The world is everything that is the case.

Wittgenstein, Tractatus
Outline

- Knowledge-based agents
- Logic in general—models and entailment
- Propositional (Boolean) logic
- Equivalence, validity, satisfiability
- Inference rules and theorem proving
 - forward chaining
 - backward chaining
 - resolution
knowledge-based agents
Knowledge-based Agent

- **Knowledge base** = set of sentences in a **formal** language

- **Declarative** approach to building an agent (or other system): **TELL** it what it needs to know

- Then it can **ASK** itself what to do—answers should follow from the KB

- Agents can be viewed at the **knowledge level**
 i.e., **what they know**, regardless of how implemented

- Or at the **implementation level**
 i.e., data structures in KB and algorithms that manipulate them
A Simple Knowledge-Based Agent

function KB-AGENT(percept) returns an action

static: KB, a knowledge base

\[t \], a counter, initially 0, indicating time

\[TELL(KB, MAKE-PERCEPT-SENTENCE(percept, t)) \]

\[action \leftarrow ASK(KB, MAKE-ACTION-QUERY(t)) \]

\[TELL(KB, MAKE-ACTION-SENTENCE(action, t)) \]

\[t \leftarrow t + 1 \]

return action

- The agent must be able to
 - represent states, actions, etc.
 - incorporate new percepts
 - update internal representations of the world
 - deduce hidden properties of the world
 - deduce appropriate actions
example
Wumpus World PEAS Description

- **Performance measure**
 - gold +1000, death -1000
 - -1 per step, -10 for using the arrow

- **Environment**
 - squares adjacent to wumpus are smelly
 - squares adjacent to pit are breezy
 - glitter iff gold is in the same square
 - shooting kills wumpus if you are facing it
 - shooting uses up the only arrow
 - grabbing picks up gold if in same square
 - releasing drops the gold in same square

- **Actuators** Left turn, Right turn, Forward, Grab, Release, Shoot

- **Sensors** Breeze, Glitter, Smell
Wumpus World Characterization

- **Observable?** No—only local perception
- **Deterministic?** Yes—outcomes exactly specified
- **Episodic?** No—sequential at the level of actions
- **Static?** Yes—Wumpus and Pits do not move
- **Discrete?** Yes
- **Single-agent?** Yes—Wumpus is essentially a natural feature
Exploring a Wumpus World
Tight Spot

- Breeze in (1,2) and (2,1)
 \[\Rightarrow\] no safe actions

- Assuming pits uniformly distributed,
 (2,2) has pit w/ prob 0.86, vs. 0.31
Tight Spot

- Smell in (1,1)
 \[\rightarrow\] cannot move

- Can use a strategy of **coercion**: shoot straight ahead
 - wumpus was there \[\rightarrow\] dead \[\rightarrow\] safe
 - wumpus wasn’t there \[\rightarrow\] safe
logic in general
Logic in General

- **Logics** are formal languages for representing information such that conclusions can be drawn

- **Syntax** defines the sentences in the language

- **Semantics** define the “meaning” of sentences; i.e., define truth of a sentence in a world

- E.g., the language of arithmetic
 - \(x + 2 \geq y \) is a sentence; \(x^2 + y > \) is not a sentence
 - \(x + 2 \geq y \) is true iff the number \(x + 2 \) is no less than the number \(y \)
 - \(x + 2 \geq y \) is true in a world where \(x = 7, \ y = 1 \)
 - \(x + 2 \geq y \) is false in a world where \(x = 0, \ y = 6 \)
Entailment

- **Entailment** means that one thing **follows from** another:

 \[KB \models \alpha \]

- Knowledge base \(KB \) entails sentence \(\alpha \) if and only if \(\alpha \) is true in all worlds where \(KB \) is true.

- E.g., the KB containing “the Ravens won” and “the Jays won” entails “the Ravens won or the Jays won.”

- E.g., \(x + y = 4 \) entails \(4 = x + y \).

- Entailment is a relationship between sentences (i.e., **syntax**) that is based on **semantics**.

