
choice of a student architecture: An optimal architecture
choice for Odia and Gondi gives adversely sub-optimal
performance for Assamesse

in Figure 2, we show the performance of two dis-
tilled models on an identical hyperparameter set
and student architecture. While the chosen stu-
dent architecture gives competitive performances
for Gondi and Odia, Assamesse performs signif-
icantly worse for this candidate architecture. We
did attempt retraining the model with a different
seed to negate the possibility of a randomly poor
initialization though this did not improve the con-
vergence. While we did not notice such a dras-
tic performance variation across any other candi-
date set, this instance did indicate brittleness to
the student-architecture for a given language. After
these sweeps, we fixed a transformer-based encoder
with 6 layers and a transformer-based decoder with
4 layers as the distilled model for our further exper-
iments.

4.5 Sensitivity to Priors: Confidence of the
Teacher Model
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Figure 3: Entropy distributions of mT5 and trans-
former: lower-entropy indicates high-confidence and
consequently suggest higher-quality of translations.

Estimating the confidence of our teacher models
displayed manifold benefits: Within Distillation,
it helped us get an indirect estimate of the qual-
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ity of the training data that the student model was
trained on. Within Quantization, it was useful in
analyzing why the mT5-variants were more robust
to quantization. Note that since the testsets for
all the languages are of varying difficulty - doing
a language-wise comparison on the basis of such
metrics was non-trivial since the confidence predic-
tions could also vary in accordance with the com-
plexity of the testsets being evaluated upon. Hence,
we majorly focused on analyzing languages which
were either evaluated on the same test set (Gujarati,
Punjabi, Odia with WAT21 testset (Nakazawa et al.,
2021)) or the different architectures for each of our
languages which could be evaluated for the same
testset.

Figure 3 demonstrates the difference in the en-
tropy of the softmax distributions of the mT5 and
transformer teacher variants. Note that this is for
Gujarati and Odia, our highest resource language,
for which both architectures perform quite competi-
tively and the vanilla transformer even outperforms
the mT5.

As is evident, the mT5 variant has much lower
entropy scores, with lower dispersion indicating
high-confidence in the predictions it produces for
each of the samples. Note that the inference
pipeline for both architectures is identical - Greedy
Search with no sampling so we don’t expect any
difference in the decoding mechanism to affect the
quality or distribution of representations that we
are monitoring. This is a very interesting observa-
tion, as both models appear to perform comparably
according to our automatic metric evaluations - yet
differ quite significantly in the stability with which
they generate these predictions.
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Figure 4: Entropy distributions for transformer across
different languages: Models become increasingly more
confident about their predictions with an increase in
training data

Next, we attempt to establish if training with

more data makes a model more confident in its pre-
diction. Figure 4 demonstrates the entropy scores
for Odia, Punjabi and Gujarati. Each of these have
data increasing in the order of 1M, 2.4M and 3M
respectively. Here we observe that indeed, models
trained with more data achieved consistently lower
entropy scores.

4.6 Sensitivity to Training Hyperparameters

In this section we present results of evaluating if
an adequate hyperparameter set for a given lan-
guage may be suitable for generating an optimal
variant for another distilled language. Here too, we
demonstrate using a subset of our hyperparameter
sweep that there can be a marked degradation in
the suitability of an averagely optimal hyperparam-
eter set (that might be close to optimal to multiple
languages with similar attributes) to an unseen lan-
guage;

Figure 5: Min/Max range of performances of Gujarati,
Bribri and Assamesse across a hyperparameter set that
is optimal for these languages but adversely sub-optimal
set for Gondi

In Figure 5, when tuned for the hyperparameter
set that is optimal for a majority of languages in
our set, Gondi does not even converge as a result of
which the lower-bound of a teacher’s performance
for that hyperparameter set is 0. Note that this
hyperparameter set transferability does not seem
to show any specific data oriented trends as well.
For instance, the same hyperparameter set that was
optimal for Gujarati, our highest resource language
with 3M data points, is only slightly sub-optimal
for Bribri, our lowest resource language with 7000
data points, and Assamese, our mid-resourced lan-
guage with 135K sentences. Also note that we
were able to get acceptable performance for Gondi
with almost an identical hyperparameter setup with
a larger batch size (quadrupled to the one in this
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setup) indicating that a per-language sweep would
be an ideal and acceptable solution even though this
would imply that distilling models would mandate
a significant hyperparameter tuning for achieving
optimal performance. A detailed list of what hy-
perparameters we sweeped through can be found
in the Appendix Table 5.

5 Takeaways

We encapsulate the learning from our analysis as
the following takeaways:

1. Data Dependence of the Method of Com-
pression: Training teacher models with lesser
quantity, higher quality data is expected
to improve a model’s robustness against
both quantization and distillation. The post-
quantization performance suffers equally for
models trained with varying degrees of data.
This is not the case with distillation, where
increasing the amount of training data for stu-
dent distilled models starts providing dimin-
ishing returns as the amount of training data
for the teacher reduces.

2. Cost of Compression: Distillation is quite
sensitive to its training hyperparameters and
the student’s architecture. This choice doesn’t
necessarily follow any data-oriented trends as
well i.e., languages having similar amount of
data may perform very differently on similar
hyperparameter and student architecture sets.
Hence, Distillation mandates a significant hy-
perparameter tuning cost that Quantization
does not incur.

3. Stability of Compression: Hard Distilla-
tion and Post-Training Quantization are both
promising methods of quickly compressing
massively multilingual models for machine
translation for extremely low-resource lan-
guages. Post-Training Quantization should
be preferred when the uncompressed vari-
ants is pretrained and/or deep, expected de-
gree of compression is upto 4x the original
model’s size and the cost of compression is to
be minimum. Distillation, on the other hand,
should be preferred when domain-expansion,
language-specific tokenization and more than
4x degree of compression needs to be achieved
at the cost of a tuning for optimal architecture
and training setup selection.

6 Related Work

Owing to the known benefits of compressing lan-
guage models due to their lower-memory footprint,
improved inference speed and even improved per-
formance in some cases, compression techniques
have been explored widely in NLP.

Quantization While the work on quantizing
encoder-models is replete (Zafrir et al., 2019; Bon-
darenko et al., 2021; Kim et al., 2021; Zadeh et al.,
2020) the focus on quantizing decoder-only models
(Tao et al., 2022b), and specifically seq2seq mod-
els has been relatively much lower. Recent work
like, EdgeFormer, (Ge and Wei, 2022), LLM.int8()
(Dettmers et al., 2022) have recently demonstrated
the generation of seq2seq quantized models which
provide a high-compression ratios and competitive
performances though this work has also been done
with much higher resource languages.

Distillation Work within distillation is replete,
even for the multilingual-type of models that we
focus on. Work like Kaliamoorthi et al. (2021);
Jiao et al. (2021); Yang et al. (2022) represent
the major body of work in multi-lingual distilla-
tion - that is also centered across the encoder-only
space. Relatively lesser work has been done in
the space of mutli-lingual distillation (Soltan et al.,
2021; Mukherjee et al., 2021) of seq2seq models
and even though work like Zhang et al. (2020);
He et al. (2019) extends this analysis to relatively
low-resource languages, they rely on the use of
monolingual data for the target language, a luxury
that we cannot afford for half of the languages in
our language set.

Note that since both processes are orthogonal,
their conjunctive use has also been explored - Tao
et al. (2022a) for instance, get competitive results
by applying token level contrastive distillation and
module-wise dynamic scaling while quantizing
generative models. Note that we made the con-
scious decision of excluding pruning from our anal-
ysis because while it is known to demonstrate very
effective parameter reduction, it is generally not
as aggressive in it’s memory footprint reduction as
much as quantization and distillation (Behnke and
Heafield, 2020; Mohammadshahi et al., 2022). As
we’ll discuss further in section 7, size-reduction
was an implicit focus of this work that is one of
the most fundamental bottlenecks of community
deployment A.4.
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7 Discussion

While this work explicitly focuses on only the
performance comparison between distillation and
post-training quantization, it’s efficacy can also
be viewed in demonstrating the development of
lightweight, machine translation models for ex-
tremely low-resource languages. This is a very
critical outcome as Performance-oriented Machine
translation (MT) models for low-resource lan-
guages are often not suited for the immediate con-
sumption of the community. The access bottle-
neck introduced by these bloated models, can es-
pecially affect those communities which haven’t
traditionally enjoyed access to a digital ecosystem,
often widening the gap between those who can
and cannot access these tools. Towards this direc-
tion, the exploration of compression strategies for
these models - especially when tied to end-user
centric NLP services such as translation is imper-
ative. In this work, the size of all models being
evaluated after compression was less than 400MB -
the quantized models are at least 3x lighter the size
of the native HM and the distilled models give even
more impressive gains of upto 8x smaller than their
uncompressed counterparts. This size reduction,
coupled with the increased speed of inference asso-
ciated with this reduction in most cases can enable
a suite of accessible translation models for these
languages5. This establishes a very promising po-
tential in achieving deployment-constraint aware
models: For instance, in areas where users do not
enjoy a sustained access to the internet - these light-
weight models may be adapted to operate on edge
in an offline fashion.

8 Conclusion and Future Work

In this work we established that hard-distillation
is sensitive to several priors which makes it a brit-
tle mechanism of compression, especially for lan-
guages with extremely low-resources. In relative
comparison, post-training quantizaton provides a
competitive, stable and cost-effective compression
mechanism that works effectively for extremely
low-resource languages as well. Moving forward,
we wish to explore the effect of using additional
data (augmented or natively available) on the com-
pressed variants of these models and extend distil-
lation’s analysis to utilizing logit distributions of

5A more detailed description of the sizes of these mod-
els and the associated inference patterns is provided in the
Appendix A.4

the teacher (soft-distillation). Having observed the
poor confidence measures of the transformer - and
it’s relatively random distributions we expect to get
more interpretable evidence towards the suitability
of these models for soft distillation through such
an analysis.
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Maja Popović. 2016. chrF deconstructed: beta param-
eters and n-gram weights. In Proceedings of the
First Conference on Machine Translation: Volume
2, Shared Task Papers, pages 499–504, Berlin, Ger-
many. Association for Computational Linguistics.

Matt Post. 2018. A call for clarity in reporting bleu
scores. arXiv preprint arXiv:1804.08771.

Akshai Ramesh, Venkatesh Balavadhani Parthasarathy,
Rejwanul Haque, and Andy Way. 2021. Com-
paring statistical and neural machine translation
performance on hindi-to-tamil and english-to-tamil.
Digital, 1(2):86–102.

Gowtham Ramesh, Sumanth Doddapaneni, Aravinth
Bheemaraj, Mayank Jobanputra, Raghavan AK,
Ajitesh Sharma, Sujit Sahoo, Harshita Diddee, Di-
vyanshu Kakwani, Navneet Kumar, et al. 2022.
Samanantar: The largest publicly available par-
allel corpora collection for 11 indic languages.
Transactions of the Association for Computational
Linguistics, 10:145–162.

Surangika Ranathunga and Nisansa de Silva. 2022.
Some languages are more equal than others: Probing
deeper into the linguistic disparity in the nlp world.
arXiv preprint arXiv:2210.08523.

Noam Shazeer and Mitchell Stern. 2018. Adafactor:
Adaptive learning rates with sublinear memory cost.
In International Conference on Machine Learning,
pages 4596–4604. PMLR.

Saleh Soltan, Haidar Khan, and Wael Hamza. 2021.
Limitations of knowledge distillation for zero-
shot transfer learning. In Proceedings of the
Second Workshop on Simple and Efficient Natural
Language Processing, pages 22–31, Virtual. Associ-
ation for Computational Linguistics.

Mukund Srinath, Shomir Wilson, and C Lee Giles.
2021. Privacy at scale: Introducing the Pri-
vaSeer corpus of web privacy policies. In
Proceedings of the 59th Annual Meeting of the
Association for Computational Linguistics and the
11th International Joint Conference on Natural
Language Processing (Volume 1: Long Papers),
pages 6829–6839, Online. Association for Computa-
tional Linguistics.

Chaofan Tao, Lu Hou, Wei Zhang, Lifeng Shang,
Xin Jiang, Qun Liu, Ping Luo, and Ngai Wong.
2022a. Compression of generative pre-trained lan-
guage models via quantization. In Proceedings
of the 60th Annual Meeting of the Association
for Computational Linguistics (Volume 1: Long
Papers), pages 4821–4836, Dublin, Ireland. Asso-
ciation for Computational Linguistics.

881



Chaofan Tao, Lu Hou, Wei Zhang, Lifeng Shang,
Xin Jiang, Qun Liu, Ping Luo, and Ngai Wong.
2022b. Compression of generative pre-trained lan-
guage models via quantization. arXiv preprint
arXiv:2203.10705.

Jörg Tiedemann. 2020. The tatoeba translation chal-
lenge – realistic data sets for low resource and multi-
lingual MT. In Proceedings of the Fifth Conference
on Machine Translation, pages 1174–1182, Online.
Association for Computational Linguistics.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz
Kaiser, and Illia Polosukhin. 2017. Attention is
all you need. Advances in neural information
processing systems, 30.

Xinyi Wang, Sebastian Ruder, and Graham Neubig.
2022. Expanding pretrained models to thousands
more languages via lexicon-based adaptation. arXiv
preprint arXiv:2203.09435.

Hao Wu, Patrick Judd, Xiaojie Zhang, Mikhail Isaev,
and Paulius Micikevicius. 2020. Integer quantization
for deep learning inference: Principles and empirical
evaluation. arXiv preprint arXiv:2004.09602.

Jingjing Xu, Hao Zhou, Chun Gan, Zaixiang Zheng,
and Lei Li. 2021. Vocabulary learning via opti-
mal transport for neural machine translation. In
Proceedings of the 59th Annual Meeting of the
Association for Computational Linguistics and the
11th International Joint Conference on Natural
Language Processing (Volume 1: Long Papers),
pages 7361–7373, Online. Association for Computa-
tional Linguistics.

Linting Xue, Noah Constant, Adam Roberts, Mi-
hir Kale, Rami Al-Rfou, Aditya Siddhant, Aditya
Barua, and Colin Raffel. 2021. mT5: A mas-
sively multilingual pre-trained text-to-text trans-
former. In Proceedings of the 2021 Conference
of the North American Chapter of the Association
for Computational Linguistics: Human Language
Technologies, pages 483–498, Online. Association
for Computational Linguistics.

Ziqing Yang, Yiming Cui, Zhigang Chen, and Shijin
Wang. 2022. Cross-lingual text classification with
multilingual distillation and zero-shot-aware training.
arXiv preprint arXiv:2202.13654.

Ali Hadi Zadeh, Isak Edo, Omar Mohamed Awad,
and Andreas Moshovos. 2020. Gobo: Quantiz-
ing attention-based nlp models for low latency
and energy efficient inference. In 2020 53rd
Annual IEEE/ACM International Symposium on
Microarchitecture (MICRO), pages 811–824.

Ofir Zafrir, Guy Boudoukh, Peter Izsak, and Moshe
Wasserblat. 2019. Q8bert: Quantized 8bit bert. In
2019 Fifth Workshop on Energy Efficient Machine
Learning and Cognitive Computing - NeurIPS
Edition (EMC2-NIPS), pages 36–39.

Shiyue Zhang, Ben Frey, and Mohit Bansal. 2022. How
can NLP help revitalize endangered languages? a
case study and roadmap for the Cherokee language.
In Proceedings of the 60th Annual Meeting of the
Association for Computational Linguistics (Volume
1: Long Papers), pages 1529–1541, Dublin, Ireland.
Association for Computational Linguistics.

Xinlu Zhang, Xiao Li, Yating Yang, and Rui Dong.
2020. Improving low-resource neural machine trans-
lation with teacher-free knowledge distillation. IEEE
Access, 8:206638–206645.

A Appendix

A.1 Details of Data Sources

For all the languages in Table 1 we now describe
the training and evaluation corpora used. Note
that for languages like Assamesse, Odia, Punjabi,
etc. we could have accessed a monolingual cor-
pus to supplement our training as well but since
we wouldn’t have been able to leverage data at a
similar scale and quality for the entire language set,
we abstained from using methods that leveraged
monolingual corpora in these languages.

Bribri Training data from Feldman and Coto-
Solano (2020) containing about 7K parallel sen-
tences. Test data from Mager et al. (2021) with
1003 sentences.

Wixarica Training data from Feldman and Coto-
Solano (2020) containing about 8k parallel sen-
tences. Test data from Mager et al. (2021) with 1K
sentences.

Mundari We requested Indian Institute of
Kharagpur for Data on Mundari. This corpus con-
tained 10K parallel sentences. We partition train
and test sets from this and generate a test set of 980
sentences 6

Gondi Data obtained from CGNET (2019) con-
taining 26K sentences. We partition train and test
sets from this and generate a test set of 730 sen-
tences6.

Assamesse Train data obtained from Ramesh
et al. (2022) containing 0.14 parallel sentences.
Test data from (Goyal et al., 2022) containing 1012
sentences

6 To avoid any test-set leaks, we deduplicate the data by
removing tuples (Si, T i) where Si is the ith sentence in
the source language and T i is iththe sentence in the target
language, between the train and the test set.
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Odia Train data obtained from Ramesh et al.
(2022) containing 1M parallel sentences. Test set
from WAT2021 (Nakazawa et al., 2021) containing
2390 sentences

Punjabi Train data obtained from Ramesh et al.
(2022) containing 2.42M parallel sentences. Test
set from WAT2021 (Nakazawa et al., 2021) con-
taining 2390 sentences

Gujarati Train data obtained from Ramesh et al.
(2022) containing 3.05M parallel sentences. Test
set from WAT2021 (Nakazawa et al., 2021) con-
taining 2390 sentences

A.2 Evaluating Continued Pretaining with
Synthetically Augmented or Lexicon
Adapted Monolingual Data for improving
the HM

The use of continual pretraining with monolingual
data has been shown to be very useful in improv-
ing the transfer for low-resource languages. In our
cases, our lowest resource languages, i.e, Bribri,
Wixarica, Gondi and Mundari, did not have any
monolingual data available natively so we explored
the augmentation of the same using lexicons (Wang
et al., 2022). We also generated forward trans-
lated data using the HM that we developed to
fuse with the lexicon-adapted data. For continued
pretraining we use a fixed learning rate of 0.001.
Results of our experiments are logged in Table
5.We use the following notations to report our re-
sults GMD- Gold Monolingual Data, LA- Lexicon
Adapted Monolingual Data, KDD- Knowledge Dis-
tilled Monolingual Data where GMD indicates the
target-side monolingual data available within the
parallel corpus of the language, KDD indicates the
forward-translated data that we generate via our
best-performing model for Gondi i.e., mt5-base.
We generated 100K labels using mt5-base teacher,
and also experimented adding 100K sentences from
a weaker teacher, i.e., mt5-small in hopes of lever-
aging a more diverse class of labels to train the
student on.

We did observe a small gain in performance upon
the addition of LA data during pretraining - though
the post-quantization performance and the distilled
model’ significant performance degradation called
for a deeper investigation on the effects of contin-
ued pretraining for this language.

A.3 Hyperparameter Trial Configurations

We ran Hyperparameter sweeps with the configura-
tions specified in Table 5.

Note that in congruence with the observations of
subsection 4.6, we also provide the min-max range
of performance for Gondi and Bribri in Figure 6.

(a) Min/Max Range of Bribri’s Sweep

(b) Min/Max Range of Gondi’s Sweep

Figure 6: Variation of performance across languages

As can be observed, for a set of hyperparam-
eters, at least one of which is optimal for some
other language in the set, both languages fail to
converge. Similarly, in extension to subsection 4.4,
we also checked if for the same hyperparameter
set, the variation in student architecture produced
significant performance variations.

The results demonstrated in Figure 7 did not
show any significant variation except for the case
of Gondi, i.e., altering the student architecture -
while keeping all other priors the same: adversely
affected the performance in that one case.

A.4 Comparing Size-Reduction Affinity of
Quantization and Distillation

This exploration is extremely useful as the size
of a model significantly impacts several factors
associated with the consumption of any service,
impacting it’s adoption by community members
through several ways including (a) Accessibility
on Edge: Since mobile devices are constrained in
their RAM and Memory Usage - users with edge
devices of low-capabilities are naturally inhibited
to is services that drain their device’s resources. In-
adequate Connectivity Requirement for Inference,
One-time download and Service Updates: Users
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Model Data spBLEU S(M) (in MB)
Transformer 26.2k 1.4 240
mT5-small 61.9k 12.7 1200
mT5-small 26.2k 14.3 1200
mT5-base 26.2k 15.6 2100
mBART 26.2k 13 2280
mT5-small: CPT {GMD } 26.2kmono 14.9 1200
mT5-small: CPT {LA } 200kmono 14.9 1200
mT5-small: CPT {LA } 200kmono 10.8 400
mT5-small: CPT {KDD } 143kmono 15.2 1200
mT5-small: CPT {GMD + LA + KDD } 26.2k + 343kmono 14.7 1200
mT5-small: Quantizing M1 26.2k 13.8 400
Quantizing CPT Model {Best mT5-small } 26.2k 10.2 400
Transformer + KD 26.2k + 240k 10.1 185

Table 4: Gondi: Use of Lexicon Adaptation, Continued Pretraining and Mixed-training with Lexicon Adapted and
Forward Translated Monolingual Data.

Hyperparameter Candidate Values

Train batch size 32, 64
Epochs 10, 30, 60
Method grid
Metric BLEU
Gradient Accumulation 2, 4
Label Smoothing 0, 0.1
Learning Rate 5{e-5,e-5,e-6}
Warmup Steps 500, 1000

Table 5: Candidate values of hyperparameters: Sweep
for finding the optimal hyperparameter set for Distilla-
tion

may often avoid downloading apps that seem too
large, particularly in emerging markets where de-
vices connect to often-spotty 2G and 3G networks
or work on pay-by-the-byte plans 7. Large Ren-
dering Time: Finally, a bloated size may often be
associated with a larger rendering response period
which might hinder the usability experience of a
user engaging with the MT service.

Note on Inference Times In theory, compres-
sion through both distillation and quantization is
expected to be conducive to faster inference for
the models: The distilled models are not bounded
to use a pretrained embedding and hence can gain
in inference by using smaller, target-language spe-
cific embeddings. The quantized models can also
benefit due to the reduced precision in which the

7https://developer.android.com/topic/performance/reduce-
apk-size

(a) Variation in BLEU with change in student archi-
tecture for Assamesse

(b) Variation in BLEU with change in student archi-
tecture for Gondi

Figure 7: In the legend E and D refers to Encoders and
Decoders respectively

inference operations are carried out, though this op-
timization is heavily dependent on if the hardware
running the model can leverage these operations in
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Language Native S(HM) Compressed S(Q,D)

Bribri 1228 (400, 153)
Wixarica 1228 (400, 153)
Gondi 1228 (400, 153)
Mundari 1228 (400, 153)
Assamesse 1228 (400, 189)
Odia 1228 (400, 189)
Punjabi 232 (75, 189)
Gujarati 232 (75, 189)

Table 6: Sizes of the Uncompressed and Compressed
Variants for all languages - Q and D indicate the com-
pressed sizes of the Quantized and the Distilled Models
respectively. All sizes are in MB.

their expected precision (Bondarenko et al., 2021).
Especially in the case of quantization, the scope of
this analysis would be quite vast, which is why we
also excluded it from our current analysis.
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Abstract
Despite the wide use of inline formatting, not
much has been studied on translating sentences
with inline formatted tags. The detag-and-
project approach using word alignments is one
solution to translating a tagged sentence. How-
ever, the method has a limitation: tag reinser-
tion is not considered in the translation process.
Another solution is to use an end-to-end model
which takes text with inline tags as inputs and
translates them into a tagged sentence. This ap-
proach can alleviate the problems of the afore-
mentioned method, but there is no sufficient
parallel corpus dedicated to such a task. To
solve this problem, an automatic data augmen-
tation method by tag injection is suggested, but
it is computationally expensive and augmen-
tation is limited since the model is based on
isolated translation for all fragments. In this
paper, we propose an efficient and effective tag
augmentation method based on word alignment.
Our experiments show that our approach out-
performs the detag-and-project methods. We
also introduce a metric to evaluate the place-
ment of tags and show that the suggested metric
is reasonable for our task. We further analyze
the effectiveness of each implementation detail.

1 Introduction

While most machine translation studies are focused
on plain text, the textual information that we en-
counter every day on the internet contains words
with different styles and links within the sentence.
Various styling of any part of the text is called in-
line formatting and is represented by markup and
markdown tags. The inline formatting not only
improves the readability of documents but also pro-
vides additional information with tags; so it is im-
portant to correctly translate sentences including
tag information. In addition, the widespread use of
formatting tags in the computer-based document
system makes it inevitable to increase the demand
for translating web text or structured documents
containing inline tags.

There are two main approaches to translating
segments with inline tags. One solution is the detag-
and project method (Hanneman and Dinu, 2020). It
first strips tags from the source sentence and trans-
lates only the plain text. Then, the removed tags are
reinserted into the translation results using word
alignments, which can be induced from attention
weight in the model or an external aligner such as
SimAlign (Jalili Sabet et al., 2020). This method
does not take into account the re-insertion of tags in
the translation process, making it difficult to restore
tags at the proper positions.

Another way is to use an end-to-end model
which takes sentences including tags as inputs and
generates translation results with tags. Since tag
information is considered, the translation can be
performed with more context, thus this method po-
tentially improves the quality of translation and the
placement of tags. To train end-to-end models, a
parallel corpus, where both source target sentences
contain aligned tags, is required. Even though a
parallel corpus with markup tags was released by
Hashimoto et al. (2019), their data is limited to the
domain of online help and there is still not many of
such data available to train a high-quality model.

To address this lack of tagged parallel corpus,
Hanneman and Dinu (2020) introduces a data aug-
mentation approach using tag injection. Their
method is to insert tags into corresponding frag-
ments in the source and the target. In their ap-
proach, the aligned phrases are identified by an
exhaustive search by matching all translated source
fragments with all target fragments. This method
has two drawbacks by its nature. The first is that
their approach requires a high computational cost
because it requires computing translation for all
possible phrases for at least millions of parallel
sentences to train a model. Secondly, only con-
strained tags can be augmented because they find
corresponding pairs with out-of-context translation.

In this paper, we propose an efficient and effec-
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tive tag augmentation method using word align-
ments (Brown et al., 1993) to overcome the above
shortcomings. Our method uses an external word
aligner to compute correspondence between the
source and target words, and find aligned fragments
by phrase extraction algorithm (Och et al., 1999).
Then tags are inserted according to the phrasal
alignments. The tag-augmented parallel corpus
by this method can train a model that translates
sentence containing tags in an end-to-end way.

For comparisons, we implement competitive
baselines and propose a metric to automatically
evaluate the placement of tags. Through experi-
ments, we show that our approach is superior to
the detag-and-project methods and demonstrate the
effectiveness of each implementation detail.

2 Method

In this section, we propose an efficient and effective
method to insert inline tags into an existing parallel
corpus. In augmented data, the position of tags in
the source segment must be preserved in the target
segment. The word "preserved" means that tags
in the target sentence must surround spans with
the same role and meaning as the corresponding
source spans. In other words, the source and target
fragment in the same tag has to correspond with
each other. Moreover, inline tags can contain not
only a word but also a phrase or even any consecu-
tive words. Therefore, how to find corresponding
phrase1 pairs for each parallel sentence is the key to
synthesizing tag-aligned parallel data. This makes
our method focus on finding aligned phrase pairs.

Our proposed augmentation method consists of
three steps. We first generate word alignments for
the parallel corpus using external word aligners
(Section 2.1). Then we extract aligned phrase pairs
for each sentence pair with the word alignments
(Section 2.2). Lastly, for each parallel sentence and
the aligned phrase pairs, since each sentence usu-
ally has a lot more aligned pairs than the number
of words in the sentence, we randomly select some
of the pairs and insert tags to surround the phrases
(Section 2.3). Figure 1 presents the whole pro-
cess of our methods. The example is from Philipp
Koehn’s lecture2.

1In this paper, the word "phrase" indicates consecutive
words of any length. The length can be 1 and more.

2https://wiki.eecs.yorku.ca/course_archive/
2014-15/W/6339/_media/esslli-slides-day3.pdf

Figure 1: The process of our methods.

2.1 Word Alignment

Word alignment represents word-level correspon-
dence in a parallel sentence. In statistical ma-
chine translation, implementation of IBM models
(Brown et al., 1993) such as FastAlign (Dyer et al.,
2013) and GIZA++ (Och and Ney, 2003) are fa-
mous to compute word alignment from parallel
corpus. As deep neural network-based aligners,
there are SimAlign (Jalili Sabet et al., 2020) and
AwesomeAlign (Dou and Neubig, 2021). These
neural methods use the similarity of contextual em-
beddings based on pretrained multilingual models
to compute the correspondence between source and
target words.

Our approach starts by using one of the above
external word aligners to compute forward (source-
to-target) and backward (target-to-source) word
alignment, and then apply symmetrizing heuris-
tics (Koehn et al., 2005) such as grow-diag and
grow-diag-final-and for better alignment.
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2.2 Phrase Extraction

The phrase level alignment has been proposed in
Och et al. (1999) to improve statistical machine
translation.

We find aligned phrase pairs depending on word
alignments with phrase extraction algorithms. The
phrase extraction algorithm finds phrasal align-
ments by exhaustively searching all phrase pairs
that are consistent with word alignment. For the de-
tailed algorithm description, please see the NLTK
implementation (Loper and Bird, 2002)3.

We do not use phrase probability tables (Koehn
et al., 2003) to refine aligned pairs since it prevents
the collection of diverse kinds of phrases. Instead,
we do not allow phrases with unaligned words for
more accurate phrase extraction4.

2.3 Tag Insertion

In this step, we insert tags that surround aligned
phrase pairs. The number of tags is randomly se-
lected to less than 30% of the number of words.
Then the aligned phrase pairs are randomly cho-
sen as many as the number of tags, and tags are
inserted according to the pairs. In this process, we
can insert tags following the HTML syntax, and
the tags can be nested.

2.4 Augmentation Cost Analysis

The cost of augmentation is crucial since machine
translation models typically are trained on more
than millions of parallel sentences. For this reason,
we roughly analyze the amount of computation
to show that our method is cost-efficient over the
previous approach.

The previous tag augmentation method sug-
gested in Hanneman and Dinu (2020) uses a ma-
chine translation model to find corresponding frag-
ments with exhaustive search. Their method needs
at least O(n ∗m) translation model inferences for
each parallel sentence, where n is the size of the
maximum corresponding phrase length and m is
the number of tokens in the source.

Assume that our method use SimAlign (Jalili Sa-
bet et al., 2020) for a word aligner. Our approach
requires one XLM-R (Conneau et al., 2020) infer-
ence to compute contextual word embeddings and

3https://www.nltk.org/_modules/nltk/translate/
phrase_based.html

4The original phrase extraction implemented in the NLTK
includes unaligned words in the aligned phrase since it is still
considered to be consistent with word alignment.

single matrix multiplication to get cosine similari-
ties between tokens. Since single XLM-R inference
cost much to single matrix multiplication, we can
count single XLM-R inference as the amount of
computation. Alignment symmetrizing heuristic
algorithms and phrase extraction are also required
for our approach, but we do not count it to time
comparison since these algorithms also take much
less time than neural model inference.

Because the translation model uses beam search,
both XLM-R and a translation model have almost
the same computation cost, but the translation
has more latency because it is autoregressive. In
short, the previous method needs O(n ∗m) trans-
lation model inference but our approach only re-
quires a single XLM-R inference for each sentence
pair. Therefore, our model is more efficient than
translation-based augmentation.

3 Experimental Setup

3.1 Data

3.1.1 Training Data

Our data augmentation goal is to train an end-to-
end model to translate inline tagged text with com-
petitive translation quality. For a fair comparison
of translation performance, we use the same train-
ing and test sets as Edunov et al. (2018) and Garg
et al. (2019). The tagged parallel corpus released
by Hashimoto et al. (2019) is also used to evaluate
the placement of tags.

WMT’18 This dataset is a set of parallel corpora
for the WMT’18 English-German news translation
task (Bojar et al., 2018) and consists of the Eu-
roparl v7, common crawl, news commentary v13,
and rapid corpus of EU press releases. Parallel
sentences with either a sentence longer than 250 to-
kens or a source/target token length ratio exceeding
1.5 are removed5.

LXM In this paper, we call the dataset released
by Hashimoto et al. (2019) LXM which is their
GitHub repository name’s initials6. The data have
parallel sentences with aligned inline tags. For
German-to-English, there are about 100,000 train
pairs and 2,000 development pairs. Only about a
quarter of them contain tags.

5We use the XLM-R tokenizer to filter the parallel corpus.
6https://github.com/salesforce/

localization-xml-mt
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LXM-plain This data is the LXM training data
without tagged pairs. Since the domain of LXM
is online help and WMT’18 corpora do not cover
them, thus we add this data to training data. In
this paper, we prove the effectiveness of the tag
augmentation approach, thus we only use plain
sentences from the training set.

3.1.2 Test Data
For comparison of our approach to the previous
works, we use newstest2014 (WMT’14) to evalu-
ate translation quality and LXM development set
(LXM-dev) for the accuracy of tag placement.

3.2 Naive End-to-end Baseline
This baseline takes text with markup tags as inputs
and handles them like plain text but uses a model
which has been trained without tagged parallel cor-
pus.

3.3 Detag-and-project Baselines
The detag-and-project approach (Hanneman and
Dinu, 2020) first strips tags from the source sen-
tence, translates the plain one, and then places the
removed tags in the corresponding positions ac-
cording to the word alignments. During the projec-
tion stage, one tag can be projected into separated
parts, in this case, we insert one minimum-sized
tag that surrounds all of the parts, which is also
called the Min-Max Tag Pair Projection in Zenkel
et al. (2021).

We establish three detag-and-project baselines
according to the way to get word alignment.

Layer Average Baseline The layer average base-
line is to extract word alignments from the at-
tention. There are two methods to induce word
alignments from the attention (Chen et al., 2020):
NAIVE-ATT and SHIFT-ATT. Word alignments
are induced from attention scores between the en-
coder and decoder. NAIVE-ATT (Garg et al., 2019)
relates the maximum attention scores with the de-
coder’s output token and uses attention weight of
the penultimate layer of the decoder. SHIFT-ATT
(Chen et al., 2020) associates the maximum atten-
tion scores with the decoder’s input token and uses
attention weight of the third layer of the decoder.

Garg et al. (2019) This baseline can be sim-
ply called attention enhanced approach. Like the
layer average baseline, this method also extracts
word alignments from attention scores, but it uses
the trained attention head by multi-task learning.

Specifically, one attention head of the fifth layer
of the decode is jointly trained with translation
by word alignments from GIZA++ (Och and Ney,
2003). Furthermore, full target context is used
when the attention weight learns word alignments
and predicts alignments from cross-attention. We
re-implement the model by the author’s Fairseq
(Ott et al., 2019) implementation7 to reproduce
their results. In this paper, we do not apply any
pre-tokenizer, and only use an unigram language
model tokenizer (Kudo, 2018) with a vocabulary
size of 35,000. All other hyperparameters are the
same as Garg et al. (2019).

SimAlign This method uses SimAlign (Jalili Sa-
bet et al., 2020) as an external aligner to restore
tags on the translation results. For this model, the
layer average baseline model is used to generate
translated sentences. We take argmax8 function to
extract each direction of word alignment and apply
grow-diag-final-and heuristics (Koehn et al.,
2005) to symmetrize the bidirectional alignments
for better word alignments.

3.4 Implementation Details
Reversible Tokenization The previous works
use Moses tokenizer (Koehn et al., 2007) as a
pre-tokenizer before applying Byte-Pair-Encoding
(Sennrich et al., 2016). However, we don’t use
any pre-tokenizers like Moses because it is impos-
sible to detokenize tokenized results to the origi-
nal sentence completely even if a well-designed
rule-based detokenizer is applied. We only apply
SentencePiece (Kudo and Richardson, 2018) for
tokenization, because it is a reversible tokenizer
and makes a purely end-to-end system possible. A
unigram language model tokenizer (Kudo, 2018)
is trained from the WMT’18 corpus only without
applying subword regularization.

Whitespace Shift As SentencePiece (Kudo and
Richardson, 2018) tokenizer adds dummy whites-
pace at the beginning of a sentence, we move the
whitespace before the tag to the back of the tag
since the whitespace at the beginning of a word
plays an important role in tokenization because the
whitespace is also considered a target to tokenize by
the subword tokenizer. A word without whitespace
at the beginning is often tokenized differently from
a word with a whitespace. For example, "World" is

7https://github.com/facebookresearch/fairseq/
tree/main/examples/joint_alignment_translation

8Argmax aligns words to the most similar word.
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WMT’14 LXM-dev
Model BLEU BLEU XML BLEU XML Acc. XML Match F1
Edunov et al. (2018) 29.0
Hashimoto et al. (2019) 52.91 51.16 99.75 99.3
Naive End-to-end
- WMT’18 only 28.7 25.12 22.14 98.05 95.15 44.83
- WMT’18 + LXM-plain 28.8 51.05 49.9 98.6 98.2 58.93
Layer Average Baseline
- NAIVE-ATT 28.8 52.22 50.45 100 98.5 60.53
- SHIFT-ATT 28.8 52.22 50.71 100 98.75 61.59
Garg et al. (2019) 28.7 52.46 50.64 100 98.0 68.04
SimAlign 28.8 52.22 48.43 100 97.55 60.96
Tag Augmentation (ours) 29.1 53.37 52.8 100 99.35 74.31
Tag Shift 29.1 53.37 52.07 100 99.35 53.75

Table 1: Evaluation results on the WMT’14 and LXM-dev. Models are trained with WMT’18 and LXM-plain by
default. In Tag Shift, all tags are moved to one word to the left in the translation hypothesis.

tokenized into "Wo", "r", "ld", however, "_World"
is tokenized into "_Wor", "ld". This inconsistency
affects adversely translation quality. For this rea-
son, we move the space and put it back in the pre-
and post-processing step.

Tag Replacement Markup tags often have
attributes and the attributes generally don’t
need to be translated and just copied to the
translation. Like other approaches (Müller, 2017)
and (Hanneman and Dinu, 2020), we replace
the real tags with indexed special tags. We
insert at most 9 tags per each parallel pair in tag
augmentation. In our implementation, we use
"<a_0>,<a_1>,...<a_9>,</a_0>,</a_1>,...</a_9>"
as special tokens. In the training step, the index of
special tokens is shuffled for training efficiency. In
the inference, we convert real tags to the special
tokens and the convert table in the pre-processing
step. After translation, we revert them to the
original tags in post-processing.

Tag Augmentation Hyperparmeters We use
subword alignments instead of word alignments
since according to recent studies (Garg et al., 2019)
(Jalili Sabet et al., 2020), and (Dou and Neubig,
2021); subword-based alignments outperform word
alignments on AER (Alignment Error Rate). Since
our SimAlign baseline uses the XLM-R model
(Conneau et al., 2020), for a fair comparsion, paral-
lel corpus is tokenized by the XLM-R tokenizer9

9They use SentencePiece tokenizer and the model can
download in https://github.com/facebookresearch/
XLM.

before computing word alignment with statistical
models.

Like Garg et al. (2019), for our augmentation,
Giza++ with 5 iterations of IBM1, HMM, IBM3
and IBM4 are used as a word aligner. However,
for training an end-to-end model, we use a differ-
ent tokenizer as explained in 3.4. For end-to-end
training, we use the combination of tagged data
and plain data in a 1:1 ratio.

Model Training Hyperparameters Basically
for all experiments, we follow the same hyper-
parameters as the Align and Translate Task of Garg
et al. (2019). We use the fairseq toolkit (Ott et al.,
2019) for all of our experiments. The big trans-
former architecture10 with the post layer normal-
ization is used for all experiments. The difference
is that we use learning rate of 5e-4, learning rate
warmup over the first 8000 steps, and a batch size of
32768 tokens11 on 8 A100 GPUs for 120k updates.
We use the checkpoint which averages the last 10
checkpoints, and a beam size of 5 for inference.

4 Evaluation

In this section, we describe several metrics to eval-
uate our methods and present experimental results.

4.1 Evaluation Metrics
For comparison of translation quality to Garg
et al. (2019) and Edunov et al. (2018), we use

10The architecture name we used in faisreq is
trasnformer_wmt_en_de_big.

11Actually, we use 16384 tokens with accumulating 2 up-
date gradients.
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WMT’14 LXM-dev
Variation BLEU BLEU XML BLEU XML Match (Acc.) F1
Baseline 29.1 53.37 52.8 99.35 74.31
w/o Tag Replacement

trained on plain corpus 28.8 51.05 49.9 98.2 (98.6) 58.93
trained on tagged corpus 28.7 52.44 51.62 99.05 (99.85) 71.14

Symmetric Heuristics
intersection 29.2 53.13 52.4 99.2 60.13
grow 28.9 53.21 52.52 99.2 74.73
grow-diag-final-and 29.0 53.11 52.39 99.2 75.35

Phrase Length
8 28.8 53.33 51.9 99.05 72.07
16 28.9 53.17 52.86 99.45 73.61
32 29.1 52.85 52.25 99.25 73.12
128 28.9 52.92 52.55 99.45 72.84

Word Aligner
Fast-Align 29.0 52.89 52.14 99.2 72.99
SimAlign 28.9 52.99 52.41 99.15 73.5

w/o whitespace shift 28.6 52.88 52.26 99.4 71.77
NLTK phrase extraction 28.9 52.85 51.96 99.3 72.48
Violating HTML syntax 29.1 53.09 52.29 99.2 72.58
Tagged data only 28.5 52.59 51.66 99.35 72.27

Table 2: Variations on tag augmentation. The baseline uses grow-diag heuristics, phrase length of 64, GIZA++ as a
word aligner, and improved phrase extraction. The score on XML Accuracy is not mentioned because all scores are
100. w/o whitespace shift do not apply whitespace shift in the training and inference.

sacreBLEU (Post, 2018) with WMT’14. Like
Hashimoto et al. (2019)’s work, we use BLEU,
XML BLEU, XML Accuracy, and XML Match as
metrics in the evaluation of LXM-dev. We also use
the same evaluation scripts as they do12. For accu-
rate evaluation of the tag placement, we introduce
an F1 score-based metric to evaluate the position of
tags by focusing on the words that tags surround.

BLEU and XML BLEU The BLEU score here
is the same as the existing BLEU score measured in
plain text. For that, all tags first are removed if exist,
and then the BLEU is measured using the same
tokenizer as Hashimoto et al. (2019). The XML
BLEU uses the same metric, but if there are tags,
the BLEU score is measured with text containing
XML tags. The XML tags are also considered to
compute the score.

XML Accuracy and Match The XML accuracy
is the ratio of the valid XML outputs in all trans-
lation results. The XML match is the ratio of the
outputs that have the same XML structure as the

12https://github.com/salesforce/
localization-xml-mt

reference.

F1 score This metric is introduced to evaluate
the placement of tags. Since the goal of tag transfer
is to surround the corresponding words accurately,
we introduce a metric to focus on evaluating words
surrounded by tags. In this sense, we make use of
the metric from SQuAD (Rajpurkar et al., 2016),
since it evaluates the words in the span. SQuAD’s
answers consist of a span of consecutive words in
a paragraph and they evaluate how accurately the
span contains the correct answer. Since what we
really want to evaluate is not the position of tags
but the content of the span surrounded by tags, the
goal of their evaluation is similar to ours in that
they aim to assess a range of words.

We apply this metric to evaluate the accuracy
of tag placement. The score measures the over-
lap between the ground truth and the prediction to
calculate a score. More precisely, they treat the
hypothesis and the reference as bags of words, and
calculate F1. Unlike SQuAD dataset, LXM-dev
can have more than one tag for each sentence, thus
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Model Alignment Error Rate (AER)
Method SHIFT-ATT NAIVE-ATT
Layer 1 2 3 4 5 6

Layer Average Baseline 29.1 31.8 36.1 41.9 42.8 51.2
Tag Augmentation (ours) 27.9 26.4 49.6 37.8 35.7 44.7
Garg et al. (2019) (all heads) 32.0 26.0 22.7 35.3 29.1 (20.5)∗ 72.2

Table 3: Results on Vilar et al. (2006). ∗ uses the first head trained by word alignments. Others use the average.
While we apply SHIFT-ATT for the half bottom layers, we apply NAIVE-ATT on the top 3 layers for better
performance on AER (Chen et al., 2020).

we use the average score per tag13.

4.2 Results

Firstly, in order to show the relevance of the pro-
posed F1 metric, we shift all tags to the left by
one word, which must cause performance degrada-
tion in tag placement. In the results of Tag Shift
in Table 1, compared to Tag Augmentation, there
is only a slight drop on XML BLEU, however, the
F1 score shows a significant decrease. This implies
that the proposed metric is reasonable to evaluate
the placement of tags.

In Table 1, there are the results of the baselines
and our tag augmentation method. The experi-
mental results show that our augmentation method
achieves the best performance for all metrics. Fur-
thermore, according to the XML Accuracy, the tag
augmentation model is able to generate all XML
tags grammatically correctly in the source without
XML-constrained beam search.

4.3 Augmentation Variation

We conduct various experiments to figure out what
greatly affects the performance. Firstly, we note
that tag augmentation with intersection heuristics
causes considerable degradation on the f1 score.
We also note that according to (Dou and Neubig,
2021), the performance of word alignments be-
tween Fast-Align and Giza++ is considerable, but
the models trained on each data show relatively
similar performance compared to the AER scores.

Even though there is a little gap in performance,
the result indicates that all of our proposed imple-
mentation details have a positive influence on both
translation quality and tag placement. As a result,

13Unfortunately, some sentences in LXM-dev have multiple
of the same name tags in a sentence. Because there is no way
to align the same name tags, we regard the multiple separate
spans with the same name as one consecutive span in the
evaluation.

performance improvement is achieved by all fac-
tors combined.

4.4 Indirect Learning Alignment
We further investigate the effect of the aligned
tagged corpus. Table 3 shows that the AER score
from all layers is improved than the Layer Average
Baseline, but does not reach the score of multi-task
training model (Garg et al., 2019) where word align-
ments are trained directly. This result indicates that
the tag-augmented data help models’ attention to
learn the correspondence between source and target
words indirectly.

5 Conclusion

In this paper, we have presented an efficient and
effective inline tag augmentation method to insert
tags into existing parallel corpora using a word
aligner and the phrase extraction algorithm. Our
approach injects inline tags economically and ac-
curately.

We also introduced a reasonable metric for the
automatic and accurate evaluation of the placement
of tags and analyzed the effectiveness of the de-
tailed methods used in our approach. The experi-
ment results show that the model trained on data
augmented by our method outperforms the previ-
ous detag-and-project methods.
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Abstract

This paper describes the SPECTRANS sub-
mission for the WMT 2022 biomedical shared
task. We present the results of our experiments
using the training corpora and the JoeyNMT
(Kreutzer et al., 2019) and SYSTRAN Pure
Neural Server/ Advanced Model Studio toolk-
its for the language directions English to French
and French to English. We compare the pre-
dictions of the different toolkits. We also use
JoeyNMT to fine-tune the model with a selec-
tion of texts from WMT, Khresmoi and UFAL
data sets. We report our results and assess
the respective merits of the different translated
texts.

1 Introduction

For this WMT22 Biomedical workshop, we fo-
cused on the selection of texts used for fine-tuning.
We selected what we believe to be the two best
models we produced for the EN-FR track with two
different neural toolkits but we mostly took the
opportunity to discuss the translated texts. The
rest of the paper is organised as follows: Section 2
summarises our approaches to the task, Section 3
details the training data of our experiments, Section
4 presents the results. Section 5 discusses them.

2 Our Approaches to the Task

This section presents our various strategies for this
task and our four submissions. We compared the
predictions of two toolkits but our comparison is
very partial as the training data differs. We trained
several systems with JoeyNMT (Kreutzer et al.,
2019) training and fine-tuning with UFAL, WMT
and Khresmoi data. We used the SYSTRAN Pure
Neural® Server generic system and tried to fine-
tune with specialised terminology. We used SYS-
TRAN Advanced Model Studio® to fine-tune a
generic model with in-house data based on 2,700
aligned segments collected during the translation

of the French federation for diabetes.1 Table 1 sum-
marises our submissions.

With JoeyNMT, we selected the training data,
comparing the performance with and without the
added data and applied fine-tuning to the model
based on UFAL medical corpora The following
section details the model selection and fine-tuning.

3 Data and Tools Used

In this section, we present different approaches that
we adopted to train baseline models and proceed
to fine-tuning. We have built two baseline mod-
els : one trained with generic data set fine-tuned
with in-domain data, and the other trained directly
with in-domain data, in order to compare their per-
formances and to better understand functioning of
in-domain NMT training.

3.1 Data for baseline models training

We used two baseline models : the first one is
built based on our model submitted for WMT 2021.
It took the Europarl 7 parallel corpus as data set
trained with 341,554 sentences in two directions
(EN⇔FR)(Ballier et al., 2021); the second one has
been built by using bilingual (EN-FR) in-domain
parallel corpora data set UFAL provided by WMT
2022 (with 2,693,509 sentences). The corpora
have been normalized and sentences longer that
50 words have been removed. Thus we have re-
tained 2,159,307 sentences. These sentences are
split in the ratio of 6-2-2 : 60% for training, 20%
for development and the last 20% for evaluation.
Two tokenizations are applied to all the data sets :
standard tokenization (Spacy) segments data into
words and BPE tokenization into sub-words with
SentencePiece (Kudo, 2018).

1https://www.federationdesdiabetiques.org. Diabetes ter-
minology proved to be not so useful for the actual test set.
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run BLEU (into English) BLEU (from English) toolkit training data
run1 0.2581 0.2068 JoeyNMT baseline with UFAL
run2 0.4010 0.31636 Pure Neural Server general training data
run3 0.2587 0.0732 ModelStudio Light fine-tuning with in-house data
run4 0.0969 0.2034 JoeyNMT UFAL fine-tuned

Table 1: Summary of our official submissions

3.2 Data for fine-tuning

We used two data sets to fine-tune the generic base-
line model. For the first data set, we have compiled
the WMT Medline parallel corpus since 2016 2

as well as Khresmoi dev and test data (EN-FR)
3. The whole data set contains 109,912 sentences.
For the second one, we used the normalized and
sub-tokenized UFAL data set mentioned above.

4 Experiments and Results

In our experiments, we aimed to compare the
different JoeyNMT models (baseline and fine-
tuning) that we have trained with SYSTRAN
model. JoeyNMT, which is based on TRANS-
FORMER (Vaswani et al., 2017), requires lighter im-
plementations than OpenNMT (Klein et al., 2017).

4.1 Baseline with JoeyNMT

We have trained a baseline model with in-domain
data set UFAL. For FR→EN model, the best check-
point is recorded at step 60,000 with a BLEU score
of 61.01 (PPL: 1.53); as for EN→FR model, the
best checkpoint is recorded at step 40,000 with a
BLEU score of 59.23 (PPL: 1.45, see Figure 1) 4.

4.2 Fine-tuning with JoeyNMT

The generic baseline model was fine-tuned with
the following parameters: vocabulary size: 32,000,
maximum sentence length: 50, maximum output
length: 100, training initializer: XAVIER, number
of layers: 6, number of heads: 8 normalization: to-
kens, encoder embedding dimension: 512, decoder
embedding dimension: 512, hidden size: 512. It
was fine-tuned with two data sets. The first one
with Medline-Khresmoi data set got the best BLEU
score from French to English 54.8, 38.4 as from
English to French (see Figure 2).

2https://github.com/biomedical-translation-
corpora/corpora

3http://hdl.handle.net/11234/1-2122
4We noticed that the validation processes were extremely

long. Every validation after 20,000 steps took about 28 hours.

Figure 1: Baseline trained with UFAL data set FR⇔EN

Figure 2: Fine-tuning with Medline and Khresmoi data
set FR⇔EN
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Figure 3: Fine-tuning with UFAL data set FR⇔EN

With the same parameters, the model fine-tuned
with UFAL data set had, surprisingly, relatively
low scores : we obtained a BLEU score of
18.60 for French→English model and 21.13 as for
English→French model (see Figure 3).

4.3 Training and Fine-tuning with Systran
Model Studio

SYSTRAN Pure Neural® Server is a multilingual
translation platform that offers website translation
and localisation features. 5 The server uses Pure
Neural® Machine Translation (PNMT®), a com-
mercial engine based on AI and deep learning,
launched in 2016. This technology enables neu-
ral engines to learn language rules from a given
translated text and to produce a translation achiev-
ing the current state of the art. An open source
neural machine translation system OpenNMT de-
veloped by the Harvard NLP group and Systran is
available online: http://opennmt.net.

For our work, we used SYSTRAN Pure Neural®
Server installed on PAPTAN 6.

We used characteristic elements computation
(Lebart et al., 1997) implemented in iTrameur7 to
compare the results of run2 (generated by SYS-

5The official product website is available at
https://www.systransoft.com/translation-products/systran-
pure-neural-server/.

6Plateforme pour l’apprentissage profond pour la traduc-
tion automatique neuronale, in English: Deep Learning for
Machine Translation at Université de Paris-Cité). See the
description of the platform on the project website: https://u-
paris.fr/plateforme-paptan.

7https://itrameur.clillac-arp.univ-paris-diderot.fr

Unit Fq part Fq total IndSP
The 108 108 +33
This 36 36 +12
In 39 39 +12
vaping 28 28 +9
We 23 23 +8
It 19 19 +7
These 18 18 +6
They 16 16 +6
Finally 14 14 +5
must 14 14 +5
Management 9 9 +4
advances 10 10 +4
BMI 11 11 +4
Cancer 10 10 +4
liaison 10 10 +4
However 9 9 +4
VCE 10 10 +4
we 22 71 -4
search 0 10 -4
gc 0 10 -4
bmi 0 13 -5
the 659 1469 -7

Table 2: Characteristic elements of Systran translation
(run2) and JoeyNMT translation (run1)

TRAN Pure Neural® Server) and run1 (generated
by JoeyNMT), using characteristic elements com-
putation (Lebart et al., 1997). In this paper, we
discuss the results of FR→EN translation (Table
2). As one can see in Table 2, in the SYSTRAN
translation, a sentence always starts with capital-
ization (“The”, “This”, “In”). Capital letters are
also used for acronyms and abbreviations (“BMI”,
“VCE”). This can be explained by the default deto-
kenization function of JoeyNMT in detokenizing
translation in sub-tokenized form.
The modal verb “must” is overused in the SYS-
TRAN translation (IndSP = +5) and is never used in
the JoeyNMT translation, which tends to prefer the
use of the modal verb “should” (Figure 4). The ab-
sence of "must" produced by the JoeyNMT system
might be due to the large difference of frequencies
of both words in training data : 18,462 occurrences
of "should" and 4,061 occurrences of "must". The
preponderance of "should" in the training corpus
has seemingly induced the system to systematically
produce the word whenever the system needs to
produce a modal verb before a base verb.

We also note that JoeyNMT translation under-
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Figure 4: Comparison occurrences of "must" and
"should" in SYSTRAN and JoeyNMT translations

SYSTRAN
translation

JoeyNMT
translation

We take stock of
knowledge about
this addiction and its
management.

knowledge about this
dependency and the
management thereof is
a pending state.

Table 3: "we" in SYSTRAN and JoeyNMT translations

uses “we” (IndSP = -4). This finding is interesting
because it makes sometimes possible to identify
substantial differences between both translations in
Table 3.

These results show how training data affects
translation results. To our knowledge, SYSTRAN
NMT relies upon a broad selection of general texts
that do not belong to any single text type, subject
field, or register (many of them are translated texts
from the web available on https://opus.nlpl.eu).
The WMT corpus consists of randomly selected
sentences from abstracts and main texts of scien-
tific articles published in medical journals. The
articles follow the so-called introduction, methods,
results and discussion structure (IMRAD) (Heßler
et al., 2020). The selection is not necessarily bal-
anced in terms of represented discourse functions.
Thus, we noticed the overuse of “should be” that
definitely constrained our translation output (see
Figure 4 “should be given”, “should be reached”,
“should be considered”, etc.).

5 Discussion

5.1 Degrees of Specialisation

If the Biomedical terminology was indeed present
in the testing set (eg "hypertension artérielle pul-
monaire","nutriments", "supplémentation en vita-
mine D" ), some sentences were not particularly
specialised. For instance, "Le but de cet article
est de les résumer de manière relativement ex-
haustive." is representative of Scientific French for
specific purposes but not really of biomedical spe-
cialised language. The same holds for the test set
from English into French. In view of these observa-
tions, it is easy to understand why models trained
on more generic data perform so well in this task.

5.2 The performance of gigamodels

We have not submitted translations produced on
mBART-50 (Tang et al., 2021), but we compared
the translations of our best system (PNS for Pure
Neural Server) with those of mBART. 8. The trans-
lation based on mBART produces fluent grammat-
ical sentences but seems to be less specific in the
terminology. For instance "vapotage" (vaping test-
ing) was translated as poultry testing and instead of
vaping frequency the system produced pooping fre-
quency. The terminology is not always consistent
or accurate : hyperthyroïdie frustre was translated
as rough (SYSTRAN) or fruity (MBART). Oddly
enough, with mBART, percentages were literally
translated as "per cent" instead of the % symbol.

Figure 5 plots the vocabulary growth curves
(VGCs) of the two translated texts. The y axis
corresponds to the number of new types and the
x axis corresponds to the number of tokens in the
translated texts. As can be seen, the two systems
have remarkably similar patterns of VGCs, with
SYSTRAN PNS slightly above MBART, in spite of
the variants we noticed. For the French translation
of "keloids", mBART varies between "céloïdes"
and "keloïdes", whereas SYSTRAN PNS only pro-
duces "chéloïdes".

Measuring specificity indices (Lebart et al.,
1997) allowed us to spot differences in the transla-
tion. One of the most striking ones was the choice
of feminine determiner la for la COVID in the PNS
translations, as evidenced by the specificity of la
COVID in the two translations (Figure 6). A some-
what belated and debated ruling of the Académie

8We used mBARTl through the HuggingFace
API (Wolf et al., 2020).https://huggingface.co/
facebook/mbart-large-50-many-to-many-mmt
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Figure 5: Comparison of Vocabulary Growth Curves in
SYSTRAN PNS and mBART translations

Figure 6: Comparison of Specificity Vocabulary Growth
Curves in Systran PNS and mBART translations

française endorsed and imposed "la" for the gender
of COVID in French. This benign detail probably
can be used as a chronological landmark for the
training data collection of the two systems: it seems
that PNS was trained with more recent French texts.
It may also be the case that SYSTRAN has used
rule-based normalisation to regularise the output
for la COVID.

6 Conclusion

This paper presents the SPECTRANS system de-
scription for the WMT 2022 biomedical Shared
Task. We participated in the English-to-French and
French-to-English tasks. We only used the data
provided by the organisers but also analysed the
translations produced with mBART. We obviously
concur with previous research that training data is
key. For the MT system, we applied a variety of
strategies, toolkit comparison and fine-tuning to
compare outcomes of different NMT systems in
biomedical translation.

Our contribution mostly lies in the textometric
analysis of the output. This allowed us to raise the
issue of the role of the variability observed for the
gender of COVID in French or for technical terms

like "keloids".
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Abstract

This paper describes the Samsung Research’s
Translation system (SRT) submitted to the
WMT22 biomedical translation task in two
language directions: English to Spanish
and Spanish to English. To improve the
overall quality, we adopt the deep transformer
architecture and employ the back-translation
strategy for monolingual corpus. One of the
issues in the domain translation is to translate
domain-specific terminologies well. To address
this issue, we apply the soft-constrained
terminology translation based on biomedical
terminology dictionaries. In this paper, we
provide the performance of our system with
WMT20 and WMT21 biomedical testsets.
Compared to the best model in WMT20
and WMT21, our system shows equal or
better performance. According to the official
evaluation results in terms of BLEU scores,
our systems get the highest scores in both
directions.

1 Introduction

Neural Machine Translation (NMT) has shown
rapid growth with an encoder-decoder framework,
especially Transformer (Vaswani et al., 2017), in
recent years. Most of the research focuses on
general-purpose translation models since there are
a lot of parallel data available. On the other
hand, domain-specific translation, which lacks rel-
atively high-quality parallel corpus available, is
one of the challenges that need to be solved in
the NMT task. To address this issue, there have
been several approaches such as finetuning general-
purpose models with in-domain data and utiliz-
ing in-domain monolingual corpus through back-
translation (Yeganova et al., 2021).

In the domain translation, one of the issues is
the terminology translation. In the case of domain-
specific terms, translation results are often poor be-
cause they are relatively infrequent. Yeganova et al.

(2021) also mentioned that some domain-specific
terms including abbreviations were not translated
correctly in previous shared tasks. Moreover, when
new terms are introduced such as COVID-19, it
is difficult to obtain the correct translation results
as they are not in the training data. To handle
this issue, we adopt the soft-constrained termi-
nology translation proposed by Molchanov et al.
(2021), which provides the terminology constraints
of the target language as input to our system with
source sentences like a hint. These terminology
constraints can be obtained from in-domain dictio-
naries.

In addition, as many domain translation stud-
ies, the back-translation strategy (Sennrich et al.,
2016) is applied to generate synthetic parallel data
from in-domain monolingual corpus. To improve
the overall performance of our system, we also
employ the Deep Transformer architecture (Bapna
et al., 2018) and the ensemble strategy (Sutskever
et al., 2014). Moreover, to find better transla-
tion results, noisy channel modeling (Yee et al.,
2019) and discriminative reranking (Lee et al.,
2021) are attempted. Our experiment shows that
deep transformer and data augmentation by the
back-translation strategy improve the overall per-
formance while the performance is not improved
with reranking methods.

The rest of this paper is organized as follows.
Section 2 describes the training and test data used
in our system, and Section 3 explains our systems
including deep transformer and soft-constrained
terminology translation. Section 4 describes the de-
tails of our training and experimental results of our
system; Section 5 presents the official evaluation
results. Section 6 is the conclusion of our work.

2 Data

In this section, we present general-domain (out-of-
domain) corpus, in-domain corpus, and in-domain
terminology dictionaries used as the training data
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En2Es Es2En
General-domain Parallel Corpus 518M
In-domain Parallel Corpus 3.47M
In-domain Target-side Monolingual Corpus 2.5M 13.9M
In-domain Dictionaries 132K
Validataion Data 4,520
Test Data 921 897

Table 1: Data statistics of the training data, validation data, and test data used in our system.

in our system. For training, all data are tokenized
by SentencePiece (Kudo and Richardson, 2018);
the vocab size is 32K for each lanaugage. The
validation and test data are also described in this
section. The statistics of our data are listed in Table
1.

2.1 General-Domain Parallel Corpus

We collect general-domain parallel corpus for
English-Spanish from several sources. Some are
from WMT News translation task. The data list
is as follows: ParaCrawl1, CommonCrawl2, Eu-
roparl3, News Commentary4, and Tatoeba5.

We also consider two datasets that are provided
by organizers: United Nations (UN) Parallel Cor-
pus6 and UFAL Medical Corpus7. The UN Corpus
consists of official records and other parliamen-
tary documents of the UN that are in the public
domain. In UFAL Medical corpus, it contains not
only medical-domain data but also general-domain
data; we consider the general-domain data of UFAL
as a general-domain parallel corpus in our system.

2.2 In-Domain Parallel Corpus

We use the in-domain data provided by the WMT22
biomedical task organizers.

• Medline Corpus: It contains titles and ab-
stracts of scientific publications. They pro-
vide three groups of English-Spanish parallel
data: WMT16, WMT19, and WMT22. In
WMT16 and WMT19 data, all sentence pairs
are already aligned, so we use them without

1https://paracrawl.eu/
2https://www.statmt.org/wmt13/training-parallel-

commoncrawl.tgz
3https://www.statmt.org/wmt13/training-parallel-

europarl-v7.tgz
4https://www.statmt.org/wmt13/training-parallel-nc-

v8.tgz
5https://tatoeba.org/en/downloads
6https://conferences.unite.un.org/UNCorpus
7https://ufal.mff.cuni.cz/ufal_medical_corpus

preprocessing process. However, in WMT22
data, all sentences of one abstract are written
in one line; thus, after splitting sentences with
the sentence splitter provided by Moses8, only
data that matched the number of sentences in
both languages are considered as in-domain
parallel corpus.

• UFAL Medical Corpus: As we mentioned in
Section 2.1, it consists of a general-domain
and medical-domain data. The parallel data
tagged as the medical-domain are considered
in-domain parallel data.

• MeSpEn Corpus: It is the resource for
English-Spanish Medical Machine Transla-
tion and Terminologies (Villegas et al., 2018).
It provides several biomedical and clinical
literature data such as IBECS, SciELO, and
Pubmed. This corpus contains titles and ab-
stracts from several records. Since all sen-
tences of each abstract are written in one line
such as WMT22 Medline corpus, we conduct
the same process to extract the parallel corpus.

2.3 In-Domain Monolingual Corpus

In the in-domain parallel corpus, some data are
excluded because the number of sentences is not
matched between two languages as we menteiond
in Section 2.2. In this paper, we use this excluded
data as in-domain monolingual data.

Moreover, for the English monolingual corpus,
we extract only English data from other language
pairs’ dataset in Medline corpus and UFAL Medi-
cal corpus.

2.4 In-Domain Terminology Dictionary

As we mentioned in Section 1, it is important to
translate domain-specific terminologies well in the
domain translation. So, we also collect in-domain

8https://github.com/moses-smt
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terminology dictionaries from MeSpEn Glossaries9

and ClinSpEn-CT10. Both are translated by pro-
fessional medical translators. MeSpEn glossaries
contain 125,645 English-Spanish term pairs and
CinSpEn-CT sample set includes 7,000 term pairs.
We not only utilize in-domain terminology dictio-
naries as the training data but also use them in the
soft-constrained terminology translation.

When the dictionary data is used as the training
data, all data in dictionaries is used as it is. How-
ever, for the soft-constrained terminology transla-
tion, data refinement is required since there are
redundant data. It will be described in detail in
Section 3.3.

2.5 Vadlidation data
For the validation data, we use the Khresmoi de-
velopment data. WMT17, WMT18, and WMT19
testset are also used as the validation data.

2.6 Test data
We consider WMT20 and WMT21 "OK" aligned
testset as the test data in our system to evaluate the
translation quality for the final submission.

3 System Overview

In this section, we describe our system which is
based on Transformer architecture (Vaswani et al.,
2017). The training details are described in Section
4.1.

3.1 Deep Transformer
Peters et al. (2018) have shown that deeper lay-
ers could efficiently extract syntactic and semantic
information that could improve the overall perfor-
mance. Bapna et al. (2018) also have explored
deeper encoders for Transformer to improve the
translation quality. Several teams that participated
in the biomedical shared task last year (Yang et al.,
2021; Wang et al., 2021b) have adopted the deep
transformer, especially deeper encoders. In this
paper, we also adopt the deep transformer archi-
tecture which contains 30 encoder layers and 6 de-
coder layers based on TRANSFORMER-BIG setting
(Vaswani et al., 2017).

3.2 Data Augmentation
To augment the in-domain parallel corpus, we
adopt back-translation (Sennrich et al., 2016),

9https://github.com/PlanTL-GOB-
ES/MeSpEn_Glossaries

10https://zenodo.org/record/6497373#.YxHGtXZBz-j

where the synthetic parallel corpus is generated
by translating target-side monolingual data into the
source language. Back-translation is one of the
effective methods to utilize monolingual data.

In this paper, we first train base models of each
direction with the combination of general-domain
and in-domain parallel corpus; then, we utilize
these trained models to generate source-side sen-
tences from target-side monolingual data.

Moreover, Wang et al. (2021a) present that
the overall performance is improved when the in-
domain dictionaries are appended to the training
corpus. We also consider in-domain terminology
dictionaries as the training data.

3.3 Soft-Constrained Terminology
Translation

The common approach for the terminology trans-
lation is constrained decoding (Hokamp and Liu,
2017), where the translation results are forced to
contain pre-specified subsequences, such as the
terminology, at decoding time. Since it is the
hard-constrained method, it can aggravate the trans-
lation quality. Moreover, constrained decoding
methods increase the complexity of the decoding
process. To address these problems, Dinu et al.
(2019) and Molchanov et al. (2021) propose the
soft-constrained methods, where pre-specified ter-
minologies are given as input with the source sen-
tence. Although there is no guarantee that trans-
lation results always contain these pre-specified
terminologies, it can learn a copy behavior at train-
ing time without compromising the overall perfor-
mance.

In this paper, we adopt the soft-constrained strat-
egy of Molchanov et al. (2021) for the terminol-
ogy translation; that is, we add the desired transla-
tion result of the terminology as input with special
tokens such as <term_start>, <term_end>, and
<term_trans>. Figure 1 presents the example of the
revised source sentence including the desired trans-
lation result with special tokens. For this, the train-
ing corpus should be revised to reflect this input
format. First, N%11 sentence pairs of the training
data are randomly extracted and both source and
target sentences are tokenized by SpaCy12 which
not only supports tokenization but also provides
neural network models for part-of-speech tagging.
To obtain the word alignment information between

11This is a heuristic value. In this paper, we set it to 15.
12https://github.com/explosion/spaCy
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Source sentence: Patient had a MI or CVA in last year, or has unstable cardiovascular disease.
Terminology in the source sentence: MI
Desired translation result: IM

New source sentence: Patient had a <term_start> MI <term_end> IM <term_trans> or CVA in last
year, or has unstable cardiovascular disease.

Figure 1: Example of the revised source sentence for the soft-constrained terminology translation

source and target sentences, the word-aligner13 is
applied. Among aligned words, we only consider
Nouns as candidates of pre-specified terminologies.
In each sentence pair, up to three14 candidates are
randomly selected to provide the desired transla-
tion result. Finally, the source sentence is revised
by adding a subsequence of the target sentence that
is aligned to the selected candidate of the source
sentence with special tokens.

For the inference of test data, the biomedical
terminology dictionaries described in Section 2.4
are utilized to provide pre-specified terminology
information. As we mentioned, terminology dictio-
naries should be refined. We first remove duplicate
terminologies; for instance, if one terminology in
the source language is matched with multiple ter-
minologies in the target language, it should be re-
moved since we don’t know which of them is the de-
sired translation result. Moreover, if the frequency
of the terminology is high in general-domain data,
we don’t need to consider it. Thus, dictionaries are
filtered based on the frequency in general-domain
data. For test data, the desired translation results
which are from refined dictionaries are added to
each source sentence for up to three terminologies,
such as the training corpus. If the source sentence
in test data doesn’t contain any term which is in re-
fined dictionaries, we just input the original source
sentence.

3.4 Ensemble

From several NMT studies (Sutskever et al., 2014;
Garmash and Monz, 2016; Firat et al., 2016), it has
been already shown that ensembling methods can
improve the overall performance. In this paper, we
conduct the ensemble strategy with the top three
models based on our testset for the final submis-
sion.

13eflomal, https://github.com/robertostling/eflomal
14This is a heuristic value. Based on our training data, we

decide this value.

3.5 Reranker
The current NMT system utilizes the beam search
approach to generate the final translation result.
However, since it is the auto-regressive model, it
considers only a limited target context to get the
probability of a target token. To address this issue,
there are several reranking methods that generate
several different hypotheses from the NMT model
and rerank them. Since reranking models can con-
sider the entire target context, it can improve the
overall performance over the beam search (Lee
et al., 2021).

In this paper, we adopt two reranking methods:
noisy channel modeling (Yee et al., 2019) and dis-
criminative reranking (Lee et al., 2021). Noisy
channel modeling is based on Bayes’ rule; it gener-
ates translation results based on a backward model
and a pre-trained target-side language model. We
use a translation model in the opposite direction as
a backward model and train transformer language
models for the target-side language model. The dis-
criminative reranking model is a transformer archi-
tecture that takes the source sentence and the n-best
list of output hypotheses as input. It also includes
position embeddings and language embeddings for
representing two different languages’ inputs. As in
Lee et al. (2021)’s work, we use XLM-R (Conneau
et al., 2020) which is a transformer-based multi-
lingual masked language model as the pre-trained
model.

4 Experiments

In this section, we present training details and ex-
perimental results of our systems.

4.1 Training details
The baseline models are trained based on
TRANSFORMER-BIG setting (Vaswani et al., 2017)
which contains 6 encoder layers. We first train base-
line models with only general-domain corpus and
incrementally train them using in-domain parallel
corpus to confirm the effectiveness of in-domain
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System Data En2Es Es2En
WMT20 WMT21 WMT20 WMT21

Best Offiical 20 (Bawden et al., 2020) 0.4672 0.5075
Best Official 21 (Yeganova et al., 2021) 0.5117 0.5382

Baseline
GD 0.4761 0.5134 0.4952 0.5148
GD+ID 0.4956 0.5305 0.5060 0.5183

Deep Transformer GD+ID 0.5174 0.5485 0.5186 0.5360
+ Data Augmentation GD+ID+BT+IND 0.5151 0.5523 0.5236 0.5346

+ Ensemble GD+ID+BT+IND 0.5169 0.5524 0.5255 0.5332
+ SC Terminology Translation GD+ID+BT+IND 0.5158 0.5450 0.5216 0.5362
+ Noisy Channel Modeling GD+ID+BT+IND 0.5143 0.5454 0.5110 0.5255
+ Discriminative Reranking GD+ID+BT+IND 0.5159 0.5481 - -

Table 2: BLEU scores on the WMT20 and WMT21 OK aligned test set.

corpus. The deep transformer models which con-
tain 30 encoder layers are trained with the combi-
nation of the general-domain and in-domain paral-
lel corpus; based on them, the synthetic data are
generated from in-domain monolingual data. Fi-
nally, we train the deep transformer models on
all corpus: general-domain (GD) and in-domain
(IN) parallel corpus, synthetic data (BT), and in-
domain dictionary (IND) information. The soft-
constrained (SC) terminology translation models
are also trained based on deep transformer models
with revised training corpus described in Section
3.3. In addition, the ensemble strategy and rerank-
ing methods explained in Section 3.5 are applied.
For the implementation, we use Fairseq15, and all
models are trained using 8 A100 GPUs. Adam
optimizer is used. The batch size is 4K tokens,
and the frequency of parameter update is 20. The
learning rate, the dropout, and the label smoothing
are set to 0.0007, 0.1, and 0.1, respectively. For
the inference, the beam size is set to 8. The BLEU
scores are calculated using the mt-eval script from
Moses (Koehn et al., 2007).

4.2 Experimental results

The experimental results of English to Spanish
(En2Es) and Spanish to English (Es2En) directions
are shown in Table 2. The baseline models show
that the in-domain corpus improves the overall per-
formance in the domain translation. We then ap-
ply the deep transformer with the general-domain
and in-domain data and it achieves a significant
improvement over baseline models. With data aug-
mentation by back-translation of monolingual in-

15https://github.com/facebookresearch/
fairseq

En2Es WMT20 WMT21
Plain Testset 0.5158 0.5450
Revised Testset 0.5325 0.5505
Es2En WMT20 WMT21
Plain Testset 0.5216 0.5362
Revised Testset 0.5294 0.5472

Table 3: BLEU scores of soft-constrained terminology
translation models on plain testsets and revised testsets
with soft-constrained terminologies.

domain data and in-domain dictionaries, there is
a slight improvement on average; even though the
performance drops slightly in the WMT20 testset
of En2Es and WMT21 testset of Es2En, it improves
more in other testset of each direction.

The ensemble models show better performance
than a single model in general.

In the soft-constrained terminology translation,
the performance is slightly improved in one test-
set while the performance is decreased in the
other testset in each direction. Since the soft-
constrained terminology translation models are
trained with revised corpus, the testset also should
be revised by adding desired translation results
with special tokens in order to evaluate the per-
formance accurately. Table 3 shows BLEU scores
of soft-constrained terminology translation models
on plain testsets and revised testsets which con-
tain desired translation results. We observe that
soft-constrained terminology translation models
are more effective when the desired translation
results of some terminologies are given such as
training corpus.

As we mentioned in Section 3.5, two reranking
methods are adopted, but as a result, the overall
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System En2Es Es2En
Best Official 0.5235 0.6045
SRT run1 0.5214 0.5954
SRT run2 0.5196 0.5943
SRT run3 0.5235 0.6045

Table 4: Official BLEU scores of our submissions for
WMT22 biomedical task.

performance is not improved. (The discriminative
reranking is experimented only on En2Es.)

Since there is no improvement with two rerank-
ing methods, we exclude their results in our final
submissions. Our final submissions are results of
data augmentation, ensembling models, and soft-
constrained terminology translation.

5 Official Evaluation Results

The official evaluation results of our submissions
(SRT) for WMT 2022 biomedical translation task
are shown in Table 4. All our submissions show
the best BLEU scores.

6 Conclusion

This paper presents the Samsung Research’s Trans-
lation system (SRT) for the WMT22 biomedi-
cal translation shared task in two language di-
rections: English to Spanish and Spanish to En-
glish. We perform experiments with several strate-
gies such as deep transformer, data augmentation,
soft-constrained terminology translation, ensem-
bling models, and reranking methods. Our experi-
ments show the effectiveness of each strategy. The
deep transformer, data augmentation, and ensem-
ble strategies improve effectively the overall per-
formance in the domain translation. Moreover, we
present that the soft-constrained terminology trans-
lation is a reasonable method to achieve good per-
formance in the domain translation. Our systems
show the best BLEU scores in the official evalua-
tion results.
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Abstract

Pre-trained language models (PLMs) often take
advantage of the monolingual and multilingual
dataset that is freely available online to acquire
general or mixed domain knowledge before
deployment into specific tasks. Extra-large
PLMs (xLPLMs) are proposed very recently
to claim supreme performances over smaller-
sized PLMs such as in machine translation
(MT) tasks. These xLPLMs include Meta-AI’s
wmt21-dense-24-wide-en-X (2021) and NLLB
(2022). In this work, we examine if xLPLMs are
absolutely superior to smaller-sized PLMs in
fine-tuning toward domain-specific MTs. We
use two different in-domain data of different
sizes: commercial automotive in-house data
and clinical shared task data from the Clin-
SpEn2022 challenge at WMT2022. We choose
popular Marian Helsinki as smaller sized PLM
and two massive-sized Mega-Transformers
from Meta-AI as xLPLMs.

Our experimental investigation shows that 1)
on smaller sized in-domain commercial auto-
motive data, xLPLM wmt21-dense-24-wide-
en-X indeed shows much better evaluation
scores using SACREBLEU and hLEPOR met-
rics than smaller-sized Marian, even though
its score increase rate is lower than Marian
after fine-tuning; 2) on relatively larger-size
well prepared clinical data fine-tuning, the
xLPLM NLLB tends to lose its advantage
over smaller-sized Marian on two sub-tasks
(clinical terms and ontology concepts) using
ClinSpEn offered metrics METEOR, COMET,
and ROUGE-L, and totally lost to Marian on
Task-1 (clinical cases) on all official metrics
including SACREBLEU and BLEU; 3) met-
rics do not always agree with each other
on the same tasks using the same model out-
puts; 4) clinic-Marian ranked No.2 on Task-1
(via SACREBLEU/BLEU) and Task-3 (via ME-
TEOR and ROUGE) among all submissions.

1 Introduction

Owing to the recent development of neural ma-
chine translations (NMTs) (Kalchbrenner and Blun-
som, 2013; Cho et al., 2014; Bahdanau et al., 2014;
Akhbardeh et al., 2021; Han, 2022a), especially
the self-attention based Transformer learning struc-
tures (Devlin et al., 2019; Vaswani et al., 2017), pre-
trained language models (PLMs) have been domi-
nant in natural language understanding (NLU) and
natural language processing (NLP) tasks. These
applications include Long-Short Term Memory
(LSTM) and BERT (Pre-training of Deep Bidi-
rectional Transformers) based models to text min-
ing (Dernoncourt et al., 2017; Wu et al., 2022),
question-answering (Dong et al., 2021), reading
comprehension (Schlegel, 2021), and summarisa-
tion (Perez-Beltrachini and Lapata, 2021), etc., in
addition to MT (Han et al., 2021a; Han, 2022b;
Han and Gladkoff, 2022).

PLMs often have a large amount of trainable
parameters for downstream applications. For in-
stance, in translation task, the popular Marian NMT
(Junczys-Dowmunt et al., 2018) pre-trained by Mi-
crosoft Translator team 1 on OPUS 2 (Tiedemann,
2012) multilingual corpus has 7.6 million param-
eters, which can still be fine-tuned on Google’s
Colab or AWS at virtually no cost. However, very
recent work has shown much larger PLMs that
have much more parameters than smaller models,
e.g. the multi-lingual Transformer model submit-
ted to WMT2021 shared task by Meta-AI research
group “wmt21-dense-24-wide-en-x”(WMT21fb)
(Tran et al., 2021), which has 4.7 billion parameters,
i.e. 618 times bigger than Marian, and does not fit
into regular GPUs. In this year, Meta-AI published
another model NLLB (NLLB Team et al., 2022)
that has 54.5 billion parameters and covers 200 lan-
guages in the full model. From now on, we name

1https://translator.microsoft.com
2https://opus.nlpl.eu
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both “wmt21-dense-24-wide-en-x” and NLLB as
Meta-AI’s Mega-Transformer models. Meta-AI’s
Mega-Transformer (WMT21fb) has claimed the
best performing system on 10 out of 14 language
pairs in WMT2021 shared task including winning
bilingual-trained models.

In this work, we raise the question whether extra-
large PLMs (xLPLMs) such as Meta-AI’s Mega-
Transformers have absolute superiority in NMT
tasks on domain-specific fine-tuning. We prepare
experimental investigation on two different data set
to answer this question. One is our specific auto-
motive domain in-house commercial data and the
other is clinical domain data from ClinSpEn2022
challenge task we attended which is affiliated with
WMT2022 3.

We set up the following hypothesis and research
questions. Our hypothesis is: xLPLMs do not ab-
solutely demonstrate superiority over smaller sized
PLMs in NMT fine-tuning and it shall depends
on specific tasks deployed including domain topic,
size of available in-domain data, and performance-
cost trad-off.

From this hypothesis we derive two research
questions (RQs): 1) Do xLPLMs always demon-
strate better performances in NMT over smaller
sized PLMs for domain fine-tuning? 2) if not, in
what situations?

To the best of our knowledge, this is the first
published work that has been carried out in the
field on fine-tuning Meta-AI’s extra-large multilin-
gual PLM Maga-Transformers, and in translating
specialised automotive and clinical data.

The rest of the paper is organised as below: Sec-
tion 2 introduces more details on related work to
ours including PLMs and fine-tuning in automotive
and clinical domains, Section 3 describes our initial
model settings including deployed baseline mod-
els, Section 4 presents our experimental evaluation
carried out on our in-house commercial automo-
tive domain data, Section 5 describes our system
submission to ClinSpEn Biomedical-MT challenge
task at WMT2022 on clinical data, and Section 6
gives our conclusion and future work plan.

2 Related Work

Fine-tuning PLMs has been in practice towards
different domain applications in recent years. For
instance, Wang et al. (2021) carried out experi-

3The 7th Conference on MT https://www.statmt.
org/wmt22/

mental investigation on fine-tuning PLMs for con-
versational recommendation system, Chakraborty
et al. (2020); Gu et al. (2021); Lee et al. (2019);
Alsentzer et al. (2019) built biomedical and clinical
domain pre-trained models using BERT structure
and PubMed data on scientific publications, and
then Wu et al. (2022); Han et al. (2022a) devel-
oped new machine learning structures using PLM
Transformer and BERT as encoders in concatena-
tion with statistical graph-based conditional ran-
dom fields (CRFs) as decoders for clinical text
mining.

However, aforementioned work did not deploy
extra-large PLMs in a scale as Meta-AI’s multilin-
gual Mega-Transformers. For example, the PLMs
(Transformer-CRFs) deployed by Wu et al. (2022)
as baseline have around 42 million of trainable pa-
rameters, which set is already relatively large, even
though it is still far from Mega-Transformers’ 4.7
billion and 54.5 billion parameters.

Regarding PLM applications in automotive do-
main, the only recent work we found is from
Romell and Curman (2022), who tested the Distil-
BERT and XLM-RoBERTa PLMs for text classifi-
cation task using Swedish truck manufacturer data,
instead of MT.

There are also researchers working on the
overview of model comparability, bench-marking,
and fine-tuning methodologies regarding larger
scale PLMs, e.g., from Aßenmacher (2021); Ruder
(2021).

Overall, none of the work mentioned before
has investigated into extra-large Mega-Transformer
level PLMs (xLPLMs) for NMT in automotive and
clinical domains, especially their comparisons to
smaller sized PLMs.

3 Initial Model Settings

To investigate into PLMs with fine-tuning for spe-
cialised domain NMT from different scales, we
firstly deploy two of such models in different sizes
from a multilingual setting. The first one is the pop-
ular Marian NMT model developed in C++ since
2018 using deep RNN and Transformer (Junczys-
Dowmunt et al., 2018). It is mostly maintained by
the Microsoft Translator team and features with
efficiency, fast training, and state-of-the-art NMT
architectures 4. This PLM has a smaller sized 7.6
million trainable parameters.

4available at https://marian-nmt.github.io
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The second one we use for fine-tuning is one of
the extra-large PLMs (xLPLMs) Meta-AI’s Mega-
Transformer “wmt21.dense-24-wide.En-X” (Tran
et al., 2021) developed for WMT2021 shared task
on multilingual MT, which was submitted to 14
language pairs and claimed the best on 10 of them
5. It has 4.7 billion trainable parameters, which
is super large in comparison to Marian model. In
the later section (5), we will explain another Mega-
Transformer Model NLLB developed in this year
by Meta-AI and deploy it for our ClinSpEn2022
shared task submission on clinical domain.

4 Model Fine-Tuning and Comparison on
Commercial Automotive Data

4.1 In-house Corpus and Hardware
At the development stage, we use our in-house
prepared domain-specific commercial corpus from
automotive field. We split our data set into 90%
vs 10% for fine-tuning and testing respectively and
make sure that the test data is not seen during the
fine-tuning / development stage 6. We use a larger
GPU from NVIDIA A100 with 80GB VRAM for
our experiments because of the much higher com-
putational powers the Mega-Transformer model
requires.

4.2 Our Evaluation Setup
BLEU (Papineni et al., 2002) has always been crit-
icised by researchers on its reliability. This in-
cludes very recent work by Freitag et al. (2021),
which demonstrates that BLEU has closer correla-
tion to lower quality crowd sourced human evalua-
tion then to expert based human evaluation, and by
Han et al. (2021a), which investigation on Chinese-
English NMT shows that BLEU score fails to re-
flect the real quality differences between NMT sys-
tems especially on translating multi-word expres-
sions (MWEs) and terms (Han et al., 2020).

Furthermore, BLEU scores can be very different
caused by configurations, such as tokenisation and
normalisation strategies applied to the reference
text which can lead to 1.8 margin of difference
reported by (Post, 2018). In light of these findings,
we adopt two alternative evaluation metrics, i.e.
SACREBLEU (Post, 2018) and hLEPOR (Han et al.,

5package “wmt21.dense-24-wide.En-X” available
at https://github.com/facebookresearch/
fairseq/tree/main/examples/wmt21

6Because this is a commercial corpus, we do not give much
details on it but this does not affect the experimental findings
we achieved

2013b; Erofeev et al., 2021; Han et al., 2021b) that
we will give further details about.

4.2.1 Revisiting SACREBLEU

SACREBLEU is developed by the work from Post
(2018) and is maintained online in its Python ver-
sion 7. The author discussed the uncertainty re-
garding reporting BLEU scores by MT researchers.
This is involved in many parameter settings when
using BLEU metric including number of references,
length penalty computation on multi-references,
maximum n-gram, and smoothing applied to 0-
count n-grams. Because of such variations, when
MT researchers report the BLEU scores from their
system, “the BLEU” score actually cannot be re-
produced in many cases due to lack of detailed
technical description of encoder, etc. .

To address these issues, SACREBLEU added
some constrains while using BLEU metric. These
include the applying of its own metric-internal
pre-processing for detokenised system outputs, the
avoiding of user handling reference set via auto-
matically downloading from WMT, and the export
of a summary on settings used.

4.2.2 Revisiting hLEPOR

hLEPOR is an augmented metric for automatic
MT evaluation which was firstly proposed in
WMT2013 Metrics shared task (Han et al.,
2013a,b) and was reported as one of the best per-
forming metrics at both system level (Macháček
and Bojar, 2013) and segment level (Graham et al.,
2015) 8. It is calculated via a weighted harmonic
mean of several main factors including sentence
length penalty, position difference penalty, pre-
cision, and recall. Furthermore, there are more
weighting parameters among all the sub-factors.
Let’s see the brief formulas below:

hLEPOR = Harmonic(wLPLP,

wNPosPenalNPosPenal, wHPRHPR)

where LP is the sentence length penalty factor and
is calculated as:

7available at https://github.com/mjpost/
sacrebleu

8The python version is available at https://pypi.
org/project/hLepor/ and the original Perl code at
https://github.com/poethan/LEPOR
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LP =





e
1− Lengthref

Lengthhyp if Lengthhyp < Lengthref
1 if Lengthhyp = Lengthref

e
1−Lengthhyp

Lengthref if Lengthhyp > Lengthref

Then, n-gram based position difference penalty
(NPD) is used to measure the word position and or-
der difference among matched words between sys-
tem output and reference translation (MatchNhyp

and MatchNref ).

NPosPenal = e−NPD

NPD =
1

Lengthhyp

Lengthhyp∑

i=1

|PDi|

|PDi|= |MatchNhyp −MatchNref |

Finally, the weighted harmonic mean of precision
and recall is calculated using this formula.

HPR =
(α+ β)PrecisionxRecall

αPrecision+ βRecall

Precision =
Alignednum

Lengthhypothesis

Recall =
Alignednum

Lengthreference

hLEPOR is an extended version of the original
LEPOR metric (Han et al., 2012; Han, 2014).
hLEPOR also has a latest customised version
named cushLEPOR which uses automatic hyper-
parameter optimisation framework Optuna (Ak-
iba et al., 2019) to achieve better and easier fea-
ture weights fine-tuning towards specific language
pairs and domains in practice. It was reported as
one of the best performing metrics in WMT2021
(Erofeev et al., 2021; Han et al., 2021b) on the
officially-ranked language pairs English-German
and Chinese-English on News domain, and English-
Russian on TED talk data (Freitag et al., 2021)
where human expert level evaluations were avail-
able. hLEPOR is also gaining popularity in other
NLP task evaluations, e.g. language generation
(NLG) (Novikova et al., 2017; Gehrmann et al.,
2021; Marzouk, 2021), language understanding
(NLU) (Ruder et al., 2021), text summarization
(ATS) (Bhandari et al., 2020), and searching (Liu
et al., 2021).

4.3 Evaluation Results

The evaluation scores using SACREBLEU and hLE-
POR are shown in Table 1 and 2 respectively. From
Table 1, we can see that the fine-tuning has suc-
cessfully improved each single n-gram precision
score in SACREBLEU for both Marian and Mega-
Transformer models, leading to an overall 150.14%
and 75.81% score increasing. Similarly, Table 2
shows that our in-domain fine-tuning improved
hLEPOR scores on Marian and Mega-Transformer
models via 32.16% and 26.01%.

Like BLEU, SACREBLEU is precision based
metric. The very large margin evaluation score in-
creases in SACREBLEU (150.14% and 75.81%) in-
dicates that according to reference translation, our
fine-tuned models produce more fluent output than
the baseline in this domain specific test set. Unlike
SACREBLEU, hLEPOR is an augmented metric
with comprehensive factors, including recall and
positional difference penalty, in addition to preci-
sion. The large margins of hLEPOR score increase,
i.e. 32.16% and 26.01% tell that the fine-tuned
models can also have more adequate translation
towards this domain, in addition to maintaining
higher fluency.

In summary, the fine-tuning of these two
PLMs has demonstrated evaluation score improve-
ment with large margins in commercial domain
data. xLPLM Mega-Transformer has much higher
SACREBLEU evaluation score than Marian before
fine-tuning, 39.12 vs 19.64, which indicates its
larger amount of knowledge acquired. However, af-
ter fine-tuning, the SACREBLEU scores of them are
much closer, 50.33 vs 45.20. This means that fine-
tuning of smaller sized PLM for this commercial
data is far more effective than the xLPLM Mega-
Transformer from computation and time cost point
of view, as well as the cost of computational power
itself, since supercomputer time is much more ex-
pensive.

This partially verifies our assumption that
xLPLMs do not always win smaller sized PLMs in
practical applications when computational cost is
in place and when time is constrained.

To further investigate our research questions, we
carry out another experimental evaluation on clin-
ical domain data via attending the ClinSpEn2022
shared task challenge which will be detailed in the
next section.

911



Marian
uni-gram bi-gram tri-gram 4-gram BP Overall

Before fine-tuning 19.64 10.96 4.56 2.00 1.0 7.38
After fine-tuning 45.20 24.54 14.44 8.69 0.96 18.46 (↑150.14%)

Mega-Transformer (wmt21fb)
uni-gram bi-gram tri-gram 4-gram BP Overall

Before fine-tuning 39.12 18.81 9.78 5.23 1.0 13.93
After fine-tuning 50.33 30.14 19.47 12.85 0.99 24.49 (↑75.81%)

Table 1: SACREBLEU score comparisons on the MT test set: before vs after fine-tuning

Marian Mega-Transformer

Before fine-tuning 36.91 47.55
After fine-tuning 48.78 59.92

Rate(↑) 32.16% 26.01%

Table 2: hLEPOR score comparisons on the MT test set:
before vs after fine-tuning

5 Submission to ClinSpEn at WMT22

In this section, we introduce our system submis-
sions to Biomedical-MT task in WMT2022. In
this task, we attended the affiliated clinical domain
machine translation on Spanish-English language
pair (ClinSpEn) task 9, which is hosted in CodaLab
(Pavao et al., 2022) 10.

The aim of this task is to promote the develop-
ment of MT models on medical domain via three
sub-tasks: 1) Clinical Cases (CC): on 202 COVID-
19 clinical case reports; 2) Clinical Terms (CT):
using more than 19K parallel terms extracted from
biomedical literature and electric health records
(EHRs); 3) Ontology Concepts (OC): using more
than 2K parallel concepts from biomedical ontol-
ogy. The translation direction on these three sub-
tasks are EN→ES, EN←ES, and EN→ES respec-
tively.

5.1 Corpus Used

In addition to the official corpora prepared by the
ClinSpEn organisers, we used some external cor-
pora for our model fine-tuning. This is because
that neural-network based machine learning mod-
els are data dependent while the officially offered
parallel sample sentences are very limited. We

9https://temu.bsc.es/clinspen/
10https://codalab.lisn.upsaclay.fr/

competitions/6696

found useful biomedical Spanish-English corpora
described in (Névéol et al., 2018) from WMT11,
and MeSpEn corpora from (Villegas et al., 2018)12,
which include Spanish Bibliographical Index in
Health Sciences (IBECS), Scientific Electronic Li-
brary Online (SciELO), and U.S. National Library
of Medicine (PubMed and MedlinePlus). However,
due to the time restriction for this shared task, we
only managed to get 250,000 aligned pairs from
IBECS after careful preparation, which is a bibli-
ographical data collecting scientific articles from
different fields of health sciences, maintained by
the Spanish National Health Sciences Library.

5.2 Adaptations on xLPLM: NLLB

Two systems we submitted to ClinSpEn2022 are
clinic-Marian and clinic-NLLB (NLLB Team et al.,
2022). We reported our clinic-WMT21fb model
outputs in a followup work (Han et al., 2022b)
(also due to the time restriction). Some training
parameters and training logs for clinic-Marian are
listed below:

• batch size = 64

• gradient accumulation steps = 1

• weight decay = 0.01

• learning rate = 2e-5

• number of training epochs = 1

• number of examples = 225,000

NLLB (No Language Left Behind) is another
extra-large PLM model built by Meta-AI freshly in

11https://github.com/
biomedical-translation-corpora

12https://zenodo.org/record/3562536
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this year 13, which was targeting low-resource lan-
guages via knowledge transfer from high-resource
ones, and Spanish is among the high-resource lan-
guages covered by NLLB 14. NLLB-200 has a total
of 54.5 billion parameters in its full model as the
authors mentioned. In this shared task, we applied
the distilled version of NLLB, i.e. the “NLLB-
200-distilled-1.3B” which still has 1.3 billion train-
able parameters 15. As Meta-AI’s “wmt21.dense-
24-wide.en-X” model we used in the earlier sec-
tion, we call NLLB-distilled as one of their Mega-
Transformers.

Some fine-tuning parameters for NLLB-distilled
are listed below:

• batch size = 24

• gradient accumulation steps = 8

• weight decay = 0.01

• learning rate = 2e-5

• number of training epochs = 1

• encoder-decoder layers = 24+24

The fine-tuned clinic-NLLB model has rela-
tively apparent evaluation score increase using
SACREBLEU in comparison to baseline model on
both translation directions, as shown in Table 3,
for EN→ES and ES→EN in the upper and middle
parts of the table with increasing rate 11.74% and
9.70% respectively. This demonstrates that that
fine-tuning was successful.

Interestingly, if we fine-tune the model in one
direction and carry out the inference translation
in the opposite direction, the model performance
will have a big drop even though it is the same
language pair. This tells that pre-trained LMs lose
their generalisation after fine-tuning. For instance,
in the bottom of Table 3, we demonstrate that if the
model is fine-tuned in English-to-Spanish direction
and the inference test is carried out in Spanish-to-
English direction, the overall SACREBLEU score
has a 14.37% drop in comparison to without fine-
tuning. So, we carried out fine-tuning on both
translation directions for the system submission to
three sub-tasks at ClinSpEn2022.

13The project page https://ai.facebook.com/
research/no-language-left-behind/

14Models available at https://huggingface.co/
docs/transformers/model_doc/nllb

15https://huggingface.co/facebook/
nllb-200-distilled-1.3B

5.3 Official Evaluation Metrics

The official evaluation metrics used by Cin-
SpEn2022 shared task are METEOR (Banerjee and
Lavie, 2005), SACREBLEU (Post, 2018), COMET
(Rei et al., 2020), BLEU-HF (HuggingFace) (Pap-
ineni et al., 2002), and ROUGE-L-F1 (Lin, 2004).
Among these, METEOR is a metric using both pre-
cision and recall not only on word surface level but
also introducing paraphrasing features. COMET
was proposed recently by taking advantage of cross-
lingual PLMs using knowledge from both source
and target languages. ROUGE was originally de-
signed for text summarisation evaluation using
n-gram co-occurrences, while ROUGE-L added
the Longest Common Sub-sequence (LCS) feature
from translation study.

5.4 Evaluation Scores on Three Tasks

We present the MT evaluation scores using five
official metrics through CodaLab platform on the
three sub-tasks in Table 4, for translating clinical
cases, clinical terms, and ontology concepts. The
two fine-tuned models are clinic-Marian and clinic-
NLLB (one of the Mega-Transformers). From this
shared task evaluation outcomes, the xLPLM clinic-
NLLB starts to lose its comparisons to far smaller-
sized clinic-Marian in Task-2 (CT) and 3 (OC),
especially on METEOR and ROUGE-L scores but
also on COMET (OC). What is very noticing is that
clinic-Marian has an overall win on Task-1 (CC)
via all evaluation metrics.

From the evaluation results on Task 2 and 3, i.e.
CT and OC, we can see that the evaluation met-
rics do not agree with each other always. For in-
stance, clinic-Marian wins METEOR and ROUGE-
L on Task 2 but loses on other metrics, while
clinic-NLLB wins SACREBLEU and BLEU-HF
on Task 3 but loses on other metrics. This phe-
nomenon is very interesting which tells that varia-
tion metrics from BLEU including BLEU-HF and
SACREBLEU tend to not agree with other met-
ric families including METEOR, COMET, and
ROUGE-L. Furthermore, the same metric does not
always agree with itself on different tasks, or the
two MT models perform differently across tasks.
For instance, COMET score says clinic-Marian and
clinic-NLLB wins Task 3 (0.9495) and 2 (1.0290)
respectively. Due to the time restriction from this
shared task and the limited computational resource
we have, our second model (clinic-NLLB) was sub-
mitted after the official deadline.
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English-to-Spanish (tune+test)
uni-gram bi-gram tri-gram 4-gram BP Overall

Before fine-tuning 65.93 45.51 33.71 25.44 1.0 40.05
After fine-tuning 70.25 50.58 38.78 30.17 0.99 44.75 (↑11.74%)

Spanish-to-English (tune+test)
uni-gram bi-gram tri-gram 4-gram BP Overall

Before fine-tuning 65.36 42.54 30.58 22.60 1 37.23
After fine-tuning 68.51 46.27 34.07 25.76 1 40.84 (↑9.70%)

English-to-Spanish (tune) & Spanish-to-English (test)
uni-gram bi-gram tri-gram 4-gram BP Overall

Before fine-tuning (es2en) 65.36 42.54 30.58 22.60 1 37.23
After Reverse fine-tuning 58.17 36.48 25.85 18.84 1.0 31.88 (↓14.37%)

Table 3: SACREBLEU score comparisons using NLLB: baseline vs fine-tuned in clinical domain.

This experimental investigation shows that with
carefully prepared and larger amount of domain
specific data for fine-tuning, the xLPLMs tend to
lose its advantage over smaller sized PLMs using
several automatic metrics. Thus it further verifies
our hypothesis and research questions.

5.5 Comparisons to Other Teams

In the officially valid submissions (before the
shared task deadline ended) for three tasks, there
are four teams for Task-1 and Task-3 including
Avellana Translation, DtranX, Optum and ours 16.
In addition to these four teams, Task-2 has an-
other team Huawei, making it in-total five teams.
Optum and Huawei have both multiple submis-
sions/runs while other teams submitted one run.
Our submission clinic-Marian ranked number 2 in
both Task-1 and Task-3 via SACREBLEU/BLEU
and METEOR/ROUGE respectively, as in Table 5
underlined. There are four runs from Optum team
for both Task-1/3 and single submission by other
teams. Table 5 includes the best submission from
Optum. There is a little difference in the last digit
of the evaluation scores between our own record
(Table 4) and the official record (Table 5), which is
because that we rounded the last digit scores while
the official ones did not. This result shows that
metrics tend to not agree with each others in many
cases. For instance, on Task-3, our clinic-Marian
has very similar score to DtranX on METEOR
(0.6261 vs 0.6275) only from the third digit which
is a metric using paraphrase and semantic similarity

16https://statmt.org/wmt22/biomedical_
results.pdf

features; however, the score difference on BLEU is
so large (39.10 vs 58.24) via SACREBLEU which
rises the issue again on the credibility of BLEU
metric. There are not many teams submitting their
results into this clinical domain machine translation
task in comparison to the traditional news domain
MT task, which indicates that it is still a relatively
new domain and calls for more attentions from MT
researchers in the future.

6 Discussion and Future Work

In this work, we carried out experimental investi-
gations on if extra-large pre-trained language mod-
els (PLMs) always demonstrate superiority over
much smaller-sized PLMs using two domain spe-
cific data. The first experimental results using Mar-
ian vs “wmt21.dense-24-wide.En-X” shows that
even though xLPLM still perform better evalua-
tion scores in comparison to much smaller sized
Marian, their score difference is much smaller after
fine-tuning and the xLPLM costs more than smaller
PLM from performance-cost trade-off point of view
in practical applications, e.g. for language service
providers (LSPs). The second experimental results
using clinical data show that with carefully pre-
pared certain amount of fine-tuning data (250k sen-
tence pairs), the xLPLM NLLB even loses with
its evaluation score in comparison to smaller PLM
Marian in Task 1 “clinical cases” over all automatic
metrics used, and in Task 2 “clinical terms” and 3
“ontology concepts” on partial of the automatic eval-
uation metrics officially used by ClinSpEn2022. Fi-
nally, our system submission clinic-Marian ranked
the second place using SACREBLEU/BLEU for

914



clinic-Marian
MT SACREBLEU METEOR COMET BLEU-HF ROUGE-L-F1

Task-I: clinical cases 38.18 0.6338 0.4237 0.3650 0.6271
Task-II: clinical terms 26.87 0.5885 0.9791 0.2667 0.6720

Task-III:clinical concepts 39.10 0.6262 0.9495 0.3675 0.7688
clinic-NLLB (Mega-Transformers)

MT SACREBLEU METEOR COMET BLEU-HF ROUGE-L-F1

Task-I: clinical cases 37.74 0.6273 0.4081 0.3601 0.6193
Task-II: clinical terms 28.57 0.5873 1.0290 0.2844 0.6710

Task-III: ontology concepts 41.63 0.6072 0.9180 0.3932 0.7477

Table 4: Evaluation Scores using Official CodaLab Platform from ClinSpEn2022 Benchmark on Fine-tuned Models.
italic scores indicate winner on the specific task using the specific metric (last digit rounded).

Task-1: Translating Clinical Cases
Teams SACREBLEU METEOR COMET BLEU ROUGE

DtranX 41.06 0.6633 0.4610 0.3926 0.6490
Logrus-UoM (ours) 38.17 0.6337 0.4237 0.3650 0.6270

Optum(run4) 38.12 0.6447 0.4425 0.3642 0.6285
Avellana Translation 36.64 0.6637 0.3920 0.3519 0.6333

Task-3: Translating Ontology Concepts
Teams SACREBLEU METEOR COMET BLEU ROUGE

DtranX 58.24 0.6275 1.2496 0.5724 0.7839
Optum(run4) 44.97 0.5880 1.1197 0.4396 0.7479

Logrus-UoM (ours) 39.10 0.6261 0.9494 0.3674 0.7688
Avellana Translation 31.72 0.5707 0.3841 0.3042 0.7621

Table 5: Comparisons on Task 1 and 3 across teams (ranked via SACREBLEU chosen by the organisers).

Task-1, and using METEOR/ROUGE for Task-3
among all teams who submitted on-time before the
shared task deadline.

We looked into the translation outputs from
clinic-NLLB for error analysis, and it shows that
some of the translation errors come from very lit-
eral translation, and others come from gender re-
lated mistakes. In conclusion, our two stage ex-
perimental investigations verify our hypothesis and
RQs from different aspects.

We also doubt if the official automatic metrics
used for ClinSpEn challenge can correctly distin-
guish the NMT systems because mostly they do
not really measure the translation output quality
but the similarity to the gold standard single refer-
ence. Therefore, domain specific automatic evalua-
tion metrics or metrics better measuring semantic
similarities might be needed.

In the future work, we plan to carry out more ex-

perimental investigations from qualitative aspects
looking into translation errors using human experts
and classifying them into possible categories with
examples and statistics, especially from clinical
domain. This will allow us to validate automatic
metrics with professional human judgements for
this domain.

We will continue to fine-tune our models towards
different domains and languages and use more of
the available corpus for current clinical domain
challenge task. We also plan to try different state-
of-the-art pre-trained language models for evalua-
tion.
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Appendix

More training logs from clinic-Marian:

• global step = 3516

• training loss = 1.2236216656855212

• train runtime = 1945.9989

• train samples per second = 115.622

• trian steps per second = 1.807

• total flos = 2947034863632384.0

Parameters reported by SACREBLEU:

• lowercase = Ture

• tokenize = 13a
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Abstract

This paper introduces WeChat’s participation
in WMT 2022 shared biomedical translation
task on Chinese→English. Our systems are
based on the Transformer(Vaswani et al., 2017),
and use several different Transformer struc-
tures to improve the quality of translation.
In our experiments, we employ data filter-
ing, data generation, several variants of Trans-
former, fine-tuning and model ensemble. Our
Chinese→English system, named Summer,
achieves the highest BLEU score among all
submissions.

1 Introduction

This article describes the WeChat’s participation
in WMT 2022 shared biomedical translation task
on Chinese→English. We improve the translation
quality of the system by increasing the diversity
of model structure and data, fine-tuning the model
with in-domain data, inserting tags at the beginning
of each source sentence and selecting models with
high diversity and good performance for ensemble.

For model architectures, our system adopt BIG
and DEEP Transformer models which contain 10-
layer and 20-layer encoders, 10240 and 4096 filter
sizes, respectively, with TRANSFORMER-BIG
setting (Vaswani et al., 2017). In order to increase
the diversity of the model, we use structures such
as Average Attention Transformer (AAN) (Zhang
et al., 2018) and Mixed-AAN Transformer archi-
tecture (Zeng et al., 2021) in the decoder part.

For data generation, we use back-
translation (Sennrich et al., 2016a), knowledge
distillation (Kim and Rush, 2016), and forward-
translation (Zeng et al., 2021) to improve data
quality. And we use some data augmentation
methods to improve the model robustness, such
as adding synthetic noise and dynamic top-p
sampling (Zeng et al., 2021). Furthermore,
according to the different sources of the corpora,

we add tags at the beginning of the source sentence
to perform domain adaptation.

For fine-tuning, we use in-domain bilingual cor-
pus to fine-tune models from the general domain
to the biomedical domain, and use target denois-
ing (Meng et al., 2020) to improve the diversity of
models and mitigate training-generation discrep-
ancy.

For model ensemble, we use Self-BLEU (Zhu
et al., 2018) to evaluate the similarity between mod-
els. We take the prediction of one model as the
reference and use the prediction of the other model
to calculate the BLEU score. The higher the Self-
BLEU score, the lower the diversity of the models.

In the remainder of this paper, we start with
presenting the data strategy in Section 2. Then we
describe our system details in Section 3. Section
4 presents the experimental results. Finally, we
conclude our work in Section 5.

2 Data

In this section, we introduce the details of bilingual
and monolingual data used in this shared task.

2.1 Bilingual Corpus

Our baseline model is trained with out-of-domain
(OOD) data from WMT 2022 shared task on
general machine translation1. Additionally, we
use in-house data (depicted in Table 1 as OOD-
IN-HOUSE) to improve performance of baseline
model. With regard to in-domain data, firstly, we
use the in-domain bilingual corpus provided by
the WMT 2022 shared biomedical translation task2

(depicted in Table 1 as IND-BIO). And we use the
Champollion3 tool to align the sentences in the cor-
pus. Then, we collect in-domain Chinese→English

1https://statmt.org/wmt22/translation-task.html
2https://github.com/biomedical-translation-

corpora/corpora
3http://champollion.sourceforge.net/
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(depicted in Table 1 as IND-TAUS) sentence pairs
from TAUS4.

2.2 Monolingual Corpus

The out-of-domain monolingual corpora are col-
lected from WMT 2022 shared task on general
machine translation and the in-house monolingual
data. With regard to in-domain data, the English
part of the bilingual corpus in other languages pro-
vided by the WMT 2022 shared biomedical trans-
lation task is used as in-domain monolingual data.

3 System overview

In this section, we introduce the details of our sys-
tem used in the WMT 2022 shared biomedical
translation task. Our system adopts data filtering,
data generation, model architectures, fine-tuning
and ensemble.

3.1 Data Filtering

For data filtering, we use the following rules for
bilingual corpus:

• Normalize punctuation with Moses scripts on
both English and Chinese.

• Filter out sentence pairs that are the same at
the source and target.

• Filter out sentence pairs whose source sen-
tence’s language recognition result is different
from the original language.

• Filter out sentence pairs with a source-to-
target length ratio greater than 1:3.

• Filter out the sentences longer than 150 words
or exceed 40 characters in a single word.

Besides these rules, we use fast-align5 to filter out
the sentence pairs with low alignment scores. We
also filter out sentence pairs in which English sen-
tences contain Chinese characters.

3.2 Data Generation

In this section, we introduce the approaches
of data generation in our system, including
back-translation, knowledge distillation, forward-
translation, synthetic noise and tagging.

4https://taus-corona-corpus.s3.amazonaws.com/en-
zh.txt.gz

5https://github.com/clab/fast_align

3.2.1 Back-Translation
Back-translation (Hoang et al., 2018) is the most
commonly used data augmentation method in neu-
ral machine translation. Following the previous
work (Edunov et al., 2018), we use following strate-
gies to generate back translations to improve the
diversity the training data:

• Beam search: We use beam search to generate
the pseudo corpus with beam size setting to 4.

• Dynamic top-p sampling: Following the
work (Zeng et al., 2021), at each decoding
step, we select a word from the smallest set
whose cumulative probability exceeds p, with
p varying from 0.9 to 0.95 during the data
generation process.

3.2.2 Knowledge Distillation
For knowledge distillation (Kim and Rush, 2016;
Wang et al., 2021), we use the corpus generated
from the teacher models to train the student models.

3.2.3 Forward-Translation
For forward-translation, we use an ensemble model
to generate forward translations with the source-
language monolingual corpus as input.

3.2.4 Synthetic Noise
For synthetic noise, we add different noises at the
source side of the pseudo corpus to improve the
diversity of the data and improve the robustness of
the model:

• Randomly replace some source tokens with
< unk >.

• Randomly delete some tokens from the source
sentence.

• Randomly swap the two tokens in the source
sentence in the specify window.

3.2.5 Tagging
For tagging, inspired by (Johnson et al., 2017),
we insert a tag at the beginning of each source
sentence to denote its type: < BT > for the
back-translation data, < NOISE > for the syn-
thetic noise data, < REAL > for the ground-truth
bilingual corpus and < FT > for the forward-
translation data. Furthermore, we insert a tag at
the second position of each sentence to denote
its domain: < BIO > for the in-domain data,
< NEWS > for the data from WMT22 general
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LANGUAGE OOD-NEWS OOD-IN-HOUSE IND-BIO IND-TAUS
bilingual corpus 30.6M 90M 89K 0.4M
monolingual corpus 220M 50M 6.9M –

Table 1: Data used for training the system, where OOD-NEWS is the out-of-domain data provided by WMT22
general translation task. OOD-IN-HOUSE is the out-of-domain data collected from in-house corpus. IND-BIO is
the in-domain data provided by WMT22 shared biomedical translation task. And IND-TAUS is the in-domain data
collected manually (not from MEDLINE, as depicted in 2.1). M denotes million and K denotes thousand.

translation task and < INHOUSE > for the data
from our in-house corpus. At inference time, we
always use the < REAL > and < BIO > tag.

