Logical Agents

Philipp Koehn

5 March 2020
The world is everything that is the case.

Wittgenstein, Tractatus
• Knowledge-based agents

• Logic in general—models and entailment

• Propositional (Boolean) logic

• Equivalence, validity, satisfiability

• Inference rules and theorem proving
 – forward chaining
 – backward chaining
 – resolution
knowledge-based agents
Knowledge-Based Agent

- Knowledge base = set of sentences in a formal language
- Declarative approach to building an agent (or other system): TELL it what it needs to know
- Then it can ASK itself what to do—answers should follow from the KB
- Agents can be viewed at the knowledge level i.e., what they know, regardless of how implemented
- Or at the implementation level i.e., data structures in KB and algorithms that manipulate them
A Simple Knowledge-Based Agent

function KB-$AGENT(\text{percept})$ returns an action

 static: KB, a knowledge base
 t, a counter, initially 0, indicating time

 $TELL(\text{\textit{KB}}, \text{\textit{MAKE-PERCEPT-SENTENCE}}(\text{percept}, t))$

 $action \leftarrow \text{\textit{ASK}}(\text{\textit{KB}}, \text{\textit{MAKE-ACTION-QUERY}}(t))$

 $TELL(\text{\textit{KB}}, \text{\textit{MAKE-ACTION-SENTENCE}}(action, t))$

 $t \leftarrow t + 1$

return $action$

- The agent must be able to
 - represent states, actions, etc.
 - incorporate new percepts
 - update internal representations of the world
 - deduce hidden properties of the world
 - deduce appropriate actions
example
Hunt the Wumpus

Computer game from 1972
Wumpus World PEAS Description

- **Performance measure**
 - gold +1000, death -1000
 - -1 per step, -10 for using the arrow

- **Environment**
 - squares adjacent to wumpus are smelly
 - squares adjacent to pit are breezy
 - glitter iff gold is in the same square
 - shooting kills wumpus if you are facing it
 - shooting uses up the only arrow
 - grabbing picks up gold if in same square
 - releasing drops the gold in same square

- **Actuators** Left turn, Right turn, Forward, Grab, Release, Shoot

- **Sensors** Breeze, Glitter, Smell
Wumpus World Characterization

- **Observable?** No—only local perception
- **Deterministic?** Yes—outcomes exactly specified
- **Episodic?** No—sequential at the level of actions
- **Static?** Yes—Wumpus and Pits do not move
- **Discrete?** Yes
- **Single-agent?** Yes—Wumpus is essentially a natural feature
Exploring a Wumpus World
Exploring a Wumpus World

![Diagram of a Wumpus World grid with symbols for perception and action.](image-url)
Exploring a Wumpus World
• Breeze in (1,2) and (2,1)
 \[\Rightarrow\] no safe actions

• Assuming pits uniformly distributed,
 (2,2) has pit w/ prob 0.86, vs. 0.31
Tight Spot

• Smell in (1,1)
 \[\rightarrow\] cannot move

• Can use a strategy of coercion: shoot straight ahead
 – wumpus was there \[\rightarrow\] dead \[\rightarrow\] safe
 – wumpus wasn’t there \[\rightarrow\] safe
logic in general
Logic in General

- **Logics** are formal languages for representing information such that conclusions can be drawn

- **Syntax** defines the sentences in the language

- **Semantics** define the “meaning” of sentences; i.e., define truth of a sentence in a world

- E.g., the language of arithmetic
 - $x + 2 \geq y$ is a sentence; $x^2 + y >$ is not a sentence
 - $x + 2 \geq y$ is true iff the number $x + 2$ is no less than the number y
 - $x + 2 \geq y$ is true in a world where $x = 7$, $y = 1$
 - $x + 2 \geq y$ is false in a world where $x = 0$, $y = 6$
Entailment

- **Entailment** means that one thing follows from another:

 $$KB \models \alpha$$

- Knowledge base KB entails sentence α
 if and only if α is true in all worlds where KB is true.

- E.g., the KB containing “the Ravens won” and “the Jays won” entails “the Ravens won or the Jays won”.

- E.g., $x + y = 4$ entails $4 = x + y$.

- Entailment is a relationship between sentences (i.e., **syntax**) that is based on **semantics**.

- Note: brains process **syntax** (of some sort)
Models

- Logicians typically think in terms of models, which are formally structured worlds with respect to which truth can be evaluated.

