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Abstract

We address the problem of unknown words, also known as out of vocabulary (OOV) words,
in machine translation of low resource languages. Our technique comprises a combination of
methods, inspired by the common OOV types observed. We also design evaluation techniques
for measuring coverage of OOVs achieved and integrate the new translation candidates in a
Statistical Machine Translation (SMT) system. Experimental results on Hindi and Uzbek show
that our system achieves a good coverage of OOV words. We show that our methods produced
correct candidates for 50% of Hindi OOVs and 30% of Uzbek OOVs, in scenarios that have
1 and 3 OOVs per sentence. This offers a potential for improvement of translation quality for
languages that have limited parallel data available for training.

1 Introduction
Key factors in the performance of Statistical Machine Translation (SMT) systems are the volume
and domain of available parallel data. Low resource languages lack sufficient amounts of parallel
data as well as advanced linguistic tools for analysis. This results in a high percentage of out of
vocabulary (OOV) words (unknown words, not seen in the parallel data). The default solution is
to copy the unknown word in the translated output, which may work for named entities but only
if the two languages share a script.

We propose a system for generating translation candidates for unknown words. The system
uses a combination of methods when translating from a low resource language into English.
Each method targets different types of unknown words. These can be named entities, borrowed
words, compound words, spelling or morphological variants of seen words or content words un-
related to any seen word. We do not employ any language-specific tools to ensure that our system
is applicable across all languages, even resource poor ones that may not have specialized tools.
New methods can be added or existing ones pruned, based on the properties of the source lan-
guage. In our current system, we use (i) transliteration, (ii) Levenshtein distance-based search,
and (iii) Canonical Correlation Analysis on word embeddings to generate translation candidates.

We also design an evaluation technique to measure the number of unknown words whose
correct translation is found within the set of generated candidates. In addition, we propose
strategies to integrate these candidates into a SMT system: i) we create a secondary phrase
table comprising unknown words and their candidates, and ii) we pre-specify these translation
options as markup in the input, for the language model to choose from.

This paper is organized into five sections. Section 2 discusses prior work that addresses



the problem of unknown words, as well as translation of low resource languages and specific
domains. We discuss our techniques to generate translations for unknown words as well as their
evaluation and integration in Section 3. In Section 4, we present the specific empirical settings
used as well as the results and analysis of our experiments. We conclude with a discussion of
future work to further address this problem in Section 5.

2 Prior Work
Several methods have been proposed to address the unknown words problem. Many of them are
based on generation of new translation pairs from monolingual data in the two languages. Irvine
and Callison-Burch (2013) induce new translation pairs from monolingual corpora by modeling
it as a supervised classification problem which predicts if a given pair of words are translations
of each other based on context, timestamps, frequency, topic and orthography features. They
show results in both high and low resource settings. In addition to new lexical translations, there
has been work in adding new phrases, induced using lexical reordering, idiom extraction and
unknown words as part of seen contexts (Zhang and Zong, 2013).

Habash (2008) handles OOVs in Arabic-English translation by augmenting the phrase table
with new entries based on morphological analysis, transliteration, spelling correction and dictio-
nary lookup. Habash and Metsky (2008) present another technique for Urdu-English, wherein
they match OOVs to their seen morphological variants to find possible translations. But, these
methods are heavily dependent on language-specific resources and linguistic properties, and
cannot be directly extended to other languages. In contrast, our system is independent of the
language pair. In addition to language-specific tasks, Banerjee et al. (2012) classify OOVs for
domain-specific technical support forum parallel data into terminology, spelling errors, content
words, URLs, email addresses, and fused words. They use a separate technique to handle each
type of OOV including regular expression followed by post-editing, using supplementary par-
allel data and spell checker. This limits its application to technical domain only and, as with
language-targeted techniques, is not broadly applicable.