3.3 Model Architectures
In this section, we introduce the model architec-
tures used by our system, including Transformer
(Big/Deep), Average Attention Transformer (AAN)
and Mixed Average Attention Transformer (Mixed-
AAN) (Zeng et al., 2021).

3.3.1 Transformer
Our baseline models are Big- and Deep-
Transformer (Vaswani et al., 2017) models. In our
experiments, we use multiple model configurations
with 20-layer and 30-layer encoders for deep mod-
els and 10-layers encoders for big models, and use
6-layers decoders for all models. The hidden size
is set to 1024 and the filtering size is set from 4096
to 10240.

3.3.2 Average Attention Transformer
To increase the diversity between models, we
adopt Average Attention Transformer (Zhang et al.,
2018), where the average attention is used to re-
place self-attention in the decoder. AAN summa-
rizes the historical information of previous posi-
tions by means of cumulative average, which in-
creases diversity with almost no harm to the quality
of the model.

3.3.3 Mixed-AAN Transformers
Following the previous work (Zeng et al., 2021),
we adopt the Mixed-AAN Transformers to further
improve the diversity and quality of models. In
this experiment, we only use two architectures of
Mixed-AAN:

• Self-first: In the decoder part, we use self-
attention as the first layer, and then use aver-
age attention and self-attention alternately.

• AAN-first: In the decoder part, we use average
attention as the first layer, and then use self-
attention and average attention alternately.

3.4 Fine-tuning

For fine-tuning, we mainly use the in-domain data
provided by WMT22 shared biomedical transla-
tion task for domain adaption (Luong and Man-
ning, 2015; Li et al., 2019). In order to prevent
the model from overfitting, as well as to improve
the diversity of the model after domain transfer,
we adopt target denoising (Meng et al., 2020). We
add synthetic noise at the decoder inputs during
fine-tuning. Therefore, with target denoising, the
model becomes more robust. The method of adding
synthetic noise is described in Section 3.2.4.

3.5 Ensemble

After obtaining a variety of different models
through the above methods, we need to find the
best model combination to get the best result. In
general, the better the model performance and the
greater the diversity between models, the better
the performance for the model ensemble. To mea-
sure diversity, we use Self-BLEU (Zhu et al., 2018)
to evaluate the similarity between models. Over-
all, we select 6 models from 52 candidate models
for ensemble. All the candidate models are gener-
ated by different combinations of data and different
training strategies as described earlier.

4 Experiments

4.1 Settings

Our experiment is based on Fairseq 6. The single
models are carried out on 8 NVIDIA V100 / A100
GPUs. We adopt the Adam optimizer with β1 = 0.9,
β2 = 0.998. The batch-size is set to 4096 tokens,
and the “update-freq" is set to 4, and the warmup
step is set to 4000 and the learning rate is set to
0.0005.

4.2 Pre-processing and Post-processing

The Chinese sentences are segmented by a in-house
segmentation tool and English sentences are seg-

6https://github.com/pytorch/fairseq
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System BLEU
Baseline 34.57
+ IND-TAUS 35.65
+ IND-BIO 40.96
+ OOD-IN-HOUSE 41.88
+ Back-Translation 42.8
+ Knowledge Distillation 43.12
+ Forward-Translation 43.32
+ Multi BT 44.11

+ Finetune 44.96
+ Target denoise finetune 45.1

Baseline_TAG 34.48
+ IND-TAUS 35.62
+ IND-BIO 41.07
+ OOD-IN-HOUSE 42.14
+ Back-Translation 43.91
+ Knowledge Distillation 44.14
+ Forward-Translation 44.39
+ Multi BT 45.23

+ Finetune 45.43
+ Target denoise finetune 45.54

+ Ensemble 46.91⋆

Table 2: Translation performance on WMT21 biomedical translation task testset. ⋆ is the system we submitted.
Multi BT means the iterative back-translation (Hoang et al., 2018) which use with different part of data and different
generation strategies.

mented by the tokenizer toolkit in Moses7. We
normalize punctuation using Moses scripts on both
English and Chinese. For handling uppercase and
lowercase of the English letters, we add a special
token at the beginning of a word to denote upper-
case (_UU_) and title case (_U_). By this way to
reduce the size of the word list and reduce the dif-
ficulty of model training. For instance, "We are
together NOW." → "_U_ we are together _UU_
now.". We use BPE (Sennrich et al., 2016b) with
32K operations for all the languages.

With the regard of post-processing, we use deto-
kenizer.perl on the English translations provided in
Moses.

4.3 Results

The experimental results of Chinese→English on
WMT21 OK-aligned biomedical test set are shown
in Table 2.

Compared with the baseline model (Base-
line_TAG), the in-domain bilingual data (+IND-
BIO) provided by WMT22 shared biomedical

7http://www.statmt.org/moses/

translation task brings a huge improvement, with
6.5 point increase in BLEU score. After adding
the in-house out-of-domain corpus (+OOD-IN-
HOUSE), we further gain +1.1 BLEU. We further
obtain +1.8 BLEU by applying back-translation
(+Back-Translat), and +0.23 BLEU by using
knowledge distillation (+Knowledge Distillation),
and +0.25 BLEU by using forward-translation
(+ Forward-Transla). After using iterative back-
translation (Hoang et al., 2018) (+Multi BT) de-
scribed in Table 2, we further achieve improvement
of +0.84 BLEU.

Additionally, we can find that the model with
TAG was similar to the model without TAG in
early stage experiments. As the number of data cat-
egories and data domains increases, the model with
tags gradually demonstrates its advantages. Our
best single model (+Target denoise fine) achieves
45.54 BLEU score, and we finally achieve 46.91
BLEU score by model ensemble (+Ensemble).
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5 Conclusion

We introduce WeChat’s participation in WMT
2022 shared biomedical translation task on
Chinese→English. Our system is based on the
Transformer (Vaswani et al., 2017), and uses sev-
eral different Transformer structures such as Av-
erage Attention and Mixed-AAN to improve the
performance. We use several data augmentation
methods such as iterative back-translation, knowl-
edge distillation, forward-translation and synthetic
noise. We use tags to assist the model in domain
learning and use in-domain fine-tuning with target
denoising to domain transfer. Finally a Self-BLEU
based ensemble method is used for model ensem-
ble. Overall, our system achieves 46.91 BLEU
score on WMT21 OK-aligned biomedical test set,
and we achieve the highest BLEU score among all
submissions.
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Abstract
This paper describes Optum’s submission to
the Biomedical Translation task of the seventh
conference on Machine Translation (WMT22).
The task aims at promoting the development
and evaluation of machine translation systems
in their ability to handle challenging domain-
specific biomedical data. We made submissions
to two sub-tracks of ClinSpEn 2022, namely,
ClinSpEn-CC (clinical cases) and ClinSpEn-
OC (ontology concepts). These sub-tasks aim
to test translation from English to Spanish.
Our approach involves fine-tuning a pre-trained
transformer model using in-house clinical do-
main data and the biomedical data provided
by WMT. The fine-tuned model results in a
test BLEU score of 38.12 in the ClinSpEn-CC
(clinical cases) subtask, which is a gain of 1.23
BLEU compared to the pre-trained model.

1 Introduction

The quality of Neural Machine Translation (NMT)
was boosted by the use of Recurrent Neural Net-
works (RNN) for machine translation. In this ap-
proach, the source sentence is fed to an encoder
which outputs a context vector. This context vector
is fed to the decoder to output the target language
text (Cho et al., 2014). Some approaches also use
Long Short Term Memory (Hochreiter and Schmid-
huber, 1997) for this task (Sutskever et al., 2014).

Machine Translation (MT) systems after seeing
great progress in recent years have been found to
be sensitive to synthetic and natural noise in in-
put, distributional shift, and adversarial examples
(Koehn and Knowles, 2017; Belinkov and Bisk,
2017; Durrani et al., 2019; Anastasopoulos et al.,
2019; Michel et al., 2019). Fine-tuning has proven
to be a successful technique to carry out this task.
One of the most prominent variations is described
in (Chu and Wang, 2018), which trains an NMT
model on out-of-domain corpora until model con-
vergence and then resumes training from step 1 on
a mix of in-domain and out-of-domain data.

A fine-grained human evaluation research of the
transformer based systems and state-of-the-art re-
current systems was carried out on the translation
from English to Chinese. The evalution results
shows reduction in errors by 31 percent and signif-
icantly less errors in 10 out of 22 error categories
when using Transformer based MT systems. (Ye
and Toral, 2020). Another research has shown that
improved efficiency and accuracy can be obtained
by converting a pre-trained transformer into its ef-
ficient recurrent counterpart. A swap procedure is
implemented which replaces softmax attention of
a pertained transformer with its linear-complexity
recurrent alternative followed by fine-tuning. Fine-
tuning has proven to help reduce the training cost
and improve efficiency and accuracy (Kasai et al.,
2021).

We took part in WMT 2022 Biomedical trans-
lation task from English to Spanish using the fine-
tuning approach on the Transformer based models
and we describe our efforts in this paper. The paper
is structured as follows. The data sets and their
preparation is outlined in Section 3 and Section 4,
followed by details of the experiments carried out
and their results in Section 5. We then present the
summary of our findings and conclusion in Section
6.

2 Related Work

Machine translation systems out of domain perfor-
mance has been negatively impacted to the extent
that they completely sacrifice adequacy for the sake
of fluency. Hence, the presence of domain incon-
sistency is considered a key challenge in machine
translation (Koehn and Knowles, 2017). The com-
mon approach to tackle this challenge is firstly to
train an MT system on a (generic) source domain
and secondly to fine-tune it on a (specific) target
domain (Luong and Manning, 2015; Freitag and
Al-Onaizan, 2016; Servan et al., 2016; Chu et al.,
2017), followed by continuous fine-tuning of data
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sets which are similar to the target domain (Sajjad
et al., 2017), or to dynamically change the balance
of data towards the target domain (van der Wees
et al., 2017). An alternative approach is to train
systems on multiple domains simultaneously, while
adding domain-specific tags to the input examples
(Kobus et al., 2016).

Other methods include the works around Dual
Contextual (DC) module, which is an extension of
the conventional self-attention unit, to effectively
make use of both, local and global contextual in-
formation. This work aims to further improve the
sentence representation ability of the encoder and
decoder sub-networks, thus enhancing the overall
performance of the translation model (Ampomah
et al., 2021). Domain adaptation methods include
instance weighing, data selection (Wang et al.,
2017) and incorporating a domain classifier (Chen
et al., 2017; Britz et al., 2017).

Some language pairs do not have enough par-
allel text for training. Hence, to counter the data
sparsity problem of the NMT training some have
used various strategies like augmenting training
data, exploiting training data from other languages,
alternative learning strategies that use only mono-
lingual data (Haque et al., 2021). Some of the
researchers have made use of monolingual data
available either in the target domain, for example,
by training the decoder on these data sets (Domhan
and Hieber, 2017), or by back-translating (Sennrich
et al., 2016), or in the source domain, using similar
techniques (Zhang and Zong, 2016).

3 Data

In the experiments described in this paper, we use
data sets from both the general and clinical do-
mains. ParaCrawl, EMEA, and WMT are available
in the public domain, while, M&R Letters is a data
set internal to Optum. The M&R in-domain data
set comprises of medical claim correspondence let-
ters sent to the insurance customers which have
been manually translated to Spanish. Among the
public data sets, ParaCrawl is the largest publicly
available parallel corpora for European languages.
EMEA is a multi-lingual parallel corpus made out
of PDF documents from the European Medicines
Agency. We have used data from all three sub-
tracks namely, clinical cases, clinical terminology,
and ontology concepts of the ClinSpEn data set pro-
vided by WMT. Table 1 summarizes the data sets
used and their size. It is important to note that we

generate train and test splits on ParaCrawl (general
domain), EMEA, and M&R data sets (clinical do-
main) and evaluate on these. For WMT, we use all
8K sentence pairs as training data and share evalua-
tion BLEU scores computed by WMT submission
system on their hidden test set.

Data Fragment Sentences Domain
ParaCrawl 38M General

M&R Letters 492K Medical
EMEA 15K Clinical
WMT 8K Clinical

Table 1: Data sets used in this work and corresponding
source and number of sentences in each.

4 Data Preparation

The Data preparation very closely follows the steps
outlined in (Manchanda and Grunin, 2020). The
additional steps are listed below.

1. Language Check Elimination
Sentences not from the intended language
were eliminated.

2. Length difference check
The internal data that we used comprised
of correspondence letters to our customers
anonymized and their manual translations. It
was found upon a close observation that man-
ual translations differ depending on the trans-
lator. Sometimes, the same phrase can be
translated multiple ways or some additional
information can be added unintentionally to
the translation which can confuse the learn-
ing algorithm leading to under-fitting. We
eliminated any translation that differs from
the source sentence in length by more than 40
percent.

5 Experiments and Results

As described in the Data Section (3), We are us-
ing data sets from both the General domain and
Medical/Clinical domain. To fine-tune the model,
we have a 2-GPU setup with a docker container
deployed on on-premise machines containing all
the required packages to fine-tune the OPUS en-es
translation model 1. We use HuggingFace trans-
formers library (Wolf et al., 2020) for all our exper-
iments.

1https://huggingface.co/Helsinki-NLP/opus-mt-en-es
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The following fine-tuning experiments are done on
the transformer model used by the Helsinki-NLP
opus-mt-en-es model. As evident from its model
card, this model was trained on general-purpose
English to Spanish training corpus and in these ex-
periments, we will try to fine-tune the model to the
clinical domain.
Since the data provided by the sub-task was limited,
we used the entire WMT 2022 data as training data
and used train-test splits on other clinical domain
data sets to test the success of fine-tuning.
One of our key observation while doing the ex-
periments and serving these models on production
systems were that they regularly need to be checked
for over-fitting and hallucination errors. In addition
to evaluation by BLEU scores, We do a "Sanity
check" by running an inference with source lan-
guage strings of various lengths to mimic handwrit-
ten text and check if the translation is not adding
extra tokens.

1. Experiment 0: Reference Baseline
We use the model already pre-trained without
any fine-tuning as our reference baseline and
compare our fine-tuning results against this to
determine the better models.

2. Experiment 1: Mix of General and In-
domain data
First, we fine-tune the general purpose model
on a mix of in-domain and public data set. Our
in-domain data sets are M&R correspondence
letters, EMEA clinical data set and WMT
2022. We mix these with 2 million sentences
randomly selected from the ParaCrawl corpus
to keep the model from over-fitting to only
one domain. We keep the learning rate on
the higher side (1e-5) for this experiment and
train for 1 epoch only. We do not add length
difference check (2) in this experiment on the
in-domain data.

3. Experiment 2: Fine-tuning on only In-
domain data
Our next experiment was to fine-tune the pub-
lic model on only the in-domain data sets.
This experiment contains all the data prepa-
ration steps. The learning rate for this ex-
periment was kept lower as compared to the
previous experiment (1e-6) as the data was
purely in-domain.

Figure 1 shows a graph of the BLEU scores at evalu-
ation time for all the above-mentioned experiments.

Along with the BLEU scores on the test splits of
general and Clinical (EMEA/M&R) datasets, this
figure also shows the test BLEU scores provided by
WMT on their hidden test sets. We observe that the
model trained on only general-purpose data (Ex-
periment 0) performs decently on both in-domain
and general-purpose data sets. Experiments 1 and
2 yield better results on the EMEA/M&R data sets,
and degrade a little on the general-purpose data
sets. It can be noted that both experiments have the
same scores on general and EMEA/M&R datasets.
This indicates that the approach of fine-tuning with
a high learning rate with some general domain data
present (experiment 1) and fine-tuning with a low
learning rate only on the in-domain data (experi-
ment 2) yields very similar results.
However, Experiment 2 yields the best results on
the WMT test data set and hence is our primary
submission to the task. It is interesting to note that
the gain on the BLEU scores of EMEA and M&R
datasets is more significant as compared to the gain
in WMT BLEU scores. One of the major reasons
for that could be the amount of data available for
this particular domain.

6 Conclusion

We fine-tuned a publicly available model in multi-
ple ways using different combinations of data from
various sources. We showed how fine-tuning is
sensitive to new domains and can show promising
results if done diligently. This paper shows the
results of fine-tuning on a single domain but we
think that fine-tuning on any new domain would
provide gains in the translation quality. The scale
of this gain, however, can depend on the amount of
training data available in that particular domain.

7 Limitation

As evident from our experiments and results, in-
domain machine translation involves some trade-
off in translation quality amongst domains. When
we tried to fine-tune a translation model to a new
domain, the BLEU scores on the general domain
drop. The users of the fine-tuned model need to be
cognizant of the fact that while these models are the
best for the domain they were fine-tuned for, they
might not be the best to translate general handwrit-
ten text which lacks the structure of the fine-tuning
data. We recommend separate specialized models
for different use cases.
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Figure 1: BLEU scores on evaluation data sets
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Abstract

This paper describes Huawei Artificial Intel-
ligence Application Research Center’s neural
machine translation system (“BabelTar”). Our
submission to the WMT22 biomedical trans-
lation shared task covers language directions
between English and the other seven languages
(French, German, Italian, Spanish, Portuguese,
Russian, and Chinese). During the past four
years, our participation in this domain-specific
track has witnessed a paradigm shift of method-
ology from a purely data-driven focus to em-
bracing diversified techniques, including pre-
trained multilingual NMT models, homograph
disambiguation, ensemble learning, and pre-
processing methods. We illustrate practical
insights and measured performance improve-
ments relating to how we further improve our
domain-specific NMT system.

1 Introduction

The existing mainstream neural machine transla-
tion (NMT) system is predominantly data-driven.
Our participation in WMT biomedical tasks traced
back from 2019 has witnessed pursuits extending
beyond this modality. In our WMT20 and WMT21
submissions, various domain adaption technologies
(Bawden et al., 2020; Akhbardeh et al., 2021) have
been applied including practical approaches fine-
tuning on general-purpose models, back-translation
(Sennrich et al., 2016a) and leveraging in-domain
dictionaries (Peng et al., 2020; Wang et al., 2021).
Despite achieving state-of-the-art (SOTA) BLEU
scores for most of our submissions in the last two
years, under-translation occurred in the “English↔
Chinese” due to the models’ incapability to handle
long sentences (Wang et al., 2021). It was rectified
by ensembling the affected model with the baseline,
resulting in a decrease in BLEU scores. In addition,
the models trained predominately with the general

∗ Corresponding author

domain data still face challenges associated with
domain adaptation.

In this paper, we present practical insights into
how we further improve Huawei Artificial Intelli-
gence Application Research Center’s neural ma-
chine translation system (“BabelTar”) in domain-
specific machine translation. This year, our par-
ticipation in the WMT22 biomedical translation
task covers language directions between “English
(EN)” and the other seven languages “German
(DE)”, “Spanish (ES)”, “French (FR)”, “Italian
(IT)”, “Portuguese (PT)”, “Russian (RU)” and “Chi-
nese (ZH)”. More specifically, we adopt in-house
general-purposed bilingual NMT models built upon
the transformer-big architecture (Vaswani et al.,
2017) and a pre-trained multilingual NMT model
(M2M100) (Fan et al., 2021) with an M2M100-
418M configuration as baseline models. Finetuned
with the in-domain data provided by the organizer,
the back-translated monolingual Medline data in
English dating before July 2018, the in-domain dic-
tionaries enhanced with terminologies, the models
can be improved significantly over the last year’s
submissions, for example, +1.18 BLEU on “EN→
IT” and +1.24 BLEU on “EN→ DE”. Leveraging
the knowledge learned in addressing the ambigui-
ties caused by homographs, we can further boost
+0.65 BLEU in the language direction of “EN→
ZH”. By optimizing the sequence length during
decoding, we successfully solve the issue of under-
translation in the language pair of “EN↔ ZH”.

2 The Data

In this section we detail the bilingual and monolin-
gual corpora used in this shared task (Table 1).

• OOD: The general domain data (OOD) are in-
house data used to train the baseline models.

• IND: In all directions, we use the in-domain
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Directions Train Dev. Test Vocab.
OOD IND IND-Dict. IND-Aug. IND-BT.

EN→DE 6M 2.4M 62.5K - 5.5M 1.1K 340 42K
DE→EN 6M 2.4M 62.5K - 53M 1.1K 370 42K
EN→ES 3.3M 1.1M 131K - - 1K 410 40K
ES→EN 3.3M 1.1M 131K - 52.5M 1K 382 40K
EN→FR 3M 2.8M 62.5K - - 1.6K 342 40K
FR→EN 3M 2.8M 62.5K 889K 53M 1.6K 314 40K
EN→IT 6M 139K 60.6k 235K 695k 0.8K 339 40K
IT→EN 6M 139K 60.6k 235K 55M 0.8K 327 40K
EN→PT 3M 7.1M 60.3K - - 1k 403 32K
PT→EN 3M 7.1M 60.3K - 52.5M 1k 423 32K
EN→RU 3M 32K 60.4K - - 792 161 40K
RU→EN 3M 32K 60.4K - 52.5M 792 210 40K
EN→ZH 3M - 60.1K 847K - 5K 347 50K
ZH→EN 3M - 60.1K 847K - 5K 311 50K

Table 1: Data used for training and evaluating the system. “M” is the acronym for “million”, and K stands for
“thousand”, indicating the records of sentences, lexicon pairs or vocabularies. The Dev. datasets are extracted from
the training datasets, and we use WMT21 shared task test data to evaluate our submission this year.

data (IND) provided by the shared task orga-
nizers to finetune the baseline models. 1 The
IND data consists of WMT-released bitexts
from Pubmed, UFAL, 2 Medline, 3 MeSpEn,
4 Scielo 5 and Brazilian Thesis and Disserta-
tions.6

• IND-dict.: The lexicon pairs are collected
from SNOMED-CT, 7 DOPPS8 and WFOT.9

Other terminologies are from Babel linguis-
tics, 10 with COVID-19 related terms obtained
from Neulab. 11

• IND-Aug.: We augment the in-domain data
using parallel corpora collected from TAUS 12

for the English↔ Spanish, English↔ French,

1http://www.statmt.org/wmt21/biomedical-translation-
task.html

2https://ufal.mff.cuni.cz/ufal medical corpus
3https://github.com/biomedical-translation-

corpora/corpora
4https://temu.bsc.es/mespen/
5https://figshare.com/articles/dataset/A Large Parallel

Corpus of Full-Text Scientific Articles/5382757
6https://figshare.com/articles/A Parallel Corpus of Thesis

and Dissertations Abstracts/5995519
7https://www.nlm.nih.gov/healthit/snomedct/index.html
8https://static.lexicool.com/dictionary/XJ9XO98314.pdf
9https://static.lexicool.com/dictionary/HY1TK12777.pdf

10https://babel-linguistics.com/resources/glossaries/
11https://github.com/neulab/covid19-

datashare/tree/master/parallel/terminologies
12https://md.taus.net/corona

English ↔ Italian, and English ↔ Chinese
language pairs.

• IND-BT.: A batch of monolingual Medline
data in English (IND-BT.) dated before July
2018 has been collected and back-translated
for data augmentation. The official released
IND data from WMT is also back-translated.
The models used for back-translation are from
our last year’s shared task (Wang et al., 2021).

It is noted that OOD, IND, IND-dict. and IND-
Aug. are combined and subsequently partitioned
for training and evaluation.

3 The Approaches

The proposed systems are finetuned using the fol-
lowing methods. It is noted that bilingual models
are trained on one Tesla V100 GPU, taking approx-
imately 8-20 hours. All multilingual models are
trained on eight Tesla V100 GPUs, taking 6-50
hours, depending on the volumes of data involved.

3.1 Multilingual NMT Models

Unlike our previous submissions focusing merely
on bilingual NMT models, we leverage pre-trained
multilingual NMT models (M2M-100) in the
shared task this year.
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System EN→DE EN→ES EN→FR EN→IT EN→PT EN→RU EN→ZH

Bi-baseline 31.25 51.01 47.27 43.92 48.94 32.26 39.98
Bi-best 32.49 51.81 47.27 45.10 53.87 34.41 42.23

Multi-baseline 21.46 42.13 36.31 33.53 38.73 25.25 24.04
Multi-best 30.5 51.48 45.5 43.46 53.98 37.14 38.69

WMT22 Submission 33.42 44.75 37.85 48.48 52.55 37.03 47.68
Official Best 39.14 52.35 40.17 48.48 52.55 41.27 55.71

System DE→EN ES→EN FR→EN IT→EN PT→EN RU→EN ZH→EN

Bi-baseline 40.46 50.79 48.82 44.73 47.36 44.69 39.62
Bi-best 41.57 53.47 48.86 44.73 59.41 47.69 39.62

Multi-baseline 33.67 43.23 35.73 36.43 41.84 39.76 21.57
Multi-best 40.68 52.02 46.37 45.67 58.08 48.48 34.96

WMT22 Submission 43.75 59.02 49.36 49.89 56.03 46.75 46.12
Official Best 46.95 60.45 50.95 49.89 56.03 50.01 46.17

Table 2: BLEU scores on related submissions. The Bi-baseline models represent the best bilingual models in our
WMT21 participation (Wang et al., 2021) for language pairs in EN↔ DE, EN↔ FR, EN↔ IT and EN↔ ZH
with others are out-of-domain bilingual NMT models newly trained for EN↔ ES, EN↔ PT and EN↔ RU. The
results of the Multi-baseline are the pre-trained multilingual NMT models from M2M100-418M on related language
directions. The Bi-best and Multi-best are the bilingual and multilingual NMT models trained using the depicted
methods achieving the best results.

Data EN→IT IT→EN EN→PT PT→EN EN→RU RU→EN
Baseline 33.53 36.43 38.73 41.84 25.25 39.76
+IND 42.17 43.72 50.12 54.74 36.25 47.09
+IND-all + IND 43.46 (+1.29) 45.67 (+1.95) 53.98 (+3.86) 58.08 (+3.34) 37.14 (+0.89) 48.48 (+1.39)

Table 3: Effects of applying different finetuning order to train English⇔Italian, English⇔Portuguese,
English⇔Russian M2M-100 models on WMT21.

3.2 Domain-specific Dictionaries

Leveraging domain-specific dictionaries is proved
a viable solution for domain adaptation in NMT
(Peng et al., 2020; Wang et al., 2021) to enhance
IND data coverage. A terminology dictionary is
generated from the collected lexicons and attached
to the end of the parallel corpus for each language
direction to train the models.

3.3 Ensemble Learning

Ensemble learning is a representative method ag-
gregating several models’ predictions to obtain
more accurate predictions. We average the proba-
bilities of NMT output layers at each time step as
depicted in Garmash and Monz (2016). In these
experiments, we choose the top 3 best bilingual
NMT models to participate in ensemble learning.

3.4 Homograph Disambiguation

Homographs may confuse an NMT model in select-
ing an inaccurate prediction due to conflicting word
sense meanings in different domains. We design
a novel approach to tackle homographic issues of
NMT in the latent space to handle cross-domain
ambiguities. The method is under review and will
appear in another venue.

3.5 Preprocessing and Postprocessing

The under-translation problem presented in Wang
et al. (2021) is associated with the inability of
an NMT model to handle long sentences. The
presence of noisy training data may cause under-
translation. We optimize the preprocessing pipeline
to include techniques like sentence segmentation,
punctuation normalization, special tokens replace-
ment, etc., leading to a resolution of the under-
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Models EN→DE DE→EN EN→FR FR→EN EN→IT IT→EN EN→ZH ZH→EN

Model-1 31.25 40.46 47.27 48.82 43.92 44.73 42.23 39.62
Model-2 31.65 40.42 47.21 48.34 43.92 44.22 41.58 39.14
Model-3 31.01 40.17 47.25 48.55 45.04 44.05 41.29 38.92
Ensemble 32.49 41.57 46.79 48.86 45.10 44.71 41.36 38.50

Table 4: Results from the ensemble learning of the top three models on WMT21.

translation problem. More specifically, we first per-
form punctuation normalization to standardize data
formats using Moses library (Koehn et al., 2007).
Sentencepiece approach (Sennrich et al., 2016b) is
subsequently used to tokenize the sentences into
a series of subwords. Sentences with a length
longer than a threshold (i.e., 80 subwords) are seg-
mented to handle issues wrt under-translation. Pre-
processing also replaces some unique tokens with
placeholders, such as roman numbers, to avoid the
out-of-vocabulary (OOV) problem. Postprocessing
strategies are used to recover the previously seg-
mented sentences. The detokenization is performed
to convert subwords into words. Finally, we apply
specific rules to handle punctuations and remove
undesirable spaces.

4 Experimental Results and Analysis

As OOD data also contribute to the domain-specific
NMT (Wang et al., 2021), both OOD data and IND
data are used to finetune the NMT bilingual and
multilingual NMT models. OK-aligned WMT21
test data are used for evaluation in the experiments.
The BLEU scores are evaluated using the MTEVAL
script from Moses (Koehn et al., 2007) with results
shown in Table 2.

4.1 Multilingual NMT

It is challenging to finetune a pre-trained multi-
lingual NMT model with hundreds of millions of
parameters (i.e., 418 millions parameters for M2M-
100-418M) with limited numbers of in-domain data.
We design a two-stage training procedure in which
a multilingual baseline initially finetuned on IND
data of all available language pairs (“IND-all”) is
subsequently trained on data from a specific lan-
guage pair (“IND”). As depicted in Table 3, such
a two-stage training method (“IND-all + IND”) is
more effective than a simple finetuning step, achiev-
ing a significant improvement to the BLEU score
(up to +3.86). Multilingual NMT models outper-
form bilingual NMT models, particularly for low-

resource language pairs, such as EN↔ RU and IT
→ EN (shown in Table 2).

4.2 Ensemble Decoding
We choose the three best models to ensemble in all
experiments, including our best model submitted
in the WMT21 shared task and the other two mod-
els trained following the methods depicted in this
paper. Unlike the way mentioned in Wang et al.
(2021) in averaging the logarithmic probabilities
of a decoded token, we average the outputs of the
output layer. This proves to be a more effective ap-
proach than the one used in previous years’ submis-
sions. The results are shown in Table 4. We have
not investigated means to ensemble a pre-trained
multilingual NMT model with our SOTA bilingual
NMT models due to time and resource constraints
in this year’s shared task.

4.3 The Effect of Homograph Disambiguation
Table 6 demonstrates the effectiveness of applying
a method designated for homographic disambigua-
tion. It can be observed that resolving homographic
issues in domain-specific NMT can significantly
improve the BLEU score to up to +0.65.

4.4 Preprocessing to Solve Under-translation
To handle issues relating to under-translation, we
design a segmentation strategy to break sentences
longer than 80 subwords. Combined with other
preprocessing techniques, we can further improve
the performance of our domain-specific NMT sys-
tem. Table 7 shows a +0.89 BLEU enhancement.
A comparison of translated examples is shown in
Table 5 to aid our understanding.

5 Discussion

It is the fourth year we have participated in this
shared task, and we have made significant progress
in our submissions measured against officially re-
leased test data from previous years. But the im-
provements for some language directions are not al-
ways accompanied by a consistent uplift of BLEU
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Sentence Example
Input The disease duration ranged from 2 weeks to 60 months (median, 4 months),

and the affected segment was C All the patients were followed up 3 to 42
months (median, 12 months).

Wang et al. (2021) 病程2周
This year 病程2周-60个月（中位，4个月），累及节段为C。 随访3-42个月（中

位，12个月）。

Input The median age of the 30 patients was 56.5 (28-80) years old, among them,
25 patients were primary plasma cell leukemia, and 5 patients were secondary
plasma cell leukemia.

Wang et al. (2021) 30例患者的中位年龄为56.5（28
This year 30例患者中位年龄为56.5（28-80）岁，其中原发性浆细胞白血病25例，

继发性浆细胞白血病5例。

Table 5: A comparison of examples produced by Wang et al. (2021) and by models submitted this year in the
translation task for EN→ ZH.

Model EN→ZH

Baseline 41.58
Homographic Disambiguation 42.23 (+0.65)

Table 6: The effect of applying an approach designed
for homograph disambiguation to domain-specific NMT.
The baseline is the NMT model for EN⇔ ZH, without
the assistance of the homograph disambiguation tech-
nique.

Model EN→ZH

Baseline 40.69
Preprocessing + Baseline 41.58 (+0.89)

Table 7: Compared results between models with or with-
out preprocessing when training EN→ ZH translation
model on WMT21.

for the contest year. The learned NMT models still
suffer from “out of distribution” issues many deep
learning models have encountered. Apart from
maintaining the NMT models with a large amount
of the latest IND data, we need to design deep
learning systems to adapt to changes in distribu-
tions (Bengio et al., 2021).

On another point, we realized that the reference
data sometimes do not reflect the ground truth of
the translation during our manual evaluation pro-
cess. It raises a related question about the rationale
of using BLEU as an exclusive automatic evalu-
ation criterion. Although BLEU may remain the
default metric for evaluating machine translation
quality, we strongly suggest the community inves-

tigate complementary metrics capable of accom-
modating good translation results with semantics
variations in this shared task.

6 Conclusion

This paper depicts Huawei’s neural machine trans-
lation system (“BebelTar”) and the submission to
the WMT22 biomedical shared task. The submis-
sion consists of fourteen models covering language
directions between English and all seven other lan-
guages available in this track. We can improve the
domain-specific NMT significantly by leveraging
a broad range of techniques, which includes pre-
trained multilingual NMT models, lexicon-based
enhancement, homograph disambiguation, ensem-
ble learning, preprocessing and postprocessing, etc.
In the meantime, we share practical insights on
achieving the measured performance, hoping to
contribute to the machine translation community in
this shared task. Our future work will focus on in-
vestigating mechanisms to adapt a domain-specific
NMT model to different distributions.
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Abstract

This paper describes the translation sys-
tems trained by Huawei translation ser-
vices center (HW-TSC) for the WMT22
biomedical translation task in five lan-
guage pairs: English↔German (en↔de),
English↔French (en↔fr), English↔Chinese
(en↔zh), English↔Russian (en↔ru) and
Spanish→English (es→en). Our primary sys-
tems are built on deep Transformer with a large
filter size. We also utilize R-Drop, data di-
versification, forward translation, back transla-
tion, data selection, finetuning and ensemble to
improve the system performance. According
to the official evaluation results in OCELoT1

or CodaLab2, our unconstrained systems in
en→de, de→en, en→fr, fr→en, en→zh and
es→en (clinical terminology sub-track) get the
highest BLEU scores among all submissions
for the WMT22 biomedical translation task.

1 Introduction

Machine translation (MT) refers to the automatic
translation of text from one language to another,
and the biomedical translation task aims to evaluate
the performance of MT systems in the biomedical
domain. In this year’s biomedical translation task,
our team (HW-TSC) participates in five language
pairs, including en↔de, en↔fr, en↔zh, en↔ru
and es→en (clinical terminology sub-track).

Since the size of in-domain (ID) data is limited,
we first use a large amount of out-of-domain (OOD)
data to train our baseline neural machine transla-
tion (NMT) (Sutskever et al., 2014; Bahdanau et al.,
2015; Gehring et al., 2017; Vaswani et al., 2017)
system, which is a deep transformer model (Dou
et al., 2018; Li et al., 2019) leveraging R-Drop
(Wu et al., 2021) training strategy. We then use
the collected ID data (except the data from medical

1https://ocelot-wmt22.mteval.org
2https://codalab.lisn.upsaclay.fr/

competitions/6696#results

database) to further train the NMT model for do-
main transfer. To better use the limited ID training
data, we employ data selection to extract ID data
from OOD data, in addition to basic data augmen-
tation strategies including data diversity, forward
translation and back translation. Finally, we use
finetuning (Dakwale and Monz, 2017) and model
ensemble (Wang et al., 2020b) to further improve
model performance in the biomedical domain.

This paper is structured as follows: we describe
data size and data pre-processing methods in sec-
tion 2; the model structure and training methods in
section 3; final results in section 4; and conclusion
in section 5.

2 Dataset

2.1 Data volume
The data size for each language pair for the
WMT22 biomedical translation task is shown in
Table 1. The OOD bilingual data, used to train our
baseline model, comes from the WMT general MT
task and our internal corpus; while the ID bilingual
and monolingual data, used for transferring the do-
main (Yang et al., 2021), come from Biomedical
Translation, UFAL Medical Corpus and our inter-
nal corpus. As there is no ID monolingual data, we
use the OOD monolingual instead.

2.2 Data Pre-processing
The data pre-processing process is as follows:

• Remove duplicate sentences (Khayrallah and
Koehn, 2018; Ott et al., 2018).

• Remove sentences with mismatched parenthe-
ses and quotation marks.

• Filter out sentences of which punctuation per-
centage exceeds 0.4.

• Filter out sentences with the character-to-
word ratio greater than 12 or less than 1.5.
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bilingual monolingual
en↔de en↔fr en↔zh en↔ru es→en en de fr zh ru

OOD 200M 600M 200M 200M 200M - 10M - - 40M
ID 2.75M 6.05M 10.87M 0.24M 8.1M 46M - 2M 92M -

Table 1: The data size for each language pair in the WMT22 Biomedical Translation Task

• Filter out sentences with more than 150 words.

• Apply langid (Joulin et al., 2017, 2016) to
filter sentences in other languages.

• Use fast-align (Dyer et al., 2013) to filter out
sentence pairs that are poorly aligned.

It should be noted that for en↔de, en↔fr,
en↔ru and es→en translation task, we adopt joint
SentencePiece model (SPM) (Kudo and Richard-
son, 2018; Kudo, 2018) for word segmentation,
with a vocabulary of 32k. As for en↔zh translation
task, we use Jieba tokenizer3 to pre-segment Chi-
nese sentences, and Moses tokenizer (Koehn et al.,
2007) to pre-segment English sentences. Then we
use joint Byte Pair Encoding (BPE) (Sennrich et al.,
2016) to perform subword segmentation on Chi-
nese and English sentences. The vocabulary size
of BPE is also set to 32k.

3 System Overview

3.1 Model

Transformer (Vaswani et al., 2017), as the current
mainstream architecture for NMT, adopts a fully
self-attention mechanism, which can realize algo-
rithm parallelism, speed up model training, and im-
prove model performance. Deep Transformer, as an
improvement of Transformer, increases the number
of encoder layers and uses pre-layer-normalization
to further improve model performance. There-
fore, for all language pairs, we adopt the Deep
Transformer (Wei et al., 2021) model architecture:
Based on the Transformer-big model architecture,
our Deep Transformer model features pre-layer-
normalization, 25-layer encoder, 6-layer decoder,
16-head self-attention, 1024-dimension word em-
bedding and 4096-dimension hidden state.

3.2 R-Drop

Dropout (Srivastava et al., 2014) is a powerful and
widely used technique for regularizing deep neural
networks. Though it can help improve training ef-
fectiveness, the randomness introduced by dropouts

3https://github.com/fxsjy/jieba

may lead to inconsistencies between training and
inference. R-Drop (Wu et al., 2021) forces the out-
put distributions of different sub-models generated
by dropout be consistent with each other. There-
fore, we use R-Drop to augment the baseline model
for each task and reduce inconsistencies between
training and inference.

3.3 Data Diversification

Data diversification (Nguyen et al., 2020) is a sim-
ple and effective strategy to improve the perfor-
mance of NMT. It uses predictions from multiple
forward and backward models, and combines the
results with the original data to train the final NMT
model. The method does not require additional
monolingual data and is applicable to all NMT
models. It is more efficient than knowledge distilla-
tion (Wang et al., 2021) and dual learning (He et al.,
2016). In our en↔de, en↔fr, en↔zh and en↔ru
translation tasks, we use only a forward model and
a backward model to generate synthetic data, and
then mix the synthetic data with the bilingual data
for NMT model training.

3.4 Forward Translation

Forward translation (Wu et al., 2019), also known
as self-training (Imamura and Sumita, 2018), refers
to using a forward NMT model to translate source-
side monolingual data to generate synthetic bilin-
gual data, which is then used to expand the train-
ing data size. Forward translation usually relies
on beam search (Freitag and Al-Onaizan, 2017)
decoding to generate synthetic data. Therefore,
we adopt the forward translation method based on
beam search decoding.

3.5 Back Translation

Back translation (Sennrich et al., 2015; Edunov
et al., 2018) refers to translating the target mono-
lingual data back to the source language, and then
using the synthetic data to increase the training
data size. This method has been proven effective
in improving the NMT model performance. There
are many back translation methods, among which
sampling (Graça et al., 2019), noise (Edunov et al.,
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2018) or tagged (Caswell et al.) back-translation
methods work better. In the scenario where forward
translation and back translation are used in combi-
nation (Wu et al., 2019), the improvement effect
brought by sampling back translation is more sig-
nificant. In our translation task, we adopt sampling
back translation method.

3.6 Data Selection
Data selection (van der Wees et al., 2017) is a data
augmentation method that we use to select ID bilin-
gual data from OOD bilingual data. Inspired by the
domain feature calculation in curriculum learning
(Wang et al., 2020a), we use an ID NMT model
and an OOD NMT model to calculate the decoding
probability of OOD bilingual data. The bilingual
data of which ID decoding probability is higher
than OOD decoding probability can be selected as
additional ID data. The data selection process is
also shown in Algorithm 1:

Algorithm 1: Data selection process
Input :ID NMT model θI , OOD NMT

model θO and OOD bilingual
data set DO.

Output :ID bilingual data set DI .
1 for each sentence pair (x, y) ∈DO do

// x is the source sentence, y
is the target sentence.

2 score = logP (y|x;θI)−logP (y|x;θO)
|y|

3 if score > 0 then
4 add (x, y) to DI

5 end
6 end

3.7 Finetuning
Finetuning (Dakwale and Monz, 2017) is a way to
achieve domain transfer. In our translation task, we
adopt a two-stage finetuning strategy. In the first
stage, we use ID bilingual data to continue training
the OOD NMT model, and then use the data aug-
mentation strategy mentioned above to improve the
model performance. In the second stage, we use the
development set and synthetic data generated from
the source-side text in the test set to finetune the ID
model for more fine-grained domain transfer.

3.8 Ensemble
Ensemble (Wang et al., 2020b) is a widely used
method to integrate different models for better per-

formance. It is worth noting that when using en-
semble, increasing the number of models does not
always lead to better performance, and sometimes
even causes performance deterioration. Therefore,
for each track, we train four models on the same
data, and go through all combinations of models
to choose the one that performs best on the de-
velopment set. This is also the model selection
strategy (Yang et al., 2021) we use in the WMT21
biomedical translation task.

4 Experimental Result

During the training phase, we use Pytorch-based
Fairseq4 (Ott et al., 2019) open-source framework,
and use deep Transformer model architecture as
our benchmark system. Each model is trained us-
ing 8 GPUs with a batch size of 2048. The up-
date frequency is 4 and the learning rate is 5e-4,
the label smoothing rate (Szegedy et al., 2016) is
0.1, the warm-up steps is 4000, and the dropout
is 0.3. Adam optimizer (Kingma and Ba, 2015)
with β1=0.9 and β2=0.98 is also used. Further-
more, we use reg_label_smoothed_cross_entropy
as the loss function and set reg-alpha to 5 when
applying R-Drop (Wu et al., 2021) training strategy.
In the evaluation phase, we use Marian5 (Junczys-
Dowmunt et al., 2018) for decoding and then cal-
culate the sacrebleu6 (Post, 2018) on the WMT21
OK-aligned biomedical test set to measure the per-
formance of each model.

4.1 en↔de

For en↔de track, Table 2 shows the results of us-
ing the methods mentioned above to improve the
model performance. The results show that continu-
ing training with ID bilingual data on the basis of
an OOD baseline improves en→de translation per-
formance by 1.6 BLEU, but has little effect on the
de→en track, with an increase of only 0.1 BLEU.
Data selection significantly improves en↔de trans-
lation performance by 0.9-1.2 BLEU. In addition,
other training strategies also bring small perfor-
mance improvements.

4.2 en↔fr

Table 3 shows the results of en↔fr model. The
results show that data diversity brings the great-
est improvement to translation of both directions

4https://github.com/facebookresearch/fairseq
5https://github.com/marian-nmt/marian
6https://github.com/mjpost/sacrebleu
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System en→de de→en
OOD R-Drop baseline 27.3 39.7
+ ID bilingual data continue training 28.9 39.8
+ data diversification 29.0 40.1
+ forward translation & back translation 29.4 41.3
+ data selection 30.3 42.5
+ dev set & synthetic test set finetuning 30.8 42.9
+ ensemble 31.0 43.2

Table 2: BLEU scores of en↔de on the WMT21 OK-
aligned biomedical test set.

System en→fr fr→en
OOD R-Drop baseline 44.8 46.1
+ ID bilingual data continue training 45.3 46.3
+ data diversification 46.0 47.6
+ forward translation & back translation 46.3 47.7
+ data selection - 47.8
+ dev set & synthetic test set finetuning 46.8 48.4
+ ensemble 46.9 48.6

Table 3: BLEU scores of en↔fr on the WMT21 OK-
aligned biomedical test set.

(0.7 BLEU and 1.3 BLEU respectively). However,
data selection has little impact on fr→en transla-
tion, and even no impact on en→fr translation. We
assume this is because not much ID bilingual data
is selected from the OOD data.

4.3 en↔zh
For en↔zh track, continuing training with ID bilin-
gual data on the basis of an ODD baseline, as well
as data diversity, bring the greatest impact on the
model performance, while data selection has the
least impact. In addition, the methods such as
forward translation & back translation, dev set &
synthetic test set finetuning and ensemble have lit-
tle improvement on en→zh translation, but have
a great improvement on zh→en translation. The
detailed results of en↔zh translation are shown in
Table 4.

4.4 en↔ru
As shown in Table 5, for the en↔ru track, the re-
sults are similar to en↔zh translation task. Con-
tinuing training with ID bilingual data and data
diversity have the greatest impact on model per-
formance, while data selection does not lead to
performance improvement. In addition, the perfor-
mance improvements brought by other methods are
also relatively limited.

4.5 es→en
We also participate in the es→en clinical termi-
nology sub-track (ClinSpEn-CT) this year. The

System en→zh zh→en
OOD R-Drop baseline 38.5 32.1
+ ID bilingual data continue training 41.4 35.0
+ data diversification 42.5 36.4
+ forward translation & back translation 42.7 37.3
+ data selection 42.8 -
+ dev set & synthetic test set finetuning 43.0 38.7
+ ensemble 43.1 39.3

Table 4: BLEU scores of en↔zh on the WMT21 OK-
aligned biomedical test set.

System en→ru ru→en
OOD R-Drop baseline 35.4 46.8
+ ID bilingual data continue training 41.0 48.9
+ data diversification 41.7 50.3
+ forward translation & back translation 42.3 50.4
+ data selection - -
+ dev set & synthetic test set finetuning 42.4 50.9
+ ensemble 42.5 51.1

Table 5: BLEU scores of en↔ru on the WMT21 OK-
aligned biomedical test set.

sample set contains 7,000 terms that are extracted
from medical literature and clinical records, with
a particular focus on diseases, symptoms, findings,
etc. The translations are generated and revised by
professional medical translators. We extract 1000
sentences from the sample set as the dev set.

The results are shown in Table 6. All chrF and
BLEU scores are calculated on this dev set. Unlike
other experiments above, for es→en clinical termi-
nology sub-task, we abandon forward translation
method for the sake of maintaining terminology
accuracy. Instead, we perform two rounds of back
translation using monolingual English ID data. Fi-
nally, we finetune the model with 6000 bilingual
terms, which results in a significant improvement
on the dev set.

4.6 Results In OCELoT Or CodaLab

The BLEU scores of our submissions to the
WMT22 Biomedical Translation Task on OCELoT
and CodaLab (ClinSpEn-CT) are shown in Table

System chrF BLEU
OOD R-Drop baseline 0.76 49.5
+ ID bilingual data continue training 0.77 50.7
+ back translation 0.79 53.4
+ 2nd round back translation 0.79 54.1
+ 6000 bilingual terms finetuning 0.82 56.7
+ ensemble 0.82 57.2

Table 6: chrF (Popović, 2015) and BLEU scores of
es→en on the WMT22 biomedical ClinSpEn-CT 1000
sample set.
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en→de de→en en→fr fr→en en→zh zh→en en→ru ru→en es→en
our submission system 38.7 45.6 38.8 48.6 49.9 43.0 43.3 50.3 41.57

Table 7: BLEU scores of our submission systems on WMT22 Biomedical Translation Task on OCELoT or CodaLab,
where the highest BLEU scores among all submissions are bolded.

7, where our submitted systems achieve the high-
est BLEU scores in six language directions of the
WMT22 biomedical translation task. In conclu-
sion, from the results on the WMT21 OK-aligned
biomedical test set, continuing training with ID
bilingual data, data diversity, forward translation
and back translation have great impacts on the
NMT model performance. When the OOD bilin-
gual data contains a certain amount of ID bilingual,
the data selection method can also achieve a good
boost effect. In addition, dev set & synthetic test
set finetuning and ensemble can lead to further per-
formance gains.

5 Conclusion

This paper presents our translation system for the
WMT22 en↔de, en↔fr, en↔zh, en↔ru and es
→en biomedical translation task. During the exper-
iment, we use R-Drop and ID bilingual data finetun-
ing methods to build our ID translation system, and
then use data diversity, forward translation, back
translation and data selection methods to expand
the size of training data for training a better system.
We also adopt finetuning and ensemble to further
improve the system performance. According to the
official evaluation results in OCELoT or CodaLab,
our submitted systems achieve the highest BLEU
scores in six language directions of the WMT22
biomedical translation task.
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Abstract
We present the joint contribution of IST
and Unbabel to the WMT 2022 Chat Trans-
lation Shared Task. We participated in
all six language directions (English ↔
German, English ↔ French, English ↔
Brazilian Portuguese). We addressed the lack
of domain-specific data with a lightweight
adaptation approach, using mBART50, a large
pretrained language model trained on millions
of sentence-pairs, as our base model. We fine-
tune it using a two-step fine-tuning process. In
the first step, we fine-tune the model on pub-
licly available data. In the second step, we
use the validation set. After having a domain-
specific model, we explore the use of kNN-MT
as a way of incorporating domain-specific data
at decoding time.1

1 Introduction

In recent years, neural machine translation (NMT)
has seen remarkable advances due to the increas-
ingly powerful models (Sutskever et al., 2014; Bah-
danau et al., 2015; Vaswani et al., 2017). The trans-
lation of conversational text is an important and
challenging application for machine translation,
specially in the customer support domain, since
international companies have an increasing need to
offer customer support in various languages. How-
ever, this domain has not been substantially ex-
plored in machine translation research.

In the Chat Translation shared task, the goal is to
understand the context’s impact in conversational
text translation, and to study the feasibility of multi-
lingual systems for customer support translation.
This year, the focus was on the case in which we
have a centralizing costumer support with English
speaking agents and a translation layer between
agent and costumer, allowing the communication
with customers which speak different languages.

∗Equal contribution.
1The code was based on: https://github.com/

deep-spin/efficient_kNN_MT.

In this paper we discuss our submission to this
task. Our submitted system covers all 3 lan-
guage pairs: English-German, English-Brazilian
Portuguese, and English-French, in both directions:
we translate the agent utterance from English to
the other language and the customer utterances
from the other language to English. As no train-
ing data is provided for this task, we recur to the
use of the pre-trained multilingual machine trans-
lation model mBART50 (§2.1; Tang et al. (2020))
and perform domain adaptation through fine-tuning
(§2.2) with domain-specific data and by retrieving
similar examples from domain-specific datastores
(§2.3). To increase the size of training examples
that can be used to fine-tune the model and to create
the domain-specific datastore we search for similar
examples on publicly available datasets (§3.1) and
perform back-translation of the provided monolin-
gual data (§3.2).

2 Models

In this section, we describe the model that we used
to tackle this shared task. We start by describing
the base model. Then, we describe the techniques
used to adapt the base model to customer support
chat translation.

2.1 Base Model

As our base model, we use the mBART50 (Tang
et al., 2020) “one-to-many” (English to 49 other
languages) or “many-to-one” (49 languages to
English), depending on the language direction.
mBART50 can translate sentences between En-
glish and 49 different languages, which include
the languages present in this shared task (Ger-
man, French and Brazilian Portuguese). It consists
of a pre-trained encoder-decoder transformer that
is first pretrained on a auto-denoising task with
monolingual data from 25 languages (mBART; Liu
et al. (2020)) and then further pre-trained on an
extended set of monolingual data that comprises
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50 languages. Then, to adapt the model to perform
machine translation, Tang et al. (2020) performed
multilingual fine-tuning on machine translation, us-
ing data from the 50 supported languages. For this,
they used three different configurations: “one-to-
many”, “many-to-one”, and “many-to-many”. The
first two are obtained by fine-tuning the model with
the bilingual data, having English as the source or
target language, respectively. The latter is obtained
by fine-tuning the model with all the language pairs
combinations (using English as the pivot language
to obtain the bilingual data).

2.2 Fine-tuning
We performed a two-step fine-tuning process. First,
we fine-tuned mBART50 on the domain-specific
data that was obtained using data augmentation
(§3.1). Then we performed a second step of fine-
tuning using the validation sets provided by the
shared task organization.

2.3 Nearest Neighbor Machine Translation
To further adapt mBART50, we use the nearest
neighbor machine translation approach, kNN-MT,
introduced by Khandelwal et al. (2021). kNN-MT
consists of a semi-parametric model: besides hav-
ing a parametric component (base model) that out-
puts a probability distribution over the vocabulary,
pNMT(yt | y<t,x), it also has a nearest neighbor
retrieval mechanism, which allows direct access to
a datastore of examples.

More specifically, we build a datastore D which
consists of a key-value memory, where each en-
try key is the decoder’s output representation,
f(x,y<t) ∈ Rd, and the value is the correspond-
ing target token yt:

D = {(f(x,y<t) , yt) ∀ t | (x,y) ∈ S} , (1)

where S denotes a set of parallel sentences.
Then, at inference time, the model searches the

datastore to retrieve the set of k nearest neighbors
N . Using their distances d(·) to the current de-
coder’s output representation, we can compute the
retrieval distribution pkNN(yt | y<t,x) by apply-
ing the softmax function:

pkNN(yt | y<t,x) = (2)∑
(kj ,vj)∈N 1yt=vj exp (−d (kj ,f(x,y<t)) /T )∑

(kj ,vj)∈N exp (−d (kj ,f(x,y<t)) /T )
,

where T is the softmax temperature, kj denotes the
key of the jth neighbor and vj its value. Finally, the

two probability distributions, pNMT(yt | y<t,x)
and pkNN(yt | y<t,x), are combined to obtain the
final distribution, which is used to generate the
translation through beam search, by performing
interpolation:

p(yt | y<t,x) = (1− λ) pNMT(yt | y<t,x) (3)

+ λ pkNN(yt | y<t,x),

where λ ∈ [0, 1] is a hyper-parameter that controls
the weights given to the two distributions.

2.3.1 Using Two Datastores
As we use data from multiple sources (described
in Section 3), we adapt kNN-MT to perform re-
trieval from two datastores which are composed
of examples from different datasets. To do this,
we simply need to perform retrieval from the
two datastores obtaining two retrieval distributions,
pkNN1(yt | y<t,x) and pkNN2(yt | y<t,x), com-
puted using Eq. 2.

Then, we need to modify the distributions inter-
polation (Eq. 3) to account for three distributions:

p(yt | y<t,x) = (1−λ1 −λ2) pNMT(yt | y<t,x)
(4)

+ λ1 pkNN1(yt | y<t,x)

+ λ2 pkNN2(yt | y<t,x),

where λ1 ∈ [0, 1] and λ2 ∈ [0, 1] are hyper-
parameters that control the weights given to the
three distributions.

3 Data

The data provided by the shared task organization
is part of a corpus called MAIA corpus. It consists
of parallel data of chats between an agent (English)
and a customer (Brazilian Portuguese, German or
French) across one domain: customer support con-
versation. Thus, there are a total of 6 translation
directions. One of the main obstacles of this do-
main is the lack of parallel data publicly available.
To make the task closer to a real case scenario, the
shared task organization has only provided bilin-
gual validation sets and monolingual data, for all
languages.

As already mentioned, finding parallel data for
this specific domain is challenging. The only ex-
ception is the dataset from WMT 2020 Shared Task
on Chat Translation (Farajian et al., 2020). Unfor-
tunately, it only contains two translation directions:
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Language Direction Original dev set New training set New dev set

en-de 1006 528 478
en-fr 1750 894 856
en-pt_br 1353 668 685
de-en 1103 519 584
fr-en 1003 466 537
pt_br-en 1006 469 537

Table 1: Statistics (number of sentences) of the development sets provided by the shared task organization, and of
the new development and training sets after splitting it in two.

Language Direction Number of Sentences

de-en 203,169,413
fr-en 471,885,306
pt_br-en 192,874,694

Table 2: Statistics (number of sentences) of the public
available data in OPUS.

English to German and German to English. There-
fore, to circumvent the lack of domain-specific data
available to fine-tune the model and to add to the
datastores, we perform data augmentation (§3.1)
and back-translate the monolingual data provided
(§3.2).

3.1 Data Augmentation

As the domain-specific data available is limited
to the provided bilingual development sets and
monolingual sets, we perform data augmentation
to create training sets. To do so, we use LaBSE
(Language-Agnostic BERT Sentence Embedding)
(Feng et al., 2020) multilingual sentence represen-
tations. In order to perform data augmentation we
also use the k-nearest neighbours (kNN) implemen-
tation of the FAISS toolkit (Johnson et al., 2019).

We start by defining a seed corpus (which in
our case is the validation set) and a pool corpus
(generic data). Then, we use LaBSE to compute
the sentence embeddings. After having the sen-
tence embeddings, we built an in-house kNN im-
plementation that relies on FAISS to compute the
similarity among all sentences, obtaining a score
between 0 (no similarity) and 1 (maximum similar-
ity). Then, we keep the sentence-pairs with a score
higher than 0.7.

3.1.1 Data Selection

Regarding data selection, we use all possible
datasets publicly available in OPUS (Tiedemann,
2012) to create our pool of public data. Statistics
can be find in Table 2.

Language Direction Number of Sentences

en-de 6494
en-fr 3311
en-pt_br 2010
de-en 6874
fr-en 1929
pt_br-en 1657

Table 3: Statistics (number of sentences) of the back-
translated data.

3.1.2 Data Cleaning
After having downloaded all data, we perform data
cleaning. To do so, we used a combination of
heuristic filters and Bicleaner (Sánchez-Cartagena
et al.; Ramírez-Sánchez et al., 2020). Bicleaner is
a tool that detects noisy sentence-pair in a parallel
corpus. It outputs the likelihood of two sentences
being a mutual translation (in this case the value is
near 1) or not (the value is near 0). We could have
trained our own Bicleaner models but we decided to
use the available ready-to-use language packages.

3.2 Back-translation

To increase the amount of domain-specific data,
we also use the monolingual data provided by the
shared task organizers. To do so, we performed
back-translation of these datasets with best fine-
tuned model using beam-search with 5 beams. The
statistics are reported in Table 3. To perform back-
translation we used ours models fine-tuned. We use
the back-translated examples both for fine-tuning
our models and as part of the datastores.

4 Experiments

In this section, we describe the experiments we
made, to allow us to choose the best model to sub-
mit to the shared task.

4.1 Experimental Settings

The shared task organization provided two different
baselines: one leveraging the conversation context
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Model Language Direction

en-de en-fr en-pt_br

SacreBLEU COMET SacreBLEU COMET SacreBLEU COMET

Baseline (without context) 35.11 0.3989 54.23 0.8011 50.35 0.7897
Baseline (with context) 33.75 0.3755 53.95 0.8013 51.02 0.8721
kNN-MT 52.20 0.5873 61.20 0.9032 48.80 0.9398
Fine-tuned Model 62.50 0.7289 71.60 1.0485 67.80 1.1285
Fine-tuned Model + kNN-MT (1 datastore) 62.70 0.7351 71.60 1.0324 68.10 1.1330
Fine-tuned Model + kNN-MT (2 datastores) 61.30 0.7334 72.00 1.0495 68.10 1.1356

Table 4: Results obtained for the agent direction (en -> X).

Model Language Direction

de-en fr-en pt_br-en

SacreBLEU COMET SacreBLEU COMET SacreBLEU COMET

Baseline (without context) 45.75 0.5421 47.12 0.6413 44.52 0.5887
Baseline (with context) 47.13 0.6253 48.25 0.6855 47.29 0.6475
kNN-MT 57.70 0.8617 52.70 0.8390 50.90 0.7984
Fine-tuned Model 59.40 0.8811 57.70 0.9250 50.10 0.8117
Fine-tuned Model + kNN-MT (1 datastore) 59.20 0.8760 57.40 0.9277 50.90 0.7984
Fine-tuned Model + kNN-MT (2 datastores) 58.70 0.8814 57.20 0.9226 51.80 0.8009

Table 5: Results obtained for the customer direction (X -> en).

and another one that does not. Both of them use the
M2M-100 (Fan et al., 2020) large pre-trained lan-
guage model, which is originally a sentence-level
model. Together with the baselines, the shared
task organizers provided scripts to rerun the experi-
ments using conversational context, which we did
for our small test set.

As no training data was provided by the organi-
zation, we splitted the validation set into two. We
used one of them as our validation set and the other
was used to fine-tune the models and to perform
kNN-MT. We report the data sets statistics in Ta-
ble 1. We took into consideration the fact that we
are dealing with conversations, and thus, we do not
split conversations, i.e., we do not perform segment
filtering that might break a conversation context.

We implemented all the models by the open-
sourced toolkit fairseq (Ott et al., 2019).

Although mBART50 supports multilingual train-
ing, we trained each language direction separately.
We started by fine-tuning mBART50 with the data
obtained with the data augmentation process (§3.1),
the data from WMT2020 Chat Translation shared
task, and the back-translated monolingual data
(§3.2). Then, we continued the fine-tuning step
using the the training set of the shared task.

To perform retrieval we use 2 datastores hav-
ing the first datastore the data from the validation
sets and the second one the data obtained with

Hyper-Parameter Value

Learning Rate 0.00003
Warmup updates 16000
Label Smoothing 0.2
Optimizer Adam
β1, β2 0.9, 0.98
Weight Decay 0.1
Dropout 0.1
Clip Norm 5
Batch Size 256 (tokens)

Beam Size 5
kNN-MT k 8
kNN-MT temperature 10
kNN-MT λ1 0.1
kNN-MT λ2 0.1

Table 6: Fairseq Hyperparameters for our experiments.
The first block gives the base settings used for fine-
tuning mBART50 and the second block provides the
details for the kNN-MT.

the data augmentation process (§3.1) and the back-
translated monolingual data (§3.2).

The selected values for hyperparameters are
stated in Table 6. To evaluate the performance
of our models we used SacreBLEU (Post, 2018)
and COMET (Rei et al., 2020).

4.2 Results

We tested multiple configurations for kNN-MT:
using only one datastore with the validation data or
using two datastores with different values for the
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parameters that control the weight given to each
distribution (λ1 and λ2), changing the number of
neighbours retrieved, and the softmax temperature.

The results reported in Tables 4 and 5 show that
performing fine-tuning of mBART50 on domain-
specific data leads to large gains for all language
pairs, for the two metrics. We can also see that,
despite leading to worse scores than fine-tuning,
simply retrieving examples from domain-specific
datastores, using kNN-MT, leads to considerable
gains when comparing with the baselines. More-
over, using kNN-MT with the fine-tuned model as
the base model, leads to small gains on most lan-
guage pairs, for the agent direction (English→X).
For the customer direction (X→English), the re-
sults are very similar to the ones obtained without
retrieval. When comparing with using 1 datastore
(only with the validation data), using 2 datastores
leads to small improvements, which suggests that
the gains led by performing retrieval are due to the
data coming from the validation sets.

In terms of speed, kNN-MT model requires re-
trieval for every single token, leading to a low de-
coding speed, around 8 times slower than a model
that does not perform retrieval steps according to
(Martins et al., 2022). Although, it is important
to take into consideration that the time the model
takes to add examples to the datastores is much
shorter than the time needed to fine-tune the model.

Due to the repetitive nature of dialogues in
customer service conversational content, we can
see that by using only a few thousand domain-
specific bilingual sentence-pairs together with out-
of-domain sentence-pairs (selected using the data
augmentation process), we are able to improve the
performance of the baselines by a large margin. By
analysing these experiments’ results, we selected
the model that combines fine-tuning and kNN-MT
(with 2 datastores) as our primary submission. For
the submission, we performed fine-tuning again us-
ing the complete development sets, and also added
the entire development sets to the kNN-MT datas-
tores.

5 Conclusions

We presented the joint contribution of IST and Un-
babel to the WMT 2022 Chat Translation shared
task. First, we perfomed fine-tuning of a large
pretrained model, mBART50. Then we perfomed
kNN-MT using multiple datastores to incorporate
domain-specific data at decoding time. Through

experiments we show that the combination of the
proposed methods is a good way of performing do-
main adaptation when we have few domain-specific
data available.

As we are dealing with conversational content it
would be interesting to incorporate context infor-
mation. Unfortunately the few experiments that we
have performed using context did not improve the
performance of our models. As future work, one
interesting line of research is how to incorporate
the context information together with augmented
retrieval approaches. These can be complementary
to each other leading to translation quality improve-
ments.
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Abstract
Multilingual chatbots are the need of the hour
for modern business. There is increasing de-
mand for such systems all over the world. A
multilingual chatbot can help to connect distant
parts of the world together, without sharing a
common language. We participated in WMT22
Chat Translation Shared Task. In this paper, we
report descriptions of methodologies used for
participation. We submit outputs from multi-
encoder based transformer model, where one
encoder is for context and another for source
utterance. We consider one previous utterance
as context. We obtain COMET scores of 0.768
and 0.907 on English-to-German and German-
to-English directions, respectively. We submit-
ted outputs without using context at all, which
generated worse results in English-to-German
direction. While for German-to-English, the
model achieved a lower COMET score but
slightly higher chrF and BLEU scores. Further,
to understand the effectiveness of the context
encoder, we submitted a run after removing the
context encoder during testing and we obtain
similar results.

1 Introduction

Translation of Dialogues is a crucial part of build-
ing multilingual chatbots. With easier access to
the internet than ever, we have the opportunity to
connect with different people with different lan-
guages. However, language remains a barrier to
smooth communication. Using automated machine
translation systems can alleviate such issues. How-
ever, most of the general MT systems are not very
suitable for conversations. This is due to additional
challenges chat translation possesses that general
domains do not have. This includes the presence
of noisy utterances. Compared to other domains,
chat is more prone to contain noisy sentences. This
comes from multiple sources, as follows. a) Key-
board typos: Spelling mistakes that occurred due
to quick typing. In this case, often, some char-
acters are replaced by nearby characters on the

keyboard. Further, the insertion of extra charac-
ters or the absence of some characters is also com-
mon. b) Intentional shortening of Words: Users
often use short forms of words by removing cer-
tain characters (primarily vowels) while keeping
the pronunciation similar to the correct word (For
example, ‘hw’ instead of ‘how’). c) Grammatical
Errors: Conversations usually occur in an informal
setting, and grammar is mostly ignored as long as
the meaning is understood correctly. However, this
makes it difficult to translate. Further, there are
other challenges, like context dependency. That
is, the utterances can be ambiguous, and the cor-
rect meaning of an utterance can not be understood
without referring to its dialogue history.

In this paper, we use a multi-encoder transformer
to translate chat utterances. We use six encoder
layers for source text and one encoder layer for
context. For better comparison, we have submit-
ted translations from two other models. To test
the effectiveness of context, we did not provide
context during the testing phase as described in sec-
tion 3.3.2. Further, we train another model without
using any context at all as described in 3.3.3. We
achieved very competitive results for the Agent sub-
set (English-to-German), where we obtained 0.551
BLEU, 0.730 chrF, and 0.768 COMET scores,
where the best result among primary submissions
of the participants are 0.555, 0.735, and 0.810
BLEU, chrF and COMET score respectively. For
German-to-English, our method produced 0.907,
0.729, and 0.587 COMET, chrF, and BLEU scores,
respectively.

2 Related Work

The area of chat translation mostly remained unex-
plored until recent years. This is in part due to the
unavailability of suitable dialogue datasets. Fara-
jian et al. (2020) introduced an German–English
parallel conversational corpus. Berard et al. (2020)
proposed a method that replaced rare characters
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Figure 1: Diagram of our model; The weight is determined by a FFN from concatenated represenations of the
attentions

with a special ‘<copy>’ token, which helps the
model to learn when to copy the tokens from source
to target. Further, they used methods like inline cas-
ing, tagged back-translation (BT) (Caswell et al.,
2019), Byte-Pair-Encoding (BPE) (Sennrich et al.,
2016), and ensemble of models using domain-
specific adaptive layers, etc. Ensemble model
with a domain-specific adaptor layer generated the
best translation on WMT20 Chat data. Moghe
et al. (2020) used fine-tuned pre-trained models
(Ng et al., 2019) on the pseudo-in-domain and in-
domain data. Wang et al. (2020) used using three
previous contexts along with the current sentence
for adaptation of Cross-lingual Language Model
Pre-training (Conneau and Lample, 2019) objec-
tives into document-level NMT. Bao et al. (2020)
used an additional encoder to process one previous
context. However, adding an additional encoder
did not result in consistent improvement in trans-
lation. Gain et al. (2021c) proposed a rule-based
context selection technique where previous sen-
tences by the same user are used to enhance the
translation quality. This mainly helped to trans-
late anaphoric pronouns correctly. Liang et al.
(2021a) introduced a conditional variational auto-
encoder (CVAE) model that captures role pref-
erence, dialogue coherence, and translation con-
sistency. Liang et al. (2021b) proposed a multi-

tasking system performing monolingual response
generation, cross-lingual response generation, sub-
sequent utterance discrimination, and speaker iden-
tification along with NMT objective. Here, the
context-aware multi-tasking methods could gener-
ate better translation than context-agnostic mod-
els. Liang et al. (2022b) extended the same by
introducing an additional objective, cross-lingual
subsequent utterance discrimination. Further, they
propose a multi-tasking algorithm that helped to
generate better translation than traditional multi-
tasking. Wang et al. (2021) proposed a multi-task
learning-based model that identifies missing pro-
nouns, typos and utilizes context to translate chat
utterances. Liang et al. (2022a) observed visual fea-
tures helps to generate better quality translation on
multi-modal dialogue. Apart from chat translation,
context is commonly used in other translation tasks
as well. This include document translation (Kim
et al., 2019; Zhang et al., 2018; Läubli et al., 2018)
where other sentences from the document is used
as context, multimodal translation (Yao and Wan,
2020; Gain et al., 2021a,b) where image features
are used as context, etc. Gain et al. (2022) pro-
posed a method where context is concatenated with
source on both source and target side, requiring the
model to translate context also, thus avoiding igno-
rance of context in Question-Answer translation.
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3 Methodology

3.1 Pre-Training
Pre-training models with general domain data and
transferring the knowledge to intended domain is
standard practice in MT. We use Facebook AI’s
pre-trained models (Ng et al., 2019) from WMT19
1. The pre-training methodology consists of data
processing techniques like normalize punctuation
and tokenizing all data with the Moses tokenizer
(Koehn et al., 2007) and byte-pair-encoding (Sen-
nrich et al., 2016). Further, sentences with wrong
language on either source or target side filtered
out with language identification (Lui and Baldwin,
2012) filtering.

3.2 Model
We use a dual enocder-based transformer model.
The components of the models are as follows:

• Source Encoder: Source Encoder consists
of 6 standard transformer encoder layers. For
all our models, the encoder weights are initial-
ized from the pre-trained models. The input
language of source encoder is the input lan-
guage of the translation direction. That is, for
English-to-German model, the language for
Source Encoder is English.

• Context Encoder: Context Encoder of con-
sists of 1 encoder layer. This is in part to
keep model parameters lower. Further, con-
text is supposed to assist the translation pro-
cess. Thus has limited contribution compared
to source. The language of the context en-
coder can be English or German, depending
upon speaker of the previous utterance, irre-
spective of translation direction. We take one
previous utterance from source side of previ-
ous speaker. That is, English if the speaker
of previous utterance is agent or German if
speaker of the previous utterance is Customer.
For first utterance in a conversation, the con-
text is empty.

• Decoder: Decoder consists of 6 layers of stan-
dard transformer decoder layers. We initial-
ize the decoder from the pre-trained model.
Further, in addition to encoder-decoder atten-
tion, we perform context-decoder attention.

1https://github.com/facebookresearch/
fairseq/blob/main/examples/wmt19/README.
md

Then, we concatenate them before passing
it to a feed-forward Neural Network (FFN)
which determines weighted average factor g.
Inspired from (Libovický et al., 2018), we take
final attention output as g * context-decoder
attention + (1-g) * encoder-decoder attention.
The rest parts of the decoder is similar to stan-
dard transformer decoder.

3.2.1 Stage-1 Fine-tuning
For all our submissions, we perform two-stage fine-
tuning. Due to the unavailability of the training
set in the task, we fine-tune the model on WMT20
Chat Task (Farajian et al., 2020) data. However,
since our objective is to get the highest results for
WMT22 version of chat data, we use that as a vali-
dation set.

3.2.2 Stage-2 Fine-tuning
We finetune the models obtained from Stage-1 fine-
tuning with WMT22 Chat Task Dev Subset. We
fine-tune the models for 15 epochs. Since we are
using validation set for training, we did not use
any validation at this stage. We use last checkpoint
from this stage as the final model and use it for
testing.

3.3 Submitted Models
We submit our results for English-to-German and
German-to-English directions. For each direction,
we submit three results. We do not freeze any
parameters during fine-tuning process for all of our
submissions.

3.3.1 Primary
In our primary submission, we use the model as
described in Section 3.2. We use one previous ut-
terance as context during training, validation, and
testing. This model consists of about 359M param-
eters.

3.3.2 Contrastive-1
Li et al. (2020) suggested that improvement in
translation quality is observed after introduction
of context encoder. However, it can be attributed to
the contextual information acting as noise, rather
than rich information relevant to the source or tar-
get. They showed that, even if context is not used
during testing, the models produce similar results
due to the fact that the context used during train-
ing helped the model for robust training. While
this observation was for document translation, we
use this method for chat translation. Thus, in this
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Models En-De (agent) De-En (customer)

COMET chrF BLEU COMET chrF BLEU
Baselines

Baseline without context 0.403 0.550 0.325 0.588 0.621 0.472
Baseline with context (N=2) 0.376 0.537 0.308 0.680 0.642 0.493

Primary submissions

BJTU-WeChat 0.810 0.735 0.555 0.946 0.775 0.649
Unbabel-IST 0.774 0.733 0.555 0.915 0.737 0.612
Our Submission 0.768 0.730 0.551 0.907 0.729 0.587
HW-TSC 0.704 0.725 0.552 0.918 0.766 0.642

Contrastive submissions

BJTU-WeChat, C1 0.804 0.731 0.550 0.948 0.780 0.650
BJTU-WeChat, C2 0.805 0.738 0.560 0.951 0.778 0.652
Unbabel-IST, C1 0.780 0.737 0.558 0.924 0.741 0.616
Unbabel-IST, C2 0.778 0.734 0.554 0.925 0.743 0.615
Our Submission (C1) 0.769 0.730 0.551 0.905 0.729 0.587
Our Submission (C2) 0.765 0.729 0.545 0.902 0.731 0.592
HW-TSC, C1 0.649 0.670 0.473 0.909 0.755 0.618
HW-TSC, C2 0.726 0.732 0.559 0.929 0.767 0.641

Table 1: Results of submissions at WMT22 Chat task for En–De; C1: contrastive-1 submission; C2: contrastive-2
submission

submission, we use the same model as on Primary
submission, but we ignore the context during test-
ing.

Context Encoder Parameters

Submission Training Testing Training Testing

Primary Yes Yes 359M 359M
contrastive-1 Yes No 359M 313M
contrastive-2 No No 313M 313M

Table 2: Comparison of methodologies for our submis-
sions

3.3.3 Contrastive-2

We submit the results from a model without using
any context for better comparison. Note that this
model is trained with all other methodologies sim-
ilar to Primary and Contrastive-1, which includes
two-stage pre-training with the same data.

3.4 Post-Processing

We remove <unk> from the output. Further, we
observe tags and modify them to the original tag,
if mistranslated. For Example, we change "# PRS

_ ORG #" to "#PRS_ORG#", "# Address #" to
"#ADDRESS#", etc.

4 Results

We obtain a COMET (Rei et al., 2020) score of
0.768 and 0.907 on En-De and De-En directions.
Further, we obtain chrF (Popović, 2015) scores of
0.730 and 0.729 for En-De and De-En. We ob-
tain BLEU scores of 0.551 and 0.587 for Agent
and Customer subsets. With contrastive-1 submis-
sion, we obtain similar results. For Agent subset,
COMET score improved by 0.001 whereas, de-
creased by 0.002 for Customer subset. Similarly
for contrastive-2 submission, COMET decreased
by 0.003 whereas chrF and BLEU score decreased
by 0.001 and 0.006 respectively for Agent subset.
Without context method generated better results
for Customer subset, improving BLEU and chrF by
0.005 and 0.002 respectively, whereas we observe a
decrease of 0.005 on COMET metric. Thus, our ex-
periment suggests that the usage of context played
very limited role in the submitted systems. We sug-
gest this is due to a lower Context Window in our
experimental setting. We use only one previous
sentence as a context. While it has been observed
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that using one context is usually sufficient on con-
versational or document-level datasets, WMT22
Chat Task data contain very shorter and repetitive
sentences. This includes one or two word utter-
ances ( Thanks, #EMAIL#, #NAME#, Good Bye,
etc), App navigational information ( Tap Settings,
Tap Device information, etc), etc. These utterances
has very limited information to be useful as a con-
text. Further, appearance of duplicate utterances
is a challenge during training process. However,
unlike general MT, conversational datasets can not
be de-duplicated easily. This is because removal of
some utterance from a conversation will break its
structure and might not be as meaningful.

5 Conclusion

Task translation is a challenging and important task
for our society. One of the major challenges in
chat translation is context-dependency. We partici-
pated in WMT22 Chat Translation Task, where we
submit results obtained from multi-encoder based
transformer model. We obtain COMET scores
of 0.768 and 0.907 on English-to-German and
German-to-English directions, respectively. We
found that role of context in our experimental set-
ting is limited. In future, we would like to explore
these methods with larger window size. Further, we
would like to explore data de-duplication strategies
for conversations.

References
Calvin Bao, Yow-Ting Shiue, Chujun Song, Jie Li, and

Marine Carpuat. 2020. The University of Maryland’s
Submissions to the WMT20 Chat Translation Task:
Searching for More Data to Adapt Discourse-Aware
Neural Machine Translation. In Proceedings of the
Fifth Conference on Machine Translation, pages 456–
461.

Alexandre Berard, Ioan Calapodescu, Vassilina
Nikoulina, and Jerin Philip. 2020. Naver Labs Eu-
rope’s Participation in the Robustness, Chat, and
Biomedical Tasks at WMT 2020. In Proceedings of
the Fifth Conference on Machine Translation, pages
460–470.

Isaac Caswell, Ciprian Chelba, and David Grangier.
2019. Tagged Back-Translation. In Proceedings
of the Fourth Conference on Machine Translation
(Volume 1: Research Papers), pages 53–63, Florence,
Italy.

Alexis Conneau and Guillaume Lample. 2019. Cross-
lingual language model pretraining. In Advances in
Neural Information Processing Systems, volume 32,
pages 7059–7069.

M. Amin Farajian, António V. Lopes, André F. T. Mar-
tins, Sameen Maruf, and Gholamreza Haffari. 2020.
Findings of the WMT 2020 shared task on chat trans-
lation. In Proceedings of the Fifth Conference on
Machine Translation, pages 65–75, Online. Associa-
tion for Computational Linguistics.

Baban Gain, Ramakrishna Appicharla, Soumya
Chennabasavraj, Nikesh Garera, Asif Ekbal, and
Muthusamy Chelliah. 2022. Low resource chat trans-
lation: A benchmark for Hindi–English language
pair. In Proceedings of the 15th biennial conference
of the Association for Machine Translation in the
Americas (Volume 1: Research Track), pages 83–96,
Orlando, USA. Association for Machine Translation
in the Americas.

Baban Gain, Dibyanayan Bandyopadhyay, and Asif Ek-
bal. 2021a. Experiences of adapting multimodal ma-
chine translation techniques for Hindi. In Proceed-
ings of the First Workshop on Multimodal Machine
Translation for Low Resource Languages (MMTLRL
2021), pages 40–44, Online (Virtual Mode). IN-
COMA Ltd.

Baban Gain, Dibyanayan Bandyopadhyay, and Asif Ek-
bal. 2021b. IITP at WAT 2021: System description
for English-Hindi multimodal translation task. In
Proceedings of the 8th Workshop on Asian Transla-
tion (WAT2021), pages 161–165, Online. Association
for Computational Linguistics.

Baban Gain, Rejwanul Haque, and Asif Ekbal. 2021c.
Not all contexts are important: The impact of effec-
tive context in conversational neural machine trans-
lation. In 2021 International Joint Conference on
Neural Networks (IJCNN), pages 1–8.

Yunsu Kim, Duc Thanh Tran, and Hermann Ney. 2019.
When and why is document-level context useful in
neural machine translation? In Proceedings of the
Fourth Workshop on Discourse in Machine Trans-
lation (DiscoMT 2019), pages 24–34, Hong Kong,
China. Association for Computational Linguistics.

Philipp Koehn, Hieu Hoang, Alexandra Birch, Chris
Callison-Burch, Marcello Federico, Nicola Bertoldi,
Brooke Cowan, Wade Shen, Christine Moran,
Richard Zens, Chris Dyer, Ondřej Bojar, Alexandra
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Abstract

This paper introduces the joint submission of
the Beijing Jiaotong University and WeChat
AI to the WMT’22 chat translation task
for English⇔German. Based on the Trans-
former (Vaswani et al., 2017), we apply several
effective variants. In our experiments, we uti-
lize the pre-training-then-fine-tuning paradigm.
In the first pre-training stage, we employ
data filtering and synthetic data generation
(i.e., back-translation, forward-translation, and
knowledge distillation). In the second fine-
tuning stage, we investigate speaker-aware in-
domain data generation, speaker adaptation,
prompt-based context modeling, target denois-
ing fine-tuning (Meng et al., 2020), and boosted
self-COMET-based model ensemble. Our sys-
tems achieve 0.810 and 0.946 COMET (Rei
et al., 2020) scores1 on English→German
and German→English, respectively. The
COMET scores of English→German and
German→English are the highest among all
submissions.

1 Introduction

We participate in the WMT 2022 shared task
on chat translation in two language directions,
English→German and German→English. In this
year’s chat translation task, we apply the two-stage
training strategy. In the first stage, we investi-
gate model architecture and data augmentation.
In the second stage, we mainly focus on exploit-
ing speaker-aware in-domain data augmentation,
speaker adaptation, prompt-based context mod-
eling, target denoising fine-tuning (Meng et al.,
2020), and model ensemble strategies. This task
aims to build machine translation systems to trans-
late conversational text and thus supports fluent
communication between an agent speaking in En-

∗Work was done when Yunlong was interning at Pattern
Recognition Center, WeChat AI, Tencent Inc, China.

† Jinan Xu is the corresponding author.
1The COMET is the official automatic evaluation metric.

glish and a customer speaking in a different lan-
guage (e.g., German), which is different from the
first pre-training stage (Farajian et al., 2020; Liang
et al., 2021a, 2022a; Liu et al., 2021; Gain et al.,
2021, 2022; Buschbeck et al., 2022). Therefore,
we mainly pay attention to the second fine-tuning
stage.

In the first pre-training stage, we follow pre-
vious work (Meng et al., 2020; Zeng et al.,
2021; Meng and Zhang, 2019; Yan et al., 2020)
and utilize several effective Transformer vari-
ants. Specifically, we combine the Multi-Head-
Attention (Vaswani et al., 2017), Average Atten-
tion Transformer (Zhang et al., 2018), and Talking-
Heads Attention (Shazeer et al., 2020), which have
shown significant model performance and diver-
sity. For data augmentation, we employ the back-
translation method to use the target-side mono-
lingual data and apply the forward-translation to
leverage the source-side monolingual data. To
fully utilize the source-side of bilingual data,
we use the sequence-level knowledge distillation
method (Kim and Rush, 2016).

In the second fine-tuning stage, for speaker-
aware in-domain data augmentation, based on the
BConTrasT (Farajian et al., 2020) dataset of the
WMT20 chat translation task, we firstly adapt
our pre-trained model to each speaker by using
the speaker tag as a pseudo token and then ap-
ply it to the Taskmaster-1 (Byrne et al., 2019)
corpus to generate the speaker-aware in-domain
data. For speaker adaptation, we follow previous
work (Moghe et al., 2020) to prepend the corre-
sponding speaker tag to each utterance on both
the source and the target side to get a speaker-
aware dataset. For prompt-based context model-
ing, we exploit the prompt learning to incorporate
the bilingual context and then apply the target de-
noising fine-tuning method (Meng et al., 2020) to
train our model. For the model ensemble, inspired
by Zeng et al. (2021), we select high-potential can-
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didate models from two aspects, namely model
performance (COMET scores) and model diversity
(Self-COMET scores among all candidate mod-
els). Based on this, we design a search algorithm
to gradually select the current best model of the
model candidate pool for the final model ensemble.

2 Model Architectures

In this section, we describe the model architectures
we used in two translation directions, where we
mainly follow the previous state-of-the-art mod-
els (Zeng et al., 2021). We also refer readers to
read the paper for details.

2.1 Model Configurations
Given the strong capacity of deeper and wider archi-
tectures, we use them in our experiments. Specifi-
cally, following Zeng et al. (2021), we use 20-layer
encoders for deeper models and set the hidden size
to 1024 for all models. We set the decoder depth to
10. For the wider ones, we adopt 12 encoder layers,
2048 for hidden size, and 8192 to 15000 for filter
sizes.

2.2 Transformer Variants
Average Attention Transformer. Follow-
ing Zeng et al. (2021), the average attention
transformer (Zhang et al., 2018) are employed
to add model diversity. In the AAN, the context
representation gi for each input embedding is
calculated as follows:

gi = FFN(
1

i

t∑

k=1

yk),

where yk is the input embedding for step k and t
is the current time step. FFN denotes the position-
wise feed-forward network (Vaswani et al., 2017).

Talking Heads Attention. Similarly, talking-
heads attention (Shazeer et al., 2020) also performs
well in Zeng et al. (2021), which can transform the
attention-logits and the attention scores and thus al-
low information interaction among attention heads
by adding two linear projection layers Wl and Wa:

Attention(Q,K, V ) = softmax(
QKT

√
k
Wl)WaV.

3 System Overview

In this section, we describe our system used in
the WMT 2022 chat translation shared task, which

includes two parts, namely general pre-training
and in-domain fine-tuning. The pre-training part
includes data filtering and synthetic data genera-
tion. The in-domain fine-tuning consists of speaker-
aware in-domain data generation, speaker adap-
tation, prompt-based context modeling, the tar-
get denoising fine-tuning (Meng et al., 2020), and
boosted Self-COMET-based model ensemble.

3.1 General Pre-training

3.1.1 Data Filtering
We filter the bilingual training corpus (includ-
ing synthetic parallel data) with the following
rules (Zeng et al., 2021): 1) Normalize punctuation;
2) Remove the sentence whose length is more than
100 words or a single word that exceeds 40 charac-
ters; 3) Filter out the duplicated sentence pairs; 4)
Delete the sentence whose word ratio between the
source and the target words exceeds 1:4 or 4:1.

3.1.2 Synthetic Data Generation
For data augmentation, we obtain the general do-
main synthetic data via back-translation, forward-
translation, and knowledge distillation.

Tagged Back-Translation. Previous work has
shown that different methods of generating pseudo
corpus have a different influence on translation per-
formance (Edunov et al., 2018; Hoang et al., 2018;
Zeng et al., 2021). Following them, we attempt
two generating strategies: 1) Beam Search: pro-
duce translation by beam search (beam size = 5).
2) Sampling Top-k: Select a word randomly from
top-k (k = 15) words when inference.

Forward-Translation. We then ensemble mod-
els to forward-translate the monolingual data of
the source language to further enhance model per-
formance. We obtain a stable improvement in
both directions, which is consistent with previous
work (Zeng et al., 2021).

Knowledge Distillation. Knowledge Distillation
aims to transfer knowledge from the teacher model
to student models, which has shown effective for
NMT (Kim and Rush, 2016; Wang et al., 2021;
Zeng et al., 2021). Specifically, we first use the
teacher model to generate synthetic corpus in the
forward direction (i.e., En→De). Then, we train
our student models with the generated corpus.

Note that we prefix all the synthetic sentences by
appending a pseudo tag <BT>when jointly training
with genuine data.
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3.2 In-domain Fine-tuning

3.2.1 Speaker-aware In-domain Data
Generation

Inspired by Moghe et al. (2020), we prepend
the corresponding speaker tag (the <agent> or
the <customer>) to each utterance on both
the source and the target side to get a speaker-
aware dataset based on the BConTrasT dataset of
the WMT20 chat translation task (Farajian et al.,
2020). Secondly, we adapt our pre-trained model to
each speaker on the speaker-aware dataset. Then,
we apply the adapted model to the monolingual
Taskmaster-1 (Byrne et al., 2019) corpus, which is
the original source of BConTrasT (Farajian et al.,
2020), to generate the speaker-aware in-domain
data.

3.2.2 Speaker Adaptation
As a special characteristic of chat translation, dis-
tinguishing between the two speaker roles plays
an important role as they both form the complete
dialogue. And modeling the speaker characteris-
tic has been demonstrated effective in previous
work (Moghe et al., 2020; Liang et al., 2021c,
2022b, 2021b, 2022c). Therefore, our data used
in the fine-tuning has a corresponding speaker tag
(the <agent> or the <customer>) appended in
the first token of each utterance.

3.2.3 Prompt-based Context Modeling
Previous studies (Wang et al., 2020; Moghe et al.,
2020) have shown that the multi-encoder frame-
work cannot improve the model performance af-
ter using the context in the chat translation task,
while a unified model (Ma et al., 2020; Liang et al.,
2021c) can. Therefore, we also investigate incorpo-
rating the context in the unified model with prompt
learning (without modifying the model architec-
ture). Specifically, we add two preceding bilingual
contexts at the tail of each utterance with an indica-
tor <context begins>, where we also use a
special tag <SEP> to separate different utterances
of the bilingual context. In this way, our model with
context modeling can achieve a better COMET.

3.2.4 Target Denoising Fine-tuning
To bridge the exposure bias (Ranzato et al., 2016),
we add noisy perturbations into decoder inputs
when fine-tuning. Therefore, the model becomes
more robust to prediction errors by target denoising
fine-tuning (Zhang et al., 2019; Meng et al., 2020).
Specifically, the fine-tuning data generator chooses

Algorithm 1: Boosted Self-COMET-based
Ensemble (BSCE)
Input:

List of candidate models M = {mi, ..., mn}
Valid set COMET for each model C = {ci, ...,
cn}
Average Self-COMET for each model S = {si,
..., sn}
The number of models n
The number of ensemble models e

Output: Selected Model Pool P
1: for i← 1 to n do
2: weight = (max(S)−min(S))

(max(C)−min(C))
3: scorei =

(ci −min(C)) · weight+ (max(S)− si)

4: end for
5: Add the highest score model to candidates list

P = { mtop }
6: while |P| < e do
7: index = argmin

i

1
|M−P|

∑
i∈M−P,j∈P

BLEU(i, j)

8: Add mindex to candidate list P
9: end while

10: return P

30% of utterance pairs (Note that we do not include
the indicator word and the bilingual context) to add
noise and keeps the remaining 70% of sentence
pairs unchanged. For a chosen pair, we keep the
source sentence untouched and replace the i-th to-
ken of the target sentence with (I) a random token
of the current target sentence in 15% probability
and (II) the unchanged i-th in 85% probability.

3.2.5 Boosted Self-COMET-based Model
Ensemble (BSCE)

After we get plenty of fine-tuned models, how to
search for the best combination for the ensemble
model is a difficult question. Inspired by Zeng et al.
(2021), we propose a Boosted Self-COMET-based
Ensemble (BSCE) algorithm, as shown in algo-
rithm 1. Since the existing boosted Self-BLEU-
based pruning strategy (Zeng et al., 2021) is de-
signed for achieving higher BLEU scores with high
efficiency, it can not help obtain better COMET
scores. Therefore, we adapt it to COMET scores.
Then, we can obtain the best ensemble models from
n top models by a greedy search strategy.

The algorithm takes as input a list of n strong sin-
gle models M, COMET scores on the development
set for each model C, average Self-COMET scores
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for each model S, the number of models n, and
the expected number of ensemble models e. The
algorithm returns a set P consisting of e selected
models. We calculate the weighted score for each
model (line 2). The weight (line 3) calculated is
a trade-off between the development set COMET
score and the Self-COMET score since the perfor-
mance and the diversity play the same key role
in ensemble (Zeng et al., 2021). Then the set P
initially contains the model mtop has the highest
weighted score. Next, we iteratively re-compute
the average Self-COMET between the remaining
models in ‘M−P’ and selected models in P, based
on which we select the model that has a minimum
Self-COMET score into P.

4 Experiments and Results

4.1 Setting

The implementation of our models is based on
Fairseq2. All the single models in the first pre-
training stage are carried out on 8 NVIDIA V100
GPUs (32 GB memory of each). And all the models
in the second fine-tuning stage are conducted on 4
NVIDIA V100 GPUs. We use the Adam optimizer
with β1 = 0.9, β2 = 0.998. The batch size are set to
8192 and 4096 tokens per GPU for pre-training and
fine-tuning, respectively. We set the “update-freq”
parameter to 2 and 1 for both stages. The learning
rate is set to 0.0005 and 0.0004 for two stages, re-
spectively. We use the warmup step to 4000. We
calculate COMET3 score for all experiments which
is officially recommended.

English and German sentences are segmented by
Moses4. We apply punctuation normalization and
Truecasing. We use byte pair encoding BPE (Sen-
nrich et al., 2016) with 32K operations. For the
post-processing, we apply de-truecaseing and de-
tokenizing on the English and German translations
with the scripts provided in Moses.

4.2 Dataset

The data statistics of the two stages are shown in
Table 1. For the general pre-training, the bilin-
gual data is the combination of all parallel data
in WMT21. For monolingual data, we use the
News Crawl, Common Crawl, and Extended Com-
mon Crawl. For synthetic data generation, we
back-translate all the target monolingual data and

2https://github.com/pytorch/fairseq
3https://unbabel.github.io/COMET/html/index.html
4http://www.statmt.org/moses/

General pre-training In-domain fine-tuning

Bilingual Data 74.8M 17,847
Source Mono Data 332.8M 302,079
Target Mono Data 237.9M -

Table 1: Statistics of all training data.

Models En→De De→En

Chat baseline w/o context 0.403 0.588
Chat baseline w context 0.376 0.680
Pre-trained deeper model w/o context 0.544 0.865
+ in-domain genuine data w/ context (FT1) 0.772 0.905
+ in-domain pseudo data w/ context (FT2) 0.767 0.903
+ in-domain both data w/ context (FT3) 0.781 0.908
Pre-trained wider model w/o context 0.604 0.879
+ in-domain genuine data w/ context (FT4) 0.782 0.908
+ in-domain pseudo data w/ context (FT5) 0.779 0.906
+ in-domain both data w/ context (FT6) 0.785 0.909

Table 2: COMET scores on the Valid set for both pre-
trained models, and each of fine-tuned on (i) in-domain
genuine data, (ii) in-domain pseudo data, and (iii) both
in-domain data.

forward-translate the source monolingual data. For
the in-domain fine-tuning, we use all the training,
valid, and testing data of the wmt20 chat task as our
training data. For monolingual data, we select the
Taskmaster-1 (Byrne et al., 2019) corpus to build
the pseudo-paired data using the method described
in Section 3.2.1.

4.3 Results

We report COMET scores (Rei et al., 2020) on the
validation set (generally, beam size = 5 and length
penalty = 0.6).

Pre-training and Fine-tuning. The results in Ta-
ble 2 show that all pre-trained models outperform
the baseline models trained on the chat training
data. We observe that in-domain fine-tuning of the
pre-trained models always gives large gains even
on the in-domain pseudo data. We also find that
the performance of different model architectures
comes close after in-domain fine-tuning. Though
these models perform similarly, as they have dif-
ferent architectures or are trained on different data,
they generate diverse translations and show a cu-
mulative effect when ensemble.

Final Submissions. Table 3 shows the results
of our primary submission on both the validation
and test set. Note that all candidate models with
different architectures or trained with different data
are used for the ensemble. We find that our BSCE
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Models En→De De→En

Best Single Model 0.785 0.909
+ Normal Ensemble 0.788 0.908
+ BSCE 0.790 0.911
+ BSCE + Large beam (*) 0.792 0.913
Official results on the Test set
+ BSCE + Large beam (*) 0.810 0.946
Best Official 0.810 0.946

Table 3: Valid set COMET scores for ensemble with
different strategies and the official COMET results of
our submissions. ‘*’ indicates the primary system of
our submissions.

Models En→De De→En

FT6 + no tag 0.779 0.904
FT6 + speaker 0.785 0.909

Table 4: Valid set COMET scores for fine-tuning with
speaker tags .

is effective in both directions (more analyses are
shown in Section 5.3). Inspired by Wang et al.
(2020), we also tried large beam size. Finally, our
primary system achieves the highest results among
all submissions5.

5 Analysis

5.1 Effect of Speaker Tags

As shown in Table 4, we observe that the perfor-
mance in both directions improves with the addi-
tion of tags, which is consistent with Moghe et al.
(2020). It shows that adding the speaker tag indeed
can improve the chat translation performance.

5.2 Effect of Prompt-based Context Modeling
(PCM)

As shown in Table 5, we investigate the effect of
the context. The bilingual context involves the
utterance in mixed language. Therefore, we inves-
tigate the different contexts with prompt learning.
The results show that the models achieve slight per-
formance gains with suitable context. And using
context in the same language was more beneficial
than the mixed context, which is consistent with
previous work (Moghe et al., 2020).

5.3 Effect of Boosted Self-COMET-based
Ensemble (BSCE)

Inspired by the boosted Self-BLEU-based ensem-
ble (Zeng et al., 2021), we propose the Boosted

5https://wmt-chat-task.github.io/

Models En→De De→En

FT6 + w/o context 0.782 0.905
using previous context (mix language)
FT6 + w/ PCM (+ 1 prev) 0.781 0.905
FT6 + w/ PCM (+ 2 prev) 0.779 0.901
FT6 + w/ PCM (+ 3 prev) 0.775 0.897
using previous context (same language)
FT6 + w/ PCM (+ 1 prev) 0.785 0.909
FT6 + w/ PCM (+ 2 prev) 0.784 0.909
FT6 + w/ PCM (+ 3 prev) 0.782 0.904

Table 5: Valid set COMET scores for fine-tuning with
different contexts. The numbers before “prev” indicate
the number of preceding utterances used as context.

Self-COMET-based Ensemble. To verify its su-
periority, we first select the top 10 models with
different architecture and training data. The results
are shown in the “+Normal Ensemble” of Table 3.
For the BSCE, we need to get the translation result
of every model to calculate the Self-COMET. After
that, we only need to perform the inference process
once. Then, we can select the best models for the
ensemble. Here, we select 10 models and 4 models
for En→De and De→En, respectively. The results
are shown in “+BSCE” of Table 3. Based on it,
we obtain better results after using the large beam
(beam sizes of 9 and 8 for En→De and De→En,
respectively). These results show the effectiveness
of our BSCE method.

6 Conclusions

We investigate the pre-training-then-fine-tuning
paradigm to build chat translation systems, which
are some effective transformer-based architectures.
Our systems are also built on several popular data
augmentation methods such as back-translation,
forward-translation, and knowledge distillation.
In the fine-tuning, we enhance our system by
speaker-aware in-domain data generation, speaker
adaptation, prompt-based context modeling, tar-
get denoising fine-tuning (Meng et al., 2020), and
boosted self-COMET-based model ensemble. Our
systems achieve 0.810 and 0.946 COMET (Rei
et al., 2020) scores on English→German and
German→English, respectively. These COMET
scores are the highest among all submissions.
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Abstract

This paper describes the submissions of
Huawei Translation Services Center(HW-TSC)
to WMT22 chat translation shared task on
English↔German (en-de) bidirection with re-
sults of zero-shot and few-shot tracks. We
use the deep transformer architecture with a
larger parameter size. Our submissions to the
WMT21 News Translation task are used as the
baselines. We adopt strategies such as back
translation, forward translation, domain trans-
fer, data selection, and noisy forward transla-
tion in task, and achieve competitive results on
the development set. We also test the effec-
tiveness of document translation on chat tasks.
Due to the lack of chat data, the results on the
development set show that it is not as effective
as sentence-level translation models.

1 Introduction

Neural Machine Translation (NMT) (Sutskever
et al., 2014; Bahdanau et al., 2015; Gehring et al.,
2017) has achieved good translation results in most
scenarios, but few researches have been done in the
field of chat translation, mainly because of insuffi-
cient chat data.

WMT20 holds the chat translation shared task
(Farajian et al., 2020) for the first time. The data set
mainly includes pre-sales conversations between
customers and agents (meal booking, air ticket
reservation, etc.). This year, the data set focuses
on post-sales conversations between customers and
agents. Although the translation content is all about
chat, the domains are slightly different. The results
show that the data from previous years can not ef-
fectively improve the quality of the model for this
year’s task.

We participate in the en-de bidirectional trans-
lation task. The en-de bidirectional models we
submitted to the WMT21 news task (Wei et al.,
2021) are used as the baseline models and the ar-
chitecture is deep transformer (Vaswani et al., 2017;

Dou et al., 2018). Commonly-used optimization
strategies are used, such as domain transfer, data
selection, back translation, self-training, noisy self-
training, finetuning and model averaging.

Considering that the chat task is a context-aware
translation task, we conduct a series of document-
level (Wang et al., 2017) experiments using WMT
document data, but it does not work well on devel-
opment sets. The analysis shows that the document
data deviates greatly from the chat domain, and
the data therefore cannot effectively improve chat
translation quality. According to the results, the
best models are obtained by selecting in-domain
data from out domain data by the development sets.

This paper is structured as follows: Section 2
describes our data volume and data pre-processing
method. The model structure and method we used
are presented in Section 3. Section 4 details our
experiment setting. We present the results in Sec-
tion 5, and finally we conclude our work in Sec-
tion 6.

2 Data

2.1 Data Size

We use WMT21 news en-de bidirection models
as our baselines (Wei et al., 2021). Bilingual data
comes for WMT20 chat task Farajian et al. (2020),
and monolingual data is from Byrne et al. (2019)

We select data of three related domains, includ-
ing conversation, subtitle, and shopping, from our
in-house English corpus for domain transfer. In
addition, the document-level data from WMT22
general task 1 is used to train the document-level
translation model. In addition, 40M in-house gen-
eral bilingual data is used.

For details about the data size, see Table 1 and
Table 2.

1Data is available from https://www.statmt.org/wmt22/
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general chat 20 chat 22 doc
en-de 40M 17847 2109 400K

Table 1: Sentences size of bilingual data used for train-
ing

Domain-related chat 20 chat 22 doc
en 5M 1M 6389 20M
de - - 7011 20M

Table 2: Sentences size of monolingual data used for
training

2.2 Data pre-processing
Considering that the data sizes of WMT20 and
WMT22 chat tasks are limited, we do not cleanse
the chat data. We use the following data cleansing
methods for other data:

• Remove duplicate sentences (Khayrallah and
Koehn, 2018; Ott et al., 2018)

• Filter out sentences with more than 150 words

• Filter out sentences with length ratios greater
than 1.5

• Apply langid (Joulin et al., 2016, 2017) to
filter out sentences in other languages

• Use fast-align (Dyer et al., 2013) to filter out
sentence pairs that are poorly aligned.

Besides, we adopt joint SentencePiece
Model(SPM) (Kudo and Richardson, 2018;
Kudo, 2018) for word segmentation with a
vocabulary of 32K.

3 System Overview

3.1 Model
Transformer has been widely used for neural
machine translation in recent years, which has
achieved good performance even with the most
primitive architecture. Therefore, the baseline
models for WMT21 news en-de task use the
Transformer-Big architecture. Deep transformer
is an improvement of Transformer, which increases
the number of encoder layers and uses pre-layer-
normalization to further improve model perfor-
mance. Therefore, in this task, we adopt the fol-
lowing model architecture:

• Deep 25-6 large Model: This model features
25-layer encoder, 6-layer decoder, 1024 di-
mensions of word vector, 4096 domensions

of FFN, 16-head self-attention, and pre-layer-
normalization.

3.2 Document-level NMT

Document-level machine translation (Ma et al.,
2021) conditions on surrounding sentences to pro-
duce coherent translations. There has been a lot of
work on custom model architectures to integrate
document context into translation models.

There are many document translation strategies,
such as Doc2Sent, Window2Window, Doc2Doc
(Junczys-Dowmunt, 2019), DocBT (Junczys-
Dowmunt, 2019), DocRepair (Voita et al., 2019),
NoisyChannelDoc (Yu et al., 2019) and G-
Transformer (Bao et al., 2021). Among the meth-
ods mentioned above, Doc2Doc and DocBT are
preferred by us because the data processing proce-
dures are simple and the model requires no modifi-
cation.

To train our document-level model, the bilin-
gual document data is spliced into a long se-
quence based on paragraph information and the
sentences are separated by numbered <SEPX> sym-
bols. For document-level monolinguals, we first
generate synthetic bilingual data by back transla-
tion and use the same strategy to construct doc2doc
data. We then use the document data to fine-tune
the sentence-level translation model to ensure the
model capable of translating long sequences.

We use two methods for inference. The first one
translates single sentences just like a standard trans-
lation model. The other method combines a sen-
tence with its context to construct a long-sequence
input. After decoding, the model splits the result
into single sentences and sacreBLEU2 (Post, 2018)
is calculated on the single sentences.

3.3 Data Selection

Data selection (van der Wees et al., 2017) is a
data augmentation method that we use to select
in-domain data from out-of-domain data.

For monolingual data selection, we train a Fast-
Text (Joulin et al., 2016) classifier using a small
number of English monolinguals in subtitle, con-
versation, and shopping domains, and then select
in-domain English monolinguals from the common
corpus.

For bilingual data selection, as mentioned by
Wang et al. (2019, 2018) , we use the in-domain
data to fine-tune the out-domain model, and then

2https://github.com/mjpost/sacrebleu
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System 20 en→de test 20 de→en test 22 en→de dev 22 de→en dev
baseline 45.1 46.7 50.3 58.7

+ Data Selection 49.2(+4.1) 48.1(+1.4) 62.5(+12.2) 65.5(+6.8)
+ Noisy FT 49.0(+3.9) 49.9(+3.2) 64.3(+13.1) 65.5(+6.8)
+ Model Average 49.8(+4.7) 49.2(+2.5) 63.2(+12.9) 65.7(+7.0)

Table 3: sacreBLEU score on chat20 test set and chat22 dev set

use the model before and after the fine-tuning to
calculate the decoding probability score of the out-
domain bilingual data. The data with a higher score
on the fine-tuned model is selected as the in-domain
bilingual data. The specific scoring is carried out
according to the formula 1.

score =
logP (y|x; θin)− logP (y|x; θout)

|y| (1)

Where θout represents the model trained with out-
domain data, and θin represents the model after
fine-tuning with a small amount of in-domain bilin-
gual data, and |y| represents the length of the target
sentence.

3.4 Forward Translation

Forward Translation (FT) (Wu et al., 2019), also
known as Self-Training (Imamura and Sumita,
2018) , usually refers to using a forward NMT
model to translate source-side monolingual data
to target-side text so as to generate synthetic bilin-
guals. The data is then used to train the forward
translation model. Generally, beam search (Freitag
and Al-Onaizan, 2017) is used for forward trans-
lation. In our experiment, the beam size is set to
4.

Noisy self-training (He et al., 2020) adds noise
to the source-side of the pseudo parallel corpus gen-
erated by forward translation. Experiments show
that this method is effective in low resource tasks.
Noisy self-training is therefore used in the last step
when a small amount of in-domain monolinguals
is used.

3.5 Back Translation

Back-translation(BT) (Edunov et al., 2018) has
been recognized as the most effective data aug-
mentation strategy for enhancing NMT model per-
formance. Contrary to forward translation, it trans-
lates target-side monolinguals into source-side to
generate synthetic parallel corpus. Among the
many back translation methods, sampling (Graça
et al., 2019), noise (Edunov et al., 2018) and tagged

back translation (Caswell et al.) work better. In our
experiment, sampling back-translation is chosen.

3.6 Fine-tuning

Fine-tuning (Dakwale and Monz, 2017) is a way
to achieve domain transfer. In our translation task,
we adopt a three-stage fine-tuning strategy. Firstly,
we use synthetic corpus from similar domains to
fine-tune the out-of-domain NMT model, and then
use bilingual data selected from general domain
according to the development set to improve the
model performance. After that, we use the syn-
thetic data generated from the in-domain mono-
lingual data to fine-tune the in-domain model for
more fine-grained domain transfer.

3.7 Model Averaging

Model averaging (Dormann et al., 2018) is a com-
monly used technique to improve translation qual-
ity. Generally, models (5 in our experiment) that
perform best on the development set are selected
for parameter averaging, result to significantly im-
provement.

4 Experiment Setting

During the training phase, we use Pytorch-based
Fairseq3 (Ott et al., 2019) open-source framework
as our benchmark system. Each model is trained
using 8 GPUs with a batch size of 2048. The up-
date frequency is 4 and the learning rate is 5e-4.
The label smoothing rate is set to 0.1, the warm-up
steps to 4000, and the dropout to 0.3. Adam op-
timizer (Kingma and Ba, 2015) with β1=0.9 and
β2=0.98 is also used. In the evaluation phase, we
use Marian4 (Junczys-Dowmunt et al., 2018) for
decoding and then calculate the sacreBLEU scores
on the WMT22 chat translation task dev sets to
measure the performance of each model.
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System 22 en→de sent 22 en→de doc 22 de→en sent 22 de→en doc
baseline 50.3 - 58.7 -

+ Data Selection 62.5 - 65.5 -
+ Bilingual Doc 36.7 37.1 45.2 44.5
+ Bilingual & Doc bt 54.6 55.6 56.8 56.3

Table 4: The results of different strategies in the document-level model. Bilingual Doc means using WMT news
bilingual doc data to finetune previous model. Bilingual & Doc bt means using WMT news bilingual doc data and
pseudo corpus generated from WMT news monolingual doc data to finetune previous model.

System sacrebleu↑ total↑ er↑ es↑ sie↑
Baseline 25.8 0.37 0.12 0.82 0.16

+ Data Selection 26.3 0.36 0.13 0.81 0.14
+Bilingual Doc 23.0 0.41 0.19 0.69 0.34
+Bilingual Doc & DOC BT 24.7 0.36 0.11 0.82 0.15

Table 5: The higher the accuracy of pronoun translation, the better the model combines contextual information.

5 Result and Analysis

Table 3 shows the main results on the development
sets. Bilingual data selection gains significant im-
provement on dev sets. Although bilingual data
is selected based on dev sets, the selected data
consists of 13M sentences. Therefore, there is no
overfitting risk. This strategy also improves model
performance on chat20 test sets.

Since the dev set is already used to select data,
we no longer use the dev set to fine-tune model.
We then continue to train our model using noisy
self-training strategy on monolingual in-domain
data. The result shows that there is an increase in
BLEU on the en→de track. After model averag-
ing, performance on de→en track improves, but
performance on en→de deteriorates.

Finally, we select the result of data selection
after model averaging as the primary submission,
noisy self-training after model averaging as the con-
trastive2. Note that, the two submissions before are
few-shot. The result of the baseline model as the
submission of the zero-shot track, is contrastive1.

5.1 Document-level NMT

According to the test results shown in Table 4, us-
ing document-level data to optimize models does
not work well, mostly because this data is from the
news domain. From our subsequent experiments,
we also find that chat tasks have high requirements
on data domain.

From rows 4 and 5 in Table 4, the model using

3https://github.com/facebookresearch/fairseq
4https://github.com/marian-nmt/marian

bilingual document data has worse results than the
model using DocBT data. We assume that there
are two reasons for this phenomenon. One is that
the size of bilingual documents is limited, and the
other is that the DocBT data generated using the
data selection model is closer to the chat domain
than the original bilinguals.

To verify the effectiveness of our document-
level translation model, we evaluate our model on
(Müller et al., 2018) test set, which is a pronoun
translation accuracy task.

As shown in Table 5, the pronoun translation
accuracy of bilingual document-level model was
significantly better than that of other models. But
the BLEU is the lowest due to the minimum amount
of data. From subsequent domian transfer experi-
ments, we can also find, chat tasks are extremely
sensitive to the domain of the data, but we cannot
find enough chat data to train the document-level
translation model. Therefore, we cannot draw a
conclusion that document-level translation is use-
less for chat translation tasks. Further researches
can be carried out when sufficient chat data is avail-
able.

5.2 Domain Transfer

Since no chat training data is provided except for
the development set, we continue to train the base-
line model using development set and monolingual
data from previous chat tasks. As shown in rows 3
and 4 in the Table 6, models training with chat20
development set performs well on the chat20 test
set. However, little improvement is observed on
chat22 dev set. As mentioned above, the data dis-
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System 20 en→de test 20 de→en test 22 en→de dev 22 de→en dev
baseline 45.1 46.7 50.3 58.7

+ 20 dev fine-tune 60.5 63.5 52.4(+1.9) 53.5(-5.1)
+ 20 mono en FT/BT 59.6 64.1 45.7(-4.6) 31.6(-27.1)
+ Subtitle en FT/BT 57.1 53.5 43.7(-6.6) 28.5(-30.2)
+ Conversation en FT/BT 56.7 51.4 49.5(-0.5) 43.8(-14.9)
+ Shopping en FT/BT 56.2 55.9 50.3(-) 43.3(-15.4)
+ Data Selection 49.2 48.1 62.5(+12.2) 65.5(+6.8)

Table 6: The results of different strategies for the sentence-level model. FT/BT means that forward translation in
en→de direction and back translation in de→en direction.

tribution for these two tasks is not consistent.
Monolingual data of similar domains, such as

subtitle, conversation, and shopping, is then used
for FT or BT enhancement. From rows 5, 6 and
7 in the Table 6, the results are worse than using
chat20 data. Although the monolingual data is of
higher quality, its domain and style are far away
from chat data. So it brings no improvement.