- We say m is a model of a sentence α if α is true in m.

- $M(\alpha)$ is the set of all models of α.

\Rightarrow $KB \models \alpha$ if and only if $M(KB) \subseteq M(\alpha)$

- E.g. $KB = \text{Ravens won and Jays won}$
 $\alpha = \text{Ravens won}$
Entailment in the Wumpus World

- Situation after detecting nothing in [1,1], moving right, breeze in [2,1]
- Consider possible models for all ?, assuming only pits
- 3 Boolean choices \implies 8 possible models
Possible Wumpus Models
$KB = \text{wumpus-world rules + observations}$
Entailment

\[KB = \text{wumpus-world rules + observations} \]
\[\alpha_1 = \text{“[1,2] is safe”, } KB \models \alpha_1, \text{ proved by model checking} \]
Valid Wumpus Models

\(KB = \text{wumpus-world rules} + \text{observations} \)
$KB = \text{wumpus-world rules + observations}$

$\alpha_2 = \text{“[2,2] is safe”, } KB \not\models \alpha_2$
Inference

- \(KB \vdash_i \alpha \) = sentence \(\alpha \) can be derived from \(KB \) by procedure \(i \)

- Consequences of \(KB \) are a haystack; \(\alpha \) is a needle. Entailment = needle in haystack; inference = finding it

- **Soundness**: \(i \) is sound if
 whenever \(KB \vdash_i \alpha \), it is also true that \(KB \vDash \alpha \)

- **Completeness**: \(i \) is complete if
 whenever \(KB \vDash \alpha \), it is also true that \(KB \vdash_i \alpha \)

- Preview: we will define a logic (first-order logic) which is expressive enough to say almost anything of interest, and for which there exists a sound and complete inference procedure.

- That is, the procedure will answer any question whose answer follows from what is known by the \(KB \).
propositional logic
Propositional Logic: Syntax

- Propositional logic is the simplest logic—illustrates basic ideas
- The proposition symbols P_1, P_2 etc are sentences
- If P is a sentence, $\neg P$ is a sentence (negation)
- If P_1 and P_2 are sentences, $P_1 \land P_2$ is a sentence (conjunction)
- If P_1 and P_2 are sentences, $P_1 \lor P_2$ is a sentence (disjunction)
- If P_1 and P_2 are sentences, $P_1 \rightarrow P_2$ is a sentence (implication)
- If P_1 and P_2 are sentences, $P_1 \iff P_2$ is a sentence (biconditional)
Propositional Logic: Semantics

- Each model specifies true/false for each proposition symbol

 E.g. \(P_{1,2}, P_{2,2}, P_{3,1} \)

 \begin{align*}
 true & \quad true & \quad false \\
 \end{align*}

 (with these symbols, 8 possible models, can be enumerated automatically)

- Rules for evaluating truth with respect to a model \(m \):

 \begin{align*}
 -P & \text{ is true iff } P \text{ is false} \\
 P_1 \land P_2 & \text{ is true iff } P_1 \text{ is true and } P_2 \text{ is true} \\
 P_1 \lor P_2 & \text{ is true iff } P_1 \text{ is true or } P_2 \text{ is true} \\
 P_1 \implies P_2 & \text{ is true iff } P_1 \text{ is false or } P_2 \text{ is true} \\
 i.e., & \text{ is false iff } P_1 \text{ is true and } P_2 \text{ is false} \\
 P_1 \iff P_2 & \text{ is true iff } P_1 \implies P_2 \text{ is true and } P_2 \implies P_1 \text{ is true}
 \end{align*}

- Simple recursive process evaluates an arbitrary sentence, e.g.,

 \(-P_{1,2} \land (P_{2,2} \lor P_{3,1}) = true \land (false \lor true) = true \land true = true\)
Truth Tables for Connectives

<table>
<thead>
<tr>
<th>P</th>
<th>Q</th>
<th>$\neg P$</th>
<th>$P \land Q$</th>
<th>$P \lor Q$</th>
<th>$P \implies Q$</th>
<th>$P \iff Q$</th>
</tr>
</thead>
<tbody>
<tr>
<td>false</td>
<td>false</td>
<td>true</td>
<td>false</td>
<td>false</td>
<td>true</td>
<td>true</td>
</tr>
<tr>
<td>false</td>
<td>true</td>
<td>true</td>
<td>false</td>
<td>true</td>
<td>true</td>
<td>true</td>
</tr>
<tr>
<td>true</td>
<td>false</td>
<td>false</td>
<td>false</td>
<td>true</td>
<td>false</td>
<td>false</td>
</tr>
<tr>
<td>true</td>
<td>true</td>
<td>false</td>
<td>true</td>
<td>true</td>
<td>true</td>
<td>true</td>
</tr>
</tbody>
</table>
Wumpus World Sentences

- Let $P_{i,j}$ be true if there is a pit in $[i,j]$
 - observation $R_1 : \neg P_{1,1}$

- Let $B_{i,j}$ be true if there is a breeze in $[i,j]$.

