Logical Agents

Philipp Koehn

5 March 2020
The world is everything that is the case.

Wittgenstein, Tractatus
Outline

- Knowledge-based agents
- Logic in general—models and entailment
- Propositional (Boolean) logic
- Equivalence, validity, satisfiability
- Inference rules and theorem proving
 - forward chaining
 - backward chaining
 - resolution
knowledge-based agents
Knowledge-Based Agent

- **Knowledge base** = set of sentences in a **formal** language

- **Declarative** approach to building an agent (or other system): **Tell** it what it needs to know

- Then it can **Ask** itself what to do—answers should follow from the KB

- Agents can be viewed at the **knowledge level**
 i.e., **what they know**, regardless of how implemented

- Or at the **implementation level**
 i.e., data structures in KB and algorithms that manipulate them
A Simple Knowledge-Based Agent

function KB-AGENT(percept) returns an action

static: KB, a knowledge base

t, a counter, initially 0, indicating time

Tell(KB, MAKE-PERCEPT-SENTENCE(percept, t))

action ← Ask(KB, MAKE-ACTION-QUERY(t))

Tell(KB, MAKE-ACTION-SENTENCE(action, t))

$\text{t} \leftarrow \text{t} + 1$

return action

- The agent must be able to
 - represent states, actions, etc.
 - incorporate new percepts
 - update internal representations of the world
 - deduce hidden properties of the world
 - deduce appropriate actions
example
Hunt the Wumpus

Computer game from 1972
Wumpus World PEAS Description

- **Performance measure**
 - gold +1000, death -1000
 - -1 per step, -10 for using the arrow

- **Environment**
 - squares adjacent to wumpus are smelly
 - squares adjacent to pit are breezy
 - glitter iff gold is in the same square
 - shooting kills wumpus if you are facing it
 - shooting uses up the only arrow
 - grabbing picks up gold if in same square
 - releasing drops the gold in same square

- **Actuators** Left turn, Right turn,
 Forward, Grab, Release, Shoot

- **Sensors** Breeze, Glitter, Smell
Wumpus World Characterization

- **Observable?** No—only local perception
- **Deterministic?** Yes—outcomes exactly specified
- **Episodic?** No—sequential at the level of actions
- **Static?** Yes—Wumpus and Pits do not move
- **Discrete?** Yes
- **Single-agent?** Yes—Wumpus is essentially a natural feature
Exploring a Wumpus World
Exploring a Wumpus World
Exploring a Wumpus World
Exploring a Wumpus World

[Diagram of a Wumpus World with a grid and symbols indicating a Wumpus in a certain cell]
Exploring a Wumpus World

[Diagram of the Wumpus World game grid with symbols and arrows indicating movement and perception cues.]
Exploring a Wumpus World

Diagram showing a Wumpus World grid with a Wumpus (W) at the lower right corner, and an agent (A) exploring the environment. The grid includes symbols for pits (P), bumps (B), and successful steps (OK).
Exploring a Wumpus World
Exploring a Wumpus World
Tight Spot

- Breeze in (1,2) and (2,1)
 \[\Rightarrow\] no safe actions

- Assuming pits uniformly distributed,
 (2,2) has pit w/ prob 0.86, vs. 0.31
Tight Spot

- Smell in (1,1)
 \[\rightarrow\] cannot move

- Can use a strategy of coercion: shoot straight ahead
 - wumpus was there \[\rightarrow\] dead \[\rightarrow\] safe
 - wumpus wasn’t there \[\rightarrow\] safe
logic in general
Logic in General

- **Logics** are formal languages for representing information such that conclusions can be drawn.

- **Syntax** defines the sentences in the language.

- **Semantics** define the “meaning” of sentences; i.e., define truth of a sentence in a world.