- Note: brains process **syntax** (of some sort)
• Logicians typically think in terms of models, which are formally structured worlds with respect to which truth can be evaluated

• We say m is a model of a sentence α if α is true in m

• $M(\alpha)$ is the set of all models of α

$\Rightarrow KB \models \alpha$ if and only if $M(KB) \subseteq M(\alpha)$

• E.g. $KB =$ Ravens won and Jays won
 $\alpha =$ Ravens won
Entailment in the Wumpus World

- Situation after detecting nothing in [1,1], moving right, breeze in [2,1]
- Consider possible models for all ?, assuming only pits
- 3 Boolean choices \implies 8 possible models
Possible Wumpus Models
Valid Wumpus Models

\[KB = \text{wumpus-world rules + observations} \]
Entailment

\[KB = \text{wumpus-world rules + observations} \]

\[\alpha_1 = "[1,2] is safe", \, KB \models \alpha_1, \text{ proved by model checking} \]
Valid Wumpus Models

$KB = \text{wumpus-world rules + observations}$
Not Entailed

\[KB = \text{wumpus-world rules + observations} \]

\[\alpha_2 = \text{"[2,2] is safe", } KB \not\models \alpha_2 \]
Inference

- \(KB \vdash_i \alpha = \) sentence \(\alpha \) can be derived from \(KB \) by procedure \(i \)

- Consequences of \(KB \) are a haystack; \(\alpha \) is a needle.
 Entailment = needle in haystack; inference = finding it

- **Soundness:** \(i \) is sound if
 whenever \(KB \vdash_i \alpha \), it is also true that \(KB \vDash \alpha \)

- **Completeness:** \(i \) is complete if
 whenever \(KB \vDash \alpha \), it is also true that \(KB \vdash_i \alpha \)

- Preview: we will define a logic (first-order logic) which is expressive enough to say almost anything of interest, and for which there exists a sound and complete inference procedure.

- That is, the procedure will answer any question whose answer follows from what is known by the \(KB \).
propositional logic
Propositional Logic: Syntax

• Propositional logic is the simplest logic—illustrates basic ideas

• The proposition symbols P_1, P_2 etc are sentences

• If P is a sentence, $\neg P$ is a sentence (negation)

• If P_1 and P_2 are sentences, $P_1 \land P_2$ is a sentence (conjunction)

• If P_1 and P_2 are sentences, $P_1 \lor P_2$ is a sentence (disjunction)

• If P_1 and P_2 are sentences, $P_1 \implies P_2$ is a sentence (implication)

• If P_1 and P_2 are sentences, $P_1 \iff P_2$ is a sentence (biconditional)
Propositional Logic: Semantics

- Each model specifies true/false for each proposition symbol

 E.g. $P_{1,2} \quad P_{2,2} \quad P_{3,1}$
 $true \quad true \quad false$

 (with these symbols, 8 possible models, can be enumerated automatically)

- Rules for evaluating truth with respect to a model m:

 \[\neg P \quad is \ true \ iff \quad P \quad is \ false \]

 \[P_1 \land P_2 \quad is \ true \ iff \quad P_1 \quad is \ true \ and \quad P_2 \quad is \ true \]

 \[P_1 \lor P_2 \quad is \ true \ iff \quad P_1 \quad is \ true \ or \quad P_2 \quad is \ true \]

 \[P_1 \Rightarrow P_2 \quad is \ true \ iff \quad P_1 \quad is \ false \ or \quad P_2 \quad is \ true \]

 i.e., \[P_1 \Leftrightarrow P_2 \quad is \ true \ iff \quad P_1 \quad is \ true \ and \quad P_2 \quad is \ false \]

 \[P_1 \Leftrightarrow P_2 \quad is \ true \ iff \quad P_1 \quad is \ true \ and \quad P_2 \quad is \ false \]

- Simple recursive process evaluates an arbitrary sentence, e.g.,

 \[\neg P_{1,2} \land (P_{2,2} \lor P_{3,1}) = true \land (false \lor true) = true \land true = true \]
Truth Tables for Connectives

<table>
<thead>
<tr>
<th>P</th>
<th>Q</th>
<th>$\neg P$</th>
<th>$P \land Q$</th>
<th>$P \lor Q$</th>
<th>$P \Rightarrow Q$</th>
<th>$P \iff Q$</th>
</tr>
</thead>
<tbody>
<tr>
<td>false</td>
<td>false</td>
<td>true</td>
<td>false</td>
<td>false</td>
<td>true</td>
<td>true</td>
</tr>
<tr>
<td>false</td>
<td>true</td>
<td>true</td>
<td>false</td>
<td>true</td>
<td>true</td>
<td>false</td>
</tr>
<tr>
<td>true</td>
<td>false</td>
<td>false</td>
<td>false</td>
<td>true</td>
<td>true</td>
<td>false</td>
</tr>
<tr>
<td>true</td>
<td>true</td>
<td>false</td>
<td>true</td>
<td>true</td>
<td>true</td>
<td>true</td>
</tr>
</tbody>
</table>
Wumpus World Sentences

- Let $P_{i,j}$ be true if there is a pit in $[i,j]$
 - observation $R_1: \neg P_{1,1}$

- Let $B_{i,j}$ be true if there is a breeze in $[i,j]$.