Vector space models are created and applied in various ways to find semantic similari-
ties. Daumé III and Jagarlamudi (2011) use Canonical Correlation Analysis (CCA) on German-
English data to mine translations of OOVs in the new domain. They use contextual and ortho-
graphic feature vectors. Faruqui and Dyer (2014) show that bilingually correlated word vectors
obtained using CCA perform better than monolingual vectors on word similarity tasks. They
use Latent Semantic Analysis on word co-occurrence matrices as well as Skip-gram and RNN
based methods from Mikolov et al. (2013a,c) to create these vectors. However, they do not apply
this to machine translation.

In this work, we design techniques that can generate translation options for OOV words,
irrespective of the source language. We do not use language-specific tools and leverage mono-
lingual data in lieu of additional parallel data, making it suitable for low resource languages.
Also, we propose ways to integrate this with an SMT system as well as an evaluation technique
to measure the quality of candidate translations generated.

3 Methodologies
This section surveys common types of OOVs and suggests strategies that target different types.

3.1 Types of Unknown Words
We categorize OOV words based on their properties into the following types:

• Named Entities: These refer to names of people, organizations, places, etc., that often
remain the same across languages. If the writing system for the two languages differ, they



require transliteration.

• Acronyms: These are often transliterations and can be considered a subset of named en-
tities. We create a separate category for these due to their distinctive capitalization and
punctuation.

• Borrowed Words: These are words of the target language that are borrowed in to the source
language. They are distinct from names because they are common words that appear in
colloquial use of the language, despite having a designated word in the source language.
For instance, the word shirt, which appears as a transliteration: शटर् in Hindi. These may
also be borrowed words due to the lack of an equivalent word in the source language, for
instance, technology or mobile. We assign them a separate category because they cannot
be identified through standard named entity recognition techniques.

• Borrowed Words with Source-side Inflection: It is occasionally the case that transliter-
ated English words are combined with the source-side inflection, for instance, to make them
plural. These words require a combination of transliteration and morphological analysis to
be translated correctly.

• Source Content Words: These are words of the source language that are neither borrowed
nor named entities. They are not necessarily rare words and appear as OOVs because they
did not happen to be seen in the training data. Therefore, this category constitutes a larger
percentage of OOVs in low resource settings, which lack training data. This category also
includes OOV words whose morphological variants were seen in training data.

• Misspellings and Typos: This category comprises words that have multiple spellings, or
were typed incorrectly. These words often differ by a character or two from their correct
spelling or variant with a known translation. We can translate them by using techniques
such as edit distance between these OOVs and the words in training data.

• Numbers: These are copied across languages with a few exceptions where the text may
have numbers in source language’s script.

Borrowed words, content words and named entities are common across many languages.
New categories specific to the source language in use can be added.

3.2 Translation Methods
In this section, we describe the methods used to generate translation options for unknown words.
These methods are inspried by the different types of unknown words described in Section 3.1.

Levenshtein Distance: This method targets translation of unknown words that have seen
morphological or spelling variants in the training data. Levenshtein distance (Levenshtein, 1966)
measures the similarity between two strings based on the number of deletions, additions and
substitutions required to transform the first string, w1 into the other, w2.

We obtain an aligned bilingual lexicon created on the parallel training data using the Moses
SMT system (Koehn et al., 2007). For each Hindi word, we choose the English word to which it
has been aligned with the maximum probability in the lexicon. Next, we compute Levenshtein
distance between the OOV word and every source side word in the parallel corpus. If a close
match is found between an OOV and a source side word, its aligned English word is listed as
that OOV’s candidate translation. We design a few variants of this method:

• Full words: This is the straightforward application as explained above. Here, the distance
is measured between the full OOV and source side words. The candidates produced by this
method are a superset of the other methods.



• Suffix: This is implemented to target morphological variants in particular and is suited for
languages with suffix-based morphology. It only measures the distance between suffixes of
the two words. The length of suffix that is compared can be varied based on properties of
the language.

• Prefix: This is analogous to the suffix-based method and is added for languages that have
a prefix-based morphology system.