- E.g., the language of arithmetic
 - $x + 2 \geq y$ is a sentence; $x^2 + y >$ is not a sentence.
 - $x + 2 \geq y$ is true iff the number $x + 2$ is no less than the number y.
 - $x + 2 \geq y$ is true in a world where $x = 7, y = 1$.
 - $x + 2 \geq y$ is false in a world where $x = 0, y = 6$.
Entailment

• Entailment means that one thing follows from another:

\[KB \models \alpha \]

• Knowledge base \(KB \) entails sentence \(\alpha \)
 if and only if
 \(\alpha \) is true in all worlds where \(KB \) is true

• E.g., the KB containing “the Ravens won” and “the Jays won” entails “the Ravens won or the Jays won”

• E.g., \(x + y = 4 \) entails \(4 = x + y \)

• Entailment is a relationship between sentences (i.e., syntax) that is based on semantics

• Note: brains process syntax (of some sort)
Models

- Logicians typically think in terms of models, which are formally structured worlds with respect to which truth can be evaluated

- We say \(m \) is a model of a sentence \(\alpha \) if \(\alpha \) is true in \(m \)

- \(M(\alpha) \) is the set of all models of \(\alpha \)

\[KB \models \alpha \text{ if and only if } M(KB) \subseteq M(\alpha) \]

- E.g. \(KB = \) Ravens won and Jays won
 \(\alpha = \) Ravens won
Entailment in the Wumpus World

- Situation after detecting nothing in [1,1], moving right, breeze in [2,1]
- Consider possible models for all $?$, assuming only pits
- 3 Boolean choices \implies 8 possible models
Possible Wumpus Models
$KB = \text{wumpus-world rules} + \text{observations}$
$KB = \text{wumpus-world rules + observations}$

$\alpha_1 = \text{“[1,2] is safe”, } KB \vdash \alpha_1, \text{ proved by model checking}$
Valid Wumpus Models

\[KB = \text{wumpus-world rules + observations} \]
$KB = \text{wumpus-world rules + observations}$

$\alpha_2 = \text{“[2,2] is safe”, } KB \not\models \alpha_2$
Inference

- $KB \vdash_i \alpha$ = sentence α can be derived from KB by procedure i

- Consequences of KB are a haystack; α is a needle.
 Entailment = needle in haystack; inference = finding it.

- **Soundness**: i is sound if
 whenever $KB \vdash_i \alpha$, it is also true that $KB \models \alpha$

- **Completeness**: i is complete if
 whenever $KB \models \alpha$, it is also true that $KB \vdash_i \alpha$

- Preview: we will define a logic (first-order logic) which is expressive enough to say almost anything of interest, and for which there exists a sound and complete inference procedure.

- That is, the procedure will answer any question whose answer follows from what is known by the KB.
propositional logic
Propositional Logic: Syntax

- Propositional logic is the simplest logic—illustrates basic ideas
- The proposition symbols P_1, P_2 etc are sentences
- If P is a sentence, $\neg P$ is a sentence (negation)
- If P_1 and P_2 are sentences, $P_1 \land P_2$ is a sentence (conjunction)
- If P_1 and P_2 are sentences, $P_1 \lor P_2$ is a sentence (disjunction)
- If P_1 and P_2 are sentences, $P_1 \implies P_2$ is a sentence (implication)
- If P_1 and P_2 are sentences, $P_1 \iff P_2$ is a sentence (biconditional)
Propositional Logic: Semantics

- Each model specifies true/false for each proposition symbol

 E.g.
 \[P_{1,2} \quad P_{2,2} \quad P_{3,1} \]
 \[\text{false} \quad \text{true} \quad \text{false} \]

 (with these symbols, 8 possible models, can be enumerated automatically)

