arithmetic
Addition (Immediate)

- Load immediately one number ($s0 = 2$)

  ```assembly
  li $s0, 2
  ```

- Add 4 ($s1 = s0 + 4 = 6$

  ```assembly
  addi $s1, $s0, 4
  ```

- Subtract 3 ($s2 = s1 - 3 = 3$

  ```assembly
  addi $s2, $s1, -3
  ```
Addition (Register)

• Load immediately one number ($s0 = 2$)

  ```
  li $s0, 2
  ```

• Add value from $s5$ ($s1 = s0 + s5$)

  ```
  add $s1, $s0, $s5
  ```

• Subtract value from $s6$ ($s2 = s1 - s6$)

  ```
  sub $s2, $s1, $s6
  ```
Overflow

- Signed integers operations: add, addi, and sub
 - overflow triggers exceptions
 - similar to interrupt
 - register $mfc0$ contains address of exception program

- Unsigned integers operations: addu, addiu, and subu
 - no overflow handling (as in C programming language)
Code for Detecting Overflow

- Overflow for unsigned integers operations can be detected from result

- Actual detection code is a bit intricate

- If you are interested
 → consult Section 3.2 in Patterson/Hennessy textbook
fast addition
Recall: N-Bit Addition

```
11
+11
---
---
```
Recall: N-Bit Addition

\[
\begin{array}{c}
11 \\
+11 \\
\hline
\end{array}
\]

\[
\begin{array}{c}
1 \\
\hline
0 \\
\end{array}
\]

\[1+1 = 0, \text{ carry the 1}\]
Recall: N-Bit Addition

\[
\begin{array}{c}
11 \\
+ 11 \\
\hline
11 \\
\hline
10
\end{array}
\]

\[1+1+1 = 1, \text{ carry the } 1\]
Recall: N-Bit Addition

\[
\begin{align*}
11 \\
+11 \\
\hline \\
11 \\
\hline \\
110
\end{align*}
\]

copy carry bit
Fast Addition

- We defined n-bit adding as a sequential process

- More bits \rightarrow addition takes longer

- 32 bit addition gets very slow

- Faster addition: Carry Lookahead
Problem: Carry Propagation

• 1+1 addition always causes a carry

\[
1+1 + \text{carry}1 = 1, \text{carry} 1 \\
1+1 + \text{carry}0 = 0, \text{carry} 1
\]

• 0+0 addition never causes a carry

\[
0+0 + \text{carry}1 = 1, \text{carry} 0 \\
0+0 + \text{carry}0 = 0, \text{carry} 0
\]

• 0+1 and 1+0 addition may cause a carry

\[
0+1 + \text{carry}1 = 0, \text{carry} 1 \\
0+1 + \text{carry}0 = 1, \text{carry} 0
\]
Generate and Propagate

• Compute for each bit, if it generates or propagates carry

• Example

<table>
<thead>
<tr>
<th></th>
<th>0100 1111</th>
<th>0110 0001</th>
<th>0100 0001</th>
<th>0110 1111</th>
<th>1001 111-</th>
</tr>
</thead>
<tbody>
<tr>
<td>Add</td>
<td>A</td>
<td>B</td>
<td>Generate</td>
<td>Propagate</td>
<td>Carry</td>
</tr>
<tr>
<td></td>
<td>0100 1111</td>
<td>0110 0001</td>
<td>0100 0001</td>
<td>0110 1111</td>
<td>1001 111-</td>
</tr>
</tbody>
</table>

• Generate: $a_i \text{ AND } b_i$

• Propagate: $a_i \text{ OR } b_i$

• Carry: ?
4-Bit Adder

• First compute generate and propagate for all bits
 - generate: \(g_i = a_i \text{ AND } b_i \)
 - propagate: \(p_i = a_i \text{ OR } b_i \)

• Compute carries for each bit
 - \(c_1 = g_0 \text{ OR } (p_0 \text{ AND } c_0) \)
 - \(c_2 = g_1 \text{ OR } (p_1 \text{ AND } g_0) \text{ OR } (p_1 \text{ AND } p_0 \text{ AND } c_0) \)
 - \(c_3 = g_2 \text{ OR } (p_2 \text{ AND } g_1) \text{ OR } (p_2 \text{ AND } p_1 \text{ AND } g_1) \text{ OR } (p_2 \text{ AND } p_1 \text{ AND } p_0 \text{ AND } c_0) \)
 - \(c_4 = g_3 \text{ OR } (p_3 \text{ AND } g_2) \text{ OR } (p_3 \text{ AND } p_2 \text{ AND } g_2) \text{ OR } (p_3 \text{ AND } p_2 \text{ AND } p_1 \text{ AND } g_1) \)\
 \text{ OR } (p_3 \text{ AND } p_2 \text{ AND } p_1 \text{ AND } p_0 \text{ AND } c_0)\