- “Pits cause breezes in adjacent squares”
 - rule $R_2 : B_{1,1} \iff (P_{1,2} \lor P_{2,1})$
 - rule $R_3 : B_{2,1} \iff (P_{1,1} \lor P_{2,2} \lor P_{3,1})$
 - observation $R_4 : \neg B_{1,1}$
 - observation $R_5 : B_{2,1}$

- What can we infer about $P_{1,2}, P_{2,1}, P_{2,2}$, etc.?
Truth Tables for Inference

<table>
<thead>
<tr>
<th>$B_{1,1}$</th>
<th>$B_{2,1}$</th>
<th>$P_{1,1}$</th>
<th>$P_{1,2}$</th>
<th>$P_{2,1}$</th>
<th>$P_{2,2}$</th>
<th>$P_{3,1}$</th>
<th>R_1</th>
<th>R_2</th>
<th>R_3</th>
<th>R_4</th>
<th>R_5</th>
<th>KB</th>
</tr>
</thead>
<tbody>
<tr>
<td>false</td>
<td>false</td>
<td>false</td>
<td>false</td>
<td>false</td>
<td>false</td>
<td>false</td>
<td>true</td>
<td>true</td>
<td>true</td>
<td>true</td>
<td>true</td>
<td>false</td>
</tr>
<tr>
<td>false</td>
<td>false</td>
<td>false</td>
<td>false</td>
<td>false</td>
<td>false</td>
<td>false</td>
<td>true</td>
<td>true</td>
<td>true</td>
<td>true</td>
<td>true</td>
<td>false</td>
</tr>
<tr>
<td>false</td>
<td>false</td>
<td>false</td>
<td>false</td>
<td>false</td>
<td>false</td>
<td>false</td>
<td>true</td>
<td>true</td>
<td>true</td>
<td>true</td>
<td>true</td>
<td>false</td>
</tr>
<tr>
<td>false</td>
<td>false</td>
<td>false</td>
<td>false</td>
<td>false</td>
<td>false</td>
<td>false</td>
<td>true</td>
<td>true</td>
<td>true</td>
<td>true</td>
<td>true</td>
<td>false</td>
</tr>
<tr>
<td>false</td>
<td>false</td>
<td>false</td>
<td>false</td>
<td>false</td>
<td>false</td>
<td>false</td>
<td>true</td>
<td>true</td>
<td>true</td>
<td>true</td>
<td>true</td>
<td>false</td>
</tr>
<tr>
<td>false</td>
<td>true</td>
<td>false</td>
<td>false</td>
<td>false</td>
<td>false</td>
<td>false</td>
<td>true</td>
<td>true</td>
<td>true</td>
<td>true</td>
<td>true</td>
<td>false</td>
</tr>
<tr>
<td>false</td>
<td>true</td>
<td>false</td>
<td>false</td>
<td>false</td>
<td>false</td>
<td>false</td>
<td>true</td>
<td>true</td>
<td>true</td>
<td>true</td>
<td>true</td>
<td>false</td>
</tr>
<tr>
<td>false</td>
<td>true</td>
<td>false</td>
<td>false</td>
<td>false</td>
<td>false</td>
<td>false</td>
<td>true</td>
<td>true</td>
<td>true</td>
<td>true</td>
<td>true</td>
<td>false</td>
</tr>
<tr>
<td>false</td>
<td>true</td>
<td>false</td>
<td>false</td>
<td>true</td>
<td>false</td>
<td>false</td>
<td>true</td>
<td>false</td>
<td>true</td>
<td>true</td>
<td>true</td>
<td>false</td>
</tr>
<tr>
<td>false</td>
<td>true</td>
<td>false</td>
<td>false</td>
<td>true</td>
<td>false</td>