- Rules for evaluating truth with respect to a model \(m \):

 \[\neg P \quad \text{is true iff} \quad P \quad \text{is false} \]
 \[P_1 \land P_2 \quad \text{is true iff} \quad P_1 \quad \text{is true and} \quad P_2 \quad \text{is true} \]
 \[P_1 \lor P_2 \quad \text{is true iff} \quad P_1 \quad \text{is true or} \quad P_2 \quad \text{is true} \]
 \[P_1 \implies P_2 \quad \text{is true iff} \quad P_1 \quad \text{is false or} \quad P_2 \quad \text{is true} \]
 i.e.,
 \[P_1 \iff P_2 \quad \text{is false iff} \quad P_1 \quad \text{is true and} \quad P_2 \quad \text{is false} \]
 \[P_1 \iff P_2 \quad \text{is true iff} \quad P_1 \implies P_2 \quad \text{is true and} \quad P_2 \implies P_1 \quad \text{is true} \]

- Simple recursive process evaluates an arbitrary sentence, e.g.,

 \[\neg P_{1,2} \land (P_{2,2} \lor P_{3,1}) = \text{true} \land (\text{false} \lor \text{true}) = \text{true} \land \text{true} = \text{true} \]
Truth Tables for Connectives

<p>| | | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>P</td>
<td>Q</td>
<td>$\neg P$</td>
<td>$P \land Q$</td>
<td>$P \lor Q$</td>
<td>$P \Rightarrow Q$</td>
<td>$P \Leftrightarrow Q$</td>
</tr>
<tr>
<td>false</td>
<td>false</td>
<td>true</td>
<td>false</td>
<td>false</td>
<td>true</td>
<td>true</td>
</tr>
<tr>
<td>false</td>
<td>true</td>
<td>true</td>
<td>false</td>
<td>false</td>
<td>true</td>
<td>false</td>
</tr>
<tr>
<td>true</td>
<td>false</td>
<td>false</td>
<td>false</td>
<td>false</td>
<td>true</td>
<td>false</td>
</tr>
<tr>
<td>true</td>
<td>true</td>
<td>true</td>
<td>true</td>
<td>true</td>
<td>true</td>
<td>true</td>
</tr>
</tbody>
</table>
Wumpus World Sentences

- Let $P_{i,j}$ be true if there is a pit in $[i,j]$
 - observation $R_1 : \neg P_{1,1}$

- Let $B_{i,j}$ be true if there is a breeze in $[i,j]$.

- “Pits cause breezes in adjacent squares”
 - rule $R_2 : B_{1,1} \iff (P_{1,2} \lor P_{2,1})$
 - rule $R_3 : B_{2,1} \iff (P_{1,1} \lor P_{2,2} \lor P_{3,1})$
 - observation $R_4 : \neg B_{1,1}$
 - observation $R_5 : B_{2,1}$

- What can we infer about $P_{1,2}, P_{2,1}, P_{2,2}$, etc.?
Truth Tables for Inference

<table>
<thead>
<tr>
<th>$B_{1,1}$</th>
<th>$B_{2,1}$</th>
<th>$P_{1,1}$</th>
<th>$P_{1,2}$</th>
<th>$P_{2,1}$</th>
<th>$P_{2,2}$</th>
<th>$P_{3,1}$</th>
<th>R_1</th>
<th>R_2</th>
<th>R_3</th>
<th>R_4</th>
<th>R_5</th>
<th>KB</th>
</tr>
</thead>
<tbody>
<tr>
<td>false</td>
<td>false</td>
<td>false</td>
<td>false</td>
<td>false</td>
<td>false</td>
<td>false</td>
<td>true</td>
<td>true</td>
<td>true</td>
<td>true</td>
<td>true</td>
<td>false</td>
</tr>
<tr>
<td>false</td>
<td>false</td>
<td>false</td>
<td>false</td>
<td>false</td>
<td>false</td>
<td>false</td>
<td>true</td>
<td>true</td>
<td>true</td>
<td>true</td>
<td>true</td>
<td>false</td>
</tr>
<tr>
<td>false</td>
<td>true</td>
<td>false</td>
<td>false</td>
<td>false</td>
<td>false</td>
<td>false</td>
<td>true</td>
<td>true</td>
<td>false</td>
<td>true</td>
<td>true</td>
<td>true</td>
</tr>
<tr>
<td>false</td>
<td>true</td>
<td>false</td>
<td>false</td>
<td>false</td>
<td>false</td>
<td>false</td>
<td>true</td>
<td>true</td>
<td>true</td>
<td>true</td>
<td>true</td>
<td>true</td>
</tr>
<tr>
<td>false</td>
<td>true</td>
<td>false</td>
<td>false</td>
<td>true</td>
<td>false</td>
<td>false</td>
<td>true</td>
<td>false</td>
<td>true</td>
<td>true</td>
<td>true</td>
<td>true</td>
</tr>
<tr>
<td>true</td>
<td>true</td>
<td>true</td>
<td>true</td>
<td>true</td>
<td>true</td>
<td>true</td>
<td>false</td>
<td>true</td>
<td>true</td>
<td>true</td>
<td>true</td>
<td>false</td>
</tr>
</tbody>
</table>