- “Pits cause breezes in adjacent squares”
 - rule $R_2: B_{1,1} \iff (P_{1,2} \lor P_{2,1})$
 - rule $R_3: B_{2,1} \iff (P_{1,1} \lor P_{2,2} \lor P_{3,1})$
 - observation $R_4: \neg B_{1,1}$
 - observation $R_5: B_{2,1}$

- What can we infer about $P_{1,2}, P_{2,1}, P_{2,2}$, etc.?
Truth Tables for Inference

<table>
<thead>
<tr>
<th>$B_{1,1}$</th>
<th>$B_{2,1}$</th>
<th>$P_{1,1}$</th>
<th>$P_{1,2}$</th>
<th>$P_{2,1}$</th>
<th>$P_{2,2}$</th>
<th>$P_{3,1}$</th>
<th>R_{1}</th>
<th>R_{2}</th>
<th>R_{3}</th>
<th>R_{4}</th>
<th>R_{5}</th>
<th>KB</th>
</tr>
</thead>
<tbody>
<tr>
<td>false</td>
<td>false</td>
<td>false</td>
<td>false</td>
<td>false</td>
<td>false</td>
<td>false</td>
<td>true</td>
<td>true</td>
<td>true</td>
<td>true</td>
<td>false</td>
<td>false</td>
</tr>
<tr>
<td>false</td>
<td>false</td>
<td>false</td>
<td>false</td>
<td>false</td>
<td>false</td>
<td>false</td>
<td>true</td>
<td>true</td>
<td>true</td>
<td>true</td>
<td>false</td>
<td>false</td>
</tr>
<tr>
<td>false</td>
<td>false</td>
<td>false</td>
<td>false</td>
<td>false</td>
<td>false</td>
<td>false</td>
<td>true</td>
<td>false</td>
<td>true</td>
<td>true</td>
<td>true</td>
<td>true</td>
</tr>
<tr>
<td>false</td>
<td>true</td>
<td>false</td>
<td>false</td>
<td>false</td>
<td>false</td>
<td>true</td>
<td>true</td>
<td>true</td>
<td>true</td>
<td>true</td>
<td>true</td>
<td>true</td>
</tr>
<tr>
<td>false</td>
<td>true</td>
<td>false</td>
<td>false</td>
<td>true</td>
<td>false</td>
<td>true</td>
<td>true</td>
<td>true</td>
<td>true</td>
<td>true</td>
<td>false</td>
<td>false</td>
</tr>
<tr>
<td>true</td>
<td>false</td>
<td>false</td>
</tr>
</tbody>
</table>

- Enumerate rows (different assignments to symbols $P_{i,j}$)
- Check if rules are satisfied (R_i)
- Valid model (KB) if all rules satisfied
Inference by Enumeration

- Depth-first enumeration of all models is sound and complete

```
function TT-ENTAILS?(KB, α) returns true or false
inputs: KB, the knowledge base, a sentence in propositional logic
        α, the query, a sentence in propositional logic
symbols ← a list of the proposition symbols in KB and α
return TT-CHECK-ALL(KB, α, symbols, [])
```

```
function TT-CHECK-ALL(KB, α, symbols, model) returns true or false
if EMPTY?(symbols) then
    if PL-TRUE?(KB, model) then return PL-TRUE?(α, model)
    else return true
else do
    P ← FIRST(symbols); rest ← REST(symbols)
    return TT-CHECK-ALL(KB, α, rest, EXTEND(P, true, model)) and
          TT-CHECK-ALL(KB, α, rest, EXTEND(P, false, model))
```

- $O(2^n)$ for n symbols; problem is co-NP-complete
equivalence, validity, satisfiability
Logical Equivalence

- Two sentences are logically equivalent iff true in same models:
 \[\alpha \equiv \beta \text{ if and only if } \alpha \models \beta \text{ and } \beta \models \alpha \]

