Probabilistic Reasoning

Philipp Koehn

28 March 2019
Outline

- Uncertainty
- Probability
- Inference
- Independence and Bayes’ Rule
uncertainty
Uncertainty

- Let action $A_t =$ leave for airport t minutes before flight
 Will A_t get me there on time?

- Problems
 - partial observability (road state, other drivers’ plans, etc.)
 - noisy sensors (WBAL traffic reports)
 - uncertainty in action outcomes (flat tire, etc.)
 - immense complexity of modelling and predicting traffic

- Hence a purely logical approach either
 1. risks falsehood: "A_{25} will get me there on time"
 2. leads to conclusions that are too weak for decision making:
 "A_{25} will get me there on time if there’s no accident on the bridge
 and it doesn’t rain and my tires remain intact etc etc."
Methods for Handling Uncertainty

- **Default** or nonmonotonic logic:
 Assume my car does not have a flat tire
 Assume A_{25} works unless contradicted by evidence
 Issues: What assumptions are reasonable? How to handle contradiction?

- **Rules with fudge factors**:
 $A_{25} \rightarrow_{0.3} AtAirportOnTime$
 $Sprinkler \rightarrow_{0.99} WetGrass$
 $WetGrass \rightarrow_{0.7} Rain$
 Issues: Problems with combination, e.g., *Sprinkler causes Rain*?

- **Probability**
 Given the available evidence,
 A_{25} will get me there on time with probability 0.04
 Mahaviracarya (9th C.), Cardamo (1565) theory of gambling

- **(Fuzzy logic handles degree of truth NOT uncertainty e.g.,**
 $WetGrass$ is true to degree 0.2)
probability
Probability

- Probabilistic assertions **summarize** effects of
 - **laziness**: failure to enumerate exceptions, qualifications, etc.
 - **ignorance**: lack of relevant facts, initial conditions, etc.

- **Subjective** or **Bayesian** probability:
 Probabilities relate propositions to one’s own state of knowledge
 e.g., $P(A_{25}|\text{no reported accidents}) = 0.06$

- Might be learned from past experience of similar situations

- Probabilities of propositions change with new evidence:
 e.g., $P(A_{25}|\text{no reported accidents, 5 a.m.}) = 0.15$

- Analogous to logical entailment status $KB \models \alpha$, not truth.
Making Decisions under Uncertainty

• Suppose I believe the following:

\[
P(A_{25} \text{ gets me there on time|…}) = 0.04 \\
P(A_{90} \text{ gets me there on time|…}) = 0.70 \\
P(A_{120} \text{ gets me there on time|…}) = 0.95 \\
P(A_{1440} \text{ gets me there on time|…}) = 0.9999
\]

• Which action to choose?

• Depends on my preferences for missing flight vs. airport cuisine, etc.

• Utility theory is used to represent and infer preferences

• Decision theory = utility theory + probability theory
Probability Basics

- Begin with a set Ω—the sample space
e.g., 6 possible rolls of a die.
$\omega \in \Omega$ is a sample point/possible world/atomic event.

- A probability space or probability model is a sample space
 with an assignment $P(\omega)$ for every $\omega \in \Omega$ s.t.
 $0 \leq P(\omega) \leq 1$
 $\sum_{\omega} P(\omega) = 1$
e.g., $P(1) = P(2) = P(3) = P(4) = P(5) = P(6) = 1/6.$

- An event A is any subset of Ω

 \[P(A) = \sum_{\{\omega \in A\}} P(\omega) \]

- E.g., $P(\text{die roll } \leq 3) = P(1) + P(2) + P(3) = 1/6 + 1/6 + 1/6 = 1/2$
Random Variables

- A **random variable** is a function from sample points to some range, e.g., the reals or Booleans
e.g., $Odd(1) = true$.

- P induces a **probability distribution** for any r.v. X:

$$P(X = x_i) = \sum_{\{\omega : X(\omega) = x_i\}} P(\omega)$$

- E.g., $P(Odd = true) = P(1) + P(3) + P(5) = 1/6 + 1/6 + 1/6 = 1/2$
Propositions

- Think of a proposition as the event (set of sample points) where the proposition is true.