- Enumerate rows (different assignments to symbols $P_{i,j}$)
- Check if rules are satisfied (R_i)
- Valid model (KB) if all rules satisfied
Inference by Enumeration

- Depth-first enumeration of all models is sound and complete

```plaintext
function TT-ENTAILS?(KB, α) returns true or false
inputs: KB, the knowledge base, a sentence in propositional logic
        α, the query, a sentence in propositional logic
symbols ← a list of the proposition symbols in KB and α
return TT-CHECK-ALL(KB, α, symbols, [])

function TT-CHECK-ALL(KB, α, symbols, model) returns true or false
if EMPTY?(symbols) then
    if PL-TRUE?(KB, model) then return PL-TRUE?(α, model)
    else return true
else do
    P ← FIRST(symbols); rest ← REST(symbols)
    return TT-CHECK-ALL(KB, α, rest, EXTEND(P, true, model)) and
    TT-CHECK-ALL(KB, α, rest, EXTEND(P, false, model))
```

- $O(2^n)$ for n symbols; problem is co-NP-complete
equivalence, validity, satisfiability
Logical Equivalence

- Two sentences are logically equivalent iff true in same models:
 \(\alpha \equiv \beta \) if and only if \(\alpha \models \beta \) and \(\beta \models \alpha \)

\[
\begin{align*}
(\alpha \land \beta) & \equiv (\beta \land \alpha) \quad \text{commutativity of } \land \\
(\alpha \lor \beta) & \equiv (\beta \lor \alpha) \quad \text{commutativity of } \lor \\
((\alpha \land \beta) \land \gamma) & \equiv (\alpha \land (\beta \land \gamma)) \quad \text{associativity of } \land \\
((\alpha \lor \beta) \lor \gamma) & \equiv (\alpha \lor (\beta \lor \gamma)) \quad \text{associativity of } \lor \\
\neg(\neg \alpha) & \equiv \alpha \quad \text{double-negation elimination} \\
(\alpha \implies \beta) & \equiv (\neg \beta \implies \neg \alpha) \quad \text{contraposition} \\
(\alpha \implies \beta) & \equiv (\neg \alpha \lor \beta) \quad \text{implication elimination} \\
(\alpha \iff \beta) & \equiv ((\alpha \implies \beta) \land (\beta \implies \alpha)) \quad \text{biconditional elimination} \\
\neg(\alpha \land \beta) & \equiv (\neg \alpha \lor \neg \beta) \quad \text{De Morgan} \\
\neg(\alpha \lor \beta) & \equiv (\neg \alpha \land \neg \beta) \quad \text{De Morgan} \\
(\alpha \land (\beta \lor \gamma)) & \equiv ((\alpha \land \beta) \lor (\alpha \land \gamma)) \quad \text{distributivity of } \land \text{ over } \lor \\
(\alpha \lor (\beta \land \gamma)) & \equiv ((\alpha \lor \beta) \land (\alpha \lor \gamma)) \quad \text{distributivity of } \lor \text{ over } \land
\end{align*}
\]
Validity and Satisfiability