• Vowels only: This method requires that the consonants in the two words be the same and
only the vowels may differ. It is specifically added to target our use case for Hindi, which
tends to have spelling variants based on differences in vowels, especially when writing bor-
rowed English words. This method is dependent on obtaining the language-specific vowel
set from the user (for English, this would be {a, e, i, o, u, y}). In addition to vowel-based
differences, this method can also be used to capture language-specific common spelling
errors by adding those letters instead of the vowel set.

Word Embedding: We create word embeddings from a combination of parallel and mono-
lingual data using the Continuous Bag of Words model in word2vec (Mikolov et al., 2013a,b,c).
This finds representations for words in a continuous space such that words similar in meaning
are closer in this space than others. This helps capture semantic similarities. After obtaining
word embeddings for both languages, we use Canonical Correlation Analysis (CCA).

CCA is a technique used to learn common features between two sets of data or multiple
views of a dataset (Hotelling, 1936). That is, it aims to find the common subspace that maximizes
the correlation between them. This can be mathematically written as: given two data matrices,
x ∈ Rdx×N and y ∈ Rdy×N , it finds vectors u ∈ Rdx×1 and v ∈ Rdy×1 such that:

max
covar(u⊺x, v⊺y)√

var(u⊺x)
√

var(v⊺y)

which can be written as: max
Ex,y[u

⊺x, v⊺y]√
Ex[u⊺x]

√
Ey[v⊺y]

Since the above expression is affine invariant, it can be written as the following constrained
optimization problem of finding a k-dimensional subspace such that U ∈ Rdx×k and V ∈
Rdy×k:

max Ex,y[trace(U⊺xy⊺V )]

subject to: Ex[trace(U⊺xx⊺U)] =Ik; Ey[trace(V ⊺yy⊺V )] = Ik

Solving the above gives final projection vectors as U = top k eigenvectors of C−1
xx CxyC

−1
yy Cyx

and V = C−1
yy CyxU . Thus, we obtain a matrix that can be used to project data from the two

views into a common maximally correlated space.
To apply CCA, we first find words aligned to each other from the training data using

GIZA++ (Och and Ney, 2003) and use it to obtain projection vectors for the source and tar-
get languages (Faruqui and Dyer, 2014). We use these vectors to project OOV words and a
large English corpora into the shared space and compute cosine similarity between an OOV and
each English word to find the closest translation candidates. In addition, we also find the co-
sine similarity between the OOV and the source language words from the parallel corpus, using
the aligned English word as the candidate. We pick the top 10 words with the highest cosine
similarity using both these techniques, generating 20 candidate translations in total.

This method is beneficial, especially for low resource settings, since it leverages large mono-
lingual corpora, which are more readily available, particularly in the target language. Also, it



Figure 1: Select method using classifier

has a broad span and helps capture new words without any limitation on the category of OOV
(morphological variant, borrowed word etc).

Transliteration: This method is used to translate named entities and words that are bor-
rowed from English. We use the unsupervised transliteration module (Durrani et al., 2014b) in
the Moses toolkit. First, a non-transliteration model is learned for source-target aligned words
that are not transliterations of each other. Second, a transliteration model is learned for word
pairs that are transliterations and can be used for learning alignments at the character level. These
character alignments are learned using expectation maximization algorithm and is completely
unsupervised. Using these learned alignments, unknown source words are transliterated. To im-
prove the unsupervised transliterations learned by the model, we train a larger character-based
language model on the target side. This helps the module to produce more accurate spellings.

3.3 Oracle Performance
Unknown word resolution is divided in two tasks: (i) the generation of translation candidate
and (ii) the selection of the correct one. To assess the performance of the first step, we apply
each translation method to generate translation candidates for each OOV. We then search for
these candidate translations anywhere in the corresponding English reference sentence. We do
not use word-level alignments to check for a particular word in the reference sentence due to
noisy alignments. This may lead to some false positives, but a brief manual analysis shows
that majority of matches are, indeed, correct translations. To avoid further over-counting, we
remove all stop words among the candidate translations. This method helps evaluate the quality
of candidates produced by each method by providing an upper bound on the number of OOV
words that have a correct translation option and can be correctly translated by the SMT system,
when these methods are integrated.