- Given Boolean random variables A and B:
 - event $a =$ set of sample points where $A(\omega) = true$
 - event $\neg a =$ set of sample points where $A(\omega) = false$
 - event $a \land b =$ points where $A(\omega) = true$ and $B(\omega) = true$

- Often in AI applications, the sample points are defined by the values of a set of random variables, i.e., the sample space is the Cartesian product of the ranges of the variables.

- With Boolean variables, sample point = propositional logic model
 - e.g., $A = true$, $B = false$, or $a \land \neg b$.
 - Proposition = disjunction of atomic events in which it is true
 - e.g., $(a \lor b) \equiv (\neg a \land b) \lor (a \land \neg b) \lor (a \land b)$
 - $\implies P(a \lor b) = P(\neg a \land b) + P(a \land \neg b) + P(a \land b)$
Why use Probability?

- The definitions imply that certain logically related events must have related probabilities

- E.g., $P(a \lor b) = P(a) + P(b) - P(a \land b)$
Syntax for Propositions

- **Propositional** or **Boolean** random variables

e.g., $Cavity$ (do I have a cavity?)

 $Cavity = \text{true}$ is a proposition, also written $cavity$

- **Discrete** random variables (finite or infinite)

e.g., $Weather$ is one of \{sunny, rain, cloudy, snow\}

 $Weather = \text{rain}$ is a proposition

 Values must be exhaustive and mutually exclusive

- **Continuous** random variables (bounded or unbounded)

e.g., $Temp = 21.6$; also allow, e.g., $Temp < 22.0$.

- **Arbitrary Boolean combinations** of basic propositions
Prior Probability

- Prior or unconditional probabilities of propositions
e.g., \(P(Cavity = \text{true}) = 0.1 \) and \(P(Weather = \text{sunny}) = 0.72 \) correspond to belief prior to arrival of any (new) evidence.

- Probability distribution gives values for all possible assignments:
 \[P(Weather) = \{0.72, 0.1, 0.08, 0.1\} \] (normalized, i.e., sums to 1)

- Joint probability distribution for a set of r.v.s gives the probability of every atomic event on those r.v.s (i.e., every sample point)
 \[P(Weather, Cavity) = \begin{pmatrix}
 \text{sunny} & \text{rain} & \text{cloudy} & \text{snow} \\
 0.144 & 0.02 & 0.016 & 0.02 \\
 0.576 & 0.08 & 0.064 & 0.08
\end{pmatrix} \]

- Every question about a domain can be answered by the joint distribution because every event is a sum of sample points.
Probability for Continuous Variables

- Express distribution as a parameterized function of value:
 \[P(X = x) = U[18, 26](x) = \text{uniform density between 18 and 26} \]

- Here \(P \) is a density; integrates to 1.
 \[P(X = 20.5) = 0.125 \] really means

 \[\lim_{dx \to 0} \frac{P(20.5 \leq X \leq 20.5 + dx)}{dx} = 0.125 \]
Gaussian Density

\[P(x) = \frac{1}{\sqrt{2\pi}\sigma} e^{-(x-\mu)^2/2\sigma^2} \]
inference
Conditional Probability

- Conditional or posterior probabilities
 e.g., $P(\text{cavity}|\text{toothache}) = 0.8$
 i.e., given that toothache is all I know
 NOT “if toothache then 80% chance of cavity”

- (Notation for conditional distributions:
 $P(Cavity|Toothache) = \text{2-element vector of 2-element vectors}$)

- If we know more, e.g., cavity is also given, then we have
 $P(\text{cavity}|\text{toothache}, \text{cavity}) = 1$
 Note: the less specific belief remains valid after more evidence arrives, but is not always useful

- New evidence may be irrelevant, allowing simplification, e.g.,
 $P(\text{cavity}|\text{toothache}, \text{RavensWin}) = P(\text{cavity}|\text{toothache}) = 0.8$
 This kind of inference, sanctioned by domain knowledge, is crucial
Conditional Probability

- **Definition of conditional probability:**
 \[P(a|b) = \frac{P(a \land b)}{P(b)} \text{ if } P(b) \neq 0 \]

- **Product rule** gives an alternative formulation:
 \[P(a \land b) = P(a|b)P(b) = P(b|a)P(a) \]

