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Image Generation QY
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e How does this work?
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Textbook 2

Q

O'REILLY"

Generative
Deep Learning

Teaching Machines to Paint, Write,
Compose and Play T

David Foster
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image classification
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q

Image Classification :

Input _ Afully connected layer

Weights

e Input: Image, Output: Class
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e 60,000 images
e 32x32 resolution

e 10 classes

CIFAR-10 .
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Simple Convolution

3 x 3 portion of animage
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Processing Image with Convolution 7

e Passing a 3x3 kernel over a 5x5 image

e Using padding to preserve size of representation
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Edge Detection 8

 Input layer
1x64x64 =1
batch_size = height = width = channels

1xb4=xb64x2
EachT{';'.:[gF i!r,tgﬂ x1 batch_size » height = width x channels

e Detecting large local color shifts: edges in image

e Two kernels: 2-dimensional vector for each point
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Convolutional Neural Network 9

&

10 channels
3 channels / 1280 nodes
3 channels 5
1 @ 10 channels y \L
N :.'1‘,:.._
& - . A4
. - LT
2 22
INPUT @ output size output size . f
LAYER @  @x6xi6xi0) (1%8x8x20)
(?x32x32=3)
10 filters 20 filters FLATTEN I [ DENSE
eachsizedd x4 =3 eachsized3x3 =10 [ LAYER LAYER
(applied with strides =2 (applied with strides = 2 output size  output size
and padding = "same") and padding = "same”) (? = 1280) (7= 10)
| CONVLAYER1 | | CONVLAYER2 |
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ImageNet: 2012 10
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e ImageNet: Large scale competition for image classification
(1.2 million labeled training examples, 1000 categories)

e Breakthrough for deep learning in 2012: large gains with CNN (AlexNet)

0% FixResNeXt=-101_32x45d—g
ResheXt-101 Gaxd H-B‘ e

BO% Inceptjon.y3 ¥
PReLU-Ne
SPPN
T0%
AlexNet - TCHMS ZFNet
B0%
SIFT = Fvy
sox

40k
2011 2012 2013 2014 2018 2016 2017 2018 2019 2020

TOP 1 ACCURALCY

Other methods  -e- State-of-the-art methods

Philipp Koehn Vision Models 25 April 2024



11

autoencoders
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Autoencoders 2

81 '
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Original item
41
Encading
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Decoding
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Encoder-Decoder Model 13

Encoder Decoder

Example: Image to 2-dimensional vector

—-:-ﬂﬂ Hﬁhﬂ I R
Enr:udmgl l l l

[-1.8,04] [1?58] [6.3, UQ] [3.7 EIE] [[M 3.0] [43 01] [EI"EJ 15] [0.8,26] [-1.8,-20] [-34,-11]
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Visualization of Embeddings Space

10,0

75

50

25

T-shirt/top
Trouser
Pullover
Dress
Coat
Sandal
Shirt
Sneaker
Bag

Ankle boot
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Generating Novel Items of Clothing 15
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Generations from Full Embeddings Space

. 9
8.
B 8
|
6 t 7
i
? 6
41
n 5
i
2 11 4
1

- o o o oz s |

W e wN e e e e o b l

L -

—) e e e e o e o s i

-
b b ke e e e B B . B ] l I | '“

WY <=5 =50 =5 00 25 30 iS5

Philipp Koehn Vision Models 25 April 2024



Variational Autoencoder 17

i i

Encode lEncude

=

Autoencoder Variational autoencoder

e Encoder predicts a normal distribution, specifically the mean ;. and variance ¢

2
falmo?) = e 3

vV 2mo?
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Variational Autoencoder

Encoder

e Encoder (as before)

e Predicts mean z_mean and variance z_log_var of the distribution
(note: predict 2-dimensional point — 2 means and 2 variances)

e We randomly draw a point z from the distribution

e Decoder predicts from that randomly drawn point z (as before)

-'[ 2] ]_ Sample

Decoder

@
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Additional Loss Term for Training 19

e Add preference that predicted mean and variance are normal distribution
with mean 0 and variance 1: N (0, 1)

e Computed as KL-divergence between predicted values ;. and o

Dicr, N1, 0) IN(0,1)] = 2 3™ (1 +log (07) — 4 — o?)
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What is it Good For? 20

e General principle: adding noise is good (here: random sampling of point z)I

e Better use of embedding space (bias towards center)
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Variational Autoencoder for Images of Faces 2

e CelebA dataset of over 200,000 color images of celebrity faces

e We need a larger model (multiple convolutional layers, larger embedding sizes)