5.3 Bilingual Data Selection

Through the above experiments, we find that this
year’s chat task has unique features and is very
sensitive to domain differences. Using the idea pro-
posed by Wang et al. (2019, 2018), we select 13M
data from 40M general bilingual data to optimize
our baseline model.

As can be seen from row 8 in the Table 6, this
strategy is effective and improves the translation
quality in both directions. Besides, we find that the
data selected using the chat22 development set also
improves model performance on the chat20 task,
indicating that this strategy is a general method.
We will test its applicability in the future.

6 Conclusion

This paper presents the submissions of HW-TSC
to the WMT 2022 Chat Translation Shared Task.
For both direction in customer-agent translation
task, we perform experiments with a series of pre-
processing and training strategies. The results show
that bilingual data selection achieves the best re-
sults. In the future, we will continue to explore the
applicability of bilingual data selection mentioned
in this paper.

Besides, the performance of document-level
translation model is limited given the amount of
data. It has not achieved the expected results on this
task, and we will continue to explore the impact of
context for the chat task.
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Abstract

This paper describes Microsoft’s submission to
the first shared task on sign language translation
at WMT 2022, a public competition tackling
sign language to spoken language translation
for Swiss German sign language. The task is
very challenging due to data scarcity and an un-
precedented vocabulary size of more than 20k
words on the target side. Moreover, the data is
taken from real broadcast news, includes native
signing and covers scenarios of long videos.
Motivated by recent advances in action recog-
nition, we incorporate full body information
by extracting features from a pre-trained I3D
model and applying a standard transformer net-
work. The accuracy of the system is further
improved by applying careful data cleaning on
the target text. We obtain BLEU scores of 0.6
and 0.78 on the test and dev set respectively,
which is the best score among the participants
of the shared task. Also in the human evalua-
tion the submission reaches the first place. The
BLEU score is further improved to 1.08 on the
dev set by applying features extracted from a
lip reading model.

1 Introduction

Sign languages are natural visual languages that
are used by deaf and hard of hearing individuals
to communicate in everyday life. Sign languages
are actively being researched. However, there is
a huge imbalance in the field of natural language
and speech processing between oral and signed
languages. Since recently, one observes the emer-
gence of a transition shifting sign language pro-
cessing to be part of the NLP mainstream (Yin
et al., 2021). We embrace this development which
manifests (among others) in the creation of the
first shared task on sign language translation as
part of WMT 2022 (Mathias et al., 2022). It is
great to have real-world sign language data (Bragg
et al., 2019; Yin et al., 2021) as the basis of this

*Equal Contribution

shared task, manifested in native signers content
and an unprecedentedly large vocabulary. Never-
theless, this leads to a very challenging task with
low performance numbers. When participating in
the advances of sign language technologies it is
worth recapping that deaf people have much at
stake, both to gain and lose from applications that
will be enabled here (Bragg et al., 2021). We aim
to advance the field and the use-cases in a positive
way and present our findings in this system paper.

In the remainder of this work we first present a
brief view on the relevant literature in Section 2,
then we present the employed data in Section 3.
Subsequently, we describe our submission in Sec-
tion 4, additional experiments in Section 5 and we
end with a summary in Section 6.

2 Related Work

In this section, we present a limited overview of
related work in sign language translation. We fo-
cus this review on the translation direction from
sign language to spoken language and dismiss ap-
proaches that target the opposite direction, i.e. sign
language production.

Sign language translation started targeting writ-
ten sign language gloss to spoken language text
translations, hence no videos were involved. Re-
lated works were mainly based on phrase-based
systems employing different sets of features (Stein
et al., 2007, 2010; Schmidt et al., 2013). Then,
neural machine translation revolutionized the field.
The first research publications on neural sign lan-
guage translation were based on LSTMs either
with full image input (Camgoz et al., 2018) or uti-
lized human keypoint estimation (Ko et al., 2019).
Transformer models then replaced the recurrent ar-
chitectures (Camgoz et al., 2020; Yin and Read,
2020; Yin, 2020). These models perform a lot
better, but suffer from a basic drawback that the
input sequences must be limited to a maximum
length. Previous work (Camgoz et al., 2018; Or-
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bay and Akarun, 2020) has identified the need for
strong tokenizers to produce compact representa-
tions of the incoming sign language video footage.
Hence, a considerable body of publications target
creating tokenizer models that are often trained on
sign language recognition data sets (Koller et al.,
2020, 2016; Zhou et al., 2022) or sign spotting
data sets (Albanie et al., 2020; Varol et al., 2021;
Belissen et al., 2019; Pfister et al., 2013).

There are several data sets relevant for
sign language translation. Some of the most
frequently encountered are RWTH-PHOENIX-
Weather 2014T (Koller et al., 2015a; Camgoz et al.,
2018) and the CSL (Huang et al., 2018) (which
could be also considered a recognition data set).
However, there are promising new data sets ap-
pearing: OpenASL (Shi et al., 2022a), SP-10
dataset (Yin et al., 2022) (covers mainly isolated
translations) and How2Sign (Duarte et al., 2021).

3 Data

To train our system, we used the training data pro-
vided by the shared task organizers. The data can
be considered real-life-authentic as it stems from
broadcast news using two different sources: Fo-
cusNews and SRF. FocusNews, henceforth FN, is
an online TV channel covering deaf signers with
videos of 5 minutes having variable sampling rates
of either 25, 30 or 50 fps. SRF represents pub-
lic Swiss TV with contents from daily news and
weather forecast which are being interpreted by
hearing interpreters. The videos are recorded with
a sampling rate of 25 fps. All data, therefore, cov-
ers Swiss German sign language (DSGS). Our fea-
ture extractors are pretrained on BSL-1k (Albanie
et al., 2020) and AV-HuBERT (Shi et al., 2022b).
Additionally, we evaluate the effect of introducing
a public sign language lexicon that covers isolated
signs 1, which we refer to as Lex. It provides main
hand shape annotations, one or multiple (mostly
one) examples of the sign and an example of how
this sign is used in a continuous sentence. We
choose a subset that overlaps in vocabulary with ei-
ther FocusNews or SRF. As part of the competition,
independent dev and test sets are provided, which
consist of 420 and 488 utterances respectively.

Table 1 shows the statistics of the training data.
We see, that there is about 35 hours of training data
in total. In raw form without any preprocessing
the data is case sensitive, contains punctuation and

1https://signsuisse.sgb-fss.ch/

SRF FN Lex Total
Videos 29 197 1201 1427
Hours 15.6 19.1 0.9 35.6

Raw: no preprocessing
Vocabulary 18942 21490 – 34783
Singletons 12433 13624 – 22083

Clean: careful preprocessing
Vocabulary 13029 14555 821 22840
Singletons 7483 7923 591 12290

Table 1: Data statistics on data used for training. SRF
and FN refer to SRF broadcast and FocusNews data,
while Lex stands for a public sign language lexicon.
Singletons are words that only occur a single time during
training.

digits. In this raw form the vocabulary amounts
to close to 35k different words on the target side
(which is written German). 22k words of these just
occur a single time in the training data (singletons).
Through careful preprocessing as described in Sec-
tion 4.3 we can shrink the vocabulary to about 22k
words and the singletons to about 12k.

4 Submitted System

Sign languages convey information through the use
of manual parameters (hand shape, orientation, lo-
cation and movement) and non-manual parameters
(lips, eyes, head, upper body). To capture most in-
formation from the signs, we opt for an RGB-based
approach, neglecting the tracked skeleton features
by the shared task organizers. For the submitted
system we rely on a pre-trained tokenizer for fea-
ture extraction and train a sequence-to-sequence
model to produce sequences of whole words (no
byte pair encoding). We further pre-process the
sentences (ground truths of the videos) to clean it.
This step is crucial to push the model to focus more
on semantics of the data. Finally, in order to adhere
to the expected output format for the submission,
we convert the text back to display format using
Microsoft’s speech service. This applies inverse
text normalization, capitalization and punctuation
to the output text to make it more readable. The
details of various components of the system are
described in the next subsections.

4.1 Features

We use a pre-trained I3D (Carreira and Zisserman,
2017) model, based on inflated inceptions with 3D
convolutional neural networks, to extract features
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for our task. The model (Varol et al., 2021) was
pre-trained to take consecutive video frames as in-
put and predict over 1k sign classes. It was trained
on BSL-1K (Albanie et al., 2020) consisting of
about 700k spotted sign instances from the British
broadcast news. The features are extracted with a
context window of 64 frames and a temporal stride
of 8. We use the model as a feature extractor, re-
covering embeddings before the final classification
layer (layer: mixed_5c), yielding a sequence of
1024 dimensional vector, extracted for each video.
Our input data is required to match the training
conditions of the network, hence we apply gray
background padding (adding 20% padding left and
right, 7.5% up and down) and rescale the videos to
224 × 224 resolution. The front end features are
subsequently fed to a sequence model.

4.2 Sequence model

A standard transformer network is trained to pre-
dict text sequences. We apply word-based units as
the output instead of byte pair encoding. It seems
that full words help reduce ambiguity in a data con-
strained scenario. The model is trained with the
fairseq (Ott et al., 2019) toolkit. We apply 3 trans-
former layers at the encoder side and 2 layers at the
decoder with 1024 hidden feed-forward dimension
and 22k output units. The model is trained with
Adam optimizer for 2k epochs with a learning rate
of 1e-3. We found that a beam size of 1 works well
on the dev set during decoding.

4.3 Data Cleaning

To reduce ambiguity and noise in the target text, we
first applied manual cleaning by removing foreign
(French and English) sentences. We then proceeded
to removing sentences that start with a hashtag
sign, as this seems to indicate inaccurate annota-
tion. Further, we removed status messages that
were added by the subtitling agency (such as “1:1-
Untertitelung.”, “Livepassagen können Fehler en-
thalten.”, “Mit Live-Untertiteln von SWISS TXT”)
and patterns enclosed by an asterisk which indicate
sounds occuring in the show (e.g. “* Beschwingte
Blasmusik *”). As a next step, we expanded abbre-
viations like “Mrd.” to “Milliarden” and applied
text normalization to remove punctuation and spe-
cial characters, lower case of the text and expand
numbers and dates. As can be shown in Table 1,
this plays a major role in reducing the total vocabu-
lary.

Data cleaning Dev (RedB) Dev Test
no 0.49 0.70 0.4

yes 0.78 0.77 0.6

Table 2: The Table shows the effect of data cleaning.
Performance of translation systems trained on SRF and
FocusNews evaluated on the WMT 2022 dev and test
data is provided. We report reduced and standard BLEU
score on the Dev set and only standard BLEU on the
Test set. RedB stands for the reduced BLEU measure.

4.4 Evaluation metrics

A common evaluation metric for machine transla-
tion is BLEU (Papineni et al., 2002). However, the
difficulty of the given task and the inherently low
performance of the submitted systems cause a bias
in the automated evaluation. Spoken languages like
Swiss German, which is the target output space for
the translation in this challenge, follow a statistical
pattern where stop words or function words consti-
tute the classes of words that occur most frequently.
This explains one of the observations that we made
in regard to the generated system output. In fact,
the models which were producing more stop words
achieved the highest BLEU scores. For example,
the model we submitted achieved a BLEU score of
0.77 on the dev set, while an earlier, clearly worse,
checkpoint achieved 0.91. Looking at the stop
words, the submitted model output counts 2125
stop words, while the earlier checkpoint counts
2237 of such words. After our stop word removal
the submitted reduced BLEU score is 0.78, while
the earlier model achieves only 0.66. Hence, for
model selection, we propose to use ‘reduced BLEU’
with an additional step: we first apply a blacklist
to remove stop and function words. Using this ap-
proach, the model selection process based on the
reduced BLEU metric turned to be much more re-
liable and more reflective of actual performance.
In this work, we report both reduced BLEU and
standard BLEU for all results on the dev set. Only
standard BLEU is reported by the automatic evalu-
ation through the shared task on the test set. The
list of employed stop words can be found in the
appendix.

4.5 Results

The results of the submitted systems are presented
in Table 2, which allows to compare the effect of
applying data cleaning. In terms of reduced BLEU,
data cleaning improves the performance from 0.49
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to 0.78 on the dev data. The test data shows simi-
larly an improvement from 0.4 BLEU to 0.6. Based
on the preliminary automatic BLEU scoring this
result was the best among the participants of the
shared task. However, it has to be noted that the
final evaluation will be based on a human eval that
has not yet been completed at the time of paper
submission. It can be concluded that careful data
preparation is fundamental for this data. Neverthe-
less, the shared task proves to be very challenging
and overall, we observe rather low performance
compared to published results on benchmark data
sets like RWTH-PHOENIX 2014T (Camgoz et al.,
2018). This further proves the large amount of vari-
ability in the task, which is amplified due to the
presence of high numbers of singleton words.

5 Additional Experiments

We perform additional experiments to assess the
impact of having dedicated mouth features as well
as a lexicon data set on the model performance.
The mouth carries important semantic information
in sign languages. In the literature, exploiting lip
information has shown to be fundamental for in-
creased performance in sign language recognition
and translation (Koller et al., 2015b; Shi et al.,
2022a).

5.1 Mouth features

To extract features from the lip area, we employ a
pre-trained AV-HuBERT model (Shi et al., 2022b)
that has been trained on English data. AV-HuBERT
is trained to learn a robust audio-visual represen-
tation in a self-supervised fashion. The success
of the model is evident by the performance on an
audio-visual speech recognition task. It has proven
to be useful for sign-language task as well (Shi
et al., 2022a). For us, the first step is to obtain
mouth patches from the video frames. Hence, we
rely on the dlib utility provided by the AV-HuBert
authors for obtaining facial key point extraction.
The face patch is cropped and re-scaled to match
the input size (96 x 96) of the model. We use the
AV-HuBERT model to extract 768 dimensional em-
bedding (output of the ResNet layer) to obtain a
feature vector per frame.

5.2 Comparison to RWTH-PHOENIX 2014 T

To underline the difficulty of the given shared
task, we compare our employed pipeline on a stan-
dard benchmark data set for sign language transla-

WMT PHOENIX
Factor

2022 2014T
Hours 35.6 9.2 3.9
Vocabulary 22840 2887 7.9
Singletons 12290 1077 11.4

Table 3: Comparison between the training data for the
WMT 2022 shared task and PHOENIX 2014T.

Training data
Features

Full body Mouth

R
ed

B SRF + FN 0.78 0.95
SRF + FN + Lex 0.54 1.08

St
an

d. SRF + FN 0.77 1.15
SRF + FN + Lex 0.68 1.27

Table 4: The effect of adding lexicon data to systems
trained with full body features (I3D) and mouth fea-
tures (AV-HuBERT). Configurations are evaluated on
the WMT 2022 Dev dataset using the reduced BLEU
(RedB) and standard BLEU (Stand.) score as metric.

tion, namely Phoenix 2014T (Camgoz et al., 2018).
We noticed a small difference between the orig-
inal PHOENIX 2014T corpus as referenced and
shared in of (Camgoz et al., 2018) and the publicly
available embeddings and experiments of (Camgoz
et al., 2020). In the latter full stops mark the end of
each utterance, while in the original version this is
not the case. The effect is small, but for the sake of
completeness, we show it here. Furthermore, con-
sidering the statistics of PHOENIX 2014T and this
WMT 2022 shared task, the difference becomes
apparent. Table 3 shows the key statistics for the
two tasks side by side. We can see that the WMT
2022 task has a nearly 8 times larger vocabulary,
with 11 times more singletons that occur only once
in training. However, it has not even 4 times more
video material.

5.3 Results
Table 4 shows the results of applying AV-HuBERT
features as input to the sequence model. It can be
observed that the model trained with AV-HuBERT
features performs better than the I3D model. In fact,
it achieves a 0.95 reduced BLEU score, while the
full body I3D features reach only 0.78. On visual
inspection, we found that the model trained with
AV-HuBERT is able to predict infrequent words
but fails on simple words such as "auf wiederse-
hen". Therefore, we assess the effect of adding
a lexical data set (‘Lex’) to boost representations

972



of those simple words. Table 4 shows that the ad-
dition of lexical data further improves the model
performance which reaches 1.08 reduced BLEU.
We believe that this is likely due to the matching lip
movement patterns in the lexical training dataset
and dev dataset. Unfortunately, due to time con-
straints, we were not able to submit this model.

Table 5 shows results on PHOENIX 2014T. We
can see that our submitted pipeline matches the
performance of (Camgoz et al., 2020) (19.80/20.24
BLEU on the dev/test sets compare to 20.69/20.17).
However our employed embeddings, which were
not trained on PHOENIX 2014T, do not generalize
well to PHOENIX 2014T and are hence signifi-
cantly outperformed by the ones employed in (Cam-
goz et al., 2020). The experiments show that the
WMT 2022 shared task is significantly more chal-
lenging than PHOENIX 2014T. We also see that
the addition of full stops at the end of each utter-
ances in PHOENIX 2014T amounts to a difference
in BLEU of about 1% relative (14.22/13.22 BLEU
with full stops opposed to 14.06/13.13 without full
stops).

6 Summary

In this paper, full body information is applied suc-
cessfully for a challenging sign language task as
part of the WMT 2022 competition. As such, we
employed a pre-trained I3D model to extract an
embedding for a sequence of frames of the video.
The features are further fed as input to a standard
transformer network. We obtain reasonable perfor-
mance of 0.4 in terms of BLEU score on the test set.
The model is further enhanced by applying careful
cleaning to the text output. We obtain the result
of 0.6 BLEU score on the official test data. Based
on the automatic BLEU scoring this result was the
best among the 7 participants of the shared task,
but also in the human evaluation our submission
reaches the first place. With additional experiments,
we validate the usefulness of a pre-trained lip read-
ing model for this task and the addition of a lexical
data set. This improves the results to 1.08 reduced
BLEU on the dev set.

Limitations

One major limitation to our work resides within
the data set used for training our model. In fact,
the signing interpreter is usually not a native signer
and often seems to be heavily influenced by the
source language, a.k.a the spoken language. As

stated previously, we used a signing interpreter for
SRF data. Another issue we have identified lies in
the limited domain of the data, as it is constrained
to Broadcast news. The trained model may there-
fore be too specialized to generalize well beyond
this area. Furthermore, due to the small number of
individuals present in the data set, it remains un-
clear if and how much ethnicity bias is introduced
to the model. Our team did not proceed with any
experiments to identify and measure this. However,
we do believe that it is crucial to further analyze
possible biases in the future. One evaluation metric
that we did take into consideration for the model
performance is the BLEU score. The experiments
consistently returned extremely low values which
reflects a poor accuracy. One thing that remains
unclear to us is how significant small BLEU dif-
ferences are for human perception and subjective
evaluation.
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A List of Stop Words for Reduced BLEU Estimation

ab
als
als
also
am
am
an
an
andere
auf
aus
beim
bin
bist
da
darauf
das
dass
davon
dazu
dem
den
denen
der
des
des
deshalb
dessen
die
dies

diese
diesen
dieser
dieses
doch
dort
ein
eine
einem
einen
einen
einer
eines
eines
er
es
es
für
gar
gegen
geht’s
genau
gibt
habe
haben
habt
hast
hast
hat
hat

hatte
hätte
hatten
hätten
her
hin
ihm
ihre
ihre
im
in
ins
ist
könne
könnte
könnten
man
mehr
mit
noch
nun
ob
oder
quasi
schon
sehr
sei
seid
seien
sein

seit
sich
sie
sie
sind
so
solchen
soll
somit
sowie
sowohl
statt
über
um
und
vom
von
vor
war
war
wäre
war’s
wars
warst
wart
wegen
weiteren
weiterhin
wem
wen

wenn
werde
werden
werdet
weshalb
wie
will
wir
wird
wirst
wo
wohl
wolle
wollte
wollten
worauf
wurde
würde
würden
zu
zudem
zum
zur
zur
zur
zwar
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Abstract
This paper describes the DFKI-MLT submis-
sion to the WMT-SLT 2022 sign language trans-
lation (SLT) task from Swiss German Sign Lan-
guage (video) into German (text). State-of-the-
art techniques for SLT use a generic seq2seq
architecture with customized input embeddings.
Instead of word embeddings as used in tex-
tual machine translation, SLT systems use fea-
tures extracted from video frames. Standard
approaches often do not benefit from tempo-
ral features. In our participation, we present a
system that learns spatio-temporal feature rep-
resentations and translation in a single model,
resulting in a real end-to-end architecture ex-
pected to better generalize to new data sets. Our
best system achieved 5±1 BLEU points on the
development set, but the performance on the
test dropped to 0.11± 0.06 BLEU points.

1 Introduction

Text-to-text machine translation (MT) is achiev-
ing a great success with even (close to) human
performance for some language pairs and do-
mains (Akhbardeh et al., 2021). However, the sit-
uation in sign language translation (SLT) is much
different. One important reason is that the SLT is
a low-resource scenario where one does not have
the same amount of data as in high-resourced text-
to-text to achieve a similar level of performance.
A more specific reason is that SLT involves two
modalities, text and video. Various problems arise
when dealing with these modalities. Besides data
scarcity, the lack of temporal boundaries in the in-
put videos is a challenge. To overcome the lack
of temporal boundaries, the most common solu-
tion tends to ignore or not benefit from tempo-
ral features. This approach relies on the Trans-
former (Vaswani et al., 2017) capabilities to learn
sequence-to-sequence tasks. The state-of-the-art
SLT technique (Camgöz et al., 2020) is practically
a normal Transformer but uses a custom embed-
ding layer for 2D features extracted from video

frames. In this approach, training a SLT system
requires a pre-extraction step to convert frame
features to vectors and train a Transformer sepa-
rately to translate the vectors into spoken language.
This type of approach has been widely used on a
very specific dataset, the weather forecast corpus
PHOENIX14T (Camgoz et al., 2018), where re-
searchers reported a relatively good performance in
terms of BLEU (∼20) (Camgöz et al., 2020; Min
et al., 2021).

Despite its good performance on a specific
dataset, there is the doubt whether such type of
architecture generalizes to new data sets. In or-
der to build a more general technique, we focus
on fundamental SLT problems such as the design,
implementation and evaluation of a fully end-to-
end model and representation learning for sign lan-
guage videos. Having a fully end-to-end model fa-
cilitates the task of data collection and diminishes
the need for annotation (e.g. in terms of sign lan-
guage glosses), which is necessary to build larger
and richer datasets. It also allows training video
embeddings fully optimized for the translation task.
Text translation is one of the most mature areas in
natural language processing, and therefore we fo-
cus here on the sign language representation part of
the architecture and use an in-house state-of-the-art
Transformer for text generation.

This paper reports our approach for end-to-end
SLT used for the WMT-SLT translation shared task
from Swiss German Sign Language into German.
In the next sections we introduce our approach
(Section 2), experimental setup (Section 3), results
(Section 4) and conclusions & perspectives (Sec-
tion 5).

2 Our Approach

The main idea of our approach is to learn feature
representation and translation in a single model,
and be able to train them together. Figure 1(a)
sketches our general pre-processing pipeline and
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Figure 1: End-to-end architecture for sign language translation.

Figure 1(b) the architecture. The system architec-
ture consists of two connected blocks: the first
block made of CNNs is intended for vision and the
second one is for language which is Transformer
architecture.

Both the CNNs used for the video representa-
tions and the Transformers used for the text repre-
sentations come with large numbers of parameters.
As we are operating in a low resource scenario,
besides the combination of the two networks, we
experiment to find the best trade-off between data
size and number of parameters.

2.1 Visual feature representation

Our goal is to build a sentence embedding-like
model for the visual sign language encoder, as a
word/sign level-like representation is limited by
the lack of temporal boundaries in videos. We
hypothesize that a sentence embedding will still
contain and distinguish all the information given
by individual signs.

In the shared task, we use ResNet3D (Hara et al.,
2017) as our spatio-temporal visual feature repre-
sentation block. We prefer it instead of a normal 2D
with temporal convolutions (Wang et al., 2019) to
develop a fully end-to-end trainable model. There
are many available architectures in the literature,
but ResNet is unique in providing different models
with different scales. This gives us the possibility
to experiment with various sizes which help us to
weight the importance of each of the vision and
text blocks in our trade-off experiments.

Our visual encoding in the submitted system is
composed by the original 3D ResNet10 with output
conversion. The conversion creates a sequence of
vectors from the single output vector to adapt to the
transformer encoder input. We define the SWM
parameter (Sentence to Words Mapping), which is
the number of splits from the output vector. This

output is projected through a linear layer which
is connected directly to the language block. We
experiment with 3D ResNet10, 3D ResNet34 and
3D ResNet50 and show the comparative results in
Section 3.

2.2 Language representation

The language block is a normal language Trans-
former. Its training end-to-end with the visual
model can constrain the visual model and force
it to take into account the language representation
to build the visual embedding. This should result
in more specific visual representations for sign lan-
guage which has not yet been explored extensively
in SLT. For this shared task, we use the Transformer
for the language block with parameters shown in
Table 1. This choice is motivated by Camgöz et al.
(2020) which improved their previous results with
LSTMs and GRUs (Camgoz et al., 2018) by more
than 10 BLEU points. Furthermore, the Trans-
former makes the visual and language fusion more
intuitive and easier for SLT, because it can process
the whole sentence at the same time.

2.3 Loss and optimizer

In our experiments, we use a generalized loss. The
general loss is considering both vision and text as
a single model so the backpropagation starts from
the last layer of the language part to the first layer
of the visual one. We used the regular cross entropy
loss from (Vaswani et al., 2017), with smoothing
value = 0.1. Our optimizer has the following con-
figuration: Adam with beta values =(0.9, 0.98),
epsilon =1e-8, weight decay = 0.001.
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Parameter Value Comments
Training corpus FN+SRF Remove sentences with >50 tokens
Batch size 10 Using few workers (<=5) on a single GPU
End of training criteria PPL Stop after 14 epochs without improvements
Language model Transformer "base" The number of encoder/decoder layers is 3 instead of 6

Visual model
3D ResNet
(outsize= 2048, depth=50)

Additional custom module that converts the
output size to our Sentence to Words Mapping (SWM)

SWM 32 Numbof the splits.
Scheduler LambdaLR Using warmup=4000
Max. output length 50 Maximum decoder output size
Gradient accumulation step 32 To get 320 sentences

Table 1: Main parameters used in training our primary submission DFKI-MLT.2.

Corpus Sentences Vocab Min/Mean/Max/Std
SRF+FN 17192 26250 1/13.62/168/7.33
SRF 7056 14573 1/14.29/126/7.29
FN 10136 16723 1/13.15/168/7.32
SRF+FN dev 420 2003 2/13.98/44/6.95

Table 2: Text corpus statistics in tokens.

Corpus Videos Min Mean Max Std
SRF 29 1492.6 1935.9 2106.2 106.3
FN 197 209.8 349.3 571.4 64.1
SRF+FN dev 420 0.6 5.84 19.86 3.42

Table 3: Number of videos and video statistics in sec-
onds.

3 Setup and Experiments

3.1 Data description

For the submission, we use only the training and
validation data given for the shared task and made
up of FocusNews and SRF corpora, both paral-
lel in Swiss German Sign Language and German
text. SRF contains longer videos (approximately
30 minutes), FN contains more videos but shorter
ones (approximately 5 minutes). The statistics of
the German part of the corpus are summarized in
Table 2 and the video statistics in Table 3.

3.2 Data preprocessing and batching

Since the input videos are long and contain more
than one sentence (Table 3), we perform a subclip-
ping step as preprocessing. By reading the subtitle
files entries (srt in Figure 1(a)), we extract the time
intervals and the corresponding sentences. We use
ffmpeg to cut videos using these timestamps. We
save the resulting subclips and add paths with sub-
titles (sentences) in one single annotation file.

We resize our input images to 224x224 pixels to
leave a door open for pretraining approaches later.
The batching is done using the Videodataset class

(Wang et al., 2019). The depth is the number of
frames in a video, it constitutes the third dimension
in the 3D model. In our experiments, we initialize
it to 100. To make sure that the language model
keeps its original performance, we need to simulate
a higher batch size. However, only a small number
of videos can be placed in the same batch. We
use gradient accumulation and update every 320
sentences for this purpose.

We do not do any preprocessing for the German
textual data besides tokenization.

3.3 Experimental protocol
For the sake of reproducibility, we detail the setup
for our primary submission in Table 1.

3.4 Evaluation
We use the same automatic metrics used by the
shared task organisers in their preliminary auto-
matic evaluation results (Müller et al., 2022). We
use SacreBLEU (Post, 2018) to calculate BLEU1

(Papineni et al., 2002) and chrF2++2 (Popović,
2017). As semantic metric we use BLEURT3 (Sel-
lam et al., 2020).

4 Results and Analysis

Our best model according to BLEU is obtained
with the largest 3D ResNet model and reaches 4.8
points on the development set, much higher than
the performance of any system on the official test
set. However, different metrics do not correlate,
and chrF2++ and BLEURT —which correlate bet-
ter with human judgments than BLEU— point to-
wards a different model. Table 4 shows how per-

1BLEU|nrefs:1|bs:1000|seed:12345|case:mixed|eff:no|
tok:13a|smooth:exp|version:2.2.0

2chrF2++|nrefs:1|bs:1000|seed:12345|case:mixed|eff:yes|
nc:6|nw:2|space:no|version:2.2.0

3BLEURT v0.0.2 using checkpoint BLEURT-20

979



VisualModel BLEU chrF2++ BLEURT
ResNet50_3D 0.07 ± 0.02 8.07 ± 0.24 0.054 ± 0.003
ResNet34_3D 4.82 ± 0.99 8.28 ± 0.60 0.075 ± 0.007
ResNet10_3D 2.83 ± 1.41 11.85 ± 1.32 0.100 ± 0.012

Table 4: Results from different 3D ResNet scales on the development set.

Submission BLEU chrF2++ BLEURT |
all SRF FN all SRF FN all SRF FN

UZH (Baseline) 0.12±0.06 0.09±0.03 0.19±0.11 4.7±0.4 4.5±0.5 5.0±0.7 0.102±0.006 0.095±0.006 0.110±0.009
DFKI-MLT.1 0.07±0.05 0.05±0.02 0.12±0.10 6.2±0.4 5.9±0.5 6.4±0.5 0.100±0.008 0.097±0.009 0.100±0.012
DFKI-MLT.2 0.11±0.06 0.08±0.03 0.17±0.13 6.3±0.4 6.4±0.6 6.1±0.6 0.083±0.008 0.074±0.008 0.091±0.013
DFKI-MLT.3 0.08±0.04 0.06±0.02 0.13±0.10 6.1±0.4 6.3±0.6 6.0±0.6 0.075±0.009 0.067±0.009 0.081±0.014
DFKI-MLT.4 0.02±0.01 0.02±0.01 0.04±0.02 3.9±0.2 3.7±0.3 4.1±0.3 0.066±0.004 0.063±0.004 0.070±0.008
DFKI-MLT.5 0.04±0.02 0.03±0.00 0.08±0.04 5.2±0.2 4.9±0.3 5.5±0.4 0.078±0.004 0.074±0.005 0.080±0.007

Table 5: Automatic evaluation of our 5 submissions and the shared task baseline on WMT-SLT test set (all), the
SRF subset and the Focus News (FN) subset as provided by the organizers (Müller et al., 2022). DFKI-MLT.2 is our
primary submission.

Hypothesis Reference

Die -.
Die Diamantenschleiferei beschäftigt
63 Angestellte , davon 17 Behinderte ,
sowohl Rollstuhlfahrer als auch Gehörlose .

Der - .
Man arbeitet von 2004 bis 2009
ausbildungstechnisch mit dem
Plussport Behindertensport Schweiz zusammen .

Und .
3 . Für die Sommer Deaf Olympics 2017
standen mehrere Städte zur Auswahl ,
nämlich Barcelona , Buenos Aires und Ankara .

Table 6: Sample outputs in the translation of the devel-
opment set by the DFKI-MLT.3 system.

formance varies depending on the size of the 3D
ResNet model. The smallest models seem to per-
form better across metrics and therefore we use
ResNet10_3D in our submissions.

The low scores obtained with all our models cor-
respond to a system that simply matches the most
frequent words like "Die", "Der", "Und" as illus-
trated in Table 6. The rest of the generated sentence
is a series of <UNK> tokens that are removed after
decoding. We observe that training passes through
some remarkable steps. It starts to output the most
frequent words repeatedly, 1-grams, and as train-
ing advances the system starts to predict higher
n-grams. In our experiments, the model stayed at
the 1-gram stage.

We submitted 5 runs to the shared task, three
of them using ResNet10_3D and the parameters
are provided in Table 1. DFKI-MLT.1 was created
with our main system using a checkpoint before
the end of the training, DFKI-MLT.2 is the best
checkpoint. We realized that both submissions had
encoding issues and contain <UNK> tokens. We

therefore sent a follow-up submission for DFKI-
MLT.2, DFKI-MLT.3, containing the corrected for-
mat and without <UNK> tokens. As its transla-
tion quality was not even 0.5 BLEU points in the
leaderboard, which may be less than a random walk
from the vocabulary, we sent random walk results
with repetitions (DFKI-MLT.4 and DFKI-MLT.5)
to compare the performance.

A preliminary automatic evaluation has been
made available by the organizers and it is shown in
Table 5. Our final submission reached 0.11± 0.06
BLEU, 6.3 ± 0.4 chrF2++ and 0.083 ± 0.008
BLEURT, where confidence intervals are at 95%
level. Results are therefore not statistically bet-
ter than the baseline at 95% level. Interestingly,
according to BLEURT, the random walk though
the vocabulary is not significantly worse than the
combination of 3D CNNs and Transformers.

In general, translation quality is always very bad,
but results are slightly better for the FocusNew sub-
set. FocusNews’ input videos are shorter and this
might imply a better alignment between videos and
subtitles, improving the training. Some of our test
outputs contain repetitions of (parts of) sentences
from FocusNew dataset. Since this subcorpus is
dominant in the final training (Table 2) the sys-
tem is biased towards its vocabulary and this also
explains the better performance in its subtest.

5 Conclusion

This paper presented an overview and some in-
sights on spatio-temporal sign language representa-
tion which were used in the DFKI-MLT submission
for the WMT-SLT 2022 shared task. To achieve our
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goal of building a fully end-to-end sign language
model, we worked closely on the representation
learning of visual features. Most of previous tech-
niques for SLT simplify the feature representation
by extracting spatial features and not benefiting
from temporal features. This choice is motivated
by the lack of temporal boundaries in sign language
videos. To extract spatio-temporal features one can
use 2D + 1D CNN approaches but this does not
allow a fully end-to-end training as it still requires
pretraining in another well-resourced task like ob-
ject classification. In order to construct a specific
representation model for SL and learn temporal
modeling in a single model, we choose 3D CNNs
and trained them from scratch simultaneously with
the textual counterparts.

The translations produced by this architecture
are very short and output only high frequency to-
kens; in few cases, full fluent and grammatical sen-
tences are constructed but their meaning unrelated
to the source. The generation of short sentences
might be a limitation of our approach that builds a
sentence representation with an output conversion
method that does not split a sentence in subunits
that can be weighted by the Transformer’s attention
mechanism to generate the output.

However, all the systems in this shared task’s
leaderaboard have translation scores close to zero.
This shows the extreme difficulty of SLT and how
bad current systems generalize to new data sets. We
believe that system comparisons with such a bad
translation quality do not allow to extract meaning-
ful conclusions. In our future work, we investigate
on different temporal modeling coupled with the
3D CNNs approach to further pursue the goal of
developing a high-quality end-to-end system.
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Maja Popović. 2017. chrF++: words helping charac-
ter n-grams. In Proceedings of the Second Confer-
ence on Machine Translation, pages 612–618, Copen-
hagen, Denmark. Association for Computational Lin-
guistics.

Matt Post. 2018. A call for clarity in reporting BLEU
scores. In Proceedings of the Third Conference on
Machine Translation: Research Papers, pages 186–
191, Belgium, Brussels. Association for Computa-
tional Linguistics.

Thibault Sellam, Dipanjan Das, and Ankur Parikh. 2020.
BLEURT: Learning robust metrics for text genera-
tion. In Proceedings of the 58th Annual Meeting of

981



the Association for Computational Linguistics, pages
7881–7892, Online. Association for Computational
Linguistics.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, Ł ukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. In Advances in Neural Information Pro-
cessing Systems, volume 30. Curran Associates, Inc.

Limin Wang, Yuanjun Xiong, Zhe Wang, Yu Qiao,
Dahua Lin, Xiaoou Tang, and Luc Van Gool. 2019.
Temporal segment networks for action recognition
in videos. IEEE Trans. Pattern Anal. Mach. Intell.,
41(11):2740–2755.

982



Proceedings of the Seventh Conference on Machine Translation (WMT), pages 983–988
Abu Dhabi, December 7–8, 2022. ©2022 Association for Computational Linguistics

Experimental Machine Translation of the Swiss German Sign Language via
3D augmentation of body keypoints

Lorenz Hufe and Eleftherios Avramidis
German Research Center for Artificial Intelligence (DFKI Berlin)
Speech and Language Technology, Alt Moabit 91c, 10559 Berlin

lorenz.hufe@web.de, eleftherios.avramidis@dfki.de

Abstract

This paper describes the participation of DFKI-
SLT at the Sign Language Translation Task of
the Seventh Conference of Machine Translation
(WMT22). The system focuses on the trans-
lation direction from the Swiss German Sign
Language (DSGS) to written German. The orig-
inal videos of the sign language were analyzed
with computer vision models to provide 3D
body keypoints. A deep-learning sequence-to-
sequence model is trained on a parallel cor-
pus of these body keypoints aligned to writ-
ten German sentences. Geometric data aug-
mentation occurs during the training process.
The body keypoints are augmented by artificial
rotation in the three dimensional space. The
3D-transformation is calculated with different
angles on every batch of the training process.

1 Introduction

Despite the enormous progress of the Machine
Translation (MT) of spoken (and written) lan-
guages, the MT of sign languages is in a very early
stage (Yin et al., 2021; De Coster et al., 2022). Two
major challenges are (a) the multimodal and mul-
tilateral nature of the sign languages and (b) the
lack of data. On the one side, the multilateral and
multimodal nature of the sign languages requires
deep-learning topologies that differ substantially
from the ones used in text-based MT. On the other
side, the lack of data makes difficult the utiliza-
tion of end-to-end deep learning algorithms, which
usually require vast amounts of data. As a result,
deep-learning experiments have been executed for
very few sign languages (e.g. German Sign Lan-
guage, DGS; American Sign Language, ASL) and
narrow domains (e.g. weather forecasts), leaving
open questions on the generalization of the meth-
ods to other sign languages and broader domains.

This year’s Sign Language Translation (SLT)
Task of the Seventh Conference of Machine Trans-
lation (WMT22) is contributing significant to this

direction, by adding a new language pair (Swiss
German Sign Language - DGSG - to German) and
allowing extensive experimentation from several
participants on the same dataset.

Our system uses computer vision models to ana-
lyze the sign language videos into body keypoints
and uses these keypoints as the source-side input
of the neural MT transformer, allowing to perform
data augmentation via geometrical augmentations.
Despite the difficulty of this shared task and the low
results obtained, we publish this paper as a techni-
cal report, with the hope that it can contribute to
the further research of this direction.

The rest of the paper is organized as following.
Section 2 positions our contribution amidst related
work. Section 3 describes the methods for training
the system and Section 4 the technical set-up of the
experiment. Section 5 provides and discusses some
results, while Section 6 gives some conclusion and
ideas for further work.

2 Related Work

Latest work on MT of sign languages has shown
significant improvements using deep learning meth-
ods from the fields of computer vision and MT.
State of the art work (Camgöz et al., 2018; Yin
and Read, 2020; Camgöz et al., 2020; Zhou et al.,
2022) employees transformers, which are given
frame embeddings extracted from the videos of the
signers.

Contrary to the use of pixel-based frame em-
beddings, Nunnari et al. (2021) suggests to use
body keypoints from the hands, the skeleton and
the face as input to the transformers. This requires
to split the translation pipeline into a first phase,
recognizing 3D keypoints from videos, and has the
advantage that they can be augmented by applying
transformation techniques. Our paper presents an
implementation of that idea, applied to the case of
DSGS.

The use of body keypoints has been considered
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Figure 1: Mediapipe is used to extract sparse keypoint representations of the signer. The nature of the resulting 3D
data allows for rotation, translation and shearing using matrix multiplication at virtually no cost.

by Gan et al. (2021), where skeleton pose infor-
mation is processed together with the video frame
input. Ko et al. (2018, 2019) use 2D coordinates of
body keypoints to train the neural MT systems,
but contrary to our work, they do not perform
any geometrical transformations to the keypoints.
Moryossef et al. (2021) analyze the applicability
of the pose estimation systems to sign language
recognition by evaluating the failure cases of the
recognition models.

3 Method

Our system consists of three modules. The first
module converts images of the signer into interme-
diate keypoint representations. The second module
employs data augmentation to increase sample effi-
ciency and decrease the effect of spurious feature
correlations. Spurious data correlation in high di-
mensional spaces can lead to Clever Hans effects
(Kauffmann et al.). The last module is the trainable
transformer that translates from keypoint represen-
tation to German text, while interacting with the
augmentation module.

3.1 Keypoint extraction

There are multiple reasons to believe that keypoint
representations could prove beneficial in SLT. Only
few and small datasets are available for SLT. That
is because firstly there are only few known data
sources for SL. Secondly the data transcription for
SL needs expert knowledge which is costly and
hard to find. Thirdly SL data inherently needs video
footage of signing human, which makes anonymisa-
tion near impossible thus leads to privacy problems
when detecting new potential data sources.

A end-to-end SLT pipeline needs to make sense
of the movement of the human signer and translate
these motions into written language. Practically
speaking this means the pipeline internally needs

to learn two tasks on limited data. However only
the translation task depends on the costly and lim-
ited SLT datasets, while the task of detecting the
motion could be eased by employing pose estima-
tion which is not specific to SLT and therefore is
more explored and cheaper in terms of data acqui-
sition.

The extraction of the keypoints was done by
using the computer vision models of MediaPipe
Holistic (Grishchenko and Bazarevsky, 2020)
which combines three pre-trained computer vision
pipelines that detect the hand keypoints (Medi-
aPipe Hands; Zhang et al., 2020), the keypoints
of the body pose (BlazePose; Bazarevsky et al.,
2020), and a keypoint mesh for the face (Blaze-
Face; Bazarevsky et al., 2019).

When data points were missing, the values were
substituted by zero values.

3.2 Geometrical transformation
The geometrical transformation is applied during
the training process of the transformer model. For
every iteration of the training process, the 3D key-
points are given to the geometrical transformation
module. This returns the co-ordinates of the orig-
inal keypoint mesh after being rotated. The 3D
keypoints get rotated around the x, y and z axis by
some angle Rx, Ry and Rz respectively, using rota-
tion matrices. First, the rotation around the x-axis
takes place, followed by y and then the z axis.

The rotation angle is drawn at random at every
training iteration, such that every batch is rotated
to a different setting. The angle of the rotation is
limited to a particular range, which makes sense for
the particular axis. Rx is drawn from [-60°, +60°]
while Ry and Rz are drawn from [-10°, +10°].

3.3 Sequence-to-sequence model
The sequence-to-sequence model is based on a
NMT transformer model similar to (Camgöz et al.,
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2018). We provide the network the keypoint rep-
resentation, by concatenating all mediapipe key-
points and then flattening them into a 708 dimen-
sional vector. The target language is the Swiss
German text.

4 Experiment setup

The experiment took place using only the corpora
FocusNews, as provided by the shared task orga-
nizers, including keypoints precomputed with Me-
diaPipe. Due to time restrictions, the SRF corpus
was not used, since it did not provide any key-
points. The training set had 10,136 sentences, the
validation set 420 sentences and the test set 488 sen-
tences. Due to problems with the keypoint-subtitle
alignment only 393 of the 420 sentences of the
validation set were used.

For training the model we modified the NMT
toolkit JoeyNMT1 (Kreutzer et al., 2019), extend-
ing the SLT branch created by Camgöz et al. (2020).
We followed the text pre-processing of the previous
implementation, which included text lowercasing.
The geometrical transformations were done with
array computations using NumPy (Harris et al.,
2020). The automatic evaluation metrics were com-
puted using SacreBLEU (Post, 2018).

In order to optimize the system we ran several
experimental rounds. The training parameters for
all rounds can be seen in Table 2. The experimen-
tal rounds were run by modifying the following
parameters:

• max. rotation: The maximum angle for the
random rotation that took place for every it-
eration. A max. rotation of 10° here means
that for every iteration batch, a random degree
value within [-10°, +10°] was drawn.

• patience: The learning rate scheduler stops
when no significant progress is measured
with the evaluation metric, after a number of
epochs. This parameter defines how patient
the scheduler is in that regards.

• LR scheduler metric: The metric used for
measuring the progress on the validation set.

• layers: The number of layers for the encoder
and the decoder of the transformer.

5 Results

As part of our parameter we ran 5 experimental
rounds which are shown in Table 1. Due to time

1Our code is available at https://github.com/
DFKI-SignLanguage/slt under Apache 2.0 License

Figure 2: Overview over the translation sentence fre-
quencies over the dev set

limitations it was not possible to experiment with
the full spectrum of parameters, including ablation
tests which would indicate the contribution of pos-
sible parameter values. Even in that case, the very
low metric scores would not lead to more signifi-
cant conclusions.

From the first experiments it was obvious that
the use of BLEU-4 as a validation metric could not
contribute to the optimization, because its values
are always zero and also the training time was very
short. For this reason we chose ChrF as validation
metric for our last two experiments. Increasing
the patience deemed necessary, so that the training
mechanism can get enough random samples from
the augmentation process. For our best iteration we
experimented with both 3 and 4 layers, resulting
into slightly better performance with the 4 layer
setting.

In overall, the results of our experiments, as mea-
sured by automatic metrics, showed very low per-
formance. No version of our pipeline could achieve
non-zero BLEU-4 score on the provided develop-
ment set, meaning that no n-gram of order 4 was
correctly matched between the hypothesis and the
reference. The experiments measured with BLEU-
3 and ChrF indicate as better run the configuration
with 60 degrees rotation range at the X axis, 10
degrees on the other axes, and a patience of 500.
When analyzing the output on the validation set
we found that for the 393 different sentences of
the validation set, only 15 different translations
were repeatedly produced as highlighted in figure
2 and listed in Appendix A. The two most common
translations make up for 92% of the cases. This be-
haviour suggests that the model learned two main
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max rotation +/- (°) LR scheduler scores
x y z patience metric layers BLEU-3 BLEU-4 ChrF runtime (h)

10 10 10 25 BLEU 4 0,28 0,00 15,36 00:21
10 10 10 50 BLEU 4 0,28 0,00 15,36 00:31
60 10 10 50 BLEU 4 0,00 0,00 17,58 00:24
60 10 10 500 ChrF 3 0,310 0,00 16,08 07:44
60 10 10 500 ChrF 4 0,314 0,00 16,43 04:14

Table 1: Overview over the results on the validation set when employing different settings.

parameter value

feature size 708
max sentence len. 400
dropout 0,1
FF size 2048
heads 8
embeddings dim. 512
hidden size 512
optimizer adam
batch size 32
random seed 42
weight decay 0,001
learning rate 0,001
validation freq. 100
beam size 1
beam alpha -1
translation max len. 30

Table 2: Training parameters

prototype translations and is not sensitive to the
input when translating.

6 Conclusion and Further Work

Due to the poor results, very little can be concluded
about the effect of the proposed geometric augmen-
tation strategy. As suggested by the preliminary
results of the shared task (Müller et al., 2022) no
group was able to achieve good results on the task.
Unfortunately, due to the strict workshop timeline
we could not perform further experiments to empir-
ically prove the causes of this low performance. We
are planning to do this in future work, including an
ablation study of the different modules and a com-
parison with the state-of-the-art on other datasets.
Further research should be invested in exploring the
possible use cases for geometric data augmentation
in MT of SL.
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Appendix

A Translations

0. **Empty**
1. die eltern sind sehr engagiert und kämpfen für

die pille verbieten.
2. das ziel der konferenz sind vorträge von swiss-

com zu zeigen, dass diese kinder noch nicht
gebärdensprache.

3. das ziel der konferenz sind vorträge von swiss-
com zu zeigen, dass diese kinder noch nicht
zugänglich.

4. das ziel der konferenz sind vorträge von swiss-
com zu zeigen, dass sie sich nicht mit einer
behinderung einsetzen.

5. die postverteilungs-firma
6. bis zum nächsten mal.
7. die eltern sind sehr engagiert und kämpfen für

die gebärdensprache, ihre tochter hat.
8. das ziel der swisscom ist eine optimale be-

ratung und einen guten service anzubieten.
9. die gehörlosen kinder freuten sich sehr, da sie

alles verstanden und somit integriert geschult
integriert geschult werden schulen sollen.

10. die eltern sind gehörlos.
11. die eltern sind sehr engagiert und kämpfen für

die hochschule.
12. die forscher meinen, dass kinder mit cochlea-

implantate über eine genauso gute lebensqual-
ität wie hörende kinder verfügen, ohne psy-
chosoziale folgen.
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13. die eltern sind sehr engagiert und kämpfen
für die gebärdensprache, ihre kultur und ihre
rechte.

14. die voraussetzungen für diese stelle sind ein
kürzlich abgeschlossenes hochschulstudium
sowie die bereitschaft, arbeiten im sinne der
gleichstellung zu schreiben.
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Abstract

We describe TTIC’s model submission to
WMT-SLT 2022 task (Müller et al., 2022) on
sign language translation (Swiss-German Sign
Language (DSGS) → German). Our model
consists of an I3D backbone for image encod-
ing and a Transformer-based encoder-decoder
model for sequence modeling. The I3D is pre-
trained with isolated sign recognition using
the WLASL dataset. The model is based on
RGB images alone and does not rely on the
pre-extracted human pose. We explore a few
different strategies for model training in this
paper. Our system achieves 0.3 BLEU score
and 0.195 Chrf score on the official test set.

1 Introduction

Sign language, a full-fledged natural language that
conveys meaning through gestures, is the primary
chief of communication among Deaf people. Sign
language translation is a task for automatically
translating sign languages into written languages.
Due to its widespread potential applications, it has
recently received growing research interest (Cam-
goz et al., 2018, 2021).

Existing methods for sign language translation
are primarily based on gloss, a transliteration sys-
tem annotating sign language with symbols from
written language. Utilizing gloss usually boosts
the performance of current translation systems by
a large margin. In the widely used German sign
language translation benchmark Phoenix14T (Cam-
goz et al., 2018), state-of-the-art gloss-based mod-
els (Chen et al., 2022) are roughly 15 points better
(in Bleu-4) than gloss-free models (Camgoz et al.,
2018). However, gloss is more expensive to anno-
tate than written language translation. There have
been relatively few amounts of studies for gloss-
free sign language translation. Specifically, Orbay
and Akarun (2020); Shi et al. (2022) utilize local
visual features (e.g., hands) to enhance the transla-
tion performance. Those systems require domain-

specific training data (e.g., labeled handshape data
used in Orbay and Akarun (2020)), which is not
always accessible for the target sign language. The
fusion of visual features at different scales also
increases the complexity of the modeling pipeline.

In this paper, we study a simple model for sign
language translation between DSGS and German
in a gloss-free setting. Our model uses a 3D convo-
lutional network for visual feature extraction and a
Transformer-based encoder-decoder for sequence
modeling. It is built on raw RGB images rather
than pose keypoints, thus avoiding potential mis-
takes from pose estimation and remaining fast in
inference. We further study the impact of hyper-
parameters and different pretraining strategies on
translation quality. Without ensembling, our model
achieves 0.3 Bleu score and 0.195 Chrf score on
the official test set.

2 Method

In this section, we describe our method for sign
language translation. Our model consists of an In-
flated 3D ConvNet (I3D) (Carreira and Zisserman,
2017) for visual encoding and a Transformer-based
encoder-decoder model (Vaswani et al., 2017) for
sequence modeling, which are described respec-
tively below.

I3D I3D (Carreira and Zisserman, 2017) is a
3D convolutional neural network proposed in ac-
tion recognition. I3D has previously been explored
in sign language processing (Albanie et al., 2020;
Li et al., 2020; Vaezi Joze and Koller, 2019) and
achieved competitive performance in isolated sign
recognition (Li et al., 2020). More formally, given
a sequence of image frames I1:T , the I3D model
Mv encodes them into a sequence of visual fea-
tures f1:T ′ : f1:T ′ = Mv(I1:T ), where T and T ′

respectively denote the length of video and visual
feature sequence. Note due to the temporal stride
in convolutional kernels of I3D, T ′ is not equal to
T and is usually several factors smaller.
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To encourage the visual encoder Mv to capture
more signing-related visual cues (e.g., arm move-
ment, handshape, and so on), we pretrain the I3D
model with isolated sign recognition on WLASL,
a large-scale dataset consisting of isolated Ameri-
can sign language (ASL) signs. Though ASL and
DSGS are two different sign languages, visual fea-
tures regarding body movement are shared. Empir-
ically, we observed considerable gains in isolated
sign pretraining. For computational efficiency, the
pretrained I3D network Mv is frozen in translation
model training.

Transformer-based encoder-decoder
We employ a Transformer-based encoder-
decoder (Vaswani et al., 2017) model M(s)

to decode visual feature f
(v)
1:T ′ into text w1:N :

w1:N = M(s)(fv1:T ). Ms is a standard sequence-
to-sequence model widely used in machine
translation (Vaswani et al., 2017; Barrault et al.,
2020; Akhbardeh et al., 2021). Thus we only
briefly review it here and a more detailed de-
scription can be found in Vaswani et al. (2017).
Our sequence-to-sequence model Ms includes a
Transformer encoder and Transformer decoder,
which are joined via attention. Specifically, the
Transformer encoder transforms the visual features
fv1:T into e1:T by injecting temporal information
based on self-attention and positional embedding.
The Transformer decoder generates token sequence
w1:N in an auto-regressive manner while attending
to the encoder output e1:T through the attention
mechanism.

Training loss We use cross-entropy loss for
model training. More formally, given the trans-
lation pair (I1:T , ŵ1:N ), suppose the model outputs
probability vector p(·|I1:T , ŵ1:n−1) at decoder step
n. The loss is then computed as

l = −
N∑

n=1

log p(ŵn|I1:T , ŵ1:n−1) (1)

Inference At test time, we use beam search for
decoding image sequence I1:T . The beam width
and length penalty are hyperparameters tuned using
the development set.

3 Experimental Setup

Data We use FocusNews and SRF data to train our
translation model. Both FocusNews and SRF con-
sist of DSGS-German pairs, which include 19 and
16 hours (10,136 and 7,071 sequences) of DSGS

videos, respectively. The two datasets differ in mul-
tiple aspects. For example, FocusNews are live
signing from teleprompters by deaf signers based
on news from 2008 to 2014, whereas SRF dataset
contains news videos from 2020 to 2021 which
is interpreted into DSGS by hearing interpreters.
Both datasets are incorporated into training. Note
that frame rates in videos of FocusNews and SRF
differ, we feed the raw videos in FocusNews and
SRF without frame rate conversion. To pretrain the
visual encoder, we use WLASL (Li et al., 2020), a
large-scale isolated sign dataset including ∼ 21k
pairs of American sign language video clips and
English words.

Training We use sentencepiece unigram tok-
enizer (Kudo, 2018) to tokenize the German trans-
lation. The number of subword units is tuned to
18,000 We use a 2-layer Transformer with 512 hid-
den dimensions and 2048 hidden dimensions for
both encoder and decoder. A dropout layer with
a zeroing probability of 0.1 is added between the
self-attention layer and the feedforward network.
The model is trained with Adam (Kingma and Ba,
2015) for 18K steps at a batch size of 32. The
learning rate is linearly increased to 0.0008 for
2K steps and decayed to 0 in the remaining steps.
The visual backbone I3D is pretrained on WLASL
and frozen during translation model training. Dur-
ing isolated sign training, we initialize I3D from
a model trained on the action recognition dataset
Kinetics (Carreira and Zisserman, 2017). We use
SGD with a 0.9 momentum value to train the model
for 50 epochs at a batch size of 4. The initial learn-
ing rate is 0.001 and is halved if accuracy on the
validation set does not increase for 3 epochs. Be-
fore feeding into I3D, each isolated sign video is
truncated to a 64-frame clip, which is padded with
all-zero frames if the length is shorter than 64. Each
image frame is resized to 240×240. It is randomly
cropped to 224× 224 and horizontally flipped at a
probability of 0.5 in training. At test time, we only
center cropping to every image frame.

Evaluation We evaluate the system using BLEU-
{1,2,3,4} (Lin, 2004) and ROUGE (Lin, 2004)
scores.

4 Experimental Results

In this section, we report results and conduct some
analyses of the translation model on the develop-
ment set.
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Hypothesis Reference Bleu-4

das der stand der dinge im moment.
gibt es eine grosse aufsp. das der stand der dinge im moment. 51.56

(that’s the state of things at
the moment. is there a big sp.)

(that’s the state of things at
the moment.)

mit live-untertiteln von swiss txt guten abend,
meine damen und herren, willkommen zur

"tagesschau"

guten abend, meine damen und herren,
willkommen zur "tagesschau". 51.42

(with live subtitles from swiss txt
good evening, ladies and gentlemen,

welcome to the "tagesschau")

(good evening, ladies and gentlemen,
welcome to the "tagesschau".)

die armee muss ihre arbeit nicht mehr einmal. doch die bevölkerung macht nicht mit. 0.00
(the army doesn’t even have to do

its job anymore.) ( but the population does not participate.)

die französischen roben programm speziell
für gehörlose.

bei auf der webseite des sportverbandes
können detailliertere informationen

nachgelesen werden.
0.00

(the french robes program especially
for the deaf.)

(more detailed information can be
found on the website of the

sports association.)

Table 1: Qualitative examples produced by our translation system. The sentence within () is the corresponding
English translation.

4.1 Main Results

Table 2 shows the performance of our model on
the development set compared to the Sockeye base-
lines reported from the official repo (Müller et al.,
2022). Our model outperforms Sockeye baselines,
which are models based on the pre-extracted hu-
man pose. However, the overall values in different
metrics are very low. We further show translation
examples produced by our model (see Table 1).
We noticed the phrases that are translated correctly
by our model are usually duplicate phrases fre-
quently appearing in training (e.g., willkommen
zur "tagesschau"). For most of the sentences, the
model is unable to capture its meaning generally
though many predictions are grammatically correct.
Such observation shows that large-vocabulary sign
language translation is very challenging.

Train Data Rouge B1 B2 B3 B4

Sockeye (Müller et al., 2022) FN - - - - 0.21
Sockeye (Müller et al., 2022) Srf - - - - 0.59
Sockeye (Müller et al., 2022) FN,Srf - - - - 0.15

Ours FN,Srf 7.92 8.36 2.92 1.55 1.02

Table 2: Performance of our model on development set.
The Sockeye baselines are from the official repo (Müller
et al., 2022). FN: FocusNews

4.2 Hyperparameter Tuning

Among the set of hyperparameters, we find that
the following two hyperparameters have the most
significant effect on translation performance: learn-
ing rate and the number of layers. We detail their
impact on model performance below. Other hyper-
parameters (e.g., dropout, learning rate schedule)
are also tuned in our experiments. However, their
impact is relatively negligible and thus not detailed
in the paper.

Learning rate We tuned the learning rate among
{0.001, 0.002, 0.004, 0.008, 0.016}. As is shown
in Table 3, increasing the learning rate consistently
improves the model performance across all the met-
rics. The benefit plateaus around 0.008, which is
the optimal value among the set of values we con-
sider.

Number of layers We further tuned the number
of Transformer layers (see Table 4). We keep the
number of encoder and decoder layers the same and
set the hidden/feedforward dimension to 512/2048
in the corresponding experiments of Table 4. In-
creasing number of transformer layers degrades the
performance. This is probably because the 3D con-
volutional kernels of I3D capture some temporal
relations in the video, which reduces the reliance of
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LR Rouge B1 B2 B3 B4

0.001 7.82 8.38 2.51 1.21 0.76
0.002 6.85 7.25 2.22 1.05 0.69
0.004 6.86 6.08 2.22 1.18 0.82
0.008 7.92 8.36 2.92 1.55 1.02
0.016 7.54 6.11 2.27 1.35 1.01

Table 3: Impact of learning rate on translation perfor-
mance

the whole model on Transformer modules to cap-
ture sequential information. Furthermore, larger
models (i.e., more layers) usually require more
training data. The total amount of sign language
videos (35 hours) is probably insufficient to train a
deep transformer encoder-decoder.

# Layer Rouge B1 B2 B3 B4

2 7.92 8.36 2.92 1.55 1.02
4 7.10 7.01 2.31 1.21 0.82
6 6.17 7.32 1.55 0.52 0.24

Table 4: Impact of Transformer layers on translation
performance

4.3 Effect of I3D pretraining

The I3D backbone is pretrained on WLASL. Here
we compare three options of I3D pretraining:
WLASL, BSL-1K, and Kinetics-400. BSL-1K is
a coarticulated sign dataset of 1064 British sign
language (BSL) signs (273K video clips in total),
collected from BBC videos interpreted into BSL.
Kinetics (Carreira and Zisserman, 2017) is the ac-
tion recognition dataset with 650K videos from 400
human action categories. As is shown in Table 5,
pretraining with sign-language specific datasets
(WLASL, BSL-1K) consistently outperforms pre-
training with general human action videos (Kinet-
ics). This is expected as signing-related visual cues
(e.g., handshapes), essential for sign language trans-
lation, are better captured in isolated sign datasets.
Pretraining with WLASL achieves better results
than BSL-1K. Though BSL-1K contains an overall
larger number of video clips than WLASL (21K vs.
273K), it has fewer unique signs (1064 vs. 2000).
This probably suggests that a sign language corpus
with more signing categories will be more benefi-
cial to sign language translation compared to its
counterpart with fewer signs.

PT Data Rouge B1 B2 B3 B4

WLASL 7.92 8.36 2.92 1.55 1.02
BSL-1K 6.88 6.19 1.86 0.84 0.69
Kinetics 5.05 4.18 1.02 0.65 0.41

Table 5: Impact of Transformer layers on translation
performance

5 Conclusion

This paper describes TTIC’s DSGS-German trans-
lation system submitted to the WMT-SLT 2022
challenge. Our model consists of an I3D model for
visual feature extraction and a Transformer-based
encoder-decoder for sequence modeling. The sys-
tem is based on RGB images alone and remains
conceptually simple. Our experiments show that
pretraining the visual frontend with isolated sign
recognition helps achieve better translation perfor-
mance. However, the overall translation quality is
still in a very low regime. Our future work includes
combining pose and RGB-based models for sign
language translation.
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Abstract

This paper describes the system developed at
the Universitat Politècnica de Catalunya for
the Workshop on Machine Translation 2022
Sign Language Translation Task, in particular,
for the sign-to-text direction. We use a Trans-
former model implemented with the Fairseq
modeling toolkit. We have experimented with
the vocabulary size, data augmentation tech-
niques and pretraining the model with the
PHOENIX-14T dataset. Our system obtains
0.50 BLEU score for the test set, improving
the organizers’ baseline by 0.38 BLEU. We re-
mark the poor results for both the baseline and
our system, and thus, the unreliability of our
findings.

1 Introduction

The submission of the Universitat Politècnica
de Catalunya (UPC) to the WMT22 Sign Lan-
guage Translation (SLT) Task experimented with
vocabulary size, data augmentation techniques
and a pretrained system with the PHOENIX-14T
dataset (Camgoz et al., 2018). Up to the author’s
knowledge, our implementation is the first to build
on Fairseq, a popular modeling toolkit by Meta
AI (Ott et al., 2019).

SLT is a highly complex task because sign lan-
guage understanding requires a very precise esti-
mation of the signer pose, especially, of its hands.
In addition, sign languages have grammatical struc-
tures different from spoken languages, which pre-
vents an easy knowledge transfer. Sign languages
are represented in continuous and high-dimensional
spaces, while the transcribed version of spoken lan-
guages are represented by discrete tokens of well-
defined vocabularies. Moreover, the few available
sign language datasets can be considered very low-
resourced, as they typically contain less than one
hundred thousand sentences (Goyal et al., 2022).

∗∗Equal contribution

In particular, the total number of sentences from
the two datasets provided in WMT-SLT22 is 17k.

We focus on the sign language translation task
of WMT-SLT22 which requires participants to pre-
dict the translation in spoken language (written)
from a sign language video. Specifically, it consists
of translation from Swiss German Sign Language
(DSGS) videos to German (DE) text.

The organizers of WMT 2022 SLT track pro-
pose a Transformer baseline (Müller et al., 2022)
that achieves a very low BLEU (Papineni et al.,
2002) score,1 which indicates a very poor transla-
tion quality. The training data provided consists of
two datasets: FocusNews (Müller et al., 2022b) and
SRF (Müller et al., 2022a). The first one contains
197 episodes in DSGS that have an average length
of 5 minutes, which amount for a total duration of
19 hours. The second dataset contains 29 videos
from live sign language interpretation, that have an
average of 30 minutes length, and totals a duration
of 16 hours. The paired subtitles are given in Stan-
dard German from Switzerland, which is a dialect
of German.

The organizers provide keypoints extracted with
two off-the-shelf human pose estimators: Open-
Pose (Cao et al., 2019) and MediaPipe (Lugaresi
et al., 2019).

2 Baseline system

For the sake of self-containment, we briefly define
and discuss the baseline model proposed by the
organizers for this task (Müller et al., 2022). This
solution is built on sockeye (Hieber et al., 2017),
with results for the official development (dev) par-
tition.

Regarding the model implementation, they use a
Transformer encoder-decoder, with a symmetrical
number of layers for the encoder and decoder. The
architecture has 6 layers, 8 heads, 2048 neurons in

1For simplicity, we refer to BLEU-4 score as BLEU score.
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the feed forward network layers, and an embedding
dimension of 512.

The input data are 2D OpenPose keypoints, con-
catenating the hands and body landmarks. This re-
sults in an array X = x0, . . . , xT where xt ∈ R2K ,
K is the number of keypoints selected, and T the
number of video frames.

Three baseline results were provided by the
WMT-SLT22 organizers, shown in Table 1. The
first two scores correspond to the models trained in-
dividually with each of the two benchmark datasets.
The last result is from a model trained on both
datasets, which obtains the lowest performance.
We hypothesize this might be due to a domain shift
between the FocusNews and SRF datasets. These
BLEU scores are extremely low, as already noted
by Müller et al. (2022). As a comparison, the SLT
state-of-the-art BLEU score for PHOENIX-14T
dataset (Camgoz et al., 2018) is 25.59 (Voskou
et al., 2021) and for the How2Sign dataset (Duarte
et al., 2021) is 1.25 (Duarte et al., 2022).

Train dataset BLEU

FocusNews 0.216
SRF 0.589
FocusNews + SRF 0.157

Table 1: Results provided by the organizers for the
official dev partition, which contains FocusNews + SRF
samples. Scores on test partition, which also contains
FocusNews + SRF samples, were not released by the
organizers.

3 Method

Our submission also adopts a Transformer archi-
tecture, which we implement with the Fairseq se-
quence modeling toolkit (Ott et al., 2019). Up to
the author’s knowledge, this is the first time that
Fairseq is used for sign language video understand-
ing. We publish our source code 2, offering the SLT
community a novel tool widely used in machine
translation for spoken languages. On top of this,
we experiment with the vocabulary size, data aug-
mentation techniques and pretraining the system
with PHOENIX-14T dataset. Details are described
in this section.

3.1 Preprocessing steps

The WMT-SLT22 organizers provide both Open-
Pose and MediaPipe keypoints from the body pose

2https://github.com/mt-upc/fairseq/tree/wmt-slt22

estimators. We choose MediaPipe poses because
they provide 3D coordinates (x, y, z) normalized
between [0, 1]. Moreover, based on our experience,
OpenPose is more prone to errors, like detecting
several people in videos when there is only one
signer in the recording.

Although MediaPipe poses are available from
WMT-SLT22, we re-extract them with pose-
format (Moryossef, 2022). This library defines
a standardized way of storing poses, and provides
different functionalities to work with them. After
the extraction, we obtain an array with the same
shape as described in Section 2.

While the video recordings in the SRF dataset
have a rate of 25 frames per second (fps), the Fo-
cusNews dataset present a frame rates of either 25,
30 or 50 fps. We perform cubic interpolation for
the extracted poses, to achieve a unified frame rate
of 25fps, using the interpolate_fps function from
pose-format.

We build an independent vocabulary with the
training split of each dataset. For the SRF dataset,
organizers provide parallel and monolingual data.
The latter contains all German subtitles, including
much more sentences than the former. Therefore,
we choose to build our SRF vocabulary from the
monolingual data. Note that this data does not have
paired (or parallel) videos, so it can not be used for
training the model.

3.2 Architecture
We build a smaller Transformer architecture than
the WMT-SLT22 baseline, since we observed signs
of overfitting when checking the training losses.
With the baseline architecture the system was sim-
ply generating the most frequent words from the
training set. Therefore, we concluded that training
a smaller model would hinder the overfitting and
might improve the results.

In particular, our Transformer model has a sym-
metrical structure for the encoder and decoder, with
3 layers, 4 heads, 1024 neurons in the feed forward
network layers, and an embedding dimension of
256.

3.3 Data augmentation
The performance of deep learning models depends
on the quality, quantity, and domain of training data,
however datasets that provide all qualities needed
for models are often not available. To diminish
the consequences of the data scarcity, a common
practice is to apply data augmentation techniques.
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This approach is really useful to improve the per-
formance of models, and makes them more robust
to slight changes in the input data.

We made use of the augment2d function from the
pose-format library, which allows applying various
transformations directly to the keypoints, such as
random rotation, shear effect, and scaling. Specifi-
cally, the rotation angle in radians, the shear factor
and the scaling factor we apply are obtained by sam-
pling from a normal distribution with zero mean
and standard deviation of 0.2. Some examples of
augmented poses are shown in Figure 1.

(a) Original (b) Rotation

(c) Scaling (d) Shear

Figure 1: Data augmentation transformations.

3.4 Vocabulary size

State-of-the-art Machine Translation systems use
subword dictionaries instead of word-level vocabu-
laries (Tran et al., 2021; Yang et al., 2021). These
dictionaries are built by decomposing words into
smaller pieces based on their frequency (Sennrich
et al., 2016). Analogously to the baseline approach,
we use SentencePiece tokenizer to obtain the sub-
word vocabulary (Kudo and Richardson, 2018).

The vocabulary size is a hyperparameter that, in
practice, is either chosen arbitrarily or via trial-and-
error (Salesky et al., 2020). However, it has been
studied that using a greater vocabulary size might
help in reducing the class imbalance present in
the training dataset (Gowda and May, 2020). The
baseline used a vocabulary size of 1000 subwords,
and we experiment with 2000 and 4000. Our goal
was to detect whether downsampling a vocabulary
of 20k unique words, for FocusNews dataset, to

1k subwords may be oversimplifying the problem.

3.5 Pretraining with PHOENIX14-T

We also explore transfer learning to overcome the
data scarcity problem. Given that the scope of
WMT22 is on Swiss German Sign Language, we
chose the PHOENIX14-T dataset (Camgoz et al.,
2018). For the three datasets, the target language
is either spoken (written) German or Standard Ger-
man from Switzerland. However, PHOENIX14-T
presents an important domain shift with respect to
the WMT-SLT22 datasets, since it is limited to live
interpretation of weather forecast on broadcast TV.

We pretrained our model with the PHOENIX14-
T dataset. In order to implement the transfer learn-
ing pipeline, we built a vocabulary by merging the
training data from the three available datasets: Fo-
cusNews, SRF and PHOENIX14-T.

3.6 Checkpoint Averaging

We choose the best-performing models as those
with the best BLEU dev scores. However, in the
best-performing cases, and as thee final step in
our trainings, we average the weights of the 3 best
model checkpoints for each run. This methodology,
which was firstly introduced by (Vaswani et al.,
2017), proved to be a useful and easy to imple-
ment technique to generate more robust predictions
on Transformers (Popel and Bojar, 2018), and has
been widely used in the Machine Translation field.

4 Results

We train our systems with FocusNews and SRF. For
both datasets, we provide results for the dev set,
which contains recordings from FocusNews and
SRF. We choose the 6 best-performing models for
dev to submit to the official challenge submission.

Table 2 shows the results of models trained with
FocusNews. We notice an improvement in the per-
formance of our baseline implemented iin Fairseq
with respect to the one from the organizers (1-2).
We then analyze the effect of the vocabulary size
based on the BLEU obtained for the dev set. We
notice that using 4000 subwords provides the best
results in terms of vocabulary size (2-4). Therefore,
we choose this configuration to experiment with
pretraining and data augmentation. For this set of
experiments, we see a slight improvement when
fine-tuning a network that has been pretrained with
the PHOENIX14-T dataset (6). However, adding
data augmentation (5) or a combination of both
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ID System Vocab. Data Pretrain BLEU BLEU
size Augm. (dev) (test)

1 Baseline (Müller et al., 2022) 1k 0.22 -

2 Our Baseline (§3.2) 1k 0.47 0.50
3 2 + 2k subwords 2k 0.47 -
4 2 + 4k subwords 4k 0.62 -

5 4 + data augmentation 4k 0.51 -
6 4 + pretrain w/ Phoenix 4k 0.64 0.41
7 6 + data augmentation 4k 0.48 -

8 6 + checkpoint average 4k 0.57 0.35

Table 2: Results of models trained with the FocusNews dataset. BLEU (dev) corresponds to the results obtained in
the challenge dev set, and BLEU (test) to the results extracted by the organizers using the official test partition (Müller
et al., 2022). In bold are the best results for each partition.

ID System Vocab. Data Pretrain BLEU BLEU
size Augm. (dev) (test)

1 Baseline (Müller et al., 2022) 1k 0.59 0.12

2 Baseline (§3.2) 1k 0.64 -
3 2 + 2k subwords 2k 0.69 0.28
4 2 + 4k subwords 4k 0.63 0.28

5 3 + checkpoint average 2k 0.60 0.24

Table 3: Results of models trained with the SRF dataset. BLEU (dev) corresponds to the results obtained in the
challenge dev set, and BLEU (test) to the results extracted by the organizers using the official test partition (Müller
et al., 2022). In bold are the best results for each partition.

data augmentation and pretraining (7) does not im-
prove the results. Checkpoint averaging does not
bring an improvement either (8). Surprisingly, we
cannot extract the same conclusions from the test
results. After we received the preliminary findings
from the organizers (Müller et al., 2022), we found
that the best-performing model for dev (6) was not
the best for test, but the simplest one (2).

Results of models trained with SRF are pre-
sented in Table 3. Similarly to FocusNews, our
proposed baseline improves the organizers’ in this
dataset (1-2). However, in this case, the optimal
number of subwords is 2000, with a slight improve-
ment over other vocabulary sizes (2-4). Similar to
the FocusNews case, we observe that checkpoint
averaging does not improve results. Due to techni-
cal issues and time limitations, experiments with
SRF are limited to analyzing the vocabulary size,
hence the best experiment with FocusNews could
not be replicated using SRF. Although results for
dev are better for models trained with SRF, results

for test show a poorer performance than Focus-
News models.

We optimized our systems to obtain the best
BLEU metric, without taking other metrics into
consideration. However, organizers also compute
chrF++ (Popović, 2017) and BLEURT (Sellam
et al., 2020) metrics (Müller et al., 2022). We
find that the BLEURT score shows a similar perfor-
mance than BLEU. However, for the chrF++ metric,
which correlates better with respect to human rela-
tive rankings, our models score lower compared to
other submissions.

We provide some examples of the sentences gen-
erated by our best-performing model in Table 4.
We see that the translations are poor and lack cor-
relation with the video, which relates to the poor
overall performance in the BLEU metric.

5 Discussion and Conclusion

We proposed a pipeline to tackle the Sign Language
Translation Task for the newly released datasets:
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Ref.: Letztes Jahr haben viele Gehörlosen-
Medien über die erste Gehörlosen
Universität in Europa in Bad Kreuz-
nach in Deutschland berichtet.

Pred.: Am letzten Samstag, 22. Mai, in
der Schweiz, in der Schweiz, in der
Schweiz, GSC Aarau, GSC Aarau.

Ref.: Dazu sind 4 Politiker eingeladen, die
über für Behinderte wichtige Themen
diskutieren werden, wie zum Beispiel
TV-Untertitel, UNO Konvention für
Behinderte usw.

Pred.: Das Ziel ist es, dass es, dass die
nempflichkeit für die nempflichkeits-
setzen kann.

Ref.: Der Deutsche Fernsehsender ZDF
bietet Filme im Internet mit Unter-
titel an, sofern der Film vorher im
Fernseher mit Untertitel ausgestrahlt
wurde.

Pred.: Der Schweizerische Gehörlosenbund
SGB-FSS organisiert mit dem
Schweizerischen Gehörlosenbund
SGB-FSS, der Gehörlosen Sportver-
band der Gehörlosen Sportverband
der Gehörl osen Sportverband der
Gehörlosen Sportverband der Gehör-
losen Sportverband der Gehörlosen
Sportverband.

Table 4: Example reference and predictions from our
best-performing model for the official dev partition.

Focusnews and SRF. Our fresh implementation
with Fairseq slightly improved the baseline pro-
vided by the organizers.

Our findings showed that when training with
FocusNews, our baseline system has the best per-
formance for test. The changes in vocabulary size
did not affect the test performance. Furthermore,
we showed that using checkpoint averaging does
not help for this task. In all cases, we still think
that the results are extremely low, which indicate a
really poor translation, and there is potential unreli-
ability of the findings due to the close to 0 BLEU
score.

We consider the results we obtained can be fur-
ther improved, so we leave some experiments for
future work. Firstly, we believe that a joint training
from the two provided datasets could boost the per-

formance of the models by bridging the domain gap
between these datasets. Secondly, we did not see
any improvement by pretraining the models with
PHOENIX14-T dataset. However, we think that
solving the WMT-SLT22 task must require some
sort of transfer learning from a pretrained model.

Limitations

As stated by the organizers, results are still poor.
When inspecting the predictions, it seems evident
that the model is learning the most frequent words
in the vocabulary, thus failing to provide meaning-
ful predictions from the video. We consider that
this is due to the high complexity of the task paired
with a lack of data.

Length Words Ratio

FocusNews 19 h 21 k 0.90
SRF 16 h 19 k 0.84

How2Sign 79 h 16 k 4.93
PHOENIX14-T 11 h 3 k 3.67

Table 5: Comparison between SLT datasets based on
the duration of the videos (in hours) and number of
unique words (in thousands) in the vocabulary. The
Ratio column provides an indication of the difficulty of
solving the SLT task for each dataset.

As shown in Table 5, the ratio between the train-
ing data and vocabulary size is much lower com-
pared to other SLT datasets such as How2Sign and
PHOENIX14-T. We take these results as an indi-
cation of the complexity of the datasets. We hy-
pothesize that the low BLEU scores reported in the
baseline, may be caused by the low ratio between
video hours per unique words in the vocabulary,
hence the dataset might be too complex. Therefore,
we decide to experiment with data augmentation
since it artificially improves the amount of training
samples.

Our experiments with the SRF dataset, have been
computationally expensive. Due to technical de-
tails, we have to read full sequences of around 30
minutes every time we load a sample. Processing
them, even with the dimensional reduction pro-
vided by pose estimators, has been a challenge for
the machines of our academic lab. A slightly bet-
ter set of results might have been produced, but
we still think it would not have made a significant
difference.

In addition, we present the input poses as a se-
quence of one-dimensional arrays with the XYZ
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coordinates. We think that this may not be the
optimal way of processing the graph-like structure
from poses. Using graph neural networks to prepro-
cess input poses (Yan et al., 2018, 2019; Bull et al.,
2020; Jiang et al., 2021) might be an interesting
approach to improve SLT results.

We also lacked the time to experiment with other
features, such as processing the RGB videos with
a convolutional network (Vaezi Joze and Koller,
2019; Li et al., 2020; Albanie et al., 2020). We tried
extracting i3d features fine-tuned on PHOENIX14-
T, but the output features contained an excessive
number of 0’s, and we never run a proper experi-
ment with this setup. This might happen because
the visual appearance of the videos is too differ-
ent between PHOENIX14-T and the WMT-SLT22
datasets, specifically due to the spatial segmenta-
tion of the signer in the frames provided in these
datasets.
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Abstract

We participated in the WMT 2022 Large-
Scale Machine Translation Evaluation for the
African Languages Shared Task. This work de-
scribes our approach, which is based on filter-
ing the given noisy data using a sentence-pair
classifier that was built by fine-tuning a pre-
trained language model. To train the classifier,
we obtain positive samples (i.e. high-quality
parallel sentences) from a gold-standard cu-
rated dataset and extract negative samples (i.e.
low-quality parallel sentences) from automat-
ically aligned parallel data by choosing sen-
tences with low alignment scores. Our final
machine translation model was then trained on
filtered data, instead of the entire noisy dataset.
We empirically validate our approach by eval-
uating on two common datasets and show that
data filtering generally improves overall trans-
lation quality, in some cases even significantly.

1 Introduction

This paper presents Masakhane NLP’s submission
to the WMT 2022 large-scale machine translation
evaluation for African languages. We participated
in the constrained translation task and chose to
focus on a subset of all the language pairs con-
sidered for this task due to resource constraints.
We specifically explore the language directions
{hau, ibo, lug, swa, tsn, yor, zul}↔eng
and wol↔fra, and submitted our primary and
secondary systems which were competitive with
other submissions for this task.

Machine translation has received much atten-
tion recently, especially for low-resourced lan-
guages (Adelani et al., 2022a; Fan et al., 2021;
Haddow et al., 2022; Hoang et al., 2018; Nekoto
et al., 2020). A promising approach for such se-
tups is to fine-tune large pre-trained language mod-
els on the available small amount of translation

∗* Equal contribution.

data (Neubig and Hu, 2018; Adelani et al., 2021a,
2022a). While most of these language models are
trained on predominantly high-resourced language
datasets (Conneau et al., 2020; Devlin et al., 2019;
Radford et al., 2018), there have been a few mod-
els that were pre-trained (Ogueji et al., 2021) or
adaptively fine-tuned (Alabi et al., 2022) only on
low-resourced languages.

Recent works have tried, successfully, to sup-
plement the existing small amounts of natural data
in low-resource languages with artificially gener-
ated parallel data. For instance, in machine trans-
lation, Sennrich et al. (2016) and Ueffing (2006)
padded the true parallel data with automatic trans-
lations of monolingual sentences through back-
translation and self-learning respectively. Others,
such as Bañón et al. (2020); El-Kishky et al. (2020);
and Schwenk et al. (2021), have used different ap-
proaches for detecting potentially aligned sentences
within web datasets. While significant improve-
ments have been achieved with these synthetic
datasets, an in-depth investigation by Kreutzer et al.
(2022) has found them to be fraught with many
issues, such as misalignment, wrongful language
codes, etc.

Similarly, research has shown that data quality
plays an important role in the performance of nat-
ural language processing (NLP) models, in ma-
chine translation specifically (Arora et al., 2021;
Dutta et al., 2020; Hasan et al., 2020; Tchistiakova
et al., 2021), but also more generally in other NLP
tasks (Abdul-Rauf et al., 2012; Alabi et al., 2020).
It was found that often times, models that were
trained on smaller amounts of high-quality data
outperform their counterparts that are trained on
larger amounts of noisy datasets (Gascó et al., 2012;
Przystupa and Abdul-Mageed, 2019; Abdulmumin
et al., 2022; de Gibert et al., 2022). This has led
to many studies (Eetemadi et al., 2015) and prior
WMT tasks (Koehn et al., 2018, 2019, 2020) that
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attempt to find ways to improve the quality of exist-
ing data, which, as mentioned before, is often rife
with errors.

Therefore, in our submission to the shared task,
we experimented with filtering web-mined data
for African languages using pre-trained language
models and evaluated the effect of using this fil-
tered data on machine translation performance. We
defined our filtering approach as a sentence-pair bi-
nary classification task and fine-tuned a pre-trained
language model using positive and negative sam-
ples. We used sentences from the high-quality
MAFAND-MT (Adelani et al., 2022a) dataset
(which was included in the training data for the
constrained task) as positive examples and created
negative examples by extracting sentences with
low language-agnostic sentence representations
(LASER) (Artetxe and Schwenk, 2019b) alignment
scores from the wmt22-african (NLLB Team
et al., 2022) corpus that was provided for this task.
Our results highlight the importance of filtering on
the quality of the final machine translation system.
We also detail how to create a high-quality filter for
African languages using a few gold-standard paral-
lel sentences. We release our codes on GitHub.1

The rest of the paper is organized as follows: in
Section 2, we review related work, and in Section
3, we present the dataset we used. Section 4 pro-
vides an overview of the bitext filtering approach,
while Section 5 details experimental settings and
the translation model architecture. In Section 6,
we evaluate the model’s performance, and lastly in
Section 7, we conclude and highlight some future
research directions.

2 Related Work

One of the difficulties when dealing with low-
resourced settings, as we do here, is that high-
quality parallel texts are particularly scarce (Koehn
and Knowles, 2017). To curate data for such lan-
guage pairs, methods for automatically mining par-
allel text from the web using heuristics (Resnik,
1999) or latent space and similarity-based filters
(Artetxe and Schwenk, 2019a; Schwenk et al.,
2021) have been proposed. These have led to the
curation of publicly available web-mined datasets
such as CCAligned (El-Kishky et al., 2020), CC-
Matrix (Fan et al., 2021; Schwenk et al., 2021),
ParaCrawl (Esplà et al., 2019), and WikiMatrix

1https://github.com/abumafrim/WMT22-M
asaKhane

(Schwenk et al., 2019) to mention just a few.
However, the recent research work by Kreutzer

et al. (2022) shows that the automatically aligned
and mined parallel bitexts, especially for low-
resource language pairs, contain various degrees
of errors and less than half of the data are of good
quality. Additionally, many approaches generate
large amounts of synthetic data, often through back-
translation, where synthetic parallel data is gen-
erated by automatically translating monolingual
data (Bojar and Tamchyna, 2011; Lambert et al.,
2011; Sennrich et al., 2016). While additional data
has the potential to improve the trained models,
these synthetic datasets are often of low quality (Xu
et al., 2019). These observations have led to an in-
creased interest in the automatic filtering of noisy
bitexts as a key research topic in machine transla-
tion (MT).

One approach to improve data quality is to fil-
ter out the noisy or invalid parts of a large corpus,
keeping only a high-quality subset thereof (Abdul-
mumin et al., 2021). In this vein, numerous filtering
methods have been developed (Axelrod et al., 2011;
Eetemadi and Toutanova, 2015; Junczys-Dowmunt,
2018). For instance, Xu et al. (2019) use the co-
sine similarity between sentence embeddings as a
measure of how closely aligned two sentences are.
Imankulova et al. (2017) perform back-translation
and then filter based on the sentence-level BLEU
score, keeping only those sentences with a high
BLEU. Similarly, Adjeisah et al. (2021) perform
a round-trip translation and only use the sentence
pair if it is sufficiently close to the original sen-
tence, according to a chosen similarity measure.
There has also been work on alignment between
two parallel corpora, and Hasan et al. (2020) uses
the LASER score2 to evaluate alignment, and filter
out all sentences below a specific threshold.

3 Datasets

We participated in the constrained translation track
and used only the provided dataset. We present
the various dataset used, their sizes and corre-
sponding sources in Table 9 in Appendix A. For
our experiment, we selected 8 language pairs and
developed different multilingual machine transla-
tion systems for them. These language pairs are
{hau, ibo, lug, swa, tsn, yor, zul}↔eng
and wol↔fra. According to the recommendation

2https://github.com/facebookresearch/
LASER
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Direction Parallel sentences Problem

eng→ hau src: I booked the house for my husband’s family as we were get-
ting married in Ericeira.
tgt: na tsarr da aba a ka kasarr ni ila ure imbarr yi ngbangbamu.

tgt is not a Hausa sentence

eng→ hau src: "Go hunt, and may the light be with you."""
tgt: """Zo, zo muje, ke kika hada fitinar ke za ki warware ta."""

tgt is not a translation of the
src

eng→ hau src: The Moslem creed.
tgt: Musa Aminta

mismatched named entities

eng→ hau src: Israel
tgt: оооооооооооооооооооооооооооооооооооооооооооооооо
оооооооовввввввввввввввввввввввв

mistranslation; foreign char-
acters

Table 1: Examples of noise in the auto-aligned bitext

of Kreutzer et al. (2022), we carefully examined the
training dataset provided by manual inspection and
divided it into two categories based on the source of
the data and the amount of noise included therein.
In the following subsections, we describe these two
categories of data.

3.1 Clean Bitext

This category of training data comprises all the
datasets that are considered to be manually cu-
rated. The datasets in this category include: bible-
uedin (Christodouloupoulos and Steedman, 2015),
MAFAND-MT,3 QED (Abdelali et al., 2014),
Mozilla-I10n,4 Tanzil,5 and several others listed
in Table 9. The clean bitext consists of sentences
mostly in the news and religious domains, with a
few in the health, education, and technology do-
mains. We also refer to the clean bitext as True
Parallel in this paper.

3.2 Noisy Bitext

We categorized all the automatically aligned bitext
as noisy bitext. This also includes the LASER fil-
tered data. The sentences in this category make
up the majority of the training dataset, making
up 99.2% of the total training data. The datasets
in this category include: CCAligned, CCMatrix,
LASER wmt22_african,6 WebCrawl African,7

and the following datasets from OPUS (Tiedemann,
2012): MultiCCAligned (El-Kishky et al., 2020),
TED2020 (Reimers and Gurevych, 2020), Wiki-
Matrix (Schwenk et al., 2019), XLEnt (El-Kishky

3https://github.com/masakhane-io/lafa
nd-mt.git

4https://github.com/mozilla-l10n/mt-t
raining-data

5https://tanzil.net/trans/
6https://huggingface.co/datasets/alle

nai/wmt22_african
7https://github.com/pavanpankaj/Web-C

rawl-African

Language pair Data size % of original

eng hau 9, 122, 559 99.9
ibo 520,544 99.6
lug 3,511,275 99.8
swa 32,898,533 99.6
tsn 6,036,656 99.1
yor 1,718,105 99.3
zul 4,142,146 97.6

fra wol 237,348 100.0

Table 2: Training data after filtering using heuristics

et al., 2021) and others highlighted in Table 9.
On manual inspection, however, we found nu-

merous issues with the data, including non-parallel
sentences, sentences that consist of only num-
bers and/or punctuation, sentences in different lan-
guages, etc. Examples of noise in the auto-aligned
data can be seen in Table 1.

3.3 Validation and Test Data
For the optimization of our translation systems, we
combined the FLORES-101 (Goyal et al., 2022)
and MAFAND-MT (Adelani et al., 2022a) devel-
opment sets for each of the 8 language pairs. To
compare the performance of the developed MT en-
gines, we evaluated on the FLORES-101 devtest
set and the MAFAND-MT test set.

4 Parallel Data Filtering

To attempt to deal with the highly noisy data, we
opted to use filtering techniques to remove many
invalid or incorrectly aligned sentences, similar to
prior work (Arora et al., 2021; Hasan et al., 2020;
Xu et al., 2019). We first used some simple heuris-
tic approaches, described in Section 4.1, and then
progress to an automatic filtering method, detailed
in Section 4.2.

4.1 Heuristics
We filtered sentences that consist of only numbers
and/or punctuation marks. After filtering, the statis-
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Data
eng fra

hau† ibo† lug† swa† tsn† yor† zul† wol†

Train 6, 198 13, 998 8, 152 61, 566 4, 202 13, 290 7, 002 6, 722
Dev 2, 602 3, 002 3, 002 3, 584 2, 686 3, 090 2, 480 3, 014
Test 3, 002 3, 002 3, 002 3, 672 3, 002 3, 118 1, 998 3, 002

Table 3: Sentence-pair classification training data: a
mixture of MAFAND-MT† sentence pairs, taken as
positive samples, and wmt22_african (worst pairs
based on LASER scores), taken as negative samples.

tics of the resulting training dataset are shown in
Table 2. The table shows that 2.4% of the original
Zulu (zu) data consisted of just numbers or punc-
tuation, while other languages had smaller invalid
portions, between 0.0% and 0.1%.

4.2 Automatic Filtering

Due to the large size of the automatically aligned
dataset, we adopted an automatic approach to deter-
mine the quality of parallel sentences to train our
translation models. The approach we adopted is
sentence-pair binary classification (Nguyen et al.,
2021), where we used a transformer-based model
to predict the probability that two aligned sentences
are actual translations of each other. We explain
the process of training data generation and the ex-
perimental choices for building the filtering model.

4.2.1 Positive and negative samples
To create the training and evaluation data for the
sentence-pair classification-based filtering, we gen-
erated positive and negative samples from the train-
ing data available for this task. We used the train,
dev and test sets from the MAFAND-MT dataset,
which is a gold-standard parallel dataset, as positive
examples. For the negative examples, however, we
sorted the sentences in wmt22_african dataset
that was provided for this task based on their
LASER alignment scores, and selected the least
scored sentences in equal amounts to each of the
positive examples. The distribution of the train, dev
and test samples is presented in Table 3.

4.2.2 Model
We fine-tuned two pre-trained language models,
ALBERT (Lan et al., 2020) and AfroXLMR (Alabi
et al., 2022) for the sentence pair binary classifi-
cation task. ALBERT was selected based on its
performance on downstream NLP tasks (Lan et al.,
2020), even though it has fewer parameters than
other BERT-based models (Nguyen et al., 2021).
AfroXLMR, on the other hand, was chosen because
it was trained on African languages (Alabi et al.,

2022), and such a setup has been shown to im-
prove performance on downstream tasks for these
languages (Adelani et al., 2022a).

4.3 Filter Training Setup

The filtering models were trained to accept a pair
of sentences from the source and target languages.
During training, the [CLS] token hidden repre-
sentation of the input sentence pairs is fed into
a linear Layer and the model is optimized using
binary cross entropy loss. However, at inference
time, we add a sigmoid layer to the output to pre-
dict a number between 0.0 and 1.0 indicating the
likelihood of the bitexts being translations of each
other. We fine-tuned these models using each lan-
guage’s train split of positive and negative samples,
then evaluated performance on the test set while
optimizing on the development set.

The performance of the various automatic filter-
ing models and the subsequent sizes of the filtered
datasets for the 8 language pairs are shown in Ta-
ble 4. This table shows the number of sentence
pairs the models classified as actual translation
pairs using a threshold of 0.5 and 0.7 as well as the
F1 score when using the 0.5 threshold. Addition-
ally, in Table 5, we show the number of sentences
that were classified by two or all three of the mod-
els as being high-quality.

5 MT Experiments

To evaluate the effect of our filtering techniques,
we trained some multilingual NMT models for the
8 language pairs that we have selected for this
task. In the following subsections, we highlight
the model architectures, training setups, and differ-
ent multilingual models that were trained.

5.1 Model Architecture

For our experiments, we fine-tune M2M-100 (Fan
et al., 2021) on different subsets of the provided
data. M2M-100 is a pretrained translation model
trained on several languages including African lan-
guages, as such it has seen all the languages we
have chosen for this task during pre-training. We
use the model with 418M parameters.

5.2 Training Setup

We fine-tuned the M2M-100 model based on the
implementation within the Fairseq8 toolkit (Ott

8https://github.com/facebookresearch/
fairseq
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Model
en fr

F1avg.
hau ibo lug swa tsn yor zul wol

ALBERT-base F1 95.6 94.2 94.7 89.6 95.7 91.1 87.4 95.1 92.9
t=0.5 278, 930 78, 056 119, 516 5, 832, 820 346, 329 151, 886 363, 739 6, 552
t=0.7 197, 232 63, 207 82, 243 3, 921, 959 252, 499 91, 366 213, 991 4, 365

ALBERT-xlarge F1 93.2 92.8 96.3 63.7 95.3 90.7 89.1 84.4 88.2
t=0.5 115, 987 129, 304 146, 948 3, 263, 429 273, 154 113, 860 613, 483 49, 926
t=0.7 81, 641 111, 562 102, 354 1, 638, 528 217, 200 86, 558 302, 951 41, 283

AfroXLMR-base F1 96.9 94.4 95.4 94.6 96.1 98.4 88.0 97.1 95.1
t=0.5 296, 881 75, 102 149, 051 6, 139, 327 363, 155 81, 902 281, 803 6, 997
t=0.7 226, 666 59, 995 84, 499 5, 064, 365 276, 490 73, 786 171, 778 5, 189

Table 4: Training data after filtering using sentence-pair classifier — t=Threshold; F1 was computed at t=0.5

t=0.5 Albert-base Albert-xlarge AfroXLMR

Albert-base 2,984,862 1,750,707 2,575,408
Albert-xlarge - 2,107,204 1,058,711
AfroXLMR - - 3,925,612

sents. in ALL 668,633
t=0.7

Albert-base 1,977,486 909,203 1,884,922
Albert-xlarge - 1,206,493 547,925
AfroXLMR - - 3,420,147

sents. in ALL 331,208

Table 5: Data overlap after filtering using the sentence-
pair classifier models

et al., 2019). We used batch sizes of 2, 048 to-
kens, a maximum sentence length of 1, 024, and a
dropout of 0.3. For optimization, we used Adam
(Kingma and Ba, 2015) with β1 = 0.9 and β2 =
0.998, a learning rate of 5e − 5 and a warmup
of 2, 500 updates. The optimizer uses a label-
smoothed cross-entropy loss function with a label-
smoothing value of 0.2. All models were trained
for a maximum of 1, 000, 000 update steps. We
tokenized all data using the model’s SentencePiece
(Kudo and Richardson, 2018) tokenizer.

To evaluate our models and to choose the best
checkpoints, we used the BLEU score (Papineni
et al., 2002) calculated with the SacreBLEU (Post,
2018) implementation. In addition, we also evalu-
ated the models using CHRF (Popović, 2015).

5.2.1 Baseline models
We train many-to-many (M2M) translation models
by fine-tuning M2M-100 on the following subsets
of the datasets described in Section 3. These in-
clude, the clean bitexts described in Section 3.1,
noisy bitext described in Section 3.2, and a mixture
of the clean and noisy bitexts. The noisy bitext
was only partially cleaned, as evidenced in Table 2,

using the heuristic rules mentioned in Section 4.1
without applying the proposed automatic filtering
on data.

We trained these baseline models to compare and
measure the efficacy of our filtering technique on
the quality of the translation models. We submitted
the model in (i) as our secondary system for this
task.

5.2.2 Models on filtered data only
To evaluate the effect of the filtered data on the qual-
ity of the translation output, we train M2M models
on the filtered data from the different models using
a threshold of 0.5 and 0.7.

5.2.3 Models on filtered and clean data
We went further to train multilingual models on the
concatenation of the noisy and clean text, and on
the filtered and clean data for easier comparison.
With this system, we were able to measure the
amount of improvement we can obtain by including
the clean bitext compared to training models only
on the filtered bitext.

6 Results and Discussion

In Tables 6 and 7, we report the BLEU and CHRF
scores obtained by the different models that we
trained, as evaluated on the FLORES-101 devtest
and MAFAND-MT test datasets, respectively.

6.1 Baseline Models

On average, the baseline model trained on the clean
bitext performed impressively on the two evalua-
tion datasets, despite the limited dataset size. On
MAFAND-MT, the model trained on the clean bi-
text obtained a higher BLEU score than the model
trained on the noisy bitext, and on FLORES-101,
the reverse was true. This is likely due to the fact
that the MAFAND-MT data is present in the clean
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Models
eng→x fra→x x→eng x→fra

Avg.
hau ibo lug swa tsn yor zul wol hau ibo lug swa tsn yor zul wol

BLEU

Baselines
Clean bitext 9.30 13.19 4.00 23.17 8.56 3.60 9.43 3.56 14.24 12.56 11.24 26.86 8.78 8.90 18.51 6.03 11.37
Noisy bitext 15.32 10.77 2.14 30.64 12.87 2.57 12.35 0.69 20.58 14.69 13.19 31.80 16.29 11.40 24.68 3.22 13.95
Clean + Noisy bitext 15.34 11.37 2.40 30.48 13.31 2.48 12.61 0.73 20.53 15.07 13.34 31.61 16.50 11.75 24.29 3.88 14.11

Filtered only
albert-xlarge-0-7 16.43 15.38 2.54 29.89 16.31 3.00 15.18 0.65 20.05 17.32 12.51 34.24 18.55 12.62 27.31 5.14 15.45

Filtered + Clean bitext
albert-xlarge-0-5 16.05 15.01 3.22 33.31 15.96 3.08 14.97 1.99 20.92 17.45 13.93 34.99 18.24 13.24 27.65 6.43 16.03
albert-xlarge-0-7 16.55 15.70 3.45 31.97 16.31 3.16 15.50 2.12 20.85 17.88 13.97 34.40 18.29 13.38 27.35 7.20 16.13

CHRF

Baselines
Clean bitext 34.01 45.31 42.14 55.14 45.58 30.56 43.62 30.55 34.70 45.20 46.21 54.53 45.37 39.04 46.50 30.77 41.83
Noisy bitext 30.04 34.18 33.04 54.34 43.51 16.23 46.30 8.92 35.15 37.46 35.96 54.38 45.39 33.84 49.85 15.72 35.89
Clean + Noisy bitext 30.53 35.75 33.69 54.66 44.23 15.90 46.37 10.91 35.70 38.82 37.50 54.78 45.62 35.35 49.71 19.21 36.79

Filtered only
albert-xlarge-0-7 36.18 41.71 36.94 54.79 51.64 18.85 51.14 10.86 37.18 41.38 39.07 56.81 56.81 38.27 52.71 22.20 40.41

Filtered + Clean bitext
albert-xlarge-0-5 36.56 43.19 40.44 56.65 51.25 20.33 50.77 23.44 37.79 43.72 44.34 57.70 51.98 40.01 52.75 27.76 42.42
albert-xlarge-0-7 36.64 44.32 41.44 56.60 52.98 21.88 51.43 25.22 38.11 44.23 45.14 57.73 52.22 40.68 53.02 29.29 43.18

Table 6: Performance of the multilingual model on the FLORES-101 devtest set, with the maximum BLEU per
column in bold. x represents African languages.

bitext, and that the noisy bitext contains sentences
that were taken from the web, including Wikipedia,
which is the source of the FLORES-101 dataset.
When we compared the model trained on the clean
bitext to the model trained on the noisy bitext,
we saw between a +1 and +2 improvement on
FLORES-101 and between +5 and +8 improve-
ment on MAFAND-MT for lug, wol, and yor.
This confirms not only the importance of the data
domain, but also the importance of data quality on
the quality of the machine translation output.

After mixing the two datasets, the performance
improved over using only the clean bitext by more
than 6 BLEU on hau↔eng, and almost 3 BLEU
on average across all languages on FLORES. The
performance, though, was similar to using only
the noisy bitext. On the MAFAND-MT test set,
however, the performance deteriorated by almost
2 BLEU when compared to training on the clean
bitext only. At language-pair level, eng→ibo
was affected more (−9.14 BLEU), followed by
eng→wol, whereas yor→eng benefited tremen-
dously (+17.83 BLEU). On average, training on
the two bitexts marginally improves over using only
the noisy bitext, and this is consistent on all the test
sets.

Investigating the results in more depth, we found
that the BLEU scores of the models are lower when
translating into an African language, similar to the
findings of Adelani et al. (2022a). This effect is ex-
acerbated for the languages with the fewest parallel

sentences, such as lug, wol, and yor, except for
ibo, which overall has the second-fewest parallel
sentences, as shown in Table 9.

6.2 Data Filtering Analysis
We generally see that more filtering results in im-
proved performance, corresponding to removing
more noisy sentences from the data. Using less fil-
tering, with a threshold of 0.5, generally performed
slightly worse than using a threshold of 0.7. Both
of these settings outperformed (a) using no filtering
and (b) using no additional data.

We can also see the effect of the filtering steps
on the training data in Tables 2 and 4. Filter-
ing the data using heuristics resulted in only a
small portion of the data being filtered out. Us-
ing the classifier, however, caused a large amount
of noisy data to be removed. When looking at the
F1 scores of the classification models, we can see
that ALBERT-xlarge has the lowest F1, followed by
ALBERT-base and AfroXLMR-base. Looking at
Table 5, we can see that ALBERT-xlarge is also the
most strict filter, removing the most data, whereas
AfroXLMR-base removes the least amount of data.
Interestingly, the number of sentences marked as
high-quality by all three models is surprisingly low,
possibly indicating that these different models (par-
ticularly ALBERT-xlarge and AfroXLMR-base)
focus on different features of the data.

Finally, we saw that a higher threshold resulted
in improved translation performance, but ALBERT-
xlarge (which is quite strict) had a lower F1 than the
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Models
eng→x fra→x x→eng x→fra

Avg.
hau ibo lug swa tsn yor zul wol hau ibo lug swa tsn yor zul wol

BLEU

Baselines
Clean bitext 9.00 20.83 11.67 25.81 18.64 9.86 14.50 8.91 12.49 19.24 20.00 29.28 20.44 16.98 23.20 7.77 16.79
Noisy bitext 5.24 10.37 6.12 25.35 16.61 3.61 15.23 0.98 8.52 12.83 14.35 28.37 21.34 13.14 26.74 1.57 13.15
Clean + Noisy bitext 5.59 11.69 6.54 25.55 17.25 3.42 15.10 1.99 8.80 13.64 15.67 28.67 21.74 34.81 26.68 2.33 14.97

Filtered only
albert-xlarge-0-7 7.75 16.33 7.56 26.45 23.01 4.59 17.63 0.86 9.93 15.59 16.77 30.92 30.92 16.46 29.47 3.09 16.08

Filtered + Clean bitext
albert-xlarge-0-5 8.49 18.16 10.11 27.89 22.99 5.37 17.68 5.46 11.73 17.53 20.63 32.38 27.07 17.84 29.88 5.52 17.42
albert-xlarge-0-7 8.74 19.08 10.26 27.80 24.25 6.09 18.25 6.05 12.32 17.58 21.15 32.60 27.40 18.54 30.02 6.77 17.93

CHRF

Baselines
Clean bitext 36.23 34.10 31.59 54.59 33.85 21.97 41.70 26.22 37.74 37.32 33.85 51.39 32.43 30.51 43.20 29.31 36.00
Noisy bitext 40.24 31.27 25.84 59.14 38.88 19.18 46.98 8.90 44.80 38.71 34.58 56.25 40.57 33.28 49.26 19.15 36.69
Clean + Noisy bitext 40.91 31.67 26.04 59.13 39.60 19.06 47.14 9.66 44.63 39.18 34.76 56.20 40.65 33.71 49.23 21.86 37.09

Filtered only
albert-xlarge-0-7 44.19 38.13 27.37 59.40 43.97 20.85 51.96 11.11 44.98 42.95 33.98 58.60 43.12 35.55 52.09 24.51 39.55

Filtered + Clean bitext
albert-xlarge-0-5 43.38 37.88 29.70 61.47 43.30 20.57 51.06 18.73 45.53 42.77 36.14 58.93 43.11 36.61 52.06 28.26 40.59
albert-xlarge-0-7 44.15 38.72 30.78 60.63 44.11 21.01 51.85 19.82 45.40 43.31 36.15 58.45 42.90 36.81 52.06 29.52 40.98

Table 7: Performance of the multilingual model on the MAFAND-MT test set, with the maximum BLEU per
column in bold. x represents African languages.

other models, possibly suggesting that F1 perfor-
mance does not fully indicate the expected down-
stream performance on the actual translation task.

6.2.1 The effect of filtering on translation
models

We fine-tune M2M-100 for multilingual translation
on the filtered data, and as expected, our results (on
average) demonstrate a considerable improvement
when the translation model is trained on the filtered
data rather than the original noisy texts. In partic-
ular, for many languages, training on the filtered
data from ALBERT-xlarge with a threshold of 0.7
outperformed the model trained on just the noisy
bitext with at least a BLEU point.

Furthermore, we compared the performance of
the model trained on only the clean data and on only
the filtered data. Just as we saw with the baseline
system, on MAFAND-MT, the model trained on
the clean bitext performed better than the model
trained on the filtered bitext, and on FLORES-101,
the reverse was true. These results again confirm
the importance of the filtering approach and further
supports the observation that NMT engines are less
robust to noise as found by Khayrallah and Koehn
(2018), especially for low-resource settings.

6.3 Clean vs. filtered data

We find that on FLORES-101, adding in noisy, un-
filtered data improves the results over just using
the true parallel data. On MAFAND-MT, however,
it generally reduces the BLEU score significantly.

For both datasets, adding appropriately filtered data
results in the highest performance averaged over
all the languages, although for some specific lan-
guages, just using true parallel data resulted in the
best performance.

Our performance on the test set provided by the
organizers (Adelani et al., 2022b) is shown in Ta-
ble 8. Here we can see that our primary model,
which was trained on the clean bitext as well as
the filtered data (filtered using ALBERT-xlarge,
t = 0.7), significantly outperforms the model
trained only on the clean bitext. We also see that
our approach seems to have a larger performance
gain when translating from African languages com-
pared to translating to them.

7 Conclusion and Future Work

In this work, we used a sentence-pair classifier to
classify parallel data as being aligned, or not. Us-
ing this approach, we filtered out a large portion
of the original, noisy, data and fine-tuned exist-
ing large language models on this new data. Our
results show that training on the filtered data sig-
nificantly increases the performance of the models,
resulting in improved translations. In particular,
our approach outperforms (i) training only on clean
data, (ii) training only on filtered data, and (iii)
training on the original dataset, consisting of clean
and noisy data. This provides additional evidence
in favor of prioritizing data quality over quantity, as
well as the need for more advanced noise detection
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Models
eng→x fra→x x→eng x→fra

x→ afr afr→ x Avg.
hau ibo lug swa tsn yor zul wol hau ibo lug swa tsn yor zul wol

BLEU

Clean only 10.7 11.9 4.5 24.3 10.1 4.2 6.0 4.4 15.7 15.0 12.2 27.5 9.7 8.8 18.5 7.1 9.5 14.3 11.9
Filtered + Clean 17.7 15.3 4.6 31.5 17.8 3.2 11.1 1.5 22.7 20.9 15 35.2 21.2 14.2 26.8 7.6 12.8 20.4 16.6

CHRF2++

Clean only 36.0 34.6 29.0 52.2 33.8 21.8 36.3 25.4 38.0 38.2 33.4 50.4 31.6 29.4 41.6 28.0 33.6 36.3 35.0
Filtered + Clean 43.4 38.6 27.2 57.7 41.9 19.4 44.8 17.9 45.2 44.6 35.4 57.1 43.6 35.3 49.1 27.7 36.4 42.2 39.4

Table 8: Performance of the submitted models on the wmt22 test sets as provided by the organizers. We submitted
two models. The primary one, denoted Filtered + Clean, was trained on the clean bitext as well as the data
filtered by ALBERT-xlarge with a threshold of 0.7. The secondary (or contrastive) approach, denoted Clean only,
was trained only on the clean bitext. The x → afr and afr → x columns contain the average performance for
translations to and from African languages, respectively. avg contains the average over all language pairs.

and filtering tools. There are numerous potential
avenues for future work; one option is to use a mul-
tilingual model as the sentence classifier instead of
using a separate model per language, to leverage
commonalities between different languages (Ade-
lani et al., 2021b; Conneau et al., 2020). Secondly,
a more in-depth study of the effect of the threshold
parameter on the final BLEU score would be useful.
We would also like to understand the reasons be-
hind the performance by analyzing the filtered data
more in depth. Finally, given more computational
resources, we will (i) train the classifier for more
epochs, using other language models and/or using
different quality thresholds, (ii) use longer sentence
length than the current 128, (iii) train the translation
models on AfroXLMR and ALBERT-base filtered
data, and (iv) use the filtering approach on more
languages, to evaluate its generalizability. Ulti-
mately, we hope that this filtering approach could
lead to the use of cleaner data to train translation
models, improving the overall translation quality
for low-resourced languages.
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A Appendix - Data Sources

Datasets used in this project and their
sources, as listed in Table 9: MAFAND-
MT, wmt22_african, LAVA Corpus,9 XLEnt,
Tanzil, WikiMatrix, CCAligned, CCMatrix,
GlobalVoices,10,11 ParaCrawl,12 GNOME,13

tico-19,14 ELRC_2922,15 EUbookshop,16

KDE4,17 TED2020, Tatoeba,18 Ubuntu,19 bible-
uedin, wikimedia,20 QED, MultiCCAligned and
Mozilla-I10n.