<td>false</td>
<td>true</td>
<td>false</td>
<td>true</td>
<td>true</td>
<td>true</td>
<td>false</td>
</tr>
<tr>
<td>false</td>
<td>true</td>
<td>false</td>
<td>false</td>
<td>true</td>
<td>false</td>
<td>false</td>
<td>true</td>
<td>false</td>
<td>true</td>
<td>true</td>
<td>true</td>
<td>false</td>
</tr>
<tr>
<td>false</td>
<td>true</td>
<td>false</td>
<td>false</td>
<td>true</td>
<td>false</td>
<td>false</td>
<td>true</td>
<td>false</td>
<td>true</td>
<td>true</td>
<td>true</td>
<td>false</td>
</tr>
<tr>
<td>false</td>
<td>true</td>
<td>false</td>
<td>false</td>
<td>true</td>
<td>false</td>
<td>false</td>
<td>true</td>
<td>false</td>
<td>true</td>
<td>true</td>
<td>true</td>
<td>false</td>
</tr>
<tr>
<td>false</td>
<td>true</td>
<td>false</td>
<td>false</td>
<td>true</td>
<td>false</td>
<td>false</td>
<td>true</td>
<td>false</td>
<td>true</td>
<td>true</td>
<td>true</td>
<td>false</td>
</tr>
<tr>
<td>false</td>
<td>true</td>
<td>false</td>
<td>false</td>
<td>true</td>
<td>false</td>
<td>false</td>
<td>true</td>
<td>false</td>
<td>true</td>
<td>true</td>
<td>true</td>
<td>false</td>
</tr>
<tr>
<td>false</td>
<td>true</td>
<td>false</td>
<td>false</td>
<td>true</td>
<td>false</td>
<td>false</td>
<td>true</td>
<td>false</td>
<td>true</td>
<td>true</td>
<td>true</td>
<td>false</td>
</tr>
<tr>
<td>false</td>
<td>true</td>
<td>false</td>
<td>false</td>
<td>true</td>
<td>false</td>
<td>false</td>
<td>true</td>
<td>false</td>
<td>true</td>
<td>true</td>
<td>true</td>
<td>false</td>
</tr>
<tr>
<td>false</td>
<td>true</td>
<td>false</td>
<td>false</td>
<td>true</td>
<td>false</td>
<td>false</td>
<td>true</td>
<td>false</td>
<td>true</td>
<td>true</td>
<td>true</td>
<td>false</td>
</tr>
<tr>
<td>false</td>
<td>true</td>
<td>false</td>
<td>false</td>
<td>true</td>
<td>false</td>
<td>false</td>
<td>true</td>
<td>false</td>
<td>true</td>
<td>true</td>
<td>true</td>
<td>false</td>
</tr>
<tr>
<td>false</td>
<td>true</td>
<td>false</td>
<td>false</td>
<td>true</td>
<td>false</td>
<td>false</td>
<td>true</td>
<td>false</td>
<td>true</td>
<td>true</td>
<td>true</td>
<td>false</td>
</tr>
<tr>
<td>false</td>
<td>true</td>
<td>false</td>
<td>false</td>
<td>true</td>
<td>false</td>
<td>false</td>
<td>true</td>
<td>false</td>
<td>true</td>
<td>true</td>
<td>true</td>
<td>false</td>
</tr>
<tr>
<td>false</td>
<td>true</td>
<td>false</td>
<td>false</td>
<td>true</td>
<td>false</td>
<td>false</td>
<td>true</td>
<td>false</td>
<td>true</td>