Example real faces

SaoaSaRERDR

Reconstructions

SdAoaSabRERRR
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Generation of Faces 20

e Sample points (from a standard multivariate normal distribution)
e Decode the sampled points
e Plot the images

2 I
3
a

<8 By
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CelebA Dataset Labeled with Features =

Glasses

Bangs

Pointy nose

Oval face
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Vectors for Features 24

e We want to obtain a vector for one feature, e.g. Smilingl
e Recall: encoder predicts vector representation for each imagel

e Vector that points in the direction of Smiling

— take average of all vectors for images labelled Smiling: a¢pmiing
— take average of all vectors for images not labelled Smiling: a

— subtract the two vectors: vsmiling = Gsmiling — @

smiling

smiling
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. . =X
Generation with Feature Vector 25 G
e Randomly sample point = (or use representation for existing image)

e Subtract and feature vector Usmiling with varying factor, generate

ﬂriginal . Subtracting vector Adding vector

image

Smiling

Black hair

Eyeglasses

Young

Male

Blond halr
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Combine Images 26

e Take representations of two images: z4 and zp

e Combine them with weight o € [0, 1| into new vector z = az4 + (1 — a)zp

Image A Alpha

W
D
0

gded ot v e

IO @AM
o Jel o Lot )
- =
o [ B oo ig

2o Jo Y o b
D E3AD
TR
D P00
ADPAGe
ADPAG 0
AD PRGSO
AD 6 W
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27

generative adversarial training
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Discriminator

e The story so far: we can generate novel images

e New task: detect if image is generated or real

#

CINCIE B

Random noise

\,

-~

i

AD[GeneratﬂrJ—b

| Image (either real or fake)

&

Generated image

A

45[ Discriminator }—b

01
Prediction for how likely
the image is to be real

.

G
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Training

Discriminator training process

i M — Predictions| Label
0 p— 0.2 0
g e B ey ) 2
Training 0.3 0
E batch (fake) 0.6 0
Random - , - :
_noise_| Predictions| Label
' “ 08 ]
‘ P;g. .l.
Training 04 1
batch (real) 07 | 1
Generator training process
E M —— ) Predictions| Label |
“ 04 1
.
noise E Training 06 1
0 batch (fake) 0.2 1
O

G
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Training Stages 30

e Train initial generator

e Iterate
— train discriminator

— train generator with additional discriminator loss

e Note: when training generator, leave discriminator parameters fixed
(and vice versa)
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Common Problems 31

e Discriminator overpowers generator

e Generator overpowers discriminator
(for instance mode collapse: generates unique image that fools discriminator)

e Training loss of generator is not informative
(mainly battles discriminator and not fitting the training data)

e Many hyperparameters
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Extensions 32

e Wasserstein GAN
e Lipschitz Constraint

e Gradient Penalty Loss

e Conditional GAN
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33

diffusion models
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Diffusion Models 34

o Keyidea

— create noise image
— generate image from noise
— repeat this for, say, 20 steps
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Create Training Data 35

e Training data for this process can be creating by adding noise

LR

LR R

X0

e This is done in stages, each time adding Gaussian noise ¢,
(mean 0 and unit variance, but then scaling to effective variance 3; below)

Ty =\/1—BrTi1+ \/EEt—l

e Or, written as a probability distribution from one image to the next

q(xe|@i—1) =N (th V1—Bixs 1,0 I)

o After a large number of steps, this becomes indistinguishable from a noise image
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Diffusion Schemes

— small changes to initial, original image
— larger changes towards the end to ensure randomness

Vi {Eignal]

o
e

o
=

Signal

o
b

=
;-

—linear
—Cosine
—offset_cosine

00

03 06

T

0.2

08 10

o
(=]

1~y (noise)
= =
= o

=
P

=
=

The variance f; is changed throughout the process

Common options: linear, cosine, offset cosine

Noise

1 —linear

| — offset_cosine

— Cosine

03 06 08 10

tT

00 02

36
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Effect of Diffusion Schemes 37

e Cosine diffusion scheme makes less changes initially
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Goal: Learn How to Reverse this Process =

e Learn a model py that maps a noisy image z; back to a less noisy image x;_;
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Refinements 39

e We actually learn a model that maps back z; to the original image =,

e The accumated noise can be computed

q (x| o) = N (x4; Va, zo, (1 — @) I)

e The model predicts the noise ¢y(x; )l

Algorithm 1 Training
1: repeat
2: xo ~ q(xo)
3: t ~ Uniform({1,...,T})
4: €~ N(0,I)
5: Take gradient descent step on