9https://drive.google.com/drive/folde
rs/179AkJ0P3fZMFS0rIyEBBDZ-WICs2wpWU

10https://casmacat.eu/corpus/global-vo
ices.html

11https://globalvoices.org/
12https://paracrawl.eu/
13https://l10n.gnome.org/
14https://tico-19.github.io/index.html
15https://elrc-share.eu/repository/bro

wse/covid-19-health-wikipedia-dataset-mu
ltilingual-53-en-x-language-pairs/fe23e2
c28c8311ea913100155d0267066f62c6b30ac042
9f8d497df0abd2ef72/

16http://bookshop.europa.eu
17http://www.lt-innovate.org/lt-observe

/resources/kde4-kde4-localization-files-
v2

18https://tatoeba.org/en/
19https://translations.launchpad.net/
20https://dumps.wikimedia.org/other/co

ntenttranslation/
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Data en fr
hau ibo lug swa tsn yor zul wol

True Parallel
MAFAND-MT 3, 098 6, 998 4, 075 30, 782 2, 100 6, 644 3, 500 3, 360
Tanzil 128, 376 - - 138, 253 - - - -
GlobalVoices - - - 32, 307 - 137 - -
tico-19 3, 071 - 3, 071 3, 071 - - 3, 071 -
ELRC_2922 - - - 607 - - - -
EUbookshop - - - 18 - - - -
Tatoeba 57 22 3 395 31 37 70 67
bible-uedin - - - - - - 15, 907 7, 918
QED 124 12 740 18, 192 - 52 1, 624 66
Mozilla-I10n 4, 952 4, 172 5, 931 7, 798 - 4, 095 - 7, 041
Total (TP) 139, 678 11, 204 13, 820 231, 423 2, 131 10, 965 24, 172 18, 452

Automatcally Aligned
WMT22 African 2, 309, 758 172, 973 3, 450, 573 23, 358, 739 5, 931, 529 1, 455, 571 3, 862, 020 189, 659
WebCrawl Afr. 16, 950 3, 372 10, 809 193, 518 77, 976 18, 924 152, 724 -
LAVA Corpus - - 20, 993 371, 864 - - - -
WikiMatrix - - - 51, 387 - - - -
CCAligned 339, 178 148, 147 14, 702 2, 044, 993 71, 254 175, 193 126, 103 −
CCMatrix 5, 861, 080 80, 385 - 5, 756, 664 - - - -
ParaCrawl - - - 132, 521 - - - -
GNOME 5, 466 23, 767 4, 578 40 - 10, 234 44, 605 -
KDE4 1, 493 - - - - - - -
TED2020 27 210 - 9, 745 - - - -
XLEnt 436, 602 69, 820 1, 054 871, 902 4, 781 51, 173 28, 394 4, 082
Ubuntu 242 635 637 986 - 141 4, 718 220
wikimedia 23, 385 12, 279 1, 315 3, 765 969 8, 521 1, 226 679
MultiCCAligned - - - - - - - 24, 256
Total (AA) 8, 994, 181 511, 588 3, 504, 661 32, 796, 124 6, 086, 509 1, 719, 757 4, 219, 790 218, 896

Total (ALL) 9, 133, 859 522, 792 3, 518, 481 33, 027, 547 6, 088, 640 1, 730, 722 4, 243, 962 237, 348

Table 9: Training Data Used — TP=True Parallel; AA=Automatically Aligned
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Abstract

This report describes GMU’s machine transla-
tion systems for the WMT22 shared task on
large-scale machine translation evaluation for
African languages (Adelani et al., 2022b). We
participated in the constrained translation track
where only the data listed on the shared task
page were allowed, including submissions ac-
cepted to the Data track. Our approach uses
models initialized with DeltaLM, a generic pre-
trained multilingual encoder-decoder model,
and fine-tuned correspondingly with the al-
lowed data sources. Our best submission incor-
porates language family and language-specific
adapter units; ranking ranked second under the
constrained setting.

1 Introduction

There has traditionally been a significant concen-
tration of machine translation research on a few
languages - usually Indo-European (Blasi et al.,
2022). Data scarcity has hindered the progress
of many languages, many with millions of speak-
ers (Joshi et al., 2020). The shared task and our
submission aim to reverse the trend by focusing
on low-resource African languages that have been
traditionally ignored by mainstream research.

Our submission leverages different approaches
to produce a multilingual MT system that can han-
dle all 26 languages covered by the shared task:

• All data available under the constrained set-
ting,

• Delta-LM (Ma et al., 2021), a pre-trained mul-
tilingual encoder-decoder model,

• adapter units (Houlsby et al., 2019) are de-
signed to adapt the multilingual model to spe-
cific language pairs, and

• phylogeny-inspired organization of the
adapters (Faisal and Anastasopoulos, 2022),
which allows for information sharing across
similar (related) languages.

We expand on each of these components in our
system description and the related work section.

Our DeltaLM model was fine-tuned in the first
step using parallel data collected from all 26 lan-
guages. After fine-tuning the previous model, we
adapter-tune the language-specific adapters. Our
third step is to adapter-tune the family-specific and
sub-family-specific adapters based on the previous
adapter-tune model. We submit the second and
third models as our submissions to the shared task.

2 Data

Data Sources We use bilingual data from multi-
ple sources. Our main source was the OPUS-1001

website and Shared Task2 website. The datasets
are:

• ELRC, KDE4, OpenSubtitles, GlobalVoices,
Tanzil, EUbookshop, Europarl, infopankki,
memat, Tatoeba, Wikimedia) (Tiedemann,
2012),

• MultiCCAligned, CCAligned (El-Kishky
et al., 2020),

• WikiMatrix (Schwenk et al., 2019a),
• QED (Abdelali et al., 2014), bible

(Christodouloupoulos and Steedman,
2015),

• CCMatrix (Schwenk et al., 2019b),
• TED (Reimers and Gurevych, 2020),
• ParaCrawl (Bañón et al., 2020),
• NLLB Crawled Data (NLLB Team et al.,

2022),
• LAVA corpus,3

• MAFAND-MT4 (Adelani et al., 2022a),

1https://opus.nlpl.eu/
2https://www.statmt.org/wmt22/

large-scale-multilingual-translation-task.
html

3https://drive.google.com/drive/
folders/179AkJ0P3fZMFS0rIyEBBDZ-WICs2wpWU

4https://github.com/masakhane-io/
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(a) Bilingual data statistics of the 26 languages for
fine-tuning. The columns indicate the size of data
for each language in comparison to the remaining 25
languages.

(b) Data-set statistics of the bilingual data of the 100
language pairs for adapter-tuning.

Figure 1: Data statistics for fine-tuning (left) and adapter-tuning (right). Training data size is logarithmically
transformed (base 10) for better visualization.

• WebCrawl African5 (Vegi et al., 2022),
• KenTrans6 (Wanjawa et al., 2022).
Figure 1(a) shows the data-statistics of the bilin-

gual data for 26 languages. We use these data
to fine-tune the DeltaLM model at first. Fig-
ure 1(b) shows the data statistics of the bilingual
data for 100 language pairs. We use these data to
adapter-tune the fine-tuned model at first for lan-
guage adapters and then for family and sub-family
adapters.

2.1 Data Pre-Processing

Filtering We removed sentences longer than 768
words and shorter than five words. We removed
sentences where the whole sentence was made of
punctuation. After that, we removed duplicate sen-
tence pairs from the whole data set.

Tokenization After data filtering, we used the
SentencePiece model (Kudo and Richardson, 2018)
to tokenize all raw training and validation datasets.
We keep the SentencePiece model consistent with
the one used for DeltaLM.

Use in Training We shuffled the whole training
dataset before launching the fine-tuning of mul-
tilingual models. Our multilingual model was
then fine-tuned on the entire dataset; note that the
dataset is potentially noisy as we have not removed

lafand-mt/tree/main/data/text_files
5https://github.com/pavanpankaj/

Web-Crawl-African
6https://dataverse.harvard.edu/dataset.

xhtml?persistentId=doi:10.7910/DVN/
NOAT0W

any sentence pairs which have potentially incor-
rect language identification or character encoding.
Each source sentence was prefixed with a tag to
indicate the target language. For example, the
English source sentence "I love MT" would
be changed to "<am> I love MT" to translate
into Amharic.

3 Model and Training

3.1 Initialization with DeltaLM

We have based all our experiments on the
DeltaLM large architecture, which consists of 24
Transformer encoder layers and 12 interleaved
decoder layers with embedding sizes of 1024,
dropouts of 0.1, feed-forward networks of 4096,
and attention heads of 16. We directly initialize our
model with the publicly available DeltaLM large
checkpoint.

3.2 Multilingual Fine-tuning

Given training data as bi-text corpora Db ={D1
b,D

2
b, ...,D

n
b}, where n is the number of different

translation directions. For 26 languages n is 625.
We mix all corpora of all directions and shuffle the
whole data D1...n

b . Then we optimize the model’s
parameters θ using the standard NLL objective:

LMT = Ex,y∈D1...n
b
[−logP(y∣x;θ)]

Where x,y denotes a sentence pair. LMT is the
translation objective for the multilingual model.
We refer to this model as “Fine-Tune” for the re-
mainder of the paper.
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3.3 Multilingual Adapter-tuning
Adapter Units Between the layers of the pre-
trained network, we have added lightweight adapter
layers and fine-tuned them using the same corpus
as above. In each adapter, an up projection to the
starting dimension follows a down projection to
a bottleneck dimension (Philip et al., 2020). The
bottleneck keeps the number of parameters of the
adapter module at a limit. A residual connection
coupled with a near-identity initialization enables a
pass-through and allows us to maintain the parent
model’s performance while training the adapter
units.

The training data is also the bi-text corpora
Db = {D1

b,D
2
b, ...,D

100
b } for the 100 language di-

rections specified by the shared task evaluation
schema. We trained the multilingual model as be-
fore, but now training only the parameters of the
adapters θAdapter:

LMT = 100∑
i=1

Ex,y∈Di
b
[−logP(x∣y;θAdapter)]

where θAdapter are the parameters of the adapters
only; i denotes the language direction. In this stage,
we add language-specific adapters as shown in Fig-
ure 2(a) to every layer of the encoder and decoder.
The adapters of the same language on the encoder
and decoder side do not share parameters. We refer
to this model as “Language-Tune”.
Family-specific Adapter In this stage, we add
family-specific and genus-specific adapters along
with language-specific adapters as a stack, as
shown in Figure 2(b), to every layer of the encoder
and decoder. The adapters on the encoder and
decoder side of the same language, family, and sub-
family do not share parameters. But for languages
that belong in the same family or genus (group),
their family and genus adapters are shared. For
example, the Afro-Asiatic family adapter is shared
between Hausa, Amharic, Oromo, and Somali, and
Oromo and Somali also share the Cushitic adapter.
The training data and optimization objective is the
same as above.

Table 1 shows the phylogeny-informed tree-
hierarchy of all 26 languages. On the encoder
side, only adapters associated with the source
language are active for a specific language di-
rection. On the decoder side, the adapters asso-
ciated with the target language get active. For
example, when training (or translating) from

Family Genus (Group) Language

Indo-European Germanic English
Afrikaans

Romance French

Afro-Asiatic

Hausa Hausa

Amharic Amharic

Cushitic Oromo

Cushitic Somali

Nilo-Saharan Luo Luo

Senegambian Wolof Wolof

Fula Nigerian Fulfulde

Volta-Niger Igboid Igbo

Yoruboid Yoruba

Bantu

Bangi Lingala

Shona Shona

Nyasa Chichewa

Umbundu Umbundu

Sotho-Tswana Tswana

Northern Sotho

Nguni-Tsonga

Zulu

Xhosa

Swati

Xitsonga

Northeast-Bantu

Kamba

Swahili

Kinyarwanda

Luganda

Table 1: The phylogeny-informed language tree hierar-
chy that we impose on our language adapters.

Nigerian Fulfulde to Xhosa, the Senegambian,
Fula, and Nigerian Fulfulde adapters will
be used on the encoder side, and the Bantu,
Nguni-Tsonga, and Xhosa adapters will be
used on the decoder side. The resulting model
will be referred to as “Family-Tune” for the rest of
the paper.

3.4 Training Details

Fine-Tuning We train multilingual models with
the Adam optimizer (Kingma and Ba, 2014) (β1
= 0.9, β2 = 0.98). The learning rate is set as 1e-
4 with a warm-up step of 4000. The models are
trained with label smoothing with a ratio of 0.1.
All experiments are conducted on 4 A100 GPUs.
The batch size is 1536 tokens per GPU, and the
model is updated every 4 (for 4 A100 GPUs) steps
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Architecture of Different Adapter Approaches

(a) Language-specific Adapter (b) Family, Sub-family and Language-specific Adapter

Figure 2: Current practice uses language-specific adapters between layers (a). In order to incorporate linguistic
information into our models, we impose phylogenetic tree hierarchies based on phylogeny, as in (b), where the solid
line shows the path the model has to take for Zulu to Igbo translation, and dotted lines show other possible paths for
different language pairs.

to simulate a larger batch size. We have kept the
max source and target positions as 512 and have
skipped any inputs that have invalid sizes.
Adapter-Tuning We use the same parameters
as above. As we do not use the whole dataset to
train but data of each language direction, we set
the warm-up step as 1000. We train the model for
a maximum of 5 epochs or a maximum of 20000
updates (whichever comes first). The dimension
of the bottleneck layer of the adapter on both the
encoder and decoder sides is set to 64.
Language-Specific We add language adapters to
DeltaLM and train only the adapters and keep all
other parameters frozen.
Family-Specific We add family and sub-family
adapters to DeltaLM where language adapters have
already been inserted. We train only the family and
sub-family adapters and keep all other parameters
frozen, including the language adapters.

4 Evaluation Results

We use the dev and the hidden test set of the FLO-
RES200 (Guzmán et al., 2019; Goyal et al., 2021;
NLLB Team et al., 2022) benchmark as our vali-
dation set and test set respectively. A beam search
strategy with a beam size of 5 is used during infer-
ence in order to generate target sentences. Based
on the loss on the validation set, we select the

best checkpoint for evaluation. We report BLEU,
CHRF++, and SentencePiece-based BLEU using
spBLEU scores.

Our model using language-specific adapters sig-
nificantly outperforms the fine-tuning model. Ta-
ble 2 shows that the model with language-specific
adapters outperforms the fine-tuning model on aver-
age for all directions from 0.2 to 0.6 BLEU points.
Our work solidifies the argument made in previous
work that some language-specific elements help the
model to better model each language.

Our model with family-specific adapters does
not seem to outperform the language-specific
adapters on average. But we do obtain some gains
for AvgX→eng and Avg f ra→Y . Going deeper to the
results, we do find significant gains for some in-
dividual language pairs: for instance, for Tswana-
English (tsn-eng) we obtain a 1.0 BLEU point gain,
and for English-Hausa (eng-hau) this model is bet-
ter by 1.2 BLEU points.

Table 3 shows that our model with language-
specific adapters also achieves better results than
the fine-tuning model for different regions of
African to African language pairs. We were able
to gain BLEU points from 0.1 to 0.25 on average.
For family-specific adapters, we see some gains
for some regions like Nigeria and for translating
between regions.
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Metrics Models Avgall AvgX→eng Avgeng→X AvgA f rican→A f rican AvgY→ f ra Avg f ra→Y

BLEU
Fine-Tune 13.00 25.44 11.62 7.57 20.28 10.03

Language-Tune 13.28 25.83 12.00 7.70 20.83 10.53

Family-Tune 13.28 25.88 11.98 7.68 20.73 10.75

CHRF++
Fine-Tune 34.80 45.82 34.52 29.56 41.55 31.85

Language-Tune 35.42 46.50 35.33 29.94 42.45 33.58

Family-Tune 35.42 46.55 35.30 29.92 42.30 34.03

spBLEU
Fine-Tune 15.85 27.45 14.78 10.64 23.80 12.55

Language-Tune 16.23 27.97 15.24 10.85 24.30 13.55

Family-Tune 16.20 28.00 15.12 10.82 24.28 13.65

Table 2: Evaluation results of Constrained Track for our methods of 100 language directions on the hidden test set
of the FLORES-200 benchmark. AvgX→eng denotes the average score of directions between other languages and
English. Avgeng→X denotes the average score of directions between English and other languages. AvgA f rican→A f rican
denotes the average score of directions between African languages to other African languages. AvgY→ f ra denotes the
average score of directions between other languages and French. Avg f ra→Y denotes the average score of directions
between French and other languages. Avgall denotes the average result of all translation directions.

Tables 5, 6, and 7 show the complete results on
all 100 language pairs tested on devtest, hidden test
and on the TICO-19 (Anastasopoulos et al., 2020)
dataset.
Discussion on Pre-training Membership
Among the 24 African languages, only 7 of them
(Afrikaans, Amharic, Hausa, Oromo, Somali,
Swahili, and Xhosa) were used in the pre-training
of the DeltaLM model. As previous work has
shown (Muller et al., 2021), models tend to
perform worse for languages not included in
pre-training. Nevertheless, our model is still
competitive; we attribute this to the fact that we
have used any dataset that we could get our hands
on from the OPUS website discarding the fact that
these data may be noisy or may have high domain
mismatch.

Table 4 shows the result between languages
present in the pre-training of DeltaLM vs lan-
guages not present. For all averages, we see the
same trend as adapter-tuning is better than the fine-
tuned model. Between non-present languages (npl)
and present languages (pl) we see Avgnpl , Avgpl ,
Avgnpl−source and Avgpl−source shows the same pat-
tern where the present languages have higher scores
than the non-present languages. But we see the
opposite pattern for Avgnpl−target and Avgpl−target
where the present languages have lower average.
Limitations One glaring limitation of our ap-
proach is that it is not making use of the poten-
tially large amounts of monolingual data in the

languages, e.g. through back-translation (Sennrich
et al., 2016). In our training, we have not used
any monolingual data at all. Monolingual data are
more available than parallel data and are less noisy.
We could have used monolingual data to pre-train
the DeltaLM with the span corruption objective.
We could then use that pre-trained model as our
base model to fine-tune using the parallel data. We
could also do iterative back-translation using the
monolingual data to create synthetic parallel data
and train the model with these data along with the
real parallel data. This approach has proven to be
effective for low-resourced settings before, and we
will further explore it in future work.

In addition, our phylogeny-inspired adaptors fol-
low a pre-defined path along the trees. This is
perhaps too rigid, especially for communities that
use a lot of code-switching, or for creole languages
and pidgins that are the result of language contact.
In future work, we will explore ways to learn the
path through the tree, or allow for soft sharing of
parameters through attention or mixture of experts
units.

5 Related Work

Multilingual neural machine translation (Dong
et al., 2015; Johnson et al., 2016; Arivazhagan et al.,
2019; Dabre et al., 2020; Philip et al., 2020; Lin
et al., 2021) is now the de facto architecture be-
cause of its ability to produce translations between
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Metrics Models Avgsouth−east Avghorn Avgnigeria Avgcentral Avgamong−region

BLEU
Fine-Tune 12.35 6.31 4.32 9.23 7.36

Language-Tune 12.48 6.55 4.39 9.35 7.50

Family-Tune 12.34 6.50 4.44 9.31 7.53

CHRF++
Fine-Tune 40.80 28.20 18.98 33.80 30.73

Language-Tune 41.08 28.83 19.13 34.15 31.26

Family-Tune 40.89 28.76 19.28 34.05 31.28

spBLEU
Fine-Tune 17.34 10.53 5.32 11.56 10.98

Language-Tune 17.51 10.85 5.36 11.76 11.29

Family-Tune 17.34 10.83 5.47 11.68 11.27

Table 3: Evaluation results of Constrained Track for our methods of 38 African to African language directions on
the hidden test set of the FLORES-200 benchmark.

multiple languages. This is because there are thou-
sands of languages worldwide, and if we were to
make bilingual models, we would need thousands
of models to represent all the languages. This is
not ideal because it is neither scalable nor adapt-
able. Various research tries to improve the perfor-
mance of multilingual translation models. Either
through various training methods (Aharoni et al.,
2019; Wang et al., 2020), model structures (Wang
et al., 2018; Gong et al., 2021; Zhang et al., 2021),
or data augmentation (Tan et al., 2019; Pan et al.,
2021). The M2M model (Fan et al., 2020) utilizes
large-scale data derived from the web and explores
the techniques for enlarging the model and effec-
tively training it.

Multilingual pre-trained language models like
mBART (Liu et al., 2020) which pre-trains a multi-
lingual model with the multilingual denoising ob-
jective, have proven to be effective in improving
multilingual machine translation. These pre-trained
models also have drawbacks, like adapting to new
languages not seen during pre-training.

Adapters (Houlsby et al., 2019) are designed
to adapt a large pre-trained model to a down-
stream task with lightweight residual layers (Re-
buffi et al., 2018) that are inserted into each layer of
the model. As part of machine translation, Bapna
et al. (2019) proposed bilingual adapters to improve
pre-trained multilingual machine translation mod-
els or to adapt them to domains. Philip et al. (2020)
designed language-specific adapters to improve
zero-shot machine translation. Finally, Stickland
et al. (2020) use language-agnostic task adapters
for fine-tuning BART and mBART to bilingual and

multilingual MT. Faisal and Anastasopoulos (2022)
imposes a phylogeny-informed tree hierarchy over
adapters, leading to improved zero-shot perfor-
mance for languages unseen during pre-training
in tasks like dependency parsing. Our work, in con-
trast to previous ones, uses the family-specific and
genus-specific adapters on top of language-specific
adapters as a stack for encoder-decoder models and
for generation tasks like machine translation, to
leverage the idea that languages in the same family
should have similar traits. This may aid languages
with very little parallel corpora which may be re-
lated to other languages with more resources.

6 Conclusion

This paper describes GMU’s submission to the
large-scale machine translation for African lan-
guages of the WMT22 shared task. Here we ex-
plore if pre-trained models can be useful even for
languages on which they have not been pre-trained.
Our multilingual adapter-tuning translation model,
built on DeltaLM, achieves substantial improve-
ments over simply fine-tuning DeltaLM. We fur-
ther try to enhance the model performance with
adapter-tuning using phylogeny information. As
a result, our submitted systems rank third on the
data-constrained track.
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Metrics Models Avgnpl Avgpl Avgnpl−source Avgpl−source Avgnpl−target Avgpl−target

Bleu
Fine-Tune 12.88 13.12 12.47 14.49 13.70 11.10

Language-Tune 13.14 13.41 12.78 14.69 13.95 11.46

Family-Tune 13.13 13.43 12.79 14.67 13.93 11.51

CHRF++
Fine-Tune 34.06 35.57 34.18 36.57 35.07 34.06

Language-Tune 34.66 36.20 34.86 37.00 35.63 34.83

Family-Tune 34.64 36.24 34.85 37.07 35.64 34.84

spBLEU
Fine-Tune 15.23 16.50 15.14 17.87 16.18 14.98

Language-Tune 15.61 16.87 15.55 18.17 16.54 15.39

Family-Tune 15.57 16.85 15.53 18.12 16.49 15.41

Table 4: Evaluation results of Constrained Track for our methods of languages present in the pre-training of DeltaLM
vs languages not present. Avgnpl denotes the average score of language directions where no language was present in
the pre-training of DeltaLM. Avgpl denotes the average score of language directions where at least one language
was present in the pre-training of DeltaLM. Avgnpl−source denotes the average score of language directions where the
source language was not present in the pre-training of DeltaLM. Avgpl−source denotes the average score of language
directions where the source language was present in the pre-training of DeltaLM. Avgnpl−target denotes the average
score of language directions where the target language was not present in the pre-training of DeltaLM. Avgpl−target
denotes the average score of language directions where the target language was present in the pre-training of
DeltaLM.
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Sagot, and Djamé Seddah. 2021. When being un-
seen from mBERT is just the beginning: Handling

1022



new languages with multilingual language models.
In Proceedings of the 2021 Conference of the North
American Chapter of the Association for Computa-
tional Linguistics: Human Language Technologies,
pages 448–462, Online. Association for Computa-
tional Linguistics.

NLLB Team, Marta R. Costa-jussà, James Cross, Onur
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BLEU

Fine-Tune Language-Tune Family-Tune

Pairs Devtest Test Tico DevTest Test Tico Devtest Test

eng-afr 40.1 39.3 40.5 39.8 40.2 39.6

eng-amh 11.5 7.5 10.5 11.7 7.6 10.3 11.1 7.3

eng-fuv 0.2 0.4 0.2 0.3 0.3 0.3 0.3 0.3

eng-hau 10.1 10.4 3.4 12.8 13.3 5.6 13.5 14.5

eng-ibo 15.1 16.8 15.8 17.3 15.9 17.3

eng-kam 2.8 2.8 2.8 2.9 3 3

eng-lug 6 6.1 11.3 5.4 5.8 11 5.4 5.6

eng-luo 7.3 7.6 7.9 8 8.1 8.1

eng-nso 22.8 23.4 22.6 23.5 22.2 23

eng-nya 13.7 13 14.2 13.3 14 13.4

eng-orm 1.3 1.6 3.3 1.3 1.4 3.3 1.4 1.5

eng-kin 12.7 13.6 13.6 12.4 13.2 13.7 12.4 12.8

eng-sna 10.2 10 11 10.6 10.6 10.6

eng-som 10.9 12 8.3 11.1 11.9 8.5 11.1 11.9

eng-ssw 7.7 7.5 7.6 7.2 7.1 6.8

eng-swh 33.2 31.6 30.8 33.7 32.7 31.3 33.6 32.6

eng-tsn 17 18 18.6 19.7 17.6 19.1

eng-tso 15.1 16.1 16.3 17.4 16 17.2

eng-umb 1 0.8 1.1 0.8 1.4 0.9

eng-xho 1.3 1 1.4 1 1.7 1.4

eng-yor 3.3 3.1 3.4 3.2 3.3 3.2

eng-zul 15.8 13.1 16.8 16.1 13.2 17.2 16.1 13.5

afr-eng 55.1 56 56.5 57 56.3 57

amh-eng 30.5 29.5 27.6 31.3 30.7 28.6 31.2 30.1

fuv-eng 6.1 6.6 12.5 6.8 6.9 13 6.1 6.7

hau-eng 28.1 29.8 30.9 28 29.6 30.9 27.3 29.1

ibo-eng 25.2 28 25.8 28.2 25.6 28.2

kam-eng 9.4 10.7 9.5 10.9 9.7 10.9

lug-eng 15.3 16.5 25.8 16.2 16.8 26.7 16.3 17.2

luo-eng 17.3 19 18 19.2 18.2 19.1

nso-eng 33.1 33.3 34.4 34.7 34.4 35.2

nya-eng 24.9 25.8 25.2 25.8 24.9 25.8

orm-eng 12.2 13.3 17.8 13.2 14.6 18.8 13.3 14.6

kin-eng 27.5 28 22.7 28.3 28.5 22.9 28.1 28.3

sna-eng 25 25.8 25.3 26.1 25.4 26.3

som-eng 23.7 26.1 14.7 24 26.4 15 24.2 26.4

ssw-eng 26.3 27.1 25.8 27.1 25.8 27.1

swh-eng 41.3 41.1 40 41.4 41.1 40.5 41.8 41
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BLEU

Fine-Tune Language-Tune Family-Tune

Pairs Devtest Test Tico DevTest Test Tico Devtest Test

tsn-eng 23.7 25.7 23.9 25.6 23.9 26.6

tso-eng 27 27.5 28 28.1 27.6 28.3

umb-eng 7.1 7.6 7.1 7.7 7.9 8

xho-eng 34.5 31.2 35.2 31.3 34.9 31.3

yor-eng 16.1 17.1 16.7 17.6 16.6 17.6

zul-eng 35.4 33.9 40.2 35.8 34.4 40.6 36 34.6

fra-kin 9.4 10.1 10.8 9.5 10.3 11 9.4 10.1

fra-lin 6.3 6.5 6.8 7 7.2 7.5 7.4 7.5

fra-swh 22.5 21.7 20.4 23.6 22.8 20.8 23.9 23.4

fra-wol 1.8 1.8 1.8 1.8 2.1 2

kin-fra 22.5 22.7 18.4 22.7 22.7 18.7 22.9 23

lin-fra 18.1 17.9 16.4 18.6 19.1 16.9 18.4 18.8

swh-fra 31.2 30.6 26.1 31.8 31 26 31.5 30.8

wol-fra 9 9.9 9.9 10.5 9.7 10.3

xho-zul 12.4 9.9 12.9 10 12.9 9.9

zul-sna 9.5 9.3 9.5 9.9 9.6 9.9

sna-afr 16.2 16.8 16.2 17 16.3 17

afr-ssw 6.9 6.6 5.9 6.5

ssw-tsn 16.4 16.5 14.7 15.9

tsn-tso 11.9 13.4 12.6 13.5 11.3 12.9

tso-nso 16.9 17.4 17.2 17.8 16.9 17.9

nso-xho 10.3 8.7 10.2 8.5 10.5 8.7

swh-amh 8.5 6 7.6 8.4 5.9 7.4 8.3 5.8

amh-swh 20 18.5 17.2 20.2 18.5 17.6 20.1 18.6

luo-orm 0.5 0.6 0.5 0.7 0.5 0.7

som-amh 5.2 4.1 3 5.2 4.1 3 5.3 4.1

orm-som 4.4 5 4 4.8 5.4 4.2 4.7 5.4

swh-luo 5.3 5.6 6.4 6.5 6.6 6.6

amh-luo 4.4 4.9 4.9 5 4.9 4.7

luo-som 5.3 5.8 5.5 6.3 5.5 6.1

hau-ibo 11.6 13.2 11.6 13.4 11.6 13.5

ibo-yor 2.2 2.4 2.2 2.5 2.3 2.5

yor-fuv 0.1 0.2 0.2 0.3 0.1 0.3

fuv-hau 2.3 2.4 5 2.6 2.7 5.8 2.3 2.5

ibo-hau 13.8 14.7 13.6 14.7 13.6 14.9

yor-ibo 8.4 9 8.5 9.3 8.3 9.3

fuv-yor 0.3 0.4 0.4 0.4 0.6 0.6

hau-fuv 0.3 0.3 0 0.1 0.3 0.4 0.1 0.3
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BLEU

Fine-Tune Language-Tune Family-Tune

Pairs Devtest Test Tico DevTest Test Tico Devtest Test

wol-hau 4.8 5.5 5.1 5.7 5.1 5.8

hau-wol 2.2 2.5 2.2 2.3 2.1 2.4

fuv-wol 0.7 1 0.8 0.8 0.7 0.9

wol-fuv 0.1 0.2 0.1 0.3 0.1 0.3

kin-swh 19.3 18.7 16.4 19.8 19.3 17 19.8 19.3

lug-lin 5.4 5.5 9.3 5.2 5.7 8.5 5 5.5

nya-kin 8.9 9.1 9.2 9.3 8.9 9

swh-lug 4.4 4.7 8.5 4.7 5 9.6 4.8 5.5

lin-nya 7.3 7.9 7.8 8 7.7 8.1

lin-kin 7.9 8.3 9.5 8.3 8.4 9.9 8.1 7.9

kin-lug 2.6 2.6 4.2 2 1.9 3.5 2 2

nya-swh 17.5 17 17.8 17.2 17.9 17.2

amh-zul 8.5 7.5 8.5 8.8 7.3 9 8.8 7.4

yor-swh 11.4 11.2 11.9 11.6 11.8 11.5

swh-yor 2.6 2.7 2.7 2.8 2.7 2.7

zul-amh 7.8 4.9 7.5 7.6 5 7.6 8.1 5.1

kin-hau 14.5 15.6 12.9 14.9 16.5 13.3 15 16.7

hau-kin 10.3 11 10.7 10.2 10.9 10.8 10.1 11.1

nya-som 7.3 8 7.2 8.1 7.3 8

som-nya 9.2 9.8 9.4 9.7 9.4 9.7

xho-lug 3.9 4.2 4 4.2 4.2 4.4

lug-xho 4.9 4.5 5.1 4.7 5 4.6

wol-swh 6.6 6.6 6.7 6.9 6.7 6.6

swh-wol 2.1 2.3 2.4 2.3 2.3 2.5

Table 5: BLEU scores of our multilingual models on all translation directions.
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CHRF++

Fine-Tune Language-Tune Family-Tune

Pairs Devtest Test Tico DevTest Test Tico Devtest Test

eng-afr 65.4 65 65.8 65.4 65.5 65.2

eng-amh 35.9 32.4 31.9 36.5 32.7 31.6 35.7 32.2

eng-fuv 11.6 11.7 11 11.5 11.6 11 11.8 11.9

eng-hau 22 22.3 9.9 27.3 27.7 14.1 28.4 29.7

eng-ibo 38.2 39.9 39.5 40.9 39.6 40.7

eng-kam 19.4 19.2 19.2 19.2 19.2 19.3

eng-lug 30 30.6 32.7 29.4 30.7 32.4 28.8 29.6

eng-luo 29.3 29.7 30.8 30.9 30.9 30.8

eng-nso 47.7 47.2 47.8 47.9 46.9 47.2

eng-nya 43.8 43.4 44.4 44 44.2 43.9

eng-orm 17.6 18.3 19.3 18.1 18.5 19.3 18 18.3

eng-kin 37.7 38.7 39.5 37.8 38.2 39.4 37.6 37.6

eng-sna 40.6 40.3 41.3 40.9 41.1 40.9

eng-som 40.1 41.2 29.9 40.8 41.6 30.1 40.7 41.5

eng-ssw 38.6 39.1 38.9 39.4 38.1 38.4

eng-swh 58.7 57.9 56.2 59.3 58.7 56.6 59.3 58.4

eng-tsn 40.8 40.9 43.1 43.7 41.9 43

eng-tso 42.4 42.4 43.7 44.2 43.1 43.8

eng-umb 18.7 18.2 19.3 19 20 19.5

eng-xho 15.2 14.2 15.7 14.7 17.6 17.2

eng-yor 19.3 19.5 19.6 19.6 19.5 19.7

eng-zul 49.4 47.3 49.9 50.1 47.8 50.4 50 47.7

afr-eng 73.6 74.2 74.3 75 74.3 74.9

amh-eng 54.6 53.2 51.6 55.4 54.2 52.6 55.3 53.7

fuv-eng 22.4 22.4 28.9 23.4 23.4 29.9 22.5 22.8

hau-eng 49.7 51 51.6 50.1 51.4 51.8 49.7 50.9

ibo-eng 47.4 50 48.5 50.6 48.1 50.4

kam-eng 27.3 28.1 28.5 29 28.6 29.1

lug-eng 35.8 36 45.6 36.7 36.6 46.6 36.9 37.1

luo-eng 39 39.2 39.4 39.7 39.5 39.4

nso-eng 53.7 53.4 54.9 54.8 54.9 55.3

nya-eng 47.3 47.6 47.8 48.1 47.5 48.2

orm-eng 33.1 33.6 38.5 34.4 35.4 39.9 34.8 35.2

kin-eng 49.2 49.3 44.7 50.1 50 44.9 49.8 49.9

sna-eng 47.8 47.9 48.1 48.1 48.2 48.4

som-eng 45.5 46.4 32.1 46.2 46.8 32.4 46.3 46.9

ssw-eng 47.7 48.2 47.4 48.2 47.6 48.5

swh-eng 62.3 61.4 60.7 62.4 61.7 61.4 62.6 61.7

1028



CHRF++

Fine-Tune Language-Tune Family-Tune

Pairs Devtest Test Tico DevTest Test Tico Devtest Test

tsn-eng 45.5 46.9 46.4 47.5 47 48.9

tso-eng 48.6 48.2 49.6 49 49.3 49.3

umb-eng 25.5 25.8 25.6 26.1 26.9 26.4

xho-eng 55.7 52.6 56.4 53 56.1 52.9

yor-eng 37.7 37.8 38.6 38.7 38.6 38.6

zul-eng 57.1 54.8 61.2 57.6 55.8 61.6 57.8 55.7

fra-kin 35.4 35.8 35.4 36.4 37.2 35.7 36.1 36.4

fra-lin 32 31.9 30.4 34.1 34.3 32.7 34.7 34.6

fra-swh 49 47.9 45.8 50.8 50.1 46.3 51.1 50.5

fra-wol 11.7 11.8 12.4 12.7 14.6 14.6

kin-fra 45.3 45.1 39.8 45.6 45.7 40.2 46 45.9

lin-fra 40.2 39.8 37 40.9 41 37.5 40.8 40.7

swh-fra 53.8 53.4 48.6 54.5 53.9 49 54.4 53.9

wol-fra 28 27.9 29.6 29.2 29.2 28.7

xho-zul 45.3 43.2 45.8 43.3 45.7 43.1

zul-sna 40.5 39.9 40.6 40.4 40.6 40.4

sna-afr 41.6 41.4 42 41.9 42 41.9

afr-ssw 39.3 39 37.3 38.5

ssw-tsn 40.7 40.9 39.5 40.4

tsn-tso 38.4 40 39.7 40.5 38.7 40.1

tso-nso 41.8 41.9 42 42.3 42 42.3

nso-xho 41.8 40 41.8 40.3 42 40.4

swh-amh 31.7 29.2 27.1 31.9 29.2 26.8 31.9 29.1

amh-swh 48.2 46.4 44.3 48.3 46.7 44.9 48.4 46.7

luo-orm 14.5 15.1 14.8 15.6 14.6 15.6

som-amh 24.2 22.9 14.4 24.4 23 14.5 24.3 23.2

orm-som 27.9 29 23.1 29 29.6 23.4 28.9 29.8

swh-luo 26.6 26.8 28.6 28.9 28.9 28.9

amh-luo 26.1 26 26.4 26.6 26.7 26.2

luo-som 29.8 30.2 30.3 31 29.9 30.6

hau-ibo 34.1 35.3 34.1 35.7 34.1 35.7

ibo-yor 17.4 18 17.4 18.2 17.6 18.4

yor-fuv 11.2 11.2 11.1 11.1 11.2 11.2

fuv-hau 16.9 17.1 19.7 17.2 17.6 21.2 16.3 16.8

ibo-hau 38.5 39.7 38.7 39.9 38.5 40.1

yor-ibo 29.6 30 29.8 30.5 29.6 30.4

fuv-yor 6.4 6.5 7 7 8 8.1

hau-fuv 11.4 11.5 10.7 11.1 11.2 10.5 11.4 11.5
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CHRF++

Fine-Tune Language-Tune Family-Tune

Pairs Devtest Test Tico DevTest Test Tico Devtest Test

wol-hau 23.4 23.6 24.2 24.2 22.9 23.3

hau-wol 13.4 14.1 13.2 13.6 13.6 14.5

fuv-wol 8.5 9 9.2 9.1 9.6 9.5

wol-fuv 11.5 11.7 11.4 11.5 11.7 11.8

kin-swh 45.9 45.8 42.5 46.4 46.6 43.2 46.4 46.3

lug-lin 28.5 28.8 32.6 29.5 29.8 33.2 29.3 29.3

nya-kin 34.6 34.3 35.2 35 34.4 34.4

swh-lug 27.5 28.2 30.3 29 29.4 31.7 29.8 30.3

lin-nya 34.2 34.7 34.9 35.2 35.1 35.5

lin-kin 32.5 32.7 33.2 33.3 33.2 33.6 32.9 32.7

kin-lug 21.6 21.6 21.5 19.3 19.3 20 19.3 19.2

nya-swh 44.6 44.3 44.9 44.7 44.9 44.7

amh-zul 41.4 39.9 39 42.1 40.4 40 41.9 40.3

yor-swh 36.8 36.4 37.5 37.2 37.3 36.8

swh-yor 18.4 18.5 18.3 18.7 18.5 18.7

zul-amh 30.1 26.2 27.2 30.2 26.7 27.3 30.4 26.7

kin-hau 38.8 40 36.4 39.7 41.4 37.1 39.6 41.5

hau-kin 36.2 36.7 35.5 36.3 36.7 35.7 36.2 37

nya-som 34.6 35.9 35 36.2 35 36.1

som-nya 37.5 37.9 37.6 38 37.6 38.1

xho-lug 26.2 26.8 26.5 27 26.9 27.4

lug-xho 31.2 29.9 32 30.8 31.8 30.8

wol-swh 28.3 27.2 28.8 28.3 28.5 27.4

swh-wol 13.1 13.4 14.2 13.7 14.5 14.6

Table 6: CHRF++ scores of our multilingual models on all translation directions.
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spBLEU

Fine-Tune Language-Tune Family-Tune

Pairs Devtest Test Devtest Test Devtest Test

eng-afr 45.6 44.7 46.1 45.2 45.7 44.9

eng-amh 26.1 21.8 26.7 22.1 25.9 21.5

eng-fuv 0.4 0.6 0.4 0.5 0.4 0.5

eng-hau 3 3.1 4.3 4.5 4.7 5.2

eng-ibo 17.6 18.9 18.6 19.6 18.7 19.6

eng-kam 3.7 3.8 3.8 4 3.9 4

eng-lug 7.8 7.9 6.8 7.5 6.6 7

eng-luo 9.5 9.8 10.2 10.4 10.3 10.4

eng-nso 24.1 24.4 24.3 24.8 23.9 24.4

eng-nya 17.3 16.9 18 17.3 17.8 17.2

eng-orm 2.3 2.6 2.4 2.4 2.3 2.4

eng-kin 16 16.6 15.8 16.4 15.8 16.2

eng-sna 16.2 15.9 17.3 16.8 16.9 16.7

eng-som 16 17.2 16.4 17.5 16.3 17.3

eng-ssw 14.8 15.3 14.6 15.1 14.2 14.4

eng-swh 37.2 35.4 38 36.5 37.8 36.2

eng-tsn 18.5 19 20.1 20.7 19.1 20.1

eng-tso 18 18.9 19.5 20.5 19.1 20.1

eng-umb 1.9 1.9 2.1 2.1 2.3 2.2

eng-xho 3.3 2.5 3.4 2.7 4.1 3.5

eng-yor 4.6 4.6 5.2 4.8 4.9 4.9

eng-zul 26.2 23.3 27.1 23.9 27.1 24

afr-eng 58.2 58.8 59.5 60.1 59.4 60

amh-eng 33.1 31.2 33.9 32.3 33.7 31.6

fuv-eng 7.8 8.1 8.6 8.5 8 8.5

hau-eng 31.1 32.4 31.1 32.4 30.5 31.8

ibo-eng 28.1 30.7 28.8 30.8 28.5 30.8

kam-eng 11.9 12.9 12.3 13.2 12.2 13.2

lug-eng 17.4 18.4 18.4 18.7 18.3 19

luo-eng 20.3 20.9 20.7 21.2 20.7 21

nso-eng 35.3 35 36.6 36.7 36.6 37.1

nya-eng 28.1 28.6 28.6 28.8 28.2 29

orm-eng 13.2 14 14.4 15.3 14.6 15.2

kin-eng 29.5 29.7 30.3 30.2 30.1 30

sna-eng 28.7 29 29 29.3 29.2 29.4

som-eng 25.8 27.5 26.1 27.8 26.4 27.8

ssw-eng 28.6 29 28.2 29 28.3 29.2

swh-eng 43.3 42.5 43.3 42.7 43.6 42.8
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spBLEU

Fine-Tune Language-Tune Family-Tune

Pairs Devtest Test Devtest Test Devtest Test

tsn-eng 26.3 27.8 27 28.2 27.4 29.3

tso-eng 29.7 29.4 30.8 30.2 30.4 30.3

umb-eng 8.9 9.5 9 9.6 9.8 9.9

xho-eng 37.3 33.6 38.1 33.9 37.8 33.7

yor-eng 18.2 19 19 19.7 18.9 19.6

zul-eng 38.3 35.9 38.9 36.8 39 36.9

fra-kin 12.9 13.6 13.4 14.4 13.3 13.9

fra-lin 8.8 9 9.6 10.1 9.8 10.1

fra-swh 26.6 25.3 28.1 27.1 28.5 27.6

fra-wol 2.1 2.3 2.6 2.6 3.2 3

kin-fra 26.3 25.9 26.7 26 26.9 26.4

lin-fra 22.5 21.9 23 23 23 22.8

swh-fra 35.7 34.8 36.2 35 36 34.9

wol-fra 12.7 12.6 13.7 13.2 13.3 13

xho-zul 22.6 19.9 23.2 20.1 23.2 20

zul-sna 16.5 16.1 16.6 16.6 16.7 16.7

sna-afr 19.7 19.5 20.1 20 20.1 20.1

afr-ssw 15.2 14.7 13.1 14.3

ssw-tsn 17.6 17.7 16.2 17.1

tsn-tso 14.8 15.9 15.8 16.1 14.3 15.4

tso-nso 18.3 18.6 18.9 18.9 18.7 19.2

nso-xho 17.5 15.9 17.3 16 17.5 15.9

swh-amh 21.6 18.5 21.8 18.5 21.9 18.3

amh-swh 24.1 21.6 24.4 21.8 24.2 21.9

luo-orm 1.2 1.2 1.2 1.3 1.1 1.3

som-amh 14.7 13.2 14.9 13.2 14.9 13.4

orm-som 6.7 7.4 7.3 7.8 7.3 7.9

swh-luo 7.4 7.5 8.4 8.7 8.8 8.8

amh-luo 6 6.3 6.5 6.4 6.6 6.1

luo-som 8.2 8.5 8.5 9.1 8.4 8.9

hau-ibo 14.2 15.5 14.3 15.7 14.3 15.6

ibo-yor 3.6 3.8 3.8 3.9 3.8 4

yor-fuv 0.2 0.3 0.3 0.4 0.3 0.4

fuv-hau 2.8 2.9 2.9 3.1 2.8 3.1

ibo-hau 16.3 16.8 15.9 16.7 15.8 17

yor-ibo 10.9 11.3 11.1 11.5 11 11.5

fuv-yor 0.6 0.6 0.7 0.7 1 1

hau-fuv 0.3 0.4 0.2 0.4 0.2 0.4
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spBLEU

Fine-Tune Language-Tune Family-Tune

Pairs Devtest Test Devtest Test Devtest Test

wol-hau 6.1 7 6.5 6.9 6.4 7.2

hau-wol 3.2 3.5 3.3 3.5 3.2 3.7

fuv-wol 1 1.3 1.1 1.1 1.1 1.3

wol-fuv 0.1 0.4 0.2 0.4 0.2 0.4

kin-swh 22.8 21.8 23.3 22.6 23.3 22.4

lug-lin 6.7 6.8 6.9 7.2 6.7 7

nya-kin 12.1 11.8 12.6 12.4 12 11.9

swh-lug 5.8 6.2 6.2 6.5 6.7 7.1

lin-nya 9.8 10.4 10.4 10.5 10.4 10.6

lin-kin 10.3 10.7 10.9 11 10.8 10.5

kin-lug 4.4 4.3 3.4 3.2 3.4 3.2

nya-swh 21.4 20.5 21.7 20.7 21.7 20.7

amh-zul 17.6 15.4 18.1 15.8 18.1 15.7

yor-swh 14.1 13.4 14.6 14 14.6 13.7

swh-yor 3.7 3.7 3.8 3.9 3.9 3.7

zul-amh 20.4 16.2 20.6 16.4 20.7 16.6

kin-hau 16.9 17.7 17.5 18.7 17.4 18.9

hau-kin 13.5 14.2 13.6 14.2 13.4 14.3

nya-som 11.5 12.5 11.6 12.6 11.7 12.4

som-nya 12.4 12.7 12.6 12.8 12.4 12.8

xho-lug 5.3 5.5 5.3 5.5 5.4 5.7

lug-xho 10 9.1 10.4 9.5 10.2 9.6

wol-swh 8.6 8.2 8.9 8.7 8.7 8.3

swh-wol 3 3.1 3.6 3.4 3.6 3.5

Table 7: spBLEU scores of our multilingual models on all translation directions.
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Abstract

This paper describes the submission of the joint
Samsung Research Philippines - Datasaur AI
team for the WMT22 Large Scale Multilingual
African Translation shared task. We approach
the contest as a way to explore task compo-
sition as a solution for low-resource multilin-
gual translation, using adapter fusion to com-
bine multiple task adapters that learn subsets
of the total translation pairs. Our final model
shows performance improvements in 32 out of
the 44 translation directions that we participate
in when compared to a single model system
trained on multiple directions at once.

1 Introduction

In this paper, we describe two systems that we
submit to the WMT22 Large Scale Multilin-
gual African Translation shared task: a base-
line finetuned MT5 (Xue et al., 2020) model
trained on multiple directions at once (referred
to as SRPH-DAI-Baseline), and an MT5 model
successively finetuned with task composition us-
ing multiple pair-specific adapters (referred to as
SRPH-DAI-Fusion).

We first outline the preprocessing steps and fil-
tering heuristics used to clean the contest dataset,
then we show the training setup and experimental
design used for constructing our submitted systems.
We then report our results on the hidden test set via
BLEU, spBLEU, and CHRF2++ automatic evalua-
tion metrics.

2 Preprocessing

In this section, we detail the preprocessing steps
used to filter the contest dataset to ensure that data
quality is as high as possible.

Given that the contest dataset contains sentence
pairs that were artificially aligned from crawled

∗ Work done while at Konvergen AI.

data, we use a number of filters to reduce the pos-
sibility of mismatched pairs in the final training
dataset:

• We filter out pairs where one or both sentences
have too few (<= 3) or too many (>= 150)
tokens post-sentencepiece tokenization.

• We remove pairs if one or both sentences have
too many repeated (>= 5) punctuations or
symbols of the same type (e.g. “/////”), or con-
tiguous punctuations/symbols of considerable
(>= 3) length (e.g. “word $&**$”).

• We also remove sentence pairs where one sen-
tence has punctuation that is missing from the
other (e.g. “word!!” → “word?”).

• If a pair has a sentence where a large percent-
age of the total characters (total >= 70%) are
numbers or punctuations (e.g. “word ??! +22
8456 8967”), the pair is dropped.

• An average word length filter is also used to re-
move pairs where one sentence has words that
are disproportionately longer than the words
in the corresponding sentence. We get a ratio
r by taking the sum of the lengths of each to-
ken in a sentence, then dividing it by the num-
ber of tokens. We only keep sentence pairs
where both sentences have a ratio r within
3 <= r <= 15.

• HTML and URL-containing sentence pairs
are also removed as this contributes to unnec-
essary noise during training.

• Lastly, we also check for known word matches
within each sentence pair. For instance, if we
detect a number (e.g. “1” or “one”), we also
check the corresponding sentence for the same
number. Sentence pairs that have mismatched
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Pair Samples
afr↔ eng 2,526,513
amh↔ eng 315,870
fuv↔ eng 953,002
hau↔ eng 1,841,974
ibo↔ eng 136,534
kam↔ eng 1,143,082
kin↔ eng 7,143,167
lug↔ eng 2,058,590
luo↔ eng 1,713,159
nso↔ eng 1,600,977
nya↔ eng 1,289,859
orm↔ eng 1,786,712
sna↔ eng 5,917,741
som↔ eng 413,647
ssw↔ eng 77,807
swh↔ eng 18,243,580
tsn↔ eng 3,034,232
tso↔ eng 383,586
umb↔ eng 190,170
xho↔ eng 5,481,855
yor↔ eng 923,055
zul↔ eng 2,645,396

Table 1: Final dataset statistics after running the sen-
tence pair filters.

(e.g. source sentence has “1” but target sen-
tence has “11”) words are dropped as these
are likely from misaligned data.

After applying the filters for the entire dataset,
we perform one deduplication step to ensure that no
duplicate entries have been added. No further pre-
processing is done on the data itself to preserve as
much information within the sentences as possible.

When formatting the data for translation training,
we insert a target language token at the beginning
of the sentence. For example, a sentence to be
translated from English to Afrikaans would look
like:

<afr> This is an example sentence.

We only participate in a subset of the shared
task’s translation pairs (44 total directions), opting
to train only on English→ African and African→
English pairs due to resource constraints.

3 Experiment Design

In this section, we describe the construction of our
two submitted systems: SRPH-DAI-Baseline and

SRPH-DAI-Fusion.

3.1 Common Settings
Both systems use MT5-Small, a Transformer-based
(Vaswani et al., 2017) model, as an initialization
point. We opted to use the small variant (∼300
million parameters) as opposed to the bigger base
(∼580 million) and large (∼1.2 billion) variants
due to resource constraints in our setup. We expect
the performance of our models to further improve
as we scale to larger variants of pretrained models.

As a remedy to constrained resources as well as
a way to improve stability during training for low-
resource data, we decided to use adapters (Houlsby
et al., 2019; Pfeiffer et al., 2020b) instead of fully
finetuning all the model parameters.

Before proceeding to training for translation, we
first train a language adapter (Pfeiffer et al., 2020b)
on English + African languages in order to better
condition the MT5 model for the languages it will
encounter later. We mimic MT5’s pretraining and
use span corruption on the provided monolingual
training data for the shared task (which is likewise
filtered like our parallel data).

We freeze the pretrained weights and train the
adapter for a total of 150K steps using the Adafac-
tor (Shazeer and Stern, 2018) optimizer, utilizing
a learning rate schedule that warms up for the first
10K steps to a maximum of 1e−4, then linearly de-
caying after. We use a maximum sequence length
of 512 for language adapter training, using gradient
accumulation to train with a total batch size of 128
sequences per training step. The output language
adapter is used in both of our submission systems,
and is stacked below the translation task adapter(s).

3.2 Baseline Model
We construct our baseline model
SRPH-DAI-Baseline by stacking a blank
task adapter on top of our language adapter and
training it on all 44 translation directions at once.
In this setup, the language adapter is frozen. This
model is trained for a total of 300K steps on the
combined filtered dataset using the Adafactor
optimizer. We use a learning rate of 5e− 5 and a
weight decay of 1e − 8, warming up for the first
10K steps, then linearly decaying after.

Unlike other systems, we do not perform any
other techniques such as backtranslation (Edunov
et al., 2018), noisy channel reranking (Yee et al.,
2019), or clever pair sampling (Fan et al., 2021) in
order to further boost performance. This mimics an
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“ablation” setup where only the direct finetuning
method is used in order to accurately observe the
effect of using task composition later on. Since
no further modifications are made on the model
beyond the training method, any improvements
on performance made by task composition can be
attributed to task composition and not anything
else.

3.3 Exploring Task Composition

In the conventional multidirectional setup like in
our baseline, the model learns generic cross-lingual
information at the same time that it learns task-
specific information. Learning cross-lingual in-
formation is useful in cases where a number of
the languages in the model are similar or come
from the same family (Saleh et al., 2021; Siddhant
et al., 2022). However, in cases where a number
of the languages are dissimilar or come from dif-
ferent families, we hypothesize that it may be use-
ful to learn cross-lingual information separately
from task-specific mappings. This ensures that the
model learns each translation direction in a non-
destructive manner with respect to other language
pairs.

In cases where certain language pairs are un-
derrepresented in the training set, learning each
direction separately also removes the need for spe-
cialized data sampling methods to ensure that the
model sees each pair enough times. In addition,
using adapters for low-resource pairs also helps
prevent overfitting the small dataset (Mao et al.,
2021).

Motivated by this, instead of finetuning a task
adapter for multiple translation directions, we in-
stead opt to train multiple translation task adapters
to learn task-specific information, then composing
the multidirectional setup afterwards via Adapter
Fusion (Pfeiffer et al., 2020a) to mix cross-lingual
and cross-task information. This is how we con-
struct our SRPH-DAI-Fusion model.

For this setup, we follow the same training rou-
tine as in the baseline, except we only train on one
language pair at a time. We train an adapter to
produce translations for two directions: English
→ X and X → English. Training in more than
one direction ensures that the task adapters learn
to properly embed the target language token at the
beginning of every sentence. This results in a total
of 22 task adapters for each of the 22 English→ X
pairs.

Finally, we add an Adapter Fusion setup
for all 22 single-pair task adapters, freeze the
adapters,then further finetune the model to learn
cross-task and cross-lingual information. We fine-
tune for 100K steps with a learning rate of 2e− 5
using the Adafactor optimizer. Like in previous
setups, we also use a warmup of 10K steps with a
linear decay afterwards.

4 Results

We outline the performance of our two models on
the hidden test set on Table 2.

Overall, SRPH-DAI-Fusion outperforms
SRPH-DAI-Base on average across all three
metrics, with an improvement of 0.09, 0.19, and
1.33 on average BLEU, spBLEU, and CHRF2++,
respectively. Both models perform relatively better
on the African to English translation directions
compared to the English to African ones. We
hypothesize that this is likely due to English
being a pivot language, and thus cross-lingual
and cross-task information learned while training
each pair contributed to better performance when
translating into English.

When comparing the two models, we note an
“improvement” in the performance if at least two
of the three metrics had an increase in score. We
observe that 32 out of the 44 translation directions
had an improvement once task composition was
used for finetuning, most of which are very low-
resource pairs. Best gains are observed in the En-
glish to African translation directions, with some
pairs such as Eng→ Orm improving from an initial
0 score from the baseline model.

We observe that SRPH-DAI-Base outperforms
the task composition model in cases where there is
a relative abundance of training data. For pairs that
have sub-million examples, SRPH-DAI-Fusion per-
forms much better, likely due to the model being
able to learn more specialized information about
these translation directions separate from the other
directions.

Interestingly, we observe that for language pairs
with a relative abundance of data, the drop in perfor-
mance when using task composition is substantial.
For example, Afr→ Eng suffers a 2.2, 2, and 4.2
points drop in BLEU, spBLEU, and CHRF2++, re-
spectively. We hypothesize that this is because
SRPH-DAI-Fusion has more intact task-specific
knowledge related to low-resource pairs that may
not be useful to the higher-resourced pairs. Since
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task adapters are frozen during fusion layer train-
ing, the model has an added burden in learning how
to adapt knowledge that may not be useful when
translating higher-resourced translation directions.

5 Conclusion

In this paper, we described our submissions for the
WMT22 Large Scale Multilingual African Trans-
lation shared task. We approached the contest as
a way to explore task composition as a solution
for multilingual translation, especially among low-
resource languages. In our experiments, we show
that using task composition – training task adapters
to learn pair-specific knowledge, then using a fu-
sion layer to learn cross-task information – im-
proves performance for less-represented language
pairs in a multilingual translation dataset. While
the model’s results for a number of translation di-
rections are far from state-of-the-art, the results
show the methodology’s promise for further explo-
ration.

For future work, we would like to conduct exper-
iments for larger models than is constrained by our
resources. We expect that using Base and Large
variants of MT5 would further improve perfor-
mance for all language pairs. In addition, it would
be beneficial to test the methodology while adding
in common “best practices” in translation such as
using backtranslated data and better data sampling.
Lastly, we would like to explore setups where
the pair-specific task adapters are transformable
to some extent instead of being fully frozen as a
remedy to the problem of higher-resourced pairs
performing worse in the task composition setup.
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SRPH-DAI-Base SRPH-DAI-Fusion
Pair BLEU spBLEU CHRF2++ BLEU spBLEU CHRF2++ Improved?

afr→ eng 8.3 9.1 26.2 6.1 7.1 22 -
amh→ eng 0.7 0.8 11.2 0.9 1 11.3
fuv→ eng 1.3 1.8 10.6 1.4 2 11.1
hau→ eng 2.7 3.7 14.8 2.5 3.6 14.6 -
ibo→ eng 1.9 2.6 12.3 2.1 3 12.7
kam→ eng 2.1 2.8 12.1 2.1 2.9 12.6
kin→ eng 2.3 3.1 14.2 2.7 3.4 15
lug→ eng 1.8 2.4 11.9 2 2.6 13
luo→ eng 1.8 2.2 11 1.8 2.4 11.7
nso→ eng 2.8 3.6 14.3 3.1 4.2 15.9
nya→ eng 3 3.9 15.4 3.1 4.2 15.9
orm→ eng 0.5 0.7 8.4 0.6 0.9 9.2
sna→ eng 3 3.7 15.1 3 3.7 15.5 -
som→ eng 2 2.5 12.4 2.3 3 14
ssw→ eng 2.6 3.3 13.8 2.6 3.3 14
swh→ eng 4.1 4.4 18.1 3.9 4.6 17.8 -
tsn→ eng 2.3 2.9 13.3 2.6 3.3 14.1
tso→ eng 2.1 2.8 12.3 2.4 3 13.1

umb→ eng 1 1.5 10.7 0.9 1.5 11 -
xho→ eng 3.3 4.1 16.4 3.2 4 16.3 -
yor→ eng 1.5 2.1 10.9 1.8 2.5 12.2
zul→ eng 2.9 3.5 15.4 2.9 3.5 15.4 -
eng→ afr 4.1 4.3 20.6 2.6 3 17.9 -

eng→ amh 0.1 0 2.6 0.3 0.2 0.5
eng→ fuv 0.1 0.1 4 0.9 1.2 10
eng→ hau 0.3 0.5 8.3 0.5 1 19.4
eng→ ibo 0.2 0.1 4.4 0.6 0.8 8.7
eng→ kam 0.1 0.1 2.5 0.6 0.8 7.9
eng→ kin 0.3 0.4 5.4 0.4 0.4 8.1
eng→ lug 0.2 0.3 3.8 1.1 0.9 8.7
eng→ luo 0.5 0.6 5.7 1 1.4 10.1
eng→ nso 0.3 0.4 5.5 0.4 0.9 8.3
eng→ nya 1.1 0.8 10.6 1.4 1.4 11.5
eng→ orm 0 0 2.2 0.1 0.1 4.7
eng→ sna 1.1 0.8 11.8 1 0.8 9.3 -
eng→ som 0.3 0.1 6.8 0.4 0.5 7.4
eng→ ssw 0.7 0.8 9 1.1 0.8 9.2
eng→ swh 1.3 1.4 14.9 1.1 1.6 13.2 -
eng→ tsn 0.3 0.3 5.6 0.3 0.7 7.7
eng→ tso 0.3 0.4 3.8 0.7 1.1 8.9

eng→ umb 0.3 0.2 3.1 0.6 0.7 8.3
eng→ xho 0.6 0.9 11.1 0.6 0.6 11 -
eng→ yor 0.1 0 4.1 0.3 0.3 6.3
eng→ zul 0.5 0.8 10.6 0.6 0.5 10.1 -
Average 1.52 1.84 10.39 1.61 2.03 11.72

Table 2: Results of both SRPH-DAI-Base and SRPH-DAI-Fusion on the hidden test set. We consider task composi-
tion as an improvement if it resulted in an increase in performance in at least two of the three automatic metrics.
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Abstract

The paper describes the University of Cape
Town’s submission to the constrained track of
the WMT22 Shared Task: Large-Scale Ma-
chine Translation Evaluation for African Lan-
guages. Our system is a single multilingual
translation model that translates between En-
glish and 8 South / South East African Lan-
guages, as well as between specific pairs of the
African languages. We used several techniques
suited for low-resource machine translation
(MT), including overlap BPE, back-translation,
synthetic training data generation, and adding
more translation directions during training. Our
results show the value of these techniques, es-
pecially for directions where very little or no
bilingual training data is available.1

1 Introduction

Southern African languages are underrepresented
in NLP research, in part because most of them are
low-resource languages: It is not always possible
to find high-quality datasets that are large enough
to train effective deep learning models (Kreutzer
et al., 2021). The WMT22 Shared Task on Large-
Scale Machine Translation Evaluation for African
Languages (Adelani et al., 2022) presented an op-
portunity to apply one of the most promising recent
developments in NLP — multilingual neural ma-
chine translation — to Southern African languages.
For many languages, the parallel corpora released
for the shared task are the largest publicly available
datasets yet. For some translation directions (e.g.
between Southern African languages), no parallel
corpora were previously available.

In this paper we present our submission to the
shared task. Our system is a Transformer-based
encoder-decoder (Vaswani et al., 2017) that trans-
lates between English and 8 South / South East
African languages (Afrikaans, Northern Sotho,

1Our model is available at https://github.com/Khalid-
Nabigh/UCT-s-WMT22-shared-task.

Shona, Swati, Tswana, Xhosa, Xitsonga, Zulu) and
in 8 additional directions (Xhosa to Zulu, Zulu to
Shona, Shona to Afrikaans, Afrikaans to Swati,
Swati to Tswana, Tswana to Xitsonga, Xitsonga
to Northern Sotho, Northern Sotho to Xhosa). We
trained a single model with shared encoder and de-
coder parameters and a shared subword vocabulary.

We applied several methods aimed at improving
translation performance in a low-resource setting.
We experimented with BPE (Sennrich et al., 2016b)
and overlap BPE (Patil et al., 2022), the latter of
which increases the representation of low-resource
language tokens in the shared subword vocabulary.
We used initial multilingual and bilingual models to
generate back-translated sentences (Sennrich et al.,
2016a) for subsequent training.

First, we trained a model to translate between En-
glish and the 8 Southern African languages. Then
we added the 8 additional translation directions and
continued training. For some of these additional
directions no parallel corpora were available, so we
generated synthetic training data with our existing
model. By downsampling some of the parallel cor-
pora to ensure a balanced dataset, we were able to
train our model effectively in the new directions,
while retaining performance in the old directions.

We describe the development of our model and
report translation performance at each training
stage. Our final results compare favourably to
existing works with overlapping translation direc-
tions. While there is considerable disparity in per-
formance across languages, our model nonetheless
achieves results that indicate some degree of effec-
tive MT across all directions (most BLEU scores
are above 10 and most chrF++ scores are above 40).
We also discuss our findings regarding techniques
for low-resource MT. We found overlap BPE and
back-translation to improve performance for most
translation directions. Furthermore, our results con-
firm the value of multilingual models, which proves
critical for the lowest-resource languages.
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2 Background

2.1 Multilingual Neural Machine Translation
(MNMT)

Multilingual models help low-resource languages
(LRLs) by leveraging the massive amount of
training data available in high-resource languages
(HRLs) (Aharoni et al., 2019; Zhang et al., 2020).
In the context of Neural Machine Translation, a
multilingual model can translate between more
than two languages. Current research in MNMT
can be divided into two main areas: training
language-specific parameters (Kim et al., 2019;
Philip et al., 2020) and training a single massive
model that shares all parameters among all lan-
guages (Fan et al., 2020; NLLB Team et al., 2022).
Our work lies in the second category, as we are
building a single multilingual translation system by
exploring back-translation and different vocabulary
generation approaches.

2.2 Back-Translation
Given parallel sentences in two languages A and
B (Ab, Ba), with goal of training a model that
translates sentences from A to B (A→ B). Back-
translation works as follows: First, one trains a
(B → A) model using the available (Ab, Ba)
data. Then the Ba sentences are passed to the
model to regenerate Ab. This model’s output (A′

b)
is then considered as additional synthetic parallel
data (A′

b, Ba). The final step of back-translation is
training an (A→ B) translation model using (A′

b,
Ba) as parallel data. The motivation behind back-
translation is that the noise added to the A′

b sen-
tences from regeneration increases the model’s ro-
bustness (Edunov et al., 2018). The same approach
can be extended to multilingual models (Liao et al.,
2021).

2.3 Overlap-based BPE (OBPE)
Byte Pair Encoding (BPE) is a vocabulary creation
method that relies on n-gram frequency (Sennrich
et al., 2016b). The starting point is a character-
based vocabulary. At each step, the BPE algorithm
identifies the two adjacent tokens with the highest
frequency, joins them together as a single token,
and adds the new token to the vocabulary. The
dataset is then restructured based on the expanded
vocabulary. In the case of multilingual training, a
single BPE vocabulary can handle all languages
by running the BPE algorithm on the union of the
data from all the languages. However, when con-

Language Pairs WMT22_african
eng-sna 8.7M
eng-xho 8.6M
eng-tsn 5.9M
eng-zul 3.8M
eng-nso 3M
eng-afr 1.6M
eng-tso 630K
eng-ssw 165K
xho-zul 1M
zul-sna 1.1M
sna-afr 1.6M*
afr-ssw 165K*
ssw-tsn 85K
tsn-tso 285K
tso-nso 212K
nso-xho 200K

Table 1: Number of available parallel sentences for all
language pairs. * indicates that no data is available for
these pairs and the number represents the amount of
synthetic data we generated.

Language Family LHRL LLRL

Germanic English(eng) Afrikaans(afr)
Nguni Xhosa(xho) Zulu(zul), Swati(ssw)
Sotho-Tswana Tswana(tsn) Sepedi(nso)
Bantu Shona(sna) Xitsonga(tso)

Table 2: The languages included in our translation sys-
tem, grouped by language family and whether they are
used as LHRL or LLRL for the OBPE algorithm.

structing a multilingual vocabulary, BPE will prefer
frequent word types, most of which are from HRLs,
leaving a smaller proportion of the vocabulary for
words from LRLs.

Overlap-based BPE (OBPE) is a modification to
the BPE vocabulary creation algorithm which en-
hances overlap across related languages (Patil et al.,
2022). OBPE takes into account the frequency of
tokens as well as their existence among different
languages. Given a list of HRLs (LHRL) and LRLs
(LLRL), OBPE tries to balance cross-lingual shar-
ing (tokens shared between HRLs and LRLs) and
individual languages’ representation. The optimal
OBPE vocabulary for a set of languages from differ-
ent families is produced by considering the highest
resource language from each family as LHRL and
the rest of the languages as LLRL.
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3 Datasets

The WMT22 dataset is released along with the
shared task. It contains bitext for 248 pairs of
African languages, referred to as WMT22_african.2

We use WMT22_african for both training and vali-
dation; the first 3 000 sentences from each language
pair is reserved for validation and the rest for train-
ing. Table 1 shows available number of sentences
for each language pair. No data was provided for
Shona-Afrikaans and Afrikaans-Swati, so we gen-
erated synthetic data for these translation directions
(see section 4.2.1). For testing, we used the Flores
dev set, which contains 997 parallel sentences for
each language pair. Additionally, we report the
results of the final translation system as evaluated
by the shared task organizers on a hidden test set.

3.1 OBPE
We trained BPE and OBPE tokenizers using the
eng ↔ LRL data only (the first 8 rows of table
1). The vocabulary size for both BPE and OBPE
is set to 40K. For OBPE, the LHRL contains the
highest-resource language from each language fam-
ily (eng, xho, tsn, sna), while LLRL includes the
rest of the languages (see table 2). We used Patil
et al.’s (2022) implementation for both BPE and
OBPE. This implementation is based on the Hug-
ging Face Tokenizers library.3

4 Methodology

In this work, we only focus on South and South
East African languages, their translation to/from
English, and eight translation directions between
these languages. We divided the training of the
translation system into two stages. In the first
stage, we trained a multilingual model for trans-
lating from all LRLs to English and vice versa.
To incorporate the translation directions between
LRLs into the system, we did further training on
the translation model from stage 1. We divided
the training process into stages instead of training
the model in one session due to computational re-
source constraints. Both stages are explained in
more detail below.

All models were trained with the Fairseq
toolkit (Ott et al., 2019). We used the
transformer-base architecture (Vaswani et al.,
2017) for training all bilingual models. We base

2https://huggingface.co/datasets/allenai/
wmt22_african

3https://huggingface.co/docs/tokenizers

Data ∆

sna-eng 0.1
xho-eng 0.2
tsn-eng −0.2
zul-eng −0.7
nso-eng 0.3
afr-eng 0.0
tso-eng 0.0
ssw-eng 0.3

eng-sna 0.1
eng-xho −0.2
eng-tsn 0.2
eng-zul 0.1
eng-nso −0.2
eng-afr 0.0
eng-tso −0.2
eng-ssw 0.0

Table 3: BLEU score differences between the OBPE
multilingual model (13th epoch) and the BPE multilin-
gual model (10th epoch) on Flores dev set. We stopped
training the BPE model at this point as the OBPE model
is computationally more efficient. The translation direc-
tions are sorted based on the available amount data.

the multilingual models on the BART architecture
(Liu et al., 2020), using Tang et al.’s (2021) imple-
mentation and hyperparameters, including adding
a token to indicate the source language before the
input sentence and a token for the target language
before the output sentence.

4.1 Stage 1: Translation Between LRLs and
English

We used BPE and OBPE vocabularies to train two
multilingual models for all directions between En-
glish and LRLs. Bilingual models were trained
for each translation direction using a single vo-
cabulary for each model. Finally, we performed
back-translation for all directions using the model
with the highest BLEU score in each case.

4.1.1 Multilingual Training
Multilingual models generally have more param-
eters and require more training time and compu-
tational resources than bilingual models. Compu-
tational constraints prevented us from fully train-
ing two multilingual models and then doing back-
translation from them. Subsequently we used BPE
and OBPE vocabularies to train two multilingual
models till the 10th and 13th epochs, respectively.
At this point, we found that the difference in trans-
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eng sna xho tsn zul nso afr tso ssw
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Figure 1: The change in the number of tokens in the training set per language when using OBPE instead of BPE.
Less training tokens correspond to better a representation of a language in the shared subword vocabulary, so
negative percentage changes reflect an improvement in low-resource language representation.

eng-afreng-nsoeng-sna eng-ssweng-tsneng-xho eng-tsoeng-zul

26

28

30

32

34

36

38

A
ve

ra
ge

no
.t

ok
en

s
pe

rs
en

te
nc

e
pa

ir
s BPE

OBPE

Figure 2: The average number of tokens per sentence pair for all language pairs with English, comparing BPE and
OBPE vocabularies. More tokens lead to slower training.
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lation quality between the two models is negligible
(see table 3). However, the OBPE model is slightly
faster in training and represent LRLs better. A
language l is represented better in vocabulary V1
than V2 if V1 contains more subword tokens from l
than V2. The total number of tokens in l’s training
data will influence its representation in the vocabu-
lary. Reducing the number of tokens in the training
sentences requires increasing the vocabulary capac-
ity. Therefore, fewer tokens in the training data
corresponds to a better vocabulary representation.
We are interested in comparing BPE and OBPE’s
vocabulary representation for all languages. We
used the following formula to measure the relative
change in the number of training tokens when using
OBPE instead of BPE,

changel =
T l

OBPE − T l
BPE

T l
BPE

% (1)

where T l
BPE and T l

OBPE are the total number of to-
kens in language l’s training data when using BPE
and OBPE vocabularies, respectively. Figure 1
shows the change in number of training tokens for
all languages. The negative sign in the figure indi-
cates that OBPE represents the language better than
BPE. It can be clearly seen that OBPE represents
most LRLs better than BPE.

As we are training autoregressive models, the
training speed depends on the number of target to-
kens, which is controlled by the target language
representation in the subword vocabulary. There-
fore we use the average number of tokens per train-
ing example for each language pair (eng-l) as a
proxy for training speed. Fewer tokens leads to
faster training. Both source and target tokens are
included, as we are training the model to translate
in both directions:

AvgTokensVeng−l =
Tokleng−l + Tokengeng−l

Neng−l
(2)

where AvgTokensVeng−l indicates the average num-
ber of tokens in one training example from the
eng − l dataset using V vocabulary. Tokleng−l and
Tokengeng−l represent the total of l and eng tokens,
respectively, in the eng − l dataset, while Neng−l

represents the number of training examples in the
same dataset. Figure 2 shows the average number
of training tokens in each language pair when us-
ing BPE and OBPE vocabularies. We observe that
training with OBPE is slightly faster than training

with BPE. The speed difference is higher for lan-
guages that are better represented by OBPE (see
figure 1).

For these two reasons, and due to time and re-
sources constrains, we chose to continue with train-
ing the OBPE multilingual model only.

4.1.2 Bilingual Training
Multilingual models often harm performance on
high-resource languages compared to their bilin-
gual counterparts (Yang et al., 2022). For back-
translation, we used bilingual models for the subset
of language pairs where this happens. We had two
translation directions for each language (from/to
English) and two vocabulary options (BPE/OBPE)
for each direction. We ended up with 32 bilingual
models.

All bilingual models were trained on either an
Nvidia A100 full card (40GB) or a division of half
a card (20GB) for 45 epochs with a batch size of
12 288 tokens. The training time depends on the
language pairs, but the highest-resource language
pair took three days of training.

4.1.3 Back-Translation
For each translation direction, we choose one of the
following models for generating back-translation
sentences: OBPE bilingual, BPE bilingual, and the
17th epoch checkpoint from the OBPE multilin-
gual model. The selection is based on the models’
performance on the Flores dev set, as measured
by their BLEU score. We generated the back-
translation sentences from the available parallel
data only; no additional monolingual data was used.
Results from table 4 show the performance of those
three models. It can be seen that bilingual mod-
els are performing better in both directions of the
higher-resource language pairs and for eng-afr. We
discuss the results in more details in section 5.

We trained the OBPE multilingual model until
the 17th epoch. That checkpoint was then used
to generate back-translation data for the directions
where the multilingual models outperform bilin-
gual ones. Due to resources and time constraints,
we started training the back-translation multilin-
gual model from the 17th epoch checkpoint of the
OBPE multilingual model. The OBPE multilingual
model continued training regularly from the 17th
epoch.

We ran all multilingual experiments on 2 Nvidia
A100 cards (40GB each). One epoch of back-
translation or OBPE multilingual models took 16
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hours. Both models trained for 45 epochs with
a batch size of 16 384 tokens, leading to a total
training time of 30 days for each model.

After training both multilingual models, we had
four models for each translation direction; two
bilingual and two multilingual models.

4.2 Stage 2: Translation Between LRLs

At this stage we found that our models showed
adequate performance in the English-centric direc-
tions (similar evaluation scores to existing works
with overlapping translation directions). The goal
of the next stage was to add new translation direc-
tions between specific LRLs. Our best multilingual
model at this point (based on BLEU scores in the
English-centric directions) was the OBPE-based
model that was partially trained on back-translated
data. Therefore we selected this model to continue
training in the new directions. The model trained
for an additional 39 epochs on a training set cover-
ing the old and new directions (details in section
4.2.2). This took 9 days on a full Nvidia A100 card
(40GB), at which point validation performance had
stopped improving. This resulting model is the
system we submitted to the shared task.

4.2.1 Synthetic training data
As shown in table 1, the translation directions be-
tween LRLs (new directions) generally had smaller
datasets than the directions from/to English (old di-
rections). In fact, two of the new directions (Shona
to Afrikaans and Afrikaans to Swati) had no par-
allel corpora at all. To add these two directions to
the model, we generated partially synthetic training
data using the available English-centric parallel cor-
pora. Using our multilingual model, we translated
the English sentences in the English-Afrikaans cor-
pus to Shona, and the English sentences in the
English-Siswati corpus to Afrikaans. This pro-
duced parallel corpora for Shona-Afrikaans and
Afrikaans-Siswati, where the target sentences were
real and the source sentences were synthetic.

4.2.2 Balancing parallel corpora
The challenge in adding new translation directions
is to strike a balance between gaining performance
in the new directions, while ensuring that perfor-
mance in the old directions does not deteriorate in
the process. For this stage our model was trained on
parallel corpora in the old and new directions. In-
cluding training data for the old directions ensures
that the model does not lose its translation abilities

for these directions. However, the parallel corpora
for the old directions are on average much larger
than those of the new directions. Therefore training
on such an unbalanced dataset would likely result
in suboptimal performance for new directions.

To counter this, we downsampled the training
data for the old directions to match the correspond-
ing corpora in the new directions in order to balance
the model’s exposure to the old and new directions
during training. For example, to balance Xhosa
to Zulu training (1M sentences), we trained on
1M sentences only from both the English to Zulu
and the Xhosa to English corpora. Therefore the
encoder is trained for Xhosa balancing the Xhosa-
English and Xhosa-Zulu data, while the decoder
is trained for Zulu balancing the English-Zulu and
Xhosa-Zulu setting.

Another potentially better approach is upsam-
pling the training data for new directions. This
technique would ensure that the model is exposed
to all training data of old directions. However, we
did not explore this due to time constraints.

5 Results

We primarily used BLEU score for evaluating all
models on the Flores dev set. The final test set eval-
uation by the shared task organizers additionally
used sentence piece BLEU (spBLEU) and chrf2.

5.1 Translation Between English and LRLs

Table 4 shows our results on the translation between
English and LRLs. For each translation direction,
we selected the best model among the two bilin-
gual models and the 17th epoch checkpoint of the
OBPE multilingual to perform back-translation. Al-
though the multilingual model was trained only for
17 epochs, it outperformed the fully trained bilin-
gual models in some language pairs. Most of these
pairs are resource-poor (eng ↔ nso, tso, ssw).
The exception of this finding was the translations
between English and Afrikaans. These two lan-
guages are from the same family, so we hypoth-
esize that the bilingual models did not need help
from other resource-rich pairs or additional training
examples to translate between the two languages.
The training data of resource-richer language pairs
(eng ↔ xho, zul, tsn) were sufficient to train
good bilingual models.

After we fully trained both OBPE and
OBPE+back-translation multilingual models,
the OBPE model performed better than the
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Data Bi-BPE Bi-OBPE M-OBPE@17 M-OBPE M-OBPE+back M-OBPE-final
sna-eng 19.1 19.6 17.7 19.1 18.1 19.5
xho-eng 26.2 26.9 24.2 26.3 26.5 27.5
tsn-eng 11.8 11.9 18.1 19.2 16.1 20.3
zul-eng 28.7 28.2 26.4 28.6 30.0 30.0
nso-eng 12.9 14.6 23.1 25.5 22.9 26.9
afr-eng 47.5 48.5 41.8 45.0 46.4 44.8
tso-eng 1.1 3.3 17.2 18.8 16.9 20.7
ssw-eng 0.7 0.9 19.4 21.3 18.0 23.0

avg 18.5 19.2 23.5 25.5 24.4 26.6
eng-sna 10.1 9.9 9.3 10.0 10.1 10.3
eng-xho 12.3 12.6 10.9 11.8 12.7 12.1
eng-tsn 10.2 9.6 16.5 17.8 17.8 18.2
eng-zul 14.9 14.3 12.6 14.2 15.1 15.0
eng-nso 9.8 10.4 20.3 22.1 22.3 23.1
eng-afr 37.2 35.8 32.3 34.1 36.2 35.6
eng-tso 0.7 0.9 12.8 14.5 15.0 16.9
eng-ssw 0.7 0.9 6.2 6.9 7.0 7.7

avg 12 11.8 15.1 16.4 17 17.4

Table 4: BLEU scores on Flores dev set for translating between English and LRLs. The translation directions
are sorted based on the available amount data. Bi-BPE and Bi-OBPE are the BPE and OBPE bilingual models,
respectively. M-OBPE@17 is the 17th epoch checkpoints of the OBPE multilingual model, while M-OBPE is
trained for 45 epochs. M-OBPE+back and M-OBPE-final are the OBPE with back-translation multilingual models
before and after continued training for translation between LRL, respectively. underline indicates the model we
used for back-translation. Bold represents the best overall model.

Data M-OBPE+back M-OBPE-final
xho-zul 1.5 11.2
zul-sna 1.9 8.8
sna-afr 1.9 12.2
afr-ssw 1.3 4.9
ssw-tsn 2.0 14.5
tsn-tso 2.1 13.6
tso-nso 2.4 13.2
nso-xho 1.7 8.2

avg 1.8 10.8

Table 5: BLEU scores on Flores dev set for translating
between LRLs. M-OBPE+back and M-OBPE-final are
the OBPE multilingual models with back-translation
before and after continued training for translation be-
tween LRL, respectively. M-OBPE-final is the system
we submitted for the shared task. Bold represents the
best results.

back-translation model in most directions
with English as a target language, namely,
sna, tsn, nso, tso, ssw → eng. However, for the
three eng generation directions where the back-
translation model performed similarly or better
than the OBPE model (xho, zul, afr → eng),

the back-translation data was generated from
the bilingual models, not the OBPE multilingual
model. This synthetic data contains actual English
sentences and synthetic LRLs sentences. These
translation pairs were relatively resource-rich.
In contrast, most of the remaining pairs were
resource-poor, and their back-translation data
was generated from the partially trained OBPE
multilingual model. These results show that
although the 17th epoch checkpoint of the OBPE
multilingual model was better than bilingual
models in resource-poor language pairs, it was not
yet good enough for generating text in LRLs. This
led to a performance drop for the back-translation
model on most of the eng generation directions
compared to the OBPE multilingual model.

On the other hand, the back-translation model
outperformed the OBPE model in all directions
translating into LRLs. These directions require syn-
thetic English sentences and actual LRLs sentences
for back-translation. A plausible explanation for
this is that learning to translate to English is eas-
ier than translating to LRLs for both bilingual and
multilingual models.
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Data BLEU spBLEU CHRF2++ ∆CHRF2++
sna-eng 18.7 22.1 42.9 5.5
xho-eng 24.3 26.8 47.7 5.6
tsn-eng 19.8 22.1 42.6 7.7
zul-eng 26.7 28.5 49.3 6.5
nso-eng 26.5 28 48.1 9.4
afr-eng 44.7 46.4 66 9
tso-eng 20.3 21.8 41.9 8.8
ssw-eng 21.5 23.5 43.8 7.9

avg 25.31 27.4 47.79 7.55

eng-sna 10.3 17.6 41.1 2.9
eng-xho 9.4 18.6 42.5 3.4
eng-tsn 18.8 19.7 43 5
eng-zul 11.9 22.8 46.1 3.4
eng-nso 22.7 24.1 47.8 4
eng-afr 35.9 40.5 62.2 3.6
eng-tso 15.8 17.9 41.5 4.8
eng-ssw 7.6 15.5 38.9 4.4

avg 16.55 22.09 45.39 3.94

xho-zul 8.5 18 41.4 1.9
zul-sna 8.5 15 38.7 1.7
sna-afr 12 15.1 38 3.9
afr-ssw 5.3 11.2 34.3 7.2
ssw-tsn 14.4 15.4 38.9 2.9
tsn-tso 13.2 15.1 38.7 2.1
tso-nso 13.1 12 36.6 5.8
nso-xho 6.6 13.7 36.9 4

avg 10.2 14.44 37.94 3.69

overall avg 17.35 21.31 43.7 5.06

Table 6: The performance of our final system on the
shared task test set. ∆ CHRF2++ is the difference be-
tween the best submission and our system.

5.2 Translation between LRLs

Table 5 shows the performance of the OBPE+back-
translation model before and after continued train-
ing for translation between LRLs. The model’s
performance improved on both the initial language
pairs (in table 4) and the new translation directions.
Moreover, sna → afr and afr → ssw were im-
proved using only synthetic data (see section 4.2.1).
We ascribe the success in improving the model’s
performance in translating between English and
LRLs to the balancing approach (see section 4.2.2),
as we used real training data (not back-translated
sentences) in the continued training.

5.3 Official Results

Table 6 shows the results provided by the shared
task organizers for our system as evaluated on a
hidden test set. The table also compares the best
constrained submission for each translation direc-
tion and our system. Our model did not achieve the
best performance in any direction. However, the
teams whose models performed better all trained
on all languages included in the shared task (not
just Southern African languages).

We hypothesize that this is the main reason for
the gap in performance between our system and
the better performing ones, as those models could
benefit from more training data and increased cross-
lingual transfer. The fact that our model performs
relatively worse when translating into English pro-
vides some evidence for this: the other systems
could benefit learning to translate to English in
many more translation directions and with much
more data in total. Given our computational re-
sources, it would have required a total training time
of 106 days to cover all language directions in the
shared task. Unfortunately this was not feasible
in the time provided for the shared task. The find-
ings paper for the shared task presents more de-
tails about other teams’ submissions (Adelani et al.,
2022).

6 Conclusion

We have presented our multilingual neural MT
model for 8 Southern African languages. Until
recently, it would not have been possible to train
a multilingual model for these languages because
of data scarcity. During model development we
found the benefits of multilingual modelling to
be especially great for the lowest-resourced lan-
guages. Our results show that overlap BPE, back-
translation, and synthetic training data generation
are all valuable techniques for low-resource MT.
More generally, we find multilingual modelling to
be a fruitful approach to Southern African MT. For
future work we would like to investigate further
approaches for training large multilingual models
for low-resource languages with a limited compute
budget.
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Abstract

This paper describes Tencent’s multilingual
machine translation systems for the WMT22
shared task on Large-Scale Machine Transla-
tion Evaluation for African Languages. We par-
ticipated in the constrained translation track
in which only the data and pretrained models
provided by the organizer are allowed. The
task is challenging due to three problems, in-
cluding the absence of training data for some
to-be-evaluated language pairs, the uneven op-
timization of language pairs caused by data
imbalance, and the curse of multilinguality. To
address these problems, we adopt data augmen-
tation, distributionally robust optimization, and
language family grouping, respectively, to de-
velop our multilingual neural machine transla-
tion (MNMT) models. Our submissions won
the 1st place on the blind test sets in terms of
the automatic evaluation metrics.1

1 Introduction

Multilingual neural machine translation (MNMT)
aims to translate between multiple language pairs
with a unified model (Johnson et al., 2017). It
is appealing due to the model efficiency, easy de-
ployment, and knowledge transfer between high
resource languages and low resource languages.
Hence, MNMT has attracted more and more atten-
tion from both academia and industry. To improve
the performance of MNMT models, previous re-
searchers have proposed various approaches on
advanced model architectures (Sen et al., 2019;
Zhang et al., 2021), training strategies (Wang et al.,
2020a,b), and data utilization (Siddhant et al., 2020;
Wang et al., 2022). In addition, industrial compa-
nies have released massive multilingual pretrained
models (Tang et al., 2021) and large-scale multi-
lingual translation models (Fan et al., 2021; Team

1Codes, models, and detailed competition results
are available at https://github.com/wxjiao/
WMT2022-Large-Scale-African.

et al., 2022) to facilitate translation among hun-
dreds of languages. However, existing efforts on
MNMT for African languages are not sufficient
due to the lack of high quality and standardized
evaluation benchmarks.

In this paper, we build a system integrating
several advanced approaches for WMT22 Large-
Scale Machine Translation Evaluation Task (Ade-
lani et al., 2022), which involves a set of 24 African
languages. We participated in the Constrained
Translation track, where only the data provided by
the organizer are allowed. This task is challenging
due to three potential problems:

• The absence of training data for some to-be-
evaluated language pairs;

• The uneven optimization of language pairs due
to data imbalance;

• The curse of multilinguality in MNMT models
caused by the hundreds of language pairs.

For the first problem, we adopt data augmenta-
tion techniques to construct synthetic data for the
language pairs without parallel training data (§3.1).
Specifically, we use back-translation (Sennrich
et al., 2016) and self-training (Jiao et al., 2021),
and attach a special tag to the synthetic side of the
data. For the second issue, we utilize distribution-
ally robust optimization (DRO) method (Oren et al.,
2019; Zhou et al., 2021) to balance the optimization
process for different translation directions (§3.2).
For the third issue, we isolate the potential con-
flicts between language pairs by language family
grouping and finetune a model for each language
group (§3.3).

Experimental results show that our system can
significantly improve the performance of vanilla
MNMT models, from 15.50 to 17.95 BLEU
points (§4.2). Extensive analysis suggests that data
augmentation could be harmful to the translation
performance if used for training the final models
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Table 1: Information of language groups and the corresponding language pairs. We include additional 36 language
pairs (bolded) to help the long-tail languages.

Group Language Pairs (73)(117)

ENGC afr-eng,amh-eng,eng-fra,eng-fuv,eng-hau,eng-ibo,eng-kam,eng-kin,eng-lug,eng-luo,eng-nso,eng-nya,eng-
orm,eng-sna,eng-som,eng-ssw,eng-swh,eng-tsn,eng-tso,eng-umb,eng-xho,eng-yor,eng-zul,(23),eng-lin,
eng-wol,(25)

FRAC fra-kin,fra-lin,fra-swh,fra-wol,(4),amh-fra,fra-kam,fra-lug,fra-luo,fra-orm,fra-umb,(10)
SSEA afr-nso,afr-sna,afr-ssw,afr-tsn,afr-xho,afr-tso,afr-zul,nso-sna,nso-ssw,nso-tsn,nso-xho,nso-tso,nso-zul,sna-

ssw,sna-tsn,sna-xho,sna-tso,sna-zul,ssw-tsn,ssw-xho,ssw-tso,ssw-zul,tsn-xho,tsn-tso,tsn-zul,tso-xho,tso-
zul,xho-zul, (28)

HCEA amh-luo,amh-orm,amh-som,amh-swh,luo-orm,luo-som,luo-swh,orm-som,orm-swh,som-swh, (10)

NGG fuv-hau,fuv-ibo,fuv-yor,hau-ibo,hau-yor,ibo-yor, (6)

CA kin-lin,kin-lug,kin-nya,kin-swh, lin-lug,lin-nya,lin-swh,lug-nya,lug-swh,nya-swh, (10)

OTHER fuv-kin,fuv-nya,fuv-som,fuv-zul,kam-nya,kam-sna,kam-som,kam-swh,kam-tso,kam-zul,kin-yor,lug-
sna,lug-zul,luo-nya,luo-sna,luo-zul,nya-umb,nya-yor,sna-umb,sna-yor,som-wol,som-yor,swh-umb,swh-
yor,tso-yor,umb-zul,xho-yor,yor-zul,(28)

directly, due to the error-prone synthetic sentence
pairs. Instead, we utilize the resulting MNMT mod-
els as pretrained models to further finetune on clean
datasets for the final models. The DRO technique is
very effective in improving the translation quality
across all language pairs, particularly on the domi-
nant languages (e.g., eng and fra), which also calls
for an improved DRO to benefit more on other
languages. As for language family grouping, it
especially improves the translation quality on one-
to-many translations, which demonstrates its effec-
tiveness in alleviating the curse of multilinguality
issue. Finally, our submission won the 1st place
in the official evaluation in terms of the automatic
evaluation metrics.

2 Data

In this section, we present the details of our data
preparation.

2.1 Language Pairs

We utilize all available datasets from the official
website (including those from the Data Track par-
ticipants)2, which provide either monolingual or
parallel sentences. According to the evaluation
instruction, we group the language pairs into 7
groups, namely, English-Centric (ENGC), French-
Centric (FRAC), South/South East Africa (SSEA),
Horn of Africa and Central/East Africa (HCEA),
Nigeria and Gulf of Guinea (NGG), Central Africa
(CA), and Other related pairs (OTHER), to train the
MNMT models. Details are listed in Table 1.

2https://www.statmt.org/wmt22/
large-scale-multilingual-translation-task.
html

We consider three subsets of language pairs for
training different models:

• Base-146: We train the TRANSF-DEEP (§4.1)
models on the to-be-evaluated language pairs
in the first 6 groups, as well as the English-
French (i.e., eng-fra) pair. In total, there are
81 language pairs but only 73 of them are pro-
vided with bitext data, which cover 146 transla-
tion directions (i.e., including both forward and
backward).

• Large-234: The main issues of Base-146 are
that, some to-be-evaluated language pairs (e.g.,
afr-nso) are missing in the training data and some
languages are heavily long-tailed due to the im-
balanced choice of language pairs. To allevi-
ate these issues, we extend another 36 language
pairs for the long-tail languages and construct
synthetic data for all the language pairs in ENGC,
SSEA, HCEA, NGG and CA, which enables
the training on 234 translation directions. We
use these language pairs to train the TRANSF-
DWIDE (§4.1) models.

• Eval-106: The official evaluation includes 100
translation directions3, which were notified at the
later stage of the competition. We focus on these
directions by finetuning the TRANSF-DWIDE

models on these directions. To ensure the data
amount of each language, we include all ENGC
directions, making the final 106 directions.

3https://docs.google.com/document/d/
11NYyJpJ4nhNIllwmF5kjkqfkaaEzXNU-CCO5E64MRDU/
edit
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Figure 1: Number of sentences in each language and the upsampled distribution with the smoothing rate of α = 0.3.

2.2 Data Preprocessing
We preprocess the raw and potentially noisy data
by four steps, namely, reformatting, deduplication,
language detection, and length limitation. Details
are elaborated as below.

Reformatting. The raw data is stored in various
alignment structures, including HTML, JSON, and
special spacing. To reduce data noise, we refor-
mat all data into a line-by-line tight structure and
realign those missing paired ones.

Deduplication. We remove the duplicated sen-
tences (pairs) in each monolingual and parallel
dataset. This aims to reduce information redun-
dancy so that the MNMT models can be trained
more efficiently.

Language Detection. Previous studies suggest
that incorrect languages in training data induce
translation uncertainty for both bilingual (Ott et al.,
2018) and multilingual (Wang et al., 2022) NMT
models. Therefore, we conduct language detec-
tion for all the datasets using langid4. Since
langid neither supports all African languages
nor performs well when distinguishing two African
languages, we adopt a simplified strategy: for the
African datasets, we remove sentences (pairs) that
are identified as languages other than the 24 desig-
nated African languages. In other words, sentences
(pairs) in one African language identified as an-
other African language are also considered valid.
For English and French datasets, we strictly restrict
the correct languages as themselves, i.e., English
and French, respectively.

Length Limitation. After multilingual tokeniza-
tion, we conduct further filtering and retain sen-
tence pairs with tokens between 4 (Wu et al., 2019)

4https://github.com/saffsd/langid.py

and 512 (Yang et al., 2021), as well as the length
ratio below 3.

2.3 Multilingual Tokenization

To tokenize the multilingual sentences, we fol-
low (Conneau et al., 2020) to train a Sentence
Piece Model (SPM) and apply it directly on the
preprocessed text data for all languages. However,
the distribution of data across languages is heavily
long-tailed, as shown in Figure 1. To balance the
vocabulary bandwidth between high-resource and
low-resource languages, we follow Conneau et al.
(2020) to upsample the low-resource languages
with a smoothing rate of α = 0.3 over the original
distribution when training the SPM model. We use
a shared vocabulary with 128K tokens for the 26
languages, and also append 32 special tokens (i.e.,
“TBD0” to “TBD31”) for including extra tasks or
data (e.g., tagged-BT (Caswell et al., 2019)).

3 Approach

3.1 Data Augmentation

We adopt data augmentation (DA) to address the
first challenge, i.e., “ The absence of training data
for some to-be-evaluated language pairs”.

Specifically, we use back-translation (BT) (Sen-
nrich et al., 2016) and self-training (ST) (Jiao et al.,
2020, 2021, 2022) to construct synthetic data. How-
ever, previous study by Caswell et al. (2019) sug-
gests that the translationese issue in BT limits the
performance, which can be mitigated with a special
tag at source side (i.e., tagged-BT). To simplify the
tagging procedure for the two opposite directions
of each language pair, we use both BT and ST for
each language pair (Wu et al., 2019) and append a
special token at the synthetic side of sentence pairs.
Formerly, for a language pair (S, T ) with the bitext
data {x,y}, the synthetic data by BT and ST will
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be {[x′; ⟨DA⟩],y} and {x, [y′; ⟨DA⟩]}, where ⟨DA⟩
denotes the special tag for data augmentation.

We conduct data augmentation for both English-
centric and non English-centric language pairs. For
English-centric language pairs, we randomly sam-
ple up to 1.0M English and non-English monolin-
gual sentences from the training corpora for BT
and ST, respectively. As for non English-centric
language pairs, we translate the English side of
English-centric pairs to non-English languages and
construct up to 0.5M BT and ST sentence pairs,
respectively. Generally, the augmented data is in-
cluded in Large-234 to train the MNMT models.
However, the translation quality of those English-
centric directions is also unreliable due to the lim-
ited data sizes, which may harm the performance
of subsequent MNMT models. Besides, adding
more synthetic data and language directions also
slows down the convergence of the MNMT models.
Instead, we use the resulting MNMT models as
backbones to finetune on the clean datasets.

3.2 Distributionally Robust Optimization
We adopt the distributionally robust optimiza-
tion (DRO) (Oren et al., 2019; Zhou et al., 2021)
technique to address the second challenge, i.e.,
“The uneven optimization of language pairs due
to data imbalance ”.

Generally, temperature-based sampling (Ari-
vazhagan et al., 2019; Conneau et al., 2020) is
adopted to balance the training data across lan-
guage pairs, which samples data from the smoothed
data distribution as, pτ,i = |Di|1/τ∑

j |Dj |1/τ . This is

equivalent to optimizing the re-weighted objective:

Lτ (θ;Dtrain) =
∑

i≤N

pτ,iL(θ;Di), (1)

where |Di| is the training data size of the i-th lan-
guage pair, and τ denotes the temperature rate. Ob-
viously, τ = 1 corresponds to the original data
distribution while τ =∞ represents uniform sam-
pling. In practice, τ > 1 is adopted to oversam-
ple the low-resource language pairs, which signifi-
cantly affects the results and needs to be tuned for
different settings.

Even if we can build a completely balanced
dataset across language pairs, the varied task dif-
ficulty and cross-lingual similarity determine that
the language pairs will still be optimized unevenly.
DRO can address such a problem. In contrast
to temperature sampling which optimizes over a

Table 2: Language family grouping.

Group Target Languages

1 eng, fra
2 afr, nso, sna, ssw, tsn, tso, xho, zul
3 amh, luo, orm, som, swh, wol
4 fuv, hau, ibo, yor
5 kam, kin, lin, lug, nya, swh, umb

fixed training data distribution, DRO aims to find
a model θ that can perform well on an entire set
of potential test distributions, i.e., U(ptrain), which
is usually called uncertainty set. We adopt DRO
with the χ2-uncertainty set introduced by Zhou
et al. (2021), and reproduce the implementation for
the practical many-to-many translation scenario.5

Similarly, we also incorporate the baseline losses
calculated from a pretrained MNMT model to sta-
bilize the training process of DRO.

3.3 Language Family Grouping
We adopt language family grouping (LFG) to al-
leviate the third challenge, i.e., “ The curse of
multilinguality” (Conneau et al., 2020).

Specifically, we divide the target languages into
5 groups ( see Table 2) based on Table 1. This is par-
tially inspired by Eriguchi et al. (2022), which fac-
torizes the many-to-many translation scenario (with
N ×N directions) into N many-to-one scenarios
by training a translation model for each. Since we
have 26 languages involved in this shared task, fac-
torizing the many-to-many scenario by the family
of target languages is a more efficient choice. Since
swh appears in both HCEA and CA, we include it
in both Group-2 and Group-5 for training models.
During inference, our scripts will automatically se-
lect the model of corresponding group according to
the target language to be evaluated. Note that swh
is only routed to Group-2 in inference.

4 Experiments

4.1 Settings
Model. We adopt the standard sequence-to-
sequence Transformer (Vaswani et al., 2017) as
our architecture. For the Base-146 scale, we use a
deep encoder of 24 layers and a relatively shallow
decoder of 12 layers (Yang et al., 2021), with an
embedding size of 1024, the feed-forward network

5The referred study only supports one-to-many and many-
to-one translation scenarios on very small multilingual trans-
lation datasets.
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Table 3: Evaluation results of our models on the devtest in terms of BLEU and ChrF++.

Model X-ENG ENG-X X-FRA FRA-X X-X ALL

22 22 4 4 48 100

TRANSF-DEEP 23.37/46.80 17.19/41.07 20.20/43.18 16.07/41.93 10.69/33.90 15.50/39.01
BORDERLINE-DEEP 25.87/48.83 18.24/42.05 22.31/44.91 16.74/42.32 11.66/34.89 16.86/40.23
BORDERLINE-DWIDE 28.11/51.30 19.02/42.92 24.74/47.58 17.22/43.23 12.03/34.94 17.82/41.13
BORDERLINE-DWIDE w/ LFG 28.26/51.37 19.38/43.37 24.87/47.74 17.48/43.72 12.04/35.01 17.95/41.31

size of 4096, and 16 attention heads (i.e., 0.59B
parameters). To stabilize the training of deep mod-
els, we follow Wang et al. (2019) to use pre-layer-
normalization (PLN) for both encoder and decoder
layers. For the Large-234 scale, we enlarge the
embedding size to 1536 to support more language
pairs, which results in 1.02B parameters. By de-
fault, we call these two models as TRANSF-DEEP

and TRANSF-DWIDE. The final models developed
by our approaches are renamed as BORDERLINE-
DEEP and BORDERLINE-DWIDE for clarity.

Training. We train the MNMT models with the
Adam optimizer (Kingma and Ba, 2014) (β1 =
0.9, β2 = 0.98). The learning rate is set as 1e-4
with a warm-up step of 4000, followed by inverse
square root decay. The models are trained with a
dropout rate of 0.1 and a label smoothing rate of
0.1. All experiments are conducted on 32 NVIDIA
A100 GPUs. Since the bitext data (≈130M) for this
year’s shared task is less than 1/10 of that for last
year’s (≈1.7B), we decide a batch size to be about
1/10 of that used in (Yang et al., 2021). Specifically,
we use 2048 max-tokens per GPUs and accumulate
the gradients for every 8 steps to simulate the large
batch size of 512K tokens. For language family
grouping, we use the batch size of 131K tokens
for each model. For translation models trained by
empirical risk minimization (ERM) on the original
training data, we upsample low-resource language
pairs with the smoothing rate α = 0.3 (Conneau
et al., 2020). For those by DRO, we adopt the
χ2-uncertainty set with the distribution divergence
bounded by ρ = 0.1. We use the ERM model
to calculate the baseline losses for DRO. We train
these two kinds of models for at least 100K updates,
upon which we may finetune for additional updates.

Evaluation. We use the dev and devtest of Flores-
200 benchmark6 as our validation and test sets,
and evaluate the MNMT models on the averaged
last 10 checkpoints with sentencepiece BLEU and

6https://github.com/facebookresearch/
flores/tree/main/flores200

ChrF++. The sentencepiece model for evaluation
also comes from the Flores-200 benchmark. The
beam search process is performed with a beam
size of 4 and a length penalty of 1.0. Similar as
the official competition results, we report our re-
sults by average-to-eng (X-ENG), average-from-
eng (ENG-X), average-to-fra (X-FRA), average-
from-fra (FRA-X), average-african-to-african (X-
X), and the average for ALL translation directions.

4.2 Results

We list the evaluation results of our final mod-
els on the devtest in Table 3. Both the base-
line model TRANSF-DEEP and our BORDERLINE-
DEEP model are trained for 200K updates, while
the two BORDERLINE-DWIDE models are trained
or finetuned for more than 300K updates.

Generally, our models outperform the baseline
TRANSF-DEEP model significantly by up to +2.45
BLEU and +2.30 ChrF++ scores. By looking into
each category, we have some interesting findings:

• By comparing BORDERLINE-DEEP and
TRANSF-DEEP, we find that the improvement
on X-ENG is much larger than that on ENG-X.
Similar phenomenon is also observed for X-FRA

and FRA-X. It suggests that while DRO can
achieve even improvement for one-to-many or
many-to-one scenarios (Zhou et al., 2021), it is
heavily biased by the dominant languages (i.e.,
eng and fra) in the many-to-many scenario.

• By comparing BORDERLINE-DWIDE and
BORDERLINE-DEEP, we find that enlarging the
model capacity brings improvement to all cate-
gories but the most on X-ENG and X-FRA. It
indicates that the curse of multilinguality cannot
be well solved by simply increasing model ca-
pacity as the most benefits are still occupied by
the dominant languages (i.e., eng and fra).

• Language family grouping (LFG) achieves more
improvement on ENG-X and FRA-X than on the
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Table 4: Official evaluation results of submissions on the blind test sets in terms of BLEU and ChrF++.

Submissions X-ENG ENG-X X-FRA FRA-X X-X ALL

#Lang-pairs 22 22 4 4 48 100

IIAI
Primary 23.15/43.88 12.80/37.52 18.35/41.08 13.08/38.70 2.58/19.52 10.40/30.47

GMU
Language 25.83/46.50 12.00/35.33 20.83/42.45 10.53/33.58 7.70/29.94 13.28/35.42
Family 25.88/46.55 11.98/35.30 20.73/42.30 10.75/34.03 7.68/29.92 13.28/35.42

Borderline (Ours)
Contrastive 25.84/47.46 13.85/39.05 21.00/44.10 13.85/39.58 8.03/30.93 13.98/37.23
Primary 26.05/47.56 14.06/39.53 21.13/44.05 14.05/40.10 8.04/31.04 14.09/37.42

Table 5: Ablation study of our models with various
strategies on the devtest. CT: continuous training; FT:
finetuning; T-Enc: target language tags at encoder; LFG:
language family grouping.

ID Model Step BLEU ∆

1⃝ TRANSF-DEEP 100K 15.03 -/-
2⃝ + CT 100K 15.50 +0.47
3⃝ + FT on large-234 100K 14.65 -0.38
4⃝ + DRO 100K 16.71 +1.68
5⃝ + CT 100K 16.86 +1.83
6⃝ + T-Enc 100K 16.67 +1.64

7⃝ TRANSF-DWIDE 100K 14.66 -/-
8⃝ + DRO 100K 15.81 +1.15
9⃝ + FT on base-146 200K 17.62 +2.96

10⃝ + FT on eval-106 50K 17.82 +3.16
11⃝ + LFG -/- 17.95 +3.29

other categories, which confirms its effectiveness
in alleviating the curse of multilingualty issue.

Ablation Study. We present detailed ablation
studies to investigate the effectiveness of various
strategies, not only the three introduced in §3 but
also some tricks. The results are listed in Table 5,
where the lines marked in blue (i.e., 2⃝, 5⃝, 10⃝
and 11⃝) correspond to the four models in Table 3.
We list our observations as below:

• 3⃝ vs. 2⃝: Directly finetuning the TRANSF-DEEP

model on the Large-234 dataset induces the
performance drop. One possible reason is that
Large-234 introduces much more translation di-
rections, aggravating the curse of multilinguality
issue. Another reason is the low-quality data
by data augmentation (§3.1), which harms the
optimization of models. Therefore, we only
use Large-234 to pretrain the TRANSF-DWIDE

model and then finetune on the cleaner Base-146
and Eval-106 datasets.

• 6⃝ vs. 5⃝: Previous studies (Wang et al., 2022)
suggest that attaching target language tags at

encoder (i.e., T-Enc) benefits the zero-shot trans-
lation performance, indicating a stronger cross-
lingual transfer ability. However, we do not see
any improvement of our models with T-Enc. The
reason could be that, traditional studies on many-
to-many translations are mainly conducted on
the datasets with only one central language while
we are now handling multiple central languages,
making it a more complex scenario.

• 9⃝ vs. 10⃝ vs. 11⃝: Finetuning on Eval-106 slightly
outperforms that on Base-146 and the perfor-
mance can be further improved with language
family grouping. Obviously, as we reduce the
language pairs involved in a single model, the
curse of multilinguality is alleviated.

Submissions. The BORDERLINE-DWIDE and
BORDERLINE-DWIDE w/ LFG models shown in
Table 3 (i.e., contrastive and primary versions) are
submitted for official evaluation on the blind test
sets. Table 4 summarizes the evaluation results
of our submissions, where our models outperform
the other teams’ across all the evaluation groups.
Finally, we achieve the 1st place in this track.

5 Conclusion

In this paper, we describe Tencent’s multilingual
machine translation systems for the WMT22 shared
task on Large-Scale Machine Translation Evalua-
tion for African Languages. We address three key
challenges of this task by data augmentation, dis-
tributionally robust optimization (DRO), and lan-
guage family grouping, respectively, to develop
our MNMT models. Our submissions won the 1st
place in the constrained track. Extensive analy-
ses also point out the drawbacks of larger models
and DRO in addressing the curse of multilinguality,
which warrants further research in the future.
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Abstract

In this paper, we describe our submission to
the WMT-2022: Large-Scale Machine Transla-
tion Evaluation for African Languages under
the Constrained Translation track. We intro-
duce DENTRA, a novel pre-training strategy
for a multilingual sequence-to-sequence trans-
former model. DENTRA pre-training combines
denoising and translation objectives to incor-
porate both monolingual and bitext corpora in
24 African, English, and French languages. To
evaluate the quality of DENTRA, we fine-tuned
it with two multilingual machine translation
configurations, one-to-many and many-to-one.
In both pre-training and fine-tuning, we em-
ploy only the datasets provided by the organ-
isers. We compare DENTRA against a strong
baseline, M2M-100, in different African multi-
lingual machine translation scenarios and show
gains in 3 out of 4 subtasks.

1 Introduction

Despite the compelling performance of machine
translation (MT) in many European and Asian lan-
guages, their quality in African languages is rela-
tively low. This is primarily because there are ap-
proximately 2000 known languages in the African
continent, out of which very few languages have
any significant presence on the Web (Eberhard
et al., 2020; Emezue and Dossou, 2021; Adelani
et al., 2022a). As a result, many African languages
are not included in publicly available bitext re-
sources, which are typically created by employing
heuristics on large amounts of data crawled from
the Web (Tiedemann, 2012; El-Kishky et al., 2020;
Schwenk et al., 2021; Goyal et al., 2022).

To take a step towards addressing the under-
representation of African languages in MT, WMT-
2022 presented the Constrained Translation track
under Large-Scale Multilingual African Transla-
tion (Adelani et al., 2022b), which releases bitext
and monolingual corpora for 24 African languages,

and participants are only allowed to use the pro-
vided data. Our submission is to the aforemen-
tioned track.

Roughly 34% of the provided data is monolin-
gual, spread across 24 African languages pertain-
ing to this task. Since the volume of bitext data
provided is limited, our submission aims to lever-
age the monolingual data to improve the perfor-
mance of a multilingual machine translation model.
To leverage monolingual data in translation, pre-
training the model is an obvious choice.

There are several existing multilingual pre-
trained models such as mBART (Liu et al., 2020),
mT5 (Xue et al., 2021), byT5 (Xue et al., 2022),
mRASP (Pan et al., 2021), mRASP2 (Pan et al.,
2021), and M2M-1001 (Fan et al., 2021) that are
trained on monolingual data, bitext data, or both,
and have been demonstrated to improve transla-
tion performance for specific language pairs. But,
these models do not include many of the African
languages of interest. For example, the 50 lan-
guages covered by mBART50 include only two out
of the 24 African languages in the shared task while
M2M-100 includes 14. Moreover, all of these mul-
tilingual models rely on specially designated lan-
guage id tokens to translate between each language
pair. As a result, adding unseen languages requires
pre-training again. Adelani et al. (2022a) investi-
gated a way to leverage pre-trained models includ-
ing M2M-100, mT5, byT5, and mBART for the
translation of unseen languages. But the scarcity of
African language texts in the pre-training corpora
results in a marginal improvement in the transla-
tion quality of the fine-tuned model (Adelani et al.,
2022a). Among the pre-trained models, the authors
have noted that fine-tuning M2M-100 results in the
best translation performance for African languages.

1Although M2M-100 is trained for many-to-many transla-
tion tasks, it has been used as a pre-trained model by Adelani
et al. (2022a) for African MT. Therefore, we also consider it
as a pre-trained model in this work.
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ENCODER DECODER

<SWH> Alifikiria <MASK> urais mnamo 2016.  
<SWH> He considered running for president in 2016. 
<SWH> He <MASK> running president for in 2016.

<s>Alifikiria kugombea urais mnamo 2016. 
<s>Alifikiria kugombea urais mnamo 2016. 
<s>Alifikiria kugombea urais mnamo 2016.

Alifikiria kugombea urais mnamo 2016.<e> 
Alifikiria kugombea urais mnamo 2016.<e> 
Alifikiria kugombea urais mnamo 2016.<e>

<ENG> Dit is Martelly se vyfde CEP in vier jaar. 
<AFR> It <MASK> Martelly's fifth CEP in years four. 
<AFR> It is Martelly's fifth CEP in four years.

<s> It is Martelly's fifth CEP in four years. 
<s> Dit is Martelly se vyfde CEP in vier jaar. 
<s> Dit is Martelly se vyfde CEP in vier jaar.