<td>true</td>
<td>true</td>
<td>false</td>
</tr>
<tr>
<td>false</td>
<td>true</td>
<td>false</td>
<td>false</td>
<td>true</td>
<td>false</td>
<td>false</td>
<td>true</td>
<td>false</td>
<td>true</td>
<td>true</td>
<td>true</td>
<td>false</td>
</tr>
<tr>
<td>false</td>
<td>true</td>
<td>false</td>
<td>false</td>
<td>true</td>
<td>false</td>
<td>false</td>
<td>true</td>
<td>false</td>
<td>true</td>
<td>true</td>
<td>true</td>
<td>false</td>
</tr>
<tr>
<td>false</td>
<td>true</td>
<td>false</td>
<td>false</td>
<td>true</td>
<td>false</td>
<td>false</td>
<td>true</td>
<td>false</td>
<td>true</td>
<td>true</td>
<td>true</td>
<td>false</td>
</tr>
<tr>
<td>false</td>
<td>true</td>
<td>false</td>
<td>false</td>
<td>true</td>
<td>false</td>
<td>false</td>
<td>true</td>
<td>false</td>
<td>true</td>
<td>true</td>
<td>true</td>
<td>false</td>
</tr>
<tr>
<td>false</td>
<td>true</td>
<td>false</td>
<td>false</td>
<td>true</td>
<td>false</td>
<td>false</td>
<td>true</td>
<td>false</td>
<td>true</td>
<td>true</td>
<td>true</td>
<td>false</td>
</tr>
<tr>
<td>false</td>
<td>true</td>
<td>false</td>
<td>false</td>
<td>true</td>
<td>false</td>
<td>false</td>
<td>true</td>
<td>false</td>
<td>true</td>
<td>true</td>
<td>true</td>
<td>false</td>
</tr>
<tr>
<td>false</td>
<td>true</td>
<td>false</td>
<td>false</td>
<td>true</td>
<td>false</td>
<td>false</td>
<td>true</td>
<td>false</td>
<td>true</td>
<td>true</td>
<td>true</td>
<td>false</td>
</tr>
<tr>
<td>false</td>
<td>true</td>
<td>false</td>
<td>false</td>
<td>true</td>
<td>false</td>
<td>false</td>
<td>true</td>
<td>false</td>
<td>true</td>
<td>true</td>
<td>true</td>
<td>false</td>
</tr>
<tr>
<td>false</td>
<td>true</td>
<td>false</td>
<td>false</td>
<td>true</td>
<td>false</td>
<td>false</td>
<td>true</td>
<td>false</td>
<td>true</td>
<td>true</td>
<td>true</td>
<td>false</td>
</tr>
<tr>
<td>false</td>
<td>true</td>
<td>false</td>
<td>false</td>
<td>true</td>
<td>false</td>
<td>false</td>
<td>true</td>
<td>false</td>
<td>true</td>
<td>true</td>
<td>true</td>
<td>false</td>
</tr>
<tr>
<td>false</td>
<td>true</td>
<td>false</td>
<td>false</td>
<td>true</td>
<td>false</td>
<td>false</td>
<td>true</td>
<td>false</td>
<td>true</td>
<td>true</td>
<td>true</td>
<td>false</td>
</tr>
<tr>
<td>false</td>
<td>true</td>
<td>false</td>
<td>false</td>
<td>true</td>
<td>false</td>
<td>false</td>
<td>true</td>
<td>false</td>
<td>true</td>
<td>true</td>
<td>true</td>
<td>false</td>
</tr>
</tbody>
</table>