In addition to the candidates generated by each method, we add their synonyms obtained
from WordNet (Miller, 1995) using NLTK (Bird, 2006). We include synonyms because the
candidates obtained through word embeddings tend to produce semantically similar words which
may or may not exactly match the ones in the reference sentence. Similarly, Levenshtein distance
produces translations from data seen in training, but it is possible that the correct translation
may be its synonym. It also helps cover translations that only differ in grammatical number,
truecasing, and other minor variations.

3.4 Integration Methods
We consider three ways to integrate our system with an SMT pipeline.

Classifier: This method aims to classify OOV words into the categories described in Sec-
tion 3.1. Using this classification, one can use the translation method appropriate for the category
of that OOV word. For instance, if the word is a misspelling, one can use Levenshtein distance
to translate it. We hand-tagged OOV words into these categories and used SVM as our super-
vised classifier. Features included POS of the OOV word and that of its context (window=3).
In addition, we added binary features based on if the lemma of OOV is seen in the source side
lemmas (suggesting seen morphological variants), if lemma is same as the OOV word (suggest-
ing a named entity) and if the OOV is just comprised of numbers. Length of the word was also
used. The entire proposed pipeline for this method is shown in Figure 1.



Figure 2: Use all translation methods

XML Markup: Here, we use each translation method proposed in Section 3.2 to generate
translation options for each OOV. We then add the generated candidates as XML-markup around
the OOV in the source test file. Moses has the ability to use such externally-provided translations
while decoding (Koehn and Haddow, 2009). Using this method, we use all translation methods
proposed in Section 3.2 to generate translation options for each OOV but we do not add any
scores to the candidates. The target-side language model chooses the candidate for each OOV.

Secondary Phrase Table: To avoid basing the decision of picking the best candidate en-
tirely on the language model, we implement an additional technique. As with XML Markup, we
first apply all the translation methods to generate candidates for every OOV. We then create a
secondary phrase table comprising OOVs exclusively. For every entry in the phrase table, we
use three binary features to indicate the method used to generate the translation candidate. We
use one feature to indicate the cosine score for candidates generated using word embeddings. For
candidates generated using Levenshtein distance, we use that distance as a feature. In addition
to these, we also experimented with using inverse frequency of the candidate word in a large
monolingual English corpus as a feature. This is added to balance the preference of language
model to always choose the most frequent word as the correct translation. Another variant of
secondary phrase table that we implemented discards multi-word candidates. This method is
included to prune the candidate list because single word OOVs are more likely to have single
word translations.

4 Experiments
In this section, we discuss the data and experimental settings we use for implementing and eval-
uating our translation methods and the obtained results.

4.1 Data
We use Hindi as the language for our experiments because of its relatively low resource nature,
rich morphology and knowledge of the language. We use Hindi-English news data from the
Workshop on Statistical Machine Translation 2014 (Bojar et al., 2014).1 Details of the source
side of this parallel data are listed in Table 1. There are about 2500 sentences in the test set and
about as many OOV tokens. Thus, there is a considerable percentage of unknown words.

We also run experiments on Uzbek-English. This data is made available by the Linguistic
Data Consortium (LDC2015E89). The training, tuning and test data are sampled from a combi-
nation of Uzbek data obtained from news, Wikipedia, social media and discussion forums and
translated into English. Additionally, there is Uzbek-English news text that was published in
both languages. Details of dataset size are given in Table 1. This setting is lower resource than
Hindi. The effects of reduced parallel data can be seen in the analysis. There are about 1000
sentences in the test set and the average number of OOVs per sentence is 4, compared to only 1
for Hindi.