- \[(\alpha \land \beta) \equiv (\beta \land \alpha)\] commutativity of \(\land \)
- \[(\alpha \lor \beta) \equiv (\beta \lor \alpha)\] commutativity of \(\lor \)
- \[((\alpha \land \beta) \land \gamma) \equiv (\alpha \land (\beta \land \gamma))\] associativity of \(\land \)
- \[((\alpha \lor \beta) \lor \gamma) \equiv (\alpha \lor (\beta \lor \gamma))\] associativity of \(\lor \)
- \[\neg(\neg \alpha) \equiv \alpha\] double-negation elimination
- \[(\alpha \implies \beta) \equiv (\neg \beta \implies \neg \alpha)\] contraposition
- \[(\alpha \implies \beta) \equiv (\neg \alpha \lor \beta)\] implication elimination
- \[(\alpha \iff \beta) \equiv (((\alpha \implies \beta) \land (\beta \implies \alpha))\] biconditional elimination
- \[\neg(\alpha \land \beta) \equiv (\neg \alpha \lor \neg \beta)\] De Morgan
- \[\neg(\alpha \lor \beta) \equiv (\neg \alpha \land \neg \beta)\] De Morgan
- \[(\alpha \land (\beta \lor \gamma)) \equiv ((\alpha \land \beta) \lor (\alpha \land \gamma))\] distributivity of \(\land \) over \(\lor \)
- \[(\alpha \lor (\beta \land \gamma)) \equiv ((\alpha \lor \beta) \land (\alpha \lor \gamma))\] distributivity of \(\lor \) over \(\land \)
Validity and Satisfiability

- A sentence is valid if it is true in all models,
 e.g., True, \(A \lor \neg A \), \(A \implies A \), \((A \land (A \implies B)) \implies B \)

- Validity is connected to inference via the Deduction Theorem:
 \(KB \models \alpha \) if and only if \((KB \implies \alpha) \) is valid

- A sentence is satisfiable if it is true in some model
 e.g., \(A \lor B \), \(C \)

- A sentence is unsatisfiable if it is true in no models
 e.g., \(A \land \neg A \)

- Satisfiability is connected to inference via the following:
 \(KB \models \alpha \) if and only if \((KB \land \neg \alpha) \) is unsatisfiable
 i.e., prove \(\alpha \) by reductio ad absurdum
inference
Proof Methods

- Proof methods divide into (roughly) two kinds

 - Application of inference rules
 - Legitimate (sound) generation of new sentences from old
 - Proof = a sequence of inference rule applications
 Can use inference rules as operators in a standard search alg.
 - Typically require translation of sentences into a normal form

 - Model checking
 - truth table enumeration (always exponential in n)
 - improved backtracking
 - heuristic search in model space (sound but incomplete)
 e.g., min-conflicts-like hill-climbing algorithms
Forward and Backward Chaining

- **Horn Form** (restricted)

 \(\text{KB} = \text{conjunction of Horn clauses} \)

- Horn clause =

 - proposition symbol; or
 - (conjunction of symbols) \(\Rightarrow \) symbol

 e.g., \(C \land (B \Rightarrow A) \land (C \land D \Rightarrow B) \)

- **Modus Ponens** (for Horn Form): complete for Horn KBs

 \[
 \alpha_1, \ldots, \alpha_n, \quad \alpha_1 \land \cdots \land \alpha_n \Rightarrow \beta
 \]

 \[
 \frac{\sum}{\beta}
 \]

- Can be used with **forward chaining or backward chaining**

- These algorithms are very natural and run in **linear** time
Example

- Idea: fire any rule whose premises are satisfied in the KB, add its conclusion to the KB, until query is found

\[
P \implies Q
\]
\[
L \land M \implies P
\]
\[
B \land L \implies M
\]
\[
A \land P \implies L
\]
\[
A \land B \implies L
\]
\[
A
\]
\[
B\]
forward chaining
Forward Chaining

• Start with given proposition symbols (atomic sentence)
 e.g., A and B

• Iteratively try to infer truth of additional proposition symbols
 e.g., $A \land B \implies C$, therefore we establish C is true

• Continue until
 – no more inference can be carried out, or
 – goal is reached
Forward Chaining Example

- Given

 \[P \implies Q \]
 \[L \land M \implies P \]
 \[B \land L \implies M \]
 \[A \land P \implies L \]
 \[A \land B \implies L \]
 \[A \]
 \[B \]

- Agenda: \(A, B \)

- Annotate horn clauses with number of premises
Forward Chaining Example

- Process agenda item \(A \)
- Decrease count for horn clauses in which \(A \) is premise
Forward Chaining Example