- A sentence is **valid** if it is true in **all** models,
 e.g., $\text{True}, \ A \lor \neg A, \ A \implies A, \ (A \land (A \implies B)) \implies B$

- Validity is connected to inference via the **Deduction Theorem**:
 $KB \vDash \alpha$ if and only if $(KB \implies \alpha)$ is valid

- A sentence is **satisfiable** if it is true in **some** model
 e.g., $A \lor B, \ C$

- A sentence is **unsatisfiable** if it is true in **no** models
 e.g., $A \land \neg A$

- Satisfiability is connected to inference via the following:
 $KB \vDash \alpha$ if and only if $(KB \land \neg \alpha)$ is unsatisfiable
 i.e., prove α by **reductio ad absurdum**
inference
Proof Methods

- Proof methods divide into (roughly) two kinds

- Application of inference rules
 - Legitimate (sound) generation of new sentences from old
 - **Proof** = a sequence of inference rule applications
 - Can use inference rules as operators in a standard search alg.
 - Typically require translation of sentences into a normal form

- Model checking
 - truth table enumeration (always exponential in n)
 - improved backtracking
 - heuristic search in model space (sound but incomplete)
 - e.g., min-conflicts-like hill-climbing algorithms
Forward and Backward Chaining

- **Horn Form** (restricted)

 \[\text{KB} = \text{conjunction of Horn clauses} \]

- Horn clause =

 - proposition symbol; or
 - (conjunction of symbols) \(\implies \) symbol

 e.g., \(C \land (B \implies A) \land (C \land D \implies B) \)

- **Modus Ponens** (for Horn Form): complete for Horn KBs

\[
\frac{\alpha_1, \ldots, \alpha_n, \alpha_1 \land \ldots \land \alpha_n \implies \beta}{\beta}
\]

- Can be used with **forward chaining** or **backward chaining**

- These algorithms are very natural and run in **linear** time
Example

- Idea: fire any rule whose premises are satisfied in the KB, add its conclusion to the KB, until query is found

$P \implies Q$
$L \land M \implies P$
$B \land L \implies M$
$A \land P \implies L$
$A \land B \implies L$
A
B
forward chaining
Forward Chaining

- Start with given proposition symbols (atomic sentence)
 e.g., A and B

- Iteratively try to infer truth of additional proposition symbols
 e.g., $A \land B \implies C$, therefore we establish C is true

- Continue until
 - no more inference can be carried out, or
 - goal is reached
Forward Chaining Example

- Given
 - \(P \implies Q \)
 - \(L \land M \implies P \)
 - \(B \land L \implies M \)
 - \(A \land P \implies L \)
 - \(A \land B \implies L \)
 - \(A \)
 - \(B \)

- Agenda: \(A, B \)

- Annotate horn clauses with number of premises
Forward Chaining Example

- Process agenda item A
- Decrease count for horn clauses in which A is premise
Forward Chaining Example

- Process agenda item B
- Decrease count for horn clauses in which B is premise
- $A \land B \quad \Rightarrow \quad L$ has now fulfilled premise
- Add L to agenda
Forward Chaining Example

- Process agenda item L
- Decrease count for horn clauses in which L is premise
- $B \land L \implies M$ has now fulfilled premise
- Add M to agenda
Forward Chaining Example

- Process agenda item M
- Decrease count for horn clauses in which M is premise
- $L \land M \implies P$ has now fulfilled premise
- Add P to agenda
Forward Chaining Example

- Process agenda item P
- Decrease count for horn clauses in which P is premise
- $P \implies Q$ has now fulfilled premise
- Add Q to agenda
- $A \land P \implies L$ has now fulfilled premise
Forward Chaining Example