It is Martelly's fifth CEP in four years. <e> 
Dit is Martelly se vyfde CEP in vier jaar. <e> 
Dit is Martelly se vyfde CEP in vier jaar. <e>

Monolingual
data (SWH)

Biitext data  
(AFR-ENG)

Denoise
Backtranslate (EN)
BT (EN) + Denoising

Translate
Denoise + Tranlsate

Tranlsate

TRANSFORMER SEQ2SEQ

<MASK> Masked span
blue text Shuffled words
Italic text Obtained from Translation Model
<XXX> Target language tag

Figure 1: Pre-training Overview

In its multilingual pre-training strategy, mBART
uses a denoising objective (Liu et al., 2020; Lewis
et al., 2020) on combined monolingual corpora of
several languages to train a Transformer sequence-
to-sequence model (Vaswani et al., 2017). This
strategy reduces the dependency on bitext by learn-
ing meaningful representations for multiple lan-
guages. The pre-trained model is fine-tuned for MT
using bitext data. While this methodology does re-
sult in improved MT performance, the pre-training
objective used does not induce the representation of
similar sentences across languages to align, since
it uses only monolingual data (Lin et al., 2020).

In contrast, mRASP2 combines the use of mono-
lingual and bitext corpora. Their pre-training
methodology is geared towards closing the repre-
sentation gap across languages, bringing words and
phrases with similar meanings across languages
closer in the feature space. This results in better
multilingual translation performance (Pan et al.,
2021). To induce cross-language representations,
mRASP2 uses word or phrase level dictionaries
to augment both monolingual and bitext data, by
replacing randomly chosen tokens in the source
sentence by its corresponding words in another lan-
guage. Since in this work we address primarily
low-resource or under-represented languages, sepa-
rate dictionaries are non-trivial to construct.

M2M-100 is a massively multilingual model
trained on heuristically mined massive bitext cor-
pora spanning 100 languages and 9,900 language
pairs (Fan et al., 2021). Fine-tuning M2M-100 with
bitext data from the shared task results in minimal
improvement over a multilingual model trained

from scratch (Section 6). We hypothesize that this
is due to M2M-100’s subword tokenizer. Since a
majority of African languages are written in the
Latin script, several subword units are common to
many languages. For example, using the M2M-100
tokenizer in the WMT dataset, about 96% of the
distinct subwords in African languages also appear
in English. Since English corpora dominate the
M2M-100 training dataset, the learnt representa-
tion of these common tokens are influenced majorly
by English, limiting the contribution of African lan-
guages.

To address all of the above, we propose DENTRA,
which uses a novel pre-training strategy and is
trained exclusively on languages from the shared
task using both monolingual and bitext data. In-
spired by mRASP2 (Pan et al., 2021), our pre-
training objective is also designed to explicitly
reduce the representation gap between different
languages. Figure 1 shows an overview of our pre-
training technique.

To measure the effect of pre-training, we fine-
tune the pre-trained model in one-to-many and
many-to-one configurations of multilingual MT .
In three out of four setups, average BLEU score
of fine-tuned DENTRA exceeds that of fine-tuned
M2M-100 by up to 1.56 points.

2 Definitions and Model Architecture

Task Description: The constrained translation
track under WMT-2022 (Adelani et al., 2022b)
consists of the following subtasks: English to
22 African languages (eng→{afs}), 22 African
languages to English ({afs}→eng), French to 4
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Monolingual data 
si 
 

Denoising 

N(si)           si

Translate using MMT
Model 

Mj(si)          tj'

q 1 - q

Translation 
tj'              si

pp 1 - p

Denoising + Translation 
N(tj')            si

(a) Monolingual data

Bitext data 
si, tj

src: si 
tgt: tj

src: tj 
tgt: si

pp
1 - p

Denoising +
Translation 

N(si)            tj

pp

1 - p

Denoising +
Translation 

N(tj)            si

Translation 
si              tj

Translation 
tj              si

(b) Bitext data

Figure 2: Pre-training Data Preparation: Pre-training Objective for each example in the corpora are determined
using the above trees. Solid lines indicate that both paths are executed. Dotted lines from a node indicate that one of
its child nodes are selected at random, with the probability distribution along the edges.

African languages (fra→{afs}), 4 African lan-
guages to French ({afs}→fra) and 48 African to
African languages within geographical and cul-
tural clusters ({afs}→{afs}). In all tasks, training
datasets are from the shared task while the valida-
tion and the test sets are from FLORES 200 (Goyal
et al., 2022).
Multilingual Machine Translation (MMT): An
MMT employs a sequence-to-sequence model
to translate between arbitrarily many language
pairs (Firat et al., 2016; Aharoni et al., 2019).
We denote the set of languages in our corpora
as L = {l1, l2, . . . ln} and the bitext data as
D = {D(li, lj), li, lj ∈ L} where D(li, lj) =
{(si, tj)} is the parallel corpus for languages li
and lj . Monolingual data is denoted M =
{M(li), li ∈ L}, and si ∈ M(li) denotes an
example in the monolingual corpus for language
li. For training MMT on bitext data D, an arti-
ficial token indicating the target language is pre-
fixed to the source, so that (si, tj) ∈ D(li, lj) be-
comes (<J>si, tj) (Johnson et al., 2017). MMT
can be trained in three configurations: one-to-many
(1→M), many-to-one (M→1) and many-to-many
(M→M) (Tang et al., 2021).
Model Architecture: We use the Transformer big
architecture described in (Vaswani et al., 2017),
with 6 encoder and decoder layers, 16 attention
heads, and 1024 model dimension. We train our
models using FAIRSEQ (Ott et al., 2019) toolkit,
and other hyperparameter values listed in Appendix
A.1.

3 Methodology

Our overall methodology employs the pre-training
followed by fine-tuning pipeline used in prior work

in NMT. (Liu et al., 2020; Lin et al., 2020). We
present the pre-training strategy used in this work
in Section 3.1 and discuss the fine-tuning configu-
rations used in our submission in Section 3.2.

3.1 Pre-training

In our pre-training, we combine monolingual and
bitext data in the same corpus. The objective of pre-
training is to either denoise, or translate, or both.
For each individual example in the corpus, we ran-
domly select which of these objectives to apply. By
interleaving denoising and translation, our goal is
to drive the model towards learning cross-lingual
representations while at the same time learning ro-
bust semantic representations. The strong cross
lingual representations enable better few-shot and
zero-shot translation performance (Pan et al., 2021).
Figure 2 illustrates our pre-training methods for
both monolingual and bitext data. N(·) is the nois-
ing function which we describe in detail in Section
3.1.3, while Mj(·) denotes the translation function
using an MMT model for translation to language lj .
In the remainder of this section, we describe each
component of the pre-training individually.

3.1.1 Monolingual Data
Figure 2a shows the two ways in which we utilize
monolingual data in pre-training. Independently,
for each monolingual example si ∈M(li) one of
denoising or translation is selected with probability
q and 1− q respectively.

If denoising is selected, we apply a denoising
objective similar to mBART (Liu et al., 2020) by
masking or shuffling randomly chosen spans. If
translation is selected, si is first translated to all
languages lj for which D(li, lj) ∈ D. The transla-
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tion is done by MMT models which are obtained
by training Transformer models from scratch on
D, described in Section 5.1. Lets Mj(si) = t′j
is the translation of si into language lj . For the
pair (si, t′j), either translation only, or denoising +
translation is selected with probabilities p and 1−p
respectively. If translation is chosen, si must be
reconstructed from t′j , following traditional back-
translation (Sennrich et al., 2016). If denoising
+ translation is selected, then si must be recon-
structed from the noised version N(t′j). In this
manner, the pre-training also incorporates back-
translation for utilizing monolingual data.

3.1.2 Bitext Data
Figure 2b shows the bitext data usage in pre-
training. Given a pair of sentences (si, tj), the
pre-training procedure treats si as source and tj as
target, and vice versa. Therefore, two pre-training
examples are generated for each example in the
bitext data. This is in contrast to pre-training with
monolingual data described above, where only one
pre-training example was generated per input exam-
ple. Having designated either si or tj as source, the
pre-training procedure follows a path similar to that
of monolingual pre-training with backtranslation.

3.1.3 Noising Function
The noising function N(·) largely follows the nois-
ing techniques used in Liu et al. (2020). Given an
input sentence s, N(s) randomly selects a noising
type and applies it on s.
Mask only: With probability pm, N(s) applies
span masking on s. It randomly samples spans of
tokens from s, with length of the span drawn from
a geometric distribution with parameter msl, and
clipped at 3. The fraction of tokens thus masked is
at most msr. Each masked span is either replaced
by a single <MASK> token, or deleted, or replaced by
randomly selected word in another language with
equal probabilities.
Shuffle only: With probability ps, N(s) applies
shuffling to s. An sr fraction of tokens are selected
at random from tokens in s, and permuted among
each other, leaving the unsampled tokens intact.
Mask and Shuffle: With probability pms, N(s)
applies both masking and shuffling to s. First,
masking is applied as described above. During the
shuffling step, <MASK> tokens are excluded from
the tokens to be sampled for shuffling.
None: With probability 1 − pm − ps − pms, no
noising is applied on the input.

3.1.4 Combining Datasets
We combine both D andM in pre-training. In or-
der to balance the training dataset across language
pairs, we apply temperature based sampling follow-
ing (Fan et al., 2021) with one major change. Since
we are operating in a data constrained setting, we
do not reduce the size of any dataset.

Let N(i,j) = |D(li, lj)| the size of the bi-
text D(li, lj), and ND =

∑
(i,j)N(i,j). Then

the scaled proportion of language pair (li, lj) is

α′
i,j =

α(i,j)∑
(i,j)

α(i,j)
where α(i,j) =

(
N(i,j)

ND

)α
.

The rescaled size of language pair (li, lj) is then
R(i,j) = max(N(i,j), α

′
(i,j)N(i,j))

We train the transformer network on the com-
bined dataset until convergence, and then select the
best checkpoints for further fine-tuning.

3.2 Fine-tuning
For fine-tuning our pre-trained models, we use bi-
text dataD. Unlike pre-training, we don’t noise the
source side at all. We apply fine-tuning in 1→M
and M→1 settings. Following the pre-training
setup, we continue to prefix the tag for the target
language in the source side, and also rebalance the
datasets as in Section 3.1.4. The checkpoint with
best BLEU score on validation set is used for final
translations. After fine-tuning, we have the follow-
ing models. (i) eng→{afs}, (ii) {afs}→eng, (iii)
fra→{afs}, and (iv) {afs}→fra. For the remain-
ing pairs, i.e. between African languages, we use
DENTRA directly.

4 Datasets and Pre-processing

For all experiments, we employ the datasets pro-
vided by the organizers, which mainly consist of
datasets from Opus (Tiedemann, 2012), Mafand
(Adelani et al., 2022a) and Web crawled aligned
through LASER (Heffernan et al., 2022). It is
worth mentioning that, in all pre-training and fine-
tuning we only used a monolingual corpus of 26
languages and English and French-centric bitext.
We have not used any African to African bitext in
our experiments. Prior to using for pre-training
or fine-tuning, datasets were filtered, cleaned, and
preprocessed.

4.1 Data Filtering
Based on characteristics of the dataset and a few
observed issues, we employed several heuristics
to reject highly noisy examples from D and M.
Given an example (si, tj) ∈ D(li, lj), we reject
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it if (i) |si| < 3 or |tj | < 3, (ii) |si| > 1000 or
|tj | > 1000, (iii) a character other than . appears
at least 5 consecutive times in either si or tj , (iv)
a word other than . appears at least 3 consecutive
times in either si or tj , (v) si is identical to tj , (vi)
|si|/|tj | < 0.2 or > 5, (vii) langid of si or tj is not
the expected langid with a confidence of at least
80% (where langid is computed using fasttext2),
(viii) the fraction of characters not belonging in this
language are more than 50% 3. For monolinugal
dataM, we apply rules corresponding to (i)-(iv) ,
and (vii)-(viii) above.

After filtering and pre-processing the size of the
datasets (combined by English centric, French cen-
tric, or monolingual) obtained are shown in Table
14. Full list is shown in Appendix A.2.

Dataset # Datasets Total Size Min Max ∆

eng-{afs} 22 109.36 0.21 32.01 21.32 %
fra-{afs} 4 13.40 0.22 11.51 3.96 %
Mono 26 34.17 0.0 12.73 0.58 %

Table 1: Data set sizes specified in Million sentence
pairs (or sentences). ∆ refers to the percentage of sen-
tence pairs (or sentences) rejected after filtering and
pre-processing

Param p q pm, ps, pms msl msr sr α

Value 0.25 0.66 0.25 0.15 0.2 0.05 0.7

Table 2: Hyper-parameter values used in our data prepa-
ration

5 Experimental Setup

Table 2 specifies the hyperparameters we have used
in pre-training (Section 3.1). We train the model
for 6 epochs and select the best checkpoint based
on pre-training task performance on a held out val-
idation set.

The best pre-training checkpoint was subse-
quently fine-tuned for various tasks where we con-
sider the concatenation of all FLORES 200 dev sets
for the relevant translation directions as validation
set. The FLORES dev sets have 997 examples for
all language pairs.

2https://fasttext.cc/docs/en/python-module.html
3Character sets for each language are built by manually

curating distinct characters obtained from D
4For the Kinyarwanda language, no monolingual data

was provided. We reused the Kinyarwanda side from the
Kinyarwanda-English bitext for this purpose. For English and
French, we randomly sampled 1 million sentences from the
combined English/French sides of the bitext datasets provided.

For evaluation, we use two test sets. The FLO-
RES devtest set (subsequently, we refer to it as
FLORES test set), which has 1012 examples for
all language pairs, and an in-domain test set, which
is randomly sampled from the provided bitext data
and has about 5000 examples from each language
pair. Unless otherwise specified, we report perfor-
mances on the FLORES test set.

We use tokenized BLEU from Moses5 to mea-
sure the performance of all translations. Prior to
computing BLEU we word tokenize all translations,
also using Moses.

5.1 Models
We prepared following baselines for the compari-
son of our pre-trained and fine-tuned models:
MMT6 is trained from scratch separately for four
tasks with their corresponding bitext: eng→{afs},
{afs}→eng, fra→{afs} and {afs}→fra. We evalu-
ate it in 1→M and M→1 setups.
M2M-100 is trained on many-to-many datasets of
100 languages. We use the trained version provided
by the authors (Fan et al., 2021) and evaluate it in
all setups, 1→M, M→1, and M→M. Note that
M2M-100 does not support all language pairs in
this task and thus, we report performance on only
the common language pairs. In particular, M2M-
100 includes 14/22 languages in eng↔{afs}, 3/4 in
fra↔{afs} and 22/48 in {afs}→{afs}. In all M2M-
100 experiments, we employ its 418M parameters
checkpoint.
M2M_FT employs the pre-trained checkpoint of
M2M-100 and fine-tunes it with bitext data. Similar
to Adelani et al. (2022a), unseen African languages
{kam, kin, luo, nya, orm, sna, tso, umb} are mapped
to {km , ht, lo, yi, fy, ba, kk, uz} respectively for fine-
tuning M2M-100. M2M_FT is used for evaluations
in 1→M and M→1 setups only.

The following are the models trained in this
work for demonstrating the importance of our pre-
training and fine-tuning strategies.
DENTRA is the pre-trained model described in Sec-
tion 3, which we train using (i) monolingual data
in 26 languages and (ii) bitext data for only En-
glish and French centric directions. We compare
DENTRA against the corresponding baselines in all
setups, 1→M, M→1, and M→M.
DENTRA_FT uses bitext data for English and
French centric directions to fine-tune the DENTRA

5https://github.com/moses-smt/mosesdecoder
6These models are also used for backtranslation described

in Section 3.1.1
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Figure 3: BLEU scores for M2M-100 and DENTRA (zero-shot) among African languages on the Flores 200 test set.
Dark colors represent DENTRA and light colors represent M2M-100.

Tasks M2M-100 DENTRA

eng→{afs} 4.51 9.13
fra→{afs} 4.74 9.48
{afs}→eng 9.13 22.63
{afs}→fra 8.21 15.28

Table 3: Average performance for common languages
of DENTRA and M2M-100 before fine-tuning

model. DENTRA_FT is trained and evaluated
against the baselines in only the 1→M and M→1
setups.

6 Comparisons with Baselines

6.1 Without Fine-tuning
In this section, we will show the advantage of
DENTRA over M2M-100 for the 26 languages in
the task without any fine-tuning on either models.
As DENTRA and M2M-100 both include bitext in
their training, we can directly use them for transla-
tion.

Table 3 shows the average performance of M2M-
100 and DENTRA for the 14 English and 3 French
centric tasks in M→1 and 1→M setups. In all four
tasks, DENTRA outperforms M2M-100 by signifi-
cant margins.

Furthermore, in Figure 3 we display the perfor-
mance of M2M-100 and DENTRA on {afs}→{afs}
tasks, i.e. translation between African languages.
Similar to M→1 and 1→M setup, we include only
the 22 common directions of DENTRA and M2M-
100 (Full performance list for DENTRA is provided
in Appendix A.3). Note this is the zero-shot set-
ting (Johnson et al., 2017) for both7. However,

7Our assumption is that M2M-100 is zero shot in these

in all translation directions, DENTRA outperforms
M2M-100 by large margins. These results shows
the advantage of pre-training with combined mono-
lingual and bitext data for only the desired set of
languages, over pre-training with a large number of
additional languages. This confirms our hypothesis
discussed in Section 1.

6.2 With Fine-tuning

We evaluate DENTRA after it is fine-tuned on the
four M→1 and 1→M tasks. Tables 4, 5, 6, and
7 show the BLEU scores for DENTRA_FT along
with all baselines. Following conclusions may be
drawn:

All model variants including DENTRA_FT,
M2M_FT and DENTRA are significantly better than
M2M-100 across all language pairs. The general
trend of performance comparison in best to worst
order is DENTRA_FT, M2M_FT, MMT, DENTRA,
M2M-100, except {afs}→fra where M2M_FT out-
performs DENTRA_FT.

Improvement of M2M_FT and DENTRA_FT
over MMT shows the advantage of fine-tuning
after pre-training in general. Moreover, since
DENTRA_FT typically outperforms M2M_FT also,
this demonstrates the advantage of including the
monolingual corpora and denoising objectives in
the pre-training phase.

Generally, it has been shown that combining low
resource and high resource languages in a single
translation model benefits the low resource lan-
guages. We also observe similar behavior as shown
by our MMT model. However, we find that extreme
multilingual models like M2M-100 must necessar-

settings.
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Model xxx→ eng

afr amh ful hau ibo kam kin lug luo nso nya orm

MMT 54.59 22.47 5.51 25.85 19.67 8.38 22.9 15.77 16.58 30.78 21.21 10.61

M2M-100 43.48 6.64 1.98 6.4 5.62 - - 2.63 - 4.05 - -
M2M_FT 53.42 22.87 5.62 23.44 18.34 6.65 20.96 14.17 14.79 29.3 20.56 9.88

DENTRA 51.65 18.85 5.36 23.24 16.73 8.59 22.24 15.12 14.81 27.85 19.57 9.34
DENTRA_FT 54.46 23.7 5.78 26.64 20.05 9.26 22.85 16.25 16.89 31.53 21.8 10.64

sna som ssw swh tsn tso umb xho yor zul AVG MED

MMT 21.7 19.6 23.36 37.35 21.21 23.51 5.27 30.38 13.85 31.12 21.89 21.46

M2M-100 - 2.94 4.95 25.62 0.78 - - 10.35 1.93 10.4 9.13 5.28
M2M_FT 21.29 18.1 23.33 36.54 20.47 22.13 4.95 29.59 11.46 29.93 20.81 20.76

DENTRA 19.77 16.77 20.95 34.16 18.5 21.72 4.9 27.86 11.65 28.08 19.9 19.21
DENTRA_FT 22.53 19.66 23.73 38.77 21.47 23.71 5.32 31.01 13.72 32.41 22.37 22.16

Table 4: BLEU score on the Flores 200 test set, before and after fine-tuning for English centric MT. For each
subtask, the best model is bold

Model eng→ xxx

afr amh ful hau ibo kam kin lug luo nso nya orm

MMT 40.65 9.12 0.66 22.64 15.41 3 14.52 6.04 6.49 23.71 13.82 2.1

M2M-100 26.99 0.51 0.25 2.46 2.53 - - 1.09 - 0.65 - -
M2M_FT 38.62 6.85 0.64 18.58 11.72 2.93 14.22 5.93 6.94 24.65 12.38 1.91

DENTRA 40.38 4.45 0.76 21.53 13.72 2.43 12.79 5.53 6.9 21.97 13.13 1.72
DENTRA_FT 40.95 8.42 0.64 22.6 15.69 2.68 14.54 5.97 7.29 24.55 14.14 2.06

sna som ssw swh tsn tso umb xho yor zul AVG MED

MMT 11.57 9.83 7.48 33.92 18.43 16.3 0.96 15.76 2.52 15.08 13.18 12.7

M2M-100 - 0.49 1.05 19.35 2.61 - - 2.03 1.07 2.12 4.51 1.56
M2M_FT 10.33 9.15 7.21 29.43 17.17 16.24 1.15 14.23 2.2 12.96 12.07 11.03

DENTRA 10.73 8.13 6.05 33.08 16.23 13.08 1 13.61 2.39 13.92 11.98 11.76
DENTRA_FT 11.68 9.79 7.42 34.69 18.45 16.24 1.16 15.76 2.41 15.32 13.29 12.91

Table 5: BLEU score on the Flores 200 test set, before and after fine-tuning for English centric MT. For each
subtask, the best model is bold

Model xxx→ fra

lin kin swh wol AVG MED

MMT 15.46 17.61 27.29 9.69 17.51 16.54

M2M-100 2.78 - 19.79 2.07 8.21 2.78
M2M_FT 17.02 18.4 28.22 11.44 18.77 17.71

DENTRA 14.38 16.13 22.14 9.33 15.5 15.25
DENTRA_FT 16.27 18.28 28.64 11.28 18.62 17.27

Table 6: BLEU score on the Flores 200 test set, before
and after fine-tuning for French centric MT. For each
subtask, the best model is bold

ily have larger capacity to represent all languages
in its corpora. In particular, if the languages of
interest are restricted, it is better to also restrict
pre-training to these languages only (Adelani et al.,
2022a).

Finally, we note that the performance of transla-
tion models where African languages are the target

Model fra→ xxx

lin kin swh wol AVG MED

MMT 13.4 10.08 21.45 4.56 12.37 11.74

M2M-100 0.93 - 12.88 0.42 4.74 0.93
M2M_FT 14.32 10.67 21.1 4.54 12.66 12.49

DENTRA 4.97 9.76 21.02 2.46 9.55 7.365
DENTRA_FT 14.4 10.85 22.09 5.09 13.11 12.62

Table 7: BLEU score on the Flores 200 test set, before
and after fine-tuning for French centric MT. For each
subtask, the best model is bold

language are generally lower than those where En-
glish or French are the target language. This is
expected, since the volume of data where each indi-
vidual African language appears on the target side
is much lower than English or French.
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Figure 4: BLEU score comparison of the DENTRA_FT model for FLORES 200 and in-domain test set (isolated
from bitext training data D for English/ French to African languages.

7 Analysis

In this section, we conduct a set of analytical exper-
iments to better understand the datasets and what
contributes to performance gains.

Figure 4 shows the BLEU scores of the
DENTRA_FT model on {eng,fra}→{afs} transla-
tion directions, on the both FLORES 200 test set
and the in-domain test set sampled from the bitext
data prior to training. The language pairs on the
horizontal axis are ordered by the dataset size (left
to right in increasing order) independently for En-
glish and French centric directions. For the English
centric translation (eng→{afs}), the BLEU scores
on both test sets have little correlation with the
dataset size, indicating noisy data. Some languages,
such as umb, fuv, kam, and yor have stark differ-
ence between FLORES and in-domain test sets,
indicating that these datasets may have predictable
patterns that have no relevance to the translation of
these languages. This is further exemplified by the
comparison to tso, which has a smaller dataset yet
exhibits better generalization.

Further investigations reveal two primary prob-
lems with the bitext data. First, some of these
languages have several duplicates in the African
side of the data. For example, for Kamba-English
(kam-eng) dataset, the distinct number of Kamba
sentences is less than 5% of the total dataset size.
However, this is not consistent across all languages
exhibiting overfitting on the training data, as the
number of distinct Yoruba (yor) sentences in its
bitext is about 95% of the total dataset.

Second, the African side of many datasets con-
tain a large fraction of Indic languages from the

Social Media domain. Strict heuristics designed
based on manual inspection by the authors rejected
about 637, 000 examples as being clearly in the
Hindi language. Clearly, neither langid nor the
LASER encoder (Schwenk and Douze, 2017) are
able to reliably detect and align data for these lan-
guages. We postulate that low resource languages
form a vicious cycle for MT systems trained on bi-
text data created using multilingual encoders. This
opens avenues for future work to explore bitext
creation for low resource languages.

8 Conclusion

DENTRA has shown significant performance gains
in Multilingual Machine Translation for African
languages as demonstrated in this paper. DENTRA

integrates denoising, backtranslation, and trans-
lation into the same pre-training setup, and has
helped to improve MT performance after fine-
tuning for both English and French centric transla-
tion. We have shown that massively multilingual
models like M2M-100 may not be a good choice
for fine-tuning when the languages to be translated
from/to are restricted to a small set. Finally, we
have studied the variation in performance and re-
ported issues seen in heuristically created bitext
data. While this is a known issue, we show this
problem to be exacerbated for low-resource lan-
guages that share the alphabet with high-resource
ones.

References
David Adelani, Jesujoba Alabi, Angela Fan, Julia

Kreutzer, Xiaoyu Shen, Machel Reid, Dana Ruiter,
1064



Dietrich Klakow, Peter Nabende, Ernie Chang, Tajud-
deen Gwadabe, Freshia Sackey, Bonaventure F. P.
Dossou, Chris Emezue, Colin Leong, Michael Beuk-
man, Shamsuddeen Muhammad, Guyo Jarso, Oreen
Yousuf, Andre Niyongabo Rubungo, Gilles Hacheme,
Eric Peter Wairagala, Muhammad Umair Nasir, Ben-
jamin Ajibade, Tunde Ajayi, Yvonne Gitau, Jade
Abbott, Mohamed Ahmed, Millicent Ochieng, An-
uoluwapo Aremu, Perez Ogayo, Jonathan Mukiibi,
Fatoumata Ouoba Kabore, Godson Kalipe, Derguene
Mbaye, Allahsera Auguste Tapo, Victoire Memd-
jokam Koagne, Edwin Munkoh-Buabeng, Valen-
cia Wagner, Idris Abdulmumin, Ayodele Awokoya,
Happy Buzaaba, Blessing Sibanda, Andiswa Bukula,
and Sam Manthalu. 2022a. A few thousand transla-
tions go a long way! leveraging pre-trained models
for African news translation. In Proceedings of the
Conference of the North American Chapter of the
Association for Computational Linguistics: Human
Language Technologies.

David Ifeoluwa Adelani, Md Mahfuz Ibn Alam, Anto-
nios Anastasopoulos, Akshita Bhagia, Marta Costa-
Jussá, Jesse Dodge, Fahim Faisal, Christian Feder-
mann, Natalia Fedorova, Francisco Guzmán, Sergey
Koshelev, Jean Maillard, Vukosi Marivate, Jonathan
Mbuya, Safiyyah Saleem, and Holger Schwenk.
2022b. Findings of the WMT 2022 shared task on
large-scale machine translation evaluation for african
languages. In Proceedings of the Seventh Conference
on Machine Translation.

Roee Aharoni, Melvin Johnson, and Orhan Firat. 2019.
Massively multilingual neural machine translation.
In Proceedings of the Conference of the North Amer-
ican Chapter of the Association for Computational
Linguistics: Human Language Technologies.

David M. Eberhard, Gary F. Simons, and Charles D.
Fennig. 2020. Ethnologue: Languages of the world.
twenty-third edition. In eds.

Ahmed El-Kishky, Vishrav Chaudhary, Francisco
Guzmán, and Philipp Koehn. 2020. CCAligned: A
massive collection of cross-lingual web-document
pairs. In Proceedings of the Conference on Empiri-
cal Methods in Natural Language Processing.

Chris Chinenye Emezue and Bonaventure F. P. Dossou.
2021. MMTAfrica: Multilingual machine transla-
tion for African languages. In Proceedings of the
Conference on Machine Translation.

Angela Fan, Shruti Bhosale, Holger Schwenk, Zhiyi
Ma, Ahmed El-Kishky, Siddharth Goyal, Mandeep
Baines, Onur Celebi, Guillaume Wenzek, Vishrav
Chaudhary, et al. 2021. Beyond english-centric mul-
tilingual machine translation. J. Mach. Learn. Res.

Orhan Firat, Kyunghyun Cho, and Yoshua Bengio. 2016.
Multi-way, multilingual neural machine translation
with a shared attention mechanism. In Proceedings of
the Conference of the North American Chapter of the
Association for Computational Linguistics: Human
Language Technologies.

Naman Goyal, Cynthia Gao, Vishrav Chaudhary, Peng-
Jen Chen, Guillaume Wenzek, Da Ju, Sanjana Kr-
ishnan, Marc’Aurelio Ranzato, Francisco Guzman,
and Angela Fan. 2022. The flores-101 evaluation
benchmark for low-resource and multilingual ma-
chine translation. Transactions of the Association for
Computational Linguistics.

Kevin Heffernan, Onur Çelebi, and Holger Schwenk.
2022. Bitext mining using distilled sentence repre-
sentations for low-resource languages. arXiv preprint
arXiv:2205.12654.

Melvin Johnson, Mike Schuster, Quoc V. Le, Maxim
Krikun, Yonghui Wu, Zhifeng Chen, Nikhil Thorat,
Fernanda Viégas, Martin Wattenberg, Greg Corrado,
Macduff Hughes, and Jeffrey Dean. 2017. Google’s
multilingual neural machine translation system: En-
abling zero-shot translation. Transactions of the As-
sociation for Computational Linguistics.

Mike Lewis, Yinhan Liu, Naman Goyal, Marjan
Ghazvininejad, Abdelrahman Mohamed, Omer Levy,
Veselin Stoyanov, and Luke Zettlemoyer. 2020.
BART: Denoising sequence-to-sequence pre-training
for natural language generation, translation, and com-
prehension. In Proceedings of the Annual Meeting of
the Association for Computational Linguistics.

Zehui Lin, Xiao Pan, Mingxuan Wang, Xipeng Qiu,
Jiangtao Feng, Hao Zhou, and Lei Li. 2020. Pre-
training multilingual neural machine translation by
leveraging alignment information. In Proceedings
of the Conference on Empirical Methods in Natural
Language Processing.

Yinhan Liu, Jiatao Gu, Naman Goyal, Xian Li, Sergey
Edunov, Marjan Ghazvininejad, Mike Lewis, and
Luke Zettlemoyer. 2020. Multilingual denoising pre-
training for neural machine translation. Transactions
of the Association for Computational Linguistics.

Myle Ott, Sergey Edunov, Alexei Baevski, Angela Fan,
Sam Gross, Nathan Ng, David Grangier, and Michael
Auli. 2019. fairseq: A fast, extensible toolkit for se-
quence modeling. In Proceedings of the Conference
of the North American Chapter of the Association
for Computational Linguistics: Human Language
Technologies: Demonstrations.

Xiao Pan, Mingxuan Wang, Liwei Wu, and Lei Li. 2021.
Contrastive learning for many-to-many multilingual
neural machine translation. In Proceedings of the
Annual Meeting of the Association for Computational
Linguistics.

Holger Schwenk and Matthijs Douze. 2017. Learn-
ing joint multilingual sentence representations with
neural machine translation. In Proceedings of the
Workshop on Representation Learning for NLP.

Holger Schwenk, Guillaume Wenzek, Sergey Edunov,
Edouard Grave, Armand Joulin, and Angela Fan.
2021. CCMatrix: Mining billions of high-quality
parallel sentences on the web. In Proceedings of the

1065



Annual Meeting of the Association for Computational
Linguistics.

Rico Sennrich, Barry Haddow, and Alexandra Birch.
2016. Improving neural machine translation models
with monolingual data. In Proceedings of the An-
nual Meeting of the Association for Computational
Linguistics.

Yuqing Tang, Chau Tran, Xian Li, Peng-Jen Chen, Na-
man Goyal, Vishrav Chaudhary, Jiatao Gu, and An-
gela Fan. 2021. Multilingual translation from denois-
ing pre-training. In Findings of the Association for
Computational Linguistics.

Jörg Tiedemann. 2012. Parallel data, tools and inter-
faces in OPUS. In Proceedings of the Eighth In-
ternational Conference on Language Resources and
Evaluation.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. In Proceedings of the Advances in Neural
Information Processing Systems.

Linting Xue, Aditya Barua, Noah Constant, Rami Al-
Rfou, Sharan Narang, Mihir Kale, Adam Roberts,
and Colin Raffel. 2022. Byt5: Towards a token-free
future with pre-trained byte-to-byte models. Transac-
tions of the Association for Computational Linguis-
tics.

Linting Xue, Noah Constant, Adam Roberts, Mihir Kale,
Rami Al-Rfou, Aditya Siddhant, Aditya Barua, and
Colin Raffel. 2021. mT5: A massively multilingual
pre-trained text-to-text transformer. In Proceedings
of the Conference of the North American Chapter of
the Association for Computational Linguistics: Hu-
man Language Technologies.

A Appendix

A.1 Model Hyper-parameters
For pre-training and fine-tuning the DENTRA, we
base our experiments on FAIRSEQ toolkit. Table
8 presents the hyper-parameter values used in all
experiments. For fine-tuning, we employ the best
checkpoint obtained from pre-training and continue
to train them without resetting the lr-scheduler.

A.2 Languages in the Dataset
Table 9 shows the languages used in our experi-
ments along with their bitext and monolingual data
sizes.

A.3 Cluster wise Performance
Table 10 shows the performance of DENTRA and
M2M-100 on the FLORES 200 test set for dif-
ferent African language pairs clustered geographi-
cally/culturally.

Params Values
optimizer adam

adam-betas ’(0.9, 0.98)’
clip-norm 0.0

lr 0.0005
lr-scheduler inverse_sqrt

warmup-updates 4000
warmup-init-lr 1e-07

dropout 0.3
criterion label_smoothed_cross_entropy

label-smoothing 0.1
max-tokens (batch size) 3584

num-updates (Pre-training) 1609115
num-updates (Fine-tuning) eng-{af} 548227
num-updates (Fine-tuning) fra-{af} 49600

Table 8: Model hyper-parameters and their values

Languages ISO Bitext Size Monolingual
Size

Rejected Bi-
text Size

Afrikaans afr 13.9 12.732 0.18
Amharic amh 1.02 0.006 0.11
Nigerian Ful-
fulde

fuv 1.3 0.255 0.15

Hausa hau 3.6 3.513 5.5
Igbo ibo 0.4 0.452 0.1
Kamba kam 1.58 0.01 0.08
Kinyarwanda kin 9.6 (eng) - 0.36 (eng)

1.2 (fra) - 0.15 (fra)
Luganda lug 3.39 0.11 0.11
Luo luo 2.6 0.035 0.16
Northern
Sotho

nso 2.9 0.018 0.18

Chichewa nya 1.7 0.261 0.14
Oromo orm 2.7 0.134 0.13
Swati ssw 8.6 0.257 0.02
Shona sna 1.25 0.007 0.3
Somali som 0.2 - 0.15
Swahili swh 31.7 (eng) 12.642 0.8 (eng)

11.4 (fra) - 0.3 (fra)
Tswana tsn 5.6 0.04 0.43
Xitsonga tso 0.6 0.037 0.05
Umbundu umb 0.2 0.043 0.1
Xhosa xho 9.3 0.308 19.78
Yoruba yor 1.6 0.51 0.1
Zulu zul 3.9 0.557 0.23
Lingala lin 0.3 0.042 0.06
Wolof wol 0.2 0.206 0.03
English eng - 1 0
French fra - 1 0

Table 9: Languages, their ISO codes used in the paper,
and their corresponding data sizes (in Million sentences)
.
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Cluster ID Task DENTRA M2M-100

A

xho→zul 4.54 1.7
zul→sna 2.71 -
sna→afr 10.65 -
afr→ssw 3.47 0.95
ssw→tsn 1.58 0.37
tsn→tso 2.28 -
tso→nso 3.8 -
nso→xho 1.69 0.96

B

swh→am 1.41 0.33
amh→swh 10.22 4.35
luo→orm 0.63 -
som→amh 0.46 0.26
orm→som 0.85 -
swh→luo 2.4 -
amh→luo 3.51 -
luo→som 2.37 -

C

hau→ibo 2.64 1.37
ibo→yor 0.92 0.72
yor→fuv 0.76 0.03
fuv→hau 1.58 0.71
ibo→hau 2.06 0.98
yor→ibo 1.55 0.86
fuv→yor 0.71 0.55
hau→fuv 1.49 0.06
wol→hau 2.11 -
hau→wol 1.57 -
fuv→wol 1.24 -
wol→fuv 1.22 -

D

kin→swh 3.42 -
lug→lin 1.87 -
nya→kin 2.22 -
swh→lug 1.73 0.55
lin→nya 2.44 -
lin→kin 2.45 -
kin→lug 1.96 -
nya→swh 3.08 -

E

amh→zul 4.27 0.75
yor→swh 5.21 1.1
swh→yor 0.95 0.72
zul→amh 2 0.5
kin→hau 2.53 -
hau→kin 2.06 -
nya→som 3.27 -
smo→nya 4.28 -
xho→lug 1.82 0.56
lug→xho 1.73 0.85
wol→swh 3.76 -
swh→wol 1.71 -

Table 10: BLEU scores on the FLORES 200 test set
for geographical/cultural clusters. A: South/South East
Africa, B: Horn of Africa, C: Nigerian, D: Central
African, E: Among the regions
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Abstract

This report describes our VolcTrans system for
the WMT22 shared task on large-scale multi-
lingual machine translation. We participated in
the unconstrained track which allows the use of
external resources. Our system is a transformer-
based multilingual model trained on data from
multiple sources including the public training
set from the data track, NLLB data provided
by Meta AI, self-collected parallel corpora, and
pseudo bitext from back-translation. A series of
heuristic rules clean both bilingual and mono-
lingual texts. On the official test set, our system
achieves 17.3 BLEU, 21.9 spBLEU, and 41.9
chrF2++ on average over all language pairs.
The average inference speed is 11.5 sentences
per second using a single Nvidia Tesla V100
GPU. Our code and trained models are avail-
able at https://github.com/xian8/wmt22

1 Introduction

Multilingual Machine Translation attracts much
attention in recent years due to its advantages in
sharing cross-lingual knowledge for low-resource
languages. It also dramatically reduces training
and serving costs. Training a multilingual model is
much faster and simpler than training many bilin-
gual ones. Serving multiple low-traffic languages
using one model could drastically improve GPU
utilization.

The WMT22 shared task on large-scale multi-
lingual machine translation includes 24 African
languages (Adelani et al., 2022b). Inspired by pre-
vious research works, we train a deep transformer
model to translate all languages since large models
have been demonstrated effective for multilingual
translation (Fan et al., 2021; Kong et al., 2021;
Zhang et al., 2020). We participated in the un-
constrained track that allows the use of external
data. Besides the official dataset for the constrained
track, and the NLLB corpus provided by MetaAI
(NLLB Team et al., 2022), we also collect parallel

and monolingual texts from public websites and
sources. These raw data are cleaned by a series
of commonly used heuristic rules, and a minimum
description length (MDL) based approach to re-
move samples with repeat patterns. Monolingual
texts are used for back translation. For some very
low-resource languages such as Wolof, iterative
back-translation is adopted for higher accuracy.

We compare different training strategies to bal-
ance efficiency and quality, such as streaming data
shuffling, and dynamic vocabulary for new lan-
guages. Furthermore, we used the open-sourced
LightSeq toolkit 1 to accelerate training and infer-
ence.

On the official test set, our system achieves 17.3
BLEU, 21.9 spBLEU, and 41.9 chrF2++ on aver-
age over all language pairs. Averaged inference
speed is 11.5 sentences per second using a single
Nvidia Tesla V100 GPU.

2 Data

2.1 Data Collection

Our training data are mainly from four sources:
the official set for constrained track, NLLB data
provided by Meta AI, self-collected corpora, and
pseudo training set from back translation.

For each source, we collect both parallel sen-
tence pairs and monolingual sentences. A parallel
sentence pair is collected if one side is in African
language and the other is in English or French. We
did not collect African-African sentence pairs as
we use English as the pivot language for African-
to-African translation. Instead, they are added to
the monolingual set. More specifically, we split ev-
ery sentence pair into two sentences and add them
to the monolingual set accordingly. For example,
the source side of a fuv-fon sentence pair is added
to the fuv set. This greatly enriches the monolin-
gual dataset, especially for the very low-resource

1https://github.com/bytedance/lightseq
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languages.
We merge multiple corpora from the same source

into one and use bloom filter 2(Bloom, 1970) for
fast deduplication. To reduce false positive errors
which over delete distinct samples, we set the error
rate 1e−7 and capacity of 4B samples which costs
100G host memory.

The official set includes the data from data track
participants, OPUS collections, and the NLLB par-
allel corpora mined from Common Crawl (com)
and other sources. All domains in OPUS collec-
tions are involved, such as Mozilla-I10n, which
could introduce many noises such as programming
languages, and needs extra rules to clean.

NLLB data provided by Meta AI has three sub-
sets: primary bitext including a seed set that is care-
fully annotated for representative languages and
a public bitext set downloaded from open sources
and mined bitexts that are automatically discovered
by LASER3 encoder in a global mining pipeline,
back-translated data from a pretrained model. We
add the first two subsets in our training set.

Some public bitext data that are no longer avail-
able or require authorization such as JW300 (Agić
and Vulić, 2019), Lorelei3 and Chichewa News 4

are not included. We noticed that the NLLB team
released another version of mined data recently in
hugging-face 5, which is different from the version
on the WMT22 website. We merge the new version
into the old one and remove duplicates.

We collected additional bitexts in two ways:
large-scale mining from general web pages, and
manually crawling from specific websites and
sources.

Large-scale mining focused on two scenarios,
parallel sentences appearing on a single web page
such as dictionary web pages that use multiple bilin-
gual sentences to exemplify the usage of a word,
and parallel web pages that describe the same con-
tent but are written in different languages. We ex-
tract these pages from the Common Crawl corpus.
Then we utilized Vecalign (Thompson and Koehn,
2019), an accurate and efficient sentence alignment
algorithm to mine parallel bilingual sentences. We
use LASER (Schwenk and Douze, 2017) encoders
released by WMT to obtain multilingual sentence
embeddings and facilitate the alignment work. We
collected about 3 million sentence pairs namely

2https://pypi.org/project/bloom-filter
3https://catalog.ldc.upenn.edu/LDC2021T02
4https://zenodo.org/record/4315018#.YypJWezML0p
5https://huggingface.co/datasets/allenai/nllb

LAVA corpus and submitted them to the data track.
And another 150M pairs for the unconstrained
track.

Specific websites and sources have fewer but
higher-quality sentence pairs. For example, the
bible website6 labels the order of sentences across
languages so we can align them easily without sen-
tence segmentation. Since JW300 is not publicly
available, we crawled pages from Jehovah’s Wit-
nesses7 to recover the dataset.

Monolingual texts have richer sources such as
VOA news in Amharic 8 and OSCAR (Abadji et al.,
2022), which improve English/French→ African
translation using back-translation. Monolingual
texts from parallel data are also collected as de-
scribed above. For African → English/French
translation, we clean Wikipedia pages in En-
glish/French to get monolingual texts. For lan-
guages that gain significantly from back-translation
such as Wolof, we run another round of back-
translation to generate high-quality pseudo data.

2.2 Data Cleaning

We used the following rules to clean parallel
datasets, except the NLLB mined bitext.

• Filter out parentheses and texts in between if
the numbers of parentheses in two sentences
are different.

• Filter out sentence pairs if numbers mismatch
or one sentence ends with punctuation : ! ? ...
and the other mismatches.

• Filter out sentences shorter than 30 characters,
sentences having URLs or emails, or words
longer than 100 characters.

• De-duplication: remove sentence pairs shar-
ing the same source or target but having dif-
ferent translations.

• Sentences having programming languages are
removed. We manually create a set of key-
words to detect programming languages, such
as if ( , == and .getAttribute .

• Language identification using the NLLB lan-
guage identification model trained by fastText
(Joulin et al., 2017)

6https://www.bible.com/languages
7https://www.jw.org
8https://amharic.voanews.com/
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One type of noisy text could survive the rules
above, which has repeat patterns and commonly
exists in many datasets. Here are some examples,

Download Bongeziwe Mabandla mini esadibana ngayo
(#001) Mp3 Bongeziwe Mabandla - mini esadibana ngayo
(#001).

Coaster Gift,Paper-Cut Coaster Zodiac,Red Coaster
Cute,Paper-Cut Zodiac Coaster

mm mm mm MPEE(um) MPEP(um) mm mm mm mm mm

mm kg kg

A natural choice to detect these repeating pat-
terns is the minimum description length (MDL)
which finds the optimal compression by encoding
frequent substrings with shorter codes.

Specifically, given a sentence s, our MDL objec-
tive minimizes the length of the codebook plus the
bits to encode the sentence:

MDL(s) = min
s=w1w2...wn

(
C

∑

distinct w

|w|

−
∑

i

log (p(wi|wi−1))

)

where w1, w2, . . . wn is the word (coding entry)
sequence, C is a positive constant, which bal-
ances the contribution of the codebook and length
of the encoded sequence. |w| is the length of
word w. In our experiments, we set C = 2.
p(wi|wi−1) = #wi−1wi

#wi−1
is the conditional proba-

bility of word bigrams in the sequence.
A sentence is noisy if the ratio of MDL over

sentence length is less than a predefined threshold:

s is noisy if
MDL(s)

len(s)
< T

If a sentence has no repeat patterns at all, then the
length of the codebook should be Clen(s), and
MDL(s) ≥ Clen(s). Thus we choose T = C.

For the NLLB mined corpus, we remove pairs
with laser score < 1.06 or language score <
0.95 provided by LASER. Monolingual texts are
cleaned using language scores only.

Table 1 and Figure 1 summarize the size of our
training data after data cleaning and deduplication.

2.3 Preprocessing and Post Processing
There are thousands of languages in the world, thus
statically training a tokenizer on a predefined list of
languages is not flexible for new languages. There
are several studies on dynamic vocabulary for new
language adaption, the general principle is to maxi-
mize the overlap with the old vocabulary. (Lakew
et al., 2018, 2019)

Source Sentence Pairs
Constrained Track 50.5M

NLLB 29.1M
Self Collected 151.6M

Back Translation 1.41B

Total 1.64B

Table 1: Number of sentence pairs from different
sources after data cleaning.

Figure 1: Number of sentences (in millions) in different
African languages after data cleaning.

We reuse the mRASP2 tokenizer, a unigram
model trained on 150 languages using Sentence-
Piece (Pan et al., 2021). To support new African
languages, we train another tokenizer for new lan-
guages and merge it to the mRASP2 tokenizer. To
ensure that the merged tokenizer produces the same
segmentation for old languages, new words that can
be made by joining two or more old words are re-
moved and the rest new words’ probabilities are
scaled down.

We notice that the Yoruba text in FLORES200
has more accented characters than other corpora.
According to NLLB team’s report, the way FLO-
RES200 marks the tone of vowels is similar to
MAFAND dataset (Adelani et al., 2022a). Thus,
we use the MAFAND data to train an accent model
to post-process the translated sentences for X →
Yoruba translation. It takes the Yoruba character
sequence with accents removed as the input and out-
puts the accented characters. The structure of the
model is a two-layer bidirectional LSTM having
50 hidden units in each layer. Correspondingly, we
train another accent model using non-MAFAND
datasets to preprocess source text for Yoruba→ X
translation.
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3 Model

3.1 Model Architecture

Existing research works demonstrate that small
models suffer from the underfitting problem for
multilingual machine translation. On the other
hand, training and serving large models are ex-
pensive. Sometimes model parallelism or pipeline
parallelism is necessary if it is impossible to run
training on a single GPU due to memory con-
straints. And quantization is required to reduce
the latency of inference. Our compromised model
is a pre-layer norm transformer with 2.1B parame-
ters which can be trained using A100 GPUs with
80G memory without parallelism. Details of the
model are described in Table 2

Parameter Value
Encoder Layer 64
Decoder Layer 64

Hidden Size 1024
FFN dimension 4096

Max Length 512
Shared Embedding Decoder input output

Positional Embedding Learned

Table 2: Architecture of our transformer model

3.2 Language Tag

There are two popular language tag strategies
for multilingual MT: S-ENC-T-DEC which adds
source language token to encoder input and target
language token to decoder input (Fan et al., 2021;
Liu et al., 2020; Wu et al., 2021), and T-ENC which
adds target language token to encoder input (Yang
et al., 2021; Wu et al., 2021). Our system uses T-
ENC-T-DEC which adds the target language token
to both encoder and decoder inputs. We did not use
source language information for two reasons. First,
most translation engines detect input languages au-
tomatically, which may introduce incorrect source
language tokens. Second, a source sentence may
be written in mixed languages.

4 Training and Optimization

4.1 Platform

Our models are trained on 6 machines each
equipped with 8 Nvidia A100 80G GPUs. We
use our internal version of ParaGen 9 (Feng et al.,

9https://github.com/bytedance/ParaGen

2022) , a self-developed text generation framework,
to train the model. For back-translation, monolin-
gual data are split and translated in parallel using
50 Nvidia Tesla V 100 GPUs.

To accelerate training, LightSeq is integrated.
Unlike approaches that proposed alternative model
structures to trade quality for speed, LightSeq used
a series of GPU optimization techniques tailored
to the specific computation flow and memory ac-
cess patterns of transformer models. It has been
demonstrated 50% to 250% faster than Apex 10

on machine translation tasks. (Wang et al., 2021,
2022) Its inference speed is about 11.5 sentences
per second using a single Nvidia Tesla V 100 GPU,
which allows us to translate all monolingual texts
within a month.

As the training set’s size exceeds the local disk’s
capacity, it is stored on a remote Hadoop file sys-
tem.

4.2 Hyper-parameter Tuning

We tune the hyperparameters using a hill climbing
approach where each iteration searches along one
direction with a different value in the hyperparame-
ter space while keeping the others constant in order
to converge to the locally optimal solution on the
validation set. To search efficiently, we fix a small
batch size and tune other parameters, then increase
the batch size after the other parameters have been
tuned.

The final configuration is listed in Table 3.

Hyperparameter Value
Initial Learning Rate 0.001

Warmup Steps 1000
Learning Rate Scheduler Inverse Square Root

Dropout Rate 0.1
Sampling Temperature 5

Label Smoothing 0.1
Optimizer AdamW(0.9, 0.98)

Activation Function ReLU
Batch Size 21M tokens

Table 3: Hyperparameters for training.

4.3 Streaming Data Shuffling

Data Shuffling reduces the variance of mini-batches
and lowers the risk of local optimum. However, it
is challenging to shuffle a Terabyte-scale dataset

10https://github.com/NVIDIA/apex
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dynamically. Our system uses multi-source stream-
ing data based shuffling, which maintains a small
in-memory buffer and a set of file pointers that
point to random offsets of the training set. Each
time a file pointer is selected randomly and loads
the next sample to the buffer. A batch of samples
is drawn from the buffer randomly once the buffer
is full. This approach takes the advantage of data
prefetching for sequential access in the Hadoop file
system. The randomness of the sampling is con-
trolled by the number of file pointers and the size
of the buffer. In our experiments, we use about 5k
file pointers and 300G host memory for the buffer.

To compare with global dynamic shuffling, we
run a simulation experiment. We train a model until
convergence, then shuffle the full dataset statically,
and continue training on the shuffled data. Repeat
shuffling until no significant change in loss or per-
formance. For clarity, the original model is named
as M0, and the model trained with i− th round of
shuffled data is named as Mi.

Table 4 shows the averaged per token loss of the
last 100 training steps and averaged BLEU of Mi

on English↔ African language translations. We
observed a slight improvement in the first round,
but no significant change in the second round. This
experiment suggests that our shuffling method com-
bined with a limited number of static shuffling is a
good approximation of global dynamic shuffling.

M0 M1 M2

Averaged Loss 1.95 1.91 1.91
Averaged BLEU 21.39 21.48 21.49

Table 4: Simulation Experiment of global dynamic data
shuffling: M0 is the model trained on original training
data. Mi is the model trained on the i − th round of
statically shuffled data using Mi−1 as the initial point.
The averaged training loss over the last 100 steps and
averaged BLEU of English↔ African translations are
reported.

4.4 Small Dynamic Vocabulary vs Large
Static Vocabulary

Existing studies on vocabulary size do not reach
a consensus. Large vocabularies often outperform
small ones (Gowda and May, 2020), but not always
(Liao et al., 2021)

Our vocabulary has 100k words, smaller than
most of the other systems. Another difference is
that our vocabulary is incrementally built for more
than 150 languages, it may miss important words

in new languages.
To understand the impact of vocabulary, we train

another large unigram model with 200K words
on the 26 languages in this shared task. Table 5
shows the performance with different vocabularies.
It is obvious that the 100K vocabulary outperforms
the 200K vocabulary, about 0.3 improvement in
BLEU on average.

Vocabulary Size Languages BLEU
100k words 173 21.97
200k words 26 21.64

Table 5: Average BLEU of English ↔ African trans-
lations on the FLORES200 devtest set for the models
with different vocabularies.

4.5 Pivot vs Direct

As reported in Microsoft’s work, pivot-based trans-
lation is more robust, especially for directions be-
tween low-resource languages since corpora of
X ↔ Y are commonly sparser than X ↔ English.
(Yang et al., 2021) Therefore we use English as
the pivot language for African-African translation.
For French-African translation, the size of X ↔
French data is comparable to X ↔ English. Thus,
we train a model for both English and French and
choose the better one during inference time.

4.6 Model Averaging

As suggested by other works, model averaging is
a simple trick that could significantly improve the
performance without changing the model structure
or slowing the inference speed. The only cost is
the external disk spaces to save intermediate check-
points, which is trivial compared with GPU and
memory costs.

We save the checkpoints every 100 updates of
gradients and average the last K checkpoints. By
enumerating K from 1 to 20, we find that K = 10
is large enough to capture most of the gains.

5 Results

5.1 System Tuning

We tune our model on the FLORES200 devtest
dataset, starting with a base model trained on the
official data for the constrained track. Then we
add more datasets and apply the optimization de-
scribed above to boost performance. Table 6 re-
ports the averaged BLEU over 56 directions includ-
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ing 24 African languages from and to English and
4 African languages from and to French.

Model Description BLEU
Base model 16.92
+ NLLB and self-collected data 18.89
+ Data cleaning 19.64
+ Back-translation data 22.85
+ X → English→ French 22.95

+ French→ English→ X † 22.90
+ Yoruba Accent for X → Yoruba 23.20

+ Yoruba Accent for Yoruba→ X † 23.17
+ Model Averaging 23.35

Table 6: System tuning on FLORES200 devtest set, av-
eraged BLEU over 56 directions is reported. Superscript
† means the modification is not included in the final sub-
mission.

We can see that the amount of training data is
proportional to the performance of the model, es-
pecially when back-translation data is added. For
some very low resource languages such as Wolof,
back-translation improves Wolof→ English from
11.1 to 19.3, and English → Wolof from 4.17 to
7.07.

Another observation is that pivot translation out-
performs direct translation for X → French direc-
tions, but underperforms for French→ X , which
indicates that the final step in pivot translation dom-
inates the overall performance.

The impact of Yoruba accent models also shows
mixed results. There is a significant improvement
for X → Yoruba translation, but a little damage
to Yoruba→ X translation. One possible rea-
son is that the non-MAFAND dataset has multiple
sources with different accent annotation standards,
making the accent model confused. Therefore we
only apply post-processing for X → Yoruba trans-
lations.

5.2 Final Result

Official evaluation metrics include BLEU,
sentence-piece BLEU (spBLEU) score, and
chrF++. Table 7 shows the results of our primary
submission on FLORES200 dev, FLORES200
devtest set, and hidden test sets respectively. The
sentence-piece model for calculating spBLEU is
SPM-200 provided by Meta AI 11

11https://github.com/facebookresearch/fairseq/tree/nllb

Dataset BLEU spBLEU chrF++
FLORES dev 17.41 21.70 42.01

FLORES devtest 17.43 21.71 41.99
Official test 17.30 21.90 41.87

Table 7: Results of our primary submission on FLO-
RES200 dev, FLORES200 devtest and official test
datasets respectively. Metrics are averaged over 100
language pairs.

6 Conclusion

This paper presents our system for the WMT22
shared task on Multilingual Machine Translation
for African Languages. We focus on data collec-
tion, augmentation, and cleaning. Due to the lim-
ited time, we did not try modeling tricks such as
reranking and ensemble. Our finding is that the
amount of data is crucial for translation quality,
especially monolingual data in low-resource lan-
guages.
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Abstract

WebCrawl African is a mixed domain multilin-
gual parallel corpora for a pool of African lan-
guages compiled by ANVITA machine transla-
tion team of Centre for Artificial Intelligence
and Robotics Lab, primarily for accelerating
research on low-resource and extremely low-
resource machine translation and is part of
the submission to WMT 2022 shared task
on Large-Scale Machine Translation Evalua-
tion for African Languages under the data
track. The corpora is compiled through web
data mining and comprises 695K parallel sen-
tences spanning 74 different language pairs
from English and 15 African languages, many
of which fall under low and extremely low re-
source categories. As a measure of corpora
usefulness, a MNMT model for 24 African
languages to English is trained by combining
WebCrawl African corpora with existing cor-
pus and evaluation on FLORES200 shows that
inclusion of WebCrawl African corpora could
improve BLEU score by 0.01-1.66 for 12 out
of 15 African→English translation directions
and even by 0.18-0.68 for the 4 out of 9
African→English translation directions which
are not part of WebCrawl African corpora. We-
bCrawl African corpora includes more par-
allel sentences for many language pairs in
comparison to OPUS public repository. This
data description paper captures creation of cor-
pora and results obtained along with datasheet.
The WebCrawl African corpora is hosted on
GitHub repository 1.

1 Introduction

Parallel corpus play a vital role in the progress of
data driven machine translation research and devel-
opment. Availability of parallel corpora is still a
concern for a large collection of world languages.
Africa alone is home to an estimated 1200 to 2100
spoken languages2 and more than 34 languages

1https://github.com/pavanpankaj/Web-Crawl-African
2https://en.wikipedia.org/wiki/Languages_of_Africa

with 1 Million plus speakers. Many of these 34
languages and associated language pairs fall un-
der the low and extremely low resource categories
and machine translation researchers face setbacks
due to unavailability of parallel corpus in public
domain.

WebCrawl African corpora is a little step put
forward towards addressing this issue. Languages
covered in WebCrawl African corpora in-
clude (1) Afrikaans(afr), (2) Amharic(amh),
(3) Chichewa(nya), (4) Hausa(hau), (5)
Igbo(ibo), (6) Lingala(lin), (7) Luganda(lug), (8)
Oromo(orm), (9) Swahili(swh), (10) Swati(ssw),
(11) Tswana/Setswana(tsn), (12) Xhosa(xho), (13)
Xitsonga(tso), (14) Yoruba(yor) (15) Zulu(zul) and
(16) English and language pairs include African-
English and African-African pairs. WebCrawl
African is submitted as a part of Large-Scale
Machine Translation Evaluation for African
Languages shared task(data track) of WMT22
Adelani et al. (2022).

Rest of the paper is organized as follows.
Section-2 briefly covers related work on paral-
lel corpora compilation through web data mining.
Section-3 covers content collection process fol-
lowed for WebCrawl African corpora compilation,
Section-4 details its alignment processes, Section-
5 presents results and analysis. Finally Section-6
presents the datasheet capturing responses to bunch
of critical questions capturing many relevant facets
of WebCrawl African corpora ranging from moti-
vation, composition, collection process, processing,
users, distribution, maintenance and Section-7 con-
clusion.

2 Related Work

A good amount of translated text are available on
the web. However compilation of parallel corpora
from web which involves suitable source discov-
ery, sentence extraction, sentence alignment and
quality assessment, control is not trivial. Sentence
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alignment is the most critical part and alignment
techniques range from simple heuristics to neural
sentence embedding. Bañón et al. (2020) com-
piled ParaCrawl corpora from selected websites
comprising of 41 languages and Vec/Hun/BLEU-
Aligned techniques were used for sentence align-
ment. Schwenk et al. (2021a) compiled WikiMatrix
corpora from Wikipedia articles comprising of 85
languages and used cross-lingual LASER embed-
dings, distance based measures and FAISS library
for fast sentence alignment. Schwenk et al. (2021b)
created CCMatrix corpora from snapshots of Com-
monCrawl comprising of 137 languages and used
cross-lingual LASER embeddings, distance based
measures, FAISS library and vector compres-
sion for fast, storage efficient sentence alignment.
Ramesh et al. (2022) compiled Samanantar corpora
from selected websites comprising of 11 Indian lan-
guages and used LaBSE cross-lingual embeddings,
cosine similarity and FAISS library for fast sen-
tence alignment. Philip et al. (2021) proposed an
iterative alignment-training-alignment method for
expanding corpora of Indian languages.

3 Content Collection through Web
Crawling

Creation of parallel corpora through web data min-
ing, by making use of sources of multilingual trans-
lated text present on the web has almost became
the de-facto technique for its cost effectiveness and
scaling advantages. WebCrawl African corpora
creation followed similar strategy. As a first step,
search has been carried out to discover potential
websites having the following characteristics.

• Source website preferably should comprise of
large number of text articles published in more
than one African languages or/and English.

• Source website should have permissive Copy-
right T&C and favourable content usage pol-
icy.

• Source website should aid in covering diverse
information domains, writing styles, genre
and contains text covering contemporary lan-
guage usage etc.

• Source website should have reasonable cred-
ibility for ensuring content quality in terms
how contents are populated, content review
mechanism followed, chances of biases of var-
ious forms in hosted content etc.

We ended-up finding four websites namely (1)
South African Government3 comprising of Govern-
ment communication, (2) Nalibali 4 comprising of
multi-genre short stories, (3) Gotquestions5 com-
prising of spiritual Q&A and (4) African gospel6

comprising of song lyrics.
Text content is mined from these four identified

websites following four step process.

• Analyze website layout and collect relevant
content through suitable web crawler

• Preserve alignment supervision signals such
as web-page/document level hyperlinks across
languages etc, wherever available

• Extract plain text by stripping of html tags

• If script is latin then apply nltk English sen-
tence tokenizer else manually check sentence
delimiter and apply delimiter to tokenize sen-
tences

• Further align sentences following alignment
algorithms-1, 2, 3

A relative comparison of 4 websites in terms of
their contributions to the WebCrawl African cor-
pora is shown in Figure-1

Figure 1: Source wise contributions in the We-
bCrawl African corpora

4 Alignment of Parallel Sentences

A good alignment strategy is expected to lever-
age alignment supervision signals available at the
source websites. Since hyperlinks connecting

3https://www.gov.za/
4https://nalibali.org/
5https://www.gotquestions.org/
6https://africangospellyrics.com/

1077



African and English language web-pages are avail-
able in the websites selected, the same is exploited
for web-page level alignment and consequently
search space for sentence alignment reduced sig-
nificantly. Two different strategies are employed
for sentence alignment duly leveraging the source
websites information structure. Algorithm 1 is
used for English-African parallel sentence align-
ment using cross-lingual embeddings and Algo-
rithm 2 3 is used for fast African-African parallel
sentence alignment based on common English sen-
tences without using computationally expensive
cross-lingual embeddings approach.

4.1 African-English Sentence Alignment

On an average, each web-page is having 200 to
250 sentences and hyperlinks to other language
translated pages. Sentences from web-page aligned
sources are extracted and segregated into source
and target languages. Though web-pages are
aligned, this unfortunately does not assure sen-
tence level alignment due to improper sentence
tokenization or even translation and format errors
at the source. So a distinct need exists for carrying
out sentence alignment exercise post segregation.
Hence sentences are further aligned based on multi-
lingual sentence encoders LASER7 provided by the
organizer of WMT22 Large-Scale Machine Trans-
lation Evaluation for African Languages shared
task Adelani et al. (2022) and also heuristics. For
a given row/sentence in source side, embeddings
of all the target rows/sentences within a dynamic
window around the source row is computed and
the target row having maximum cosine similarity is
selected as the source aligned sentence. Details are
described in Algorithm 1. Time complexity of this
African-English alignment algorithm depends on
window-size. In worst case scenario, window-size
can go up to number of source/target sentences and
time complexity O(n2), where n is max(#source
sentences, #target sentences). Typically for the
web-page aligned sources used, #source sentences
or #target sentences range from 200 to 250.

4.2 African-African Sentence Alignment

The strategy employed for aligning African-
African parallel sentences utilizes aligned African-
English parallel sentences and does a fast align-
ment based on common English sentences without
utilizing expensive cross-lingual embeddings.

7https://github.com/facebookresearch/LASER/tree/main/tasks/wmt22

5 Results and Analysis

We propose to evaluate the compiled WebCrawl
African corpora in three ways. First, we present the
distribution of extracted parallel sentences across
language pairs. We then assess its usefulness by
training a MNMT system for 24 African→English
directions and finally compare it with resources
available on public domain like OPUS.

5.1 Statistics of WebCrawl African Corpora

WebCrawl multilingual parallel corpora comprises
a total of 695K mixed domain parallel sen-
tences distributed non-uniformly over 74 language
pairs. The parallel sentences are mined from web-
pages/documents such as government notifications,
short stories, descriptive answers to spiritual ques-
tions and lyrics. The range of sentences varies
from around 85 sentences (Hausa-Swati) to 64500
sentences (Swahili-English). For the monolingual
corpora, the range varies from around 1,300 sen-
tences for Igbo to 64,500 sentences for Swahili.
Primary reason which influenced the number of
parallel sentences is non-uniform coverage of text
across languages on the websites sourced for the
corpora compilation. Number of parallel sentences
per language pair is captured in Table-1.

As per Table 1, African languages are rela-
tively rich in vocabulary as compared to English.
However this trend is not observed in case of
Amharic, Hausa languages. Also its interesting
to observe that even though Xhosa is not having
the highest number of sentences, but has the highest
vocabulary(xho-eng) among all pairs.

5.2 Usefulness of WebCrawl African
Corpora

As a measure of corpora usefulness, two MNMT
models for 24 African languages to English are
trained. First one with the existing corpus and sec-
ond one by combining WebCrawl African corpora
with the existing corpus and both are evaluated on
FLORES200 Costa-jussà et al. (2022). Results as
shown in Table 2 show that inclusion of WebCrawl
African corpora could improve BLEU score by
0.01-1.66 for 12 out of 15 African→English trans-
lation directions and even by 0.18-0.68 for the 4 out
of 9 African→English translation directions which
are not part of WebCrawl African corpora, in spite
being a tiny fraction as compared to the existing cor-
pus. Potential reason could be WebCrawl African
provides complimentary data to that of available
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Algorithm 1 Algorithm for sentence alignment: African-English languages
1: Input: Tokenized sentences of srcLang(srcSentTok) and tgtLang(tgtSentTok), language encoder

provided by organizers(src-lang-encoder),tgt-lang-encoder
2: Output: Aligned senteces for srcSentTok
3: nsrc← len(srcSentTok) , ntgt← len(tgtSentTok)
4: windowSize← abs(nsrc− ntgt) + 2 . abs: absolute value, 2 is added to windowSize as an

additional margin to error i.e tokenization error, translator error
5: i = 0
6: while i > nsrc do
7: if i− windowSize > 0 and i+ windowSize < nsrc then
8: windowSent← tgtSentTok[i− windowSize : i+ windowSize]
9: else if i− windowSize > 0 and i+ windowSize >= ntgt then

10: windowSent← tgtSentTok[i− windowSize : ntgt]
11: else if i− windowSize < 0 and i+ windowSize <= ntgt then
12: windowSent← tgtSentTok[0 : i+ windowSize]
13: else if i− windowSize < 0 and i+ windowSize >= ntgt then
14: windowSent← tgtSentTok[0 : ntgt]
15: end if
16: compute vector embedding of srcEmbed[i]← srcLangEncoder(i)
17: for all j ∈ windowSent do
18: compute vector embedding of windowEmbed[j]← tgtLangEncoder(j)
19: compute similarity cosSimScore[j]← cosine_sim(srcEmbed[i], windowEmbed[j])
20: end for
21: maxind← indexofmax(cosSimScore)
22: Required aligned sentence is srcSentTok[i] with windowSent[maxind]
23: i = i+ 1
24: end while

Algorithm 2 Algorithm for sentence extraction/alignment: African-African languages
1: Input: parallel sentences of African-lang, English and Other-African-lang, English sentence pairs of

all articles
2: Output: African-African-lang-p-sent, Other-African-African-lang-p-sent
3: j=0
4: while j < len(articles) do
5: sentence pairs in jth article African-lang-en-p-sent,eng-p-sent and Other-African-lang-en-p-

sent,eng-other-p-sent(afr-en pairs extracted from 1)
6: Matching_indices = Compute_intersection(eng-p-sent, eng-other-p-sent)
7: Align African-African-lang-p-sent, Other-African-African-lang-p-sent based on Matching_indices
8: African−African− lang− p− sent,Other−African−African− lang− p− sent are

required gold parallel sentence pairs
9: j = j + 1

10: end while
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Algorithm 3 Algorithm for Compute_intersection
1: Input: Sentences of eng-p-sent, Sentences of eng-other-p-sent
2: edit_threshold = 4
3: Output: Returns list of tuples. for example [(1,1),(2,4)..] , means edit_distance(eng-p-sent[2],

eng-other-p-sent[4]) <=edit_threshold
4: index1=0
5: index2=0
6: while index1 < len(eng − p− sent) do
7: while index2 < len(eng − other − p− sent) do
8: if edit_distance(eng−p−sent[index1], eng−other−p−sent[index2]) < edit_threshold

then
9: tuple1 = (index1, index2)

10: Matching_indices.append(tuple1)
11: end if
12: index2 = index2 + 1
13: end while
14: index1 = index1 + 1
15: end while
16: Return Matching_indices

in the existing corpus. Both the experiments used
identical parameters and corpora used are only the
only difference. For training, both WMT22 and
WebCrawlAfrican+WMT22 corpus are further fil-
tered using heuristics: (1) either source or target
sentence is empty, (2) either source or target sen-
tence length greater than 800 characters, (3) length
of source and target sentence ratio is greater than
2.5 or length of source and target sentence ratio
is less than 0.4 and (4) source or target sentence
contains word having length greater than 10, (5)
source or target sentence length is less than 4 and
(6) source and target sentences are equal. Trans-
former with 24 layers of encoder and 6 layers of
decoder are used for training both the models.

5.3 Comparison of WebCrawl African with
OPUS Repository

A large part of African languages fall under the
low and extremely low resource categories and do
not have availability of parallel corpus of reason-
able size in the public domain. A comparison of
WebCrawl African corpora is carried out with the
publicly available African parallel corpus listed on
OPUS8 repository in terms of parallel sentences.

Comparison results as captured in Figure-
2 shows that out of 15 African-English lan-
guage pairs compared, WebCrawl-African cor-
pora has more number of parallel sentences

8https://opus.nlpl.eu/

for 7 African-English language pairs namely
Chichewa-English, Lingala-English, Luganda-
English, Oromo-English, Swati-English, Tswana-
English, Tsonga-English languages as compared
to OPUS public repository at the time of writing
this paper. In fact WebCrawl-African corpora has
4 languages namely Chichewa, Luganda, Swati,
and Tswana for which OPUS repository doesn’t
have even a single parallel corpora with any lan-
guages. Same goes for a few other African-African
language pairs as well.

5.4 Corpora Quality
Though parallel corpora using web data mining ap-
proach can be created at scale, controlling quality
of such corpora throws a major challenge. Noises
ranging from source side errors such as incorrect
translation, misspelling, incorrect grammar, biases
of various forms and processing errors such as im-
proper sentence tokenization, sentence alignment,
additions, deletions etc often are of concern. In
case of WebCrawl African corpora, the first choice
made is to source content from credible websites,
where website content is mostly generated in a con-
trolled manner and contents are further reviewed.
Also since the sources used have aligned web-pages
so extracted sentence qualities are expected to be
relatively better.

However, the authors could not analyze the cor-
pora for translation correctness, biases and other
quality metrics due to lack of knowledge on African
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Table 1: Statistics of WebCrawl African Parallel Corpora. (a,b,c) values in each box
represents: a = sentence_count ∗ 1000, b = unique_source_tokens ∗ 1000 and c =
unique_target_tokens ∗ 1000)

SrcLang(↓), TgtLang(→) afr amh nya eng hau ibo lin lug orm tsn swh ssw xho tso yor zul

Afrikaans (afr) -
2.537
4.875
0.877

0.955
2.492
3.956

62.2
41.956
30.936

2.591
4.663
4.545

0.155
0.613
0.824

0
2.068
4.582
7.848

3.338
5.599
9.669

18.753
22.104
19.433

13.680
14.612
22.979

10.994
18.468
41.630

33.465
27.243
72.769

19.681
22.327
19.116

3.071
5.157
5.120

32.813
26.647
68.533

Amharic (amh)
2.537
0.877
4.875

-
0.634
0.212
3.105

4.6
1.294
6.737

2.562
0.891
4.781

0.117
0.012
0.742

0
1.65
0.760
6.744

2.816
1.065
9.264

0
3.130
1.240
9.361

0.091
0.012
0.996

0 0
2.792
1.076
5.401

0

Chichewa (nya)
0.955
3.956
2.492

0.634
3.105
0.212

-
1.4

5.180
3.177

0.92
3.912
2.584

0.16
0.922
0.837

0
0.987
4.478
4.484

0.947
3.908
4.027

0
0.964
3.959
3.474

0.136
0.820
1.149

0 0
0.92
3.926
1.498

0

English (eng)
62.2

30.936
41.956

4.6
6.737
1.294

1.4
3.177
5.18

-
5.6
7.48
6.606

1.1
1.45
2.219

1.1
0.956
1.53

3.6
5.478
10.71

7.0
8.164
14.252

25.9
20.191
22.946

64.5
27.103
59.569

14.4
16.428
47.934

46.2
24.481
85.768

24.4
19.158
21.254

6.3
7.585
7.647

50.9
25.022
84.648

Hausa (hau)
2.591
4.545
4.663

2.562
4.781
0.891

0.920
2.584
3.912

5.6
6.606
7.480

-
0.122
0.729
0.727

0
2.175
4.623
8.060

3.896
5.603
10.394

0
3.747
5.574
10.006

0.085
0.613
0.935

0 0
4.152
5.943
6.444

0

Igbo (ibo)
0.155
0.824
0.613

0.117
0.742
0.012

0.169
0.837
0.922

1.1
2.219
1.450

0.122
0.727
0.729

- 0
0.168
0.861
0.955

0.161
0.805
1.003

0
0.174
0.854
0.864

0.119
0.694
1.084

0 0
0.142
0.797
0.500

0

Lingala (lin) 0 0 0
1.1

1.53
0.956

0 0 - 0 0 0 0 0 0 0 0 0

Luganda (lug)
2.068
7.848
4.582

1.650
6.744
0.76

0.987
4.484
4.478

3.6
10.710
5.478

2.175
8.06
4.623

0.168
0.955
0.861

0 -
2.139
7.632
7.434

0
2.130
7.875
6.707

0.116
0.797
1.141

0 0
2.266
8.235
4.507

0

Oroma (orm)
3.338
9.669
5.599

2.816
9.264
1.065

0.947
4.027
3.908

7.0
14.252
8.164

3.896
10.394
5.603

0.161
1.003
0.805

0
2.139
7.434
7.632

- 0
4.583
11.654
11.437

0.123
0.820
1.069

0 0
4.333
10.966
6.477

0
25.022
84.648

Tswana/Setswana (tsn)
18.753
19.433
22.104

0 0
25.9

22.946
20.191

0 0 0 0 0 - 0
11.14

15.779
41.229

19.694
19.455
55.865

19.442
19.533
19.052

0
18.904
19.393
52.589

Swahili (swh)
13.68
22.979
14.612

3.13
9.361
1.24

0.964
3.474
3.959

64.5
59.569
27.103

3.747
10.006
5.574

0.174
0.864
0.854

0
2.13
6.707
7.875

4.583
11.437
11.654

0 -
0.133
0.737
1.194

0 0
4.134
10.725
6.309

0

Swati (ssw)
10.994
41.63
18.468

0.091
0.996
0.012

0.136
1.149
0.82

14.4
47.934
16.428

0.085
0.935
0.613

0.119
1.084
0.694

0
0.116
1.141
0.797

0.123
1.069
0.82

11.140
41.229
15.779

0.133
1.194
0.737

-
11.274
40.769
41.968

11.515
42.138
15.236

0.118
1.144
0.462

11.139
41.609
40.488

Xhosa (xho)
33.465
72.769
27.243

0 0
46.2

85.768
24.481

0 0 0 0 0
19.694
55.865
19.455

0
11.274
41.968
40.769

-
20.449
56.629
19.272

0
33.638
72.821
68.472

Xitsonga (tso)
19.681
19.116
22.327

0 0
24.4

21.254
19.158

0 0 0 0 0
19.442
19.052
19.533

0
11.515
15.236
42.138

20.449
19.272
56.629

- 0
20.342
19.390
53.702

Yoruba (yor)
3.071
5.12

5.157

2.792
5.401
1.076

0.920
1.498
3.926

6.3
7.647
7.585

4.152
6.444
5.943

0.142 0
2.266
4.507
8.235

4.333
6.477
10.966

0
4.134
6.309
10.725

0.118
0.462
1.144

0 0 - 0

Zulu (zul)
32.813
68.533
26.647

0 0
50.9

84.648
25.022

0 0 0 0 0
18.904
52.589
19.393

0
11.139
40.488
41.609

33.638
68.472
72.821

20.342
53.702
19.39

0 -

Total(sentences) 206.3 20.92 8.032 319.7 25.85 2.427 1.1 17.299 29.336 113.833 97.175 71.383 164.72 115.829 28.228 167.736

languages. Further human evaluation by language
experts could not be carried out due to shortage of
time and resources. As far as diversity of domains,
genre, writing style and contemporary use of lan-
guages are concern, the source websites selected
are expected to address them reasonably well. The
details are covered in the datasheet presented in the
next section.

6 Datasheets for WebCrawl African
Corpora

Toward the growing consensus of having system-
atic dissipation of information on dataset to all its
stakeholders by capturing all relevant facets, we
followed Gebru et al. (2021) the idea of datasheets
for datasets and further its adaptation by Costa-
jussà et al. (2020) for MT taks. Datasheet for the
WebCrawl African corpora is given below.

6.1 Motivation

(a) Who created the dataset(e.g., which team, re-
search group) and on behalf of which entity (e.g.
company, institution, organization)?

WebCrawl African corpora is compiled by
ANVITA machine translation team of Centre for
Artificial Intelligence and Robotics Lab based in
Bangalore.

(b)Did they fund it themselves? If there is an
associated grant, please provide the name of the
grantor and the grant name and number

WebCrawl African corpora compilation work
is fully supported by the Centre for Artificial
Intelligence and Robotics Lab. No external grants
are received or used for this work.

(c) For what purpose was the data set created?
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African→English
WMT22*

(#sentence)

WMT22*+
WebCrawlAfrican*

(#sentence)

WMT22*
(95M)

(BLEU)

WMT22*
(95M)

(CHRF2++)

WMT22*+
WebCrawlAfrican*(260K)

(BLEU)

WMT22*+
WebCrawlAfrican*(260K)

(CHRF2++)
afr-en 12128497 12179628 55.8 74.185 55.73 74.21

amh-en 946778 950103 24.39 48.80 24.17 48.82
nya-en 1415637 1417004 22.45 48.79 22.66 45.46
hau-en 3349586 3354753 27.92 49.95 28.04 50.18
ibo-en 372787 373452 20.62 44.07 21.25 44.44
kam-en 1452332 1452332 9.24 28.26 9.49 28.33
kin-en 8595328 8595328 25.97 48.01 26.15 48.34
lin-en 2294855 2295671 19.34 40.80 19.56 41.2
lug-en 2667772 2670662 15.93 37.09 16.69 37.73
luo-en 2339916 2339916 17.34 38.51 16.96 38.32
fuv-en 1256816 1256816 5.62 21.91 5.82 21.95
nso-en 2284885 2284885 33.30 53.77 33.54 54.52
orm-en 2139879 2145917 11.27 31.55 12.13 33.57
sna-en 7335877 7335877 23.68 46.43 23.57 46.73
som-en 1084345 1084345 18.01 40.02 17.80 40.02
swh-en 28152884 28208419 41.01 62.23 41.19 62.32
ssw-en 93532 105225 23.68 45.79 25.34 47.27
tsn-en 4257859 4278691 22.66 44.97 23.08 45.96

umb-en 247063 247063 5.74 24.35 5.55 24.27
wol-en 138994 138994 8.71 27.10 8.43 27.01
xho-en 7552496 7588334 31.8 53.78 32.01 53.84
tso-en 511184 531823 24.32 45.85 21.72 44.33
yor-en 1471404 1477092 15.38 37.12 15.39 37.20
zul-en 3352155 3355480 33.4 55.52 33.79 55.70

Table 2: MT performance (BLEU, CHRF2++) with and without WebCrawl African Corpora.[*]
Filtered

Was there a specific task in mind? If so, please
specify the result type ( e.g. unit ) to be expected

WebCrawl African corpora is created primarily
for accelerating research on low resource and
extremely low resource machine translation.
This corpora is also part of the submission to
WMT 2022 shared task on Large-Scale Machine
Translation Evaluation for African Languages
under data track.

(d) Could any of these uses, or their results, in-
terfere with human will or communicate a false
reality?

No such thing is communicated to the authors.
However, as machine translation is not free from
biases, errors and may fail to portray actual essence
of the translation or portray false, unfair realities,
so such things can not be ruled out for WebCrawl
African corpora and its usage as well.

(e) What is the antiquity of the file? Provide,
please, the current date. The first version of
WebCrawl African corpora was released on 10
May 2022. There was no further release till the
time of writing this response.

(f) Has there been any monetary profit from the
creation of this dataset?

The dataset is created and released mainly to aid
research in MT and hoping to be useful for other
NLP research as well. It’s not for any monetary
profit in the past, present and future as well.

6.2 Composition

(a) Is there any synthetic data in the dataset? If so,
in what percentage?

WebCrawl African corpora does not contain any
synthetic data.

(b) Are there multiple types of instances or is
there just one type? Please specify the type(s), e.g.
Raw data, preprocessed, symbolic.

WebCrawl African corpora comprises 695K
parallel sentences spanning 74 language pairs
from 15 African languages and English. African
languages covered include Afrikaans(afr),
Lingala(lin), Swati(ssw), Amharic(amh), Lu-
ganda(lug), Tswana/Setswana(tsn), Chichewa(nya),
Hausa(hau), Oroma(orm), Xhosa(xho), Igbo(ibo),
Xitsonga(tso), Yoruba(yor), Swahili(swh), and
Zulu(zul). Source and Target parallel sentences
are part of two separate files having the following
naming convention.

Source file : webcrawl-african-{src-lang}-{tgt-
lang}.{src-lang}

Target file : webcrawl-african-{src-lang}-{tgt-
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Figure 2: Comparison of WebCrawl-African corpora with the parallel corpus listed on OPUS
repository

lang}.{tgt-lang}
src-lang and tgt-lang languages correspond to

one of the 15 African languages and English part of
WebCrawl African corpora and the whole corpora
is spread over 148 files in 2 directories.

Monolingual corpora for language src-lang is
available at webcrawl-african-{src-lang}-eng.{src-
lang} file.

(c) What do the instances (of each type, if appro-
priate) that comprise the data set represent? (e.g.
documents, photos, people, countries).

Instances represent parallel sentences aligned
between two languages and stored in source and
target files, following the naming convention
mentioned above.

(d) How many instances (of each type, if appro-
priate) are there in total?

WebCrawl African parallel corpora comprises a
total of 695K sentences (instances) distributed non-
uniformly over 74 language pairs from 15 African
languages and English. The range of sentences
varies from around 85 sentences (Hausa-Swati) to
64,500 sentences (Swahili-English).

For the monolingual corpora available, the
range of sentences varies from around 1,300 for
Igbo to 64,500 sentences for Swahili. Complete
count for each language pairs is available at the
corpora hosting page https://github.com/
pavanpankaj/Web-Crawl-African.

(e) Does the dataset contain all possible in-
stances or is it just a sample of a larger set? i.e.
Is the dataset different than an original one due
to the preprocessing process? In case this dataset
is a subset of another one, is the original dataset
available?

WebCrawl African corpora is compiled by
mining text from websites mentioned, through
crawling and following sentence alignment
techniques. Therefore, although the corpora is not
a subset of any other corpora, it is limited by the
text content crawled till the date of released of this
corpora.

(f) Is there a label or a target associated with each
of the instances? If so, please provide a description.

For any given language pair, a sentence
in line number i and Source language file :
webcrawl-african-{src-lang}-{tgt-lang}.{src-
lang} will have an aligned target sentence in line
number i and Target language file : webcrawl-
african-{src-lang}-{tgt-lang}.{tgt-lang}. There
are no other explicit labels associate with instances.

(g) What is the format of the data? e.g. .json,
.xml, .csv .

For all language pairs, the aligned source and
target sentences are kept in two seperate files
following naming conventions mentioned in
Section 6.2.(b) and all files are in UTF-8 plain text
format.
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(h) Is any information missing from individual
instances? If so, please provide a description, ex-
plaining why this information is missing (e.g. be-
cause it was unavailable). This does not include
intentionally removed information, but might in-
clude, e.g. redacted text.

No such thing is reported. However, due to
the automated techniques employed for corpora
creation, some sentences may have missing words.
Also there are language pairs for which no parallel
sentences are present, for example Lingala does
not have any language pairs with all other African
languages included in WebCrawl African corpora.

(i) Are there any errors, sources of noise, or
redundancies in the dataset? If so, please provide
a description. Do not include missing information
here.

No such thing is reported. However, due to
the automated techniques employed for corpora
creation, sentence misalignment error and mis-
alignment induced noises in small proportion can
not be ruled out. Additionally, content collected
from African Gospel lyrics website where the
content is generated through crowdsourcing with
not so strict content review mechanism may have
noises ranging from misspelling, grammatical
errors and use of informal writings.

(j) Is there any verification that guarantees there
is not institutionalization of unfair biases? Both
regarding the dataset itself and the potential algo-
rithms that could use it.

No such study is carried out or mechanism
employed to assess and address corpora biases.
Corpora is compiled by mining text from websites
mentioned and inherited biases can not be ruled
out. So both WebCrawl African corpora and
translation algorithms could present biases.

(k) Are there recommended data splits, e.g. train-
ing, development/validation, testing? If so, please
provide a description of these splits explaining the
rationale behind them.

No specific splits are recommended.

(l) Is the dataset self-contained, or does it link to
or otherwise rely on external resources? e.g., web-
sites, tweets, other datasets. If it links to or relies on
external resources, i) Are there any guarantees that
they will exist, and remain constant over time? ii)

Are there official archival versions of the complete
dataset? i.e. including the external resources as
they existed at the time the dataset was created. iii)
Are there any restrictions (e.g. licenses, fees) asso-
ciated with any of the external resources that might
apply to a future user? Please provide descriptions
of all external resources and any restrictions asso-
ciated with them, as well as links or other access
points, if appropriate.

WebCrawl African corpora is self-contained and
hosting page as mentioned contains the complete
corpora.

(m) Does the dataset contain data that might be
considered confidential? e.g. data that is protected
by legal privilege or by doctor patient confidential-
ity, data that includes the content of individuals
non-public communications. If so, please provide
a description.

Corpora is compiled by mining text available in
the public domain. So such a presence is unlikely.

(n) Does the dataset contain data that, if viewed
directly, might be offensive, insulting, threatening,
or might otherwise cause anxiety? If so, please
describe why.

Website content sourced for compiling corpora
is meant for public consumption and genre includes
government communication, short children stories,
religious text and lyrics. So such anti-social
content is unlikely. However, no review of the
corpora is carried out from the perspective in
question.

(o) Does the dataset relate to people? If so,
please specify a) Whether the dataset identifies sub-
populations or not. b) Whether the dataset identi-
fies individual people or not. c) Whether it contains
information that could vulnerate any individuals or
their rights. c) Any other verified information on
the topic that can be provided.

WebCrawl African corpora is compiled from
open source content meant for public consumption
and likely to reference people for the cause that
made them appear publicly. Corpora does not
include and express anything new which is not
there in the public domain. However, no formal
review of the corpora is carried out from the
perspective in question.

(p) Does the dataset cover included languages
equally?
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Size of both parallel and monolingual corpora
is not same for all the languages and language
pairs included. Primary reason is the non-uniform
coverage of text across languages on the websites
sourced for the corpora compilation.

(q) Is there any evidence that the data may be
somehow biased? i.e. towards gender, ethics, be-
liefs.

No study is carried out or mechanism employed
to assess and address corpora biases. The corpora
is compiled by mining text content available on the
websites mentioned and inherited biases can not be
ruled out.

(r) Is the data made up of formal text, informal
text or both equitably?

WebCrawl African corpora comprises mostly
formal text. However there are instances of
informal content primarily coming from lyrics
mined from African Gospel Lyrics website.

(s) Does the data contain incorrect language ex-
pressions on purpose? Does it contain slang terms?
If that’s the case, please provide which instances
of the data correspond to these.

Given the genre of content hosted by the
websites sourced for this corpora mining, such
contents are unlikely. However, no review of the
corpora is carried out from the perspective in
question.

6.3 Collection Process

(a) Where was the data collected at? Please include
as much detail; i.e. country, city, community, entity
and so on.

WebCrawl African corpora is compiled by
mining content hosted by websites (1) South
African Government https://www.gov.za/, (2)
Nalibali https://nalibali.org/, (3) Gotques-
tions https://www.gotquestions.org/ and (4)
African gospel https://africangospellyrics.
com/. Websites comprise of text content covering
government communication, multi-genre short
stories, answers to spiritually related questions and
gospel lyrics. A large part of it presumably written
by the government officials, subject experts and
volunteers primarily from the African countries
and to some extent may be by the African speaking
people from other countries. So data might be

considered to have originated primarily from the
African countries and other places around the
globe as well. However, corpora compilation is
carried out by the ANVITA team at Centre for
Artificial Intelligence and Robotics, Bangalore.

(b) If the dataset is a sample from a larger set,
what was the sampling strategy? i.e. deterministic,
probabilistic with specific sampling probabilities.

WebCrawl African corpora is compiled by min-
ing text content available on websites mentioned.
The corpora is not a subset of any other corpora
and no specific sampling was performed. However
content is limited by the text crawled until the date
of release of corpora.

(c) Are there any guarantees that the acquisition
of the data did not violate any law or anyone’s
rights?

Websites having permissible copyright T&C
and favourable content usage policy are used at the
first place for content acquisition. Source websites
permit usage and distribution of content for
non-commercial, not-for-profit and fair use with
due source acknowledgement. WebCrawl African
corpora is hence released under CC-BY-NC-SA
license for research purpose after intimation
and with source acknowledgement. As long as
WebCrawl African corpora license and source
website copyright T&C and content usage policy
is followed, one should safely assume that corpora
acquisition and usage are unlikely to violate any
laws or rights. Neither ANVITA team nor Centre
for Artificial Intelligence and Robotics Lab holds
any copyright over the WebCrawl African corpora.
However, any derivatives of the corpora must
acknowledge all sources including team ANVITA.

(d) Are there any guarantees that prove the data
is reliable?

WebCrawl African corpora is created in an
automated fashion without human verification like
most of the large scale parallel corpora, thereby
making it hard to guarantee provable reliability.
However, as corpora is compiled by mining
websites where content is mostly generated in
a controlled manner and reviewed, makes the
corpora reasonably reliable.

(e) Did the collection process involve the partici-
pation of individual people? If so, please report any
information available regarding the following ques-
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tions: Was the data collected from people directly?
Did all the involved parts give their explicit con-
sent? Is there any mechanism available to revoke
this consent in the future, if desired?

As stated, content for the corpora compilation
is directly sourced from websites mentioned and
without direct participation of individual people.

(f) Has an analysis of the potential impact
of the dataset and its use on data subjects been
conducted? i.e. a data protection impact analysis.
If so, please provide a description of this analysis,
including the outcomes, as well as a link or other
access point to any supporting documentation.
Neither such analysis is conducted nor any
communication received on the subject.

(g) Were any ethical review processes con-
ducted?

No ethical review processes were conducted.

(h) Does the data come from a single source or
is it the result of a combination of data coming
from different sources? In any case, please provide
references.

WebCrawl African corpora is compiled by
mining content hosted by four websites (i) South
African Government https://www.gov.za/, (ii)
Nalibali https://nalibali.org/, (iii) Gotques-
tions https://www.gotquestions.org/ and (iv)
African gospel https://africangospellyrics.
com/. Websites comprise of text content covering
government communication, multi-genre short
stories, answers to spiritually related questions and
gospel lyrics and contributed in creating mixed
domain corpora. However, compilation is carried
out by the ANVITA team.

(i) If the same content was to be collected from
a different source, would it be similar?

It’s likely to be similar if the content collected
has a similar topic, genre, writing style and content
distributions.

(j) Please specify any other information regard-
ing the collection process. i.e. Who collected the
data, whether they were compensated or not, what
mechanisms were used. Please, only include if
verified.

Content acquisition and corpora compilation is
carried out by ANVITA team using a four steps
process.

(i) Identification of websites based on content
coverage, copyright T&C, usage policy and credi-
bility.

(ii) Analysis of website layout and collection of
relevant content through crawling preserving web-
page/document level alignment signals, wherever
available.

(iii) Extraction of plain text by stripping of html
tags and splitting of text at sentence level

(iv) Alignment of parallel sentences across
language pairs

6.4 Processing/Cleaning/Labelling
(a) Please specify any information regarding the
preprocessing that you may know (e.g. the person
who created the dataset has somehow explained it)
or be able to find (e.g. there exists and informa-
tional site). Please, only include if verified. i.e.
Was there any mechanism applied to obtain a neu-
tral language? Were all instances preprocessed the
same way?

WebCrawl African corpora is available as
sentence aligned files. Preprocessing steps on
raw crawled web-pages include striping off
html tags, sentence tokenization and sentence
alignment. Sentence alignment was carried out
based on cross-lingual embeddings using LASER
encoder and heuristics to a large extent. The entire
corpora is preprocessed in the same way. No
word/subword/character level tokenization or other
pre-processing like filtering on parallel sentences
were carried out. However, further filtering based
on heuristics similar to the one used by the authors
for training MT models may be carried out for
better performance.

6.5 Users
(a) Has the dataset been used already? If so, please
provide a description.

WebCrawl African corpora is used as a resource
for the WMT 2022 shared task on Large-Scale
Machine Translation Evaluation for African
Languages Adelani et al. (2022). This corpora is
also used by the ANVITA team for training MT
model and results are presented in this paper.

(b) When was the dataset first released?
The initial release of WebCrawl African corpora

was 10 May 2022.
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(c) Is there a repository that links to any or all
papers or systems that use this dataset? If so, please
provide a link or any other access point.

WMT event is supposed to present a findings
paper for the 2022 edition that may include such
reference. Also corpora hosting page is likely to
maintain such repository.

(d) What (other) tasks could the dataset be used
for? Please include your own intentions, if any.

WebCrawl African corpora is primarily intended
for machine translation tasks. It can also be used
as monolingual corpora for tasks such as language
modeling, corpus based language studies and few
other NLP tasks with additional annotations.

(e) Are there tasks for which the dataset should
not be used? If so, please provide a description.

There is no explicit task where this corpora
should not be used. However, use of WebCrawl
African corpora is not recommended as a bench-
mark corpora.

(f) Any other comments? i.e. Do the collection
or preprocessing processes impact future uses?)

Like any large parallel corpora, WebCrawl
African corpora is created in an automated fashion
without human verification.

6.6 Distribution

(a) Please specify the source where you got the
dataset from.

As mentioned, WebCrawl African corpora
is compiled by mining text from web-pages
hosted by (i) South African Government
https://www.gov.za/, (ii) Nalibali https:
//nalibali.org/, (iii) Gotquestions https:
//www.gotquestions.org/ and (iv) African
gospel https://africangospellyrics.com/

(b) When was the dataset first released?
WebCrawl African corpora was first released on

10 May 2022.

(c) Are there any restrictions regarding the dis-
tribution and/or usage of this data in any particular
geographic regions?

No, there are no such restrictions.

(d) Is the dataset distributed under a copyright

or other intellectual property (IP) license? And/or
under applicable terms of use (ToU)? Please cite a
verified source.

WebCrawl African Corpora distributed under
CC-BY-NC-SA license. Barring commercial use,
the license allows mostly unrestricted fair usage.

(e) Any other comments? i.e. How has the data
been distributed? Who has access to the dataset?
When was the dataset first distributed? Are there
any other regulations on the dataset?

WebCrawl African Corpora is dis-
tributed through GitHub public hosting
at https://github.com/pavanpankaj/
Web-Crawl-African and also WMT 2022
website at https://www.statmt.org/wmt22/
large-scale-multilingual-translation-task.
html since 10 May 2022 under CC-BY-NC-SA
license.

6.7 Maintenance

(a) Is there any verified manner of contacting the
creator of the dataset?

All queries on WebCrawl African corpora
should be sent to Pavan Pankaj Vegi at pavan-
pankaj333@gmail.com and Biswajit Paul at
biswajit.cair@gov.in.

(b) Specify any limitations there might be to con-
tributing to the dataset. i.e. Can anyone contribute
to it? Can someone do it at all?

Scope exists for extending the corpora with
additional parallel sentences and language pairs,
specifically involving low and extremely low
resource languages. Contribution can be done
by contacting ANVITA team members at pavan-
pankaj333@gmail.com and biswajit.cair@gov.in

(c) Has any erratum been notified?
No erratum has been notified.

(d) Is there any verified information on whether
the dataset will be updated in any form in the fu-
ture? Is someone in charge of checking if any of
the data has become irrelevant throughout time? If
so, will it be removed or labeled somehow?

WebCrawl African corpora is likely to be
updated with additional parallel sentences in future
by the ANVITA team. Though chances of corpora
becoming irrelevant in near future are less likely,
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but if it happens, hosting page https://github.
com/pavanpankaj/Web-Crawl-African will
reflect the right status.

(e) Is there any available log about the changes
performed previously in the dataset?

Not applicable, as the current version is
the first version. However, log of future
changes will be recorded at the corpora host-
ing page https://github.com/pavanpankaj/
Web-Crawl-African

(f) Could changes to current legislation end the
right-of-use of the dataset? WebCrawl African
corpora is published under CC-BY-NC-SA license.
We do not foresee any right-of-use changes in
future.

(g) Any other comments? i.e. Is there someone
supporting/hosting/maintaining the dataset? If the
dataset relates to people, are there applicable limits
on the retention of the data associated with the
instances?

Webcrawl African corpora is hosted
at https://github.com/pavanpankaj/
Web-Crawl-African and likely to be main-
tained by the ANVITA team..

7 Conclusion

This paper presented detailed description of We-
bCrawl African corpora. The paper also describes
approach and design choices to systematically cre-
ate parallel corpora and extend the WebCrawl
African corpora through web data mining and align-
ment. WebCrawl African corpora compiled com-
prises 695K parallel sentences spanning 74 differ-
ent language pairs from English and 15 African
languages, many of which fall under low and
extremely low resource categories. Webcrawl
African corpora is hosted at https://github.
com/pavanpankaj/Web-Crawl-African for non-
commercial, not-for-profit and fair use. This cor-
pora comprises sentences from multiple domains
and includes government communication, short
children stories, religious text and lyrics. Though
human verification of the corpora was not carried
out but favourable characteristics of selected source
websites aided to address some of the quality con-
cerns relatively better.

Experiments and evaluation of results show that

inclusion of WebCrawl African corpora with WMT
2022 corpus has improved BLEU score by 0.01-
1.66 for 12 out of 15 African→English translation
directions and even by 0.18-0.68 for the 4 out of
9 African→English translation directions which
are not part of WebCrawl African corpora and also
it has more parallel sentences for many language
pairs in comparison to OPUS public repository.

WebCrawl African corpora is primarily intended
for machine translation tasks, specially for acceler-
ating research on low resource and extremely low
resource machine translation. It can also be used
as monolingual corpora for tasks such as language
modeling, corpus based language studies and few
other NLP tasks with additional annotations.
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Abstract

This paper describes ANVITA African NMT
system submitted by team ANVITA for WMT
2022 shared task on Large-Scale Machine
Translation Evaluation for African Languages
under the constrained translation track. The
team participated in 24 African languages to
English MT directions. For better handling
of relatively low resource language pairs and
effective transfer learning, models are trained
in multilingual setting. Heuristic based cor-
pus filtering is applied and it improved per-
formance by 0.04-2.06 BLEU across 22 out
of 24 African→English directions and also
improved training time by 5x. Use of deep
transformer with 24 layers of encoder and 6
layers of decoder significantly improved per-
formance by 1.1-7.7 BLEU across all the 24
African→English directions compared to base
transformer. For effective selection of source
vocabulary in multilingual setting, joint and
language wise vocabulary selection strategies
are explored at the source side. Use of lan-
guage wise vocabulary selection however did
not consistently improve performance of low
resource languages in comparison to joint vo-
cabulary selection. Empirical results indicate
that training using deep transformer with fil-
tered corpora seems to be a better choice than
using base transformer on the whole corpora
both in terms of accuracy and training time.

1 Introduction

Africa is very rich in languages, and around 1200
to 2100 languages are spoken in African countries1,
24 African languages and 100 language pairs were
selected for the WMT22 Large-Scale Machine
Translation Evaluation for African Languages
shared task Adelani et al. (2022b). Selected
24 African languages include Afrikaans(afr),
Amharic(amh), Chichewa(nya), Hausa(hau),
Igbo(ibo), Kamba(kam), Kinyarawanda(kin),

1https://en.wikipedia.org/wiki/Languages_of_Africa

Lingala(lin), Luganda(lug), Luo(luo), Nige-
rian Fulfulde(fuv), Northern Sotho(nso),
Oromo(orm), shona(sna), Somali(som),
Swahili(swh), Swati(ssw), Setswana(tsn),
Umbundu(umb), Wolof(wol), Xhosa(xho),
Xitsonga(tso), Yoruba(yor) and Zulu(zul) and
language pairs include African-English, selective
African-French, and African-African pairs, where
many of the pairs fall under the low resource
category. In this task, organizers permitted
two submissions, Best scoring submission is
considered as Primary model and other one being
the Contrastive model. This paper describes our
submission to WMT 2022 Large-Scale Machine
Translation Evaluation for African Languages
shared task where we participated for translation
of 24 African languages to English. We are not
officially given a rank as we didn’t participate in
all African MT directions.

2 Related Work

Developing quality machine translation system for
low resource languages still remains a major chal-
lenge and many of the world languages fall under
this category. Some of the recent developments
do show that multilingual NMT is a promising di-
rection. In massively multilingual neural machine
translation, the authors have shown to train a single
model for translating 102 languages to and from
English and the results outperformed the strong
bilingual baseline MT system especially for low
resource languages Johnson et al. (2017). However,
it cannot be generalized to all high and medium
resource languages. Gowda et al. (2021) built a
multilingual neural machine translation system ca-
pable of translating from 500 source languages to
English which includes medium, low and extremely
low resource languages. Zhang et al. (2020a) im-
proved zero-shot translation in multilingual neural
machine translation by random back translation.
Kudugunta et al. (2019) have shown that represen-
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tations of high resource and/or linguistically sim-
ilar languages are more robust when fine-tuning
on an arbitrary language pair, which is critical to
determining how much cross-lingual transfer can
be expected in a zero or few-shot setting.

Zhou et al. (2021) shown deep architectures for
neural machine translation and post ensemble have
shown improved results on machine translation
tasks. Zhang et al. (2020b) presented language in-
dependent heuristics for filtering noisy pairs from
parallel corpus. Yang et al. (2021) proposed pro-
gressive training, in which the MT system is trained
from shallow to deep architectures - increasing
number of encoder and decoder layers. However,
major improvement is observed while increasing
encoder layers. Adelani et al. (2022a) created novel
African corpus for 16 African languages and fine-
tuned on pre-trained large MT models. Fan et al.
(2021) demonstrated massively multilingual ma-
chine translation by training a single model that
can translate between any pair of 100 languages.

3 Datasets

We used all the parallel corpora provided by
WMT 2022 organizer. Corpus contain existing
OPUS repository Tiedemann (2012), WMT 2022
novel corpus2 and comprises of sources such as
wikimedia, CCMatrix, CCAligned, bible-uedin,
GNOME, XLEnt, QED,KDE4, mozilla-I10n, SPC,
TED2020, Tatoeba, ELRC_2922, OpenSubtitles,
Ubuntu, LAVA corpus2, MAFAND-MT Adelani
et al. (2022a), KenTrans Wanzare et al. (2022),
Kencorpus McOnyango et al. (2022), WebCrawl-
African3 and huggingface (provided by organis-
ers) etc. Tiedemann (2012). Combining all a total
140 Million parallel sentences for the 24 African-
English language pairs are extracted.

Language wise statistics of corpus used in our
system is listed in Table 1.

4 System Overview

ANVITA African MT system comprises of two
major sub systems: Data preprocessing and Model
training under different strategies and architectural
configurations followed by evaluation.

2https://statmt.org/wmt22/large-scale-multilingual-
translation-task.html

3 https://github.com/pavanpankaj/Web-Crawl-African

4.1 Data Preprocessing
As part of data preprocessing, we removed poten-
tially noisy sentence pairs using the heuristics pre-
sented in Data Filtering subsection. To handle rare
words and out of vocabulary words in the corpus
we tokenized the training data using sentencepiece
Kudo and Richardson (2018).

4.1.1 Data Filtering
As most of the corpora is extracted by automated
techniques, there are chances of presence of noisy
sentence pairs in the corpus. As transformer is
known to be sensitive to corpus noise Liu et al.
(2019) rigorous filtering was performed on the
corpus based on heuristics adopted from Li et al.
(2019), Vegi et al. (2021) and Pinnis (2018). De-
tails of the heuristics used are listed below.

• F0: Filter out sentence pair, in which either
source or target sentence is empty.

• F1: Filter out sentence pair, in which either
source or target sentence length greater than
800 characters.

• F2: Filter out sentence pair in which length
of source and target sentence ratio is greater
than 2.5.

• F3: Filter out sentence pair in which length
of source and target sentence ratio is less than
0.4.

• F4: Filter out sentence pair, if source or target
sentence contains word having length greater
than 10.

• F5: Filter out sentence pair, if source and tar-
get sentences are equal.

• F6: Filter out sentence pair, if source or target
sentence length is less than 4.

Corpus statistics after applying heuristics based
filtering is given in Table 1. By applying heuris-
tics, approximately 31% of total parallel sentences
amounting to 44802801 are removed as they are
potentially noisy pairs. Relative impact of each
filter is also captured in Table 1. Heuristics cho-
sen are language agnostic but there is always a
room for corpus and language dependent heuristics,
specifically the threshold values.

Experiments are carried out to observe the effect
of data filtering (Configuration B vs Configuration
A). Configuration A and B are discussed in detail
in section 5.
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Table 1 Statistics of training data before and after applying heuristic based filtering
%Filt is wrt previous filter and cumm %Filt is wrt Raw corpus

African↔English Raw F1-filt %Filt F1 +F2+F3 %Filt F1+F2+F3+F4 %Filt F1+F2+F3+F4+F5 %Filt F1+F2+F3+F4+F5+F6 %Filt cumm %Filt
afr-en 14357809 14331047 0.19% 14258195 0.005% 13675966 4.08% 13586470 0.65% 12128497 10.73% 15.5%

amh-en 1192934 1192625 0.026% 1142002 4.24% 1128660 1.16% 1115194 1.19% 946778 15.10% 20.6%
nya-en 1548650 1548650 0% 1529186 1.25% 1519738 0.61% 1519738 0% 1415637 6.84 8.5%
hau-en 9114633 9113895 0.008% 4164957 54.30% 3729275 10.46% 3712130 0.46% 3349586 9.76% 63.2%
ibo-en 519236 517737 0.29% 500379 3.35% 492926 1.49% 473208 4.0% 372787 21.22% 28.2%
kam-en 1656152 1656152 0% 1617111 2.35% 1616089 0.06% 1616088 6.18% 1452332 10.13% 12.3%
kin-en 9881964 9880973 0.010% 9715917 1.67% 9603289 1.15% 9603287 2.08% 8595328 10.49% 13.02%
lin-en 2890688 2890688 0% 2833279 1.98% 2826725 0.23% 2826725 0 2294855 18.81% 20.6%
lug-en 3478641 3476981 0.004% 3399032 2.24% 3356346 1.26% 3356345 1*% 2667772 20.51% 23.3%
luo-en 2767133 2767133 0% 2724060 1.55% 2719714 0.16% 2719714 0% 2339916 14.0% 15.4%
fuv-en 1376106 1376105 0% 1356236 1.44% 1349177 0.52% 1349172 0.0003% 1256816 6.84% 8.6%
nso-en 3087818 3087812 0% 3014807 2.36% 3009047 0.19% 3004799 0.14% 2284885 23.96% 26.00%
orm-en 2793892 2793892 0% 2738209 1.99% 2703241 1.28% 2703241 0% 2139879 20.84% 23.4%
sna-en 8933636 8933542 0% 8709596 2.51% 8625135 0.97% 8625118 0.0001% 7335877 14.95% 17.88%
som-en 1459349 1458307 0.0007% 1358266 6.86% 1336338 1.61% 1321903 1.08% 1084345 17.97% 25.6%
swh-en 32811268 32805580 0.0001% 32374856 0.013% 32154373 0.68% 32022095 0.4% 28152884 12.08% 14.2%
ssw-en 165712 165712 0% 154561 6.73% 152334 1.44% 152334 0 93832 38.40% 43.3%
tsn-en 5931529 5931529 0% 5667299 4.45% 5614356 0.93% 5614356 0 4257859 24.16% 28.2%

umb-en 302951 302951 0% 295177 2.57% 294655 0.18% 294654 0.0003% 247063 16.15% 18.44%
wol-en 208084 208073 13.09*% 204758 1.59*% 202100 1.3% 201928 0.08% 138994 31.17% 33.2%
xho-en 29326727 29326373 0% 9926807 66.15% 9795968 1.31% 9775666 0.20% 7552496 22.74% 74.24%
tso-en 638447 638382 0.0001% 620738 2.76% 619539 0.19% 619480 0.009% 511184 17.48% 19.9%
yor-en 1710752 1709669 0.0006% 1665254 2.59% 1651573 0.82% 1630170 1.29% 1471404 9.74% 13.9%
zul-en 4091851 4091355 0.0001% 3969983 2.97% 3928045 1.06% 3917179 0.28% 3352155 14.42% 18.1%
Total 140245962 140205163 0.002% 113940665 18.7% 112104609 1.6% 111760994 0.3% 95443161 14.6% 31.2%

4.1.2 Tagging of Source Sentences
As most of the African languages follow Latin
script, so as to tag input sentences based on lan-
guages we have added special tokens at the source
side similar to Vegi et al. (2021). Tokens are gen-
erated using special symbols of length 4. Special
symbols are used to avoid overlapping of tags with
language vocabularies.

4.2 Vocabulary Selection

We experimented with various configurations of
source side sentencepiece subword vocabularies.
However, for target side we fixed sentence piece
subword vocabulary size to 16K for all the configu-
rations.

Source side vocabulary estimation is done based
on the work of Gowda and May (2020), where it
is shown that for low resource languages optimal
BLEU score is obtained for relatively smaller sub-
word vocabulary of size between 4K to 6K. Also as
most of the African languages follow Latin script,
there are also chance of large vocabulary(subword)
overlap among the languages.

1. Source side vocabulary is set to 100K, jointly
for all 24 languages and used in Configura-
tions A,B,C and D. Please refer to Section 5
for more details on Configurations.

2. Language wise 4K to 6K subword vocabulary
based on language corpus size, where 6K is
used for the languages having more than 1
million sentence pairs and 4K for languages
having less than 1 million size. Though it is
expected a total vocabulary of around 130K

but we obtained 75K combined vocabulary as
there are many common subword vocabulary
among languages. This is used in Configura-
tion E.

3. We experimented with increasing source side
joint vocabulary from 100K to 144K in which
120K subword vocabulary for top 18 high re-
source languages and remaining 24K for the
remaining 6 languages.

4.3 Model Training
ANVITA African MT system used base trans-
former, deep transformer, ensemble techniques
and used fairseq framework for training Ott et al.
(2019).

4.3.1 Base Transformer: 6x6
Training configuration follows base transformer
similar to Vaswani et al. (2017) and used 6
encoder and 6 decoder layers. Base trans-
former model is trained on all corpora provided
by the organizer except WebCrawl African corpora.

4.3.2 Deep Transformer: 24x6
Training used 24 encoder and 6 decoder layers
for 10 epochs with batch size 10240, dropout 0.3,
word embedding size of 1024, adam optimizer,
update-freq 8, heads 8, encoder and decoder feed
forward dimension of 4096, batch type tokens,
warm-up steps 4000, learning rate 5e−4. Training
configurations are adopted from Yang et al. (2021).
Constrained and Primary models are trained on all
corpora provided by Organizers except WebCrawl
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African corpora.

4.3.3 Ensemble
We ensembled last two epochs of Deep Trans-
former 24x6 i.e 11,12 and this was our primary
submission for the shared task.

5 Experimental Evaluation and Result
Analysis

Experiments carried out for 6 distinct configura-
tions to assess effect of filtering, deep transformer
and strategies used for vocabulary selection.

5.1 Configurations

• Configuration A: Experiment is carried out
for 10 epochs on Base Transformer architec-
ture with 6 encoder and 6 decoder layers with
out applying data filtering on all corpus pro-
vided by WMT 22 except WebCrawl African
corpora.

• Configuration B: Experiment is carried out
for 10 epochs on Base Transformer architec-
ture with 6 encoder and 6 decoder layers with
heuristic based filtering on all corpus provided
by WMT 22 except WebCrawl African cor-
pora.

• Configuration C: Experiment is carried out for
10 epochs on Deep Transformer architecture
(as discussed in 4.2.2) with 24 encoder and 6
decoder layers with heuristic based filtering
on all corpus provided by WMT 22 except
WebCrawl African corpora.