- A general version holds for whole distributions, e.g.,
 \[P(Weather, Cavity) = P(Weather|Cavity)P(Cavity) \]
 (View as a \(4 \times 2\) set of equations, **not** matrix multiplication)

- **Chain rule** is derived by successive application of product rule:
 \[P(X_1, \ldots, X_n) = P(X_1, \ldots, X_{n-1}) \ P(X_n|X_1, \ldots, X_{n-1}) \]
 \[= P(X_1, \ldots, X_{n-2}) \ P(X_{n-1}|X_1, \ldots, X_{n-2}) \ P(X_n|X_1, \ldots, X_{n-1}) \]
 \[= \ldots \]
 \[= \prod_{i=1}^{n} P(X_i|X_1, \ldots, X_{i-1}) \]
Inference by Enumeration

- Start with the joint distribution:

<table>
<thead>
<tr>
<th></th>
<th>toothache</th>
<th>¬toothache</th>
</tr>
</thead>
<tbody>
<tr>
<td>catch</td>
<td>.108</td>
<td>.072</td>
</tr>
<tr>
<td>¬catch</td>
<td>.012</td>
<td>.008</td>
</tr>
<tr>
<td>cavity</td>
<td>.016</td>
<td>.144</td>
</tr>
<tr>
<td>¬cavity</td>
<td>.064</td>
<td>.576</td>
</tr>
</tbody>
</table>

- For any proposition ϕ, sum the atomic events where it is true:

$$P(\phi) = \sum_{\omega: \omega \models \phi} P(\omega)$$

(catch = dentist’s steel probe gets caught in cavity)
Inference by Enumeration

- Start with the joint distribution:

\[
P(\phi) = \sum_{\omega: \omega \models \phi} P(\omega)
\]

\[
P(\text{toothache}) = 0.108 + 0.012 + 0.016 + 0.064 = 0.2
\]
Inference by Enumeration

- Start with the joint distribution:

\[
P(\phi) = \sum_{\omega: \omega \models \phi} P(\omega)
\]

\[
P(\text{cavity} \lor \text{toothache}) = 0.108 + 0.012 + 0.072 + 0.008 + 0.016 + 0.064 = 0.28
\]
Inference by Enumeration

- Start with the joint distribution:

<table>
<thead>
<tr>
<th></th>
<th>toothache</th>
<th>¬toothache</th>
</tr>
</thead>
<tbody>
<tr>
<td>catch</td>
<td>.108</td>
<td>.012</td>
</tr>
<tr>
<td>¬catch</td>
<td>.072</td>
<td>.008</td>
</tr>
<tr>
<td>cavity</td>
<td>.108</td>
<td>.012</td>
</tr>
<tr>
<td>¬cavity</td>
<td>.016</td>
<td>.064</td>
</tr>
</tbody>
</table>

- Can also compute conditional probabilities:

\[
P(\neg \text{cavity}|\text{toothache}) = \frac{P(\neg \text{cavity} \land \text{toothache})}{P(\text{toothache})} = \frac{0.016 + 0.064}{0.108 + 0.012 + 0.016 + 0.064} = 0.4\]
Normalization

- Denominator can be viewed as a normalization constant α

$$
P(Cavity|toothache) = \alpha P(Cavity, toothache)
= \alpha [P(Cavity, toothache, catch) + P(Cavity, toothache, \neg catch)]
= \alpha [0.108, 0.016 + 0.012, 0.064]
= \alpha [0.12, 0.08] = 0.6, 0.4
$$

- General idea: compute distribution on query variable by fixing evidence variables and summing over hidden variables
Inference by Enumeration

- Let \(X \) be all the variables. Typically, we want the posterior joint distribution of the query variables \(Y \) given specific values \(e \) for the evidence variables \(E \).

- Let the hidden variables be \(H = X - Y - E \).

- Then the required summation of joint entries is done by summing out the hidden variables:
 \[
P(Y|E=e) = \alpha P(Y, E=e) = \alpha \sum_{h} P(Y, E=e, H=h)
 \]

- The terms in the summation are joint entries because \(Y, E, \) and \(H \) together exhaust the set of random variables.