Vo ”E — €9(v/atxo0 + V1 — Qi€ t)”2
6: until converged
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1x1x32

64 x64 %32

Noise variance

0.34

Embedding

Upsampling

U-Net Model Overview

Noisy image

64x64x3

64 x64 %32

Predicted noise

%

Concatenate

1

DownBlock

1

DownBlock

1

DownBlock

64 x b4 x 64 64 x64 %3
64 x 64 x 32
64 x64 %32 —>b64x64%64
64 % 64 x 32
64 x64x32 —>p4 =64 %96
32x32%32 64 x 64 =64
32x32 %64
32x32xp64 —32x32x128
32x32x64
32x32x64 —»32x32x160
16 =16 x 64 32x32x96
16%16 x 96
16x16=x96 —16x16x192
16 %16 % 96
16x16x96 —»16x%16x224
8x8x=96 16x16 =128

b

UpBlock

1

UpBlock

i

UpBlock

g

I—:{ ResidualBlock }—b[ ResidualBlock ]J

Bx8x12

—Residual Connections

Dimension Notation
Width x Height x Channels

Reduced Dimensionality

wan @— as in Autoencoder
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Residual Block 41

ResidualBlock

(may add convolution with kernel size 1 to residual connection
to generate tensor with the right number of channels)
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DownBlock and UpBlock

A

‘DownBlock

h 4

[ ResidualBlock ]

, UpBlock

[ ResidualBlock

A

)

[ ResidualBlock ]

’{ Concatenate

>

7'y

[ ResidualBlock

»

))

AveragePooling2D

’{ Concatenate

>

UpSampling2D

42
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Q

Generation in Multiple Steps

—

P
L . .__‘..
i
. 1 B .
L i L g
. - 3

—_—
=
=

K3 K3 3 5 1
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Interpolation 44

e Generation is deterministic given noise tensor a and b

= We can interpolate between different noise images

K 5 )
clejelelerErlrrer
= BRI EIRI R R
Ad 4 60163 0 63 O3 G L3 LY
AaOO000N NN
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Common Failures
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advanced gan
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ProGAN: Progressively Upsizing the Image +

L QNANIT IR0
L

- 2 RRAERET 16E
= 1 ] - |.I .
H P ALLI B,

¥ . N o

< NHELRSE 166

-oABARER 1N
- | i - e

P .:
~oEFARER G

e First train a model for lower resolution images

e Upscale the image in stages
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_ Source A

Coarse styles from source B

Middle styles from source B |

StyleGAN: Mixing Image Styles

Latent z € Z
Normalize

network f
FC
FC
FC
FC

FC
FC

RiE
FC

FinefromB

Synthesis network g

Const 4 x 4 x 512

style

=

Noise

AdaiN

i

Conv3x3

style

()

AdaiN

4x4

h 4

Upsample

Conv3x3

style

AdalN

Conv3x3

style

AdaIN

8x8

e
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VOQ-GAN: Vector Quantization 49

e Input: high dimensional vector

e K-Means Clustering

e Centroid vectors form a codebook, each vector is replaced with cluster ID
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Discrete Latent Space 50

Codebook
Adversarial loss
d 1 real/fake
| | (patches)
By By By 8y B B
- ) Discriminator
P e ‘ g,«- ﬁea]'a?nages* Fake
= : & F" images
| : ‘ -qu
H P
| e
[ |
= 11 &
[ | L 111

Alignment and commitment loss

Perceptual loss

e Vectors are replaced by their nearest centroid
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ViT VQ-GAN: Video Transformer

Input

: %
Reconstruction

StyleGAN
discriminator

Real/fake

e Instead of using ConvINNs, Transformer model predicts sequence of patches

' *
. . . n . e -
L8 "
F N

Transformer encoder +, DE-DD...D1
v 1 v
[ — — sos ]
Quantization [I]] see I Emkbﬂuk] Autoregressive Transformer
v , v 1
Transformer decoder ({DE-DD"”:
‘genemn'on Image undmtandfngr

v Image
EREER -8

Stage 1: Image quantization

Stage 2: Vector-quantized
image modeling

e This particular model also uses vector quantization
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text to image generation
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Text to Image 53

A head of broccoli made out of ]
modeling clay, smilingin the sun J
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DALL.E 2 s

"Leonarde da Vinci
early sketches
of a cyborg”