- Enumerate rows (different assignments to symbols $P_{i,j}$)
- Check if rules are satisfied (R_i)
- Valid model (KB) if all rules satisfied
Inference by Enumeration

- Depth-first enumeration of all models is sound and complete

```plaintext
function TT-ENTAILS?(KB, α) returns true or false
    inputs: KB, the knowledge base, a sentence in propositional logic
             α, the query, a sentence in propositional logic
    symbols ← a list of the proposition symbols in KB and α
    return TT-CHECK-ALL(KB, α, symbols, [])

function TT-CHECK-ALL(KB, α, symbols, model) returns true or false
    if EMPTY?(symbols) then
        if PL-TRUE?(KB, model) then return PL-TRUE?(α, model)
        else return true
    else do
        P ← FIRST(symbols); rest ← REST(symbols)
        return TT-CHECK-ALL(KB, α, rest, EXTEND(P, true, model)) and
               TT-CHECK-ALL(KB, α, rest, EXTEND(P, false, model))
```

- $O(2^n)$ for n symbols; problem is co-NP-complete
equivalence, validity, satisfiability
Logical Equivalence

- Two sentences are logically equivalent iff true in same models:
 \(\alpha \equiv \beta \) if and only if \(\alpha \models \beta \) and \(\beta \models \alpha \)

\[
\begin{align*}
(\alpha \land \beta) & \equiv (\beta \land \alpha) \quad \text{commutativity of } \land \\
(\alpha \lor \beta) & \equiv (\beta \lor \alpha) \quad \text{commutativity of } \lor \\
((\alpha \land \beta) \land \gamma) & \equiv (\alpha \land (\beta \land \gamma)) \quad \text{associativity of } \land \\
((\alpha \lor \beta) \lor \gamma) & \equiv (\alpha \lor (\beta \lor \gamma)) \quad \text{associativity of } \lor \\
\neg(\neg\alpha) & \equiv \alpha \quad \text{double-negation elimination} \\
(\alpha \implies \beta) & \equiv (\neg\beta \implies \neg\alpha) \quad \text{contraposition} \\
(\alpha \implies \beta) & \equiv (\neg\alpha \lor \beta) \quad \text{implication elimination} \\
(\alpha \iff \beta) & \equiv ((\alpha \implies \beta) \land (\beta \implies \alpha)) \quad \text{biconditional elimination} \\
\neg(\alpha \land \beta) & \equiv (\neg\alpha \lor \neg\beta) \quad \text{De Morgan} \\
\neg(\alpha \lor \beta) & \equiv (\neg\alpha \land \neg\beta) \quad \text{De Morgan} \\
(\alpha \land (\beta \lor \gamma)) & \equiv ((\alpha \land \beta) \lor (\alpha \land \gamma)) \quad \text{distributivity of } \land \text{ over } \lor \\
(\alpha \lor (\beta \land \gamma)) & \equiv ((\alpha \lor \beta) \land (\alpha \lor \gamma)) \quad \text{distributivity of } \lor \text{ over } \land
\end{align*}
\]
Validity and Satisfiability

- A sentence is **valid** if it is true in **all** models,
 e.g., True, $A \lor \neg A$, $A \implies A$, $(A \land (A \implies B)) \implies B$

- Validity is connected to inference via the Deduction Theorem:
 $KB \models \alpha$ if and only if $(KB \implies \alpha)$ is valid

- A sentence is **satisfiable** if it is true in **some** model
 e.g., $A \lor B$, C

- A sentence is **unsatisfiable** if it is true in **no** models
 e.g., $A \land \neg A$

- Satisfiability is connected to inference via the following:
 $KB \models \alpha$ if and only if $(KB \land \neg \alpha)$ is unsatisfiable
 i.e., prove α by *reductio ad absurdum*
inference
Proof Methods

• Proof methods divide into (roughly) two kinds

• Application of inference rules
 – Legitimate (sound) generation of new sentences from old
 – Proof = a sequence of inference rule applications
 Can use inference rules as operators in a standard search alg.
 – Typically require translation of sentences into a normal form

• Model checking
 – truth table enumeration (always exponential in n)
 – improved backtracking
 – heuristic search in model space (sound but incomplete)
 e.g., min-conflicts-like hill-climbing algorithms
Forward and Backward Chaining

- **Horn Form** (restricted)
 \[\text{KB} = \text{conjunction of Horn clauses} \]

- Horn clause =
 - proposition symbol; or
 - (conjunction of symbols) \(\Rightarrow \) symbol

 e.g., \(C \land (B \Rightarrow A) \land (C \land D \Rightarrow B) \)

- **Modus Ponens** (for Horn Form): complete for Horn KBs
 \[
 \frac{\alpha_1, \ldots, \alpha_n, \alpha_1 \land \cdots \land \alpha_n \Rightarrow \beta}{\beta}
 \]

- Can be used with **forward chaining** or **backward chaining**

- These algorithms are very natural and run in **linear** time
Example

- Idea: fire any rule whose premises are satisfied in the KB, add its conclusion to the KB, until query is found.

$$P \implies Q$$
$$L \land M \implies P$$
$$B \land L \implies M$$
$$A \land P \implies L$$
$$A \land B \implies L$$
$$A$$
$$B$$
forward chaining
Forward Chaining

- Start with given proposition symbols (atomic sentence)
 e.g., A and B

- Iteratively try to infer truth of additional proposition symbols
 e.g., $A \land B \implies C$, therefore we establish C is true

- Continue until
 - no more inference can be carried out, or
 - goal is reached
Forward Chaining Example

- Given

 \[P \implies Q \]
 \[L \land M \implies P \]
 \[B \land L \implies M \]
 \[A \land P \implies L \]
 \[A \land B \implies L \]
 \[A \]
 \[B \]

- Agenda: \(A, B \)

- Annotate horn clauses with number of premises
Forward Chaining Example

- Process agenda item A
- Decrease count for horn clauses in which A is premise
Forward Chaining Example

- Process agenda item B
- Decrease count for horn clauses in which B is premise
- $A \land B \implies L$ has now fulfilled premise
- Add L to agenda
Forward Chaining Example