- Obvious problems
 - Worst-case time complexity \(O(d^n) \) where \(d \) is the largest arity
 - Space complexity \(O(d^n) \) to store the joint distribution
 - How to find the numbers for \(O(d^n) \) entries???
independence
Independence

- \(A \) and \(B \) are independent iff
 \[
 P(A|B) = P(A) \quad \text{or} \quad P(B|A) = P(B) \quad \text{or} \quad P(A, B) = P(A)P(B)
 \]

- \(P(\text{Toothache, Catch, Cavity, Weather}) = P(\text{Toothache, Catch, Cavity})P(\text{Weather}) \)

- 32 entries reduced to 12; for \(n \) independent biased coins, \(2^n \to n \)

- Absolute independence powerful but rare

- Dentistry is a large field with hundreds of variables, none of which are independent. What to do?
Conditional Independence

- \(P(\text{Toothache, Cavity, Catch})\) has \(2^3 - 1 = 7\) independent entries

- If I have a cavity, the probability that the probe catches in it doesn’t depend on whether I have a toothache:

 \[
 (1) \quad P(\text{catch}|\text{toothache, cavity}) = P(\text{catch}|\text{cavity})
 \]

- The same independence holds if I haven’t got a cavity:

 \[
 (2) \quad P(\text{catch}|\text{toothache, ¬cavity}) = P(\text{catch}|¬\text{cavity})
 \]

- \(\text{Catch}\) is conditionally independent of \(\text{Toothache}\) given \(\text{Cavity}\):

 \[
 P(\text{Catch}|\text{Toothache}, \text{Cavity}) = P(\text{Catch}|\text{Cavity})
 \]

- Equivalent statements:

 \[
 P(\text{Toothache}|\text{Catch, Cavity}) = P(\text{Toothache}|\text{Cavity})
 \]
 \[
 P(\text{Toothache, Catch}|\text{Cavity}) = P(\text{Toothache}|\text{Cavity})P(\text{Catch}|\text{Cavity})
 \]
Conditional Independence

• Write out full joint distribution using chain rule:
 \[
 P(\text{Toothache}, \text{Catch}, \text{Cavity}) = P(\text{Toothache}|\text{Catch}, \text{Cavity})P(\text{Catch}, \text{Cavity}) \\
 = P(\text{Toothache}|\text{Catch}, \text{Cavity})P(\text{Catch}|\text{Cavity})P(\text{Cavity}) \\
 = P(\text{Toothache}|\text{Cavity})P(\text{Catch}|\text{Cavity})P(\text{Cavity})
 \]

• I.e., 2 + 2 + 1 = 5 independent numbers (equations 1 and 2 remove 2)

• In most cases, the use of conditional independence reduces the size of the representation of the joint distribution from exponential in \(n \) to linear in \(n \).

• Conditional independence is our most basic and robust form of knowledge about uncertain environments.
bayes rule
Bayes’ Rule

• Product rule \(P(a \land b) = P(a|b)P(b) = P(b|a)P(a) \)

\[\implies \text{Bayes’ rule} \quad P(a|b) = \frac{P(b|a)P(a)}{P(b)} \]

• Or in distribution form

\[P(Y|X) = \frac{P(X|Y)P(Y)}{P(X)} = \alpha P(X|Y)P(Y) \]
Bayes’ Rule

• Useful for assessing diagnostic probability from causal probability

\[
P(Cause|Effect) = \frac{P(Effect|Cause)P(Cause)}{P(Effect)}
\]

• E.g., let \(M \) be meningitis, \(S \) be stiff neck:

\[
P(m|s) = \frac{P(s|m)P(m)}{P(s)} = \frac{0.8 \times 0.0001}{0.1} = 0.0008
\]

• Note: posterior probability of meningitis still very small!
Bayes’ Rule and Conditional Independence

- Example of a naive Bayes model

\[
P(Cavity | \text{toothache} \land \text{catch}) \\
= \alpha P(\text{toothache} \land \text{catch} | Cavity) P(Cavity) \\
= \alpha P(\text{toothache} | Cavity) P(\text{catch} | Cavity) P(Cavity)
\]

- Generally:

\[
P(Cause, \text{Effect}_1, \ldots, \text{Effect}_n) = P(Cause) \prod_i P(\text{Effect}_i | Cause)
\]