Input prompt

Text T
encoder ! —~

— == a

Generated image

Text en?eddmg Image embedding

e Text is encoded as a prior to the image generation process

e Key training step: Contrastive Language-Image Pre-training (CLIP)
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CLIP: Mapping Between Text and Images =

a cute banana
made from
modeling clay

a television
studio about
to broadcast

a satellite
photo of crops
and fields

a pup called
Rex siting on
the grass

a wildlife park
in the sun

e Given pairs of images and text (scraped from the Internet)

e [earn representations of text (using Transformer models)

e Learn representations of images (using ViT-VQ GAN)

e [earn mapping between them
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Contrastive Learning 56

a cute banana

madt_e from [
modeling clay encoder ¢ ¢ ¢ ¢ ¢ Transformers are used

to convert the text and
Transformer [ T I T I T3 I I T, ]images into embedding
vectors

CLIP is trained to maximize
N} the cosine similarity of the

Image N real pairs (the diagonal)
encoder and minimize the cosine
similarity of the N2-N
Vision incorrect pairs
Transformer

e Representation of text and image as a single vector, mapped to same size
e Training: minimize cosine similarity of real pairs

e Note: this is not a generative model
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Generation 57

Text embedding

l Start
e Image decoder is a Transformer model ¢
NENEE4

e Predicts patches of the image at each step ¢ -
e Generation is also conditioned . . —» .:
on the text representation (the prior) ¢ -
Decoder
M- I:I
e Alternatively: diffusion decoder ¢

II*II

Predicted image embedding
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58

stable diffusion

Robach et al. (2022):
High-Resolution Image Synthesis with Latent Diffusion Models
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Stable Diffusion 59

Generated from prompt “a photograph of an astronaut riding a horse”
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Latent Diffusion Model 60

4 —) @ Latent Space 7\ Conditi onina
‘ T HE Diffusion Process Eemantiq
Ma
— z @ Denoising U-Net €g N 2T Text
Repres
\l entations
D

-

Eixel Spa09

-

denoising step crossattention  switch  skip connection concat - J/
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zHE

«m—

%

\F:ixel Spac:9

[ -

Autoencoder 61

Convert image into lower-dimensional latent space
Trained independently as first step

Refinements

— KL loss (as in variational autoencoders)
— patch loss (for better detail rendering)
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Diffusion Model 62

- Latent Space N
Diffusion Process
= - Denoising U-Net € N zp

<

| T T TZT

“

denoising step skip connection concat

Operates in latent space — otherwise the same U-Net from before

Philipp Koehn Vision Models 25 April 2024



Conditioning on External Information «

¢ R 6onditionina

Eerlaznth

Denoising U-Net €g h Text

Repres
entations

crossattention  switch  sKip connection concat \\ "

Attention (Query, Key, Value) to representations of semantic maps, text, images
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Conditioning on External Information &

e External input y is converted into an intermediate representation 7, € R *dr

e For use in the attention model, the intermediate representations of the U-Net are
also flattened to o;(z,) € RYV*de

e Attention is Attention(Q, K, V) = softmax<Q K T) v
| 9 9 | \/g |
with Q = WCSL) pi(z) K= W[(é’) To(y) V= W‘(/Z) - 7o(y)

that map to vectors of size d

e Parameters for 7y and ¢y are jointly optimized using diffusion objective
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Text to Image 65

'A zombie in the "An image of an animal
style of Picasso’ half mouse half octopus’

e Text is represented as a sequence of words
e Transformer model generates 7y € R *dr

e Trained on language prompts

— LAION-400M
— 400 million text-image pairs

— extracted from web pages with
alt-text in HTML image tag

— filtered in various ways
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Semantic Maps 66

ltrEE

platfamicrete

e Trained on Open Images dataset of images with labelled object detection

— 9.2 million images collected from Flickr
— bounding boxes with object labels
— computer-assisted annotation: automatic labels vetted by humans
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Inpainting 67

e Automatic generation of training data with synthetic masks

e Training aims to reconstruct the original image

Philipp Koehn Vision Models 25 April 2024



68

video generation

OpenAl (2024): Video generation models as world simulators (Sora)
https://openai.com/research/video-generation-models-as-world-simulators
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e Up to a full minute of high definition video
e Compress image into lower dimensional latent space

e Decompose representation into spacetime patches
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Diffusion Model

- =

e Given noisy patches and conditioning text prompts

e Predict original clean patches using Transformer model

e Training data generated by re-captioning existing videos

— first, train captioning model
— use it to produce highly descriptive text captions for video
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Beyond Text Prompting 71

e Prompting with images (maybe images generated by DALL-E)
e Extending existing video (forward or backward)
e Video-to-video editing (video + text prompt — new video)

e Connecting videos
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questions?
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