4.2 Translation Methodologies
We describe the implementation details of each translation method in this section.

1http://statmt.org/wmt14/translation-task.html

http://statmt.org/wmt14/translation-task.html


Data Hindi Uzbek
Types Tokens Sentences Types Tokens Sentences

Train 117k 3.5m 274k 49.3k 161.4k 55k
Tune 2.5k 9.2k 520 7.2k 15.2k 1k
Test 8.7k 49k 2.5k 7k 15k 1k
OOVs(Test Set) 1.9k 2.9k - 3.7k 4.8k -

Table 1: Details of source-side in the parallel data

Method OOV Types w/ atleast 1
Candidate Generated

OOV Types w/ Correct
Candidates Detected

Vowel-based 1025 51.9% 96 4.9%
Suffix-based 1020 51.6% 211 10.7%
Word-based with distance<=1 1210 61.3% 289 14.6%
Word-based with distance<=2 1651 83.6% 475 24.1%

Table 2: Comparative performance of variants of Levenshtein Distance (Hindi)

Levenshtein Distance: We consider distances of less than or equal to 2 for matching words
since Hindi does not have compounding property or unusually long words. For words smaller
than length 4, we consider only a distance of 1 to avoid excessive incorrect matches. The same
settings are used for Uzbek.

The variants of Levenshtein distance based on suffixes and vowels are beneficial when
the goal is to focus on morphological variants or spelling variants respectively. We see good
performance by using Levenshtein distance on full words Hindi, this is likely because Hindi is
both morphologically rich and prone to spelling variants due to the high percentage of borrowed
English words. This is further confirmed by Table 2. We find that using a distance limit of 2
increases the search space but also leads to a considerable improvement in performance, making
it a worthy trade-off.

Word Embedding: For this technique, we collect Hindi monolingual data from Wikipedia
dump (Al-Rfou et al., 2013) and Commoncrawl (Buck et al., 2014),2 with a total of about 29
million tokens. For Uzbek, the monolingual data is sampled from the same data from which
the parallel training data was sampled. For English, we used the Wikipedia data with about 127
million tokens.3 To the source side monolingual dataset, we add the source side of train, tune
and test sets from the parallel data, since embeddings must be generated for OOVs. For English,
we only add the target side of the parallel data to the monolingual corpus and not the tune and
test reference sentences.

We use gensim, Python library’s word2vec module (Řehůřek and Sojka, 2010) to create
word embeddings for each monolingual corpus. We use the Continuous Bag of Words model and
vectors of length 100. For both Hindi and Uzbek, we use a low min_count setting of 2, such that it
only filters words with frequency less than 2. We set this count low in order to obtain embeddings
for as many OOVs as possible. Due to the large size of the English corpus, we set this count
to 10 to obtain good embeddings and maintain accuracy of the candidate translations. Table 3
shows the number of OOVs for which an embedding is obtained for different min_count values in
Hindi. The third column shows the oracle performance i.e. the maximum number of OOVs for
which the correct candidate was generated using word embeddings.4 As expected, increasing
the minimum frequency filters more OOVs, causing the number of OOVs with embeddings
to decrease. But, the number of OOVs with correct candidates do not decrease sharply. This
shows that the OOVs seen sufficiently high number of times in monolingual data tend to be more

2http://statmt.org/ngrams/
3https://code.google.com/archive/p/word2vec/;http://mattmahoney.net/dc/textdata.html
4Calculated using the method in Section 3.3
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Min Count OOV Types w/ atleast 1
Candidate Generated

OOV Types w/ Correct
Candidates Detected

2 1104 169
4 945 144
6 828 151
8 743 125
10 681 125

Table 3: Effect of varying minimum frequency attribute in word2vec training for Hindi

Figure 3: ‘अटकलें’ (to speculate) and ‘करोड़’ (crore/ten million); both have neighboring English
words with similar meanings closer to them.

accurately translated due to better vector representations.
Figure 3 shows the top ten words obtained for two Hindi OOVs through cosine similarity

between projected OOVs and projected English monolingual corpora.5 Note that करोड़ which
means crore (ten million in Indian numbering system) is close to related words like million,
billion, rupees and so on and farther from speculation, worried etc.