- Total number of parameters is linear in \(n\)
wampus world
Wumpus World

- $P_{ij} = true$ iff $[i, j]$ contains a pit

- $B_{ij} = true$ iff $[i, j]$ is breezy

Include only $B_{1,1}, B_{1,2}, B_{2,1}$ in the probability model
Specifying the Probability Model

- The full joint distribution is $P(P_1, \ldots, P_4, B_{1,1}, B_{1,2}, B_{2,1})$

- Apply product rule: $P(B_{1,1}, B_{1,2}, B_{2,1} | P_1, \ldots, P_4) P(P_1, \ldots, P_4)$

This gives us: $P(\text{Effect} | \text{Cause})$

- First term: 1 if pits are adjacent to breezes, 0 otherwise

- Second term: pits are placed randomly, probability 0.2 per square:

$$P(P_1, \ldots, P_4) = \prod_{i,j=1,1}^{4,4} P(P_{i,j}) = 0.2^n \times 0.8^{16-n}$$

for n pits.
Observations and Query

• We know the following facts:
 \[b = \neg b_{1,1} \land b_{1,2} \land b_{2,1} \]
 \[known = \neg p_{1,1} \land \neg p_{1,2} \land \neg p_{2,1} \]

• Query is \(P(P_{1,3}|known, b) \)

• Define \(Unknown = P_{ij} \)s other than \(P_{1,3} \) and \(Known \)

• For inference by enumeration, we have
 \[P(P_{1,3}|known, b) = \alpha \sum_{unknown} P(P_{1,3}, unknown, known, b) \]

• Grows exponentially with number of squares!
Using Conditional Independence

- Basic insight: observations are conditionally independent of other hidden squares given neighbouring hidden squares

- Define $\text{Unknown} = \text{Fringe} \cup \text{Other}$

 $$P(b|P_{1,3}, \text{Known, Unknown}) = P(b|P_{1,3}, \text{Known, Fringe})$$

- Manipulate query into a form where we can use this!
Using Conditional Independence

\[P(P_{1,3}|\text{known}, b) = \alpha \sum_{\text{unknown}} P(P_{1,3}, \text{unknown}, \text{known}, b) \]

\[= \alpha \sum_{\text{unknown}} P(b|P_{1,3}, \text{known}, \text{unknown}) P(P_{1,3}, \text{known}, \text{unknown}) \]

\[= \alpha \sum_{\text{fringe}} \sum_{\text{other}} P(b|\text{known}, P_{1,3}, \text{fringe}, \text{other}) P(P_{1,3}, \text{known}, \text{fringe}, \text{other}) \]

\[= \alpha \sum_{\text{fringe}} \sum_{\text{other}} P(b|\text{known}, P_{1,3}, \text{fringe}) P(P_{1,3}, \text{known}, \text{fringe}, \text{other}) \]

\[= \alpha \sum_{\text{fringe}} P(b|\text{known}, P_{1,3}, \text{fringe}) \sum_{\text{other}} P(P_{1,3}, \text{known}, \text{fringe}, \text{other}) \]

\[= \alpha \sum_{\text{fringe}} P(b|\text{known}, P_{1,3}, \text{fringe}) \sum_{\text{other}} P(P_{1,3}) P(\text{known}) P(\text{fringe}) P(\text{other}) \]

\[= \alpha P(\text{known}) P(P_{1,3}) \sum_{\text{fringe}} P(b|\text{known}, P_{1,3}, \text{fringe}) P(\text{fringe}) \sum_{\text{other}} P(\text{other}) \]

\[= \alpha' P(P_{1,3}) \sum_{\text{fringe}} P(b|\text{known}, P_{1,3}, \text{fringe}) P(\text{fringe}) \]
Using Conditional Independence

\[P(P_{1,3}| \text{known}, b) = \alpha' \left(0.2(0.04 + 0.16 + 0.16), 0.8(0.04 + 0.16) \right) \]

\[\approx \langle 0.31, 0.69 \rangle \]

\[P(P_{2,2}| \text{known}, b) \approx \langle 0.86, 0.14 \rangle \]
Summary

• Probability is a rigorous formalism for uncertain knowledge

• Joint probability distribution specifies probability of every atomic event

• Queries can be answered by summing over atomic events

• For nontrivial domains, we must find a way to reduce the joint size

• Independence and conditional independence provide the tools