Memory

Philipp Koehn

14 February 2018
D-Type Level-Triggered Latch

DATA → AND → NOR → Q

CLOCK → AND → NOR → Q

Q → NOT → AND → NOR → Q

Q → NOT → AND → NOR → Q
Operations

• Circuit latches on one bit of memory and keeps it around

• Truth table

<table>
<thead>
<tr>
<th>Data-In</th>
<th>Write</th>
<th>Data-Out</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>X</td>
<td>0</td>
<td>Data</td>
</tr>
</tbody>
</table>

• Can write 1 bit and read content
multi-bit storage
1 Bit Memory

DATA IN

WRITE

AND

NOR

AND

NOR

DATA OUT
8 Bit Memory
Output Selector

- 8 Bit Latch contains 8 bits
- Now: only read 1 bit at a time
- Select the bit with an address
- Input: address
- Output: bit value
Output Selector

WRITE

DATA IN

8-Bit Selector

ADDRESS

OUT
Output Selector

- **Truth table**

<table>
<thead>
<tr>
<th>Address</th>
<th>Output</th>
</tr>
</thead>
<tbody>
<tr>
<td>A2 A1 A0</td>
<td>OUT</td>
</tr>
<tr>
<td>0 0 0</td>
<td>D0</td>
</tr>
<tr>
<td>0 0 1</td>
<td>D1</td>
</tr>
<tr>
<td>0 1 0</td>
<td>D2</td>
</tr>
<tr>
<td>0 1 1</td>
<td>D3</td>
</tr>
<tr>
<td>1 0 0</td>
<td>D4</td>
</tr>
<tr>
<td>1 0 1</td>
<td>D5</td>
</tr>
<tr>
<td>1 1 0</td>
<td>D6</td>
</tr>
<tr>
<td>1 1 1</td>
<td>D7</td>
</tr>
</tbody>
</table>

- **What Boolean operation returns the correct value for address 000?**

\[(\text{NOT A2}) \land (\text{NOT A1}) \land (\text{NOT A0}) \land \text{D0}\]
Output Selector

- Full Boolean formula

\[
\begin{align*}
(\text{NOT } A2) \text{ AND } (\text{NOT } A1) \text{ AND } (\text{NOT } A0) \text{ AND } D0 & \text{ OR} \\
(\text{NOT } A2) \text{ AND } (\text{NOT } A1) \text{ AND } A0 \text{ AND } D1 & \text{ OR} \\
(\text{NOT } A2) \text{ AND } A1 \text{ AND } (\text{NOT } A0) \text{ AND } D2 & \text{ OR} \\
(\text{NOT } A2) \text{ AND } A1 \text{ AND } A0 \text{ AND } D3 & \text{ OR} \\
A2 \text{ AND } (\text{NOT } A1) \text{ AND } (\text{NOT } A0) \text{ AND } D4 & \text{ OR} \\
A2 \text{ AND } (\text{NOT } A1) \text{ AND } A0 \text{ AND } D5 & \text{ OR} \\
A2 \text{ AND } A1 \text{ AND } (\text{NOT } A0) \text{ AND } D6 & \text{ OR} \\
A2 \text{ AND } A1 \text{ AND } A0 \text{ AND } D7 & \\
\end{align*}
\]
Output Selector

D0
D1
D2
D3
D4
D5
D6
D7
A0
A1
A2
AND
OR
DATA OUT
Input Decoder

• 8 Bit Latch allows 8 bits to be written at the same time

• Now: only write 1 bit at a time

• Select the bit with an address

• Input
 – address
 – write flag
 – data bit
Input Decoder

3-to-8 Decoder

WRITE

ADDRESS

DATA IN

DI W
DO

DATA OUT

DI W
DO

DI W
DO
Input Decoder

- **Truth table**

<table>
<thead>
<tr>
<th>Address</th>
<th>W7</th>
<th>W6</th>
<th>W5</th>
<th>W4</th>
<th>W3</th>
<th>W2</th>
<th>W1</th>
<th>W0</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 0 0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>WRITE</td>
</tr>
<tr>
<td>0 0 1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>WRITE 0</td>
</tr>
<tr>
<td>0 1 0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>WRITE 0 0</td>
<td></td>
</tr>
<tr>
<td>0 1 1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>WRITE 0 0 0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1 0 0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>WRITE 0 0 0 0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1 0 1</td>
<td>0</td>
<td>0</td>
<td>WRITE 0 0 0 0 0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1 1 0</td>
<td>WRITE 0 0 0 0 0 0 0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1 1 1</td>
<td>WRITE 0 0 0 0 0 0 0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- What Boolean operation returns the correct value for output W0?

\[(\text{NOT A2}) \text{ AND} (\text{NOT A1}) \text{ AND} (\text{NOT A0}) \text{ AND WRITE}\]
Input Decoder

WRITE

A0 A1 A2

AND

W0

AND

W1

AND

W2

AND

W3

AND

W4

AND

W5

AND

W6

AND

W7
8 Bit RAM

WRITE

ADDRESS

DATA IN

8-Bit Selector

DATA OUT

3-to-8 Decoder

DI
DO
W

Philipp Koehn
Computer Systems Fundamental: Memory
14 February 2018
8 Bit RAM

• 8 Bit Random Access Memory (RAM)

• Input
 - address
 - write flag
 - data bit

• Output
 - data bit
8x2 Bit RAM

• 8x1 bit RAM allows read/write of 1 bit at a time

• What if we want to read/write 2 bits at a time? (and ultimately 8 bits (1 byte) and more)

⇒ Arrange them together
8x2 Bit RAM

DATA-IN0 WRT ADDR DATA-IN1

8x1 Bit RAM

DATA-OUT0 DATA-OUT1
8x2 Bit RAM

![Diagram of a 8x2 Bit RAM module with inputs DI, W, A and output DO.](image-url)
8x2 Bit RAM

DI W A

DO

8x2 Bit RAM
• 64KB = 65,536 bytes

• 16 bit address space \(2^{16} = 65536\)

• Common memory size in the 1980s: we will use it with 6502 assembly
Control Panel

64-KB RAM Control Panel

A_{15} A_{14} A_{13} A_{12} A_{11} A_{10} A_9 A_8 A_7 A_6 A_5 A_4 A_3 A_2 A_1 A_0

D_7 D_6 D_5 D_4 D_3 D_2 D_1 D_0

Write

Takeover
Early 1980s: 64 KB RAM, 16 bit address space
Bigger Memories

• Early 1980s: 16 bit address space, up to 64 KB

• 1990s: 32-bit address space, up to 4 GB

• Today: 64-bit address space, up to 16 EB (exa-byte)

• Actually supported by Intel/AMD 64-bit processors
 - 52 bits for physical memory: 4 peta-byte
 - 48 bits for virtual memory: 256 tera-byte

• Actually existing RAM: my lab biggest RAM machine: 768 GB
 (doubles every ~2 years)