• Configuration D: Experiment is carried out for
10 epochs on Deep Transformer architecture
(as discussed in 4.2.2) with 24 encoder and 6
decoder layers with heuristic based filtering
on all corpus provided by WMT 22 including
WebCrawl African corpora.

• Configuration E: Experiment is carried out for
10 epochs on Deep Transformer architecture
(as discussed in 4.2.2) with 24 encoder and
6 decoder layers with heuristic based filter-
ing and language wise subword vocabulary(as
discussed in 4.1.2) on all corpus provided by
WMT 22 including WebCrawl African cor-
pora.

• Configuration F: Configuration C is carried
out for 2 more epochs (i.e. 11 and 12) and
applied ensembling of last 2 epochs i.e. 11
and 12.

5.2 Results and Analysis
ANVITA African→English MT system was eval-
uated on standard Flores200 dataset Costa-jussà
et al. (2022) and evaluation was also done by
the organizer of Large-Scale Machine Translation
Evaluation for African Languages task on blind
test sets Adelani et al. (2022b). Results of both
the experiments are given below Tables 2 and
3. Configuration-F is our primary submission
and Configuration-C is our Contrastive submis-
sion to the WMT 2022 shared task on Large-Scale
Machine Translation Evaluation for African Lan-
guages. Due to computational and time constraints
we were not able to submit a model with WebCrawl
African corpora as a primary/constrained submis-
sion. All the experiments carried out on Nvidia
RTX 8000 48GB single GPU system. Training base
transformer (6 × 6) without filtering and with fil-
tering took approximately 400 hours and 80 hours
respectively for 10 epochs. Remaining all experi-
ments used deep transformer took around 290 hours
for 10 epochs.

Table 2 shows the results obtained when ex-
periments are carried out with configurations
A,B,C,D,E, and F.

In the following subsections, key insights ob-
tained using configurations A,B,C,D, and E are
presented with respect to effect of filtering, deep
transformer, and individual language wise subword
vocabulary selections. However Configuration F is
not compared against other configurations, as Con-
figuration F is a replica of Configuration C with 12
epochs and did not use WebCrawl African corpora.

5.2.1 Effect of Filtering:
Configuration A vs B

1. Heuristic based filtering has shown significant
improvement on BLEU and CHRF2++ rang-
ing from 0.04-2.06 and 0.23-1.55 respectively
on all 22 out of 24 African → English lan-
guage directions.

2. Reduced training time from 400 hours (Con-
figuration A) to 80 hours (Configuration B).

3. Decrease in BLEU score and CHRF2++ for
two languages namely Nigerian Fulfulde(fuv)
and Wolof(wol).
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Table 2 Results of African to English models on Flores200
Tran: Transformer, (n): refers to n epochs, prim: Primary model submitted to task,
Contras: Contrastive model submitted to task, ISV:Individual subword vocabulary,
WA:WebCrawl African(corpus submitted as part of the task)

A: Tran 6× 6
(10)

B :Tran 6× 6 +
filt(10)

C:Tran 24× 6 +
filt (10)(Contras)

D:Tran 24× 6 +
filt +

WA(10)

E:Tran 24× 6 +
filt +
WA +

ISV (10)

F:Tran 24× 6 +
filt +

ensem (Prim) (11,12)

Afr↔En BLEU CHRF2++ BLEU CHRF2++ BLEU CHRF2++ BLEU CHRF2++ BLEU CHRF2++ BLEU CHRF2++
afr 50.97 70.64 51.8 71.28 55.8 74.185 55.73 74.21 55.56 74.07 56.38 74.52

amh 16.45 40.01 17.29 41.14 24.39 48.80 24.17 48.82 24.45 48.98 24.78 49.46
nya 18.42 40.09 18.5 40.90 22.45 48.79 22.66 45.46 22.35 44.37 22.90 45.148
hau 21.42 43.74 22.3 45.09 27.92 49.95 28.04 50.18 28.25 50.06 28.97 50.70
ibo 15.48 37.15 15.9 38.81 20.62 44.07 21.25 44.44 22.35 44.37 21.79 44.93

kam 6.98 23.86 7.44 24.65 9.24 28.26 9.49 28.33 8.78 27.09 9.41 27.91
kin 19.90 42.38 21.7 43.5 25.97 48.01 26.15 48.34 25.48 47.38 25.83 48.11
lin 14.26 35.06 15.22 36.34 19.34 40.80 19.56 41.2 18.18 39.82 19.4 40.82
lug 12.10 31.99 13.13 33.37 15.93 37.09 16.69 37.73 16.44 37.48 16.30 37.37
luo 13.41 33.64 13.08 33.87 17.34 38.51 16.96 38.32 16.62 38.04 17.54 38.58
nso 23.68 44.71 25.6 46.96 33.30 53.77 33.54 54.52 33.22 53.96 34.02 54.36
fuv 5.13 20.99 4.5 19.72 5.62 21.91 5.82 21.95 5.12 19.95 5.71 21.54
orm 6.75 24.70 7.38 26.24 11.27 31.55 12.13 33.57 11.94 33.06 11.67 32.05
sna 19.94 42.68 19.98 42.98 23.68 46.429 23.57 46.73 24.23 46.17 24.25 46.61
som 13.75 34.76 13.96 35.01 18.01 40.02 17.80 40.02 17.37 39.55 18.07 40.22
swh 33.71 56.30 35.77 57.85 41.01 62.23 41.19 62.32 40.60 61.99 41.34 62.49
ssw 16.73 38.00 17.61 39.18 23.68 45.79 25.34 47.27 24.6 46.61 24.49 46.15
tsn 18.01 39.7 18.35 40.63 22.66 44.97 23.08 45.96 22.88 45.27 23.2 45.65
tso 19.02 39.80 19.38 40.64 24.32 45.85 21.72 44.33 25.35 47.09 24.5 46.04

umb 3.98 20.58 4.33 21.57 5.74 24.35 5.55 24.27 5.41 23.44 5.65 23.87
wol 5.64 23.02 4.93 21.75 8.71 27.10 8.43 27.01 8.85 27.35 8.71 27.17
xho 25.01 47.1 25.18 47.49 31.8 53.78 32.01 53.84 33.47 54.97 32.53 54.09
yor 11.01 31.14 12.20 32.54 15.3 37.12 15.39 37.20 15.98 38.14 15.58 37.45
zul 27.07 49.64 28.17 51.01 33.4 55.52 33.79 55.70 34.68 56.06 34.34 55.78

5.2.2 Effect of Deep Transformer:
Configuration B vs C

1. Deep transformer architecture (Configuration
C) has shown significant improvement on
BLEU and CHRF2++ ranging 1.12-7.7 and
2.19-7.89 respectively on all 24 African →
English language directions.

2. As expected, it increased training time from
80 hours (Configuration B) to 290 hours (Con-
figuration C), but still less than base trans-
former training time without filtering.

5.2.3 Effect of inclusion of WebCrawl
African: Configuration C vs D

1. Inclusion of Our corpora-3, WebCrawl
African (Configuration D) has shown improve-
ment on BLEU ranging 0.01-1.66 for 12 out
of 15 African→English translation directions
and even by +0.18-0.68 for the 4 out of 9
African→English translation directions. How-
ever there is a marginal decrease in remaining
African→English directions.

2. Inclusion of Our corpora-3, WebCrawl
African (Configuration D) has shown improve-
ment on CHRF2++ ranging 0-1.48 on 19

African→ English language directions, how-
ever there is a marginal decrease in remaining
directions.

5.2.4 Effect of ISV (Individual Subword
Vocabulary): Configuration D vs E

ISV (Configuration E) has shown significant
improvement on few language directions, how-
ever there is a marginal decrease of BLEU and
CHRF2++ in majority of the directions and specifi-
cally 17 and 19 out of 24 respectively.

It is observed that increase of source side joint
vocabulary beyond 100K does not improve per-
formance and in fact decrease in BLEU score is
observed for majority of the languages. Also use
of language wise vocabulary selection did not con-
sistently improve performance of low resource lan-
guages in comparison to joint vocabulary selection.

5.3 Comparison With Available Models

To the best of our knowledge, results using a sin-
gle multilingual model covering all the 24 African
languages to English is not available. Often mean-
ingful comparison becomes hard as not all the re-
ported results use same test-set used here. Yang
et al. (2021) trained NMT model for translating

1094



Table 3 Results of African to English models on blind test set from Organizer
Tran: Transformer, (n): refers to n epochs, blind:refers to blind test set used by Organizer for evaluation,
prim: primary model submitted to the task, Contras: Contrastive model submitted to the task,
* represents the languages where evaluation was not provided by the Organizer

Afr↔En
F: Tran 24× 6 (11,12)+ensemble(Prim) C:Tran 24× 6 (10) (Contras)
BLEU spBLEU CHRF2++ BLEU spBLEU CHRF2++

afr 56.1 59 74.4 55.8 58.7 74.2
amh 24.8 26 48.5 24.1 25.2 47.8
nya 23.8 26.5 45.7 23.1 26.2 45.5
hau 30.3 32.6 51.7 28.8 31.3 50.9
ibo 24.8 27.1 47.2 23.6 25.8 46.2
kam 10.3 12.4 28.2 10.3 12.4 28.4
kin 27.7 29.2 48.9 27.4 28.9 48.8
lin* - - - - - -
lug 16.6 18.7 37.2 16.5 18.5 36.7
luo 17.9 19.9 38.3 17.6 19.5 37.9
fuv 6.2 8 21.9 6.1 7.9 22
nso 34.1 35.9 54.1 33.7 35.5 53.6
orm 11.9 12.6 31.8 11.2 12 31.5
sna 25.3 28 46.7 24.6 27.6 46.3
som 21 22.7 42 20.7 22.2 41.4
swh 40.6 42 61.3 40.4 41.7 61
ssw 25.9 27.9 46.7 25.5 27.5 46.2
tsn 26.2 28.2 47.7 25.4 27.5 47.1

umb 6.4 8.2 24.6 6.2 8.1 24.7
wol* - - - - - -
xho 30 32.4 51.6 29.8 32.4 51.6
tso 25.3 27.4 46.2 25.3 27.2 46
yor 16.3 18.4 37.5 15.8 17.9 37
zul 33.6 35.6 54.4 32.5 34.9 54

101 languages from any to any directions and 12
out of 24 translation directions part of our submis-
sion are in common. Comparison on FLORES
shows our model produced an improved results for
7 out of 12 African→English directions namely
{Hausa, Chichewa, Swahili, Xhosa, Yoruba, Zulu
}→English. Emezue and Dossou (2021) trained
many to many models for African languages and 5
out 24 African translation directions part of our sub-
mission are in common. Our model showed an im-
provement for all the common 5 African→English
directions namely {Igbo, Kinyarwanda, Xhosa,
Yoruba, Swahili}→English.

6 Conclusion

This paper describes our submission to WMT
2022 shared task on Large-Scale Machine Trans-
lation Evaluation for African Languages under the
constrained translation track. We focused on 24
African languages to English MT directions. Multi-
lingual model with deep transformer showed signif-
icant improvement in BLEU and CHRF2++ scores
across all 24 African to English MT directions.
Vocabulary size of 4K to 6K per language for es-
timating size of joint source vocabulary seems to
be a good choice in a multilingual setup. Heuris-
tic based filtering did improve the BLEU scores.
However the biggest gain of filtering observed is in
terms of training time speed up by 5x. Empirical
results indicate that training using deep transformer

1095



with filtered corpora seems to be a better choice
than using base transformer on the whole corpora
both in terms of MT accuracy and training time.
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Abstract

This paper describes the submissions of
Huawei translation services center (HW-TSC)
to the WMT22 Very Low Resource Super-
vised MT task. We participate in all 6 su-
pervised tracks including all combinations be-
tween Upper/Lower Sorbian (Hsb/Dsb) and
German (De). Our systems are build on deep
Transformer with a large filter size. We use
multilingual transfer with German-Czech (De-
Cs) and German-Polish (De-Pl) parallel data.
We also utilize regularized dropout (R-Drop),
back translation, fine-tuning and ensemble to
improve the system performance. According
to the official evaluation results on OCELoT1,
our supervised systems for all 6 language di-
rections got the highest BLEU scores among
all submissions. Our pre-trained multilingual
model for unsupervised De2Dsb and Dsb2De
translation also gains the highest BLEU.

1 Introduction

In this paper, we describe our very low resource su-
pervised MT systems for all combinations between
Hsb, Dsb and De. We first select a base pre-trained
multilingual model and then fine-tune it. As we fo-
cus primarily on the supervised task, we only apply
our pre-trained multilingual system with zero-shot
for unsupervised task submissions.

As show in WMT21 shared task (Libovický
and Fraser, 2021), most participants use De-Cs
for transfer or combine De-Cs with the low re-
source pairs to build a multilingual system. Fine-
tuning based on a multilingual pre-trained (Fan
et al., 2020) model has shown very promising re-
sults for low resource tasks. We add De-Pl data and
train our multilingual pre-trained model to transfer
the low resource pairs.

This paper is structured as follows: we describe
our data source and data pre-processing method
in section 2. We detail the model structure and

1https://ocelot-wmt22.mteval.org

method we used in Section 3. We then present the
final experiments in Section 4 and Section 5, and
finally we conclude our work in Section 6.

2 Dataset

2.1 Data Source

For our base pre-trained multilingual systems, we
use all the bilingual data (De-Cs and De-Pl) from
the latest version of OPUS. We also sample 20M
German monolingual data from news (general) MT
task for augmentation. For fine-tuning the systems
transfer to our task, we use all the bilingual and
monolingual data officially provided without any
filtering strategy. We use dev set and test set to-
gether for model parameter adjustment and system
selection (do not include the blind test data from
the previous years).

2.2 Data Pre-processing

For all the data mentioned above, we remove dupli-
cate sentences (Khayrallah and Koehn, 2018; Ott
et al., 2018).

For De-Cs and De-Pl, the data pre-processing
procedure is as follows:

• Remove sentences with mismatched parenthe-
ses and quotation marks.

• Filter out sentences of which punctuation per-
centage exceeds 0.4.

• Filter out sentences with a character-to-word
ratio greater than 12 or less than 1.5.

• Filter out sentences with more than 150 words.

• Apply langid (Joulin et al., 2017, 2016) to
filter out sentences in other languages.

• Use fast-align (Dyer et al., 2013) to filter out
sentence pairs that are poorly aligned.
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bilingual monolingual
De-Cs De-Pl De-Dsb De-Hsb Dsb-Hsb De Dsb Hsb

Raw data 77.1M 98.1M 40K 449K 63K - 220K 1.13M
Processed data 55.9M 66.5M 39K 317K 63K 20M 177K 957K

Table 1: The data sizes of before and after pre-processing in our very low resource supervise MT Task

We sample 3.2M Cs and Pl data from bilingual
data and up-sampling 3.2M De, Hsb, Dsb from a
combined dataset of all the three languages. We
mix the data above and build a joint SentencePiece
model (SPM) (Kudo and Richardson, 2018; Kudo,
2018) for word segmentation, with a vocabulary
of 40k. We use Moses tokenizer (Koehn et al.,
2007) to pre-segment sentences. We also use the
combined data to build a joint vocabulary for all of
our models. The vocabulary size is slightly larger
than SPM vocabulary to cover more tokens, which
is set to 41k.

3 System Overview

3.1 Model

Transformer (Vaswani et al., 2017), as the current
mainstream architecture of NMT, adopts a fully
self-attention mechanism, which can realize algo-
rithm parallelism, speed up model training, and im-
prove model performance. Deep transformer is an
variant of Transformer, which increases the number
of encoder layers and uses pre-layer-normalization
to further improve model performance. Therefore,
in all translation tasks, we adopt the following
model architecture:

• Deep Transformer (Wei et al., 2021): We re-
fer to the Transformer-big model architecture
and decrease the dim for faster training. our
Deep Transformer model features pre-layer-
normalization, 35-layer encoder, 6-layer de-
coder, 16-head self-attention, 768-dimension
word embedding and 3072-hidden-state.

3.2 Multilingual Transfer

Recent researches have shown that multilingual
models outperform their bilingual counterparts,
particularly when the number of languages in the
system is limited and those languages are related
(Lakew et al., 2018). This is mainly due to the
capability of the model to learn interlingual knowl-
edge (shared semantic representation between lan-
guages) (Johnson et al., 2016) (Ranathunga et al.,

2021). Transfer learning using pre-trained multi-
lingual model (Fan et al., 2020) has shown very
promising results for low resource tasks. In this
task, we first select a multilingual system as the
base system, then fine-tune the system with low
resource language pairs.

3.3 R-Drop

Dropout (Srivastava et al., 2014) is a powerful and
widely used technique for regularizing deep neural
networks. Though it can help improve training ef-
fectiveness, the randomness introduced by dropouts
may lead to inconsistencies between training and
inference. R-Drop (Wu et al., 2021) forces the out-
put distributions of different sub models generated
by dropout be consistent with each other. There-
fore, we use R-Drop to augment the pre-trained
multilingual model for each track and reduce in-
consistencies between training and inference.

3.4 Back Translation

Back translation (BT) (Edunov et al., 2018) refers
to translating the target monolingual data into the
source language, and then using the synthetic data
to increase the training data size. This method
has been proven effective to improve the NMT
model performance. We apply sampling(Graça
et al., 2019) back-translation for all language direc-
tions.

4 Experimental Settings

During the training phase, we use Pytorch-based
Fairseq2 (Ott et al., 2019) open-source framework.
Each model is trained using 8-V100 with a batch
size of 2048 tokens for each GPU. Dropout was
set to 0.1 for pre-train multilingual model, and
0.3 for fine-tuning model. The label smooth-
ing rate (Szegedy et al., 2016) is 0.1. Adam
optimizer (Kingma and Ba, 2015) with β1=0.9
and β2=0.98 is also used. Furthermore, we
use reg_label_smoothed_cross_entropy as the loss
function and set reg-alpha to 5 when applying R-

2https://github.com/facebookresearch/fairseq
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System De2Hsb Hsb2De
Pre-trained model 1.2 3.6
Bitext finetune 65.6 66.3
Noisied ST 65.8 -
Sampling BT 69.2 67.0
FT+ST - 67.1
Ensemble 69.4 67.5
WMT22submission 70.7 71.9

Table 2: Avg. scores on WMT21 dev set, test set and
WMT22 dev set for De↔Hsb.

System De2Dsb Dsb2De
Pre-trained model 0.9 2.5
Bitext finetune 50.1 55.2
Noisied ST 50.6 -
Sampling BT 58.0 57.8
FT+ST - 57.9
Ensemble 58.2 58.1
WMT22submission 73.9 62.5

Table 3: Avg. scores on WMT21 dev set, test set and
WMT22 dev set for De↔Dsb.

Drop training strategy. For pre-training the multi-
lingual model, the update frequency, the learning
rate and warm-up steps are 4, 5e-4 and 4000 re-
spectively; for fine-tuning the model, the update
frequency and the learning rate is 1 and 1e-4 with-
out warm-up. In the evaluation phase, we use Mar-
ian3 (Junczys-Dowmunt et al., 2018) for decoding
and then calculate the sacreBLEU4 (Post, 2018) on
the WMT21 dev set, test set and WMT22 dev test
to measure the performance of each model.

5 Experimental Result

First of all, we test pre-trained multilingual models
without fine-tune and get quiet low scores. Next,
we fine-tune all of our pre-trained models with
bitext and then select a best one according to the
BLEU scores for every task.

5.1 De↔Hsb
Table 2 shows the results of using the selected
pre-trained multilingual model to improve the
De↔Hsb model performance.

In De2Hsb, we adopt the strategy of noised ST
(Imamura and Sumita, 2018) because we have a
large amount of German monolingual data. We
sample 20M German monolingual for noised ST.

3https://github.com/marian-nmt/marian
4https://github.com/mjpost/sacreBleu

System Hsb2Dsb Dsb2Hsb
Pre-trained model 1.1 1.0
Bitext finetune 62.9 65.3
Multilingual finetune 67.6 72.0
Sampling BT 69.6 74.2
Ensemble 70.0 74.7
WMT22submission 88.0 86.8

Table 4: Avg. scores on WMT22 dev set for Dsb↔Hsb.

We find that this strategy can bring an additional
0.2 BLEU improvement. At the same time, we use
all the Hsb monolingual data (including the Hsb
side of Dsb-Hsb) for sampling BT, which brings
an increase of 3.4 BLEU. BLEU increases by 0.2
after ensemble.

In Hsb2De, We find that both sampling BT and
forward translation + sampling BT (FT+ST) (Wu
et al., 2019) can bring certain improvement, but
sampling BT outperforms the FT+ST strategy (0.7
BLEU vs 0.1 BLEU). After ensemble, model per-
formance continues improving by 0.4 BLEU.

5.2 De↔Dsb

Table 3 shows the results of using the selected
pre-trained multilingual model to improve the
De↔Dsb model performance. We follow the same
strategy as that of De↔Hsb.

In De2Dsb, we adopt noised ST with the same
data as De2Hsb. We use 20M German monolin-
guals for noised ST. We find that this strategy can
bring an additional 0.5 BLEU improvement. At the
same time, we use all the Dsb monolingual data
(including the Dsb side of Dsb-Hsb) for sampling
BT, which brings an improvement of 7.4 BLEU.
Finally, BLEU increases by 0.2 after ensemble.

In Dsb2De, Sampling BT and FT+ST can bring
certain improvement (2.6 BLEU vs 0.1 BLEU).
After ensemble, model performance continues im-
proving by 0.2 BLEU.

5.3 Hsb↔Dsb

Table 4 shows the results of using the selected
pre-trained multilingual model to improve the
Hsb↔Dsb model performance.

Regarding the Hsb2Dsb task, we first fine-tune
the many-to-many pre-trained model with bitext,
and then combine the De2Hsb, De2Dsb, Hsb2De,
Dsb2De multilingual to continue fine-tuning both
Hsb2Dsb and Dsb2Hsb models. This strategy gets
improvements of 5+ BLEU. Then, we perform one
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Pre-trained model De2Hsb De2Dsb Hsb2De Dsb2De Hsb2Dsb Dsb2Hsb
De2Cs 64.5 49.1 - - 61.0 63.2
Cs2De - - 64.7 51.9 - -
one-to-many 64.6 49.4 - - 61.8 63.6
many-to-one - - 65.3 54.0 - -
many-to-many 64.6 49.2 64.9 53.0 62.0 64.3

Table 5: Avg. scores on WMT21 dev set,test set and WMT22 dev set with different pre-trained models. De2Cs:
pre-train with De2Cs bilingual data; Cs2De: pre-train with Cs2De bilingual data; one-to-many: pre-train with
De2Cs and De2Pl bilingual data; many-to-one: pre-train with Cs2De and Pl2De bilingual data; many-to-many:
pre-train with Cs2De, De2Cs, Pl2De and De2Pl bilingual data.

System De2Hsb De2Dsb Hsb2De Dsb2De Hsb2Dsb Dsb2Hsb
w/o R-drop 64.6 49.4 65.3 54.0 62.0 64.3
w/ R-drop 65.6 50.1 66.3 55.2 62.9 65.3

Table 6: Avg. scores of WMT21 dev set, test set and WMT22 dev set for each track without or with R-drop.

round of sampling BT for optimization.
After we ensemble the latter two models, the

model performances significantly increase by 7.1
and 9.4 BLEU respectively when comparing with
the base many-to-many fine-tuning model, which
also proves the advantages of the multilingual
model in low-resource tasks.

5.4 Unsupervised Submission

We conduct an unsupervised experiment with our
many-to-one and one-to-many pre-trained model.
For Hsb2De and Dsb2De, we add tags to the
Hsb/Dsb monolingual data and get the German
result from many-to-one model for zero-shot. Then
we fine-tune the best one-to-many model with the
zero-shooting translations, and get the Hsb2De,
Dsb2De models, which obtains 11.5 BLEU on the
Hsb2De track and 13.5 BLEU on the Dsb2DE track.
Based on the two base models, we continue con-
ducting a round of BT with 2M German monolin-
gual data, and then train the De2Hsb and De2Dsb
models for submission. The BLEU scores are 10.4
(De2Hsb) and 9.0 (De2Dsb). As we have not in-
vested much efforts in the unsupervised task, more
experiments need to be done in the feature.

6 Analysis

6.1 Pre-trained Model

Due to the availability of large amount of De-
Cs and De-Pl data and the similarities between
Hsb/Dsb and Cs/Pl, we pre-train several multilin-
gual models with different strategies, and then fine-
tune with very low resource bilingual data. We

choose the best strategy for every language direc-
tion for further fine-tuning. Specifically, we design
three pre-trained multilingual models: a one-to-
many model trained with the De2Cs and De2Pl
bilingual data, a many-to-one model trained with
the Cs2De and Pl2De bilingual data, and a many-to-
many model trained with the Cs2De, De2Cs, Pl2De
and De2Pl bilingual data. For each corpus we use a
different tag to differentiate. Furthermore, we train
a De-Cs model as done by last year’s participants,
in order to get better comparison results.

Table 5 shows that data selection for the pre-
trained model is closely related to the task require-
ments. For tasks of translating other languages into
De, the many-to-one model trained with Cs2De
and Pl2De corpora performs the best. For tasks
of De2Hsb/Dsb, the one-to-many model trained
with De2Cs and De2Pl corpora works the best. In
general, the many-to-many model is more suitable
for the Hsb2Dsb and Dsb2Hsb task, because the
many-to-many model is trained with Cs and Pl data
at both the source and target sides. With large
amount of Cs/Pl data for transfer, both the encod-
ing and decoding layers can benefit transfer for
the Hsb2Dsb and Dsb2Hsb embeddings. Multilin-
gual pre-trained models have better performance
than bilingual pre-trained models in all directions.
Besides, the unsupervised results also show the
transfer capability of our pre-trained multilingual
models.

6.2 The Effect of R-drop

Considering the limited sources and the large size
of the multilingual model, we try the R-drop strat-
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Figure 1: BLEU curves along with or without R-drop

egy to see whether the R-drop strategy is effective
on multilingual models. Based on the optimal mul-
tilingual model for each task selected in the pre-
vious step, we compared whether the use of the
R-drop strategy in the training process can lead to
further improvements. It can be seen from Table 6
that after using the R-drop strategy for training, the
BLEU of each track further improves by at least
1 point, indicating that R-drop does have a good
effect in low-resource scenarios with large models.
Therefore, we adopt the R-drop strategy for further
training. In addition, Figure 1 is a graph depicting
the BLEU convergence curves on the Dsb2De track.
From the figure we can find that when the BLEU
value increases by using R-drop, the convergence
time also increases by about ten epochs.

7 Conclusion

This paper presents our translation systems for the
WMT22 very low resource supervised MT task.
During the experiment, We use multilinguals to
build our base translation system, and then use for-
ward translation and back translation methods to
expand the size of training data for a better trans-
lation system. We also adopt test set fine-tuning
and ensemble to further improve the system perfor-
mance. Finally, according to the official evaluation
results on OCELoT, our submission achieves the
highest BLEU scores in all 6 language directions in
the supervised task, and our submission of De2Dsb
and Dsb2De also gains the highest BLEU in unsu-
pervised task.
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Abstract

This paper presents the work of team PICT-
NLP for the shared task on unsupervised
and very low-resource supervised machine
translation, organized by the Workshop on
Machine Translation, a workshop in colloca-
tion with the Conference on Empirical Meth-
ods in Natural Language Processing (EMNLP
2022). The paper delineates the approaches
we implemented for supervised and unsu-
pervised translation between the following
6 language pairs: German-Lower Sorbian
(de-dsb), Lower Sorbian-German (dsb-de),
Lower Sorbian-Upper Sorbian (dsb-hsb), Up-
per Sorbian-Lower Sorbian (hsb-dsb), German-
Upper Sorbian (de-hsb), and Upper Sorbian-
German (hsb-de). For supervised learning, we
implemented the transformer architecture from
scratch using the Fairseq library. Whereas for
unsupervised learning, we implemented Face-
book’s XLM masked language modeling ap-
proach. We discuss the training details for the
models we used, and the results obtained from
our approaches. We used the BLEU and chrF
metrics for evaluating the accuracies of the gen-
erated translations on our systems.

1 Introduction

Neural machine translation has witnessed signif-
icant progress in the case of highly spoken lan-
guages such as English (Bahdanau et al., 2015),
Mandarin (Li et al., 2022), French (Emezue and
Dossou, 2020), etc. However, in many cases, it
becomes challenging to develop a robust bilingual
machine translation system, especially with limited
resources (Dong et al., 2015). There are big-tech
companies such as Google1 and Bing2, which have
taken initiatives to build translation systems for

∗ equal contribution
† equal contribution
‡ equal contribution

1https://translate.google.com/
2https://www.bing.com/translator

multiple languages. Still, languages that are low-
resource in nature, such as the Sorbian family of
languages (Howson, 2017), have gotten lesser at-
tention in terms of research. The paper focuses on
the development of machine translation systems
between pairs of languages from German, Lower
Sorbian, and Upper Sorbian, using both supervised
and unsupervised approaches.

In the Indo-European language family, German
(Deutsch) belongs to the western Germanic branch
(Durrell, 2006). Approximately 95 million peo-
ple speak it natively; 28 million speak it as a sec-
ond language in more than 40 countries. Due to a
phonetic mutation called High German Consonant
Shift (Vennemann, 2008), German moved away
from other Germanic languages. This shift in Ger-
man consonants occurred between the 3rd and 5th
centuries, and probably ended in the 9th century
AD.

Lower Sorbian (dolnoserbska rěc) and Upper
Sorbian (hornjoserbska rěč) are western Slavonic
languages spoken in the region of Lower and Up-
per Lusatia in the southeast of Germany respec-
tively. They are closely related to other West
Slavonic languages, including Polish, Czech, Slo-
vak, and Kashubian. There are seven recognized
autochthonous minorities and regional languages
in Germany, including Danish, Saterfrisian, North
Frisian, Romanes, and Lower German.

We aimed to carry out research in neural ma-
chine translation between German, which is high-
resource in nature, and Lower and Upper Sor-
bian, which are low-resource languages. We im-
plement supervised and unsupervised methods for
the same. For the supervised approach, we trained
transformer (Vaswani et al., 2017) models from
scratch using the bilingual data provided by WMT
in the 2022 workshop edition. We used the Fairseq3

(Ott et al., 2019) library for the same, which is a
sequence-to-sequence learning toolkit for neural

3https://fairseq.readthedocs.io/en/latest/
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Supervised de-dsb dsb-de dsb-hsb hsb-dsb de-hsb hsb-de
Parallel 40,194 40,194 62,565 62,565 70,000 70,000

Table 1: Statistics of the dataset used for supervised training

Unsupervised de dsb hsb
Monolingual 53,309 1,45,198 2,22,027

Table 2: Statistics of the dataset used for unsupervised training

machine translation. Transformer(Vaswani et al.,
2017) is a Seq2Seq (Sutskever et al., 2014a) model
that uses self-attention to train on input data. The
encoder part of the transformer model consists of
a self-attention layer and a feed forward neural
network (Bebis and Georgiopoulos, 1994). The en-
coder of the transformer reads the input sequence,
one word at a time to produce a hidden vector. The
decoder produces the output sequence from the vec-
tor received from the encoder. Being part of recent
NMT research, transformers perform well com-
pared to baseline models such as CNNs (Albawi
et al., 2017) and LSTMs (Hochreiter and Schmid-
huber, 1997).

For the unsupervised approach, implemented
Facebook XLM’s4 masked language model (cross-
lingual language model) for unsupervised learning
(Chronopoulou et al., 2021). Training data used for
the same was monolingual data provided by the or-
ganizers and the OPUS project5. We preprocessed
the data, and also applied byte-pair encoding (BPE)
(Sennrich et al., 2016) to the input and target data.
We made use of the fastBPE6 library for the same.
Finally, we applied XLM preprocessing on the data
before training.

We experimented our approaches on six lan-
guage pairs between German, Lower Sorbian and
Upper Sorbian. We have used the BLEU (Papineni
et al., 2002) and chrF (Popović, 2015) evaluation
metrics for computing accuracy, which have been
discussed in this paper.

2 Dataset Description

We used the data provided by the WMT22 organiz-
ers, and from the OPUS project, recommended by
the organizers. The statistics of the training data
for both supervised and unsupervised approaches
is given in Table 2. For the supervised training, we
used the parallel data provided by the organizers,

4https://github.com/facebookresearch/XLM
5https://opus.nlpl.eu/
6https://github.com/glample/fastBPE

for each language pair. We used the 2022 version
of the data itself, as training for larger corpora was
proving computationally expensive at our end. For
translations between German and Lower Sorbian,
validation data size was 1353, whereas for Upper
Sorbian-Lower Sorbian and German-Upper Sor-
bian, validation data sizes were 709 and 2000 for
each language respectively.

For unsupervised learning, we used the mono-
lingual data for Lower Sorbian provided by the
organizers. For Upper Sorbian, we used the mono-
lingual data provided by the Witaj Sprachzentrum7.
Whereas for German, we used the monolingual
data provided by the OPUS project. The quantita-
tive statistics of these datasets is given in Table 2.

The blind test data provided by the organizers
contained 1000 sentences each for translations be-
tween Lower Sorbian and German, 1000 sentences
each for translations between Lower Sorbian and
Upper Sorbian, and 1621 sentences each for trans-
lations between Upper Sorbian and German. We
submitted the inferences on the blind test data to
the shared task leaderboard.

3 Data Preparation

The data preprocessing step was crucial in deter-
mining the accuracies of our translations. The goal
was not to waste resources (compute power, time)
in processing things that don’t add much value to
extracting the semantics and understanding the text.
(Tabassum and Patil, 2020)

For supervised learning, we preprocessed the
source and target text using fairseq-preprocess8, an
inbuilt preprocessing script provided by Fairseq.
We set the number of parallel workers for prepro-
cessing the text as 20, so as to achieve faster pre-
processing. Normalization (Mansfield et al., 2019)
and pre-tokenization of the text is done before pass-
ing the to fairseq-preprocess. We used sacremoses9

7https://www.witaj-sprachzentrum.de/
8https://fairseq.readthedocs.io/en/latest/command_line_tools.html
9https://github.com/alvations/sacremoses
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tokenizer, which helps us to tokenize and normal-
ize text according to our needs. fairseq-preprocess
binarizes the training data and builds vocabularies
from the text of that particular language.

For unsupervised learning, we applied some ad-
ditional preprocessing, which consisted of using
XLM-Moses tokenizer. The XLM-Moses tokenizer
performs the following steps: removing unicode
punctuations, normalizing punctuations (punctua-
tions will be removed from the utterances during
training) and removing any non-printing charac-
ters. We also applied byte-pair encoding (Sen-
nrich et al., 2016) to our data, where we use the
inbuilt script provided by fastBPE10. Byte-pair en-
coding algorithm computes the unique set of words
used in the corpus (after the normalization and pre-
tokenization steps are completed), and then builds
the vocabulary by taking all the symbols used to
write those words. Byte-pair encoding algorithm
application includes learning the BPE codes from
the training dataset, then applying the same on the
training, validation and test datasets. Also, we get
the training vocabulary once we have obtained the
codes after training. Finally, we apply XLM pre-
processing provided by Facebook XLM, to get the
final preprocessed data.

4 Model Description

4.1 Supervised Training
We trained transformer models from scratch
using the ’transformer’ architecture provided by
open-source toolkit Fairseq. Fairseq provides
multiple state-of-the-art architectures to build
translation models. Transformers use self-attention
along with an encoder-decoder approach to train
(Sutskever et al., 2014b). Encoders extract features
from input sentences, and decoders use those
features to produce output translations. The
encoder in the transformer consists of multiple
encoder blocks. Input sentences pass through
encoder blocks, and the outputs of the last encoder
block become the inputs to the transformer decoder.
The decoder also consists of multiple decoder
blocks, and feature information is received from
the encoder by each block of the decoder.

4.2 Unsupervised Training
For unsupervised training, a masked language
model (MLM) is implemented using data from both

10https://github.com/glample/fastBPE

languages (source and target). We use the XLM
model for easier implementation of the MLM objec-
tive. Masked prediction is implemented during the
training steps, along with denoising autoencoding
(Vincent et al., 2008), which involves reconstruct-
ing the original text data from a corresponding
noisy version. We use an encoder-decoder trans-
former model, consisting of 12 layers in total (6
each to encoder and decoder), and is similar to
the XLM architecture. We transfer the masked
language model trained encoder transformer to
the aforementioned encoder-decoder translation
model.

5 Experiments

5.1 Training Details

For training the models we used the fairseq, a se-
quence model toolkit written in Pytorch (Paszke
et al., 2019) developed by Facebook Artificial In-
telligence Research (FAIR) team. We trained our
models on the Nvidia Tesla K80 GPU, which has a
13GB RAM capacity.

For supervised learning, we trained our models
on 50 epochs, and the total training time for every
model was around 2 hours. We used the Adam
optimizer (Kingma and Ba, 2014) for enhancing
training performance, with corresponding beta co-
efficients set to 0.9 and 0.98. Label smoothing rate
(Paszke et al., 2019) for the model is set to 0.1 (La-
bel smoothing encourages the model to produce
a finite output, which may lead to better general-
ization and prevent overfitting). Clip threshold of
gradients is set to 0 (Zhang et al., 2019). A dropout
(Srivastava et al., 2014) of 0.2 for input features
is specified in the architecture. Maximum number
of tokens in a batch is set to 4096 during training.
Learning rate (Igiri et al., 2021) for the model is
set to 0.0005.

For the unsupervised training, we train our mod-
els on 20 epochs, taking about five hours to train.
Input words to the model are randomly shuffled
during training, 3 at a time (Malkin et al., 2021). A
word dropout of 0.1 is specified. 8 attention heads
are taken in each layer of the encoder. Overall
dropout and attention dropout of 0.1 is specified.
1000 tokens are taken per batch, and a batch-size of
32 is taken for training the models. Dimension of
the embedding layer in the model was set to 1024.
Sequence length of 256 is specified during training.
We use the GeLU activation function (Hendrycks
and Gimpel, 2016) in this model, instead of the typi-
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Training Approach de-dsb dsb-de dsb-hsb hsb-dsb de-hsb hsb-de
BLEU chrF BLEU chrF BLEU chrF BLEU chrF BLEU chrF BLEU chrF

Supervised 20.8 44.1 25.4 51.3 49.1 65.5 50.7 66.9 25.7 49.1 29.7 53.8
Unsupervised 0.2 8.1 0.1 5.0 10.4 48.6 9.3 44.2 0.5 14.3 0.3 13.6

Table 3: Scores received on the translations obtained by performing supervised and unsupervised approaches for the
WMT22-Unsupervised and Very Low Resource Supervised Task (de: German, dsb: Lower Sorbian, hsb: Upper
Sorbian).

cal ReLU function used. Here too, Adam optimizer
was used, with corresponding beta coefficients set
to 0.9 and 0.98.

5.2 Evaluation Metrics
The BLEU (Papineni et al., 2002) and chrF
(Popović, 2015) metrics were used for evaluation
of the generated translations. The same metrics
were used for evaluation on the shared task leader-
board.

BLEU stands for Bilingual Language Under-
study. BLEU algorithm is used to evaluate machine
translation quality. BLEU metric is language inde-
pendent, and is easy to understand and compute.
Higher the BLEU, better are the translations.

chrF stands for "character n-gram F-score". In-
formally, it measures the amount of overlap of short
sequences of characters (n-grams) between the MT
output and the reference. According to (Mathur
et al., 2020) , chrF is "is technically the macro-
average of n-gram statistics over the entire test
set".

6 Results

For the results, please refer to Table 3. Table con-
tains the BLEU and chrF scores to the translations
that we obtained on all six language pairs (de-dsb,
dsb-de, dsb-hsb, hsb-dsb, de-hsb, hsb-de), by both
supervised and unsupervised approaches. These
scores are obtained from our submissions to the
leaderboard for the Unsup-Very Low Sup Shared
task.

7 Related Work

Machine translation has been a pivotal field
of research in the natural language processing
domain. With rule-based and statistical machine
translation methods proposed in the past decades,
neural machine translation has surpassed these
conventional methods by achieving state-of-the-art
accuracies with each year. In 2014, Bahdanau
(Bahdanau et al., 2015) proposed the base paper for
neural machine translation. According to the paper,

the encoder part of the model encodes the input
sentence into a fixed length vector, from which
the decoder generates the translation. The encoder
and decoder parts could be neural architectures
such as a simple RNN, LSTM (Sherstinsky,
2020), Bidirectional RNN (Schuster and Paliwal,
1997), GRU (Chung et al., 2014), etc. With the
introduction of transformers (Vaswani et al., 2017)
and self-attention in training neural networks,
NMT research got a substantial boost.

German, being pretty high resource in na-
ture; there has been significant work carried
out in German in NMT. The Workshop on
Machine Translation (WMT) has a significant
contribution to the same. Minh-Thang Luong
(Luong et al., 2015) demonstrate two seperate
attention mechanisms (global and local attention)
for bidirectional translations between English
and German, gaining an increase of 5.0 in the
BLEU score over non-attention based techniques.
Macketanz (Macketanz et al., 2021) present the
result of applying a fine-grained test suite on the
outputs of 36 state-of-the-art machine translation
systems between English and German, which were
submitted to the Sixth Conference on Machine
Translation. Xu (Xu et al., 2021) proposed
BiBERT, a bilingual BERT model which helped in
achieving state-of-the-art translation performance
compared to other published papers till date, and
that too without implementing backtranslation
(Edunov et al., 2018). The paper also proposes a
stoicastic layer selection method which helps in
improving translation performance.

Sorbian family of languages have started
receiving attention with regards to NMT research
in the past few years. Li and team (Li et al., 2020)
worked on supervised machine translation for a
few language pairs, which included German-Upper
Sorbian translations. They experimented with
document-enhanced NMT, XLM pretrained
language model enhanced NMT, etc. Their
primary submissions won the first place in the
German to Upper Sorbian Translation directions.
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Knowles and team (Knowles et al., 2020) worked
on implementing ensemble learning in transformer
models for German-Upper Sorbian, built using
BPE-dropout, lexical modifications and backtrans-
lation.

Pertaining to unsupervised learning:
Chronopoulou (Chronopoulou et al., 2020)
propose the LMU Munich System for the WMT
2020 Unsupervised Machine Translation task,
which involves using a pretrained monolingual
model and finetuning it on both German and Upper
Sorbian. Finally, the system uses backtranslation,
and uses the pseudo-parallel data obtained to
finetune the model further. Finally, the paper
ensembles the best best-performing systems
and give state-of-the-art scores on unsupervised
translations between German and Upper Sor-
bian. Edman (Edman et al., 2021) implement
transformer encoder-decoder architectures for
unsupervised NMT from German to Lower
Sorbian. The system has three modifications from
the conventional methodology- training followes
a bilingual approach, instead of a multilingual
system approach. Secondly, a novel method
is introduced for building the vocabulary of an
unseen language. Finally, experimentation is done
with the order of implementation of online and
offline backtranslation. The paper received first
place in the Unsupervised Machine Translation
Task for WMT 2021.

8 Conclusion

Thus, we have implemented supervised and unsu-
pervised neural machine translation approaches for
translation between language pairs consisting of
German(de), Lower Sorbian(dsb), and Upper Sor-
bian(hsb). We utilized different architectures for
implementing the same. Our future plans include
training these models with much larger corpora on
computationally-efficient machines to obtain better
evaluation metric scores and use high-end GPUs
for practical training. We plan to use better pre-
processing techniques and linguistic methods to
improve the usefulness of the final training data to
be fed to the models. We plan to implement back-
translation to improve current translation accuracy,
have longer pre-training, and implement other pre-
trained models such as mBERT and XLM.
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Abstract

We describe our neural machine translation sys-
tems for the WMT22 shared task on unsuper-
vised MT and very low resource supervised
MT. We submit supervised NMT systems for
Lower Sorbian-German and Lower Sorbian-
Upper Sorbian translation in both directions.
By using a novel tokenization algorithm, data
augmentation techniques, such as Data Diversi-
fication (DD), and parameter optimization we
improve on our baselines by 10.5-10.77 BLEU
for Lower Sorbian-German and by 1.52-1.88
BLEU for Lower Sorbian-Upper Sorbian.

Introduction

This paper describes our Machine Translation (MT)
systems for the WMT22 shared task on "Unsu-
pervised MT and Very Low Resource Supervised
MT"1, which features translation between Lower
Sorbian, Upper Sorbian, and German. Lower (dsb
and Upper Sorbian (hsb) are Slavic minority lan-
guages spoken in the Eastern part of Germany with
7.000 and 30.000 native speakers respectively. Text
data for these languages collected and made avail-
able by the Sorbian Institute and the Witaj Lan-
guage Centre (Libovický and Fraser, 2021).

We submit systems for Lower Sorbian-German
and Lower Sorbian-Upper Sorbian in both transla-
tion directions. We focused on the supervised ap-
proach, using only the parallel data made available
by the task organizers for all the above languages.

We were able to improve on our baselines by: i.
employing a new tokenization algorithm, High Fre-
quency Tokenizer (HFT) (Signoroni and Rychlý,
2022); ii. augmenting the original parallel data
with the Data Diversification (DD) technique by
(Nguyen et al., 2020); iii. tuning the architec-
ture and the parameters of the models, such as
encoder/decoder depth, number of attention heads,
dropout, batch size, etc.

1https://statmt.org/wmt22/unsup_and_very_low_res.html

We employed HFT since it aims to obtain more
meaningful subword dictionaries, while DD was
chosen because it does not involve additional data
apart from the original parallel corpus. Both this
techniques are relevant when working with a lim-
ited amount of data.

This paper is structured as follows: Section 1
summarizes the data used in training; Section 2
outlines our methodology, introducing our novel
tokenizer and the models we used; Section 3 sums
up our final systems, while Section 4 relates and
discusses the results of our experiments; Section 5
contains some final remarks.

1 Data

We experiment with Lower Sorbian-German and
Lower Sorbian-Upper Sorbian translation, using
only the parallel data provided for each pair.

The parallel data for the dsb-de and the dsb-hsb
pairs consist of ∼40k and ∼62k sentences respec-
tively. We use only these data, as the approach we
decided to follow does not need additional data. Af-
ter applying this method, our final corpus size for
training is ∼360k sentences for dsb-de, and ∼560k
for dsb-hsb.

2 Methodology

In this section, we first present briefly our novel to-
kenizer, High Frequency Tokenizer, or HFT. Then,
we describe the architecture of our models and how
we trained them.

2.1 High Frequency Tokenization
Sennrich and Zhang (2019) showed that a mean-
ingful subword tokens vocabulary is crucial for
achieving good performance in low-resource NMT.
While they experiment with BPE, we employ our
novel tokenization algorithm, High Frequency Tok-
enizer, or HFT. This word segmentation methods
aims to provide more meaningful subword dictio-
naries by obtaining more frequent, and thus better
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<token-delimiter>

<single-uppercase>
<explicit-whitespace>

<all-uppercase>

<end-of-uppercase>

Figure 1: Special characters in the pretokenization and
tokenization.

represented subwords. Given the importance of
tokenization for low-resource NMT, we argue that
is an important point to consider.

HFT uses the advantage of pretokenization,
where sentences are split into tokens on the borders
of alphanumeric and non-alphanumeric characters.
The current prototype uses the regular expression
\b of the Unix sed2 command . Both the begin-
ning and the end of each token is explicitly anno-
tated, differently from previous systems such as
subword-nmt BPE and sentencepiece.

HFT subwords are learnt from these tokens, they
never cross the token boundaries, each token from
the pretokenization is handled independently from
other tokens. It speeds up both vocabulary learning
and actual subword tokenization.

We also use case normalization for characters
with both uppercase and lowercase. A single upper-
case letter is changed to a special <uppercase-next>
character and lowercase version of the given let-
ter. A sequence of uppercase letters is changed to
lowercase with a special <all-uppercase> and <end-
of-uppercase> characters attached to the beginning
and the end of the sequence. Figure 1 gives the
special characters hft uses in pretokenization and
tokenization.

The learning algorithm starts from a vocabulary
containing all characters from the training text as
possible subwords and the number of occurrences
of the given subword (character). Then, it gradually
increase the vocabulary in the following steps:

1. it processes all the words (tokens) from the
pretokenized text to find the best subword
segmentation using only subwords from the
current vocabulary, counts the frequencies of
each subword and of all possible subword can-
didates (pairs of succeeding subwords);

2. selects the top K candidates with the highest
frequency and adds them as new subwords to

2https://www.gnu.org/software/sed/manual/sed.html

the vocabulary (K is 5% of the target vocabu-
lary size as default);

3. removes from the vocabulary all non-single-
character subwords with frequency lower than
the last added candidate;

4. repeat from 1. until the requested vocabulary
size is reached

The best subword tokenization (in step 1)
searches in all possible subword segmentation se-
quences the one with the lowest number of tokens
and, for same number of tokens, the highest mini-
mum frequency.

We evaluated HFT against Byte-Pair Encoding
(BPE) (Sennrich et al., 2016) and Unigram (Kudo,
2018) on the metrics described by (Gowda and
May, 2020) and on a weighted average of the fre-
quencies of the tokens in the vocabulary. HFT
performed well, providing better results for almost
all test cases. Preliminary data on HFT’s impact on
downstream NMT also showed promising results.
(Signoroni and Rychlý, 2022)

Moreover, during the experimentation for this
task, we further confirmed that using HFT-
tokenized data leads to better translation quality,
calculated with sacreBLEU (Post, 2018), against a
subword-nmt BPE baseline.

2.2 Data Diversification

For our final models we follow the Data Diversifica-
tion (DD) approach of Nguyen et al. (2020). While
most of the research in low-resource NMT avails it-
self of external data by employing techniques such
as backtranslation and transfer learning, this sim-
ple, yet effective method does not need any external
data, but only the original parallel corpus. The DD
procedure is the following:

1. Train k different models on the authentic paral-
lel corpus, in both the forwards and backwards
directions;

2. Infer the translations with all the trained mod-
els, so to obtain k synthetic source and target
data;

3. merge the translations to create a new parallel
dataset, which comprises the original parallel
data, plus an authentic source to synthetic tar-
get, and a synthetic source to authentic target
section;
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Figure 2: Sample of Lower Sorbian text tokenized with HFT.

4. Train new models on these augmented parallel
data;

5. repeat for n rounds.

Since Nguyen et al. (2020) reports that addi-
tional rounds of DD do not boost the performance
of the resulting systems significantly, our systems
were trained after just one round of DD. We have a
level of diversification k=4, since we included all
the previous experiments models’ output, plus the
original parallel data.

2.3 Preprocessing
We use both training and development test data
as provided, without cleaning of any kind. We
tokenize the data with two subword tokenization al-
gorithms, BPE and HFT. For the former, we use the
subword-nmt implementation. For HFT, we use
our own implementation. We experiment with dif-
ferent vocabulary sizes, and our results are in line
with previous research, such as Sennrich and Zhang
(2019). They showed that a smaller vocabulary
sizes improves the performance of low-resource
NMT. In line with these findings, our experiments
with vocabulary size of 12k and 10k, even if well
below the standard 32k, performed worse than our
final choice of 4k tokens.

We train a tokenizer for each language on the
train split of the datasets, and share the dictionaries
during all the stages of training.

2.4 Models
Table 1 gives details about the architecture and
training parameters of each model we trained.

We experiment with two different model archi-
tectures, both based on the Transformer (Vaswani
et al., 2017). The first, which we dubbed t-[tok]3,
is a standard Transformer (Vaswani et al., 2017);
while the second, called and t-opt-[tok], is a Trans-
former with optimized parameters for the size of
the dataset.

We use Fairseq (Ott et al., 2019) for training
the models, generating translations, and evaluating
them.

3We trained models on data tokenized both with BPE and
HFT. Since they share the same architecture and training pa-
rameters, [tok] stands either for bpe or hft.

As our baseline, we train a Transformer
(Vaswani et al., 2017) with default hyper param-
eters and BPE tokenization, which we refer to as
t-bpe. 4 As a first experiment, we train t-hft, a stan-
dard Transformer trained on data tokenized with
HFT. We use adam as optimizer and we maximize
BLEU score on the validation set at each epoch.
For the BPE models, we use detokenized BLEU,
but for HFT this was not implemented during train-
ing. We train both t-[tok] models for 100 epochs
with dropout of 0.1, and 10240 maximum tokens
for each batch. We use a learning rate of 0.0005
and the inverted square root scheduler for all of our
models.

Secondly, we train another Transformer with the
optimized hyper parameters found by (Araabi and
Monz, 2020) for a dataset of 40k sentence pairs:
5 encoder/decoder layers, 2 attention heads, and a
feed-forward dimension of 2048. During our exper-
iments, however, we observed that a feed-forward
dimension of 1024 gives better results. We do this
with data tokenized with both methods, obtaining t-
opt-bpe and t-opt-hft. These models are trained for
100 epochs, with dropout of 0.3, label smoothing
of 0.5, encoder and decoder word dropout of 0.1,
activation dropout of 0.3, and a maximum batch
size of 4096 tokens.

Lastly, we build the DD parallel corpus by col-
lating the outputs of all previous systems in both
directions, beginning with the authentic parallel
data, and adding both combinations of original and
synthetic source and target data. We then use the
DD-data to train both t-bpe-dd and t-hft-dd, which
share the same architecture the t-[tok] models. The
training is also similar, just differing in the number
of epochs, which for these last models is 50.

2.5 Evaluation

To find our best candidates for submission, we gen-
erate translation on a development test set of un-
seen sentence pairs, either provided by the task
organizers, or set aside from the train portion of the
data. We produce translations with the standard set-
tings (beam search with a beam of 5) using the best

4We still use a vocabulary size of 4k, which is already an
improvement on the standard size of 32k.
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PARAMETER
MODEL

t-[tok] t-opt-[tok] t-[tok]-dd
Vocabulary size 4000 4000 4000
feed-forward dimension 2048 1024 2048
attention heads 8 2 8
dropout 0.1 0.3 0.3
enc/dec layers 6 5 6
label smoothing 0.1 0.5 0.1
enc/dec word dropout 0.0/0.0 0.1/0.1 0.0/0.0
activation dropout 0.0 0.3 0.0
max tokens 10240 4096 10240

Table 1: Architecture details and training parameters for each model.

DSB-DE DE-DSB DSB-HSB HSB-DSB
t-bpe 27.92 22.74 72.01 69.71
t-hft 34.20 30.86 72.21 70.71
t-opt-bpe 29.75 25.06 71.37 69.50
t-opt-hft 35.46 31.12 71.83 68.95
t-bpe-dd 33.02 28.54 73.47 71.98
t-hft-dd 38.42 33.53 73.53 71.59

Table 2: Trained models and BLEU score during inference on development test data

checkpoint of each model and evaluate the detok-
enized output with sacreBLEU (Post, 2018). For
the BPE models, we detokenize with the provided
argument, while for HFT we use our own plug-in
script. We use the same settings to translate the
test set for our submissions. Table 2 gives BLEU
scores, computed on the development test sets, for
each system we experimented with.

During inference on the development test set,
models trained on HFT data outperformed the BPE
baseline by 4.99 to 8.12 BLEU for the dsb-de pair,
while for dsb-hsb the difference in score is minimal.
t-opt-[tok] was better than the corresponding t-[tok]
model in the dsb-de pair. For dsb-hsb, this does
not hold true, with t-opt-[tok] always performing
worse than the baseline. t-[tok]-dd improves on
both the baseline and t-opt-[tok] for every language
pair and direction.

2.6 Inconclusive and Negative Results

During DD, we collated data from all four experi-
mental models for each pair, both t-[tok] and t-opt-
[tok], regardless of their performance. This later
resulted in our best systems. For the dsb-de pair,
we also tried to ensemble data from the four best
performing systems to create the DD train set, all
from HFT data and ranging from 34.99 to 37.20
BLEU on the dsb-de side, and 31.12 to 30.42 on

the reverse direction. This was done with the in-
tuition that better train data should result in better
performance. However, after training t-[tok]-dd
on these data, the resulting system that performed
worse by -0.58, giving 37.84 BLEU on the develop-
ment test set. In contrast, the final t-[tok]-dd gave
us 38.42 BLEU, and was trained on data generated
with systems ranging from 27.92 to 35.46 BLEU
on the dsb-de side, and from 22.74 to 31.12 for the
reverse direction.

While this small difference in BLEU score may
not be significative, further investigation should be
conducted as this may indicate that a more diverse
dataset is better than one with a higher quality for
training with NMT systems with DD. Our initial
hypothesis for why this happens is that being the
systems’ performance closer, the translations they
generate are similar. This leads to worse general-
ization potential for the resulting final system.

3 Final Systems

Table 3 gives BLEU and chrF scores for our final
submissions.

For all pairs and directions we worked on, our
best systems was t-hft-dd, a Transformer trained
on a single NVIDIA A405 for 50 epochs on DD

5Previous systems were always trained on a single GPU,
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t-hft-dd

DSB-DE
BLEU 49.5
chrF 73.0

DE-DSB
BLEU 50.5
chrF 74.1

DSB-HSB
BLEU 72.2
chrF 87.5

HSB-DSB
BLEU 72.3
chrF 87.5

Table 3: BLEU and chrF scores for our best systems on
the final test set.

HFT-tokenized data, with a vocabulary size of 4k,
feed-forward dimension of 2048, dropout 0.3, and
10240 for each batch.6

Our hypotheses on why HFT leads to improve-
ments on these datasets are the following. On top
of providing more frequent and better defined token
for the model to learn, it also explicitly marks both
beginning and end of the words during pretokeniza-
tion. This could be relevant for morphologically
complex languages, such as the ones in this task,
since it provides more information to the model
on possible prefixes and suffixes. Contrast this
with the fact that subword-nmt BPE only explic-
itly mark continuation with the @@ marker. This
kind of tokenization thus makes no distinction be-
tween full words and word endings. Moreover, it
seems to struggle with capitalized words and punc-
tuation, which can also be informative, if handled
optimally. HFT’s pretokenization seems to help
with this issue. Investigating these topics will be
further addressed by future work.

4 Conclusions

This paper described our submission for the
WMT22 shared task on Unsupervised MT and
Very Low Resource Supervised MT. We presented
systems for Lower Sorbian-German and Lower
Sorbian-Upper Sorbian translation in both direc-
tion under supervised training conditions. To train
our best systems we employed a novel tokenization
algorithm, HFT, to obtain more meaningful sub-
word vocabularies, contrasted to a BPE baseline;
and Data Diversification (Nguyen et al., 2020) to
augment the training data using only the parallel
dataset provided for each language pair.

variably on a A40, A100 or a Tesla T4. Training times did not
exceed 12 hours for both t-[tok]-dd systems.

6Every other unmentioned parameter was left at the default
setting.

During our experiments we confirmed that opti-
mizing not only the Transformer’s hyper param-
eters, but also the subword vocabulary quality
and size, are crucial steps for low-resource NMT.
Choosing the appropriate vocabulary size for the
dataset, could lead to significant improvements in
BLEU score even with a small amount of parallel
data. These, however, are still open and complex
problems, since previously proposed settings or,
even more so default ones, did not always provide
the best results.

Limitations and Future Work

While providing NMT systems for Lower Sorbian-
German and Lower Sorbian-Upper Sorbian that per-
form reasonably well, some other methods, some
of which were used by other submissions, could
provide better results. These should be taken into
account, if a system for these language pairs will
be deployed for language conservation, revitaliza-
tion, or everyday use. Such system may also be
hampered by the limited scope of the training data,
which is inherent in their size. As for other low-
resource and, especially for endangered languages,
documentation ventures such as those of the Sor-
bian Institute and the Witaj Language Centre are
vital to create bigger, more comprehensive datasets,
which are still needed for the current NLP method-
ologies to work at their best.

Ethics Statement

NMT systems are, as every other data-driven tech-
nology, sensible to biases and other shortcomings
in their training data. De-biasing datasets and NLP
systems’ output is a scope of research that lies out-
side the scope of this shared task and thus, from
the scope of this paper. If these systems were to be
employed in a real-world scenario such as language
conservation, revitalization or everyday translation,
we advise caution as to the limitations mentioned
above.

Following Lacoste et al. (2019), we report that
the experiments and the research that led to the
results presented in this paper were conducted
on a private server infrastructure consisting of a
NVIDIA Tesla T4, A40, and A100 for around 500
hours of training at an efficiency of 0.59 kg/kWh7

for a total of 20.39 kg CO2 eq.

7The Czech Republic’s country average as reported
in https://www.carbonfootprint.com/docs/2018_8_electricity_
factors_august_2018_-_online_sources.pdf
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Abstract

This paper presents our submissions to WMT
22 shared task in the Unsupervised and Very
Low Resource Supervised Machine Translation
tasks. The task revolves around translating be-
tween German↔ Upper Sorbian (de↔ hsb),
German↔ Lower Sorbian (de↔ dsb) and Up-
per Sorbian↔ Lower Sorbian (hsb↔ dsb) in
a both unsupervised and supervised manner.
For the unsupervised system, we trained an
unsupervised phrase-based statistical machine
translation (UPBSMT) system on each pair in-
dependently. We pretrained a German-Slavic
mBART model on the following languages Pol-
ish (pl), Czech (cs), German (de), Upper Sor-
bian (hsb), and Lower Sorbian (dsb). We then
fine-tuned our mBART on the synthetic par-
allel data generated by the (UPBSMT) model
along with authentic parallel data (de↔ pl, de
↔ cs). We further fine-tuned our unsupervised
system on authentic parallel data (hsb↔ dsb,
de↔ dsb, de↔ hsb) to submit our supervised
low-resource system.

1 Introduction

Like most machine learning approaches, data can
be considered the most important component of the
recipe for modeling a solution for a given problem.
Neural machine translation relies heavily on a large
amount of training data to correctly model two lan-
guages and learn the mapping between them to
produce semantically and syntactically right trans-
lations. However, machine translation is not avail-
able for the majority of the 7000 languages spoken
on the earth. This is due to the fact that parallel cor-
pora are scarce or non-existent. There have been
several proposals to alleviate the issue of small
amounts of parallel data such as pivot translation,
multilingual training, and semi-supervised training
which resulted in an acceptable performance.
Unsupervised machine translation became the go-
to solution when lacking parallel data. The WMT
2022 Unsupervised MT Task focuses on two very

low-resource languages: Upper Sorbian (HSB) and
Lower Sorbian (DSB). Upper and Lower Sorbian
are minority languages spoken in the federal states
of Saxony and Brandenburg in Eastern Germany.
With just 30,000 and 7,000 native speakers, work-
ing on these languages is an extreme low-resource
task, with little prospect of ever approaching the
number of resources available for languages with
millions of speakers. However, because they are
western Slavic languages, the Sorbian languages
can benefit from Czech and Polish data (Libovický
and Fraser, 2021).
In this paper, we describe our systems for translat-
ing between German↔ Upper Sorbian (de↔ hsb),
German↔ Lower Sorbian (de↔ dsb), and Upper
Sorbian↔ Lower Sorbian (hsb↔ dsb) in a both
unsupervised and supervised manner.
We approach the task by combining two novel
approaches for unsupervised machine translation.
Influenced by (Artetxe et al., 2019), we start by
developing unsupervised phrase-based statistical
machine translation systems (UPBSMT) for all lan-
guage pairs independently. In contrast to (Artetxe
et al., 2019), (Lample and Conneau, 2019) relies
on pre-training an XLM model on the source and
target language to capture the translation signal
instead of using (UPBSMT). Instead, we benefit
from both the pre-training and UPBSMT. So, we
pre-train an mBART model (Liu et al., 2020) on
Polish, Czech, Upper Sorbian, Lower Sorbian, and
German from scratch as we mentioned earlier that
pl and cs are similar to dsb and hsb. We then fine-
tune mBART on synthetic parallel data (de),(de↔
hsb) and (hsb↔ dsb) along with authentic parallel
data (de↔ pl, de↔ cs).
We group pl, cs, dsb, hsb under one token slavic
while feeding it to the encoder. For our low-
resource submission, we fine-tune the unsupervised
model on the authentic parallel data provided by
the task between (de↔ hsb),(de↔ dsb), and (hsb
↔ dsb).
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Our unsupervised approach scored the highest
BLEU in all directions except (de↔ dsb) direction.

2 Related Work

The earliest approach on Unsupervised Machine
Translation was introduced by (Ravi and Knight,
2011) where they frame the MT task as a decipher-
ment task, treating the target language as cipher
text of English. Their method is essentially the
same approach taken by cryptanalysts and epigra-
phers when they use the source texts. They started
by estimating the word translation probabilities us-
ing a devised Iterative EM algorithm, due to the
huge consumption of memory since they operate
on large-scale vocabularies. Followed by that, they
propose a novel approach based on Bayesian De-
cipherment that outperformed the previous EM ap-
proach in all aspects. After that they build an n-
gram translation table that was used to estimate an
IBM Model 3 translation model, the highest BLEU
(Papineni et al., 2002) score achieved was 19.3 on
the Spanish-English OPUS subtitles data.
(Artetxe et al., 2019) provide a two-step solution
to unsupervised machine translation. For step one,
they start by building an UPBSMT system between
source and target languages. Resulting in two
translation models: source-to-target and target-to-
source models. Using these models, they back-
translate target monolingual data using the target-
to-source model to generate ( ˆsrc, trg) pairs that
will be used to train the source-to-target neural
model. Similarly, they back-translate the source
monolingual using the source-to-target model to
generate (src, ˆtrg) pairs that will be used to train
the target-to-source neural model.
The second step is training two neural models,
source-to-target and target-to-source, using the syn-
thetic data generated from step 1 using iterative
back-translation. The first iteration relies solely on
data generated by UPBSMT, the following itera-
tions substitute a percentage of synthetic data gen-
erated by UPBSMT by back-translated data from
the neural model in the reverse direction. Until
the whole training data is back-translated from the
reverse model. In contrast, (Lample and Conneau,
2019) starts by pre-training an XLM encoder on
Masked Language Modeling (MLM) task on the
source and target languages.
After pre-training, they initialize an encoder-
decoder model using the pre-trained XLM encoder.
Their training step is composed of three tasks :

1. Denoising Auto encoding.

2. Cross Domain (Back-translation).

3. Adversarial Loss.

In our work, we combine the two methods. But in-
stead of using neural iterative back-translation, we
add authentic parallel data from related languages.

3 Approach

Inspired by (Artetxe et al., 2019) and (Lample and
Conneau, 2019), we adapted a mixed approach to
mitigate the weaknesses and combine the advan-
tages of both methods. (Artetxe et al., 2019) use
UPBSMT as an explicit initial translation signal to
train two translation models from scratch on a trans-
lation task. But, UPBSMT’s output is noisy and the
translation model is trained from scratch without
any denoising pre-training objective. In contrast,
(Lample and Conneau, 2019) pre-trains an XLM
encoder on MLM task and then use it to initialize a
seq2seq model which will be trained to translate in
an unsupervised manner as we discussed in Section
2. Although (Lample and Conneau, 2019) didn’t
train the translation model from scratch, they relied
solely on the three training tasks discussed earlier
to capture the cross-lingual translation signal in
contrast to (Artetxe et al., 2019) who used an ex-
plicit cross-lingual translation signal.
We combine the best of both worlds by using UPB-
SMT as our initial translation signal to fine-tune a
pre-trained mBART model on a multilingual trans-
lation task.

3.1 Unsupervised Phrase-based Statistical
Machine Translation

We followed (Artetxe et al., 2018) approach to
build an unsupervised phrase-based statistical ma-
chine translation system between the following
pairs : (de → dsb), (de → hsb), (dsb → de),
(hsb→ de), (hsb→ dsb) and (dsb→ hsb).
Using the above models, we back-translated mono-
lingual data of lang1 to ˆlang2 which will be used
to train the reverse direction model as following :

1. de translated by (de → dsb) model, produc-
ing ( ˆdsb, de) pairs to train the (dsb → de)
neural direction.

2. de translated by (de → hsb) model, produc-
ing (ĥsb, de) pairs to train the (hsb → de)
neural direction.
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3. dsb translated by (dsb→ de) model, produc-
ing (d̂e, dsb) pairs to train the (de → dsb)
neural direction.

4. hsb translated by (hsb→ de) model, produc-
ing (d̂e, hsb) pairs to train the (de → hsb)
neural direction.

5. dsb translated by (dsb→ hsb) model, produc-
ing (ĥsb, dsb) pairs to train the (hsb→ dsb)
neural direction.

6. hsb translated by (hsb → dsb) model, pro-
ducing ( ˆdsb, hsb) pairs to train the (dsb →
hsb) neural direction.

3.2 German-Slavic mBART pre-training

Since Lower and Upper Sorbian are West-Slavic
languages, their direct cousins in the West-Slavic
family tree are Polish (pl) and Czech (cs). Polish
and Czech are high-resource languages with a large-
scale availability of both monolingual and parallel
data. We pre-trained mBART model (Liu et al.,
2020) from scratch on denoising auto-encoding
objective on Polish (pl), Czech (cs), Upper Sorbian
(hsb), Lower Sorbian (dsb), German (de).

3.3 mBART fine-tuning

Using the generated synthetic parallel data pro-
duced from UPBSMT step discussed in Section
3.1 along with authentic (pl → de) and (cs →
de) from OPUS (Tiedemann, 2012). We fine-
tuned our German-Slavic mBART on translation on
(pl → de), (cs → de), (de ↔ dsb), (de ↔ hsb),
(hsb ↔ dsb). Taking advantage of the similarity
between (pl, cs, dsb, hsb), we grouped those lan-
guages under one language token (slavic) which
is fed to the encoder of our mBART. This approach
constructs our unsupervised submission.
For the low-resource submission, we further fine-
tuned the resulted model on authentic parallel data
provided by the task.

4 Experiments

In this section, we describe our experimental setup
and results. Readers can refer to our GitHub Repos-
itory 1 for training scripts, checkpoints, hyper-
paramters etc.

1https://github.com/ahmadshapiro/WMT22

4.1 Data Pre-processing

We follow (Artetxe et al., 2019) cleaning approach
as following :

1. normalize-punctuation.perl script from
Moses library to normalize punctuations.

2. remove-non-printing-char.perl script
from Moses library to remove non-printing
characters.

3. Tokenizing using Moses Tokenizer.

4. Deduplication.

5. Cleaning by length, with minimum and maxi-
mum of 3 and 80 words respectively.

Language Datasets Sentences

Polish (pl)
europarl-v10

news-crawl 2018 to 2021
Total

706,047
12,653,333
13,359,380

Czech (cs)

europarl v10
news-commentry v14-16
news-crawl 2007 to 2021

Total

669,676
825,841

109,599,883
111,095,400

German (de)

europarl v10
news-commentry v14-16
news-crawl 2007 to 2021

Total

2,107,971
1,259,790

428,057,920
431,425,681

Upper Sorbian (hsb)

Witaj (2020)
Sorbian-Insitute (2020)

Task Data (2022)
Total

222,027
339,822
436,579
998,428

Lower Sorbian (dsb)

Task Data (2021)
Task Data (2022)

Task Data : Wiki (2022)
Total

145,198
66,407
8,814

220,419

Table 1: Monolingual Data sets used in our experiments

4.2 Unsupervised Statistical Machine
Translation Data

We use monolingual data of German, Upper Sor-
bian and Lower Sorbian stated in Table 1. We
used a 20MILL random sample from the German
monolingual data. The output of the UPBSMT is
synthetic parallel data that will be used to fine-tune
the pre-trained mBART on the unsupervised trans-
lation task. The number of synthetic parallel data
is shown in Table 2.
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Language Sentences

dsb→ de 19,486,715

de→ dsb 155,683

hsb→ de 19,486,715

de→ hsb 873,794

hsb→ dsb 873,794

dsb→ hsb 155,683

Table 2: Synthetic Parallel Data Generated by UPBSMT

4.3 mBART Pre-training
We pretrained mBART on 32 V100 GPUs from
scratch for less than 2 epochs (24hrs) on all mono-
lingual data from Table 1. We learned 32k BPE
codes using SentencePiece Library (Kudo and
Richardson, 2018) on the concatenation of all
monolingual data. This SentencePiece model will
be used for the rest of neural experiments involv-
ing mBART. The average valid perplexity for all
languages reached 4.16. We decided to stop train-
ing due to the time limit. All of our neural mod-
els were developed using FairSeq Framework (Ott
et al., 2019).

4.4 mBART Fine-tuning (Unsupervised
Submission)

We fine-tuned our pre-trained mBART on trans-
lation task using authentic parallel data of (pl-de,
cs-de) shown in Table 3 along with all synthetic par-
allel data shown in Table 2. We grouped (hsb, dsb,
pl, cs) under one token (slavic) which is passed to
mBART encoder as we discussed earlier in Section
3.3. The training was done on 27 V100 GPUs for
less than 1 epoch (24hrs).

4.5 mBART Fine-tuning (Low Resource
Submission)

We further fine-tuned mBART on authentic paral-
lel task data of (hsb-de, dsb-de, hsb-dsb) shown
in Table 3 for 3 epochs to submit our supervised
model.

5 Results

In this section, we present our results on the blind
test set of WMT 22 workshop.

5.1 Unsupervised Submission
Our approach scored the highest BLEU in all pairs
except the (de↔ dsb) directions. This can be at-

Language Datasets Sentences

pl-de

DGT
JRC-Acquis

MultiParaCrawl
EUbookshop

Europarl
QED

12,375,574

cs-de

DGT
JRC-Acquis

MultiParaCrawl
EUbookshop

Europarl
QED

12,427,403

hsb-de

Task Data (2020)
Task Data (2021)
Task Data (2022)

Total

60,000
87,521
301,536
448,787

dsb-de Task Data (2022) 40,193

hsb-dsb Task Data (2022) 62,564

Table 3: Authentic Parallel Data sets from OPUS (Tiede-
mann, 2012) used in our experiments

tributed to the fact of having multiple errors in the
UPBSMT experiment on this specific pair. Due to
the time limit, we had to use the un-tuned/corrupted
models for this pair. In contrast, (de ↔ hsb) di-
rections models scored almost 18.0 BLEU score.
Surprisingly, this can reflect the importance of the
UPBSMT component in our experiments, since hsb
and dsb are hugely similar. But, due to an error in
the UPBSMT training, the former hugely outper-
formed the latter. Results are reported in Table 4.

Direction BLEU

dsb→ de 4.0

de→ dsb 1.2

hsb→ de 18.0

de→ hsb 17.9

hsb→ dsb 35.9

dsb→ hsb 44.2

Table 4: Unsupervised results on Blind Test data of
WMT22
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5.2 Low Resource Submission

As shown in Table 5, further fine-tuning on au-
thentic parallel data improved BLEU score in all
directions even the corrupted (de↔ dsb) directions.
Our model was constantly improving through up-
dates, but we had to stop the training due to time
constraints. We didn’t use any low-resource tech-
niques such as back-translation, BPE dropout, etc.

Direction BLEU

dsb→ de 39.4

de→ dsb 48.2

hsb→ de 47.5

de→ hsb 51

hsb→ dsb 66.6

dsb→ hsb 65.8

Table 5: Supervised results on Blind Test data of
WMT22

6 Conclusion and Future Work

In this paper, we describe our submission to the
WMT 2022 shared task of Unsupervised and Very
Low Resource Supervised Machine Translation.
We combined the advantages and mitigated the
weaknesses of two novel unsupervised approaches
along with pre-training a German-Slavic mBART
model. Ablation studies for different components
of our approach are left for future work.
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Jindřich Libovický and Alexander Fraser. 2021. Find-
ings of the wmt 2021 shared tasks in unsupervised
mt and very low resource supervised mt. In Proceed-
ings of the Sixth Conference on Machine Translation,
pages 726–732, Online. Association for Computa-
tional Linguistics.

Yinhan Liu, Jiatao Gu, Naman Goyal, Xian Li, Sergey
Edunov, Marjan Ghazvininejad, Mike Lewis, and
Luke Zettlemoyer. 2020. Multilingual denoising pre-
training for neural machine translation. Transac-
tions of the Association for Computational Linguis-
tics, 8:726–742.

Myle Ott, Sergey Edunov, Alexei Baevski, Angela Fan,
Sam Gross, Nathan Ng, David Grangier, and Michael
Auli. 2019. fairseq: A fast, extensible toolkit for
sequence modeling. In Proceedings of the 2019 Con-
ference of the North American Chapter of the Associa-
tion for Computational Linguistics (Demonstrations),
pages 48–53, Minneapolis, Minnesota. Association
for Computational Linguistics.

Kishore Papineni, Salim Roukos, Todd Ward, and Wei-
Jing Zhu. 2002. Bleu: a method for automatic evalu-
ation of machine translation. In Proceedings of the
40th Annual Meeting of the Association for Compu-
tational Linguistics, pages 311–318, Philadelphia,
Pennsylvania, USA. Association for Computational
Linguistics.

Sujith Ravi and Kevin Knight. 2011. Deciphering for-
eign language. In Proceedings of the 49th Annual
Meeting of the Association for Computational Lin-
guistics: Human Language Technologies, pages 12–
21, Portland, Oregon, USA. Association for Compu-
tational Linguistics.

Jörg Tiedemann. 2012. Parallel data, tools and inter-
faces in opus. In Lrec, volume 2012, pages 2214–
2218. Citeseer.

1121



Proceedings of the Seventh Conference on Machine Translation (WMT), pages 1122–1125
Abu Dhabi, December 7–8, 2022. ©2022 Association for Computational Linguistics

NICT at MixMT 2022: Synthetic Code-Mixed Pre-training and
Multi-way Fine-tuning for Hinglish–English Translation

Raj Dabre
National Institute of Information and Communications Technology (NICT)

Kyoto, Japan
raj.dabre@nict.go.jp

Abstract
In this paper, we describe our submission to
the Code-mixed Machine Translation (MixMT)
shared task. In MixMT, the objective is to trans-
late Hinglish to English and vice versa. For
our submissions, we focused on code-mixed
pre-training and multi-way fine-tuning. Our
submissions achieved rank 4 in terms of auto-
matic evaluation score. For Hinglish to English
translation, our submission achieved rank 4 as
well.

1 Introduction

Code-mixed translation is the task of translation
involving code-mixed languages. A code-mixed
language is one which combines words as well as
grammar of two or more languages. Code-mixed
translation is difficult because of the lack of train-
ing data for the same despite its ubiquitous usage.
One widely used code-mixed language is Hinglish
which combines Hindi and English. Hinglish sen-
tences are typically constructed either by replacing
some Hindi words or phrases with English ones in
a Hindi sentence or vice versa. Sometimes, a sen-
tence starts off in one language but ends in another.
There are also complex cases where the grammat-
ical structures of both languages are melded into
one. Hinglish is typically written in Roman let-
ters, although there are cases when it is written in
Devanagari.

In this paper we describe our submissions to the
MixMT task which involves Hinglish to English
and English/Hindi to Hinglish translation. The
main challenge of this task is that the parallel cor-
pus available for training models is rather scarce.
The total amount of clean, non-synthetic data avail-
able for MixMT is around 18,000 examples for
both directions. Therefore, we have no choice but
to rely on external sources of data, and use them to
pre-train models. In our case, we leverage a large
amount of Hindi–English parallel data and synthe-
size pseudo Hinglish data. To do this, perform

word alignment on the Hindi–English data and
then replace random English phrases with aligned
Hindi phrases. We then use the synthetic Hinglish–
English parallel data for pre-training. The pre-
trained model is then fine-tuned to train a joint bidi-
rectional Hinglish–English translation model. Ac-
cording to the automatic evaluation metrics, we ob-
tain 4th rank and on human evaluation of Hinglish
to English translation, we also obtain 4th rank. Un-
fortunately, for translation into Hinglish our sys-
tem ends up copying the English inputs as outputs.
Although automatic evaluation scores for this are
reasonably high, their human evaluation scores are
lowest since the sentences are not Hinglish at all.

2 Related Work

Work on code-mixed machine translation is rela-
tively new, especially for Hinglish. Two impor-
tant works in this regard are HinGE (Srivastava
and Singh, 2021) which proposes a dataset for En-
glish/Hindi to Hinglish translation and PHINC (Sri-
vastava and Singh, 2020) which proposes a dataset
for Hinglish to English translation. The HinGE
dataset contains natural as well as human rated syn-
thetic examples in both Hindi and English as source
languages. Having two sources is expected to help
in Hinglish generation, as the model will have the
advantage of contexts from both sources. In our
case, we did not leverage both sources and focused
only on English. On the other hand, PHINC is de-
signed for Hinglish to English translation and is
much larger than HinGE. Neither of these datasets
are perfect and contain some noisy examples, but
the lack of other datasets leaves us with no choice.

Due to lack of code-mixed data, it is natural to
consider synthetic code-mixed data creation where
Gupta et al. (2020) show that leveraging an XLM
model (CONNEAU and Lample, 2019) and linguis-
tic features can help generate high quality code-
mixed sentences. However, we opted for a quicker
way using word alignment and phrase substitution

1122



approach. Using pre-trained models, can be very
helpful in code-mixed translation as they are able
to represent them effectively (Santy et al., 2021).
Agarwal et al. (2021) have shown that pre-trained
models (Liu et al., 2020) are highly effective, but
we focused more on using our own models trained
on our synthetic data.

Apart from machine translation, code-mix
Hinglish has been reasonably explored for natu-
ral language understanding tasks, particularly for
sentiment analysis. We refer interested readers to
the following works: Baroi et al. (2020); Singh and
Lefever (2020); Mathur et al. (2018); Bhange and
Kasliwal (2020).

3 Methods

We describe the synthetic code mixed pre-training
and multi-way fine-tuning approaches we used for
our submissions.

3.1 Synthesizing Code-Mixed Data

We assume the existence of a large amount of
Hindi–English parallel corpus, which we use to
synthesize Hinglish. Since Hinglish is written in
the Roman alphabet, we first Romanize it. We then
use an aligner to obtain word alignments between
Hindi and English. For each English sentence, we
take a random span of tokens, find the correspond-
ing aligned span of tokens in Hindi and replace it
with the English tokens span. We note that this
assumes that the language structure of Hindi is
preserved in this process. To determine the span
in the target language, we find the indices of the
aligned target words and then choose the smallest
as the starting index and the largest as the ending
index as the span to be replaced. This is known as
the min-max approach, which was used by Zenkel
et al. (2021). As a result of this process we obtain
a Hinglish–English parallel corpus where Hinglish
is synthetic.

3.2 Code-mixed Pre-training

We train a multilingual model (Dabre et al., 2020;
Firat et al., 2016; Johnson et al., 2017) model for
synthetic Hinglish to English and English to syn-
thetic Hinglish. We append a token indicating the
source language at the end of the source sentence
and a token indicating the target language at the
beginning of the target sentence. This bidirectional
model is trained till convergence on the develop-
ment set provided by the organizers after the dev set

evaluation phase. We expect that code-mixed pre-
training, even if the Hinglish is synthetic, should
help overcome the scarcity of code-mixed parallel
corpus.

3.3 Multi-way Fine-tuning

We fine-tune the pre-trained model on Hinglish
to English and English to Hinglish jointly. We
use a small subset of the English side1 of our
synthetic data and the entire clean parallel corpus
(PHINC+HinGE) together. We do this to prevent
the model from overfitting on the small training
data. The English subset is used as the source as
well as the target and hence, in order to prevent
the model from learning to copy the English data,
we randomly mask spans of English tokens on the
source. This is the same as denoising, which is
used in BART (Lewis et al., 2020). This concept
of using the pre-training data along with the fine-
tuning data is also known as mixed fine-tuning
(Dabre et al., 2019; Chu et al., 2017). As during
pre-training, the development set data is used.

4 Experiments

We describe our experiments in our submissions.

4.1 Datasets and Pre-processing

We use the PHINC and HinGE datasets for our
experiments. We do not use the synthetic parts of
HinGE. During our preliminary experiments we
used the development data provided with HinGE
but found it to be unreliable and therefore used
the development data provided after the first eval-
uation phase. We combined the data from both
sources and overall we had 18,095 training in-
stances for each direction for a total of 36,190
training instances. Note that HinGE has sources in
English as well as Hindi, and this is also available
for the development and test sets for translation
into Hinglish. However, we do not explore multi-
source translation in this paper. For pre-training,
we used the Hindi–English part of the Samanan-
tar dataset2 (Ramesh et al., 2022) which contains
8.56M parallel sentences. We used the Romaniza-
tion script from the Indic NLP Library3 to convert

1We do not use the Hinglish side since it’s synthetic and
do not want it to interfere in the learning of actual Hinglish.

2https://indicnlp.ai4bharat.org/
samanantar/

3https://github.com/anoopkunchukuttan/
indic_nlp_library
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Direction Rouge-L WER Human Rating
Hinglish→ English 0.52878 (4) 0.71517 (4) 2.85
English→ Hinglish 0.46276 (4) 0.79271 (5) 1.00

Table 1: Official results of evaluation of Hinglish to English and English to Hinglish.

Devanagari to the Roman alphabet for Hindi. No
other pre-processing was done.

4.2 Model Training and Decoding

We train transformer models (Vaswani et al., 2017)
using the transformer-big settings. We used the
YANMTT toolkit4 (Dabre and Sumita, 2021) for
training our models. We trained a joint Hinglish
and English tokenizer of 16,000 subwords using
all the synthetic and real training data we had. Pre-
training was done on 8 NVIDIA V100 GPUs till
convergence on the development data. (Mixed)
Fine-tuning was done on a single GPU due to the
relatively smaller size of the data. Once training has
converged, we choose the checkpoints giving the
highest development scores for decoding the test
sets. We experimented with both BLEU and Rouge-
L as metrics to determine convergence, but used
BLEU as it is much stricter. We decode using beam
search with a beam size of 32 and a length penalty
of 1.6 both of which are empirically determined on
the development set.

4.3 Results

Table 1 shows the official results obtained using
the official evaluation servers. The organizers use
Rouge-L and Word Error Rate (WER) as well as
Human Ratings by evaluating 50 translations from
our submissions. Overall, our automatic evaluation
scores achieved a rank of 4 out of 8 participants.
Compared to some of the baselines trained using
only HinGE and PHINC, our main results using
pre-training and fine-tuning are vastly better.

4.4 Analysis

We got a human rating score of 1 for translation into
Hinglish and upon investigation we noted that our
model simply copies the English sentence to the tar-
get. We are not sure why this happens. Regardless,
on the development set, copying seems to give high
BLEU and Rouge-L scores. However, the output is
not Hinglish and is heavily penalized. We also did
not conduct back-translation (Sennrich et al., 2016)
of English into Hinglish due to this issue. We will

4https://github.com/prajdabre/yanmtt

probe our models deeper to understand why this
happens. Due to lack of access to the official eval-
uation interface after the submission deadline, we
were unable to conduct additional experiments.

5 Conclusion

In this paper, we have described our submission to
the MixMT shared task at WMT 2022. We have
used a combination of synthetic Hinglish–English
parallel data creation, pre-training and fine-tuning
to obtain our submissions which ranked 4th. Our
analyses reveal that our English to Hinglish transla-
tion model actually ended up copying the English
sentence as target. We will investigate and fix this
in the future.

References
Vibhav Agarwal, Pooja Rao, and Dinesh Babu Jayagopi.

2021. Hinglish to English machine translation us-
ing multilingual transformers. In Proceedings of the
Student Research Workshop Associated with RANLP
2021, pages 16–21, Online. INCOMA Ltd.

Subhra Jyoti Baroi, Nivedita Singh, Ringki Das, and
Thoudam Doren Singh. 2020. NITS-Hinglish-
SentiMix at SemEval-2020 task 9: Sentiment anal-
ysis for code-mixed social media text using an en-
semble model. In Proceedings of the Fourteenth
Workshop on Semantic Evaluation, pages 1298–
1303, Barcelona (online). International Committee
for Computational Linguistics.

Meghana Bhange and Nirant Kasliwal. 2020.
HinglishNLP at SemEval-2020 task 9: Fine-tuned
language models for Hinglish sentiment detection.
In Proceedings of the Fourteenth Workshop on
Semantic Evaluation, pages 934–939, Barcelona
(online). International Committee for Computational
Linguistics.

Chenhui Chu, Raj Dabre, and Sadao Kurohashi. 2017.
An empirical comparison of domain adaptation meth-
ods for neural machine translation. In Proceedings
of the 55th Annual Meeting of the Association for
Computational Linguistics (Volume 2: Short Papers),
pages 385–391, Vancouver, Canada. Association for
Computational Linguistics.

Alexis CONNEAU and Guillaume Lample. 2019.
Cross-lingual language model pretraining. In Ad-
vances in Neural Information Processing Systems,
volume 32. Curran Associates, Inc.

1124



Raj Dabre, Chenhui Chu, and Anoop Kunchukuttan.
2020. A survey of multilingual neural machine trans-
lation. ACM Comput. Surv., 53(5).

Raj Dabre, Atsushi Fujita, and Chenhui Chu. 2019.
Exploiting multilingualism through multistage fine-
tuning for low-resource neural machine translation.
In Proceedings of the 2019 Conference on Empirical
Methods in Natural Language Processing and the
9th International Joint Conference on Natural Lan-
guage Processing (EMNLP-IJCNLP), pages 1410–
1416, Hong Kong, China. Association for Computa-
tional Linguistics.

Raj Dabre and Eiichiro Sumita. 2021. YANMTT: yet
another neural machine translation toolkit. CoRR,
abs/2108.11126.

Orhan Firat, Kyunghyun Cho, and Yoshua Bengio. 2016.
Multi-way, multilingual neural machine translation
with a shared attention mechanism. In Proceedings
of the 2016 Conference of the North American Chap-
ter of the Association for Computational Linguistics:
Human Language Technologies, pages 866–875, San
Diego, California. Association for Computational
Linguistics.

Deepak Gupta, Asif Ekbal, and Pushpak Bhattacharyya.
2020. A semi-supervised approach to generate the
code-mixed text using pre-trained encoder and trans-
fer learning. In Findings of the Association for Com-
putational Linguistics: EMNLP 2020, pages 2267–
2280, Online. Association for Computational Lin-
guistics.

Melvin Johnson, Mike Schuster, Quoc V. Le, Maxim
Krikun, Yonghui Wu, Zhifeng Chen, Nikhil Thorat,
Fernanda Viégas, Martin Wattenberg, Greg Corrado,
Macduff Hughes, and Jeffrey Dean. 2017. Google’s
multilingual neural machine translation system: En-
abling zero-shot translation. Transactions of the As-
sociation for Computational Linguistics, 5:339–351.

Mike Lewis, Yinhan Liu, Naman Goyal, Marjan
Ghazvininejad, Abdelrahman Mohamed, Omer Levy,
Veselin Stoyanov, and Luke Zettlemoyer. 2020.
BART: Denoising sequence-to-sequence pre-training
for natural language generation, translation, and com-
prehension. In Proceedings of the 58th Annual Meet-
ing of the Association for Computational Linguistics,
pages 7871–7880, Online. Association for Computa-
tional Linguistics.

Yinhan Liu, Jiatao Gu, Naman Goyal, Xian Li, Sergey
Edunov, Marjan Ghazvininejad, Mike Lewis, and
Luke Zettlemoyer. 2020. Multilingual denoising pre-
training for neural machine translation. Transac-
tions of the Association for Computational Linguis-
tics, 8:726–742.

Puneet Mathur, Ramit Sawhney, Meghna Ayyar, and
Rajiv Shah. 2018. Did you offend me? classification
of offensive tweets in Hinglish language. In Pro-
ceedings of the 2nd Workshop on Abusive Language
Online (ALW2), pages 138–148, Brussels, Belgium.
Association for Computational Linguistics.

Gowtham Ramesh, Sumanth Doddapaneni, Aravinth
Bheemaraj, Mayank Jobanputra, Raghavan AK,
Ajitesh Sharma, Sujit Sahoo, Harshita Diddee, Ma-
halakshmi J, Divyanshu Kakwani, Navneet Kumar,
Aswin Pradeep, Srihari Nagaraj, Kumar Deepak,
Vivek Raghavan, Anoop Kunchukuttan, Pratyush Ku-
mar, and Mitesh Shantadevi Khapra. 2022. Samanan-
tar: The largest publicly available parallel corpora
collection for 11 indic languages. Transactions of the
Association for Computational Linguistics, 10:145–
162.

Sebastin Santy, Anirudh Srinivasan, and Monojit Choud-
hury. 2021. BERTologiCoMix: How does code-
mixing interact with multilingual BERT? In Proceed-
ings of the Second Workshop on Domain Adaptation
for NLP, pages 111–121, Kyiv, Ukraine. Association
for Computational Linguistics.

Rico Sennrich, Barry Haddow, and Alexandra Birch.
2016. Improving neural machine translation models
with monolingual data. In Proceedings of the 54th
Annual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), pages 86–96,
Berlin, Germany. Association for Computational Lin-
guistics.

Pranaydeep Singh and Els Lefever. 2020. Sentiment
analysis for Hinglish code-mixed tweets by means of
cross-lingual word embeddings. In Proceedings of
the The 4th Workshop on Computational Approaches
to Code Switching, pages 45–51, Marseille, France.
European Language Resources Association.

Vivek Srivastava and Mayank Singh. 2020. PHINC:
A parallel Hinglish social media code-mixed cor-
pus for machine translation. In Proceedings of the
Sixth Workshop on Noisy User-generated Text (W-
NUT 2020), pages 41–49, Online. Association for
Computational Linguistics.

Vivek Srivastava and Mayank Singh. 2021. HinGE: A
dataset for generation and evaluation of code-mixed
Hinglish text. In Proceedings of the 2nd Workshop on
Evaluation and Comparison of NLP Systems, pages
200–208, Punta Cana, Dominican Republic. Associa-
tion for Computational Linguistics.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, Ł ukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. In Advances in Neural Information Pro-
cessing Systems, volume 30. Curran Associates, Inc.

Thomas Zenkel, Joern Wuebker, and John DeNero.
2021. Automatic bilingual markup transfer. In Find-
ings of the Association for Computational Linguis-
tics: EMNLP 2021, pages 3524–3533, Punta Cana,
Dominican Republic. Association for Computational
Linguistics.

1125



Proceedings of the Seventh Conference on Machine Translation (WMT), pages 1126–1130
Abu Dhabi, December 7–8, 2022. ©2022 Association for Computational Linguistics

Gui at MixMT 2022 : English-Hinglish : An MT approach for translation
of code mixed data

Akshat Gahoi Jayant Duneja Anshul Padhi Shivam Mangale
Saransh Rajput Tanvi Kamble Dipti Misra Sharma Vasudeva Varma

International Institute of Information Technology, Hyderabad

{akshat.gahoi,anshul.padhi,saransh.rajput,tanvi.kamble}@research.iiit.ac.in
{dunejajayant,shivammangale}@gmail.com

Abstract

Code-mixed machine translation has become
an important task in multilingual communities
and extending the task of machine translation
to code mixed data has become a common
task for these languages. In the shared tasks of
WMT 2022, we try to tackle the same for both
English + Hindi to Hinglish and Hinglish to
English. The first task dealt with both Roman
and Devanagari script as we had monolingual
data in both English and Hindi whereas the
second task only had data in Roman script.
To our knowledge, we achieved one of the
top ROUGE-L and WER scores for the first
task of Monolingual to Code-Mixed machine
translation. In this paper, we discuss the use
of mBART with some special pre-processing
and post-processing (transliteration from
Devanagari to Roman) for the first task in
detail and the experiments that we performed
for the second task of translating code-mixed
Hinglish to monolingual English.

1 Introduction

Code Mixing occurs when a multi-lingual
individual uses two or more languages while
communicating with others. It is the most natural
form of conversation for multilinguals. It is
often confused with code-switching but there is
a slight difference between the two. Both these
phenomena include communicating in multiple
languages but code switching usually takes place
within multiple sentences while code mixing
usually refers to words of different languages used
in the same sentence. In code mixing, phrases,
words and morphemes of one language may be
embedded within an utterance of another language.
Code mixing is extensively observed on social
media sites like Facebook and twitter. With the
rapid growth of social media and consequently,
increase in the use of code-mixed data, it becomes
important to develop systems to process such text.

Machine Translation, also known as automated
translation, is the process where a software trans-
lates text from one language to another without
any human involvement. There are multiple forms
of machine translation, however, over the past
few years, neural machine translation has become
extremely popular. The WMT shared task had
two subtasks. The first subtask consisted of the
translation of Hindi-English parallel sentence pairs
to Hindi-English code mixed sentences through
machine translation. The second subtask consisted
of the translation of Hindi-English code mixed
sentences to English.

2 Background

While there is a growing interest in code-mixed
text analysis as a research problem, there is one
bottleneck that has hindered the growth of such
works, and that is the lack of data. Due to this,
there aren’t many robust models for code-mixed
text. To build standardized datasets of code-mixed
text, we need to come up with ways of text genera-
tion of these code-mixed texts. These texts would
be very helpful in training language models for
various code-mixed pairs as language models only
need unsupervised data.
Code Mixed text generation is a relatively new
problem, and so is its initial stage. One of the
recent works in this field (Rizvi et al., 2021) tried
to use linguistic theories to synthetically build code-
mixed text using parallel monolingual corpora of
two languages. The Equivalence Constraint Theory
(Poplack, 1980) says that code-mixing can only oc-
cur at parts of the text where the surface structures
of two languages map onto each other. So in these
parts, the grammatical rules of both languages are
followed. The Matrix Language Theory (McClure,
1995) tries to solve this problem by separating the
two languages into a base language and a second
language. The grammatical rules of the base lan-
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guage are followed, and parts of the base language
are replaced by the corresponding parts of the sec-
ond language whenever it is grammatically feasible
to do so.
Deep Learning and Neural Networks have also
been used to build systems for code mixed genera-
tion. In these systems, the problem of text genera-
tion has been posed as one of machine translation,
where monolingual text is translated to code-mixed
text. Some of the early work involved using the
then state of the art encoder-decoder models like
pointer generator networks(Winata et al., 2019) and
GANs(Chang et al., 2019) to translate two sets of
monolingual corpora into code mixed text. With
the rise of multilingual models like mT5 (Xue et al.,
2020), mBART, indicBART (Dabre et al., 2021),
etc. the task of translation has become much easier
as these models understand both languages and this
has been shown to outperform previous models in
many workshops.
mBART(Liu et al., 2020) is a denoising autoen-
coder which has been trained on a very large dataset
which contains text from 25 languages. It has the
same transformer based architecture and training
objective as BART, a denoising autoencoder which
was shown to be one of the best performing se-
quence to sequence models at the time. It has been
trained to reconstruct original text which has been
corrupted as a way to add noise. It can perform
various downstream sequence to sequence tasks
like machine translation, text summarization, etc.
mBART consists of 12 encoder layers and 12 de-
coder layers. There are 16 heads and a model di-
mension of 1024.
Another solution to circumvent the data problem
is to create translation systems that can translate
code-mixed text to monolingual text. This allows
us to use robust NLP systems for various down-
stream tasks.
While we have the above said top performing mod-
els at the moment, they are very heavy computa-
tional wise due to their large parameter sizes. With
resource constraints, it is tough to replicate their
performance. Helsinki’s OPUS-MT (Tiedemann
and Thottingal, 2020) model was of comparabaly
smaller size and focused on the initiative of support-
ing low-resource languages. It does accordingly
have lower performance. We have attempted at uti-
lizing this model in our case with further training
on provided data to understand whether under the
resource constraints, we can observe competitive

Data Length
Synthetic (Train) 3263
Synthetic (Validate) 396
Human Generated (Train) 1800
Human Generated (Validate) 376

Table 1: Distribution of Sentences in the data

performance.
The model architecture is based on a standard trans-
former setup with 6 self-attentive layers in the en-
coder and decoder network. It has 8 attention heads
in each layer. This is hence comparatively low
compute seeking as compared to the mainstream
models.

3 System Overview

3.1 Task 1
In this section we propose our system for Task
1 which is English and Hindi to code-mixed text
translation

3.1.1 Dataset and Data Preparation
The dataset that we used for Task 1 was the HinGE
dataset (Srivastava and Singh, 2021). It is divide
into two parts, the synthetic dataset or the machine
generated dataset and the human generated dataset.
(Table 1) There were 3659 and 2176 sentences
respectively.

3.1.2 Model
In this task we finetune the mBART model on the
data given to us. Since mBART is a very large
model we needed to decrease its size. We do this
by reducing the vocabulary of the model as the
vocabulary adds to the model size by a lot and
we don’t need the vocabulary from the rest of the
25 languages. To reduce the vocabulary we cre-
ate our own vocabulary using the tokens present
in the task dataset, IIT-B English-Hindi parallel
corpus (Kunchukuttan et al., 2018) and the Dak-
shina Dataset (Roark et al., 2020) as we feel the
two datasets were large enough to create a vocabu-
lary extensive enough to solve the given task. We
process the input data from the given task data as
explained above to create our input. Using the
corresponding code-mixed sentences as the gold
output we finetune the mBART model.

3.1.3 Post Processing
The output of our model was in a mixed script
(Roman + Devanagari). So the post processing
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Post Processing ROUGE-L WER
Normal Output 0.39091 0.81884
With Automated Transliteration 0.48376 0.72561
With Automated Transliteration + Dictionary Based Transliteration 0.61667 0.63342

Table 2: ROUGE-L and WER scores after different post processing tasks

becomes one of the important step in this task as
we wanted our output Hinglish sentences to be only
in Roman script. We used transliteration function
from indicate library as our first step to see how
good the results will be. There were many instances
where the transliteration done by indicate was not
accurate. So the next step that we did was to create
a dictionary of most common words and numbers
with their corresponding transliterated Roman text.
This dictionary over the automatic transliteration
by indicate was used to get the best output of our
model in the Roman script.

3.2 Task 2

In this section we propose our system for Task
2 which is Hinglish (code-mixed) to English text
translation.

3.2.1 Observations
The data for task 2 are tweets based data. Due to
the tweets nature, we observed that:

• The URLs included tended to be at the end of
the sentences.

• The mentions (of the form
’@<some_user_tag>’ for instance
@LokSabha) at the beginning and the
end of tweets are generally such that the
sentences can be translated without them with
no-low loss of information.

• Hashtags which are added at the end of the
tweets are generally for increasing outreach
and exposure.

Based on the above observations, we found that
the information provided by these tokens to the
translation was not significant as compared to the
loss of information due to incorrect translation of
these units. Hence, we applied heuristics to appro-
priately preprocess the input data to exclusively and
exhaustively split the tweets into sentences (which
will be translated), URLs, mentions and hashtags,
which are then concatenated after the translation in
postprocessing.

3.2.2 Dataset and Data Preparation
The dataset that we used for Task 2 was the PHINC
dataset (Srivastava and Singh, 2020). It contains
13,738 parallel sentences in Hinglish (code-mixed)
and English of which we used a train-val-test split
of 80-10-10. We transliterated the Hinglish sen-
tences from the Roman script to the Devanagiri
script using the Google Transliterate API, to utilise
pre-trained Hindi to English translation models.
This transliterator was used among others due to it
having one of the best performance, it’s similarity
in the vocabulary space with the input dataset as
compared to the other transliterators available and
also that PHINC was jointly created using Google
Translate.

3.2.3 Model
Due to compute constraints, we decided to utilize
pretrained models, that would be efficient for our
dataset. To access better models, we went ahead
with models trained with a task or a subtask of
Hindi to English machine translation. We appro-
priately processed the data for the same. We hence
decided to finetune Salesken.AI’s pretrained model
provided on Huggingface Transformers. They
have finetuned Helsinki’s OPUS-MT model on
AI4Bharat’s Samanantar dataset (Ramesh et al.,
2021), a large indic dataset.

4 Experimental Setup

In task 1, we use the fairseq implementation of
mBART as our base model which has been trained
on 4 Nvidia GeForce RTX 2080 Ti GPUs. The
model has been trained using label smoothed cross
entropy as the loss criterion. The model uses an
Adam optimizer with polynomial decay learning
rate scheduling, dropout = 0.3, learning rate = 3 ∗
10−5, ϵ = 10−6, β1 = 0.9 and β2 = 0.98.

The model was trained on 10000 steps with 2500
warm up steps and a batch size of 512 tokens.

We validate the model on each epoch on a vali-
dation set and at the end we select the model with
the lowest loss.

In task2, for fine-tuning we use the Salesken.AI’s
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pretrained model provided on Huggingface Trans-
formers. The model was trained on Nvidia GeForce
RTX 2080 Ti GPUs.The model has been trained
using label smoothed cross entropy as the loss cri-
terion. The model uses an Adam optimizer with
learning rate = 3 ∗ 10−4, ϵ = 10−9, β1 = 0.9 and β2
= 0.98.

5 Results and Evaluation

The test dataset consisted of 500 sentences. These
sentences also had both English sentence and its
corresponding Hindi sentence. ROUGE-L score
and WER score was considered for evaluation.
ROUGE-L score considers longest common sub-
sequence for its scoring. It counts the longest sub-
sequence which is shared between both reference
and the output. Its different from precision as it
only counts the ratio between longest subsequence
matched and the number of words matched. It does
not take all the words in the reference.
The WER score represents the word error rate. To-
tal errors between the reference and output is con-
sidered for this score. It adds up all the substitution,
addition and deletion required to convert the output
to the reference sentence and treat it as total error
of the output. It can be treated same as calculating
Levenshtein distance.
So our aim was to maximise ROUGE-L score and
minimize WER score. Our score improved as we
translitered the output from Devanagari to Roman
using indicate library. The score increase signifi-
cantly after we created a dictionary of words for
transliterating most common Hindi words and num-
bers. We achieved a ROUGE-L score of 0.61667
and WER score of 0.63342 after both the post pro-
cessing steps.

The test set provided for Task 2 contained 1500
lines, which were processed as mentioned in 5 The
results for the evaluation metrics we obtained for
the test set provided for Task 2 is available in 3.
Using the Google Transliterate API significantly
improved the quality of the input data, and also
the similarity of vocabulary with the dataset as
mentioned earlier. The application of heuristics
also bolstered the approach’s performance.

Based on qualitative evaluation, it was observed
that it struggled to get long sentence translations
which can be attributed to the source of the dataset
being of of tweets which have a noisy and inconsis-
tent structure. This is alongside the lower parame-
ter size and attention heads.

Metric Score
ROUGE-L 0.41493
WER 0.80804

Table 3: Results for Task 2

The model was trained till significant learning on
a wide array of parameters, till resource permits, in
an attempt to provide more opportunities to appro-
priately fine-tune the model, but even though there
was a sign of the model learning, the performance
was observed to be not competitive to the current
top performers.

6 Conclusion

In this paper, we approached code mixed ma-
chine translation problem from both the direction.
We used mBART for our first task of translat-
ing English and corresponding Hindi sentences to
Hinglish sentence. The results were significantly
improved through transliterating the output from
Devanagari script to Roman script. Two different
methods were used for the same. Our model sur-
passed baseline in ROUGE-L and WER scores by
a huge margin.
For the second task of translating Hinglish
sentences to English sentence by fine-tuning
Salesken.AI’s pre trained model. We cleared the
baseline but their is still work to be done in that
field as we think that it can be further improved.
For the future work in this area we would like to
work further on the second task in hand of translat-
ing codemixed language to a monolingual language.
We need to retrieve information about both the lan-
guages from the code mixed sentence and try to
give a output in a mono lingual langauge without
disturbing the word order.
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Abstract
Code-mixing is the phenomena of mixing var-
ious linguistic units such as paragraphs, sen-
tences, phrases, words, etc., of two or more
languages in any text. It is predominantly used
to post the comments by social media users
who know more than one language. Processing
code-mixed text is challenging because of its
complex characteristics and lack of tools that
support such data. Developing efficient Ma-
chine Translation (MT) systems for code-mixed
text is challenging due to lack of code-mixed
data. Further, existing MT systems developed
to translate monolingual data are not portable
to translate code-mixed text mainly due to the
informal nature of code-mixed data. To address
the MT challenges of code-mixed text, this pa-
per describes the proposed MT models submit-
ted by our team MUCS, to the Code-mixed
Machine Translation (MixMT) shared task in
the Workshop on Machine Translation (WMT)
organized in connection with Empirical mod-
els in Natural Language Processing (EMNLP)
2022. This shared task has two subtasks: i) sub-
task 1 - to translate English sentences and their
corresponding Hindi translations written in De-
vanagari script into Hinglish (English-Hindi
code-mixed text written in Latin script) text
and ii) subtask 2 - to translate Hinglish text
into English text. The proposed models that
translate English text to Hinglish text and vice
versa, comprise of i) transliterating Hinglish
text from Latin to Devanagari script and vice
versa, ii) pseudo translation generation using
existing models, and iii) efficient target gen-
eration by combining the pseudo translations
along with the training data provided by the
shared task organizers. The proposed models
obtained 5th and 3rd rank with Recall-Oriented
Under-study for Gisting Evaluation (ROUGE)
scores of 0.35806 and 0.55453 for subtask 1
and subtask 2 respectively.

1 Introduction

In linguistic terms, code-mixing is the practice of
switching between two or more languages within

or across sentences/words in any text (Joshi, 1982).
Due to the widespread use of social media plat-
forms like Twitter, Facebook, Reddit, etc., users
are generating more and more code-mixed content.
In Indian scenario, social media users usually blend
English with their mother tongue or local language,
for instance, English and Hindi, mainly for the
technological limitations of computer keyboard or
smartphone keypads to enter text in local languages.
Further, as most of the text processing tasks are de-
veloped for handling monolingual and formal text,
informal and/or code-mixed text such as Hinglish is
less explored. As the code-mixed text like Hinglish
is increasing day by day, many applications such as
MT, sentiment analysis, emotion analysis, etc., are
also increasing. This has created a great demand
for the tools and resources to process code-mixed
data. Sample Hinglish text along with their Hindi
and English translations are given in Table 1.

In recent years, pre-trained transformer-based
language models have become state-of-the-art mod-
els for most of the downstream tasks including MT,
text classification, text generation, and natural lan-
guage understanding. To train such models, un-
derlying data is drawn from a sizable monolingual
corpus that is available in Wikipedia, book cor-
pora, etc. Several models like Multilingual Bidirec-
tional and Auto-Regressive Transformer (mBART)
(Liu et al., 2020) and Multilingual Text to Text
Transformer (mT5) (Xue et al., 2021) are readily
available for many languages. However, due to
the scarcity of code-mixed corpus, developing the
pretrained language models for code-mixed text is
very challenging.

MT being one of the important applications of
code-mixed texts mainly focuses on translating
monolingual text leaving aside the code-mixed
data. Further, for under-resourced languages with
rich morphological features like Hindi (Sangwan
and Bhatia, 2021), developing MT models be-
come more challenging in the code-mixed sce-
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Table 1: Sample Hinglish text and their Hindi and English translations

nario. To address these challenges, in this pa-
per, we - team MUCS, describe the models sub-
mitted to MixMT-20221 shared task organized by
WMT-2022 at EMNLP 2022. The shared task con-
sists of two subtasks: i) subtask 1 - to translate
English sentences and their corresponding Hindi
translations into Hinglish text and ii) subtask 2 - to
translate Hinglish text into English text. The pro-
posed methodology consists of i) transliteration of
Hinglish text from Latin script to Devanagari script
and vice versa, ii) generating pseudo translations
for monolingual data using pretrained MT models,
and iii) target generation by fine-tuning the pre-
trained models with a combination of the pseudo
parallel data obtained as the output of pseudo trans-
lations and the dataset provided by the organizers
of the shared task.

The following is a breakdown of the paper’s
structure: Section 2 contains the related work and
the proposed methodology is explained in Section 3.
Section 4 gives the details about experiments and
results and the paper concludes in Section 5 with
future work.

2 Related work

Due to the increasing amount of code-mixed text,
MT of code-mixed text is gaining attention of the
researchers and the description of few of the models
developed to translate Hinglish text into English
text and vice versa are given below:

Srivastava and Singh (2020) manually developed
a parallel corpus of 13,738 Hinglish sentences and
their translations in English with the help of 54
annotators. They proposed a simple tagging ap-
proach for tagging each token in a sentence with
the language it belongs to and evaluated Bing Trans-
late (BT) and Google Translate (GT) models - the

1https://codalab.lisn.upsaclay.fr/
competitions/2861#learn_the_details

two popular MT services using their parallel cor-
pus. Among the two models, GT model outper-
formed with a better Bilingual Evaluation Under-
study (BLEU) score of 0.153 when compared to
that of BT. Dhar et al. (2018) manually developed
a Hinglish-English parallel corpus of 6,096 parallel
sentences with the help of 4 human translators. Us-
ing a language identification technique, they tagged
every word in a sentence with the name of the
language to which it belongs. They proposed an
MT model comprising three steps: i) identifying
the matrix language, ii) translation of source text
into matrix language, and iii) translation of matrix
language into the target language by training BT.
Considering steps i) and ii) as preprocessing, they
obtained considerable translation with BLEU score
of 25.0.

Jawahar et al. (2021) created a parallel corpus
of 17.8 million English-Hinglish sentence pairs
by leveraging bilingual word embeddings to trans-
late English text into Hinglish text and vice versa.
Further, they fine-tuned mBART and mT5 - the
pretrained text generators using their newly con-
structed parallel corpus. The mT5 model obtained
a better BLEU score of 13.95 compared to that of
mBART. Gautam et al. (2021) proposed an effec-
tive fine-tuning of mBART using English-Hinglish
dataset2 to translate English text to Hinglish text
and vice versa. They transliterated the Hinglish text
in Latin script to Devanagari script to fine-tune the
mBART model and obtained BLEU scores of 11.86
and 12.22 for Hinglish to English and English to
Hinglish translations respectively.

From the literature, it is clear that very few at-
tempts are made to explore English-Hinglish code-
mixed parallel corpus for MT. Hence, there is
enough space to explore new techniques in this
direction.

2https://code-switching.github.io/2021
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Figure 1: Workflow of the proposed method

3 Proposed methodology

Inspired by Gautam et al. (2021), a pipeline of
transliteration and fine-tuning indicTrans3 (used
for translation) pretrained models is proposed to
address subtask 1 and subtask 2. EN-Indic and
Indic-EN models are used for generating Hinglish
text and pseudo translations respectively. The pur-
pose of transliteration is to utilize pretrained mod-
els which are trained using the text in their native
script. Further, the proposed methodology also con-
sists of the generation of pseudo translations where
pseudo translation mimics the translation process.