- Process agenda item B
- Decrease count for horn clauses in which B is premise
- $A \land B \implies L$ has now fulfilled premise
- Add L to agenda
Forward Chaining Example

- Process agenda item \(L \)
- Decrease count for horn clauses in which \(L \) is premise
- \(B \land L \implies M \) has now fulfilled premise
- Add \(M \) to agenda
Forward Chaining Example

- Process agenda item M
- Decrease count for horn clauses in which M is premise
- $L \land M \implies P$ has now fulfilled premise
- Add P to agenda
Forward Chaining Example

- Process agenda item P
- Decrease count for horn clauses in which P is premise
- $P \rightarrow Q$ has now fulfilled premise
- Add Q to agenda
- $A \land P \rightarrow L$ has now fulfilled premise
Forward Chaining Example

- Process agenda item P
- Decrease count for horn clauses in which P is premise
 - $P \implies Q$ has now fulfilled premise
- Add Q to agenda
 - $A \land P \implies L$ has now fulfilled premise
- But L is already inferred
Forward Chaining Example

- Process agenda item Q
- Q is inferred
- Done
function PL-FC-ENTAILS?(KB, q) returns true or false

inputs: KB, the knowledge base, a set of propositional Horn clauses
q, the query, a proposition symbol

local variables: count, a table, indexed by clause, init. number of premises
inferred, a table, indexed by symbol, each entry initially false
agenda, a list of symbols, initially the symbols known in KB

while agenda is not empty do
 p ← POP(agenda)
 unless inferred[p] do
 inferred[p] ← true
 for each Horn clause c in whose premise p appears do
 decrement count[c]
 if count[c] = 0 then do
 if HEAD[c] = q then return true
 PUSH(HEAD[c], agenda)
 return false
backward chaining
Backward Chaining

- Idea: work backwards from the query Q:
 - to prove Q by BC,
 - check if Q is known already, or
 - prove by BC all premises of some rule concluding q

- Avoid loops: check if new subgoal is already on the goal stack

- Avoid repeated work: check if new subgoal
 1. has already been proved true, or
 2. has already failed
Backward Chaining Example

- A and B are known to be true
- Q needs to be proven
Backward Chaining Example

- Current goal: Q
- Q can be inferred by $P \implies Q$
- P needs to be proven
Backward Chaining Example

- Current goal: P
- P can be inferred by $L \land M \implies P$
- L and M need to be proven
Backward Chaining Example

- Current goal: L
- L can be inferred by $A \land P \implies L$
- A is already true
- P is already a goal

\Rightarrow repeated subgoal
Backward Chaining Example

- Current goal: L
Backward Chaining Example

- Current goal: L
- L can be inferred by $A \land B \implies L$
- Both are true
Backward Chaining Example

- Current goal: L
- L can be inferred by $A \land B \implies L$
- Both are true

$\Rightarrow L$ is true
Backward Chaining Example

- Current goal: M
Backward Chaining Example

- Current goal: M
- M can be inferred by $B \land L \implies M$
Backward Chaining Example

- Current goal: M
- M can be inferred by $B \land L \implies M$
- Both are true

$\Rightarrow M$ is true
Backward Chaining Example

- Current goal: P
- P can be inferred by $L \land M \implies P$
- Both are true

$\Rightarrow P$ is true
Backward Chaining Example

- Current goal: \(Q \)
- \(Q \) can be inferred by \(P \implies Q \)
- \(P \) is true

\(\Rightarrow \) \(Q \) is true
Forward vs. Backward Chaining

- FC is data-driven, cf. automatic, unconscious processing, e.g., object recognition, routine decisions

- May do lots of work that is irrelevant to the goal

- BC is goal-driven, appropriate for problem-solving, e.g., Where are my keys? How do I get into a PhD program?