- Process agenda item L
- Decrease count for horn clauses in which L is premise
- $B \land L \implies M$ has now fulfilled premise
- Add M to agenda
Forward Chaining Example

- Process agenda item M
- Decrease count for horn clauses in which M is premise
- $L \land M \implies P$ has now fulfilled premise
- Add P to agenda
Forward Chaining Example

- Process agenda item P
- Decrease count for horn clauses in which P is premise
- $P \implies Q$ has now fulfilled premise
- Add Q to agenda
- $A \land P \implies L$ has now fulfilled premise
Forward Chaining Example

- Process agenda item \(P \)
- Decrease count for horn clauses in which \(P \) is premise
- \(P \implies Q \) has now fulfilled premise
- Add \(Q \) to agenda
- \(A \land P \implies L \) has now fulfilled premise
- But \(L \) is already inferred
Forward Chaining Example

- Process agenda item Q
- Q is inferred
- Done
Forward Chaining Algorithm

```plaintext
function PL-FC-ENTAILS?(KB, q) returns true or false
  inputs: KB, the knowledge base, a set of propositional Horn clauses
           q, the query, a proposition symbol
  local variables: count, a table, indexed by clause, init. number of premises
                   inferred, a table, indexed by symbol, each entry initially false
                   agenda, a list of symbols, initially the symbols known in KB

  while agenda is not empty do
    p ← POP(agenda)
    unless inferred[p] do
      inferred[p] ← true
      for each Horn clause c in whose premise p appears do
        decrement count[c]
        if count[c] = 0 then do
          if HEAD[c] = q then return true
          PUSH(HEAD[c], agenda)
    return false
```

Philipp Koehn
Artificial Intelligence: Logical Agents
5 March 2020
backward chaining
Backward Chaining

• Idea: work backwards from the query Q:
 to prove Q by BC,
 check if Q is known already, or
 prove by BC all premises of some rule concluding q

• Avoid loops: check if new subgoal is already on the goal stack

• Avoid repeated work: check if new subgoal
 1. has already been proved true, or
 2. has already failed
Backward Chaining Example

- A and B are known to be true
- Q needs to be proven
Backward Chaining Example

- Current goal: Q
- Q can be inferred by $P \implies Q$
- P needs to be proven
Backward Chaining Example

- Current goal: P
- P can be inferred by $L \land M \implies P$
- L and M need to be proven
Backward Chaining Example

- Current goal: L
- L can be inferred by $A \land P \implies L$
- A is already true
- P is already a goal

\Rightarrow repeated subgoal
Backward Chaining Example

- Current goal: L
Backward Chaining Example

- Current goal: L
- L can be inferred by $A \land B \implies L$
- Both are true
Backward Chaining Example

- Current goal: L
- L can be inferred by $A \land B \implies L$
- Both are true

$\Rightarrow L$ is true
Backward Chaining Example

- Current goal: M
Backward Chaining Example

- Current goal: M
- M can be inferred by $B \land L \implies M$
Backward Chaining Example

- Current goal: M
- M can be inferred by $B \land L \implies M$
- Both are true

$\Rightarrow M$ is true
Backward Chaining Example

- Current goal: P
- P can be inferred by $L \land M \implies P$
- Both are true

$\Rightarrow P$ is true
Backward Chaining Example

- Current goal: Q
- Q can be inferred by $P \implies Q$
- P is true

$\Rightarrow Q$ is true
Forward vs. Backward Chaining

- FC is **data-driven**, cf. automatic, unconscious processing, e.g., object recognition, routine decisions

- May do lots of work that is irrelevant to the goal

- BC is **goal-driven**, appropriate for problem-solving, e.g., Where are my keys? How do I get into a PhD program?

- Complexity of BC can be **much less** than linear in size of KB
resolution
Resolution

- Conjunctive Normal Form (CNF—universal)

 conjunction of disjunctions of literals

 E.g., \((A \lor \neg B) \land (B \lor \neg C \lor \neg D)\)

- Resolution inference rule (for CNF): complete for propositional logic

 \[
 \ell_1 \lor \cdots \lor \ell_k, \quad m_1 \lor \cdots \lor m_n \\
 \ell_1 \lor \cdots \lor \ell_{i-1} \lor \ell_{i+1} \lor \cdots \lor \ell_k \lor m_1 \lor \cdots \lor m_{j-1} \lor m_{j+1} \lor \cdots \lor m_n
 \]

 where \(\ell_i\) and \(m_j\) are complementary literals. E.g.,

 \[
 P_{1,3} \lor P_{2,2}, \quad \neg P_{2,2} \\
 \]

 \[
 P_{1,3}
 \]