• Process agenda item P

• Decrease count for horn clauses in which P is premise

• $P \rightarrow Q$ has now fulfilled premise

• Add Q to agenda

• $A \land P \rightarrow L$ has now fulfilled premise

• But L is already inferred
Forward Chaining Example

- Process agenda item Q
- Q is inferred
- Done
Forward Chaining Algorithm

function PL-FC-ENTAILS?(KB, q) returns true or false

inputs: KB, the knowledge base, a set of propositional Horn clauses
q, the query, a proposition symbol

local variables: count, a table, indexed by clause, init. number of premises
inferred, a table, indexed by symbol, each entry initially false
agenda, a list of symbols, initially the symbols known in KB

while agenda is not empty do
 p ← POP(agenda)
 unless inferred[p] do
 inferred[p] ← true
 for each Horn clause c in whose premise p appears do
 decrement count[c]
 if count[c] = 0 then do
 if HEAD[c] = q then return true
 PUSH(HEAD[c], agenda)
 \return false
backward chaining
Backward Chaining

- Idea: work backwards from the query Q:
 - to prove Q by BC,
 - check if Q is known already, or
 - prove by BC all premises of some rule concluding q

- Avoid loops: check if new subgoal is already on the goal stack

- Avoid repeated work: check if new subgoal
 1. has already been proved true, or
 2. has already failed
Backward Chaining Example

- A and B are known to be true
- Q needs to be proven
Backward Chaining Example

• Current goal: Q

• Q can be inferred by $P \implies Q$

• P needs to be proven
Backward Chaining Example

- Current goal: P
- P can be inferred by $L \land M \implies P$
- L and M need to be proven
Backward Chaining Example

- Current goal: L
- L can be inferred by $A \land P \implies L$
- A is already true
- P is already a goal

\Rightarrow repeated subgoal
Backward Chaining Example

- Current goal: L
Backward Chaining Example

- Current goal: L
- L can be inferred by $A \land B \implies L$
- Both are true
Backward Chaining Example

- Current goal: L
- L can be inferred by $A \land B \implies L$
- Both are true

$\Rightarrow L$ is true
Backward Chaining Example

- Current goal: M
Backward Chaining Example

- Current goal: M

- M can be inferred by $B \land L \implies M$
Backward Chaining Example

- Current goal: M
- M can be inferred by $B \land L \implies M$
- Both are true

$\Rightarrow M$ is true
Backward Chaining Example

- Current goal: P
- P can be inferred by $L \land M \implies P$
- Both are true

$\Rightarrow P$ is true
Backward Chaining Example

- Current goal: Q
- Q can be inferred by $P \implies Q$
- P is true

$\Rightarrow Q$ is true
Forward vs. Backward Chaining

- FC is **data-driven**, cf. automatic, unconscious processing, e.g., object recognition, routine decisions

- May do lots of work that is irrelevant to the goal

- BC is **goal-driven**, appropriate for problem-solving, e.g., Where are my keys? How do I get into a PhD program?

- Complexity of BC can be **much less** than linear in size of KB
resolution
Resolution

- Conjunctive Normal Form (CNF—universal)

\[\text{conjunction of disjunctions of literals clauses} \]

E.g., \((A \lor \neg B) \land (B \lor \neg C \lor \neg D)\)

- Resolution inference rule (for CNF): complete for propositional logic

\[
\begin{align*}
\ell_1 \lor \cdots \lor \ell_k, & \quad m_1 \lor \cdots \lor m_n \\
\ell_1 \lor \cdots \lor \ell_{i-1} \lor \ell_{i+1} \lor \cdots \lor \ell_k & \lor m_1 \lor \cdots \lor m_{j-1} \lor m_{j+1} \lor \cdots \lor m_n
\end{align*}
\]

where \(\ell_i\) and \(m_j\) are complementary literals. E.g.,

\[
\begin{align*}
P_{1,3} \lor P_{2,2}, & \quad \neg P_{2,2} \\
P_{1,3}
\end{align*}
\]