The framework of the proposed model is given
in Figure 1 and the system descriptions of each
subtasks are given below:
Subtask 1 - In addition to the dataset provided by
the organizers4 for this shared task, monolingual
Hindi text is collected from the available resources5

and the further steps used to accomplish the subtask
1 are given below:

1. Transliteration is carried out using indic-trans6

to transliterate Hinglish text in Latin script to
Devanagari script

2. EN-Indic and Indic-EN models trained on
3https://indicnlp.ai4bharat.org/indic-trans/
4Codalab competitions
5https://indicnlp.ai4bharat.org/samanantar/
6https://github.com/libindic/indic-trans

Subtask Train set Development set Test set
subtask 1 2,766 500 1,500
subtask 2 13,738 500 1,500

Table 2: Statistics of the shared task dataset for both the
subtasks in terms of the number of sentences

Samanantar7 corpus are used for translations
(Ramesh et al., 2022)

3. Pseudo translations are generated using the
Indic-EN model considering monolingual
Hindi text

4. The shared task dataset is combined with the
pseudo parallel data and EN-Indic model is
then fine-tuned on this data

5. Finally, the target Hinglish text is generated
by transliterating Devanagari script to Latin
script using indic-trans

Subtask 2 - For subtask 2, the procedure sim-
ilar to that of subtask 1 is followed considering
Hinglish text as the source and English text as the
target to generate the required output.

4 Experiments and Results

The statistics of the dataset provided by the orga-
nizers for both the subtasks which are used to build
the proposed models are given in Table 2. The data
provided for subtask 1 is the synthetic data (Srivas-
tava and Singh, 2021) which consists of English
sentences and their corresponding Hindi transla-
tions as the source and Hinglish as the target. For
subtask 2, the dataset consists of Hinglish-English
sentence pairs (Srivastava and Singh, 2020) to gen-
erate English text.

EN-Indic and Indic-EN models which are trained
on Samanantar corpus are fine-tuned with the com-
bination of the shared task dataset and pseudo par-
allel text. Exhaustive experiments are carried out to
get the best results by tuning the hyperparameters,
which control the learning process of EN-Indic and
Indic-En models. Table 3 gives the hyperparame-
ters and their values used to fine-tune the EN-Indic
and Indic-EN models that gave the best results on
development set.

The user predictions for the given Test set sub-
mitted to the organizers of the shared task are
evaluated based on ROUGE score and Word Er-
ror Rate (WER). ROUGE score is calculated based

7https://indicnlp.ai4bharat.org/samanantar/
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Hyperparameters Values
max-token 1,568

learning rate 0.00003
label smoothing 0.1

optimizer adam
dropout 0.2

Table 3: Hyperparameters and their values used to fine-
tune the EN-Indic and Indic-EN models

Subtask ROUGE WER

subtask 1 Development set 0.38935 0.72310

Test set 0.35806 0.76096

subtask 2 Development set 0.54556 0.65938

Test set 0.55453 0.64737

Table 4: Performance measures of the proposed method
for both Development set and Test set

on the overlapping of n-grams between the candi-
date string and reference string whereas WER score
is calculated by dividing the number of errors by
the total number of words. Performance measures
of the proposed models for both Development set
and Test set is given in Table 4. From Table 4,
it is clear that the ROUGE score of subtask 2 is
better than subtask 1 as the dataset used for subtask
1 is very small compared to that of subtask 2. Fur-
ther, the performance of Indic-EN model is better
than EN-Indic model (Ramesh et al., 2022) and
the same is reflected in Table 4. The comparison
of the ROUGE score of the proposed models with
the models submitted by all the participants of the
shared task for subtask 1 and subtask 2 are shown
in Figure 2 and 3 respectively. From Figure 2 and
3, it is clear that the proposed method obtained
considerable ROUGE scores for both the subtasks.

Figure 2: Comparison of ROUGE score of participated
teams with the proposed model for subtask 1

Figure 3: Comparison of ROUGE score of participated
teams with the proposed model for subtask 2

5 Conclusion and Future work

This paper describes the models submitted by our
team - MUCS to MixMT 2022 shared task to per-
form MT from English text and their correspond-
ing Hindi translations into Hinglish text and from
Hinglish text to English. The proposed models con-
sist of transliteration and pseudo translation gen-
eration followed by fine-tuning the pretrained MT
models using the combination of pseudo parallel
data and the shared task dataset for target gener-
ation. These models obtained ROUGE scores of
0.35806 and 0.55453 securing 5th and 3rd rank for
subtask 1 and subtask 2 respectively. The efficient
transliteration techniques with effective fine-tuning
of the pretrained models for code-mixed Hinglish
translation will be explored further.
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Abstract
This paper describes the Stevens Institute
of Technology’s submission for the WMT
2022 Shared Task: Code-mixed Machine
Translation (MixMT). The task consisted
of two subtasks, subtask 1 Hindi/English
to Hinglish and subtask 2 Hinglish to En-
glish translation. Our findings lie in the
improvements made through the use of
large pre-trained multilingual NMT mod-
els and in-domain datasets, as well as back-
translation and ensemble techniques. The
translation output is automatically eval-
uated against the reference translations
using ROUGE-L and WER. Our system
achieves the 1st position on subtask 2 ac-
cording to ROUGE-L, WER, and human
evaluation, 1st position on subtask 1 ac-
cording to WER and human evaluation,
and 3rd position on subtask 1 with respect
to ROUGE-L metric.

1 Introduction
Code-mixing (or code-switching) is the phe-
nomenon when another language like Hindi
is interleaved with English words in the same
sentence. This code-mixed language is mostly
used in social media text and is colloquially
referred to as Hinglish. Despite Hindi being
the fourth most widely spoken language in the
world (Lewis, 2009), research in Hinglish trans-
lation has been a relatively unexplored task.

A major challenge in creating a transla-
tion system for code-mixed text is the lim-
ited amount of parallel data (Ranathunga
et al., 2021). Typical methods use standard
back-translation techniques (Sennrich et al.,
2015a) for generating synthetic parallel data
for training. Massive multilingual neural ma-
chine translation (NMT) models have recently
been shown to improve the translation perfor-
mances for low-resource and even zero-shot set-
tings. We propose using such large multilin-

gual NMT models for our code-mixed transla-
tion tasks.

Previous work has only used smaller
multilingual architectures (Gautam et al.,
2021). We use pre-trained multilingual models
trained in up to 200 language directions. We
finetune these models for the Hindi to Hinglish
and Hinglish to English tasks. One major chal-
lenge when using these massive models is the
GPU memory constraint. Another issue is the
ratio of English and Hinglish words interleaved
for each translation output. We use multiple
state-of-the-art GPUs with model paralleliza-
tion to overcome the memory issue. For the
amount of English in the outputs, we tune
the model parameters including learning rate,
dropout, and the number of epochs to get the
optimal translations.

Along with these pre-trained multilingual
NMT models, we also use additional in-
domain data, back-translation to generate ad-
ditional parallel data, and using multi-run
ensemble to improve the final performance.
All these methods gave us an improvement
of +24.4 BLEU for Hindi to Hinglish trans-
lation (subtask 1) and +28.1 BLEU points
for Hinglish to English translation (subtask 2)
compared to using only the organizer provided
data and the baseline experiment.

In this paper, we discuss our submission for
the WMT 2022 MixMT shared task. We par-
ticipate in both the subtasks and our submis-
sion system includes the following:

• Tune very large pre-trained multilingual
NMT models and finetune on in-domain
datasets;

• Back-translation to create synthetic data
for in-domain monolingual data;

• Multi-run ensemble to combine models
trained on various datasets;
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• Tune model parameters to enhance model
performance.

2 Related Work

Multilingual Neural Machine Transla-
tion (MNMT) Word and subword-level to-
kenizations are widely used in natural lan-
guage processing, including NMT/MNMT.
Morishita et al. (2018) propose to incorpo-
rate hierarchical subword features to improve
neural machine translation. Massively multi-
lingual NMT models are proposed by Aha-
roni et al. (2019) and Arivazhagan et al.
(2019). They are trained on a large number
of language pairs and show a strong and pos-
itive impact on low-resource languages. How-
ever, these models tend to have representa-
tion bottlenecks (Dabre et al., 2020), due to
the large vocabulary size and the large diver-
sity of training languages. Two MNMT sys-
tems (Tan et al., 2019; Xiong et al., 2021)
are proposed to solve this problem by modi-
fying the model architectures, adding special
constraints on training, or designing more com-
plicated preprocessing methods. Xiong et al.
(2021) adopt the contrastive learning scheme
in many-to-many MNMT. Tan et al. (2019)
propose a distillation-based approach to boost
the accuracy of MNMT systems. However,
these word/subword-based models still need
complex preprocessing steps such as data aug-
mentation or special model architecture de-
sign.

Code-mixed NMT The majority of re-
search for code-mixed translation focuses
on generating additional data using back-
translation methods. Winata et al. (2019)
used the sequence to sequence models to gener-
ate such data and Garg et al. (2018) used a re-
current neural network along with a sequence
generative adversarial network. Pratapa et al.
(2018) generated linguistically-motivated se-
quences. Additionally, there have been sev-
eral code-mixed workshops (Bhat et al., 2017;
Aguilar et al., 2018) to advance the field of
code-mixed data.

Hindi or Hinglish NMT Researchers have
worked on machine translation from Hindi
to English (Laskar et al., 2019; Goyal and
Sharma, 2019), however, there has been far

less work for Hinglish. A major issue is the lack
of parallel Hinglish-English data. Additional
parallel data generated by back-translation
is used to improve the performance (Gau-
tam et al., 2021; Jawahar et al., 2021). The
CALCS’21 competition (Solorio et al., 2021)
had a shared task for English to Hinglish for
movie review data.

3 Background

3.1 Task Description

The WMT 2022 CodeMix MT task consists of
two subtasks. Subtask 1 is to use Hindi or En-
glish as input and automatically translate it
into Hinglish. Subtask 2 is to input a Hinglish
text and translate it into English. Participa-
tion in both subtasks was compulsory for the
competition. We use Hindi only as the source
for subtask 1.

3.2 Neural Machine Translation

The Neural Machine Translation (NMT) task
uses a neural network-based model to trans-
late a sequence of tokens from one human
language to another. More formally, given
a sequence of tokens in source language
x = {x1, x2, · · · , xn}, the model outputs an-
other sequence of tokens in target language
y = {y1, y2, · · · , ym}. The input sequence
x is encoded into the latent representation
by a neural network-based encoder module,
and these representations are decoded by the
neural network-based decoder module. We
train transformer-based encoder-decoder mod-
els (Vaswani et al., 2017) to translate the data.
These models use a self-attention mechanism
in their architectures to boost performance.

3.3 Multilingual NMT (MNMT)

Initial NMT systems were only capable of han-
dling two languages. However, lately, there
has been a focus on NMT models which can
handle input from more than two languages
(Dong et al., 2015; Firat et al., 2016; Johnson
et al., 2017). Such models, commonly called
Multilingual NMT (MNMT) models, have
shown improvement in low-resource or zero-
shot Neural Machine Translation settings. In-
stead of translating a sequence of tokens in
source language x to another sequence in tar-
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get language y, the MNMT system uses multi-
ple sources and target languages.

There are two main approaches: (1) use a
separate encoder and decoder for each of the
source and target languages (Gu et al., 2018),
and (2) use a single encoder/decoder which
shares the parameters across the different lan-
guages (Johnson et al., 2017).

The issue with the first approach is that it
requires a much larger memory due to multiple
encoders and decoders (Vázquez et al., 2018).
The second approach is much more memory ef-
ficient due to parameter sharing (Arivazhagan
et al., 2019).

Training a model using the second approach
can be done by adding a language tag to the
source and target sequence. Specifically, when
the decoding starts, an initial target language
tag is given as input, which forces the model
to output in that specific language.

4 Methods

For the initial set of experiments, we use the
baseline transformer model (Vaswani et al.,
2017). For all the other experiments, we use
pre-trained multilingual NMT models and fine-
tuned them for the specific datasets. We can
divide these into three groups based on the
number of parameters. (1) smaller models in-
cluding mBART-50 (Tang et al., 2020) and
Facebook M2M-100 medium model (Fan et al.,
2021) (M2M-100), (2) the medium models in-
clude the Facebook NLLB-200 (Costa-jussà
et al., 2022) (NLLB-200) and Google mT5 XL
(Xue et al., 2021) (mT5-XL), and (3) for large
model we use the Google mT5 XXL model
(Xue et al., 2021) (mT5-XXL). The parameter
count for each of the models and the training
time per epoch for baseline datasets are men-
tioned in Table 1.

For both subtasks, we use Hindi as the
source language tag and English as the target
language tag.

4.1 Pre-trained Models
To train the transformer, mBART-50, and
M2M-100 models, we use the Fairseq toolkit
(Ott et al., 2019), and the larger NLLB-200,
mT5-XL, and mT5-XXL models use the Hug-
gingface toolkit (Wolf et al., 2019). Table 1
lists the parameter count for each pre-trained

multilingual model.

Model Params
mBART-50 611M
M2M-100 1.2B
NLLB-200 3.3B
mT5-XL 3.7B

mT5-XXL 13B

Table 1: Parameter count for each pre-trained mul-
tilingual model.

4.2 Data Augmentation
We use three different ways to add additional
in-domain data for training our models.

Additional in-domain data We use addi-
tional in-domain parallel data and add it to
the training data for accuracy improvement.
Since our focus is on Hindi for subtask 1 and
Hinglish for subtask 2, we tried to look for
data from additional domains with Hindi or
Hinglish as the source. We use Kaggle Hi-
En (Chokhra, 2020) and MUSE Hi-En dictio-
nary (Lample et al., 2017) for subtask 1. For
subtask 2, we use Kaggle Hg-En data (Tom,
2022), CMU movie reviews data (Zhou et al.,
2018), and CALCS’21 Hg-En dataset (Solorio
et al., 2021). We also use selected WMT’14
News Hi-En sentences (Bojar et al., 2014) and
the MTNT Fr-En and Ja-En data (Michel and
Neubig, 2018). Table 2 all lists these datasets.

Back-translation A common technique
used to increase the data size for low-resource
languages is to use in-domain monolingual
data and generate synthetic translations
using a reverse translation system (Sennrich
et al., 2015a). We use google translate
for back-translation. We translate samples
from the English side of Tatoeba Spanish
to the English dataset (Tatoeba, 2022) and
Sentiment140 dataset (Go et al., 2009) into
Hinglish and use the synthetic translations as
additional bilingual data.

4.3 Ensemble
We use a multi-run ensemble (Koehn, 2020)
to combine multiple model’s best checkpoints
to boost the final performance. We average
the probability distribution over the vocabu-
lary for all the models to generate a final prob-
ability distribution and use that to predict the
target sequence.
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Dataset Sentences VR V

HinGE Hi-Hg 2.3K 103K 19K
PHINC Hg-En 13K 302K 55K
HinGE Hg-En 11K 109K 22K
Kaggle Hi-En 11K 220K 31K
Kaggle En-Hg 1.8K 98K 17K
MUSE Hi-En 30K 29K 24K

CMU Reviews Hg-En 8K 180K 24K
CALCS’21 Hg-En 8K 182K 23K

Back-translation Hg-En 8.5K 48K 7K
WMT’14 Hi-En 15K 181K 21K
MTNT Fr-En 10K 16K 14K
MTNT Ja-En 3.5K 120k 8K

Table 2: Datasets provided by the organizers and
additional in-domain and out-of-domain datasets
used for subtask 1 and 2. VR is the number of
running words and V is the vocabulary size.

5 Datasets

The competition provided one dataset for each
of the subtasks, HinGE Hi-Hg (Srivastava and
Singh, 2021) for subtask 1 and PHINC Hg-
En (Srivastava and Singh, 2020) for subtask 2.
The competition also provided the validation
data. In addition to these, we also use addi-
tional in-domain and out-of-domain datasets.

Due to a large overlap of English and
Hinglish vocabulary, we use Hindi-English (Hi-
En) and Hindi-Hinglish (Hi-Hg) datasets for
subtask 1. For subtask 2, we use various
Hinglish-English datasets. All the competition
provided datasets, the additional in-domain
datasets, and the additional out-of-domain
datasets used for both the subtasks are listed
in Table 2. As HinGE En-Hg has multiple
Hinglish translations for a single English sen-
tence. We duplicated the English to increase
the size of the data. For the WMT’14 Hi-En
dataset, we selected the closest 15K sentences,
selected using cosine similarity with source-
side validation data.

To preprocess the data, we tokenize using
the Moses tokenizer (Koehn et al., 2007) or
the model-specific tokenizer provided by Hug-
gingface. Additionally, we apply either Byte
pair encoding (BPE) (Sennrich et al., 2015b)
for the baseline transformer model and sen-
tence piece (Kudo and Richardson, 2018) for
all other models including mBART-50, M2M-
100, NLLB-200, mT5-XL and mT5-XXL to
split words into subwords tokens.

6 Experiments
This section describes the experimental de-
tails, including the toolkits, the parameter set-
tings for the model training and decoding, and
the results.

6.1 Tools & Hardware
For the Models mentioned in Section 4.2, we
train the smaller models on 32GB NVIDIA
Tesla V100 GPUs, and the medium and larger
models require multiple 80GB NVIDIA A100
GPUs. We use a total of 4 V100 GPUs and
16 A100 GPUs. Due to GPU memory usage
(see Section 1), we parallelized the training of
the medium and larger models using the Deep-
Speed package (Rasley et al., 2020).

6.2 Training Details
As an NMT baseline, we use the baseline
transformer model (Vaswani et al., 2017) pro-
vided by the Fairseq toolkit. The model has
half number of attention heads and the feed-
forward network dimension compared to the
Transformer (base) model in Vaswani et al.
(2017). The rest of the network architecture is
the same. We train this model from scratch by
adding additional datasets and finally tuning
it on the validation data.

We use the Fairseq toolkit for training the
baseline transformer from scratch and for fine-
tuning the mBART-50 and M2M-100 models.
For finetuning NLLB-200, mT5-XL, and mT5-
XXL models, we use the Huggingface toolkit.
For the pre-trained multilingual models, we
use the Hindi language encoder and English
language decoder for finetuning and decoding.

As shown in Table 4, we finetune the models
with the listed datasets for each subtask. We
initially fine-tune these models on ID 4 dataset
mentioned in Table 4. Finally, we further fine-
tune the models on the validation datasets pro-
vided by the organizers.

Hyper-parameter settings We train the
Transformer model from scratch and finetune
all the multilingual pre-trained models. We
train Transformer, mBART-50, and M2M-100
models for 10 epochs on the ID 4 datasets and
5 epochs on the validation dataset. We fine-
tune the larger models listed in Table 3, for
a maximum of 3 epochs before tuning on the
validation for 7 epochs for subtask 1 and 4

1139



Model Train time/epoch
Subtask 1 Subtask 2

mBART-50 2 mins 14 mins
M2M-100 8 mins 33 mins
NLLB-200 16 mins 1.5 hrs
mT5-XL 20 mins 15 hrs

mT5-XXL 5.5 hour 24 hrs

Table 3: Per epoch training time for each of the
models. The training time is for ID 4 datasets in
Table 4.

epochs for subtask 2, respectively. We set the
Adam betas to 0.9 and 0.98 for all the models
and tuned the learning rates between 1e−5 and
9e−5. We opt for higher learning rates for the
initial epochs and use lower learning rates for
the remaining epochs. Finetuning with a high
learning rate for fewer epochs is particularly
helpful as larger models take much more time
per epoch, even with the larger GPU memory.
We also experiment with tuning the dropout
between 0.1 and 0.15, and we get the best per-
formance with the dropout rate set to 0.1. The
batch size is limited to smaller values due to
memory constraints. We set the batch size to
10 or 20 for larger models and 40 or 50 for
medium-sized or smaller models.

Decoding parameters For the decoding
step for both tasks, we set English as the tar-
get language tag for all the models. We tune
the beam size, and the optimal beam size is
17 for both subtasks on the validation set.
We limit the maximum sentence length to 128
only for the medium and larger models like
NLLB-200, mT5-XL, and mT5-XXL. Finally,
we detokenize the translation output as a post-
processing step (Koehn et al., 2007).

6.3 Additional Experiments
We also perform additional experiments that
are helpful but not included in the final sub-
mission due to limited time. These are the
MTNT datasets and the ensemble methods.
Firstly, we use the MTNT dataset as an ad-
ditional bilingual in-domain data set contain-
ing different source languages. We also ap-
ply the multi-run ensemble method to combine
models trained on multiple datasets together
(Koehn and Knowles, 2017). For both tasks,
we train M2M-100 models on the MTNT Fr-
En data and the MTNT Ja-En data before
tuning them on the baseline datasets, respec-

tively. Additionally, we first fine-tune the
WMT’14 News Hi-En data and then fine-tune
the baseline data. Then we ensemble these two
models with the original base model.

7 Results

We evaluate the models with respect to the
BLEU score using sacrebleu. Table 5 shows
the results of the experiments for both tasks
and all the models. In general, we get improve-
ment with larger multilingual models and with
validation finetuning.

Table 4 shows the results of training from
scratch using the transformer model with addi-
tional in-domain datasets. We get a maximum
improvement of 9.3 for subtask 1 and 4.0 for
subtask 2 using the additional datasets. Fi-
nally, tuning on validation gave an additional
boost of +1.1 and +0.2 BLEU for subtasks
1 and 2 respectively. Table 5 shows the re-
sults for using pre-trained multilingual mod-
els on the ID 4 datasets. We get a maximum
improvement of 25.6 and 32.6 for subtasks 1
and 2. This is +14.0 and +23.9 BLEU points
higher than the best transformer model’s re-
sults in Table 4.

Table 6 shows the ensemble results of a
multi-run ensemble of the three models: (1)
The baseline M2M-100 model in Table 5, (2)
The M2M-100 model first trained on MTNT
data and then on the baseline data, and (3)
Training the M2M-model on MTNT data,
then on WMT data, and finally on the baseline
data. We get a slight decrease of −0.3 BLEU
for subtask 1 compared to the baseline. How-
ever, for subtask 2, the performance improves
by +0.8 BLEU points.

8 Analysis

We analyze the translation outputs of NLLB,
mT5-XL, and mT5-XXL models. For subtask
1, the issues we faced were that the sentences
were translated entirely to English and did not
contain any Hinglish words. Some words were
translated partially to Hinglish, and a portion
of the words remained in the Hindi language.
For subtask 2, the issues we faced were that
the names of animal species were not trans-
lated correctly. And idioms lose their mean-
ing in translation. Examples of these issues
are shown in Table 7 & 8.

1140



ID Datasets Hi-Hg
1 HinGE 1.2
2 [1]+Kaggle 6.4
3 [2]+WMT’14 News 10.3
4 [3]+Facebook MUSE 10.5
5 [4]+val tune 11.6

ID Datasets Hg-En
1 PHINC 4.5
2 [1]+HinGE 5.1
3 [2]+CALCS’21 5.2
4 [3]+Back-translation 8.5
5 [4]+val tune 8.7

Table 4: Adding in-domain datasets. Baseline: Transformer (Vaswani et al., 2017). Evaluation critierion:
BLEU[%]. add citation of the datasets. Training from scratch without pre-trained models. ‘+val tune’
is further finetuning on validation data. All the results are evaluated on the competition’s test data.

Pretrained Multilingual Model subtask 1 subtask 2
baseline +val tune baseline +val tune

mBART-50 16.9 - 18.3 -
M2M-100 18.9 - 23.8 -
NLLB-200 11.5 - 23.8 30.3
mT5-XL 18.8 25.6 24.0 31.7

mT5-XXL 18.5 24.0 24.9 32.6

Table 5: Initialization with pre-trained models. BLEU scores (%) for subtask 1 and 2. ‘baseline’ experi-
ment is finetuning the pre-trained model on the ID 4 datasets in Table 4. ‘+val tune’ is further finetuning
on validation data. All the results are evaluated on the competition’s test data. bold results are the
final submission.

Task Models BLEU

subtask 1 Base 18.9
Base+MTNT+WMT 18.6

subtask 2 Base 23.8
Base+MTNT+WMT 24.6

Table 6: Checkpoint ensemble results for subtask 2
trained on M2M-100 model evaluated on the com-
petition’s test data. The base is the baseline M2M-
100 experiment. MTNT is first training on MTNT
data and then tuning on the baseline. WMT tunes
on MTNT, then WMT, and finally on baseline
data.

Src देश क राष्टर् ीय िक्रकेट टीम ...
NLLB The national cricket team in the country...
mT5-XL desh ki national cricket team...
mT5-XXL country ki national cricket team...
Ref desh ki national cricket team...
Src यह प्रमा णत हो चुका है जो एक  चमत्कार है ।
NLLB It has been proven which is a miracle.
mT5-XL yah pramanit ho chuka hai jo ek miracle hai.
mT5-XXL yah pramanit ho chuka hai jo ek चमtkaar hai.
Ref yah pramanit ho chuka hai jo miracle hai.

Table 7: Examples of errors for subtask 1.

9 Conclusion

This paper describes our submitted transla-
tion system for the WMT 2022 shared task
MixMT competition. We train five different
multilingual NMT models including mBART-
50, M2M-100, NLLB-200, mT5-XL, and mT5-
XXL, for both subtasks. We finetune on in-
domain datasets including the validation data

Src lol...gayi bhains paani mein...
NLLB lol... went bhains in water...
mT5-XL lol... animals went in water...
mT5-XXL Lol... Goat got in the water...
Ref lol.. buffalo went in the water...
Src ye video dekh kar to khoon khaul gya
NLLB After seeing this video, blood came out.
mT5-XL seeing this video, my blood bleed.
mT5-XXL Blood boiled after watching this video.
Ref By watching this video, blood boiled.

Table 8: Examples of errors for subtask 2.

and significantly enhance our translation qual-
ity from 1.2 to 25.6 and 4.5 to 32.6 for subtasks
1 and 2 respectively. Additionally, we also
apply data-augmentation techniques including
back-translation, tuning on in-domain data,
and checkpoint ensemble. Our system got the
1st position in subtask 2 for both ROUGE-L
and WER metrics, the 1st position in subtask
1 for WER, and 3rd position in subtask 1 for
ROUGE-L.

Acknowledgments
We appreciate the National Science Founda-
tion (NSF) Award No. 1747728 and NSF
CRAFT Award, Grant No. 22001 to fund this
research. We are also thankful for the sup-
port of the Google Cloud Research Program.
We especially thank Xuting Tang, Yu Yu, and
Mengjiao Zhang to help editing the paper.

1141



References
Gustavo Aguilar, Fahad AlGhamdi, Victor Soto,

Thamar Solorio, Mona Diab, and Julia
Hirschberg. 2018. Proceedings of the third work-
shop on computational approaches to linguis-
tic code-switching. In Proceedings of the Third
Workshop on Computational Approaches to Lin-
guistic Code-Switching.

Roee Aharoni, Melvin Johnson, and Orhan Firat.
2019. Massively multilingual neural machine
translation. arXiv preprint arXiv:1903.00089.

Naveen Arivazhagan, Ankur Bapna, Orhan Fi-
rat, Dmitry Lepikhin, Melvin Johnson, Maxim
Krikun, Mia Xu Chen, Yuan Cao, George Fos-
ter, Colin Cherry, et al. 2019. Massively
multilingual neural machine translation in the
wild: Findings and challenges. arXiv preprint
arXiv:1907.05019.

Irshad Ahmad Bhat, Riyaz Ahmad Bhat, Man-
ish Shrivastava, and Dipti Misra Sharma. 2017.
Joining hands: Exploiting monolingual tree-
banks for parsing of code-mixing data. arXiv
preprint arXiv:1703.10772.

Ondřej Bojar, Vojtěch Diatka, Pavel Rychlỳ, Pavel
Straňák, Vít Suchomel, Aleš Tamchyna, and
Daniel Zeman. 2014. Hindencorp-hindi-english
and hindi-only corpus for machine translation.
In Proceedings of the Ninth International Con-
ference on Language Resources and Evaluation
(LREC’14), pages 3550–3555.

Parth Chokhra. 2020. Hindi to hinglish cor-
pus. https://www.kaggle.com/datasets/
parthplc/hindi-to-hinglish.

Marta R Costa-jussà, James Cross, Onur Çelebi,
Maha Elbayad, Kenneth Heafield, Kevin Heffer-
nan, Elahe Kalbassi, Janice Lam, Daniel Licht,
Jean Maillard, et al. 2022. No language left be-
hind: Scaling human-centered machine transla-
tion. arXiv preprint arXiv:2207.04672.

Raj Dabre, Chenhui Chu, and Anoop Kunchukut-
tan. 2020. A survey of multilingual neural ma-
chine translation. ACM Computing Surveys
(CSUR), 53(5):1–38.

Daxiang Dong, Hua Wu, Wei He, Dianhai Yu,
and Haifeng Wang. 2015. Multi-task learning
for multiple language translation. In Proceed-
ings of the 53rd Annual Meeting of the Asso-
ciation for Computational Linguistics and the
7th International Joint Conference on Natural
Language Processing (Volume 1: Long Papers),
pages 1723–1732.

Angela Fan, Shruti Bhosale, Holger Schwenk, Zhiyi
Ma, Ahmed El-Kishky, Siddharth Goyal, Man-
deep Baines, Onur Celebi, Guillaume Wenzek,
Vishrav Chaudhary, et al. 2021. Beyond english-
centric multilingual machine translation. J.
Mach. Learn. Res., 22(107):1–48.

Orhan Firat, Kyunghyun Cho, and Yoshua Bengio.
2016. Multi-way, multilingual neural machine
translation with a shared attention mechanism.
arXiv preprint arXiv:1601.01073.

Saurabh Garg, Tanmay Parekh, and Preethi
Jyothi. 2018. Code-switched language models
using dual rnns and same-source pretraining.
arXiv preprint arXiv:1809.01962.

Devansh Gautam, Prashant Kodali, Kshitij Gupta,
Anmol Goel, Manish Shrivastava, and Ponnu-
rangam Kumaraguru. 2021. Comet: Towards
code-mixed translation using parallel monolin-
gual sentences. In Proceedings of the Fifth Work-
shop on Computational Approaches to Linguistic
Code-Switching, pages 47–55.

Alec Go, Richa Bhayani, and Lei Huang. 2009.
Twitter sentiment classification using distant su-
pervision. CS224N project report, Stanford,
1(12):2009.

Vikrant Goyal and Dipti Misra Sharma. 2019. Ltrc-
mt simple & effective hindi-english neural ma-
chine translation systems at wat 2019. In Pro-
ceedings of the 6th Workshop on Asian Transla-
tion, pages 137–140.

Jiatao Gu, Hany Hassan, Jacob Devlin, and
Victor OK Li. 2018. Universal neural ma-
chine translation for extremely low resource lan-
guages. arXiv preprint arXiv:1802.05368.

Ganesh Jawahar, El Moatez Billah Nagoudi,
Muhammad Abdul-Mageed, and Laks VS Lak-
shmanan. 2021. Exploring text-to-text trans-
formers for english to hinglish machine transla-
tion with synthetic code-mixing. arXiv preprint
arXiv:2105.08807.

Melvin Johnson, Mike Schuster, Quoc V Le,
Maxim Krikun, Yonghui Wu, Zhifeng Chen,
Nikhil Thorat, Fernanda Viégas, Martin Wat-
tenberg, Greg Corrado, et al. 2017. Google’s
multilingual neural machine translation system:
Enabling zero-shot translation. Transactions of
the Association for Computational Linguistics,
5:339–351.

Philipp Koehn. 2020. Neural machine translation.
Cambridge University Press.

Philipp Koehn, Hieu Hoang, Alexandra Birch,
Chris Callison-Burch, Marcello Federico, Nicola
Bertoldi, Brooke Cowan, Wade Shen, Christine
Moran, Richard Zens, et al. 2007. Moses: Open
source toolkit for statistical machine transla-
tion. In Proceedings of the 45th annual meeting
of the association for computational linguistics
companion volume proceedings of the demo and
poster sessions, pages 177–180.

Philipp Koehn and Rebecca Knowles. 2017. Six
challenges for neural machine translation. In

1142



Proceedings of the First Workshop on Neural Ma-
chine Translation, pages 28–39. Association for
Computational Linguistics.

Taku Kudo and John Richardson. 2018. Sentence-
piece: A simple and language independent sub-
word tokenizer and detokenizer for neural text
processing. arXiv preprint arXiv:1808.06226.

Guillaume Lample, Alexis Conneau, Ludovic De-
noyer, and Marc’Aurelio Ranzato. 2017. Unsu-
pervised machine translation using monolingual
corpora only. arXiv preprint arXiv:1711.00043.

Sahinur Rahman Laskar, Abinash Dutta, Partha
Pakray, and Sivaji Bandyopadhyay. 2019. Neu-
ral machine translation: English to hindi. In
2019 IEEE conference on information and com-
munication technology, pages 1–6. IEEE.

M. Paul Lewis, editor. 2009. Ethnologue: Lan-
guages of the World, Sixteenth edition. SIL In-
ternational, Dallas, Texas, USA.

Paul Michel and Graham Neubig. 2018. Mtnt: A
testbed for machine translation of noisy text.
arXiv preprint arXiv:1809.00388.

Makoto Morishita, Jun Suzuki, and Masaaki Na-
gata. 2018. Improving neural machine transla-
tion by incorporating hierarchical subword fea-
tures. In Proceedings of the 27th International
Conference on Computational Linguistics, pages
618–629.

Myle Ott, Sergey Edunov, Alexei Baevski, Angela
Fan, Sam Gross, Nathan Ng, David Grangier,
and Michael Auli. 2019. fairseq: A fast, ex-
tensible toolkit for sequence modeling. arXiv
preprint arXiv:1904.01038.

Adithya Pratapa, Gayatri Bhat, Monojit Choud-
hury, Sunayana Sitaram, Sandipan Dandapat,
and Kalika Bali. 2018. Language modeling for
code-mixing: The role of linguistic theory based
synthetic data. In Proceedings of the 56th An-
nual Meeting of the Association for Computa-
tional Linguistics (Volume 1: Long Papers),
pages 1543–1553.

Surangika Ranathunga, En-Shiun Annie Lee, Mar-
jana Prifti Skenduli, Ravi Shekhar, Mehreen
Alam, and Rishemjit Kaur. 2021. Neural ma-
chine translation for low-resource languages: A
survey. arXiv preprint arXiv:2106.15115.

Jeff Rasley, Samyam Rajbhandari, Olatunji
Ruwase, and Yuxiong He. 2020. Deepspeed: Sys-
tem optimizations enable training deep learning
models with over 100 billion parameters. In
Proceedings of the 26th ACM SIGKDD Inter-
national Conference on Knowledge Discovery &
Data Mining, pages 3505–3506.

Rico Sennrich, Barry Haddow, and Alexandra
Birch. 2015a. Improving neural machine trans-
lation models with monolingual data. arXiv
preprint arXiv:1511.06709.

Rico Sennrich, Barry Haddow, and Alexandra
Birch. 2015b. Neural machine translation of
rare words with subword units. arXiv preprint
arXiv:1508.07909.

Thamar Solorio, Shuguang Chen, Alan W Black,
Mona Diab, Sunayana Sitaram, Victor Soto,
Emre Yilmaz, and Anirudh Srinivasan. 2021.
Proceedings of the fifth workshop on computa-
tional approaches to linguistic code-switching.
In Proceedings of the Fifth Workshop on
Computational Approaches to Linguistic Code-
Switching.

Vivek Srivastava and Mayank Singh. 2020.
PHINC: A parallel Hinglish social media code-
mixed corpus for machine translation. In Pro-
ceedings of the Sixth Workshop on Noisy User-
generated Text (W-NUT 2020), pages 41–49, On-
line. Association for Computational Linguistics.

Vivek Srivastava and Mayank Singh. 2021. HinGE:
A dataset for generation and evaluation of code-
mixed Hinglish text. In Proceedings of the
2nd Workshop on Evaluation and Comparison
of NLP Systems, pages 200–208, Punta Cana,
Dominican Republic. Association for Computa-
tional Linguistics.

Xu Tan, Jiale Chen, Di He, Yingce Xia, Tao Qin,
and Tie-Yan Liu. 2019. Multilingual neural
machine translation with language clustering.
arXiv preprint arXiv:1908.09324.

Yuqing Tang, Chau Tran, Xian Li, Peng-Jen Chen,
Naman Goyal, Vishrav Chaudhary, Jiatao Gu,
and Angela Fan. 2020. Multilingual translation
with extensible multilingual pretraining and fine-
tuning. arXiv preprint arXiv:2008.00401.

Tatoeba. 2022. Spanish english bilingual dataset.
https://www.manythings.org/anki/.

Louis Tom. 2022. Codemixed. https://www.
kaggle.com/datasets/louistom/codemixed.

Ashish Vaswani, Noam Shazeer, Niki Parmar,
Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
Łukasz Kaiser, and Illia Polosukhin. 2017. At-
tention is all you need. Advances in neural in-
formation processing systems, 30.

Raúl Vázquez, Alessandro Raganato, Jörg Tiede-
mann, and Mathias Creutz. 2018. Multilin-
gual nmt with a language-independent attention
bridge. arXiv preprint arXiv:1811.00498.

Genta Indra Winata, Andrea Madotto, Chien-
Sheng Wu, and Pascale Fung. 2019. Code-
switched language models using neural based
synthetic data from parallel sentences. arXiv
preprint arXiv:1909.08582.

1143



Thomas Wolf, Lysandre Debut, Victor Sanh,
Julien Chaumond, Clement Delangue, Anthony
Moi, Pierric Cistac, Tim Rault, Rémi Louf, Mor-
gan Funtowicz, et al. 2019. Huggingface’s trans-
formers: State-of-the-art natural language pro-
cessing. arXiv preprint arXiv:1910.03771.

Hao Xiong, Junchi Yan, and Li Pan. 2021. Con-
trastive multi-view multiplex network embed-
ding with applications to robust network align-
ment. In Proceedings of the 27th ACM SIGKDD
Conference on Knowledge Discovery & Data
Mining, pages 1913–1923.

Linting Xue, Noah Constant, Adam Roberts, Mihir
Kale, Rami Al-Rfou, Aditya Siddhant, Aditya
Barua, and Colin Raffel. 2021. mT5: A
massively multilingual pre-trained text-to-text
transformer. In Proceedings of the 2021 Confer-
ence of the North American Chapter of the Asso-
ciation for Computational Linguistics: Human
Language Technologies, pages 483–498, Online.
Association for Computational Linguistics.

Kangyan Zhou, Shrimai Prabhumoye, and Alan W
Black. 2018. A dataset for document grounded
conversations. In Proceedings of the 2018 Con-
ference on Empirical Methods in Natural Lan-
guage Processing, pages 708–713, Brussels, Bel-
gium. Association for Computational Linguis-
tics.

1144



Proceedings of the Seventh Conference on Machine Translation (WMT), pages 1145–1157
Abu Dhabi, December 7–8, 2022. ©2022 Association for Computational Linguistics

The University of Edinburgh’s Submission to the WMT22 Code-Mixing
Shared Task (MixMT)

Faheem Kirefu Vivek Iyer Pinzhen Chen Laurie Burchell
School of Informatics, University of Edinburgh

{fkirefu,vivek.iyer,pinzhen.chen,laurie.burchell}@ed.ac.uk

Abstract

The University of Edinburgh participated in
the WMT22 shared task on code-mixed trans-
lation. This consists of two subtasks: i) gen-
erating code-mixed Hindi/English (Hinglish)
text generation from parallel Hindi and En-
glish sentences and ii) machine translation from
Hinglish to English. As both subtasks are con-
sidered low-resource, we focused our efforts on
careful data generation and curation, especially
the use of backtranslation from monolingual re-
sources. For subtask 1 we explored the effects
of constrained decoding on English and translit-
erated subwords in order to produce Hinglish.
For subtask 2, we investigated different pre-
training techniques, namely comparing simple
initialisation from existing machine translation
models and aligned augmentation. For both
subtasks, we found that our baseline systems
worked best. Our systems for both subtasks
were one of the overall top-performing submis-
sions.

1 Introduction

Code-mixing is the shift from one language to
another within a single conversation or utterance
(Sitaram et al., 2019). It is an extremely common
and diverse communicative phenomenon world-
wide (Doğruöz et al., 2021; Sitaram et al., 2019),
though one which is currently under-served by
many NLP technologies (Solorio et al., 2021).

One of the most well-known examples of code-
mixing is between Hindi and English, commonly
referred to as Hinglish1. It is extremely common
amongst Hindi-English bilingual speakers in both
speech and text, used across a range of genres and
media (Parshad et al., 2016), and has its own dis-
tinctive features and linguistic forms (Kumar, 1986;
Sailaja, 2011). The process of generating Hinglish
from the written text is non-trivial, as code-mixing

1In the scope of this paper, we designate “hg” as the lan-
guage code for Hinglish.

may happen at the phrase or word level, but Hindi
and English differ substantially syntactically.

As a novel addition to the current code-mixing
NLP research, we investigated lexically constrain-
ing the Hinglish output in subtask 1 to only contain
words from English and Hindi sources. Through
analysis, we demonstrated that transliteration mis-
matches could affect performance.

Another novel approach we explore for this task,
particularly for subtask 2, is a denoising-based pre-
training technique called Aligned Augmentation
(AA) (Pan et al., 2021). AA, which trains MT
models to denoise artificially generated code-mixed
text, was shown by Pan et al. (2021) to boost trans-
lation performance across a variety of languages
- thanks to the enhanced transfer learning brought
about by code-mixed pretraining. In this work, we
explored if this general-purpose approach could be
useful for translating authentic, human-generated
code-mixed text, focusing on Hinglish.

Despite these efforts, we found that for both sub-
tasks our original baselines worked better and con-
stituted our final submissions for this task, which
ranked as one of the top-performing systems for
both subtasks, by both automatic and human evalu-
ation. We hope our methods, particularly Hinglish
data generation, that allowed us to build these sys-
tems would be useful to the community; as would
the findings from our additional research explo-
rations.

2 Related Work

2.1 Code-mixing

Due to an increasing prevalence of code-mixed
data on the Internet, there is a growing body of re-
search into code-mixing, particularly for Hinglish,
in the NLP community. Doğruöz et al. (2021) pro-
vide a comprehensive literature review of code-
mixing in the context of language technologies.
Whilst they highlight several challenges inherent
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in NLP with code-mixed text (such as understand-
ing cultural and linguistic context, evaluation, and
a lack of user-facing applications), the most no-
table obstacle for this shared task is the lack of
data. They note that there are very few code-mixed
datasets, making it challenging to build deep learn-
ing models such as those for NMT. In this work, we
use backtranslation as our main data augmentation
method (Edunov et al., 2020; Barrault et al., 2020;
Akhbardeh et al., 2021, inter alia). This allows
us to leverage the larger amount of monolingual
data for better final model performance. The XLM
toolkit (Lample and Conneau, 2019) seemed an
ideal choice to backtranslate our Hinglish. This is
because it has shown promising results in unsuper-
vised and semi-supervised settings where parallel
data is sparse, but monolingual data is ample. Also
given that Hinglish is closely related to both lan-
guages, we believed Hinglish should be an ideal
language to use in a semi-supervised setting.

2.2 Constrained decoding
Constrained decoding involves applying restric-
tions to the generation of output tokens during infer-
ence. Most implementations have the goal of ensur-
ing that desired vocabulary items appear in the tar-
get side sequence (Hokamp and Liu, 2017; Hasler
et al., 2018; Post and Vilar, 2018). Alternatively,
Kajiwara (2019) paraphrase an input sentence by
forcing the output to not include source words, and
Chen et al. (2020) constrain NMT decoding to fol-
low a corpus built in a trie data structure to find
parallel sentences.

To the best of our knowledge, previous linguis-
tics research investigated and applied the grammati-
cal constraints in code-mixing (Sciullo et al., 1986;
Belazi et al., 1994; Li and Fung, 2013), rather than
the novel method in our work of introducing lexical
constraints.

2.3 Aligned augmentation
Several recent works (Yang et al., 2020a,b; Lin
et al., 2020; Pan et al., 2021) have explored enhanc-
ing cross-lingual transfer learning by pretraining
models on the task of ‘denoising’ artificially code-
mixed text. Methods to create the necessary code-
mixed data vary, and include bilingual or multilin-
gual datasets and word aligners (Yang et al., 2020a,
2021), lexicons (Yang et al., 2020b; Lin et al., 2020;
Pan et al., 2021), or combining code-mixed nois-
ing with traditional masked noising approaches (Li
et al., 2022).

The most successful among these methods is
Aligned Augmentation (AA) (Pan et al., 2021),
which randomly substituting words in the source
sentence with their word-level translations, as ob-
tained from a MUSE (Lample et al., 2018) dictio-
nary. Pan et al. (2021) showed that their technique
can effectively align multilingual semantic word
representations and boost performance across var-
ious languages. However, these methods focus
on training general-purpose MT models. In this
work, we investigate their utility for translating real
human-generated code-mixed text.

2.4 Automatic evaluation metrics

Automatic translation evaluation is usually done
using BLEU (Papineni et al., 2002), yet there is
no comprehensive study on its suitability for code-
switched translation. Specifically in this task, the
organisers announced that the participating sys-
tems will be evaluated using ROUGE-L (Lin, 2004)
and word error rate (WER). Nonetheless, the pack-
ages implementing these metrics were not speci-
fied. Since ROUGE comes with different language,
stemming and tokenisation settings, we instead
used BLEU, ChrF++ (Popović, 2017), translation
error rate (TER), and WER2 for our internal val-
idation. The first three are as implemented with
sacreBLEU (Post, 2018). We stick to the default
configurations, except that the ChrF word n-gram
order is explicitly set to 2 to make it ChrF++. In
addition, the organisers performed a small-scale
human evaluation on 20 test instances for all sub-
missions.

In this work, we advocate for a character-based
metric when evaluating the Hinglish output in sub-
task 1. This is because for the code-switched lan-
guage, there is no formal spelling or defined gram-
mar, and words may have a diverse range of accept-
able transliterations and lexical forms.

3 Subtask 1: Translating into Hinglish

Good quality Hinglish data is hard to come by,
and parallel Hinglish data with Hindi or English
even more frugal. Therefore, for both subtasks
we concentrated our efforts on generating good
Hinglish backtranslation. We planned to use the
model which produced the highest quality Hinglish
for subtask 1 as our backtranslator for subtask 2,
hence we focused our efforts on each subtask se-
quentially.

2https://github.com/jitsi/jiwer
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3.1 Data cleaning and preprocessing

After deduplicating the data, we removed non-
printing characters and normalised the punctuation.
We then ran rule-based filters, removing any sen-
tences with fewer than two or more than 150 words,
where fewer than 40% of the words are written in
the relevant script, or where over 50% of characters
are not letters in the relevant script. For English
and Hindi, we ran fasttext language ID and re-
moved any sentence which was not classified as the
relevant language.3 For Hinglish, we also removed
any sentence with a predicted probability of En-
glish greater than 0.99 in order to remove sentences
that were solely in English. We tokenised English
and Hinglish using Moses scripts (Koehn et al.,
2007) and tokenised Hindi using the indicnlp
library (Kunchukuttan, 2020).

We decided to add explicit preprocessing and
postprocessing capabilities for handling social me-
dia text, given that this was the domain for subtask
2. On both source and target sides, we replaced
URLs, Twitter handles, hashtags and emoticons
each with their own placeholder tokens4, to be re-
placed back from the source after inference. These
placeholders made up 1.7% of the validation set
tokens for subtask 2, far higher than would appear
in general domain data.

3.1.1 The HinGe dataset
The primary dataset for subtask 1 was the HinGe
dataset (Srivastava and Singh, 2021), which con-
sisted of hi-en-hg parallel sentences, with some ex-
amples synthetic and some human-generated. This
was provided to us pre-split into training and de-
velopment sets for both data types. However, we
noticed that these sets were not mutually exclu-
sive, and after deduplication and filtering on the
synthetic data human annotations5, we had 6,727
hi-en-hg examples in total.

3.1.2 Base hi↔en translation models
Firstly, we trained four Transformer-base (Vaswani
et al., 2017) models with different seeds using Mar-
ian (Junczys-Dowmunt et al., 2018) for both hi→en
and en→hi directions, using the data from the hi-en

3Our cleaning scripts are adapted from
those provided by the Bergamot project.
https://github.com/browsermt/students/tree/master/train-
student Specifically, we add support for Hindi and Hinglish
text.

4<URL>, <TH>, <HT> and <EMO> respectively
5We only kept sentences with an average rating greater

than 4, and annotator disagreement less than 5

parallel Samanantar corpus6 (Ramesh et al., 2021).
Given the findings of Ding et al. (2019) with regard
to vocabulary choice for low-resource scenarios,
and that our task inherently contains transliteration,
we opted for a low BPE (Sennrich et al., 2016)
merge size of 4k, resulting in a small joint vocab-
ulary of 7.9k. We used the hi-en FLORES devel-
opment set (Goyal et al., 2022) for validation and
early stopping, and noticed our model produced
surprisingly good quality translations in both di-
rections7. We used these models (along with vo-
cabulary) to both initialise subsequent models and
generate backtranslation for more training data.

3.1.3 Hinglish data
L3Cube-HingCorpus (Nayak and Joshi, 2022) and
CC-100 Hindi Romanized (Conneau et al., 2020a)
are two Hinglish corpora that we wished to back-
translate into both English and Hindi. Given that
we only had a small amount of parallel Hinglish
data, compared to our ‘monolingual’ datasets, we
used the XLM toolkit (Lample and Conneau, 2019)
to train a semi-supervised model (see Appendix A
for details). We then backtranslated the monolin-
gual Hinglish data into both English and Hindi.
However, given the noisy quality of the data and
translations themselves, we decided to evaluate
them using our hi→en and en→hi Marian models.
Specifically, for an en-hi backtranslated (XLM)
sentence pair, we translated the en/hi into hi/en re-
spectively, then evaluated the double translated out-
put using ChrF, with the XLM backtranslations as
the references. We then took a mean of the English
and Hindi ChrF score to get our final confidence
value. We used the resulting hg-en-hi sentence trios
with values at least 0.4, to compromise between
the quality and quantity of data available to use as
training. Most of the sentences scored quite poorly,
and filtering on 0.4 yielded 2.1M sentences, only
about 12% of the original Hinglish monolingual
dataset.

3.1.4 Transliteration
In order to best leverage the Samanantar hi-en par-
allel corpus, we transliterated the Hindi side into
Roman script8, on the word level. Although this

6Each sentence was annotated with the LaBSE (Feng et al.,
2022) Alignment Score (between 0 and 1), so we filtered out
values less than 0.65, resulting in around 10.1M sentences

7sacreBLEU: 33.8 for hi→en and 32.7 for hi→en on FLO-
RES development set

8In the scope of this paper, we use “ht” to denote pure
romanised Hindi transliteration
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Beam Size BLEU (↑) ChrF++ (↑) TER (↓) WER (↓)
Unconstrained

1 17.8 42.8 65.3 81.5
4 18.1 44.0 64.5 85.7
12 18.0 43.8 64.8 86.0
24 18.0 43.7 65.0 85.5
36 17.9 43.5 65.1 85.4
48 18.0 43.6 65.2 85.5

Constrained
1 10.8 33.1 76.1 75.1
2 12.2 35.6 74.9 69.1
4 13.2 36.6 74.2 63.5
6 14.1 37.7 73.5 60.8
12 14.6 38.1 73.7 58.6
24 14.8 38.5 73.5 57.2
36 14.9 38.7 73.6 56.7
48 15.0 38.7 73.6 57.0

Table 1: Experimental results on the validation set with unconstrained and constrained decoding for subtask 1.

forward transliteration was not likely to contain
much code-mixed text, it would still be useful train-
ing data for our model, given that both the Hindi
and English sources are assumed to be either the
original sources or human translationese.

We used the AI4Bharat Indic transliterator (Mad-
hani et al., 2022), to convert (on the word level)
all romanised tokens contained in our monolingual
Hinglish datasets into Devanagari script. This tool
is a neural-based model with beam search capabil-
ities, therefore we generated the top 4 results in
Hindi for each Hinglish token. We used the top
4 instead of the most likely candidate as, upon in-
spection, we found that the correct corresponding
Hindi token was not always predicted first. We also
used a human-generated list of Hinglish-English
pairs form the Xlit-Crowd corpus (Khapra et al.,
2014) which we treated as the gold standard.

To summarise, our training data for our hi→ht
transliterator9 consists of 5.3M Hinglish-Hindi
word pairs (1.3M unique Hinglish words), and 15k
from XlitCrowd, of which we use 1k as a validation
set for early stopping. We train a small transformer
model with Marian on the character-level for both
input and output. When forward transliterating the
Hindi side of the Samanantar corpus, we copied
over non-standard strings (such as numbers, punc-
tuation etc.), or else we looked up the token (if it

9We decided to build our own transliterator as we found
existing tools in this direction to be of poor quality

existed) in our gold standard list. Otherwise, we
used our transliteration model as a final back-off.
In hindsight, one disadvantage of our approach was
that we did not generate multiple candidates for
each Hindi word, to reflect the diversity of possible
romanised candidate tokens.

We also used this transliteration model as part
of our constrained decoding experiments later (see
Section 3.3).

3.2 Baseline (unconstrained decoding)
We decided to use a dual encoder setting given
that we have two inputs in this task, and initialise
our model from our previously trained Marian MT
systems. We used hi→en to initialise the Hindi-
decoder and the English-encoder cross attention
parameters, whereas en→hi was used to initialise
the English-encoder and all other decoder parame-
ters. Our vocabulary was the same as the pretrained
models.

Early stopping with patience 10 on the HinGe
dataset was used for convergence - for all of the
experiments mentioned in this paper. Our training
regime consisted of two stages:

• General domain - The training datasets used
were the backtranslated Hinglish and forward
transliterated Samanantar corpora. We used
all of the HinGe dataset as a validation set.

• Finetuning - We continue training on a sub-
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Figure 1: Validation BLEU and ChrF++ of the constrained and unconstrained outputs scored against English and
transliterated Hindi sources separately.

set of HinGe dataset, using a distinct smaller
subset (1k) of it as a validation set.

3.3 Constrained decoding
After analysing the training data, we hypothesized
that nearly all the output words should either be
from the English source, or as a transliteration of
a word from the Hindi source, with likely little
change in sentence structure. This inspired us to
use the technique of constrained decoding when
generating Hinglish.

Unlike standard constrained decoding where a
model is forced to incorporate certain words in the
output, our proposal is to exclude vocabulary words
that do not exist in English or transliterated Hindi
source sentences. Following Chen et al. (2020)’s
notion, we applied pre-expansion pruning: disal-
lowed word paths are assigned an extremely small
score before hypotheses are ranked and expanded.
Specifically, to obtain Hindi transliteration, we
used our transliteration model described in Section
3.1.4.

We performed beam searches with constrained
decoding and reported automatic scores on the val-
idation set in Table 1. Unfortunately, constrained
decoding does not beat unconstrained decoding. As
a general trend, WER and TER do not change much
as beam size increases, while BLEU and ChrF++
significantly improve.

To better understand the impact of constrained
decoding, we score the validation outputs against
English and transliterated Hindi sources separately,
then plot BLEU and ChrF++ numbers in Figure 1a
and Figure 1b. We observe that with increasing

beam sizes, constrained decoding prefers to gener-
ate English tokens instead of transliterated Hindi.
Unconstrained decoding achieves a much better
balance.

One hypothesis is that the quality of Hindi
transliteration is not perfect, resulting in the model
preferring English tokens from the vocabulary.
Hence, we compute the percentage of words in the
gold reference as well as in the unconstrained (base-
line) output that come from neither the English nor
the transliterated Hindi source. Surprisingly, on av-
erage 45.1% of the total words in the unconstrained
output do not appear in the sources; as for the gold
reference, it is 39.8% which is slightly lower. It
is worth noting that the numbers might be inflated
as we computed the word overlap after outputs are
detokenised. Yet it implies that many of the ref-
erence words do not exactly appear in the lexical
constraints determined from the source senteneces.

Finally, we visualise the first five validation sen-
tences in Table 2. We highlight in red the target
words that do not exist in the source sentences; we
also label the possible corresponding tokens from
the sources in blue. It can be confirmed that most
mismatches are due to differences in Hindi translit-
eration and letter cases. This indicates that the
lexical constraint idea is suitable in theory, but it is
hindered by the error propagation in transliteration.
This may have been alleviated by running multi-
ple transliteration schemes on the Hindi source to
make the constraints more diversified.
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hi source 1995 से 2004 के दौरान औसत धरातलीय तापमान 1940 से 1980 तक के औसत तापमान से िभन्न्न है
hi transliteration 1995 sey 2004 ke Dauran ausat Dharatliya Tapman 1940 sey 1980 tak ke ausat Tapman sey

bhinnn is
en source The average geological temperature of the earth from 1995-2004 is different than that of 1940-

1980 .
constrained The average Dharatliya tapman of the earth from 1995 -tak ke ausat tapman from bhinn.
unconstrained 1995 se pratik dauran average dharatliy temperwof the earth from 1990 se 1980 tak ke ausat

temperwale se bhinn hai.
reference from 1995-2004 ke dauran average geology temperature of earth 1940 se 1980 tak ke ausat

temperature se different hai.

hi source धृतराष्ट्र एवं गांधारी के १०० पुत्राें में सबसे बड़े ।
hi transliteration Dhritrashtra Evan Gandhari ke 100 putron main sabse bade .
en source Dhrudharashtra and Ghandhari ’s eldest among their 200 sons .
constrained Dhrudharashtra among their 200 sons.
unconstrained Dhrudharashtra among their 200 sons.
reference Dhrudharashtra and Ghandhari ke 100 sons mein sabse bade.

hi source इस प्रकार राजस्थान के रेिगस्तान का एक बड़ा भाग शस्य श्यामला भूिम में बदल जायेगा ।
hi transliteration is Prakar rajasthan ke registan ka a badaa bhaag Shasya Shyamala bhumi main cange jayega .
en source In this way a major part of the desert in Rajasthan would become a harvesting and fertile land .
constrained In this way a major part of the desert in Rajasthan would become a harvesting and jayega.
unconstrained In this way a major part of the desert in Rajasthan would become a harvesting and wtile land.
reference is prakar rajasthan ke desert ka ek major part harvesting and fertile land mein badal jayega.

hi source राष्ट्रपित की अध्यादेश जारी करने की शिक्त पे िनयंत्रण
hi transliteration Rashtrapati ki Adhyadesh jaari karne ki shakti pay Niyantran
en source The power of the President to proclaim Ordinance is subject to :
constrained Rashtrapati ki Adhyadesh jaari karne ki
unconstrained Rashtrapati ki adhyadesh jaari karne ki pratiniyantran.
reference President ki ordinance jari karne ki power pr niyantran.

hi source 1000 से अिधक हाथी िनमार्ण के दौरान यातायात हेतु प्रयोग हुए थे ।
hi transliteration 1000 sey Adhik haathi Nirman ke Dauran yatayat hetu pryog huye they .
en source More than 1000 elephants were used during the time of construction for transportation .
constrained Dauran transportation ke time yatayat hetu pryog hue the.
unconstrained 1000 se adhik haathi nirman ke dauran transportation hetu pryog hue the.
reference more than 1000 elephants construction ke dauran transportation hetu prayog hue the.

Table 2: The first five validation instances: English and Hindi sources, as well as constrained, unconstrained and
reference outputs. red denotes the target side words that do not appear in either of the source sentences from a
constrained aspect; blue denotes possible source-target matches in a different surface form.

mismatches are due to differences in Hindi translit-
eration and letter cases. This indicates that the lex-
ical constraint idea is suitable in theory, but it is
hindered by the error propagation in transliteration.
This may have been alleviated by running multi-
ple transliteration schemes on the Hindi source to
make the constraints more diversified.

4 Subtask 2: Hinglish-to-English

4.1 Data cleaning and preprocessing
The primary dataset provided for this task PHINC
(Srivastava and Singh, 2020) is relatively small
at 13.7k English-Hinglish pairs. Therefore, we
aimed to generate domain-specific parallel data us-
ing our baseline model from Subtask 1 on English
monolingual data.

We analysed the source side of the validation
dataset to determine the most frequent content

words (see Table 3) and then selected these words
(and any morphological/spelling variants) from
the English WikiMatrix corpus (Schwenk et al.,
2021). This yielded a total 477k English sentences
and we henceforth refer to this selection of sen-
tences as ToxicWiki. We also used Sentiment140
(Sahni et al., 2017), a dataset of 1.6M tweets in
English, as the domain of our validation set is also
Twitter.

To obtain the Hinglish side of both Senti-
ment140 and ToxicWiki datasets, we backtrans-
lated into Hindi using our en→hi Marian model,
and then used the en-hi pair and our baseline
system for subtask 1 to obtain the correspond-
ing Hinglish. However, many of the placeholders
(such as <HT>) did not occur frequently enough
during the training of subtask 1 for the model to
learn to consistently copy them across; therefore

Table 2: The first five validation instances: English and Hindi sources, as well as constrained, unconstrained and
reference outputs. red denotes the target side words that do not appear in either of the source sentences from a
constrained aspect; blue denotes possible source-target matches in a different surface form.

4 Subtask 2: Hinglish-to-English

4.1 Data cleaning and preprocessing
The primary dataset provided for this task PHINC
(Srivastava and Singh, 2020) is relatively small at
13.7k English-Hinglish pairs. Therefore, we aimed
to generate domain-specific parallel data using our
baseline model from Subtask 1 on English mono-
lingual data.

We analysed the source side of the validation
dataset to determine the most frequent content
words (see Table 3) and then selected these words
(and any morphological/spelling variants) from the
English WikiMatrix corpus (Schwenk et al., 2021).
This yielded a total 477k English sentences and
we henceforth refer to this selection of sentences
as ToxicWiki. We also used Sentiment140 (Sahni
et al., 2017), a dataset of 1.6M tweets in English,
as the domain of our validation set is also Twitter.

Word Validation WikiMatrix

rape 249 23,198
hate 117 16,824
terrorism 24 11,160
khoon (blood) 21 59,526
murder 21 75,066
india 16 291,054

Total - 476,828

Table 3: Frequency of top content words present in
our validation set, and the number of sentences within
WikiMatrix that contained the word (or morphological
variants). The resulting sentences formed ToxicWiki

To obtain the Hinglish side of both Sentiment140
and ToxicWiki datasets, we backtranslated into
Hindi using our en→hi Marian model, and then
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used the en-hi pair and our baseline system for sub-
task 1 to obtain the corresponding Hinglish. How-
ever, many of the placeholders (such as <HT>) did
not occur frequently enough during the training
of subtask 1 for the model to learn to consistently
copy them across; therefore the model was not
able to predict them with a large degree of accu-
racy. Therefore, we ran a postprocessing script
that corrected for placeholders on the backtrans-
lated Hinglish, given the English source, so that
our downstream model would be able to learn to
simply copy these placeholders across. Specifically,
we made sure that the number of each placeholder
type in the backtranslated Hinglish was the same
(and in roughly the same position) as that in the
source sentence.

For the AA experiments described in Section 4.3,
we used monolingual Hindi, English and Hinglish
data. For Hindi and English, we randomly sam-
pled 20M sentences from the News Crawl corpora
(Akhbardeh et al., 2021). For Hinglish, the mono-
lingual corpora described above was used. In or-
der to code-mix these corpora as described in the
AA algorithm, we used MUSE dictionaries for the
Hindi-English pair. For Hinglish-Hindi pairs, we
used the data generated with AA for the translitera-
tion model.

4.2 Baseline systems
We used a hi→en MT to initialise the baseline
hg→en model.

Our training regime consisted of three stages:

1. General - Training on the backtranslated en-
hg internet corpora (with confidence value at
least 0.4), and ht-en side of the Samanantar
corpus, where we treat the transliteration as
Hinglish. We used the PHINC dataset as our
validation set for early stopping.

2. We continued training on Sentiment140 and
ToxicWiki corpus, using the same validation
set as before, until convergence.

3. We continued training on the PHINC dataset,
using a small subset (1k) of it as validation
data for early stopping.

As we had multiple hi→en MT systems, we also
trained an ensemble model of four, where we fol-
lowed the same training regime above with param-
eters initialised from each of our hi→en models.
Our results are shown in Table 4, with our ensemble
model outperforming the single on all metrics.

4.3 Aligned Augmentation for subtask 2

Our Aligned Augmentation (AA) experiments
where implemented with Fairseq (Ott et al., 2019),
and we used the Transformer architecture, with
12 encoder and 12 decoder layers. Our first step
consisted of pretraining these models on Hindi, En-
glish, and Hinglish corpora, with the target being
the “denoised” sentence - thus training the model to
reconstruct the original sentence, following the AA
algorithm. For validation, we randomly sampled
1k sentences from the training corpus.

We then finetuned this model on the Hinglish-
English parallel corpora mentioned above. The ma-
jor AA baselines we trained and their performances
are listed in Table 5 - along with a randomly ini-
tialised baseline that was trained solely on the par-
allel corpora. The data sources we used in our ex-
periments were quite diverse: we started with high-
quality monolingual data for pretraining followed
by parallel datasets of varying domains and qual-
ities, (the Hinglish backtranslated corpora, Senti-
ment140, PHINC and ToxicWiki). We attempted to
explore how best these resources could be utilised.
We started with our default training paradigm: we
finetuned on backtranslated Hinglish, followed by
the ToxicWiki and then a shuffled concatenation of
the social media datasets - the Sentiment140 and
PHINC datasets respectively. This was based on
the intuition that the final model should be most
recently trained on datasets from similar domains
as the test set.

Following this paradigm, we conducted two sets
of experiments: a “validation experiment” that tries
to estimate the best choice of validation sets, and
“training experiments” to verify the importance of
some training sources empirically. The former is a
crucial decision in our experiments given our use
of early stopping. We find that validating on the
official MixMT validation sets released for Subtask
2 ends up performing significantly worse than vali-
dating on a subset of the respective training datasets.
This is surprising given the performances reported
in Table 5 are evaluated on the same validation
sets. This suggests that training and validating the
model on corpora from different domains can help
boost the final performance - even if it does not
improve loss on the final validation set. In the latter
body of experiments, we attempted to determine
the value of the XLM backtranslated corpora on
performance - which seems very noisy on man-
ual inspection, with the target side (English) being
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BLEU (↑) ChrF++ (↑) TER (↓) WER (↓)
Baseline Experiments

Single model 24.5 47.0 65.1 72.0
Ensemble (of 4) 25.5 48.7 62.9 70.5

Table 4: Baseline results for subtask 2 on the MixMT validation set.

generated through backtranslation. Surprisingly,
its inclusion significantly enhances performance,
by +5 BLEU points. This could be due to various
reasons: its sheer size (15M sentences), the pres-
ence of word-level translations between English to
Hinglish in parallel sentences (despite grammatical
errors), the similarity between the source and the
target encouraging “copying" which can sometimes
be beneficial for this task, etc. We also find that the
inclusion of hi-en along with hg-en further boosts
performance, consistent with the findings of pre-
vious works on multilingual MT. We empirically
found that including ‘all’ available hi-en sentences
and ‘all’ available hg-en sentences was more bene-
ficial than splitting our parallel dataset into the two
respective directions – despite the target sentence
being duplicated in the former.

Compared to the Random baselines, our final
AA baselines show consistent improvement for all
given metrics - though the improvement is not very
significant with respect to BLEU o TER. A closer
glance at the validation set and the generated pre-
dictions reveals the potential reason behind this -
there is a significant amount of noise present in the
validation sets due to the social media domain, with
errors in both syntax and semantics. Given that it is
not always easy to comprehend and translate such
sentences well, the gold reference sentences are
sometimes of relatively poor quality - containing
various potential errors such as inaccurate word
form predictions, grammatical errors, misspellings
etc. While word-based metrics may fail to han-
dle these cases; ChrF++, being a character-based
metric, can likely alleviate noise that may have
propagated to reference sentences and might be a
more suitable metric for Subtask 2 as well. It is
encouraging to note AA’s improvement over the
Random baseline in this light.

AA appears to bring about some improvement
qualitatively, especially regarding noisy input - for
instance, it was able to more accurately translate
misspellings and handle grammatical inconsisten-
cies. However, the frequency of sentences where

AA performs better than its randomly initialized
counterparts seems relatively low. One explanation
could be that fine-tuning the model on 18M parallel
sentences could lead it to ‘forget’ the representa-
tions learned during pretraining. This is in line
with the findings of (Pan et al., 2021) that observe
relatively lower improvements for high-resource
languages. While adding large corpora (15M sen-
tences) such as the XLM backtranslated corpora
does lead to net improvements, it is possible opti-
mization in the size of finetuning data used could
lead to even greater gains. Secondly, given that our
dictionaries appear to help in noise resolution, it
might be useful to incorporate various types of mis-
spellings rigorously in the code-mixing lexicons
created - thus enabling the final model to be more
robust. Finally, including training corpora from
other Indo-Aryan languages like Urdu or Marathi
could be beneficial. Although Subtask 2 focuses on
the translation of Hinglish-English, the validation
and test sets (as well as training sets) contain many
examples of code-mixing between related Indo-
Aryan languages and English - most prominently
in Urdu, which is historically and linguistically
similar to Hindi.

In the end, we observe that the AA models we
train are unable to beat our original single-model
baseline, despite having more parameters. Curi-
ously, this is also the case for the randomly initial-
ized baseline in Table 5. Due to time constraints,
we are unable to investigate the reasons behind
these. Possible explanations could include: train-
ing paradigm differences (initializing with hi→en
vs mixing hi→en with hg→en), ensembling, ex-
perimental setting disparities, inherent differences
between training libraries (Fairseq vs Marian). It is
possible that addressing these disparities, as well
as exploring the directions suggested in the previ-
ous paragraph, could enable AA baselines to yield
superior results for code-mixed translation.
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BLEU (↑) ChrF++ (↑) TER (↓) WER (↓)
Validation Experiments

AA (dev = MixMT valid) 20.5 41.2 72.7 78.6
AA (dev = train subset) 23.3 45.7 68.3 74.6

Training Experiments (dev=train subset)
AA (train = all Hg->En minus XLM BT data) 18.3 38.4 78.3 83.4
AA (train = all Hg->En) 23.3 45.7 68.3 74.6
AA (train = all Hg->En + all Hi->En) 24.4 46.2 68.2 74.9

Random 24.3 45.2 68.4 74.6

Table 5: Aligned Augmentation experiments for subtask 2, as evaluated on the official MixMT Subtask 2 validation
set. “Validation experiments" refers to experiments performed to select the best choice of the validation set for early
stopping. ‘MixMT valid’ refers to the same validation set mentioned earlier (that is also used for evaluation), while
‘train subset’ refers to a subset (last 1000 sentences) of the respective training corpus. “Training experiments” seek
to explore various dataset choices during training time, using a subset from the training corpus for validation.

BLEU ChrF++ TER WER ROUGE-L Human Eval. Score

Subtask 1 26.9 52.7 55.2 56.2 57.9 3.85
Subtask 2 28.7 51.2 59.1 61.3 62.5 3.75

Table 6: Final Test Results for the University of Edinburgh’s submissions of MixMT 2022. BLEU, ChrF++ and
TER were evaluated by us while WER and ROUGE-L results are from the official Codalab leaderboard. Human
evaluation (on a scale of 1-5) was provided by the organisers on 20 random sentences and we report the average.

5 Test Results

The final test results for our submissions are listed
in Table 6. For Subtask 1, we used unconstrained
decoding with beam-size 12, and for Subtask 2
we used our baseline ensemble (4) with beam-size
36. We evaluated BLEU, ChrF++ and TER our-
selves, while the other metrics are provided by the
organizers. We ranked second in both subtasks
on the MixMT leaderboard10 although in both the
automatic and human evaluation11, there does not
appear to be a statistically significant difference.
Furthermore, we note that some participants have
an exceedingly high number of test submissions
and would encourage future shared tasks to put in
place measures to avoid this.

6 Conclusion

In this work, we described our various findings
and experiences while building NMT systems that
translated between Hinglish and monolingual En-
glish/Hindi - as part of the WMT22 Code-Mixing
Shared Task. We proposed various corpora that
could be useful for these tasks - many of which

10https://tinyurl.com/codalab-ldbd
11https://tinyurl.com/heval-mixmt

we create as part of this work - and utilizing these,
build high-performing MT systems that, for both
subtasks, constituted one of the leading uncon-
strained models. In addition, we also explored and
analysed some alternative approaches for training
our models like constrained decoding and Aligned
Augmentation (AA) which, despite not beating our
original baselines, yielded findings that are use-
ful for future research. Perhaps the most notable
of these suggests that efforts to create Hinglish
datasets, including using transliterated Hindi as an
approximation, can be fruitful and pivotal to high
performance. While efforts to handle noise in so-
cial media text (such as AA-based pretraining) can
also help, further research is required to establish
the most optimal ways to do the same.
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A XLM details

In order to backtranslate the Hinglish data, we
hoped to train a good quality semi-supervised
system using the XLM toolkit (Conneau et al.,
2020b). We use Masked Language Modelling
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(MLM) to pretrain a transformer encoder model
on English, Hindi and Hinglish monolingual data.
The model consisted of 6 layers, 1024 embedding
dimensions, batch size 128, and a 0.1 dropout rate.
We use 16.5M sentences of English WikiMatrix
(Schwenk et al., 2021), 20M of HindiMono (Bojar
et al., 2014) and 18.8M of Hinglish from L3Cube-
HingCorpus (Nayak and Joshi, 2022) and CC-100
Hindi Romanized (Conneau et al., 2020a). Vocabu-
lary and data preprocessing is the same as for the
Marian models (4k BPE merges).

We then initialised a full transformer model with
the pretrained encoder, and further trained with
denoised autoencoding, MLM, machine transla-
tion13, and backtranslation14objectives. We use the
Samanantar corpus (10.1M) for the hi↔en trans-
lation objective, the 6.7k HinGe sentences as val-
idation for hg↔en and hg↔hi directions, and the
hi-en FLORES development set for hi↔en.

13hi↔en directions only
14Only direction involving hg: hi-hg-hi, en-hg-en, hg-hi-hg,

hg-en-hg

1157



Proceedings of the Seventh Conference on Machine Translation (WMT), pages 1158–1161
Abu Dhabi, December 7–8, 2022. ©2022 Association for Computational Linguistics

CNLP-NITS-PP at MixMT 2022: Hinglish–English Code-Mixed Machine
Translation

Sahinur Rahman Laskar1, Rahul Singh1, Shyambabu Pandey1, Riyanka Manna2

Partha Pakray1, Sivaji Bandyopadhyay1

1Department of Computer Science and Engineering, National Institute of Technology, Silchar, India
2Department of Computer Science and Engineering, Adamas University, Kolkata, India

{sahinurlaskar.nits, rahuljan, babushyampandey, riyankamanna16}@gmail.com
{parthapakray,sivaji.cse.ju}@gmail.com

Abstract

The mixing of two or more languages in speech
or text is known as code-mixing. In this form of
communication, users mix words and phrases
from multiple languages. Code-mixing is very
common in the context of Indian languages due
to the presence of multilingual societies. The
probability of the existence of code-mixed sen-
tences in almost all Indian languages since in
India English is the dominant language for so-
cial media textual communication platforms.
We have participated in the WMT22 shared
task of code-mixed machine translation with
the team name: CNLP-NITS-PP. In this task,
we have prepared a synthetic Hinglish–English
parallel corpus using transliteration of origi-
nal Hindi sentences to tackle the limitation of
the parallel corpus, where, we mainly consid-
ered sentences that have named-entity (proper
noun) from the available English-Hindi parallel
corpus. With the addition of synthetic bi-text
data to the original parallel corpus (train set),
our transformer-based neural machine transla-
tion models have attained recall-oriented un-
derstudy for gisting evaluation (ROUGE-L)
scores of 0.23815, 0.33729, and word error
rate (WER) scores of 0.95458, 0.88451 at Sub-
Task-1 (English-to-Hinglish) and Sub-Task-2
(Hinglish-to-English) for test set results respec-
tively.

1 Introduction

The mixing of alternating words from two different
language vocabulary without misinterpreting the
context of the sentence is known as code-switching
or code-mixing (Poulisse, 1998). This style of com-
munication is one of the most frequent in multilin-
gual communities, such as India. English is exten-
sively mixed with local languages, such as Hindi,
and Bengali, which causes code-mixed English-
Hindi: Hinglish and English-Bengali: Binglish
languages (Sailaja, 2011). Code-mixing is not ob-
served in formal literature such as books but is com-
monly used on social media platforms such as Face-

book and Twitter. The WMT22 organizes shared
task code-mixed machine translation for English-
to-Hinglish and Hinglish-to-English, where the
main challenge is low-resource availability of par-
allel corpus. We have participated in the same
task and to mitigate the issue of data scarcity, a
synthetic Hinglish-English parallel corpus is pre-
pared (as discussed in Section 3.1). In this work,
the transformer-based neural machine translation
(NMT) technique (Vaswani et al., 2017; Laskar
et al., 2022) is utilized to build NMT models for
both directions (English-to-Hinglish, Hinglish-to-
English) of code-mixed MT.

2 Related Work

In recent times, many significant NLP studies
have included the study of code-mixed languages.
The EMNLP 2022 seventh conference on machine
translation (WMT22) has put forward several tasks
directed to meet new challenges in the field of NLP
for code-mixed Indian languages. The competition
has attracted many researchers to follow up with
these tasks, which have eventually led to new di-
rections and problems in this domain. The task
of machine translation for code-mixed languages
has not been an active area of research due to the
scarcity of manually annotated datasets. Recently,
researchers have been developing datasets for code-
mixed MT that includes Hinglish-English paral-
lel corpus, namely, HinGe (Srivastava and Singh,
2021) and PHINC (Srivastava and Singh, 2020) to
overcome the datasets scarcity issue to build code-
mix MT that is associated with the code-mixed text
from various social media platforms. In this work,
we addressed the issue of data scarcity by using
synthetic Hinglish–English parallel corpus to in-
crease the training data for code-mixed MT shared
tasks at WMT22.
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3 System Description

The experiments are carried out in four phases,
namely, synthetic data preparation and augmenta-
tion to the train set, data preprocessing, model train-
ing, and testing. The OpenNMT-py (Klein et al.,
2017) tool is utilized to build the NMT models
independently for English-to-Hinglish (subtask-1)
and Hinglish-to-English (subtask-2).

3.1 Dataset Description

We have used the dataset provided by the WMT22
organizer1 and the statistics are presented in Table
1. Moreover, the synthetic English-Hinglish paral-
lel dataset is prepared and directly augmented with
the train set to expand the training amount of data.
For synthetic data preparation, the English-Hindi
parallel sentences are collected from Samanantar
dataset (Ramesh et al., 2022) and selected 100k
sentences (maximum length of 15 words). To se-
lect parallel sentences, the following steps are con-
sidered:

• Step-1: Extract proper nouns (named-entity)
from the English side using NLTK2 toolkit.

• Step-2: Extract English sentences that have
extracted proper nouns in Step-1.

• Step-3: Select corresponding Hindi sentences
of English that are extracted in Step-2.

Then, Hindi side sentences are transliterated into
English script using Indic-trans3 (Bhat et al., 2014)
and prepared synthetic Hinglish sentences. Thus,
we have prepared 100k Hinglish–English synthetic
parallel corpus. The sample sentences of synthetic
Hinglish-English are presented in Figure 1. The
data statistics of the train set, before and after aug-
mentation of synthetic Hinglish–English corpus is
presented in Table 2.

1https://www.statmt.org/wmt22/
code-mixed-translation-task.html

2https://github.com/nltk/nltk
3https://github.com/libindic/indic-trans

Figure 1: Sample sentences of synthetic Hinglish-
English.

3.2 Experimental Setup

We have performed byte pair encoding jointly (sub-
word level) (Sennrich et al., 2016) on the Hinglish-
English with 32k merge operations. The sub-
word level source-target vocabulary is shared dur-
ing the training process of the NMT model. The
OpenNMT-py toolkit has been used for text data
tokenization, preprocessing, and conducting the
NMT model training. We have followed the default
settings of the 6 layer transformer model (Vaswani
et al., 2017) in the training process. We have used a
batch size of 32, 0.1 drop-outs, and an Adam opti-
mizer with a 0.001 learning rate during the training
process. The NMT model is trained on a single
GPU with early stopping criteria, i.e., the model
training is halted if it does not converge on the
validation set for more than 10 epochs. The ob-
tained trained model is used to translate the test
data provided by the WMT22 organizers.

4 Results

The WMT22 shared task organizer published the
evaluation result4 of the code-mixed machine trans-
lation (MixMT) task for English–Hinglish lan-
guage pair. We participated with the team name
CNLP-NITS-PP in the monolingual to code-mixed
machine translation: English-to-Hinglish (Sub-
Task-1) and code-mixed to a monolingual machine
translation: Hinglish-to-English (Sub-Task-2) sub-
mission tracks of the same task where ten teams
participated. The automatic evaluation metrics,
namely, ROUGE (Recall-Oriented Understudy for
Gisting Evaluation) (Lin, 2004), WER (Word Error
Rate) (Morris et al., 2004) and human evaluation
(HE) are used for the evaluation of results. Table
3, 4 reported the official results of our systems in
terms of automatic and HE evaluation metrics. We

4https://codalab.lisn.upsaclay.fr/
competitions/2861#results
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Task Data Set No. of Sentences
Tokens

English Hinglish

Sub-Task-1
Train Set 2766 47347 52074
Validation Set 500 5847 5565
Test Set 1500 17694 17049

Sub-Task-2
Train Set 13738 169158 176410
Validation Set 500 5847 10263
Test Set 1500 27659 29335

Table 1: Data Statistics of English-Hinglish (provided by the organizer).

Train Set Number of Parallel Sentence/Segments
Before Augmentation 2766 (Sub-Task-1) 13738 (Sub-Task-2)
After Augmentation 102,766 (Sub-Task-1) 113,738 (Sub-Task-2)

Table 2: Data Statistics of train set (before and after augmentation).

have attained better automatic evaluation scores
and positions in Sub-Task-2 as compared to Sub-
Task-1 for the validation and test set, whereas, in
the case of human evaluation, we have achieved a
higher score and position in Sub-Task-1 than Sub-
Task-2. It is observed that due to the presence of
a high amount of transliteration errors in synthetic
code-mixed sentences, i.e., Hinglish, the predicted
sentences suffer lower translation accuracy. A few
examples of transliteration errors are presented in
Figure 2.

Task Set ROUGE-L WER

Sub-Task-1 Validation 0.23359 (8th) 0.97136 (7th)
Test 0.23815 (7th) 0.95458 (7th)

Sub-Task-2 Validation 0.33835 (4th) 0.88002 (3rd)
Test 0.33729 (6th) 0.88451 (6th)

Table 3: Our system’s results (official) at MixMT
shared task (WMT22).

Task HE
Sub-Task-1 2.10 (4th)
Sub-Task-2 1.35 (7th)

Table 4: Our system’s human evaluation results (offi-
cial) at MixMT shared task (WMT22).

Figure 2: Sample examples of transliteration errors.

5 Conclusion and Future Work

In this work, we have investigated a transformer-
based model for Hinglish–English language pair
in the WMT22 code-mixed MT task. We have ad-
dressed the data scarcity issue by the augmentation
of synthetic Hinglish–English parallel sentences
to the train set for both English-to-Hinglish and
Hinglish-to-English translation tasks (Sub-Task-1
and Sub-Task-2). Furthermore, synthetic parallel
data will be corrected in the future to improve trans-
lational performance.
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Abstract

In multilingual colloquial settings, it is a habit-
ual occurrence to compose expressions of text
or speech containing tokens or phrases of differ-
ent languages, a phenomenon popularly known
as code-switching or code-mixing (CMX). We
present our approach and results for the Code-
mixed Machine Translation (MixMT) shared
task at WMT 2022: the task consists of
two subtasks, monolingual to code-mixed ma-
chine translation (Subtask-1) and code-mixed
to monolingual machine translation (Subtask-
2). Most non-synthetic code-mixed data are
from social media but gathering a significant
amount of this kind of data would be laborious
and this form of data has more writing variation
than other domains, so for both subtasks, we
experimented with data schedules for out-of-
domain data. We jointly learn multiple domains
of text by pretraining and fine-tuning, com-
bined with a sentence alignment objective. We
found that switching between domains caused
improved performance in the domains seen ear-
liest during training, but depleted the perfor-
mance on the remaining domains. A contin-
uous training run with strategically dispensed
data of different domains showed a significantly
improved performance over fine-tuning.

1 Introduction

Code-mixing (CMX) denotes the alternation of two
languages within a single utterance (Poplack, 1980;
Sitaram et al., 2019). Code-mixing occurs mostly
in unofficial groups in multilingual environments.
More than 77% of Asians are multilingual (Ra-
makrishnan and Ahmad, 2014), and other statistics
estimate that 64.5% of Europeans speak more than
two languages, with more than 80% of adults in
the region being bilingual (Eurostat, 2019). Code-
mixing happens far more often in conversations
than in writing, and mostly in unofficial settings,
hence it rarely occurs in documented settings. This
makes substantial data gathering for computational
approaches to translations of code-mixed language

difficult. Parallel corpora for code-switched data is
very scarce (Menacer et al., 2019), this is because
code-mixing mostly occurs in unofficial conversa-
tions like social media interactions.

Contemporary Neural Machine Translation
(NMT) mostly makes use of parametric sequence-
to-sequence models (Bahdanau et al., 2014;
Vaswani et al., 2017), where an encoder receives a
source sentence and outputs a set of hidden states,
the decoder then scrutinizes these hidden states
at each step, and outputs a sequence of softmax
distribution over the target vocabulary space. Con-
sidering that we would need vast quantities of data
to train an adequate NMT for this task, we leverage
large-scale synthetic and available small data and
notably rank data on domain relevance, by fine-
tuning with it, initiating training with the relevant
domain and strategically placing it at the premier
batches of the training data.

Essentially, the characteristics of the data an
NMT model is trained on are paramount to its trans-
lation quality, in particular in terms of size and
domain. It is quintessential to train NMT models
based on the domain relevance of corpora. Since
most code-mixing occurs in unofficial communi-
cation, it is costly to find a lot of labeled data for
every domain we are interested in. Hence we at-
tempt to find less expensive exigencies to supple-
ment training data, pretrain on largely available
data of different domains, strategically construct
synthetic data, and apportion data to make up for
missing domains.

In these WMT Subtasks – monolingual to
code-mixed machine translation (Subtask-1) and
code-mixed to monolingual machine translation
(Subtask-2), we also fine-tune on different domains,
align representations of data and find the best com-
bination of approaches to solving the subtasks. The
main intuition behind our proposed solution is that
NMT models exhibit a significant translation cor-
relation when trained on data from the same or
similar domains. With different data domain re-

1
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quirements, it performs better when trained with
data of the most relevant domain as preliminary
batches compared to finetuning. As most natu-
ral code-mixed data source is social media and
it is difficult to gather a good amount to train a
model, it is incumbent to find a strategy that makes
the model prioritize this form of data above oth-
ers. Accordingly, we attempt to find less expensive
techniques to supplement training data, pretrain on
largely available data of different domains, strategi-
cally construct synthetic data, and apportion data to
make up for missing domains. Our result showed
improved performance on innate code-mixed data
(and non-synthetic WMT test set samples) when
this was prioritized and performed strongly in a test
with a mix of several other data sources. We ob-
served a better performance with domain-specific
evaluation upon finetuning but this intensely plum-
meted performance on other ‘pretraining domains’,
and more balanced performance on passing the in-
teresting domain in the preliminary batches in a
single ‘all domain’ training.

2 Related Work

It is laborious to obtain ‘one-fits-all’ training data
for NMT. Most publicly available parallel cor-
pora like Tanzil, OPUS, UNPC are sourced from
documented communication, and these are often
domain-specific. In NMT, data selection e.g. Ax-
elrod et al. (2011) has remained as an underlying
and important research concern. Choosing training
examples that are relevant to the target domain, or
by choosing high-quality examples for data clean-
ing (also known as denoising), has been essential
in domain adaptation. Building a large-scale multi-
domain NMT model that excels on several domains
simultaneously becomes both technically difficult
and practically back-breaking. Addressing research
problems such as catastrophic forgetting (Good-
fellow et al., 2013), data balancing (Wang et al.,
2020), Adapters (Houlsby et al., 2019) have shown
improvement. Unfortunately, several domains are
difficult to handle with the single-domain data se-
lection techniques currently in use. For instance,
improving translation quality of one domain will
often hurt that of another (Britz et al., 2017; van der
Wees et al., 2017).

Song et al. (2019) replaced phrases with pre-
specified translation to perform “soft” constraint
decoding. Xu and Yvon (2021) generated code-
mixed data from regular parallel texts and showed

this training strategy yields MT systems that sur-
pass multilingual systems for code-mixed texts.

Considering that code-mixed text belongs in less
documented domains than most, there may be a
need for domain adaptation used on sufficiently
available data domains. Our work is inspired by
the following approaches: Wang et al. (2019) ex-
ecuted simultaneous data selection across several
domains by gradually focusing on multi-domain
relevant and noise-reduced data batches while care-
fully introducing instance-level domain-relevance
features and automatically constructing a training
curriculum. Park et al. (2022) demonstrated that
instance-level features are better able to distinguish
between different domains compared to corpus-
level attributes. Dou et al. (2019) proposed mod-
eling the difference between domains instead of
smoothing over domains for machine translation.

Anwar et al. (2022) showed that an encoder
alignment objective is beneficial for code-mixed
translation, in addition to Arivazhagan et al. (2019)
that proposed auxiliary losses on the NMT encoder
that imposed representational invariance across lan-
guages for multilingual machine translation.

English Code-Mixed (CMX)

@dh*v*l2410*6 sure
brother :)

@dh*v*l2410*6 sure bhai :)

"I just need reviews like
these, this motivates me a
lot"

"Bas aise hi reviews ki za-
roorat hai, kaafi protsahan
milta hai in baaton se. "

When the sorrow got miss-
ing in this room, the blood
also became thin, #Guess-
TheSong

Jab gam ye rum mein kho
gaya, toh khoon bhi patla
hogaya #GuessTheSong

Table 1: Examples from the WMT Shared Task Dataset.

3 Data

In table 1 we show some samples from the WMT
shared task, sourced from the non-synthetic val-
idation data. The data provided for Subtask-1
(Srivastava and Singh, 2021) contains synthetic
and human-generated data and Subtask-2 Parallel
Hinglish Social Media Code-Mixed Corpus (Sri-
vastava and Singh, 2020) for both tasks are mostly
unofficial, mostly short conversational sentences,
with some letters asterisked for privacy/derogatory
reasons.

Since we need to augment provided data for a
reasonable quantity to train a NMT model, we gen-
erated synthetic code-mixed data from the IITB
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English Code-Mixed (CMX)

Overhead charge is a per-
centage of the direct costs of
providing the services under
the contract.

Overhead charge, anubandh
ke anusaar pradatt sevaon
kee pratyaksh laagat ka ek
pratishat hota hai.

A strategy of ignoring po-
tential problems on the ba-
sis that they may be exceed-
ingly rare.

us aadhaar par sambhaavit
problems ko anadekha
karane kee ek yukti, jahaan
ki ve ati dushpraapy ho
sakate hain.

A standard of measurement,
or a unit that can be studied
separately / independently.

koee maapadand athava
koee a unit that svatantr
roop se/alag se adhyayan
kiya ja sakata ho.

Table 2: Examples from IITB Corpus.

corpus (Kunchukuttan et al., 2017) which is from
17 sources of different domain mostly HindEnCorp
(Bojar et al., 2014), Gyaan-Nidhi Corpus (Garg
et al., 2018), Indian Government corpora - CFILT,
Mahashabdkosh, Tanzil, and GNOME (Kunchukut-
tan et al., 2017) (details in section 3.1). Synthetic
code-switched sentences generated from the IITB
corpus belong to a different domain than the WMT
evaluation data, as we illustrate with the English
translation samples in table 2.

For the pretraining-finetuning setup, we pretrain
with synthetic code-switched data generated from
IITB corpus and fine-tune on the WMT data pro-
vided for each task. For both pretraining and fine-
tuning, we coordinate the data similar to (Anwar
et al., 2022) – For Subtask-1, Monolingual to code-
mixed machine translation subtask, we use the
Hindi sentence (Devanagari script) as source se-
quence and the corresponding code-switched sen-
tence (Roman script) as target, then alternated the
English sequence (Roman script) as source sen-
tence and the same corresponding code-switched
sentence as the target sequence. The above two
source-target parallel data are set after each other.
For Subtask-2, Code-mixed to monolingual ma-
chine translation subtask, we have a similar ar-
rangement as in Subtask-1, but with the source
sequences of Hindi and code-mixing (Hinglish) in
Roman script and as the target the corresponding
English sequence. We removed sequences shorter
than 2 tokens, and those longer than 250 tokens,
and a target-to-source token ratio of more than 1.5.
After cleaning the pretraining data, for Subtask-1,
we have about 2.5M parallel sentences and 2.3M
parallel sentences for Subtask-2.

For the finetuning process, we made use of the

WMT training data provided for each subtask and
organized like the pretraining data as described
above. After cleaning, for Subtask-1 (Synthetic
+ Human-generated), we have a total of over 11K
parallel sentences. For subtask-2, over 12K parallel
sentences remain after cleaning.

Since the IITB corpus encompasses multiple
sources and domains where code-mixing infre-
quently occurs, we decided to configure our model
in a way it first learns from natural code-mixed
data provided by WMT. We experiment with a
hand-designed curriculum of the Synthetic Code-
switched data generated from the IITB corpus and
the WMT provided data. We supply the model
the non-synthetic WMT data only in the first few
batches in the hope that this would faintly famil-
iarize the model with domain-specific features be-
fore it learns from the synthetic code-switched data
we generated from other domains. We compare
the results of this approach to the above described
pretraining-finetuning setup. All data is tokenized
and normalized using sentencepiece1.

3.1 Code Switched Data Generation

Given that most publicly available corpora are
monolingual, it is requisite to generate sufficient
synthetic code-mixed data for training. Moreover,
there have been works on generating synthetic code-
mixed data linguistically, there are a few rules the-
ories that are essential.

The Equivalence Constraint Theory states
that intra-sentential code-mixing can only hap-
pen where the surface structures of two languages
map onto each other, implicitly following both lan-
guages’ grammatical norms (Poplack, 1980). Fun-
damentally, we can only attempt code-mixing at
points where both languages coincide on the parse
tree to equivalent phrase structure.

The Matrix Language Theory explains code-
mixing by introducing the concept of a "Matrix
Language," or base language, into which clusters
of the "Embedded Language," or second language,
are introduced in such a way that the former sets
the grammatical structure of the sentence and the
latter "switches-in” at grammatically correct points
of the sentence (Myers-Scotton, 2001). The Ma-
trix language has more tokens in the sequence and
its rules are designated above the embedded lan-
guage’s.

Considering the linguistic theories above, we

1https://github.com/google/sentencepiece
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generate code-mixed data by locating where both
languages coincide based on a word-level align-
ment extracted and only replace tokens based on
the “matrix language theory”. Roughly follow-
ing the recipes by (Song et al., 2019; Rizvi et al.,
2021; Xu and Yvon, 2021; Anwar et al., 2022),
we generate synthetic code-switched data from the
IITB parallel data: We create code-mixed data by
first transliterating Hindi (Devanagari script) to Ro-
man script using Ritwik’s tool2, then extract word
alignments using the giza++ toolkit (Och and Ney,
2003), and extract minimal alignment units follow-
ing the approach of (Crego, 2005). We choose
Hindi as the “matrix language” by determining this
from the provided WMT training data, we extract
word alignments and find how many tokens in each
sequence belongs to which language using the lan-
guage detector of Googletrans python library3 and
assign the language with more tokens as the ma-
trix language. Figure 1 shows the Hindi/English
matrix language ratio for both subtasks.

Similar to MLM pre-training used by BERT (De-
vlin et al., 2018), we randomly replace 15% of the
tokens in each Hindi sentence with their aligned
segments in the embedded language (English). For
short sequences with less than 7 tokens we make
only one replacement, chosen uniformly at random.

4 Training Objective

Considering the effectiveness of clean finetuning
(Wu et al., 2019), and pre-training (Mathis et al.,
2019), we attempt a combined pipeline of pretrain-
ing+finetuning experiment and also a single train-
ing but with tactical positioning of the most impor-
tant domain. In the finetuning process and training
with specially ordered data, as recommended by
(Anwar et al., 2022), we add an alignment loss to
the encoder to encourage source and target repre-
sentations to be close in representation space mini-
mizing the max-pooled cosine distance of the en-
coder representation as shown in equation 1:

Ω = ED(en,hi)
[1− sim(Enc(xsrc), Enc(xtgt))]

(1)
Where Ω is the encoder loss, D(en,hi) is the data

consisting of the parallel pairs of code-mixed to

2https://github.com/ritwikmishra/devanagari-to-roman-
script-transliteration

3https://github.com/ssut/py-
googletrans/blob/master/docs/index.rst

monolingual or monolingual to code mixed depend-
ing on which subtask the data belongs to, xsrc is
the source sequence and xtgt is the target sequence,
Enc(x) is the max-pooled encoder representation
of sentence x similar to (Gouws et al., 2014) and
(Coulmance et al., 2015), and sim is the cosine sim-
ilarity. Unlike (Arivazhagan et al., 2019) where the
whole model’s parameters are updated as shown in
figure 2.

5 Experiments and Results

In all of our experiments, we used Transformer-
Base (Vaswani et al., 2017) configuration with the
Fairseq (Ott et al., 2019) framework. All mod-
els were trained on four Tesla T400 GPUs using
IITB and WMT-’22 MixMT data for training as
described in Section 3, with a shared vocabulary
of 77K BPE (Sennrich et al., 2015) sub-words to
create a joint vocabulary for both tasks and all mod-
els. The model’s hyperparameters can be found in
Appendix A.

5.1 Results
Based on the human evaluation by the organizers
of the subtasks, the translation result of our initial
models - v0.2 submitted – which was trained with
mixing the IITB with the WMT without prioritizing
the target domain – had an overall rating of 1.75
from 10 random translations for each subtask, this
ranked inferior to many other submissions.

With the help of native Hindi speakers to inves-
tigate our data, we found some of the causes it
performed decumbent, which were as a result of
some of the different data preprocessing tools we
used: For Transliteration, We tried a few devana-
gari to roman tools but had some shortcomings
like:

• Lipika-ime4: inappropriate handling of dia-
critic characters.

• Indic-trans5: Removal of vowels (e.g. default
-> difolt, highlight -> hilite, method -> methd,
etc..), Splitting of words that lead to subopti-
mal outputs (e.g. "un he" instead of "unhe").

• Sheental6: repetition of vowels e.g. jane ->
jaane, yaar -> yaara, incorrect replacement of
characters e.g. om -> on and occurence of

4https://github.com/ratreya/lipika-ime
5https://github.com/libindic/indic-trans
6https://github.com/sheetalgiri/devanagari-to-roman-

script
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(a) Subtask-1 (b) Subtask-2

Figure 1: Percentage of Hindi vs. English as matrix language from WMT’22 Hinglish validation data for the
subtasks.

Model IITB Eval Set WMT Eval Set Mixed Eval Set
Subtask-1 Subtask-2 Subtask-1 Subtask-2 Subtask-1 Subtask-2

Pretrained (IITB corpus only) 0.81 0.85 0.41 0.47 0.76 0.80
Pretrained (IITB corpus) + Finetuned (WMT provided) 0.49 0.52 0.54 0.58 0.53 0.59
Mixed-data training (target domain first) 0.76 0.79 0.62 0.64 0.70 0.73

Table 3: Translation accuracy of subtask-1 and subtask-2 of Hindi-English in ROUGE-L (F1-Score) on different test
data of different domains, based on models trained on different domain training data, data arrangement or training
pipeline.

Figure 2: The loss function visualization, CE is the
Cross Entropy, Ω is the encoder loss.

needless suffixes e.g. palat -> palata, some
diacritic appeared independently.

• Ritwik’s: inappropriately breaking very long
sentences into multiple lines, replacing in-
dividually occurring tokens like um -> oon
and abruptly stopping when ran over large
amount of data so we divided the data into
chunks each containing not more than 200K
sequences, optimized by parallel computing
using dask, and replaced the individually oc-
curring tokens changed afterwards.

We also investigated our initial model and discov-
ered a few other issues like:

• Cases of translation of proper nouns in
Subtask-2 (e.g. Sapna -> dream) which we de-
duce as a pointer to insufficient training data.

• Imprecise tokenization and detokenization,

we also switched to use of Google sentence-
piece instead of Moses SMT

• Also, the organizers noticed the team’s output
had an incorrect order. A problem where the
post-processing had sorted the hypothesis and
fragmented longer sentences also influenced
the rating.

Upon inspecting our model outputs we found a
few inaccuracies with the tools we used for translit-
eration and tokenization for the submitted model
hypotheses. We fixed these, and present the results
in the following section.

5.2 Post-Submission Results

Table 3 shows the experimental results based on
different test data of samples each from IITB cor-
pus, WMT, and a Mixed test sample evenly selected
from Samanatar (includes IITB corpus, CCMatrix,
Hindi-News, Jagran, Livehindustan, Patrika and
WMT). We made use of other reputable tools to
fix the aforementioned errors, added the domain
curriculum technique, and ran the experiment again
and present it in table 3.

Table 3 shows that fine-tuning on the WMT do-
main improves translation accuracy on this domain
slightly, but the model suffers ‘catastrophic forget-
ting’ on domains it was initially trained on. Pre-
training did not lead to a good generalization for
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the WMT test samples provided, hence a need for
domain adaptation. Placing the relevant domain
in the preliminary batches for mixed-data training
also improves training on such a domain but hurts
other domains slightly.

6 Conclusion

We present a data domain sorting method that im-
proves translation performance based on a target
domain for the WMT 2022 code-switching shared
tasks. We compared our result to a pretraining
and fine-tuning pipeline, and demonstrated that the
finetuning method improves on specified domain
but upsets on previously learned data domain. An
aspect we intend to delve further into is efficient
domain adaptation strategies that may help low-
resource domains such as code-mixing, and have
little or no effect on high-resource domains, we are
currently looking into domain adaptation learning
curve (Park et al., 2022), extraction of domain-
specific parameters (Dou et al., 2019) for better
data augmentation strategies, better acquisition of
code-mixed data, and the use of Adapters (Houlsby
et al., 2019).
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Straňák, Vít Suchomel, Aleš Tamchyna, and Daniel
Zeman. 2014. HindEnCorp - Hindi-English and
Hindi-only corpus for machine translation. In Pro-
ceedings of the Ninth International Conference on
Language Resources and Evaluation (LREC’14),
pages 3550–3555, Reykjavik, Iceland. European Lan-
guage Resources Association (ELRA).

Denny Britz, Quoc Le, and Reid Pryzant. 2017. Effec-
tive domain mixing for neural machine translation.
In Proceedings of the Second Conference on Machine
Translation, pages 118–126, Copenhagen, Denmark.
Association for Computational Linguistics.

Jocelyn Coulmance, Jean-Marc Marty, Guillaume Wen-
zek, and Amine Benhalloum. 2015. Trans-gram, fast
cross-lingual word-embeddings. In Proceedings of
the 2015 Conference on Empirical Methods in Natu-
ral Language Processing, pages 1109–1113, Lisbon,
Portugal. Association for Computational Linguistics.

Josep Crego. 2005. Reordered search and tuple unfold-
ing for ngram-based smt.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2018. BERT: pre-training of
deep bidirectional transformers for language under-
standing. CoRR, abs/1810.04805.

Zi-Yi Dou, Xinyi Wang, Junjie Hu, and Graham Neu-
big. 2019. Domain differential adaptation for neural
machine translation. CoRR, abs/1910.02555.

Eurostat. 2019. Translate foreign language skills
statistics. https://ec.europa.eu/eurostat/
statistics-explained/index.php?title=
Foreign_language_skills_statistics#
Number_of_foreign_languages_known.

Kamal Garg, Ajit Kumar, and Vishal Goyal. 2018. De-
velopment of punjabi-english (puneng) parallel cor-
pus for machine translation system. pages 690–693.

Ian J. Goodfellow, Mehdi Mirza, Da Xiao, Aaron
Courville, and Yoshua Bengio. 2013. An empirical
investigation of catastrophic forgetting in gradient-
based neural networks.

Stephan Gouws, Yoshua Bengio, and Greg Corrado.
2014. Bilbowa: Fast bilingual distributed representa-
tions without word alignments.

Neil Houlsby, Andrei Giurgiu, Stanislaw Jastrzebski,
Bruna Morrone, Quentin De Laroussilhe, Andrea
Gesmundo, Mona Attariyan, and Sylvain Gelly. 2019.
Parameter-efficient transfer learning for NLP. In
Proceedings of the 36th International Conference
on Machine Learning, volume 97 of Proceedings
of Machine Learning Research, pages 2790–2799.
PMLR.

Anoop Kunchukuttan, Pratik Mehta, and Pushpak Bhat-
tacharyya. 2017. The IIT bombay english-hindi par-
allel corpus. CoRR, abs/1710.02855.

1167



Alexander Mathis, Mert Yüksekgönül, Byron Rogers,
Matthias Bethge, and Mackenzie W. Mathis. 2019.
Pretraining boosts out-of-domain robustness for pose
estimation. CoRR, abs/1909.11229.

Mohamed Menacer, David Langlois, Denis Jouvet, Do-
minique Fohr, Odile Mella, and Kamel Smaïli. 2019.
Machine Translation on a parallel Code-Switched
Corpus. In Canadian AI 2019 - 32nd Conference
on Canadian Artificial Intelligence, Lecture Notes in
Artificial Intelligence, Ontario, Canada.

Carol Myers-Scotton. 2001. The matrix language frame
model: Development and responses. Trends in Lin-
guistics Studies and Monographs, 126:23–58.

Franz Josef Och and Hermann Ney. 2003. A systematic
comparison of various statistical alignment models.
Computational Linguistics, 29(1):19–51.

Myle Ott, Sergey Edunov, Alexei Baevski, Angela Fan,
Sam Gross, Nathan Ng, David Grangier, and Michael
Auli. 2019. fairseq: A fast, extensible toolkit for
sequence modeling. CoRR, abs/1904.01038.

Kishore Papineni, Salim Roukos, Todd Ward, and
Wei Jing Zhu. 2002. Bleu: a method for automatic
evaluation of machine translation.

Cheonbok Park, Hantae Kim, Ioan Calapodescu, Hyun-
chang Cho, and Vassilina Nikoulina. 2022. Dalc:
Domain adaptation learning curve prediction for neu-
ral machine translation.

Shana Poplack. 1980. Sometimes i’ll start a sentence in
spanish y termino en espaÑol: toward a typology of
code-switching 1. Linguistics, 18:581–618.

Karthick Ramakrishnan and Farah Z. Ahmad. 2014.
Language diversity and english proficiency part of
the “state of asian americans and pacific islanders”
series.

Mohd Sanad Zaki Rizvi, Anirudh Srinivasan, Tanuja
Ganu, Monojit Choudhury, and Sunayana Sitaram.
2021. GCM: A toolkit for generating synthetic code-
mixed text. In Proceedings of the 16th Conference of
the European Chapter of the Association for Compu-
tational Linguistics: System Demonstrations, pages
205–211, Online. Association for Computational Lin-
guistics.

Rico Sennrich, Barry Haddow, and Alexandra Birch.
2015. Neural machine translation of rare words with
subword units. CoRR, abs/1508.07909.

Sunayana Sitaram, Khyathi Raghavi Chandu, Sai Kr-
ishna Rallabandi, and Alan W. Black. 2019. A survey
of code-switched speech and language processing.
CoRR, abs/1904.00784.

Marina Sokolova, Nathalie Japkowicz, and Stan Sz-
pakowicz. 2006. Beyond accuracy, f-score and roc:
A family of discriminant measures for performance
evaluation. volume Vol. 4304, pages 1015–1021.

Kai Song, Yue Zhang, Heng Yu, Weihua Luo, Kun
Wang, and Min Zhang. 2019. Code-switching for en-
hancing NMT with pre-specified translation. CoRR,
abs/1904.09107.

Vivek Srivastava and Mayank Singh. 2020. Phinc:
A parallel hinglish social media code-mixed cor-
pus for machine translation. arXiv preprint
arXiv:2004.09447.

Vivek Srivastava and Mayank Singh. 2021. Hinge: A
dataset for generation and evaluation of code-mixed
hinglish text. arXiv preprint arXiv:2107.03760.

Marlies van der Wees, Arianna Bisazza, and Christof
Monz. 2017. Dynamic data selection for neural ma-
chine translation. In Proceedings of the 2017 Confer-
ence on Empirical Methods in Natural Language Pro-
cessing, pages 1400–1410, Copenhagen, Denmark.
Association for Computational Linguistics.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N. Gomez, Lukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. CoRR, abs/1706.03762.

Wei Wang, Ye Tian, Jiquan Ngiam, Yinfei Yang, Isaac
Caswell, and Zarana Parekh. 2019. Learning a
multitask curriculum for neural machine translation.
CoRR, abs/1908.10940.

Xinyi Wang, Yulia Tsvetkov, and Graham Neubig. 2020.
Balancing training for multilingual neural machine
translation. CoRR, abs/2004.06748.

Felix Wu, Angela Fan, Alexei Baevski, Yann N.
Dauphin, and Michael Auli. 2019. Pay less attention
with lightweight and dynamic convolutions. CoRR,
abs/1901.10430.

Jitao Xu and François Yvon. 2021. Can you traducir
this? machine translation for code-switched input.
CoRR, abs/2105.04846.

A Appendix

Table 4 holds all the hyper-parameters we used for
training all models. All experiments were set to halt
at patience of 15 updates on the BLEU (Papineni
et al., 2002) stabilizing, we found it trained longer
with BLEU, but evaluated on WMT specified F1-
Score (Sokolova et al., 2006) for the subtasks.
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Hyper-parameter Value

Number of Layers 6
Hidden size 512

FFN inner hidden size 2048
Attention heads 8

Attention head size 64
Dropout 0.1

Attention Dropout 0.0
Warmup Steps 4000
Learning Rate 5e-4

Learning Rate Decay inverse_sqrt
Batch Size 4096 tokens

Label Smoothing 0.1
Weight Decay 0.0001

Adam ϵ 10−9

Adam β1 0.9
Adam β2 0.98

Encoder Criterion Weight 10

Table 4: The hyperparameter values setting for training.
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Abstract

This paper presents Lingua Custodia’s submis-
sion to the WMT22 shared task on Word Level
Auto-completion (WLAC). We consider two di-
rections, namely German-English and English-
German. The WLAC task in Neural Machine
Translation (NMT) consists in predicting a tar-
get word given few human typed characters, the
source sentence to translate, as well as some
translation context. Inspired by recent work in
terminology control, we propose to treat the
human typed sequence as a constraint to pre-
dict the right word starting by the latter. To
do so, the source side of the training data is
augmented with both the constraints and the
translation context. In addition, following new
advances in WLAC, we use a joint optimiza-
tion strategy taking into account several types
of translation context. The automatic as well as
human accuracy obtained with the submitted
systems show the effectiveness of the proposed
method.

1 Introduction

Modern advances in Neural Machine Translation
(NMT) (Sutskever et al., 2014; Bahdanau et al.,
2014; Luong et al., 2015; Vaswani et al., 2017)
gave rise to a new era, where the translation quality
significantly surpasses previous statistical machine
translation (SMT) models (Och and Ney, 2002;
Koehn et al., 2003; Koehn, 2010).

Although these approaches generate high quality
translations, there is still a long way to go towards
meeting human quality. In fact, NMT models can
still generate several types of grammatical and/or
semantic mistakes, which is not tolerated in sce-
narios requiring accurate and prompt translations.
These scenarios include for instance the transla-
tions of legal and financial documents, where mis-
takes are not permitted and can be costly. To over-
come this issue, several Computer-aided translation
(CAT) systems have been proposed (Knowles and
Koehn, 2016; Santy et al., 2019) to refine NMT

models. CAT tools include for instance Auto-
matic Post-edition (Junczys-Dowmunt and Grund-
kiewicz, 2017; Correia and Martins, 2019; Lopes
et al., 2019), terminology control (Hokamp and
Liu, 2017; Post and Vilar, 2018; Dinu et al., 2019;
Ailem et al., 2021) and sentence vs word-level auto-
completion (Knowles and Koehn, 2016; Zhao et al.,
2020; Li et al., 2021).

Figure 1: Given the source sentence to translate, the
translation contexts, and the human typed characters,
the WLAC task aims to predict a target word starting
by the human typed sequence. As illustrated, the word
to predict is not necessarily consecutive to the left and
right contexts.

The current shared task is on Word-Level Auto-
Completion (WLAC) methods, whose objective, as
illustrated in Figure 1, is to predict a target word
given a source sentence, a translation context, and
at least one human typed character. WLAC is a cen-
tral Computer-aided task as it helps human transla-
tors generate diverse translations quickly and effec-
tively. Unfortunately, due to the lack of benchmark
datasets, very little work has considered this task.
Existing methods include the work of Huang et al.
(2015), where the authors leverage the source sen-
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tence as well as human typed characters to predict
the target word. More recently, Li et al. (2021)
proposed to use context information in addition
to human-typed characters and source sentence.
Furthermore, the authors presented a generic pro-
cedure to simulate WLAC data from any parallel
translation datasets, and proposed the first public
benchmark for this task. The benchmark dataset
contains several types of contexts and therefore
a joint optimization strategy is used to take into
account all context types during training.

We participate in two directions, namely English-
German (EN-DE), German-English (DE-EN), and
we submitted four systems, two for each language
direction. Following previous work (Li et al.,
2021), our method leverages source sentence, trans-
lation context as well as human-typed characters,
and it uses a joint objective function to learn model
parameters on different types of contexts simulta-
neously. Furthermore, inspired by recent progress
in Terminology Control (TC) for NMT (Dinu et al.,
2019; Ailem et al., 2021), we propose a new WLAC
method that treats the human typed sequence as a
constraint to generate the right word. To do so, we
augment our training data with translation context
as well as human typed characters (constraints). We
use tags where needed to distinguish these terms
from source tokens.

