Pipelining

Philipp Koehn

7 October 2019

Laundry Analogy

	6pm	7pm	8pm	9pm	10pm	11pm
Task A	WASH DRY	FOLD				
Task B		WASH	DRY FOLD			
Task C				WASH DRY	FOLD	
Task D					WASH	DRY FOLD

Laundry Pipelined

	6pm	7pm	8pm	9pm	10pm	11pm
Task A	WASH DRY	FOLD				
Task B	WASH	DRY FOLD				
Task C		WASH DRY	FOLD			
Task D		WASH	DRY FOLD			

Speed-up

• Theoretical speed-up: 3 times

• Actual speed-up in example: 2 times

- sequential: 1:30+1:30+1:30 = 6 hours

- pipelined: 1:30+0:30+0:30+0:30 = 3 hours

ullet Many tasks o speed-up approaches theoretical limit

mips instruction pipeline

MIPS Pipeline

- Fetch instruction from memory
- Read registers and decode instruction
 (note: registers are always encoded in same place in instruction)
- Execute operation OR calculate an address
- Access an operand in memory
- Write result into a register

Time for Instructions

• Breakdown for each type of instruction

Instruction class	Instr. fetch	Register read	ALU oper.	Data access	Register write	Total time
Load word (lw)	200ps	1 00 ps	200ps	200ps	1 00 ps	800ps
Store word (lw)	200ps	1 00 ps	200ps	200ps		700ps
R-format (add)	200ps	1 00 ps	200ps		1 00 ps	6 00 ps
Branch (beq)	200ps	1 00 ps	200ps			500ps

Pipeline Execution

Speed-up

• Theoretical speed-up: 4 times

• Actual speed-up in example: 1.71 times

- sequential: 800ps + 800ps + 800ps = 2400ps

- pipelined: 1000ps + 200ps + 200ps = 1400ps

ullet Many tasks o speed-up approaches theoretical limit

Design for Pipelining

- All instructions are 4 bytes
 - ightarrow easy to fetch next instruction
- Few instruction formats
 - ightarrow parallel op decode and register read
- Memory access limited to load and store instructions
 - \rightarrow stage 3 used for memory access, otherwise operation execution
- Words aligned in memory
 - → able to read in one instruction
 (aligned = memory address multiple of 4)

hazards

Hazards

• Hazard = next instruction cannot be executed in next clock cycle

- Types
 - structural hazard
 - data hazard
 - control hazard

Structural Hazard

• Definition: instructions overlap in resource use in same stage

• For instance: memory access conflict

	1	2	3	4	5	6	7
i1	FETCH	DECODE	MEMORY	MEMORY	ALU	REGISTER	
i2		FETCH	DECODE	MEMORY	MEMORY	ALU	REGISTER
				conflict			

• MIPS designed to avoid structural hazards

Data Hazard

• Definition: instruction waits on result from prior instruction

• Example

- add instruction writes result to register \$s0 in stage 5
- sub instruction reads \$s0 in stage 2
- \Rightarrow Stage 2 of sub has to be delayed
 - We overcome this in hardware

Graphical Representation

• IF: instruction fetch

• ID: instruction decode

• EX: execution

• MEM: memory access

• WB: write-back

Add and Subtract

• Add wiring to circuit to directly connect output of ALU for next instruction

Load and Subtract

- Add wiring from memory lookup to ALU
- Still 1 cycle unused: "pipeline stall" or "bubble"

Reorder Code

• Code with data hazard

```
lw $t1, 0($t0)
lw $t2, 4($t0)
add $t3, $t1, $t2
lw $t4, 8($t0)
sw $t3, 12($t0)
add $t5, $t1, $t4
sw $t5, 16($t0)
lw $t1, 0($t0)
lw $t2, 4($t0)
lw $t2, 4($t0)
lw $t4, 8($t0)
add $t3, $t1, $t2
sw $t3, 12($t0)
add $t5, $t1, $t4
sw $t5, 16($t0)
```

- Reorder code (may be done by compiler)
- Load instruction now completed in time

Control Hazard

- Also called branch hazard
- Selection of next instruction depends on outcome of previous
- Example

```
add $s0, $t0, $t1
beq $s0, $s1, ff40
sub $t0, $s0, $t3
```

- sub instruction only executed if branch condition fails
- \rightarrow cannot start until branch condition result known

Branch Prediction

- Assume that branches are never taken
 - \rightarrow full speed if correct

- More sophisticated
 - keep record of branch taken or not
 - make prediction based on history

pipelined data path

Datapath

Pipelined Datapath

load

store

add

write to register

Which Register?

Problem

- Write register
 - decoded in stage 2
 - used in stage 5

• Identity of register has to be passed along

Data Path for Write Register

pipelined control

Pipelined Control

- At each stage, information from instruction is needed
 - which ALU operation to execute
 - which memory address to consult
 - which register to write to

• This control information has to be passed through stages

Pipelined Control

Control Flags