- Resolution is sound and complete for propositional logic
Wampus World

- Rules such as: “If breeze, then a pit adjacent.”

\[B_{1,1} \iff (P_{1,2} \lor P_{2,1}) \]
Conversion to CNF

\[B_{1,1} \iff (P_{1,2} \lor P_{2,1}) \]

1. Eliminate \(\iff \), replacing \(\alpha \iff \beta \) with \((\alpha \implies \beta) \land (\beta \implies \alpha)\).
 \[(B_{1,1} \implies (P_{1,2} \lor P_{2,1})) \land ((P_{1,2} \lor P_{2,1}) \implies B_{1,1})\]

2. Eliminate \(\implies \), replacing \(\alpha \implies \beta \) with \(\neg \alpha \lor \beta \).
 \[(-B_{1,1} \lor P_{1,2} \lor P_{2,1}) \land (-((P_{1,2} \lor P_{2,1}) \lor B_{1,1})\]

3. Move \(\neg \) inwards using de Morgan’s rules and double-negation:
 \[(-B_{1,1} \lor P_{1,2} \lor P_{2,1}) \land ((\neg P_{1,2} \land \neg P_{2,1}) \lor B_{1,1})\]

4. Apply distributivity law (\(\lor \) over \(\land \)) and flatten:
 \[(-B_{1,1} \lor P_{1,2} \lor P_{2,1}) \land (\neg P_{1,2} \lor B_{1,1}) \land (\neg P_{2,1} \lor B_{1,1})\]
Resolution Example

- \(KB = (B_{1,1} \iff (P_{1,2} \lor P_{2,1})) \)
 reformulated as:
 \[
 (\neg B_{1,1} \lor P_{1,2} \lor P_{2,1}) \land (\neg P_{1,2} \lor B_{1,1}) \land (\neg P_{2,1} \lor B_{1,1})
 \]

- Observation: \(\neg B_{1,1} \)

- Goal: disprove: \(\alpha = \neg P_{1,2} \)

- Resolution
 \[
 \frac{\neg P_{1,2} \lor B_{1,1}}{\neg P_{1,2} \lor B_{1,1}}
 \]

- Resolution
 \[
 \frac{\neg P_{1,2} \quad P_{1,2}}{false}
 \]
Resolution Example

- In practice: all resolvable pairs of clauses are combined
Resolution Algorithm

- Proof by contradiction, i.e., show $KB \land \neg \alpha$ unsatisfiable

```plaintext
function PL-RESOLUTION(KB, \alpha) returns true or false
  inputs: KB, the knowledge base, a sentence in propositional logic
          \alpha, the query, a sentence in propositional logic
  clauses ← the set of clauses in the CNF representation of $KB \land \neg \alpha$
  new ← {}  
  loop do
    for each $C_i, C_j$ in clauses do
      resolvents ← PL-RESOLVE($C_i, C_j$)
      if resolvents contains the empty clause then return true
      new ← new \cup resolvents
    if new \subseteq clauses then return false
    clauses ← clauses \cup new
```
Logical Agent

- Logical agent for Wumpus world explores actions
 - observe glitter → done
 - unexplored safe spot → plan route to it
 - if Wampus in possible spot → shoot arrow
 - take a risk to go possibly risky spot

- Propositional logic to infer state of the world

- Heuristic search to decide which action to take
Summary

- Logical agents apply **inference** to a **knowledge base** to derive new information and make decisions.

- Basic concepts of logic:
 - **syntax**: formal structure of sentences
 - **semantics**: truth of sentences wrt models
 - **entailment**: necessary truth of one sentence given another
 - **inference**: deriving sentences from other sentences
 - **soundness**: derivations produce only entailed sentences
 - **completeness**: derivations can produce all entailed sentences

- Wumpus world requires the ability to represent partial and negated information, inference to determine state of the world, etc.

- Forward, backward chaining are linear-time, complete for Horn clauses.

- Resolution is complete for propositional logic.