- Resolution is sound and complete for propositional logic
Wampus World

- Rules such as: "If breeze, then a pit adjacent."

\[B_{1,1} \iff (P_{1,2} \lor P_{2,1}) \]
Conversion to CNF

\[B_{1,1} \iff (P_{1,2} \lor P_{2,1}) \]

1. Eliminate \(\iff \), replacing \(\alpha \iff \beta \) with \((\alpha \implies \beta) \land (\beta \implies \alpha) \).

\[
(B_{1,1} \implies (P_{1,2} \lor P_{2,1})) \land ((P_{1,2} \lor P_{2,1}) \implies B_{1,1})
\]

2. Eliminate \(\implies \), replacing \(\alpha \implies \beta \) with \(\neg \alpha \lor \beta \).

\[
(\neg B_{1,1} \lor P_{1,2} \lor P_{2,1}) \land (\neg (P_{1,2} \lor P_{2,1}) \lor B_{1,1})
\]

3. Move \(\neg \) inwards using de Morgan’s rules and double-negation:

\[
(\neg B_{1,1} \lor P_{1,2} \lor P_{2,1}) \land ((\neg P_{1,2} \land \neg P_{2,1}) \lor B_{1,1})
\]

4. Apply distributivity law (\(\lor \) over \(\land \)) and flatten:

\[
(\neg B_{1,1} \lor P_{1,2} \lor P_{2,1}) \land (\neg P_{1,2} \lor B_{1,1}) \land (\neg P_{2,1} \lor B_{1,1})
\]
Resolution Example

- \(KB = (B_{1,1} \iff (P_{1,2} \lor P_{2,1})) \)

 reformulated as:
 \((\neg B_{1,1} \lor P_{1,2} \lor P_{2,1}) \land (\neg P_{1,2} \lor B_{1,1}) \land (\neg P_{2,1} \lor B_{1,1}) \)

- Observation: \(\neg B_{1,1} \)

- Goal: disprove: \(\alpha = \neg P_{1,2} \)

- Resolution

 \[
 \begin{array}{c}
 \neg P_{1,2} \lor B_{1,1} \\
 \neg B_{1,1}
 \end{array}
 \]
 \[
 \hline
 \neg P_{1,2}
 \end{array}
 \]

- Resolution

 \[
 \begin{array}{c}
 \neg P_{1,2} \\
 P_{1,2}
 \end{array}
 \]
 \[
 \hline
 false
 \end{array}
 \]
Resolution Example

- In practice: all resolvable pairs of clauses are combined
Resolution Algorithm

- Proof by contradiction, i.e., show $KB \land \neg \alpha$ unsatisfiable

```verbatim
function PL-RESOLUTION($KB, \alpha$) returns true or false
  inputs: $KB$, the knowledge base, a sentence in propositional logic
           $\alpha$, the query, a sentence in propositional logic
  clauses ← the set of clauses in the CNF representation of $KB \land \neg \alpha$
  new ← {}  
  loop do
    for each $C_i, C_j$ in clauses do
      resolvents ← PL-RESOLVE($C_i, C_j$)
      if resolvents contains the empty clause then return true
      new ← new \cup resolvents
      if new \subseteq clauses then return false
    clauses ← clauses \cup new
  return
```
Logical Agent

- Logical agent for Wumpus world explores actions
 - observe glitter → done
 - unexplored safe spot → plan route to it
 - if Wampus in possible spot → shoot arrow
 - take a risk to go possibly risky spot

- Propositional logic to infer state of the world

- Heuristic search to decide which action to take
Summary

- Logical agents apply inference to a knowledge base to derive new information and make decisions.

- Basic concepts of logic:
 - syntax: formal structure of sentences
 - semantics: truth of sentences wrt models
 - entailment: necessary truth of one sentence given another
 - inference: deriving sentences from other sentences
 - soundness: derivations produce only entailed sentences
 - completeness: derivations can produce all entailed sentences

- Wumpus world requires the ability to represent partial and negated information, inference to determine state of the world, etc.

- Forward, backward chaining are linear-time, complete for Horn clauses.

- Resolution is complete for propositional logic.