Transliteration: As described in Section 3.2, we use Moses to transliterate all the OOV
words (Durrani et al., 2014b). We use the monolingual English news corpora from past WMT
shared tasks (2007-2012) 6 to create the larger character-based language model for more accurate
spellings. This data has 1.5 billion words as opposed to 2.9 million words in the target side of
the parallel corpus. Since Uzbek uses a Latin script, we copy the OOV for transliteration.

4.3 Evaluation
We present results of the oracle evaluation as discussed in Section 3.3.

Oracle Performance: The methods differ in how many candidates they produce for each
word. We limit transliteration to 1 candidate and the word embeddings method to produce 20
candidates. Levenshtein distance method produces 18 candidates on average. Note that if an
OOV word does not have related words (morphological and spelling variants) seen in the source
side of training data, the Levenshtein distance method may fail to find the correct candidates
or any candidates at all. Similarly, word2vec is set up such that every word must appear at least
twice in the monolingual data for it to have a vector representation. This may lead to some OOVs
being filtered. Transliteration produces a translation candidate for each OOV.7

We report the number of OOV types that obtain at least one candidate translation from our
5We plot the first vs fifth dimensions here for visual clarity. The candidates shown are the actual top 10 candidates

as obtained through a cosine distance across all dimensions
6http://www.statmt.org/wmt12/
7The number of OOVs transliterated are lower in Table 4 because OOVs lost during decoding miss post-decoding
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Method
OOV Types w/
atleast 1 Candi-
date Generated

OOV Types w/
Correct Candi-
dates Detected

OOV Tokens w/
Correct Candi-
dates Detected

Total OOVs Present 1975 - 1975 - 2970 -
All 3 Methods Combined 1974 99.9% 989 50.1% 1564 52.6%
Levenshtein Distance 1651 83.6% 475 24.1% 711 23.9%
Word Embedding 1104 55.9% 169 8.6% 236 7.9%
Transliteration 1886 95.5% 635 32.2% 1060 35.7%

Table 4: Candidate translations matched in reference sentences (Hindi)

Method
OOV Types w/
atleast 1 Candi-
date Generated

OOV Types w/
Correct Candi-
dates Detected

OOV Tokens w/
Correct Candi-
dates Detected

Total OOVs Present 3719 - 3719 - 4846 -
All 3 Methods Combined 3719 100% 1139 30.6% 1453 30.0%
Levenshtein Distance 2841 76.4% 696 18.7% 855 17.6%
Word Embedding 1596 42.9% 215 5.8% 263 5.4%
Transliteration 3719 100% 395 10.6% 551 11.4%

Table 5: Candidate translations matched in reference sentences (Uzbek)

methods in the second column of Table 4. The middle two columns show that on searching in the
reference sentence, we match candidates for 50% of OOV types in Hindi. The last two columns
present these statistics in terms of OOV tokens. Method-specific OOV coverage is presented in
the last three rows while the second row shows the overall coverage computed through a union
of these methods.

Let us now turn to Uzbek. Table 5 lists the number of OOV types correctly matched in the
reference sentence by running our pipeline on Uzbek data. As noted in Section 4.1, the Uzbek
training data is much smaller than that of Hindi and has many more OOVs. Correspondingly,
the upper bound achieved in Uzbek is lower.

4.4 Results
Here, we present the results obtained by integrating the translation candidates using the methods
discussed in Section 3.4.

Classifier: To perform the classification experiments, we hand-tagged ≈ 1200 Hindi OOV
words into the categories discussed in Section 3.1. The distribution is shown in Table 6. We
used the Hindi POS Tagger by Reddy and Sharoff (2011) for generating features.