- Complexity of BC can be much less than linear in size of KB
resolution
Resolution

- **Conjunctive Normal Form** (CNF—universal)

 conjunction of disjunctions of literals

 clauses

 E.g., \((A \lor \neg B) \land (B \lor \neg C \lor \neg D)\)

- **Resolution** inference rule (for CNF): complete for propositional logic

 \[
 \frac{\ell_1 \lor \cdots \lor \ell_k, \quad m_1 \lor \cdots \lor m_n}{\ell_1 \lor \cdots \lor \ell_{i-1} \lor \ell_{i+1} \lor \cdots \lor \ell_k \lor m_1 \lor \cdots \lor m_{j-1} \lor m_{j+1} \lor \cdots \lor m_n}
 \]

 where \(\ell_i\) and \(m_j\) are complementary literals. E.g.,

 \[
 \frac{P_{1,3} \lor P_{2,2}, \quad \neg P_{2,2}}{P_{1,3}}
 \]

- Resolution is sound and complete for propositional logic
Wampus World

- Rules such as: “If breeze, then a pit adjacent.”

\[B_{1,1} \Leftrightarrow (P_{1,2} \lor P_{2,1}) \]
Conversion to CNF

\[B_{1,1} \iff (P_{1,2} \lor P_{2,1}) \]

1. Eliminate \(\iff \), replacing \(\alpha \iff \beta \) with \((\alpha \implies \beta) \land (\beta \implies \alpha) \).

 \[(B_{1,1} \implies (P_{1,2} \lor P_{2,1})) \land ((P_{1,2} \lor P_{2,1}) \implies B_{1,1}) \]

2. Eliminate \(\implies \), replacing \(\alpha \implies \beta \) with \(\neg \alpha \lor \beta \).

 \[(\neg B_{1,1} \lor P_{1,2} \lor P_{2,1}) \land (\neg(P_{1,2} \lor P_{2,1}) \lor B_{1,1}) \]

3. Move \(\neg \) inwards using de Morgan’s rules and double-negation:

 \[(\neg B_{1,1} \lor P_{1,2} \lor P_{2,1}) \land ((\neg P_{1,2} \land \neg P_{2,1}) \lor B_{1,1}) \]

4. Apply distributivity law (\(\lor \) over \(\land \)) and flatten:

 \[(\neg B_{1,1} \lor P_{1,2} \lor P_{2,1}) \land (\neg P_{1,2} \lor B_{1,1}) \land (\neg P_{2,1} \lor B_{1,1}) \]
Resolution Example

- $KB = (B_{1,1} \iff (P_{1,2} \lor P_{2,1}))$

 reformulated as:

 $(\neg B_{1,1} \lor P_{1,2} \lor P_{2,1}) \land (\neg P_{1,2} \lor B_{1,1}) \land (\neg P_{2,1} \lor B_{1,1})$

- Observation: $\neg B_{1,1}$

- Goal: disprove: $\alpha = \neg P_{1,2}$

- Resolution

 \[
 \begin{array}{c}
 \neg P_{1,2} \lor B_{1,1} \\
 \hline
 \neg B_{1,1} \\
 \hline
 \neg P_{1,2}
 \end{array}
 \]

- Resolution

 \[
 \begin{array}{c}
 \neg P_{1,2} \\
 \hline
 P_{1,2} \\
 \hline
 false
 \end{array}
 \]
Resolution Example

- In practice: all resolvable pairs of clauses are combined
Resolution Algorithm

- Proof by contradiction, i.e., show $KB \land \neg \alpha$ unsatisfiable

```plaintext
function PL-RESOLUTION(KB, \alpha) returns true or false
    inputs: KB, the knowledge base, a sentence in propositional logic
             \alpha, the query, a sentence in propositional logic
    clauses ← the set of clauses in the CNF representation of $KB \land \neg \alpha$
    new ← \{
    loop do
        for each $C_i, C_j$ in clauses do
            resolvents ← PL-RESOLVE($C_i, C_j$)
            if resolvents contains the empty clause then return true
            new ← new ∪ resolvents
            if new ⊆ clauses then return false
        clauses ← clauses ∪ new
    end loop
end function
```
Logical Agent

• Logical agent for Wumpus world explores actions
 – observe glitter → done
 – unexplored safe spot → plan route to it
 – if Wampus in possible spot → shoot arrow
 – take a risk to go possibly risky spot

• Propositional logic to infer state of the world

• Heuristic search to decide which action to take
Summary

- Logical agents apply inference to a knowledge base to derive new information and make decisions.

- Basic concepts of logic:
 - syntax: formal structure of sentences
 - semantics: truth of sentences with respect to models
 - entailment: necessary truth of one sentence given another
 - inference: deriving sentences from other sentences
 - soundness: derivations produce only entailed sentences
 - completeness: derivations can produce all entailed sentences

- Wumpus world requires the ability to represent partial and negated information, inference to determine state of the world, etc.

- Forward, backward chaining are linear-time, complete for Horn clauses.

- Resolution is complete for propositional logic.