• The carry computations require no recursion
 --- but use a lot of gates

• We may want to stop at 4 bits with this idea
16-Bit Adder

• Combine 4 4-bit adders

• For each 4-bit adder, compute
 - "super" propagate = $P = p_0 \land p_1 \land p_2 \land p_3$
 - "super" generate = $g_3 \lor (p_3 \land g_2) \lor (p_3 \land p_2 \land g_1) \lor (p_3 \land p_2 \land p_1 \land g_0)$

• Compute super carry C_j from super propagate P_j and super generate G_j

• Use C_j as input carry to the 4-bit adders
1. compute propagate p_i and generate g_i

2. compute carry c_i
 compute super propagate P_j and super generate G_j

3. compute super carry C_j

4. carry out all bitwise additions
Trade-Off

• Higher n in n-bit adders
 - more gates in circuit
 - faster computation

• Modern CPUs can pack more gates on a chip
 \Rightarrow speed-up at same clock speed
multiplication
Recall Method

• Elementary school multiplication:

\[
\begin{array}{c}
\text{10101 x 1101} \\
\hline
10101 \\
0 \\
10101 \\
10101 \\
\hline
100010001
\end{array}
\]

(in decimal: 23x13 = 299)

• Idea
 – shift second operand to right (get last bit)
 – if carry: add second operand to sum
 – rotate first operand to left (multiply with binary 10)
Control unit runs microprogram

- loop 32 times:
 - if lowest bit of multiplier = 1
 - add multiplicand to product
 - shift multiplicand left
 - shift multiplier right

- Speed
 - 32 iterations
 - 3 operations each
 - (add + shift + shift)
 → almost 100 operations

Note: multiplying 32 bit numbers may result in 64 bit product.
Parallelize the 3 Operations

- The 3 operations in each loop affect different registers
 - add: product
 - shift left: multiplicand
 - shift right: multiplier

⇒ These can be executed in parallel
 (note: read is executed before write)
Parallelize the Iterations

- Sum of 32 independently computed values
- More adders \rightarrow some summing can be done in parallel
- Binary tree $\rightarrow \log_2 32 = 5$ cycles
MIPS Instructions

- 32 bit multiplication results in 64 bit product
- Special 64 bit register holds result
 - hi: high word
 - lo: low word
- Low word has to be retrieved by another instruction

\[
\text{mult } s1, s2 \\
\text{mflo } s0 \\
\]

- Since this is the typical usage, pseudo-instruction

\[
\text{mul } s0, s1, s2 \\
\]

More on that later
division
Elementary School Division

1011 / 10 = 101

10

\[\begin{array}{c c c c c c}
\hline
& & & 1 & 0 & 1 \\
\hline
1 & 0 & 1 & & & \\
0 & & & & & \\
0 & 1 & & & & \\
0 & 1 & 1 & & & \\
1 & 0 & & & & \\
\hline
& & & 1 & & Remainder
\end{array} \]

• Algorithm
 1. shift divisor sufficiently to the left
 2. check if subtraction is possible
 yes → add result bit 1, carry out subtraction
 no → add result bit 0
 3. pull down bit from dividend
 4. shift divisor to the right
 not possible → done, note remainder
 otherwise go to step 2
Algorithm Refinement

1. Shift divisor sufficiently to the left
 • hard for machine to determine
 → shift to maximum left
 • 32 bit division: use 64 register, push 32 positions

2. Check if subtraction is possible
 yes → add result bit 1, carry out subtraction
 no → add result bit 0
 • we always carry out subtraction
 • if overflow, do not use result

3. Pull down bit from dividend

4. Shift divisor to the right
 not possible → done, note remainder
 otherwise go to step 2
Division in Hardware

- Operations similar to multiplication
 - shift divisor
 - subtraction
 - indication if subtraction should be accepted

- These operations can be parallelized

- But: iterations cannot be parallelized the same way
 (sophisticated prediction methods guess outcome of subtractions)
MIPS Instructions

- 32 bit division results in 32 bit quotient and 32 bit remainder
 - hi: remainder
 - lo: quotient

- Quotient has to be retrieved by another instruction

 \[
 \text{div } s1, s2 \\
 \text{mflo } s0
 \]