The best accuracy obtained with these features was 35.9%.8 This was too low to be used to
make decisions about which translation method to use. In addition, several other drawbacks were
identified in this approach. Firstly, gold-standard labels are obtained through manual annotation,
which requires time, money, and knowledge of the language. Secondly, the distribution of OOV
words across these categories is uneven, making it difficult to achieve a high accuracy for smaller
classes with limited data. Lastly, for training the classifier, the part of speech tags (POS) of the
OOV and its context words are important features. However, low resource languages do not
always have such tools readily available.

XML Markup and Secondary Phrase Table: We use Moses as the Statistical Machine
Translation (SMT) system to run our translation experiments. Settings for the Hindi baseline
system have been derived from Edinburgh’s submission for WMT-2014 (Durrani et al., 2014a)
because the same dataset is being used here. We use basic Moses settings for Uzbek.

transliteration
8Note that these are preliminary results and were not explored further due to the drawbacks identified



Category Percentage
Source Content Words 22.2%
Named Entities 35.5%
Borrowed Words 28.7%
Misspellings & Typos 7.4%
Acronyms 3.2%
Numbers & Punctuation 1.0%
Transliterated English Words with Hindi Inflection 1.9%

Table 6: Distribution of OOV categories

Method BLEU Score OOV Types De-
tected as Correct

Baseline 12.15 5710

Transliteration 12.49 593
Transliteration + Bigger LM 12.67 61611

XML Markup 12.61 412
Secondary Phrase Table 12.16 372
Secondary Phrase Table without multi-word candidates 12.30 376
Secondary Phrase Table with frequency as feature 12.02 281
Oracle 13.48 989

Table 7: Results of integration of OOV candidates with SMT pipeline (Hindi)

Table 7 shows results of running Moses with the various integration options. We use BLEU
as the evaluation metric (Papineni et al., 2002). We run experiments with the baseline system
with no OOV translation, i.e. all OOVs in Hindi script are copied as is in the translated English
output. We also run only-transliteration experiments with both the original and bigger language
model. Since transliteration is integrated in Moses and we generate only one-best transliteration,
these experiments do not require any system to prune or pick a translation. Using this method
alone to translate all OOVs is good for languages that are related or have many named entities.
We also present results of using XML Markup and secondary phrase table for integration of new
translation pairs. In addition, results for the two proposed variations of secondary phrase table
are included. First, we add inverse of frequency of the English candidate as an additional feature
to the phrase table. Frequency for English words is computed using a large English corpus of
past WMT news data.9 Second, we discard all multi-word synonyms obtained from WordNet.
This is because we address single word OOVs here and they are more likely to translate into
single word candidates.

In addition to BLEU score, we also record the number of correct OOV translations in the
final Moses output. Once we know the correct translation for an OOV by searching for the
candidates in the reference sentence, we check if this correct translation appears anywhere in the
translated output sentence. In other words, out of the OOVs which obtain a correct translation
among their translation options, how many of them had the correct one picked through the SMT
system. We use our technique of searching for the translation anywhere in the sentence. The
possibility of false positives noted in the method of measuring oracle performance also exists in
this analysis. But, as mentioned before, there are only a few of those.

Using only transliteration for Hindi-English gives the best performance in terms of both
BLEU scores and number of OOVs translated correctly. One of the reasons for this is the high

9http://www.statmt.org/wmt12/
10 These are either numerical or other OOVs, like words in English script, that are correctly translated when copied
11This number differs from the higher oracle performance of transliteration (635) in Table 4 because synonyms are

also included in our system’s transliteration candidates

http://www.statmt.org/wmt12/


Method BLEU Score OOV Types De-
tected as Correct

Baseline 9.93 39410

XML Markup 8.91 455
Secondary Phrase Table 9.77 507
Oracle 10.18 1139

Table 8: Results of integration of OOV candidates with SMT pipeline (Uzbek)

percentage of English words that tend to be used in Hindi language, as shows in Table 6. Fur-
thermore, being news data, there are many named entities. According to our small hand-tagged
set in Table 6, these two classes together constitute about 65% of the OOVs. The current inte-
gration methods lack sophisticated feature sets that can pick the correct candidate for an OOV
from among its 40 (on an average) generated candidates and their synonyms. Discarding multi-
word candidates as a basic pruning technique only shows slight improvements. The decrease in
performance on adding inverse frequency of candidates as a feature is likely to be due to strong
bias for low frequency words. Not all OOVs are rare words, especially in low resource settings,
and strongly favoring very unfamiliar translation candidates can lead to a worse performance,
unless combined with other useful features.