The rest of the paper is organized as follows.
Section 2 describes the details of our system, sec-
tion 3 presents the data, while section 4 shows the
different experimental settings and results.

2 Method

Herein we present our WLAC approach which is
inspired by recent advances in this task (Li et al.,
2021) as well as recent work on terminology con-
trol (Ailem et al., 2021).

2.1 Data Annotation

Inspired by previous work on Terminology Control
(Ailem et al., 2021), the idea here is to consider
human typed characters as a constraint. In partic-
ular, the objective is to constrain the NMT model
to predict a word that, obligatorily, starts with hu-
man typed characters. To do so, we augment the
source side of our training data with the translation
context as well as the human typed sequence of
characters. Furthermore, we use tags to specify the
constraints (human typed characters) in the con-
text translation where relevant, and use the special

token MASK in order to provide a more general pat-
tern for the model to learn how to predict the right
word starting with human sequence. The WLAC
data provided by the WMT task and used in (Li
et al., 2021) contains 4 types of context, namely
left and right contexts (bi-context), left context only
(prefix), right context only (suffix), and no context
at all (zero context). The different annotations ac-
cording to each context types are depicted in table
1.

2.2 Joint Cross-Entropy Loss
Let x = (x1, x2, ..., xm) denotes the input sen-
tence to translate, s = (s1, s2, . . . , sk) a se-
quence of human typed characters, and c =
(cl, cr) the translation context, where cl =
(cl,1, cl,2, . . . , cl,i) denotes the left context, while
cr = (cr,1, cr,2, . . . , cr,j) denotes the right context.
The objective of the WLAC task is to predict a
word w given a source sequence x, human typed
sequence s and a translation context c in order to
establish a partial translation. The training data
D of a WLAC task can be described as a set of
tuples (x, s, c, w). From a probabilistic perspec-
tive, a WLAC task can be cast as estimating the
conditional distribution p(w|x, c, s). Since there is
different types of context (as described in section
2.1), we follow the work of Li et al. (2021) and
adopt a joint training strategy. In particular, the
four types of context are considered during training
giving rise to the following loss function:

L = − log p(w|x, c, s)
= −

∑

(x,c,s,w)∈Dbi

log p(w|x, cl, cr, s)

−
∑

(x,cr,s,w)∈Dsuf

log p(w|x, cr, s)

−
∑

(x,cl,s,w)∈Dpre

log p(w|x, cl, s)

−
∑

(x,s,w)∈Dzero

log p(w|x, s)

(1)

where Dbi, Dsuf , Dpre, Dzero correspond re-
spectively to bi-context, suffix context, prefix con-
text and zero context.

3 Data

We participate in two directions, namely English-
German and German-English. We use the parallel
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Source Seebarsch gebacken auf seinem Rücken , fein zerschnippelter Porree und Zitronenmelissekraut .

Target Bar baked on the back with finely chopped leek and lemon melissa herbs .

WLAC training data
In

pu
t

bi-context Seebarsch gebacken auf seinem Rücken , fein zerschnippelter
Porree und Zitronenmelissekraut . <SEP> Bar baked on <S>
MASK <C> wit </C> and lemon

O
ut

pu
t

with

Prefix Con-
text

Seebarsch gebacken auf seinem Rücken , fein zerschnippelter
Porree und Zitronenmelissekraut . <SEP> Bar baked on the back
with finely <S> MASK <C> chop </C>

chopped

Suffix Con-
text

Seebarsch gebacken auf seinem Rücken , fein zerschnippelter
Porree und Zitronenmelissekraut . <SEP> <S> MASK <C> B
</C> lemon melissa herbs .

Bar

Zero Con-
text

Seebarsch gebacken auf seinem Rücken , fein zerschnippelter
Porree und Zitronenmelissekraut . <SEP> <S> MASK <C> bak
</C>

baked

Table 1: Illustration of our German-English training data. The WLAC training data can be build from traditional
parallel translation data. During sampling, for each parallel sentences four samples are generated corresponding
to four types of translation context, namely left and right contexts (bi-context), left context (prefix), right context
(suffix) and no context at all (zero). The source side of the training data is a concatenation of the German source
side and the English translation context separated by the tag <SEP>. Translation context is also augmented with
human typed characters, which are considered as a constraint to orient the model to predict the right word. The tags
<S>, <C> and </C> are added to differentiate between the constraints and other tokens in the input.

English-German data provided by the WLAC task
consisting of almost 4.5M parallel sentences. Fol-
lowing task instructions, we use the script proposed
in (Li et al., 2021) to simulate the WLAC training
data from the provided classical translation data.

3.1 Parallel Data Cleaning

Before creating the WLAC samples, we apply sev-
eral cleaning steps on the data to eliminate bad
alignments. First, the data is re-segmented using
the Python package pySBD (Sadvilkar and Neu-
mann, 2020) in order to detect sentence boundaries.
This step increases the number of parallel sentences
to almost 6.5 M. Second, each parallel entry is
scored between 0 and 1 using several tools. These
tools include bicleaner (Ramírez-Sánchez et al.,
2020), similarity scoring using LaBSE (Feng et al.,
2020), and bicleaner-ai, which is inspired by the
BERT-based model proposed in (Açarçiçek et al.,
2020) for sentence classification. Table 2 presents
the different scoring thresholds used to clean the
parallel corpus. In particular, we rely on a combina-
tion of bi-cleaner and similarity scoring as well as
bicleaner-ai. In our experiments, we consider both
initial uncleaned data (Noisy) and the cleaned data.
In addition to these scoring, we also rely on fast-
text (Bojanowski et al., 2017) to eliminate sentence
pairs identified as written in the wrong language
(e.g., A french sentence in an English-German par-

allel corpus). After the cleaning we obtain a corpus
of around 2.7 M parallel segments.

Clean Noisy
Bicleaner +
Similarity

>1.4 >0

Bicleaner-ai >0.25 >0.1
Total sen-
tences

2 717 737 4 404 427

Table 2: The different thresholds applied on the corpus.
Noisy corresponds to the original parallel data provided
by the WLAC task. The threshold 1.4 is a combination
of Bi-cleaner and Similarity scoring thresholds.

3.2 WLAC Data Construction
The parallel data commonly used for NMT and
provided by the WLAC task cannot be used di-
rectly to train a WLAC model. Thus, following
the task instructions, we use the script proposed
in (Li et al., 2021) to simulate several samples for
the WLAC training. For each sentence pair, 4 sam-
ples are created according to the four context types
as presented in table 1. Since the provided ini-
tial data contains almost 4.5M parallel sentences,
we obtain a WLAC corpus of almost 18M entries
(4.5×4). As presented in the previous section, we
have also used a cleaned version of the provided
corpus, containing around 2.7M entries. For the

1172



Figure 2: Accuracy obtained with different number of human typed characters. Left : German-English system with
initial corpus. Right : English-German system with initial corpus.

latter, we obtain around 10.8M WLAC training
samples. Hence, synthetic WLAC training data are
build for the two corpus versions (clean and initial)
in the two considered directions: English-German
and German-English. The dev sets are build from
3000 EN-DE and DE-EN parallel sentences from
the initial corpus. To do so, the same sampling
script is used resulting in 20K entries for both di-
rections. The test sets released by the WLAC task
contain 29596 and 25895 samples for DE-EN and
EN-DE respectively.

4 Experiments

4.1 Settings

We use a Transformer architecture (Vaswani et al.,
2017) with 6 stacked encoders/decoders and 8 at-
tention heads as a building block for our systems.
For both EN-DE and DE-EN, the source and target
embeddings are tied with the softmax layer. We use
512-dimensional embeddings, 2048-dimensional
inner layers for the fully connected feed-forward
network and a dropout rate of 0.3. The models are
trained for a minimum of 50 epochs and the valida-
tion set is used to compute the stopping criterion1.
We use a batch size of 4000 tokens per iteration
and an initial learning rate of 5× 10−4. For each
language pair, the validation set is used to compute
the stopping criterion. We use a beam size of 5
during inference for all models.

Before annotating our corpus as presented in
table 1, we first tokenize the data using Moses
tokenizer (Koehn et al., 2007). After augment-

1The stopping criterion corresponds to 5 successive epochs
without decreasing the validation loss function.

ing the data with translation context and human
typed sequence, we perform a BPE encoding (Sen-
nrich et al., 2015) with 40k merge operations to
segment words into subword-units, which results
in a joint vocabulary size of around 44K tokens for
both German-English and English-German.

Accuracy (%)

German-English English-German

Cleaned Corpus 54.84 48.43

Initial Corpus 57.36 48.97

Human Evaluation (%)

Cleaned Corpus 74.50 61.00

Initial Corpus 76.75 61.75

Table 3: Accuracy and Human Evaluation results.

4.2 Results

For both considered directions, the systems are
evaluated using the Accuracy measure, correspond-
ing to the percentage of correctly predicted words.
This automatic accuracy is obtained using one sin-
gle ground truth word for each sample. However,
one sentence may have multiple translations, thus
several Ground Truth are possible, making the au-
tomatic accuracy inadequate. To overcome this
limitation, a human evaluation is applied on 400
randomly sampled entries from the test set. In
particular, given the human typed sequence, the
translation context and the source sentence to trans-
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late, human annotators judge whether a predicted
word can be correct according to the given context.
The results obtained with our systems are presented
in table 3.

Surprisingly, we observe that cleaning the differ-
ent corpora is mirrored by a deterioration in results.
Indeed, the best results are reached with the sys-
tems using initial training corpus. This might be
due to the excessive cleaning, removing some sce-
narios that could be present in the test set.

Furthermore, we notice that the chances of pre-
dicting the right word are positively related with
the number of human typed characters. We present
in figure 2 the accuracy obtained with different
numbers of human typed characters. In both direc-
tions, we observe that the accuracy improves with
the typed sequence length. This is natural, as with
few typed characters, several choices are possible,
especially when the translation context is restricted
or even non-existent (zero context situation).

5 Conclusion

This paper describes our submission to the WLAC
shared task. We participate in two language di-
rections, EN-DE and DE-EN, and submitted two
systems for each direction. For each direction, the
first system is trained using initial data provided
by the task, while the second system is trained on
cleaned data. The evaluation in terms of accuracy
shows the effectiveness of the proposed method.
Furthermore, a significant improvement of accu-
racy is observed when the number of human typed
characters is greater than 1, suggesting that enter-
ing at least two characters restrain the search space
and improve the chances to predict the right word.
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Abstract

Research on Machine Translation (MT) has
achieved important breakthroughs in several
areas. While there is much more to be done
in order to build on this success, we believe
that the language industry needs better ways to
take full advantage of current achievements.
Due to a combination of factors, including
time, resources, and skills, businesses tend
to apply pragmatism into their AI workflows.
Hence, they concentrate more on outcomes,
e.g. delivery, shipping, releases, and features,
and adopt high-level working production
solutions, where possible. Among the features
thought to be helpful for translators are
sentence-level and word-level translation auto-
suggestion and auto-completion. Suggesting
alternatives can inspire translators and limit
their need to refer to external resources, which
hopefully boosts their productivity. This
work describes our submissions to WMT’s
shared task on word-level auto-completion,
for the Chinese-to-English, English-to-Chinese,
German-to-English, and English-to-German
language directions. We investigate the
possibility of using pre-trained models and
out-of-the-box features from available libraries.
We employ random sampling to generate
diverse alternatives, which reveals good
results. Furthermore, we introduce our
open-source API, based on CTranslate2, to
serve translations, auto-suggestions, and auto-
completions.

1 Introduction

Translation auto-suggestion and auto-completion
are among the important features that can help
translators better utilize Machine Translation (MT)
systems. In a Computer-Aided Translation (CAT)
environment, a translator can make use of the MT
word auto-suggestion feature as follows:

• typing a few words, or clicking a word in a

proposed MT translation, a list of suggestions
is displayed, as illustrated by Figure 1.

• selecting one of the word suggestions from
the list, the rest of the translation is modified
accordingly.

The WMT’s Word-Level AutoCompletion
(WLAC) shared task addresses a more specific sce-
nario, where the user types a few characters, and
the system predicts and auto-completes the cor-
rect word, given the current context. The WLAC
task even suggests that the context might be partial,
and it can consist of preceding and/or following
words. Given a source sequence x, typed character
sequence s and a context c, WLAC aims to predict
a target word w which is to be placed in the middle
between the left context cl and right context cr to
constitute a partial translation. Note that the last
word of cl, the auto-completed word w, and the
first word of cr are not necessary consecutive.

Previous work proposed diverse approaches,
mostly to translation sentence-level auto-
suggestion and auto-completion. In their work,
Li et al. (2021) proposed an approach to tackle
the word-level auto-completion task. Given a
tuple (x, c, s), the system decomposes the word
autocompletion process into two parts: 1) model
the distribution of the target word w based on the
source sequence x and the translation context c;
and 2) find the most possible word w based on the
distribution and human typed sequence s. Hence,
they first use a single placeholder [MASK] to
represent the unknown target word w, and use
the representation of [MASK] learned from the
word prediction model, based on BERT (Devlin
et al., 2019), to predict it. Then, the predicted
distribution of the masked token is used over the
vocabulary to filter out invalid words, namely those
that do not start with the human typed sequence s.
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Figure 1: Auto-Suggest: Word Suggestions List1

Finally, they return the token with the highest
probability over the new distribution.

Researchers in other natural language process-
ing areas such as language modelling offered ap-
proaches to improve predictions of decoder-only
autoregressive models, trained to predict the next
word given the previous context. Among these ap-
proaches are top-K sampling and top-p (nucleus)
sampling (Fan et al., 2018; Holtzman et al., 2018;
Radford et al., 2019; Holtzman et al., 2020). Since
neural machine translation inference depends on
a decoder model, such approaches from language
modelling can be employed. In particular, we inves-
tigate the use of top-K sampling during decoding
to generate better word-level auto-completions.

2 User Survey

Previous work reported that a user can save over
60% of the keystrokes needed to produce a transla-
tion in a word completion scenario (Langlais et al.,
2000). Other researchers noted that post-editing
is faster than MT auto-completion (Koehn, 2009)
while MT auto-completion can yield higher quality
translation when the baseline MT quality is high
(Green et al., 2014).

In a user survey we designed and distributed
via social media networks, we asked participants
whether they thought an MT word-level auto-
suggestions feature could be helpful, and provided
a simple definition and an illustrative image. If
their answer was “yes”, the respondent was asked
to specify a reason. By the time of writing this pa-
per, we received 41 responses to our survey. While
we do not believe this survey is enough to justify
introducing an auto-suggestions feature into every

1The image is from our demo at: https://www.
machinetranslation.io/

MT system, it can be an indicator as to why some
users think such a feature could be helpful. To an-
swer the question, “Which of the following best
describes you?” 46.3% (19) of the respondents
chose “Translator/Linguist”, 31.7% (13) selected
“NLP Engineer/Researcher”, and the rest 22% (9)
were other “MT Users”, not included in the two
aforementioned categories.

Figure 2: MT user categories

Among the respondents to the survey, 90.2%
(37) answered “Yes” to the question “In general, do
you believe that a word-level auto-suggestions fea-
ture is helpful?” Figure 3 shows the breakdown of
answers to the question, “Why do you believe that
a word-level auto-suggestions feature can be help-
ful?” taking into consideration those who answered
“No” to the previous question.

Out of the 37 persons who believed a word-level
auto-suggestions feature can be helpful, 40.5% (15)
of the respondents specified that it can give them
some inspiration. This answer is specifically inter-
esting as it is not constrained by time-saving bene-
fits; hence, it focusses more on effectiveness rather
than efficiency. The respondent that answered with
“Other” mentioned that it allows them to look for al-
ternative senses or phrasings, especially when they
suspect the initial translation is bad, and referred to
this as “human in the loop”.

Respondents were allowed to give extra com-
ments; among the notable comments were:
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Figure 3: How translators and other MT users perceive
word-level auto-suggestions

• I think word-level suggestions can be a useful feature,
particularly when the target language can have several
translations of a single source word.

• Word-level suggestions can be helpful, but sometimes
you end up spending a lot of time figuring out if the MT
suggestion is a valid translation in that context. So, I’m
not really sure yet how I feel about it.

• It’s useful, as long as it’s seen as a suggestion, and not

inserted in the target where the translator is typing.

Among the respondents who chose “For me, it is
easier or faster than typing”, comments included:

• Though most of the time; the suggestions are lousy.

• I don’t think it gives me inspiration as I mostly need it
for structures, not single words.

• Auto-suggestion does not have to come from machine

translation. History is much more useful.

The last comment above might be referring to
the fact that in some CAT tools, auto-suggestions
can also include glossary terms, and translation
memory sub-segments, which encourages further
research efforts to investigate methods to enhance
leveraging and interaction between various transla-
tion resources in human-in-the-loop environments.

We hope this survey will inspire future user
studies to look deeper into how diverse users of
MT and CAT tools prefer to utilize certain features,
such as auto-suggestions, and the value they seek.
More aspects should be taken into consideration
such as language pairs, translation workflows, and
user interfaces. This can help improve these fea-
tures to better support linguists and other MT users
and boost their productivity as well as translation
quality.

3 Experimental Setup

Models We use OPUS pre-trained models2

based on the Transformer architecture (Vaswani
et al., 2017) for the Chinese-to-English, English-
to-Chinese, German-to-English, and English-to-
German language directions.

Tokenizers OPUS models depend on Sentence-
Piece3 (Kudo and Richardson, 2018) for tokeniza-
tion. Hence, we use their provided subword mod-
els during our pre-processing and post-processing
processes. As OPUS’s English-to-Chinese model
requires defining the target dialect using a pre-
specified token, we prepend [">>cmn_Hans<<"]
to the list of tokens generated by SentencePiece.
For word-level tokenization, we use NLTK for En-
glish and German, and Jieba4 for Chinese. This
list of words can be used later to find the word that
starts with the typed sequence.

Inference Engine We employ CTranslate2
(Klein et al., 2020) for sentence-level MT, as
well as for translation auto-suggestions. To this
end, we first convert OPUS models into the
CTranslate2 format. After that, we utilize a num-
ber of CTranslate2 decoding features, including
“alternatives at a position” and “auto-completion”.5

The translation options return_alternatives and
num_hypotheses are essential for all our ex-
periments; the former should be set to True

while the latter determines the number of re-
turned alternatives. These decoding options can be
used with regular beam search, prefix-constrained
decoding, and/or random sampling. If the decoding
option return_alternatives is used along with
target_prefix, the provided target left context
is fed into the decoder in the teacher forcing
mode,6 then the engine expands the next N most
likely words, and continues (auto-completes) the
decoding for these N hypotheses independently.
The shared task investigates four context cases:

2https://github.com/Helsinki-NLP/
Tatoeba-Challenge

3https://github.com/google/
sentencepiece

4https://github.com/fxsjy/jieba
5https://github.com/OpenNMT/

CTranslate2/blob/master/docs/decoding.md
6In teacher forcing (Williams and Zipser, 1989), ground

truth previous tokens are fed into the decoder, instead of the
predicted tokens yi-1 as suggested by Bahdanau et al. (2015)
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(a) empty context, (b) right context only, (c) left
context only, and (d) both the right and left con-
texts are provided. Hence, for all cases we returned
multiple alternative translations, while for (c) and
(d) we also returned another set of alternative auto-
completions using the left context as a target prefix.
In this sense, it is worth noting that we make use
only of the left context, when available, and we do
not use the right context at all, which we might in-
vestigate further in the future. To enhance diversity
of translations, especially for (a) and (b), we ap-
plied random sampling with the CTranslate2’s de-
coding option sampling_topk, with various sam-
pling temperatures. Our experiments are further
elaborated in Section 4 and Section 5.

Pinyin The official Romanization system for
Standard Mandarin Chinese is called Pinyin. Since
the task organizers used the pypinyin library7 to
prepare the test files, we did too. OPUS English-to-
Chinese models accept Chinese input, so we had to
use the library to convert between the two writing
systems. Since the conversion from Chinese char-
acters to Pinyin is a lossy process and cannot be
perfectly converted back, we keep a list of Chinese
words resulted from tokenization with Jieba to be
able to map Pinyin tokens to Chinese tokens later.

4 Method

We experimented with both beam search alterna-
tives and random sampling, and found that the latter
achieves better results. This could be due to the
fact that alternatives generated from each beam are
usually very similar, and lower beam values tend to
generate translations of lower quality. This section
elaborates on the actual methods we used for our
submissions, while more details about initial exper-
iments that led us to these decisions are explained
in Section 5.

Random sampling is a decoding mode that ran-
domly samples tokens from the model output distri-
bution. In our experiments, we restrict the sampling
to the top-10 candidates at each time-step. To ob-
tain diverse generations from the MT model, we
rely on randomness in the decoding method, in par-
ticular through top-K sampling that samples the
next word from the top-K most probable choices

7https://github.com/mozillazg/
python-pinyin

(Fan et al., 2018; Holtzman et al., 2018; Radford
et al., 2019), instead of aiming to decode text that
maximizes likelihood.

For each translation, we use the CTranslate2
option return_alternatives to return 10 sequences,
with 10 top-K sampling. If the entry has a left
context starting with a capital letter, we use the
prefix to constrain the decoding. In CTranslate2,
combining target_prefix with the return_alterna-
tives flag returns alternative sequences just after
the prefix. We compose a list of alternatives with
and without the prefix, and try to find the word
starting with the typed sequence.8 If the word is
not found, we repeat the same process for up to
five runs. In each new run, random sampling can
generate a new set of alternatives. Our experiments
show that returning 20 sequences with 20 top-K
sampling could lead to more correctly predicted
words (cf. Table 2); however, we had to consider
the trade-off between quality and efficiency.9

Furthermore, we investigate increasing the ran-
domness of the generation by using a value for
sampling temperature between 1.0 and 1.3. For
each run, a random value is generated in this range.
The default sampling temperature in CTranslate2
is 1, which achieved relatively better results, as
demonstrated in Table 1.

Language Settings Accuracy Human

de-en ST=1.0 0.614441141 0.885
ST=1.3 0.609237735 0.8875

en-de ST=1.0 0.589418807 0.6725
ST=1.3 0.584939177 0.655

zh-en

ST=1.0 + detok 0.504113456 0.8675
ST=1.3 + detok 0.502598878 0.8675
ST=1.0 0.493476989 0.86
ST=1.3 0.490619944 0.87

en-zh ST=1.0 0.319424091 0.5775
ST=1.3 0.319350821 0.5725

Table 1: Evaluation results on the test datasets. Auto-
matic evaluation uses the “Accuracy” metric. “Human”
refers to human evaluation. Results obtained from sam-
pling temperature (ST) 1.0 are slightly better than those
with the value 1.3. When the source is Chinese, detok-
enization (detok) resulted in slightly better scores.

8In a prefix-free target sequence, if multiple words start
with the typed sequence, we return the first word. In practice,
users could be prompted to choose from potential options.

9Our scripts are available at: https://github.com/
ymoslem/WLAC
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5 Other Experiments

This section elaborates on some initial experiments
we conducted to decide what approach to use. The
final approach we actually used in our submissions
is explained in Section 4.

We used 10,000 entries of a Chinese-to-English
golden sample provided by the organizers to evalu-
ate various experiments. For sentence translation,
when there is no left context, we experimented with
the following values:

• beam size 1, 5, and 10, without sampling

• beam size 1, with random sampling top-K 10,
20, and 50

Table 2 shows the results for these experiments,
and demonstrates that random sampling achieves
the best overall accuracy. Random sampling with
beam size 1 reveals better results than mere beam
size 1 and even beam sizes 5 and 10 without ran-
dom sampling. Multiple runs of random sampling
can result in more correctly predicted words.

Beam Size Sampling Top-K Hypotheses Accuracy Runs

1 N/A 10 0.6519 1
5 N/A 10 0.6588 1
10 N/A 10 0.6573 1

1 10 10 0.6918 1
1 20 10 0.6907 1
1 20 20 0.7108 1
1 50 10 0.6853 1

5 N/A 10 0.6588 5
1 10 10 0.7165 5
1 20 20 0.7310 5

Table 2: Results for the Chinese-to-English golden sam-
ple dataset (10,000 entries). Random sampling outper-
forms even higher beam sizes.

6 API

Our API project10 offers an easy way to integrate
translation, auto-suggestion, and auto-completion
features into translation environments. We chose
FastAPI11 for its high performance that beats many
other Python web frameworks12 in addition to its
easy integration with OpenAPI (Swagger) docu-
mentation.

10https://github.com/ymoslem/SnowballMT
11https://github.com/tiangolo/fastapi
12https://www.techempower.com/

benchmarks/#section=data-r20&hw=ph&test=
query&l=zijzen-sf

6.1 API Endpoints

The API consists of a number of endpoints, receiv-
ing requests and sending the relevant responses in
the JSON format. Each of the MT features has its
endpoint.

6.1.1 Translation Endpoint
The API handles a POST request (e.g. received
from a CAT environment), including:

• sentences: list of the source sentences to be
translated.

• source_language: in a format like “fr” for
French, and the default is “auto” to run lan-
guage auto-detection.

• target_language: in a format like “en” for
English.

The API response is a list of strings for the MT
translations in a JSON format.

6.1.2 Auto-Suggestions Endpoint
When the user clicks on one word of the MT trans-
lation, the CAT environment sends a request to the
API including:

• sentence: sentence to be translated.

• prefix: words to start the translation with.

• source_language: in a format like “fr” for
French, and the default is “auto” to run lan-
guage auto-detection.

• target_language: in a format like “en” for
English.

The API response is a list of the MT word sug-
gestions/alternatives for the current word, and the
translation auto-completions if the user selects a
specific suggestion.

6.2 JSON Response Examples

This is an example of a response to the translation
request referred to in Section 6.1.1.
{ ‘ i d ’ : 1 0550004

‘ s o u r c e _ l a n g ’ : " f r " ,
‘ t a r g e t _ l a n g ’ : " en " ,
‘ t r a n s l a t i o n s ’ : [

‘ The COVID−19 c r i s i s has deepened a l r e a d y
e x i s t i n g i n e q u a l i t i e s . ’

]
}

This is an example of a response to the auto-
suggestions request referred to in Section 6.1.2.
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{
‘ i d ’ : 1 0550005 ,
‘ s o u r c e _ l a n g ’ : " f r " ,
‘ t a r g e t _ l a n g ’ : " en " ,
‘ r e s u l t ’ : {

‘ t r a n s l a t i o n s ’ : [
{

‘ s u g g e s t i o n ’ : ‘ c r i s i s ’ ,
‘ c o m p e l e c t i o n ’ : ‘ o f COVID−19 has deepened

a l r e a d y e x i s t i n g i n e q u a l i t i e s . ’
} ,
{

‘ s u g g e s t i o n ’ : ‘COVID−19 ’ ,
‘ c o m p e l e c t i o n ’ : ‘ c r i s i s has deepened a l r e a d y

e x i s t i n g i n e q u a l i t i e s . ’
} ,
{

‘ s u g g e s t i o n ’ : ‘ impact ’ ,
‘ c o m p e l e c t i o n ’ : ‘ o f COVID−19 c r i s i s has

deepened a l r e a d y e x i s t i n g i n e q u a l i t i e s
. ’

}
]

}
}
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Abstract

This paper describes our submission to the
Word-Level AutoCompletion Shared Task of
the WMT 2022. We participate in the pair
of languages, English–German, in both ways.
We propose a segment-based interactive ma-
chine translation approach whose central core
is a machine translation (MT) model that pre-
dicts the complete translation from the context
provided by the task and picks the word we
were trying to autocomplete from there. We
show with this approach that it is possible to
use the MT models in the autocompletion task
by performing minor changes at the decoding
step and obtaining good accuracy.

1 Introduction

Machine translation (MT) has significantly im-
proved in recent years with the emergence of neural
machine translation (NMT), but it still cannot as-
sure high-quality translations for all tasks (Toral,
2020). For those scenarios with rigorous translation
quality requirements, it is critical for professional
translators to manually validate the translations gen-
erated by the NMT system. The computer-aided
translation (CAT) tools show up to improve the vali-
dation and editing process carried out by translators.
Researchers approached CAT tools from many di-
rections with the aim of reducing the human effort
of correcting the automatic translations. Among
CAT tools such as translation memory (Zetzche,
2007), augmented translation (Lommel, 2018) and
terminology management (Verplaetse and Lam-
brechts, 2019); we can find autocompletion tools,
which help professional translators by providing
new partial translations according to the validated
parts they have supplied to the system.

Word level autocompletion (WLAC) (Li et al.,
2021) is a new shared task introduced in WMT22.
Its aim is to complete a target word given a source
sentence, a sequence of characters typed by the

human translator and a translation context. Four
types of context are possible:

Zero-contex: no context is given.

Suffix: a sequence of translated words located af-
ter the word to autocomplete.

Prefix: a sequence of translated words located
prior to the word to autocomplete.

Bi-contex: A combination of the suffix and the
prefix type. That is, there is a sequence of
translated words located after the word to auto-
complete, and a sequence of translated words
located prior to the word to autocomplete.

Note that, in all cases, the word to autocomplete
is not necessarily consecutive to these contexts.

We have experimented with a similar CAT tool
from the interactive machine translation (IMT)
framework. In this field of research, the transla-
tion is generated in a collaborative process between
the human translator and the MT model. Among
the different approaches, the segment-based IMT
(Domingo et al., 2017; Peris et al., 2017) proto-
col presents certain similarities with WLAC: at
each step, the user validates sequences of translated
words—the context—and makes a correction—the
word to autocomplete.

Therefore, in this work we have approached
WLAC as a simplification of segment-based IMT,
using the context as the validated segments and
the typed characters as the word correction; and
limiting the process to the first iteration. This has
allowed us to tackle WLAC by training a conven-
tional NMT model and adapting it at the decoding
step.

2 Segment-based interactive machine
translation

Segment-based IMT establishes a framework in
which a human translator works together with
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SOURCE (x): Una versión traducida de un texto.
REFERENCE (y): A translated version of a text.

ITER-0 (f̃ ) ( )
(ŷ) A written version of a story.
(f̃ ) (A) (version of a)

ITER-1 (s) t
(ŷ) A translated version of a document.
(f̃ ) (A translated version of a)

ITER-2 (s) t
(ŷ) A translated version of a text.

FINAL (ŷ ≡ y) A translated version of a text.

(a) Segment-based IMT session.

cl s cr
A t version of a
A translated version of a

(b) WLAC session.

Figure 1: Examples of a segment-based IMT session to translate a sentence from Spanish to English; and a WLAC
session for predicting a word for a source sentence, a translation context, and a human-typed character sequence.

the MT system to produce the final translation.
This collaboration starts with the system propos-
ing an initial translation hypothesis yI1 of length
I . Then, the user reviews this hypothesis and vali-
dates those sequence of words which they consider
to be correct (f̃1, . . . , f̃N ; where N is the number
of non-overlapping validated segments). After that,
they are able to merge two consecutive segments
f̃i, f̃i+1 into a new one. Finally, they correct a
word—which introduces a new one-word validated
segment, f̃i, which is inserted in f̃N1 . This correc-
tion can also consist in a partially typed word f̃ ′i , in
which case the system would complete it as part of
its prediction.

The system’s reacts to this user feedback by gen-
erating a sequence of new translation segments
ĝN
1 = ĝ1, . . . , ĝN ; where each ĝn is a subsequence

of words in the target language. This sequence com-
plements the user’s feedback to conform the new
hypothesis:

{
ŷI1 = f̃1, ĝ1, . . . , f̃

′
i ĝi, . . . , f̃N , ĝN if f̃ ′i ∈ f̃N1

ŷI1 = f̃1, ĝ1, . . . , f̃N , ĝN otherwise
(1)

The word probability expression for the words
belonging to a validated segment f̃n was formalized
by Peris et al. (2017) as:

p(yin+i′ | yin+i′−1
1 , xJ1 , f

N
1 ; Θ) = y>in+i′pin+i′ ,

1 ≤ i′ ≤ l̂n
(2)

where ln is the size of the non-validated segment
generated by the system, which is computed as

follows:

l̂n = arg max
0≤ln≤L

1

lN + 1

in+ln+1∑

i′=in+1

log p(yi′ | yi′−1
1 , xJ

1 ; Θ)

(3)

3 Approach

Given a source sentence xJ1 , a sequence of
typed characters sK1 = s1, . . . , sK and a con-
text c = {cl, cr}, where cl = cl1, . . . , clS
and cr = cr1, . . . , crR; WLAC aims to au-
tocomplete sK1 to conform the word wW

1 =
s1, . . . , sK , wK+1, . . . , wW . If we consider the
context as the sequence of segments validated by
the user (f̃N1 = cl, cr) and the sequence sK1 as the
partially-typed word correction (which would be
inserted in f̃N1 as a new one-word validated seg-
ment; leading to f̃N1 = cl, s

K
1 , cr), we can view

WLAC as a simplification of segment-based IMT.
With that in mind, we can rewrite Eq. (1) as:

ŷI1 = cl, ĝ1, s
K
1 ĝ2, cr, ĝ3 (4)

which, knowing that the prediction of the partially-
typed correction corresponds to the first word of
ĝ2, can be rewritten as:

ŷI1 = cl, ĝ1, s
K
1 w

W
K+1, ĝ

′
2, cr, ĝ3 (5)

Therefore, we can obtain the autocompleted
word (wW

1 = sK1 w
W
K+1) by performing a single

step of the segment-based IMT protocol, discard-
ing the rest of the translation prediction.

Figure 1 illustrates an example of segment-based
IMT compared to the WLAC task for the same case.
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In the segment-based IMT (Fig. 1a) example, at it-
eration 0, the system generates an incorrect first
hypothesis. The, at iteration 1, the user validates
a sequence of segments and types the first char-
acter of the word ‘translated’ to help the system
fulfill the sequence of words between the first two
segments. After that, the system generates a new
translation with all the validated segments and the
human-typed character sequence. The system re-
peats this process at the second iteration, ending
with a correct translation. The WLAC (Fig. 1b)
example simplifies the case that happens at iter-
ation 1. Although we have the same source sen-
tence, validated segments (left and right context)
and human-typed character sequence, in this case,
the system only has to find one word between the
two segments instead of generating the whole sen-
tence.

4 Experimental setup

In this section, we present the details of our experi-
mental session.

4.1 Evaluation
The WLAC 22 shared task selected accuracy as the
automatic metric with which to report the evalua-
tion of the different systems1. This metric is com-
puted as the total number of correctly predicted
words normalized by the total number of words to
complete:

Acc = Nmatch/Nall (6)

where Nmatch is the number of predicted words
that are identical to the human desired word, and
Nall is the total number of testing words.

4.2 Corpora
We conducted our experiments using the En-
glish–German corpus provided by the organizers,
which is a version of the WMT14’s dataset, prepro-
cessed by Stanford NLP Group. We saved 2000
sentences to use as validation, which we processed
with the provided script2 in order to create the sim-
ulated data. Table 1 presents the data statistics.

4.3 Systems
Our MT systems were trained using OpenNMT-py
(Klein et al., 2017). We made use of two different

1A human evaluation was also performed.
2https://github.com/lemaoliu/WLAC/raw/

main/scripts/generate_samples.py.

Table 1: Statistics of the WLAC 2022 corpus. Avg.
stands for average, Run. for running, K for thousands
and M for millions.

Partition Characteristic De En

Training

Sentences 4M
Avg. Length 25 26
Run. Words 110M 116M
Vocabulary 1.6M 800K

Validation
Sentences 2000
Avg. Length 27 27
Run. Words 53K 53K

network architectures: recurrent neural network
(RNN) (Hochreiter and Schmidhuber, 1997) and
Transformer (Vaswani et al., 2017).

The RNN model uses an encoder–decoder
architecture with long short-term memory
(LSTM) (Hochreiter and Schmidhuber, 1997)
cells. We set the size of the encoder, decoder and
word embedding layers to 512. The encoder and
decoder models use a single hidden layer of the
same size. We used Adam (Kingma and Ba, 2014)
as the learning algorithm, with a learning rate of
0.0002 with a batch size of 10.

The Transformer model uses a word embedding
size of 512. The hidden and output layers were
set to 2048 and 512, respectively. Each multi-head
attention layer has eight heads, and we stacked six
encoder and decoder layers. We used Adam as the
learning algorithm, with a learning rate of 2.0, b1
of 0.9 and b2 of 0.998. We set the batch size to
4096 tokens.

Additionally, we made use of the byte pair en-
coding (BPE) (Sennrich et al., 2016) algorithm,
which was jointly trained on both languages of the
dataset, applying a maximum number of 10.000
merges.

Finally, we used our own implementation (based
on OpenNMT-py) of segment-based IMT, which we
adapted for WLAC. This implementation is openly
available3 for the benefit of the community.

5 Results

In this section we present our experimental re-
sults. We trained four different models, alternat-
ing between the RNN and Transformer architec-
tures and the use of the BPE algorithm on the En-

3https://github.com/PRHLT/OpenNMT-py/
tree/word-level_autocompletion.
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Table 2: Experimental results, measured in terms of ac-
curacy. Test values are taken from the official evalua-
tion. Best results from the validation set are denoted in
bold.

Partition Approach De–En En–De

Validation

RNN 0.568 0.535
RNN + BPE 0.554 0.498
Transformer 0.563 0.524

Transformer + BPE 0.586 0.534

Test Transformer + BPE 0.390 0.340

glish–German language pairs.
Prior to submitting our systems, we used the syn-

thetic validation dataset created from the provided
data (see Section 4.2). As reflected in Table 2, all
approaches yielded similar results. They correctly
completed the word the user was trying to type
around 60% of the time. Since the Transformer
+ BPE combination yielded a two points improve-
ment for De–En, and also achieved—together with
the RNN approach—the best results for En–De, we
selected this model for our submission.

Table 2 also contains the official accuracy scores
published by the organizers. For the blind test, our
system’s performance dropped near a 20%. While
we are waiting for the publication of the findings
to have a better understanding of the cause of this
drop, we suspect that it is related with the test set
being from a different domain than the training
data, which would have a considerable impact in
our MT model.

All in all, these results show that the segment-
based IMT methodology is a promising approach
to adapting an MT model to the WLAC task. More-
over, due to the shared task constrains, we trained
our systems using only the data provided by the
organizers. However, one of the benefits of our ap-
proach is that any MT system can be easily adapted
to be used for WLAC.

6 Conclusions

In this work, we have presented our submission
to WLAC shared task from WMT22. Our ap-
proach consisted in adapting the segment-based
IMT methodology to the WLAC task, which allows
us to use a conventional NMT model to tackle this
task by simply adapting it at the decoding step. We
tested some of the most used NMT architectures,
achieving very encouraging results.

As a future work, we would like to test our ap-

proach using a more robust NMT system, adapted
to the domain of the task to perform—instead of
training an ad hoc system, as we did in this work
due to the task restrictions.
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Abstract

This paper presents IIGroup’s submission to the
WMT22 Word-Level AutoCompletion(WLAC)
Shared Task in four language directions. We
propose to use a Generate-then-Rerank frame-
work to solve this task. More specifically, the
generator is used to generate candidate words
and recall as many positive candidates as pos-
sible. To facilitate the training process of the
generator, we propose a span-level mask predic-
tion task. Once we get the candidate words, we
take the top-K candidates and feed them into
the reranker. The reranker is used to select the
most confident candidate. The experimental
results in four language directions demonstrate
the effectiveness of our systems. Our systems
achieve competitive performance ranking 1st in
English to Chinese subtask and 2nd in Chinese
to English subtask.

1 Introduction

Recent advances in neural machine translation
(Bahdanau et al., 2015; Vaswani et al., 2017) al-
low us to generate high-quality translation results.
However, as it’s pointed out by Li et al. (2021) that
in some scenarios(e.g., legal instruments), the re-
sults of machine translation can’t directly replace
human translations due to their imperfections(e.g.,
terminology translation error). Therefore, more
and more researchers pay attention to Computer-
aided translation(CAT)(Barrachina et al., 2009;
Santy et al., 2019; Huang et al., 2021; Xiao et al.,
2022), which focuses on leveraging the advantages
of NMT systems to increase the effectiveness and
efficiency of the human translation process.

To further promote the development of CAT,
WMT22 proposes a novel task —— Word-Level
AutoCompletion(WLAC). In the Word-Level Auto-
Completion task, given a source sentence x, target
context and human-typed characters t, an ideal sys-
tem is expected to be able to predict the target word
w that should be placed in the target context.

We participate in the WMT22 shared Word-
Level AutoCompletion task in four language di-
rections: Chinese⇒ English, English⇒ Chinese,
German ⇒ English and English ⇒ German and
submit a system for each language direction.

We develop a Generate-then-Rerank framework-
based system for each language direction. Based
on the vanilla Transformer architecture, we adopt
a bidirectional decoder, which can predict the cur-
rent target word by paying attention to the source
sentence and both the left-side and right-side target
context.

The paper is organized as follows, section 2 gives
the overview of the data used in the shared task and
preprocessing operations for the data, while sec-
tion 3 describes our training techniques, including
model architecture, span-level mask prediction, etc.
Section 4 presents our experimental results. Finally,
our conclusions are summarized in Section 5.

2 Data

In this section, we first introduce the datasets used
to train our systems, then we introduce how to
prepare the simulated training data for the WLAC
shard task and describe the vocabulary for each
language direction.

2.1 Datasets

As the WLAC shared task is a data-constrained
task, we can only use the parallel corpora provided
by the WLAC organizers for all four language di-
rections. Specifically, we use UN Parallel Corpus
V1.01 (WMT 2017) for Chinese ⇒ English and
English⇒ Chinese. For German⇒ English and
English⇒ German, we use the WMT 14 dataset
pre-processed by Stanford NLP Group2. Details
of the training resources provided are shown in
Table 1.

1https://conferences.unite.un.org/
uncorpus

2https://nlp.stanford.edu/projects/nmt
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Zh-En De-En
Train Set 10M 4.5M

Validation Set 3k 3k

Table 1: The detailed statistics of training and validation
data used in our system.

2.2 Simulated Training Data

Since the WLAC shared task only provides raw par-
allel corpora and does not provide supervised data,
which complies with the WLAC shared task setting,
we need to automatically construct supervised data
from the raw parallel corpora.

Specifically, given a raw parallel sentence pair
(x,y), where x = (x1, ..., xm) is the source sen-
tence, y = (y1, ..., yn) is the reference target sen-
tence, we would like to construct a target word w
and its corresponding target context c = (cl, cr)
and human-typed characters t, where the transla-
tion pieces cl and cr are on the left and right side
of the target word w.

According to Li et al. (2021), we first randomly
sample a target word w = yt, and then we sample
four types of context types:

• Zero-context: both cl and cr are empty;

• Prefix: randomly sample a translation piece
cl = yi:j from y, where i < j < t. The cr is
empty.

• Suffix: randomly sample a translation piece
cr = yi:j from y, where t < i < j. The cl is
empty.

• Bi-context: sample cl as in prefix, and sample
cr as in suffix.

Last but not least, we need to generate human-
typed characters t for the target wordw, we adopt a
heuristic method - we randomly sample a position
i in the target word w, where 0 < i < |w|, and
simulate human-typed characters t = w1:i. For
languages like Chinese, the human input is the
phonetic symbols of the word, we use pypinyin3 to
implement this conversion. So far, we get the tuple
(x, c, t, w), which can be viewed as a simulated
training example for the WLAC shared task.

3https://github.com/mozillazg/
python-pinyin

Zh⇒En En⇒Zh De⇒En En⇒De
source 60k 50k 50k 50k
target 50k 60k 50k 50k

Table 2: The vocabulary size of different language di-
rections.

2.3 Vocabulary
Considering that WLAC is a word-level task, we
don’t use tools to do any subword segmentation.
We directly use Moses scripts4 to tokenize English
and German sentences, and jieba5 for Chinese sen-
tences. The vocabulary size for each language di-
rection is shown in Table 2.

3 Word-Level AutoCompletion Systems

In this section, we mainly introduce the Generate-
then-Rerank framework. Both the generator and
the reranker’s architecture are based on Trans-
former(Vaswani et al., 2017) with the modification
that the decoder is bi-directional to leverage more
context information. It is important to note that
we borrow the idea from Li et al. (2021) that we
view WLAC as a word prediction task and only use
human-typed characters t as hard constraints.

3.1 Model Architecture: Transformer
The vanilla Transformer (Vaswani et al., 2017)
adopts a sequence-to-sequence architecture con-
sisting of an encoder and a decoder. Specifically,
the encoder is a stack of L encoder blocks and each
block consists of a multi-head self-attention mod-
ule and a feed-forward network (FFN). The decoder
is also a stack of L decoder blocks, the main differ-
ences between the Transformer encoder and Trans-
former decoder are mainly reflected in two aspects:
First, in each decoder block, there is an additional
cross-attention module between the multi-head self-
attention module and the feed-forward network.
Second, the multi-head self-attention modules in
the decoder are uni-directional while they are bi-
directional in the encoder.

In the neural machine translation task setting,
given a source sentence x and a target sentence y,
the decoder generates y as:

P (y|x; θ) =
|y|∏

t=1

P (yt|y<t,x; θ) (1)

4https://github.com/moses-smt/
mosesdecoder

5https://github.com/fxsjy/jieba
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Thus, the Transformer model is typically trained
by minimizing the cross entropy:

LNMT = −
|y|∑

t=1

logP (yt|y<t,x; θ) (2)

Since Transformer is designed for auto-
regressive generation tasks, we cannot directly
adopt it to the WLAC task, which is essentially
a natural language understanding task. Inspired
by the successful practice of Conditional Masked
Language Modeling (Ghazvininejad et al., 2019)
in non-autoregressive machine translation, we take
the same idea to train our model for the WLAC
shared task.

Bi-directional Decoder Our decoder’s architec-
ture is roughly the same as the standard Trans-
former decoder except that the multi-head self-
attention sub-layer. The standard Transformer de-
coder can only attend the left-side target context,
while in our model, it can attend to all target words
and make use of both left-side and right-side con-
text information to better predict the <mask> to-
ken.

3.2 Generator

Span-Level Mask Prediction The primitive ob-
ject function for a simulated training example in
Generator is as follows:

LG = − logP (w|x, c; θG) (3)

In our preliminary experiments, we find that it is
hard to train the generator because, in every mini-
batch, a simulated training example provides only
one training signal, which makes the model easy to
overfit. The importance of the density of training
signals has been discussed in the Pretrained Lan-
guage Model(Clark et al., 2020). To this end, we
adopt an efficient sampling approach —— Span-
Level Mask Prediction. As described in section 2.2,
once we get the tuple (x, c), we use it to predict all
the missing words in the masked span between cl
and cr. In the Pretrained Language Model, Joshi
et al. (2020) has adopted the same idea as in our
work. But one major difference is that, unlike Joshi
et al. (2020), we have to set the position id of the
masked word to be the same; otherwise, there will
be a large gap between the training stage and the
inference stage.

3.3 Reranker

So far, we have modeled the WLAC task as a clas-
sification task, that is, an extreme classification
task. Inspired by recent works to introduce label
knowledge to enhance text representation (Yang
et al., 2021; Ma et al., 2022), we propose to use a
generator-reranker framework to solve the WLAC
task. We use the generator to recall positive and
negative labels and use a reranker to distinguish
positive labels from these labels. Specifically, we
use the same Transformer architecture as the gener-
ator. But the reranker’s input and objective function
are different from the generator.

Input We obtain top-K labels W =
{w1, w2, ..., wK} through ranking the scores
generated by the generator. Then, for each
candidate label wi inW , we replace the <mask>
token with wi. So the input tuple becomes
(x, c, wi). And the multi-class classification
head of the original decoder becomes a binary
classification head, which is used to measure
whether the candidate label wi matches the source
sentence and target context.

Objective Function The objective function is as
follows.

LR =

{
− logP (wi,x, c; θR), if wi = w

−(1− logP (wi,x, c; θR)), otherwise.
(4)

3.4 Model Configuration

We implement our models with Fairseq toolkit(Ott
et al., 2019)6. Our models follow the Transformer-
Base architecture(Vaswani et al., 2017), the key
model architecture configurations and training con-
figurations are listed in Table 4 and Table 5. Each
model is trained on 8 NVIDIA Tesla V100 GPUs,
each of which has 32GB memory.

4 Experimental Results

We report experimental results in four language di-
rections: Chinese⇒ English, English⇒ Chinese,
German ⇒ English and English ⇒ German. Ta-
ble 3 shows the main experimental results on the
official test sets with automatic accuracy evaluation
and human accuracy evaluation.

6https://github.com/facebookresearch/
fairseq
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# Systems
Zh⇒En En⇒Zh De⇒En En⇒De

Auto Human Auto Human Auto Human Auto Human
1 Generator 54.05 85.00 53.98 83.25 57.27 78.75 41.82 55.50
2 Reranker 51.11 83.75 48.90 77.50 54.32 76.25 40.69 53.50

Table 3: The main results of different systems in four language directions. The results are the averaged automatic
accuracy and human accuracy on four types of translation context (i.e., zero context, prefix, suffix, and bi-context).

Configuration Name Configuration Value
encoder layers 6
decoder layers 6
attention heads 8
word embedding dim 512
FFN embedding dim 2048
hidden dim 512
dropout 0.1
attention dropout 0.0
activation droupout 0.0
Pre-LN False
share decoder input
output embed

True

Table 4: The exact specifications of the Transformer we
adopt.

The performance of the generator is as expected,
and as demonstrated in Li et al. (2021), without
using the bi-directional decoder, the generator per-
forms relatively poorly. Additionally, we conduct
an ablation study on Chinese⇒ English subtask
to demonstrate the effectiveness of the span-level
mask prediction, the model without leveraging
the span-level mask prediction strategy performs
poorly, with a drop of -10.1 in accuracy on the
validation set.

However, the performance of the reranker is
not as expected. We conjecture that this is due
to the insufficiency of the training procedure of the
reranker. Initializing reranker’s weights with gen-
erator’s weights or with PLM’s weight will boost
the performance of reranker, we leave this as future
work.

5 Conclusion

This paper describes the IIGROUP’s systems sub-
mitted to the Word-Level AutoCompletion task at
WMT22. We adopt a Generate-then-Rerank frame-
work. The experimental results demonstrate the
effectiveness of the generator.

However, due to the lack of computing power
and time, the results of our experiments don’t show

Configuration Name Configuration Value
number of training steps 10000
update freq 1
learning rate scheduler inverse sqrt
warmup updates 4000
warmup init learning rate 1e-7
learning rate (generator) 5e-3
learning rate (reranker) 1e-3
max tokens per batch 32k
optimizer Adam

Table 5: Training configuration for our generator model
and reranker model.

the effectiveness of our reranker. We discuss this
issue in section 4 and we will try to solve this in
future work.
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Abstract

This paper presents the submissions of Huawei
Translation Services Center (HW-TSC) to
WMT 2022 Word-Level AutoCompletion Task.
We propose an end-to-end autoregressive
model with bi-context based on Transformer to
solve the current task. The model uses a mix-
ture of subword and character encoding units to
realize the joint encoding of human input, the
context of the target side and the decoded se-
quence, which ensures full utilization of infor-
mation. We use one model to solve four types
of data structures in the task. During training,
we try using a machine translation model as
the pre-trained model and fine-tune it for the
task. We also add BERT-style MLM data at
the fine-tuning stage to improve model perfor-
mance. We participate in zh→en, en→de, and
de→en directions and win the first place in all
the three tracks. Particularly, we outperform
the second place by more than 5% in terms
of accuracy on the zh→en and en→de tracks.
The result is buttressed by human evaluations
as well, demonstrating the effectiveness of our
model.

1 Introduction

In recent years, machine translation quality has
improved significantly with advances in model ar-
chitecture (Sutskever et al., 2014; Bahdanau et al.,
2014; Gehring et al., 2017; Vaswani et al., 2017),
bilingual data availability, as well as data augmenta-
tion strategies (Liu et al., 2016; Freitag et al., 2017;
Johnson et al., 2017; Zhang et al., 2018; Edunov
et al., 2018; Wu et al., 2019; Li et al., 2019). In
scenarios where machine translation is used to fa-
cilitate understanding, machine translation outputs
can basically satisfy audience’s demands. However,
in areas where translation quality is crucial (such
as translating product manual, patent description,
etc.), post-editing is required. Techniques to im-
prove post-editing efficiency are meaningful and
necessary. Researches (Barrachina et al., 2009;

Green et al., 2014; Knowles and Koehn, 2016;
Santy et al., 2019) in this regard falls into this cate-
gory of computer-aided translation (CAT).

Word-Level auto Completion, as a new task
in WMT22, fall into this category as well. This
task aims at auto-completing a target word given a
source sentence, translation context, and a human-
typed character sequence, so as to improve post-
editing efficiency. Li et al. (2021) define the task
in detail, offer comprehensive analysis and provide
a baseline system.

For this task, we choose the subword-level mod-
eling strategy (Kudo and Richardson, 2018). Com-
paring with word-level modeling, this strategy en-
ables the usage of pre-trained models from other
mainstream tasks, and solves the out-of-vocabulary
(OOV) issues at the same time. As human-typed
input is just several characters of the target word,
the input is not suitable for subword segmentation.
We use character-level encoding instead. Our fi-
nal submission is an autoregressive model with
bi-context, ensuring mixed encoding of characters
and subwords.

In view of the possible discontinuity between the
context and human-typed inputs in the target-side
text, we use tags to wrap the inputs, and then en-
code jointly with the context, in conjunction with
the autoregressively decoded pre-token sequence.
The joint coding maximizes the usage of infor-
mation without introducing additional RNN (Cho
et al., 2014) or vocabulary reduction modules.

During training, we use a standard machine trans-
lation model as the pre-trained model, and fine-tune
it for this task. We then add BERT-style Mask Lan-
guage Model (MLM) (Devlin et al., 2018) data in
the fine-tuning stage to enhance the language model
capabilities of the decoder, thereby improving the
overall model performance.

The inference mechanism is different from that
of traditional NMT. In general, the entire decoder
sequence must be used for encoding each token,
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E<MASK>

E0

E<SOS>

we asked<SOS> their opinions <EOS>spe

E_we E_asked E<TIP> Es Ep Ee E<SEP> E_spec E_their E_opinions E<EOS>

E1 E2 E3 E4 E5 E6 E7 E8 E9 E10 E11 E12

Cleft Cright

Position
Embeddings

Token
Embeddings

Trans. Context
Simulation

<SOS> _we _asked <TIP> s p e <SEP> _spec _their _opinions <EOS><MASK>

<SOS> _we _asked <TIP> s p e <SEP> _spec _their _opinions <EOS><MASK>

Key / Value

Query / Input

Chuman input

Figure 1: The input representation of our model’s decoder. Cleft and Cright are the context. Es, Ep, Ee are the char
embedding of human input "spe". <TIP> is the separator for human input and left context. <SEP> is the separator
for human input and decoded sequence. <MASK> represents the potenial target word in this translation context.

which reduces the inference performance to a cer-
tain extent. However, given the model’s parallel
ability and the short decoding sequence (the num-
ber of subwords in a word), this issue is not very
serious for this task and this strategy is applicable
for practical use. Figure 1 shows the input repre-
sentation of our model’s decoder.

We submit results for three language directions.
All of them achieve the highest accuracy. Our
Zh→En and En→De submissions even outperform
the second place by 5% in terms of accuracy, and
get a good lead in human evaluation, demonstrating
the effectiveness of our strategy.

2 Data Processing

Zh→En data for this task comes from UN V1.0
(about 15.9M) and En↔De data comes from
WMT14 (about 4.5M). The task allows the use
of additional monolingual data, but we add no addi-
tional data on the zh-en track given the amount of
bilingual data available. An additional 24M mono-
lingual data is used for the En-de track, and the
data comes from the WMT news task as well. we
generate synthetic parallel data by sampling BT
(Edunov et al., 2018) for the En→De track and
by beam BT for the Dn→En track. The specific
reasons will be given later.

We follow basic strategies to cleanse the data, in-
cluding: deduplication, garbled character filtering,
XML conversion, and fast-align(Dyer et al., 2013),
etc. The data sizes before and after data processing
are shown in table 1.

As for subword, we employ sentencpiece on
Zh→En track, and set the vocabulary size to 36k.
On En→De track, we use the BPE algorithm, and
set the vocabulary size to 32K.

Lang-Pair Origin Cleaned
Zh-En 15.9M 15.5M
En-De 4.5M 4.3M

Table 1: Overview of training para data.

    left-context  <tip> t i p s <tip> right-context

Figure 2: The joint encoding of context and human
input.

3 System design

In this chapter, we introduce the model structure,
training strategy, inference strategy and correspond-
ing data generation strategy used for this task. Our
model is based on the encoder-decoder architecture
of the standard Transformer.

3.1 Model Structure

We use Transformer as our model architecture. For
convenience, we only use a 25 encoder layers and
6 decoder layers deep model. The parameters of
the model are the same as Transformer-big. We
just change the post-layer-normalization to the pre-
layer-normalization (Sun et al., 2019), and increase
the number of encoder layers to 25.

3.2 Modeling Units

In general, we use a mixed encoding strategy that
encoding subword-level and character-level infor-
mation at the same time. To be more specific, the
model conducts subword-level encoding on source
and target context information, and character-level
encoding on human-typed input, as it is just several
characters of a word. Apparently, the model can
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target word:   specialists
target token： _spec ial ists

 _we _asked <tip> s p e        <mask>  _their _opinions  --> _spec 
 _we _asked <tip> s p e <sep> _spec    <mask>  _their _opinions  --> ial 
 _we _asked <tip> s p e <sep> _spec  ial  <mask>  _their _opinions  --> ists 
 _we _asked <tip> s p e <sep> _spec ial ists <mask>  _their _opinions  --><eow>

Figure 3: The process of data generation.

encode the two types of information at the same
time.

3.3 Joint Encoding

In the above chapter, we discussed our modeling
granularity for context and human-typed input. Ac-
cording to the settings of the task, context informa-
tion and human-typed input information may be
discontinuous. Here we insert the tag <tip> before
and after the tip to wrap the human-typed input to
distinguish the two. Schematic diagram is shown
in Figure 2.

The context and human-typed input of the trans-
lation test can be jointly encoded, which ensures
the maximum usage of information.

3.4 Autoregressive Decoding with Bi-context

In the task, there are four types of data: left-context,
right-context, zero-context and bi-context. If we
use four models to process these four types of data,
the problem can be solved, but the task will be
complicated. Instead, we can regard the first three
types as special cases of the last type, so we directly
design an autoregressive decoding strategy with bi-
context, and use a single model to process all types
of data.

To be more specific, decoding is performed with
Mask token as the anchor point. The encoder en-
codes the source-side text. The mask, in conjunc-
tion with context and human-typed input, is en-
coded at the decoder side to predict the first sub-
word of the target word. The first subword (pre-
token) will be encoded as well. Then the model
continues to use the mask for decoding until a com-
plete word is decoded. The overall architecture
diagram of the model decoder is shown in figure 1.

Here are two points: 1. The mask token re-
places the second tip described in the previous sec-
tion. The mask token is capable of distinguishing
the human-typed input from other information and
masking at the same time. 2. The newly added
<sep> tag is responsible for distinguishing between

human-typed input and decoded pre-token informa-
tion.

3.5 Data Generation

Based on our previous coding strategy for various
types of information, we first use the script pro-
vided by the organizer to generate word-level train-
ing data. Then, we use the subword-level model to
perform subword processing on the source text and
translation context. Regarding the target word, we
add a tag <eow> at the end of word after subword
segmentation. Assuming that the number of sub-
words is N, we generate N sets of training data to
simulate the entire autoregressive process. We call
the data as WLAC (Word Level Auto Completion)
data to distinguish it from terms. A case study of
the generation is show in Figure 3.

In the process of generating data, we also add
some rules to improve efficiency. We remove sen-
tences with too short target words or too long
human-typed input by a given probability. In addi-
tion, we keep only 1/10 of the training samples of
eos that predict the end of the sentence.

In order to effectively validate the performance
of the model during training, we generate a test
set using the same strategy. WMT19 news test is
used for the Zh→En track, and WMT14 new-test is
used for En↔De tracks. We do not use a filtering
strategy when generating the test set.

4 Experiment

During the experiment, we first build a baseline
based on the MT model in order to measure our
model’s performance more accurately. After that,
in the training process, we adopt several strategies
to improve the model performance, that is, fine-
tuning a MT model and introducing BERT-style
MLM data. Validation and debugging of these
strategies are done on the Zh→En track. We use
the finally determined strategy to train models for
other tracks.
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Lang-Pair Baseline MT-tune Mix-tune Average Ensemble WMT22
zh-en 62% 74% 77.19% 78.69% 78.96% 59.40%
en-de - dvivied 81.79% 82.86% 82.80% 62.06%
de-en - - 77.83% 79.05% 79.77% 63.82%

Table 2: The main results of our experiments. MT-tune refers to using WLAC data to fine-tune a standard MT
model. MLM-Mix-tune refers to using WLAC and BERT-style MLM data to fine-tune the MT model.

4.1 Baseline based on the MT Model

First, we consider whether the current task can be
solved by directly relying on the outputs by an MT
model trained with bilingual data. By doing so, we
lower the requirements of this strategy and regard
a case as correct as long as the predicted word
appears in the MT result.

We obtain an accuracy of 62.5% on the Zh→En
track by using the above-mentioned approach. We
use this as a benchmark for optimization. If our de-
signed strategy cannot exceed this level of accuracy,
the strategy fails.

4.2 MT Model Finetune

After obtaining the baseline MT model, we then
fine-tune it using the generated WLAC data. It
should be noted that the self-attention layer of the
standard NMT model’s decoder does not have the
ability to generate attention to the right, and our
decoder is a mask-based prediction model, so we
need to break this limitation. This is also a gap
between the two tasks.

4.3 BERT-Style MLM Data Fine-tune

In the fine-tuning stage on the basis of a MT model,
through analyzing each type of data, we find that
the the accuracy of prefix is higher than that of the
suffix. We assume this is because there is no right-
side information during the training a pre-trained
NMT model. As a result, the model may learn
right-context less efficiently than the left-context.

According to the task setting, the context of the
target side is an incomplete fragment and is given
randomly. At the same time, tips are not necessarily
continuous, so the overall translation is relatively
confusing. Source-side information is important
so we deepen the number of encoding layers. In
addition, using the mask as the decoding anchor
causes the decoder to change from the standard
language model mode to the mask language model
mode. To address these issues, we add a same
proportion of BERT-style MLM data with source-
side information. Given the availability of original

text, we enlarged the probability of the mask to
25%.

4.4 Average and Ensemble

Finally, we adopt commonly used strategies to im-
prove the model performance, including averaging
and ensemble, and we find that both of the strate-
gies lead to performance improvement. Particu-
larly, averaging brings significant improvement.

5 Result and Analysis

Due to time restriction, we only conduct detailed
comparison experiments on the Zh→En track.
En↔De tracks simply follows the final strategy we
apply to the Zh→En track. The results are shown
in Table 2.

First of all, the performance of the MT baseline
we trained is very poor, indicating that the MT task
is not well adapted to the current task. So we give
up the idea of using the MT results to enhance the
model performance.

After our constructed WLAC data is added, the
model performance improves by nearly 12 points,
indicating the effectiveness of our strategy. But it is
worth noting that the En→De model does not con-
verge after adding the ST/BT data. We assume that
the quality of the ST data is not good. In addition,
the target-side of WLAC data is confusing, result-
ing in training failure. So for the De→En model,
we directly generate BT data based on beam search
to avoid the issue.

After MLM data is added, we again obverse
a significant improvement. The accuracy on the
Zh→En reaches 77.19%. The En→De model,
which was not converged at the previous stage,
gains an accuracy of 81.79%. The results support
our assumption that MLM data can enhance the lan-
guage model ability of the decoder, while avoiding
noise interference from the source-side text.

In the end, model averaging leads to improve-
ments on all three tracks, and the improvement is
more significant than ensemble. Ensemble leads to
significant improvement on the De→En track but
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limited improvement on the other two tracks. We
assume this is because the De→En model is not
sufficiently trained due to time restriction.

6 Conclusion

In this paper, we detail our team’s participation in
the WMT22 word-level AutoComplete task. We
first analyze the input and output, as well as chal-
lenges in this task. We notice that the modeling
granularity of human-typed input and context in-
formation are different. Therefore, we propose
modeling human-typed input at character-level and
modeling context information at subword-level, ex-
plicitly distinguishing and jointly encoding the two,
thereby maximizing information usage in the en-
coding stage. At the same time, there is a semantic
discontinuity between context and human-typed
input. We add tags to differentiate the two. Fi-
nally we propose an autoregressive model with
bi-context to process four types of data at the same
time. During training, we use an NMT model as
the pre-trained model and fine-tune it for this task.
BERT-style MLM data is also introduced to im-
prove the model performance, and at the same time
to solve the single-direction decoding issue of the
self-attention model. In the end, our models are
well adapted to the task and gain safe leads in both
automatic and human evaluations.
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Abstract

This paper describes the joint submission of Al-
ibaba and Soochow University, TSMind, to the
WMT 2022 Shared Task on Translation Sugges-
tion (TS). We participate in the English↔ Ger-
man and English↔ Chinese tasks. Basically,
we utilize the model paradigm fine-tuning on
the downstream tasks based on large-scale pre-
trained models, which has recently achieved
great success. We choose FAIR’s WMT19 En-
glish↔ German news translation system and
MBART50 for English↔ Chinese as our pre-
trained models. Considering the task’s condi-
tion of limited use of training data, we follow
the data augmentation strategies proposed by
Yang et al. (2021) to boost our TS model per-
formance. The difference is that we further in-
volve the dual conditional cross-entropy model
and GPT-2 language model to filter augmented
data. The leader board finally shows that our
submissions are ranked first in three of four
language directions in the Naive TS task of the
WMT22 Translation Suggestion task.

1 Introduction

Computer-aided translation (CAT) (Barrachina
et al., 2009; Green et al., 2014, 2015; Knowles
and Koehn, 2016) has become more and more pop-
ular to help increase the quality of machine trans-
lation (Lopez, 2008; Koehn, 2009) result. It also
improves the efficiency of translators by combining
the results of machine translation and the content
edited by translators in the process of translation
or post-editing (Bowker, 2002; Lengyel and Ugray,
2004; Bowker and Fisher, 2010; Bowker, 2014;
Chatterjee, 2019).

Post-editing based on machine translation is typ-
ical in CAT. Recent works (Domingo et al., 2016;
González-Rubio et al., 2016; Peris et al., 2017)
propose interactive protocols and algorithms so
that humans and machines can collaborate during

∗indicates equal contribution.
† indicates the corresponding author.

translation, and machines can automatically pro-
vide feedback on humans’ edits. One interesting
mode is Translation Suggestion (TS) (Yang et al.,
2021), which offers alternatives for specific spans
of words in the generated machine translation. It
will be convenient if the model refines translation
results in those specified locations with potential
translation errors. Yang et al. (2021) released a
benchmark dataset for TS, WeTS, which is one of
the shared tasks in WMT22. At the same time, they
proposed an end-to-end Transformer-like model for
TS as the benchmark system.

However, the lack of many labeled TS data limits
the training of a large Transformer model to some
extent. Though Yang et al. (2021) have tried to uti-
lize XLM-Roberta (Conneau et al., 2019) to initial-
ize the encoder of the Transformer, the decoder has
to be trained from scratch, which leads to relatively
low BLEU scores for some specific TS spans. We
investigate the potential of other encoder-decoder
pre-trained models by experiments to see if there
is still room for improvement. Finally, we have
found that pre-trained Transformer NMT models
could be suitable choices to be fine-tuned with the
limited size of TS data. In addition, we applied
similar data augmentation strategies proposed in
Yang et al. (2021), but use the well-trained align-
ment models between source and target languages
from Lu et al. (2020) to filter out high-quality aug-
mented data. Our submissions are ranked first in
three of four language directions in the WMT22
Translation Suggestion task.

2 The Model

We train a simple end-to-end Transformer model
for each language pair to generate the translation
suggestion candidates. The source sentence and
the masked translation, in which an incorrect span
requiring an alternative has been replaced with a
special mask tokens in advance, are concatenated
with a special separation token [SEP]. Afterward,
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Symbol Definition

x Sentence in source language
y Machine translation result of x
r Reference sentence x

xi The i-th token of x
∥x∥ Length of x, i.e. the number of tokens

in x

xi:j The fragment of x from position i to
j

x¬i:j The masked version of x, in which
tokens at the position from i to j of x
is replaced with a mask token.

p̂ All aligned-phrase pair between y
and r, pair look likes (yi:j , ra:b)

ŷ Replace yi:j with ra:b in y, and get
another new sentence ŷ

Table 1: Notations

WMT22 Filter Length Filter Quality

en-zh 23.2M 9.78M 6.9M

en-de 30.0M 12.73M 8.18M

Table 2: Number of parallel samples remained after
filtering by length and cross-entropy quality score (Lu
et al., 2020).

we feed the concatenated sequence as input of the
Transformer encoder and the translation suggestion
needs to be generated by the Transformer decoder.
The model is trained in the same way of a normal
translation model.

Considering that the TS task also relies on align-
ments of hidden representations between the source
and the target language, a well-trained translation
model can be a good starting point for TS model
training. The weights of our model are initialized
with a pre-trained Transformer NMT model. Then,
a two-phase training pipeline is applied. In the first
phase, the model is trained with pseudo corpus de-
rived from data augmentation described in Section
3. In the second phase, we fine-tune the model with
the real TS train data released by the organizers.

3 Data Augmentation

We follow the data augmentation methods provided
by (Yang et al., 2021) to generate three types of
pseudo data for TS model training: data sampled
on the golden parallel corpus, data sampled on

the pseudo parallel corpus, and data extracted with
word alignment. However, the details of the pseudo
data augmentation in this paper are slightly differ-
ent from those of Yang et al. (2021). Full details
are exhibited in the following subsections.

Algorithm 1 Algorithm of Phrase Align
Input: y, r, A
Output: p̂

1 Function GenerateAlign(y, r, A):
2 yt = size(y), rt = size(r)

for i← 0 to yt do
3 for j ← i to yt do
4 for a← 0 to rt do
5 for b← a to rt do
6 if IsMatch(y, r,i, j, a, b, A)

then
7 do
8 i += 1; a += 1
9 while yi == ra

10 do
11 j −= 1; b −= 1

12 while yj == rb

13 p̂.add((yi:j , ra:b))

14 return p̂

15 Function IsMatch(y, r, i,j,a,b,A):
16 for ii← i to j do
17 let T = {ti|rti is aligned with yii in A }

foreach ti ∈ T do
18 if ti < a or ti > b then
19 return False

20 for aa← a to b do
21 let T = {ta|raa is aligned with yta in A }

foreach ta ∈ T do
22 if ta < i or ta > j then
23 return False

24 return True

3.1 Sampling from golden parallel corpus

Raw parallel corpus is firstly filtered by the sen-
tence length. All sentence pairs that have less than
20 words or more than 80 words on any side are
removed.

Considering that there might be noise data in the
corpus, we apply the dual conditional cross-entropy
model (Lu et al., 2020) to obtain a quality score for
each sample. Sentence pairs with low quality are
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All revenue of the system …

0 1 2 3 4 5 6 7 …
All 0 *

revenues 1 *
from 2 *
the 3 * *
system 4 *

5

6 * *

…

Machine Translation

Reference

e.g(mt-reference) 0-0 1-1 1-2 2-3 3-3 4-4 6-6 7-6 … 0~4– 0~4

Figure 1: In this example, we have the alignment info between machine translation (MT) and reference sentences:
0-0, 1-1, 1-2, 2-3, 3-3 4-4, 6-6, 6-7, the phrase from 0 ∼ 4 in MT are aligned to 0 ∼ 4 in reference. The rectangle
enclosed by the aligned phrases between MT and reference should satisfy that each row and each column has at
least one *.

filtered.
Then we generate a pseudo corpus with the

remained high-quality parallel corpus. (x, r) is
marked as the sentence pair of the parallel corpus,
where x is the source sentence and r is the golden
reference. ∥r∥ represents the number of tokens in
r.

The first step is to randomly sample the length l
to mask for the reference r from a uniform distri-
bution:

l ∼ U(1, ∥r∥) (1)

Then a span with l tokens ri:j is randomly selected
by:

i ∼ U(0, ∥r∥ − l), j = i+ l (2)

Finally, we get the TS training data
(x, r¬i:j , ri:j) from each parallel sentence
pair (x, r), where r¬i:j is denoted as the masked
version of r, in which ri:j is replaced with a mask
token, e.g <MASK_REP>.

3.2 Sampling on Pseudo Parallel Corpus

In addition, the monolingual corpus is another
source for data augmentation. We first filter the
monolingual data with a language identification
process. Then pseudo parallel corpus is generated
with NMT models. Finally, TS training data can be
generated as we do in Section 3.1.

3.3 Extracting with Word Alignment

In the task of TS, the labels for the masked span is
always correct while the translation contexts of the
span, y¬i:j are not error-free. Therefore, both of
the above two types of pseudo data are biased from
the task. In pseudo data sampled from golden par-
allel corpus, the translation contexts are error-free.
And the labels of pseudo data from machine trans-
lation results are not always correct. To reduce the
bias, another way of data augmentation is proposed
in Yang et al. (2021). They utilize the alignment
between the machine translation and the golden
reference to generate pseudo-training samples for
TS. We use the similar idea and the details of our
alignment-based data augmentation algorithm are
described as follows.

Given the triplet (x, y, r) where x is the source
sentence, y is the machine translation result gen-
erated by NMT models, and r is the reference, we
need to find aligned segment pairs (yi:j , ra:b) be-
tween y and r.

First, we use the Fast Align toolkit (Dyer et al.,
2013) to extract token alignments between y and r.
The align result A is a list of aligned indexes in the
format of i-a, which means token yi is aligned to
ra. With the token alignments, the next step is to
extract aligned-phrase pairs, denoted as p̂. Figure
1 shows an example of an aligned phrase between
MT and reference. The algorithm of the aligned-
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mt All revenue of the system goes to the National …

reference All revenues from the system credit the National …

trim same tokens

mt All revenue of the system goes to the National …

reference All revenues from the system credit the National …

aligned phrase after trim

original aligned phrase

Figure 2: As shown in Figure 1, we get the original aligned phrase between MT and reference which are "All
revenue of the system" and "All revenues from the system". We then trim the tokens that appear in both MT and
reference to compress the aligned phrase. Finally, we get the trimmed aligned phrase: "revenue of" and "revenues
from"

Method En-De De-En En-Zh Zh-En
TSMind 45.90 43.37 30.21 28.77
-w/o first-phase training 37.14 33.23 21.20 16.44
-w/o second-phase training 37.37 36.83 21.84 19.19

Table 3: Sacre-BLEU on the validation sets of Sub-Task 1 (Naive TS) of the WMT’22 Translation Suggestion Task.

phrase extraction is presented in Algorithm 1 from
line 1 to line 13. The aligned phrases are a subset
of SMT’s phrase extraction (Koehn et al., 2003)
with two restricts. 1) Each row and each column of
a aligned phrase has at least one token aligned (a *
in Figure 1); 2) We take only the longest phrase and
the sub-phrases are not taken. After the original
aligned phrase is obtained, we remove tokens that
appear in both MT and reference to get the trimmed
result as shown in Figure 2. We trim these common
tokens because we want the model to focus more on
the incorrect spans and its alternatives. The pseudo-
code of the phrase-alignment is presented in the
Algorithm 1. We denote the aligned phrase as yi:j

and ra:b, y¬i:j represents the masked version of y
as described in Section 3.2.

Now we need to judge whether ra:b is better than
yi:j in the context of y¬i:j . We replace yi:j with
ra:b in y, and get another new sentence ŷ. First,
we use the dual conditional cross-entropy model
as described in Section 3.1 to calculate the quality
score of (x, ŷ). Then, the perplexity of ŷ and y
are given by the language-specific GPT2 models
(Schweter, 2020; Radford et al., 2019; Zhao et al.,
2019) released on HuggingFace (Wolf et al., 2020)
respectively. If the cross-entropy quality score of
(x, ŷ) is smaller than the threshold of β1 and the

perplexity loss reduction value of y − ŷ is at least
β2, then the translation ŷ is most likely better than
y. We can treat y¬i:j as the masked version of MT
and ra:b as the correct alternative. β1 and β2 are
the hyper-parameters of the alignment.

Finally, we get the aligned training data (x, y¬i:j ,
ra:b) from the triplets (x,y, r).

4 Experiment

4.1 Corpus and Setup

Parallel corpora for data augmentation in Section
3.1 and 3.3 and monolingual corpora for Section
3.2 are all downloaded from WMT22 general trans-
lation task1. For English↔ German, WikiMatrix
(Schwenk et al., 2021), News Commentary v16,
Common Crawl Corpora, and Tilde MODEL Cor-
pora (Rozis and Skadin, š, 2017) are used as parallel
corpus. For English↔ Chinese, parallel corpus we
used includes UN Parallel Corpus V1.0 (Ziemski
et al., 2016) and all parallel corpora from CCMT
corpus (Yang et al., 2019) except for the casict2015
corpora. For monolingual corpora, News Com-
mentary and News Crawl are used for all three
languages, and Leipzig Corpora (Goldhahn et al.,
2012) is also used for Chinese and German.

1https://statmt.org/wmt22/translation-task.html
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En-De De-En En-Zh Zh-En Average
XLM-R 25.12 27.40 32.48 21.25 26.56

Naïve Transformer 28.15 30.08 35.01 24.20 29.36
Dual-source Transformer 28.09 30.23 35.10 24.29 29.43

SA-Transformer 29.48 31.20 36.28 25.51 30.62
TSMind 47.44 45.02 26.41 31.78 37.66

Table 4: Sacre-BLEU on the test sets of WeTS (Yang et al., 2021)

Then the filtering strategies proposed in Section
3.1 are applied to the raw parallel data. The number
of data remained after every filtering step can be
found in Table 2.

We download monolingual data from WMT22,
and get a total of 45.02 million German, 14.68
million English and 10.01 million Chinese mono-
lingual sentences.

For data augmentation in Sections 3.2 and 3.3,
we use the NMT models for English ↔ German
and English ↔ Chinese released by Yang et al.
(2021)2 to translate the source sentences. And the
hyper-parameter β1 and β2 to filter aligned phrases
are set to 2.5 and 0.05, respectively.

4.2 Model Training

As mentioned in Section 2, a well-trained NMT
model is a good starting point for the TS model.
For English↔ German, we initialize the weights
with the NMT models released by Ng et al. (2019)
(Winner of WMT’19). For English↔ Chinese, the
one-to-many and many-to-one mBART50 models
(Tang et al., 2020) are used.

We use the fairseq toolkit (Ott et al., 2019) to
train and evaluate our model. Hyper-parameters are
set to the same as examples in the fairseq toolkit
except that we reset the learning rate at the begin-
ning of the first phase training and beam size is set
as 6 during inference.

4.3 Experimental Results

We evaluate the TSMind by calculating the Sacre-
BLEU (Post, 2018) of the top-1 generated transla-
tion suggestion candidate on the golden reference.
Results of the validation sets of WMT22 are shown
in Table 3. Without first-phase training, we get
much worse performances. This demonstrates that
a large amount of pseudo corpora contributes much
to the model. However, without the second-phase
training (i.e. without the human-labeled data), we
cannot obtain a good translation suggestion model

2https://github.com/ZhenYangIACAS/WeTS

with only pseudo corpora either. Therefore, the
design of the two-phase training and the pseudo
corpora are essential to set good translation sugges-
tions.

Since the development set of WMT’22 is not the
same as the test set used in Yang et al. (2021), to
make a fair comparison, we also report the Sacre-
BLEU on the test set of WeTS in Table 4. Results
of all baseline systems are reported by Yang et al.
(2021). TSMind outperforms the strong baseline,
SA-Transformer, significantly with a gap of 7.04
BLEU on average for all four language pairs. We
notice that TSMind does not perform well on the
English to Chinese language pair. The reason might
be that the pre-trained model we use is the one-to-
many model of mBART50, and the multilingual
decoder is not well-trained for Chinese. For exam-
ple, on the English to Chinese news translation test
set of WMT’20 (Barrault et al., 2020), mBART50
only achieves a Sacre-BLEU value of 30.79, while
the Sacre-BLEU of state-of-the-art is 49.2.

5 Conclusion

In this paper, we present our translation suggestion
systems, TSMind, for the WMT 2022 Translation
Suggestion Task. Different from previous work, we
use well-trained NMT models as the pre-trained
models and applied a two-phase training strategy.

We explore three data augmentation strategies
from previous work and utilize the dual conditional
cross-entropy model to filter out low-quality aug-
mented data. The leader board finally shows that
our submissions are ranked first in three of four lan-
guage directions in the Naive TS task of WMT22
Translation Suggestion task.
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Abstract

This paper describes the Transn’s submissions
to the WMT2022 shared task on Translation
Suggestion. Our team participated on two tasks:
Naive Translation Suggestion and Translation
Suggestion with Hints, focusing on two lan-
guage directions Zh→En and En→Zh. Apart
from the golden training data provided by the
shared task, we utilized synthetic corpus to
fine-tune on DeltaLM (∆LM), which is a pre-
trained encoder-decoder language model. We
applied two-stage training strategy on ∆LM
and several effective methods to generate syn-
thetic corpus, which contribute a lot to the re-
sults. According to the official evaluation re-
sults in terms of BLEU scores, our submis-
sions in Naive Translation Suggestion En→Zh
and Translation Suggestion with Hints (both
Zh→En and En→Zh) ranked 1st, and Naive
Translation Suggestion Zh→En also achieved
comparable result to the best score.

1 Introduction

Combining machine translation (MT) and human
translation (HT) is becoming a popular way in
translation practice, which uses a typical way of
post edit (PE) – the human translators are asked to
provide alternatives for the incorrect word spans
in the results generated by MT (Green et al., 2013;
Bahdanau et al., 2015; Vaswani et al., 2017; Zouhar
et al., 2021; Yang et al., 2021). In order to improve
the efficiency of PE, researchers proposed transla-
tion suggestion (TS) to provide the sub-segment
suggestions for the annotated incorrect word spans,
and experiments show that TS can substantially
reduce translators’ cognitive loads and the post-
editing time (Wang et al., 2020; Lee et al., 2021;
Yang et al., 2021).

This paper describes the contribution of Transn
IOL Research to the WMT22 Translation Sugges-
tion shared task, where systems were submitted
to two tasks: 1) Naive Translation Suggestion;
2) Translation Suggestion with Hints. For both

tasks we trained the models on pre-trained encoder-
decoder language model ∆LM (Ma et al., 2021)
with the corpus which were synthesized deliber-
ately, then submitted the ensemble results of the
trained models. Our main contributions are:

. We utilized the pre-trained language model
∆LM to generate TS, which gets good re-
sults on the shared tasks, and much lower
computational budget than training from raw
Transformers (Vaswani et al., 2017; Junczys-
Dowmunt and Grundkiewicz, 2018; Yang
et al., 2021) as well as better quality.

. Apart from the provided golden data anno-
tated by expert translators, we proposed the
constructing methods for silver and bronze
data to train TS system based on parallel cor-
pus and the NMT models provided by the
shared tasks, which contributes a lot for the
final results.

. Based on the Naive Translation Suggestion
models, we proposed an effective algorithm
for the task of Translation Suggestion with
Hints, which improves BLEU scores signifi-
cantly.

The rest of this paper is organized as below. Sec-
tion 2 is a brief description for Translation Sugges-
tion shared task of WMT2022. Section 3 presents
our system, including data constructing and the
training process with ∆LM. Section 4 reports ex-
perimental results in the participated language di-
rections. Finally, we conclude our work in Section
5.

2 Translation Suggestion Tasks

Translation Suggestion is a new task on WMT2022,
which includes two sub-tasks.

Task 1 - Naive Translation Suggestion: This
sub-task focuses on the scenario where the user
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selects the incorrect span of the MT sentence with-
out entering any information, the model outputs
the alternatives automatically. Consider the source
sentence x, the MT sentence m, the incorrect span
selected by the user as w, the alternative y and the
model parameter θ, the naive TS can be formulated
as: P (y|x,m,w, θ).

Task2 - Translation Suggestion with Hints:
In actual applications, users usually have general
ideas of what they want. If they are dissatisfied
with all the suggestions provided by Naive TS, they
are willing to enter some hints for the model to
generate more accurate suggestions. Given the
hints h provided by users, the sub-task 2 can be
formulated as: P (y|x,m,w, h, θ). In this task, we
take the top− k initial characters of the alternative
words as the hint, and the k is randomly selected
for each example.

Task 1 includes 4 language directions (En⇔Zh
and En⇔De) and Task 2 includes 2 language direc-
tions (En⇔Zh). We participated En⇔Zh language
directions for both tasks.

3 Implemented Systems

We fine-tune the pre-trained language model ∆LM
on synthetic data and the task golden data for Task1,
then adjust N-best parameter along with an opti-
mization algorithm for Task2. The details are de-
scribed in this section.

3.1 Pre-trained Model

∆LM is a pre-trained multilingual encoder-decoder
model, which outperforms various strong baselines
on both natural language generation and translation
tasks (Ma et al., 2021). Its encoder and decoder
are initialized with the pre-trained multilingual en-
coder InfoXLM (Chi et al., 2020), and trained in
a self-supervised way. ∆LM’s pre-training tasks
include span corruption on monolingual data and
translation span corruption on bilingual data. We
choose ∆LM as the pre-trained model for TS task
because the pre-training task of translation span
corruption is similar to TS. The only difference is
that ∆LM masks spans in target sentence as well as
spans in source sentence on bilingual data, which
follows the idea from mT6 (Chi et al., 2021), but
TS only masks one span in target sentence.

We use ∆LM-base model in our experiments,
which has 360M parameters, 12-6 encoder-decoder
layers, 768 hidden size, 12 attention heads and
3072 FFN dimension.

3.2 Construct Synthetic Data
The golden data provided by the TS tasks are an-
notated by expert translators, which are expensive
and labor-consuming. Since the 15k golden data
are far from enough to fine-tune a ∆LM model,
we propose several methods to construct synthetic
data for TS on parallel corpus and the specified
NMT models. These synthetic data are named as
silver or bronze data according to its constructing
complexity as well as effect contribution.

Silver Data Silver data are constructed on
parallel corpus and additional models or tools. We
implemented two kinds of silver data construction.

1) The data are obtained via difference compari-
son on MT and target sentences. Given a parallel
corpus sentence pair of source and target sentence,
we first translate the source sentence by the NMT
model (which is used to generate the train/dev/test
data of the TS task and released to all task partic-
ipants), then compute edit distance (ED) between
MT and target sentence to measure the cost of edit-
ing from MT to target. We choose ED metric of
LCS (Longest Common Subsequence) (Bergroth
et al., 2000), which means only insertion and dele-
tion operations are allowed (not substitution oper-
ation). ED is usually calculated by dynamic pro-
gramming, and it can indicate the words which are
inserted or deleted from MT to target sentence by
a trace-back approach. So we can get a TS span by
concatenating all words between the first and last
edited words in target sentence. Table 1 shows an
example for it. This can be formulated as:

TS = diff(NMT (source), target) (1)

Thus, (source, targetdiff_mask, TS) is the con-
structed train data, and targetdiff_mask is the
masked translation where the TS span is replaced
with a placeholder. If the edited parts in target sen-
tence is too long, it will induce a long TS span and
short masked translation, so we filter out such data
by a threshold.

2) The data are constructed by masking special
parts on target sentences. By browsing the golden
TS train data, we found there were certain regu-
larity. Apart from the haphazard TS spans, NEs
(Named Entity) and non-translated elements (espe-
cially digits) inclined to be mistranslated. So we
can focus on constructing synthetic data by mask-
ing and predicting NEs and non-translated elements
in target sentences. We use spaCy1 NER function

1https://spacy.io/
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MT 4.6.1 Suspension for Contractor reasons
target 4.6.1 Suspension because of Contractor reasons
difference 4.6.1 Suspension <add>because</add> <del>for</del><add>of</add> Contractor reasons
TS because of
targetdiff_mask 4.6.1 Suspension <mask> Contractor reasons

Table 1: An example of synthetic data by difference comparison on MT and target sentences.

to extract such spans in target sentences, and select
NE labels of PERSON, LOC, ORG, PRODUCT,
MONEY and QUANTITY. This can be formulated
as:

TS = NER(target) (2)

Thus, (source, targetNER_mask, TS) is the con-
structed train data, and targetNER_mask is the
masked translation where the TS span is replaced
with a placeholder.

Bronze Data Bronze data are sampled di-
rectly on parallel corpus. Sampling on parallel
corpus is straightforward and simple but effective
for TS model. This method is also used by (Yang
et al., 2021). Given the sentence pair (source,target)
in the parallel corpus, we denote target\i:j as a
masked version of target sentence where its frag-
ment from position i to j is replaced with a place-
holder (1 ≤ i ≤ j ≤ |target|). The targeti:j

denotes the fragment of target from position i to
j. We treat targeti:j and target\i:j as the TS and
masked translation respectively. This can be for-
mulated as:

TS = targeti:j (3)

So we get the constructed train data
(source, target\i:j , TS).

When the target language is Chinese, we tok-
enize the target sentence by Jieba2 before sampling
on it.

3.3 Training Process

We perform two-stage fine-tuning on ∆LM for
training the TS models. In the first stage, we use
the silver and bronze train data to fine-turn on the
original ∆LM model. In the second stage, we con-
tinue to fine-tune on the results of the first stage
with the golden train data. Because there are much
more train data and time consumption in the first
stage than that of the second stage, we just train one
model for stage 1, but train several models for stage
2 with different parameters considering the plan of
model ensemble. The details will be described in
Section 4.

2https://github.com/fxsjy/jieba

3.4 Optimization Algorithm for TS
Candidates with Hints

For Task2, we use the same models as that of Task1
to generate TS candidates, and the minor adjust-
ment is just generating more outputs with a larger
N-best value during predicting. Given TS candi-
dates by the initial predicting order, our optimiza-
tion algorithm is simple and effective. Firstly, each
TS candidates is converted to a string consisting of
the first character of the words in TS, and secondly,
we compute LCS (Bergroth et al., 2000) between
each string and the hint by the candidates order,
then choose the longest LCS from the results. If
there are multiple longest LCSs, just choose the
first one by the candidates order. Finally, the TS
candidate corresponding to the longest LCS is se-
lected as the best TS.

For Chinese language, first of all the TS can-
didates should be converted to phonetic symbols
word by word, then perform the above process. We
use pypinyin3 to get phonetic symbols of Chinese
words.

4 Experiments

We present the performance of the implemented
models on the dev and test datasets, as well as
some additional analysis.

4.1 Data Used

In addition to the golden train and dev data pro-
vided by the TS tasks, other data we used to train
TS models are from WMT22 general translation
task4, and just part of the bilingual data are used.

Data Used for Zh→En Direction The origi-
nal parallel corpus for generating synthetic data are
14 million ParaCrawl v9 Zh⇔En and 15 million
UN Parallel Corpus V1.0 Zh⇔En bilingual data.
Following the data constructing methods in section
3.2, all of the constructed silver and bronze data are
110 million. We sampled 4 times on different posi-

3https://github.com/mozillazg/
python-pinyin

4https://www.statmt.org/wmt22/
translation-task.html

1207



Dataset Stage Zh→En En→Zh

dev set
Stage 1 15.62 25.10
Stage 2 28.15 38.08

test set Stage 2 28.42 39.71

Table 2: BLEU of two stages on dev or test sets for
Zh⇔En language directions

tions for every sentence when constructing bronze
data.

Data Used for En→Zh Direction Besides the
original parallel corpus of Zh→En direction, we
added 6 million CCMT corpus. The data construct-
ing methods are the same as Zh→En direction, and
we finally got 120 million silver and bronze data.

4.2 Results of Task 1

Following the two-stage fine-tuning process de-
scribed in section 3.3, Table 2 summarizes the re-
sults of Task 1 for Zh⇔En language directions.

On stage 1, we fine-tune ∆LM-base with the
constructed silver and bronze data. All models
are implemented on top of the open source toolkit
Fairseq5. We train on 6 GeForce RTX 3090 GPUs.
The optimizer is Adam (Kingma and Ba, 2014)
with β1 = 0.9 and β2 = 0.98. The learning rate is
6e-5 with a warming-up step of 8000. The models
are trained with the label smoothing cross-entropy,
and the smoothing ratio is 0.1. All the dropout prob-
abilities are set to 0.3. The gradient accumulation
is used due to the high GPU memory consumption,
and we set max-tokens = 1600 and update-freq =
64. To speed up the training process, we conduct
training with half precision floating point (FP16).
We validate on dev set every 1000 updates, and
the early stop patience is 5. Under these training
parameters, the model converges at epoch 3.

On stage 2, we use the golden train and dev data
provided by the TS tasks, and continue to fine-tune
on the checkpoint with the best validation perfor-
mance of stage 1. Only a few training parameters
were adjusted on stage 1. The learning rate is re-
duced to 3e-5. In order to apply model ensemble
strategies, the dropout varies in [0.1, 0.2, 0.3], and
the update-freq varies in [3, 4, 5] with the fixed
max-tokens 1600. The submissions are ensemble
results of all models trained on stage 2.

5https://github.com/facebookresearch/
fairseq

Dataset & parameter Zh→En En→Zh
test set, N-best=100 39.95 48.60

Table 3: BLEU of test set with hints when N-best=100

4.3 Results of Task 2
Task 2 intends to predict more accurate translation
suggestions under additional hints. So we enlarge
the N-best value gradually from 5 to 100 to gener-
ate more TS candidates, and search the optimal TS
by the algorithm described in section 3.4. Figure 1
shows the results on dev set where the N-best value
is set in [5, 10, 20, 30, 50, 80, 100]. It seems that
the BLEU rises with the increase of N-best value,
but the gains diminish when N-best exceeds 50.

0 20 40 60 80 100

30

35

40

45

50

N-best

B
L

E
U

Zh→En
En→Zh

Figure 1: BLEU of dev set with hints for different N-
best values

We get the final submissions on test set under
N-best = 100, and the official BLEU scores are
shown in Table 3 for Zh→En and En→Zh language
directions.

4.4 Results Analysis Considering TS
Accuracy

In practice, TS is designed to replace the incorrect
span in target sentence during PE, so an absolutely
accurate TS is important for post-editing translators.
Therefore we analyze the accuracy indicator for TS
in this section. Predicting an absolutely accurate
TS relies heavily on TS length, then we analyze
it based on different TS lengths, as well as top-
k predictions, considering that instead of the top
predicted TS, an accurate but top-k-located TS is
also valuable for PE through the interactive options.
Here top-k predictions are generated in the same
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TS Len =1 ≤3 ≤5 ≤10 All
dev TS, Num=2767

(Proportion)
1279

(46.2%)
2181

(78.8%)
2488

(89.9%)
2709

(97.9%)
2767

(100%)

Top-1 predictions
Positive Num 657 900 931 949 950

Accuracy 51.4% 41.3% 37.4% 35.0% 34.3%

Top-3 predictions
Positive Num 806 1159 1198 1217 1217

Accuracy 63.0% 53.1% 48.2% 44.9% 44.0%

Top-5 predictions
Positive Num 943 1379 1434 1458 1458

Accuracy 73.7% 63.2% 57.6% 53.8% 52.7%

Table 4: TS accuracy analysis on dev set for Zh→En language direction

way as the TS candidates in Section 3.4.
For Zh→En language direction, Table 4 shows

that if there is just one word in TS, the accuracy
is 51.4% for the top predictions; and the accuracy
reaches 63.0% or 73.7% if we consider top-3 or
top-5 predictions. Similarly, the accuracy is 41.3%,
53.1%, or 63.2% if considering top-1, top-3, or top-
5 predictions respectively for the TSs no more than
3 words. The accuracy decreases gradually as the
TS length increases. A significant finding is that
even on the whole dev set, the accuracy still reaches
52.7% if we consider the top-5 predictions. There-
fore, the accuracy indicator may help us determine
when and how the TS options are activated.

4.5 Effects of Training Procedure and
Synthetic Data

The two-stage fine-tuning procedure is essential
for our results. If stage 1 is not applied, which
means just fine-tuning ∆LM on the golden data,
we get very low BLEU scores, i.e., 2.19 in Zh→En
language direction on dev set. If stage 2 is not
applied and just fine-tuning ∆LM on the synthetic
silver and bronze data, the BLEU scores are 15.62
in Zh→En and 25.10 in En→Zh (see Table 2), with
a decrease of about 13 BLEU score than the full
two-stage fine-tuning procedure.

The effects of the synthetic silver and bronze
data are also analyzed. Table 5 lists the results in
Zh→En language direction for the single silver or
bronze data on stage 1 and stage2. It shows that the
silver synthetic data plays a more important role
for the final performance than the bronze data.

5 Conclusions

We present the Transn IOL Research submissions
of the WMT2022 shared task on Translation Sug-
gestion. Our system is implemented with two-

Systems Zh→En
Stage 1 Stage 2

silver & bronze data 15.62 28.15
only silver data 13.53 26.11

only bronze data 10.24 24.06

Table 5: Effects of the synthetic silver and bronze data
for Zh→En language direction on dev set

stage fine-tuning on ∆LM, which is a pre-trained
encoder-decoder language model. To improve the
performance, we construct synthetic data by differ-
ence comparison, named-entity masking and ran-
dom sampling on parallel corpus. We propose an
effective algorithm to choose optimal translation
suggestion with hints. The accuracy indicator of TS
is also analyzed for more efficient PE in practice.
On the participated 4 tracks of En⇔Zh language
directions, we achieved best scores on 3 tracks and
comparable result on another track.

Effective translation suggestions benefit a lot for
post editing. In the future, we plan to research field
related and fine-grained TS models to improve sys-
tem performance, and will integrate these advanced
techniques in our translation practice.
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Abstract

Translation suggestion (TS) models are used
to automatically provide alternative sugges-
tions for incorrect spans in sentences gener-
ated by machine translation. This paper intro-
duces the system used in our submission to the
WMT’22 Translation Suggestion shared task.
Our system is based on the ensemble of differ-
ent translation architectures, including Trans-
former, SA-Transformer, and DynamicConv.
We use three strategies to construct synthetic
data from parallel corpora to compensate for
the lack of supervised data. In addition, we
introduce a multi-phase pre-training strategy,
adding an additional pre-training phase with
in-domain data. We rank second and third on
the English-German and English-Chinese bidi-
rectional tasks, respectively.

1 Introduction

Translation suggestion (TS) is a scheme to simplify
Post-editing (PE) by automatically providing alter-
native suggestions for incorrect spans in machine
translation outputs. Yang et al. (2021) formally
define TS and build a high-quality dataset with hu-
man annotation, establishing a benchmark for TS.
Based on the machine translation framework, the
TS system takes the spliced source sentence x and
the translation sentence m̃ as the input, where the
incorrect span of m̃ is masked, and its output is
the correct alternative y of the incorrect span. The
TS task is still in the primary research stage, to
spur the research on this task, WMT released the
translation suggestion shared task.

This WMT’22 shared task consists of two sub-
tasks: Naive Translation Suggestion and Trans-
lation Suggestion with Hints. We participate
in the former, which publishes the bidirectional
translation suggestion task for two language pairs,
English-Chinese and English-German, and we par-
ticipate in all language pairs.

∗Yufeng Chen is the corresponding author.

Our TS systems are built based on several ma-
chine translation models, including Transformer
(Vaswani et al., 2017), SA-Transformer (Yang et al.,
2021), and DynamicConv (Wu et al., 2018). To
make up for the lack of training data, we use par-
allel corpora to construct synthetic data, based on
three strategies. Firstly, we randomly sample a
sub-segment in each target sentence of the golden
parallel data, mask the sampled sub-segment to sim-
ulate an incorrect span, and use the sub-segment as
an alternative suggestion. Secondly, the same strat-
egy as above is used for pseudo-parallel data with
the target side substituted by machine translation
results. Finally, we use a quality estimation (QE)
model (Zheng et al., 2021) to estimate the trans-
lation quality of words in each translation output
sentence and select the span with low confidence
for masking, and then, we utilize an alignment tool
to find the sub-segment corresponding to the span
in the reference sentence and use it as the alterna-
tive suggestion for the span.

Considering that there is a domain difference
between the synthetic corpus and the human-
annotated corpus, we add an additional pre-training
phase. Specifically, we train a discriminator and
use it to filter sentences from the synthetic cor-
pus that are close to the golden corpus, which we
deem as in-domain data. After pre-training with
large-scale synthetic data, we perform an additional
pre-training with in-domain data, thereby reducing
the domain gap. We will describe our system in
detail in Section 3.

2 Related Work

The translation suggestion (TS) task is an important
part of post-editing (PE), which combines machine
translation (MT) and human translation (HT), and
improves the quality of translation by correcting
incorrect spans in machine translation outputs by
human translators. To simplify PE, some early
scholars have studied translation prediction (Green
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et al. (2014), Knowles and Koehn (2016)), which
provides predictions for the next word (or phrase)
when given a prefix. And some scholars have
also studied prediction with the hints of transla-
tors (Huang et al., 2015).

In recent years, some scholars have devoted
themselves to researching methods to provide sug-
gestions to human translators. Santy et al. (2019)
present a proof-of-concept interactive translation
system that provides human translators with in-
stant hints and suggestions. Lee et al. (2021) uti-
lize two quality estimation models and a transla-
tion suggestion model to provide alternatives for
specific words or phrases for correction. Yang
et al. (2021) propose a transformer model based
on segment-aware self-attention, provide strategies
for constructing synthetic corpora, and released
the human-annotated golden corpus of TS, which
became a benchmark for TS tasks.

3 Method

In this section, we describe the translation sugges-
tion system, followed by our strategies for building
synthetic corpora, and finally the details of the ad-
ditional pre-training phase.

3.1 Translation Suggestion System

As defined by Yang et al. (2021), given the source
sentence x, its translation sentence m, the incorrect
span w in m, and its corresponding correct transla-
tion y, the translation suggestion task first masks
the incorrect span w in m to get m−w, and then
maximizes the following conditional probabilities:

p(y|x,m−w;θ) (1)

where θ is the parameters of the model.
The construction of the TS system is based on

common machine translation models. We introduce
the models used in our TS system below:

• Transformer-base (Vaswani et al., 2017).
The naive transformer model. The encoding
and decoding layers are both set to 6, the word
embedding size is set to 512, and the attention
head is set to 8.

• Transformer-big (Vaswani et al., 2017). The
widened transformer model. The encoding
and decoding layers are both set to 6, the word
embedding size is set to 1024, and the atten-
tion head is set to 16.

• SA-Transformer (Yang et al., 2021). The
segment-aware transformer model, which re-
places the self-attention of the naive trans-
former with the segment-aware self-attention,
further injects segment information into the
self-attention, so that it behaves differently
according to the segment information of the
token. Its parameter settings are the same as
those of Transformer-base.

• DynamicConv (Wu et al., 2018). The dy-
namic convolution model that predicts a dif-
ferent convolution kernel at every time-step.
We set both encoding gated linear unit (GLU)
and decoding GLU to 1 in the experiment.

3.2 Build Synthetic Corpora
Since there are few golden corpora available for
training, it is necessary to build a synthetic corpus
to make up for the lack of data. We build synthetic
data through the following three strategies and use
the mixed data for model pre-training.

3.2.1 Building on Golden Parallel Data
Following the method of Yang et al. (2021),
we construct synthetic data on the large-scale
golden parallel corpus. Given a sentence pair
x = {x1, x2, . . . , xn} and r = {r1, r2, . . . , rm}
from the golden parallel corpus, we randomly sam-
ple a sub-segment w = {ri, ri+1, . . . , rj} of r, we
mask the sub-segment in sentence r to get r−w =
{r1, r2, . . . , ri−1, [MASK], rj+1, . . . , rm}, and
use w as an alternative suggestion. We perform
statistics on the length of golden data to determine
the length of masked spans, which is more in line
with the golden distribution.

3.2.2 Building on Pseudo Parallel Data
The prediction of alternative suggestions requires
the translation context, which cannot be provided
by the golden parallel corpus. Therefore, we use
the MT model provided by the shared task to in-
fer the source of the large-scale parallel corpus to
generate the pseudo-parallel corpus. Then we still
follow Yang et al. (2021) and use the same way
as described in Section 3.2.1 to construct synthetic
data on the pseudo corpora consisting of source sen-
tences and machine translation output sentences.

3.2.3 Building with Quality Estimation
The TS task is to predict the correct alternative pro-
posal given the translation context. However, when
sampling on the golden parallel corpus, the context
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Figure 1: Schematic diagram of building synthetic corpora with quality estimation. x is the source sentence, m is
the machine translation sentence, r is the reference sentence, and Wh and Wl represent words with high and low
confidence, respectively.

does not match the translation output, and when
sampling on the pseudo-parallel corpus, the alter-
native suggestions may be incorrect. Therefore, the
above two construction strategies are not optimal.

We explore a method that is closer to the real
scenarios, as shown in Figure 1. First, the word-
level translation quality estimation (QE) model is
used to estimate the confidence of the words in
each translation sentence, and the continuous span
with low confidence (that is, poor translation) is
selected. Then, the translation sentence is aligned
with the reference sentence through the alignment
model, and the sub-segment corresponding to the
span in the reference is selected as an alternative
suggestion.

More specifically, we use a masked language
model as our QE model, following the method of
Zheng et al. (2021). To train the QE model, we
splice the source sentence xi and the reference sen-
tence ri of the large-scale golden parallel corpus,
where some words in ri are masked to get r−w

i ,
and the QE model is optimized to minimize the
following loss function:

L = −
N∑

i=1

log p(rwi |xi, r
−w
i ;θ) (2)

whereN is the number of golden parallel sentences,
rwi is the masked part of the reference sentence and
θ is the model parameter.

During inference, the source and translation sen-
tences of the pseudo-parallel corpus are spliced and
fed into the QE model. The model scores the word
of the translation sentence according to the recov-
ery probability of it after being masked, and words
with lower scores are considered poor translations.

After that, we train a word alignment model (Lai
et al., 2022) using the translated sentences and ref-
erence sentences. To ensure high alignment quality,
we filter out sentences with lengths less than 5 and
greater than 100 and randomly sample 5M sentence
pairs for training. We use the trained alignment
model to align the machine translation sentence
and the reference sentence. The sub-segment in
the reference that aligns with the poorly translated
span described above is selected as an alternative
suggestion.

3.3 Additional Pre-Training Phase with
In-Domain Data

The sources of data used to construct large-scale
synthetic corpus and human-annotated golden cor-
pus are domain different. To bridge this difference,
we introduce an additional pre-training stage. We
filter data similar to the golden corpus as in-domain
data, which are used as pre-training for the next
phase after pre-training model with a large-scale
synthetic corpus.

In particular, we use BERT (Devlin et al., 2019)
to construct a discriminator to identify in-domain
data. The discriminator consists of a binary classi-
fier trained to distinguish between in-domain and
out-of-domain sentences. The source sentences
from the golden corpus as positive examples and
source sentences from the synthetic corpus as neg-
ative examples are used to train this discriminator.
We upsample the golden corpus by 10 times, and
randomly subsample the same amount of sentences
from the synthetic corpus. For each input source
sentence, the discriminator predicts the probabil-
ity that the sentence is in-domain. Sentences with
probabilities greater than a certain threshold are
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Direction Train Valid Test
en⇒de 12387 1890 989
de⇒en 9308 1849 986
en⇒zh 14759 2733 1000
zh⇒en 15207 2767 1000

Table 1: The statistics of golden corpora in four transla-
tion directions.

Corpus golden pseudo with QE
LS en⇔de 9.8M 9.8M 4.7M
LS en⇔zh 20M 20M –
IND en⇒de 0.8M 0.8M 0.4M
IND de⇒en 0.7M 0.7M 0.3M

Table 2: Statistics of constructed synthetic data in our
experiments, where LS stands for large-scale data and
IND stands for in-domain data.

discriminated as in-domain sentences.
After the above two phases of pre-training, we

use the human-annotated golden corpus for fine-
tuning and test the final model.

4 Experiments and Results

4.1 Setup
We have submitted English-Chinese (en-zh) and
English-German (en-de) bidirectional translation
suggestion tasks. We mix en-zh data from
WMT’19 and WikiMatrix, and en-de data from
WMT’14 and WikiMatrix, respectively, to con-
struct a synthetic dataset. We use the golden Train,
Valid and Test set provided by this shared task, and
the data statistics are shown in Table 1. We fol-
low Yang et al. (2021) to preprocess the data, and
mix the data constructed by the three strategies de-
scribed in Section 3.2 as our large-scale synthetic
data. The statistics of the constructed large-scale
(LS) synthetic data and in-domain (IND) synthetic
data are shown in Table 2. Note that for the ex-
periments in the en-zh translation direction, we do
not apply the construction strategy with QE and

System
Translation direction

zh-en en-zh de-en en-de
Baseline 25.51 36.28 31.20 29.48

Ours 28.56 33.33 36.30 42.61

Table 3: BLEU scores on the WMT 2022 TS test set.

System BLEU
Do nothing 18.24
+ on golden and pseudo corpus 26.91
+ with quality estimation 30.72
+ IND pre-training phase 32.95

Table 4: BLEU scores on the English-German devel-
opment set for systems based on the SA-Transformer
model under different strategies.

Model BLEU
Transformer-base (A) 32.92
Transformer-big (B) 34.73
SA-Transformer (C) 32.95
DynamicConv (D) 34.03

Ensemble (A + B + C + D) 35.81

Table 5: BLEU scores on the development set for sys-
tems under different models in the English-German di-
rection.

the pre-training phase with in-domain data. All
our models are implemented based on Fairseq (Ott
et al., 2019). We use the same data on each model
for two phases of pre-training and fine-tuning.

4.2 Results

We report the results of our method on the develop-
ment and test set of the translation suggestion task
of WMT’22. SacreBLEU1 is used to compute the
BLEU score as quality estimates relative to a hu-
man reference. We report the experimental results
of our system and the baseline system (Yang et al.,
2021) on the test set in Table 3, and for the baseline
system, we directly use their experimental results.

As can be seen from Table 3, our system beats
the baseline system in three translation directions,
especially in the en-de direction, where our system
surpasses the baseline by 13.13 BLEU.

We also report the results of the system on the de-
velopment set of English-German translation direc-
tions to analyze the effectiveness of different mod-
els and strategies. In Table 4, we show the results
of the system based on the SA-Transformer model
under different strategies. “Do nothing” means we
only train with the provided training set. It can be
seen that the strategy of constructing synthetic data
with quality estimation (QE) and the additional pre-
training with the in-domain (IND) data stage can

1https://github.com/mjpost/sacrebleu
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bring about a great improvement.
In Table 5, we present the results of systems

based on different models and the model ensem-
ble. It can be seen that in the case of the single-
model system, the Transformer-big and Dynamic-
Conv models achieve better results. Besides, the
ensemble model brings obvious improvement and
achieves the best results.

5 Conclusion

We describe our contribution to the Translation
Suggestion Shared Task of WMT’22. We propose
a strategy to construct synthetic data with the qual-
ity estimation model to make the constructed data
closer to the real scenarios. Furthermore, we in-
troduce an additional phase of pre-training with
in-domain data to reduce the gap between synthetic
corpus and golden corpus. Experimental results
demonstrate the effectiveness of our strategy. Con-
sidering the heavy labor of annotating TS data, we
think data augmentation is the most important strat-
egy that should be addressed. In the future, we will
put more effort into the data generation method, to
make the most of openly-accessible parallel data.

Limitations

The strategy of constructing synthetic data based on
quality estimation proposed in this paper can auto-
matically sample the incorrectly translated spans in
the translations, and find the correct alternative sug-
gestions through the alignment. It is a solution that
conforms to real scenarios, and the experimental re-
sults have also proved that it is effective. However,
our approach to generating synthetic data via QE
still has some limitations. First, the quality estima-
tion and alignment phases require a large additional
time overhead. And second, the segments from the
reference sentences may not fit into the context of
the masked translation sentences due to grammar
constraints. We hope to explore better solutions in
future research.
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Popović, Maja, 1
Post, Matt, 220, 843
Proietti, Lorenzo, 569
Przewłocki, Paweł, 251
Przybysz, Paweł, 251
Purason, Taido, 375

Qader, Raheel, 1170
Qian, Xian, 1068
Qiao, Xiaosong, 549
Qin, Bo, 671
Qin, Ying, 403, 530, 549, 677, 936, 962, 1098,

1192
Qiu, Baopu, 411

Raheem, Lekan, 1162
Rajput, Saransh, 1126
Rao, Zhiqiang, 403, 677, 936, 962, 1098
Rei, Ricardo, 46, 69, 469, 578, 634
Reinhard, Sabine, 744
Ren, Jianxin, 310
Rey, Camille, 233
Rios, Annette, 744
Rippeth, Elijah, 220
Roller, Roland, 694
Roussis, Dimitrios, 358
Rychlý, Pavel, 1111
Ryu, Yonghyun, 886, 901

Sagot, Benoît, 233
Sahu, Sunil Kumar, 1057
Sakai, Yusuke, 244
Salama, Mahmoud Tarek, 1117
Saleem, Safiyyah, 773
Salehi, Niloufar, 593
Saralegi, Xabier, 165
Schwenk, Holger, 773
Scirè, Alessandro, 569
Scott, Christopher, 346
Semenov, Kirill, 450
Sengupta, Neha, 1057
Seo, Jaehyung, 606



Shakhnarovich, Gregory, 989
Shan, Weiqiao, 366
Shang, Hengchao, 403, 530, 677, 936, 962, 1098,

1192
Shapiro, Ahmad, 1117
Sharma, Dipti Misra, 1126
Shi, Bowen, 989
Shi, Chufan, 1187
Shi, Shuming, 260, 812, 1049
Shi, Tingxun, 275
shin, jiho, 901
Shmatova, Mariya, 1
Shrivastava, Manish, 558, 564
Shterionov, Dimitar, 744
Sidler-Miserez, Sandra, 744
Signoroni, Edoardo, 1111
Singh, Mayank, 806
Singh, Rahul, 1158
Singh, Sahib, 1001
Siu, Amy, 694
Sofianopoulos, Sokratis, 653
Sorokina, Irina, 908
Specia, Lucia, 69
Srivastava, Vivek, 806
Stewart, Craig, 46
Sutawika, Lintang, 1034
Suzuki, Jun, 318
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