We also present results of integration of OOV candidates in the SMT pipeline on Uzbek-
English data in Table 8. Since Uzbek uses Roman script, simply copying the OOVs in to the
output helps translate some OOVs, which is why the baseline and transliteration method are the
same.

These results show that we obtain comparable BLEU scores across all the techniques. On
re-running identical experiment setups, it was observed that the BLEU scores varies by ±0.35.
Furthermore, an increase in number of OOVs correctly translated did not always result in a corre-
sponding higher BLEU score. This suggests that in addition to the augmented OOV translations,
other factors also have a considerable influence on the BLEU score, making it less reliable for
this task. Also, while we obtain good quality candidates for OOV as seen in the oracle perfor-
mance, the pipeline for integration requires additional features and pruning techniques to be able
to pick the one correct candidate.

5 Conclusion and Future Work
We present a system that applies a combination of language-independent techniques to translate
OOV words in the absence of large amounts of parallel data, a significant problem for low re-
source languages. In addition, we also present ways to evaluate these techniques and integrate
the generated candidates into an SMT pipeline.

Here, we discuss the current limitations and possible future improvements for each trans-
lation method proposed:

• Word Embeddings: As we make more progress in word embeddings, we can understand
the dimensions and limit it from producing antonyms and distant words. In addition, there
are known methods like Deep CCA, which find non-linear projections for vectors in the
two views (Andrew et al., 2013; Lu et al., 2015). We do not include that in the scope of
this work because they require extensive tuning of parameters. For languages with related
rich-resource languages, Generalized CCA has the ability to leverage more than two views
of data to find a shared subspace with richer and more informed embeddings as has been
shown in previous work (Rastogi et al., 2015). Furthermore, to make the cosine distance-
based search faster, one can use approximation techniques (Zhao et al., 2015) like Locality
Sensitive Hashing (Gionis et al., 1999) and Redundant Bit Vectors (Goldstein et al., 2005),
which could not be included in the scope of current work.



• Levenshtein Distance: Although Levenshtein distance-based candidates show exact match
for a good percentage of OOV words, they generate a lot of candidates. With no score other
than the distance from OOV word, there is no way to rank these candidates. In a more
resource-rich setting, features such as part of speech tag can be used to prune the list by
removing words that do not have a matching tag. When working with a specific language
which has, for instance, seen morphological variants for a majority of its OOVs, one can
limit to a suffix or prefix based Levenshtein distance to keep the candidate list short.

• Transliteration: In this work, we only produce the 1-best transliteration using Moses.
But, with better ways of ranking translation options, one can generate an n-best list of
transliterations using the same module to widen the scope of coverage for named entities
and rectify spelling errors.

To improve the end-to-end performance of this system, better ways of scoring and picking
from among the candidate translations are required in addition to the above translation methods.
For instance, for domains like news data with a high percentage of named entities, one can use
named entity recognition to classify OOVs. The limitations imposed by working in a language-
independent and low resource setting make implementing such methods less straightforward.
Rich features cannot be created due to low amount of data as well as limited language-specific
tools. A seperate phrase table could be used for each method, allowing for method-specific
weights and manual tuning.

In conclusion, we present a completely unsupervised pipeline that applies a combination of
techniques to translate OOVs and integrates them with an SMT system. We also propose ways
to evaluate and measure upper bounds on the performance of these techniques. While there is a
scope of improvement in how these candidates are integrated and picked by the SMT system, we
obtain a good potential improvement in finding translations for unknown words in low-resource
settings.
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