Logical Agents

Philipp Koehn

7 March 2017
The world is everything that is the case.

Wittgenstein, Tractatus
Outline

- Knowledge-based agents
- Logic in general—models and entailment
- Propositional (Boolean) logic
- Equivalence, validity, satisfiability
- Inference rules and theorem proving
 - forward chaining
 - backward chaining
 - resolution
knowledge-based agents
Knowledge-Based Agent

- Knowledge base = set of sentences in a **formal** language

- Declarative approach to building an agent (or other system): TELL it what it needs to know

- Then it can ASK itself what to do—answers should follow from the KB

- Agents can be viewed at the **knowledge level**
 i.e., what they know, regardless of how implemented

- Or at the **implementation level**
 i.e., data structures in KB and algorithms that manipulate them
A Simple Knowledge-Based Agent

function \texttt{KB-AGENT} (\textit{percept}) returns an \textit{action}

static: \textit{KB}, a knowledge base
\hspace{1cm} \textit{t}, a counter, initially 0, indicating time

\texttt{TELL(\textit{KB}, MAKE-PERCEPT-SENTENCE(\textit{percept}, \textit{t}))}
\texttt{action} ← \texttt{ASK(\textit{KB}, MAKE-ACTION-QUERY(\textit{t}))}
\texttt{TELL(\textit{KB}, MAKE-ACTION-SENTENCE(\textit{action}, \textit{t}))}
\texttt{t} ← \texttt{t + 1}

return \textit{action}

- The agent must be able to
 - represent states, actions, etc.
 - incorporate new percepts
 - update internal representations of the world
 - deduce hidden properties of the world
 - deduce appropriate actions
example
Wumpus World PEAS Description

- **Performance measure**
 - gold +1000, death -1000
 - -1 per step, -10 for using the arrow

- **Environment**
 - squares adjacent to wumpus are smelly
 - squares adjacent to pit are breezy
 - glitter iff gold is in the same square
 - shooting kills wumpus if you are facing it
 - shooting uses up the only arrow
 - grabbing picks up gold if in same square
 - releasing drops the gold in same square

- **Actuators** Left turn, Right turn, Forward, Grab, Release, Shoot

- **Sensors** Breeze, Glitter, Smell
Wumpus World Characterization

- Observable? No—only local perception
- Deterministic? Yes—outcomes exactly specified
- Episodic? No—sequential at the level of actions
- Static? Yes—Wumpus and Pits do not move
- Discrete? Yes
- Single-agent? Yes—Wumpus is essentially a natural feature
Exploring a Wumpus World
Tight Spot

- Breeze in (1,2) and (2,1)
 \implies no safe actions

- Assuming pits uniformly distributed,
 (2,2) has pit w/ prob 0.86, vs. 0.31
Tight Spot

- Smell in (1,1) \[\implies\] cannot move

- Can use a strategy of coercion: shoot straight ahead
 - wumpus was there \[\implies\] dead \[\implies\] safe
 - wumpus wasn’t there \[\implies\] safe
logic in general
Logic in General

- **Logics** are formal languages for representing information such that conclusions can be drawn.

- **Syntax** defines the sentences in the language.

- **Semantics** define the “meaning” of sentences; i.e., define truth of a sentence in a world.

- E.g., the language of arithmetic:
 - \(x + 2 \geq y \) is a sentence; \(x^2 + y > \) is not a sentence.
 - \(x + 2 \geq y \) is true iff the number \(x + 2 \) is no less than the number \(y \).
 - \(x + 2 \geq y \) is true in a world where \(x = 7, \ y = 1 \).
 - \(x + 2 \geq y \) is false in a world where \(x = 0, \ y = 6 \).
Entailment

- **Entailment** means that one thing follows from another:

 \[KB \models \alpha \]

- Knowledge base \(KB \) entails sentence \(\alpha \) if and only if \(\alpha \) is true in all worlds where \(KB \) is true.

- E.g., the KB containing “the Ravens won” and “the Jays won” entails “the Ravens won or the Jays won”.

- E.g., \(x + y = 4 \) entails \(4 = x + y \).

- Entailment is a relationship between sentences (i.e., syntax) that is based on semantics.

- Note: brains process syntax (of some sort)
Logicians typically think in terms of models, which are formally structured worlds with respect to which truth can be evaluated.

- We say \(m \) is a model of a sentence \(\alpha \) if \(\alpha \) is true in \(m \).

- \(M(\alpha) \) is the set of all models of \(\alpha \).

\[\Rightarrow \ KB \models \alpha \text{ if and only if } M(KB) \subseteq M(\alpha) \]

- E.g. \(KB = \) Ravens won and Jays won

\[\alpha = \text{Ravens won} \]
Entailment in the Wumpus World

- Situation after detecting nothing in [1,1], moving right, breeze in [2,1]
- Consider possible models for all ?, assuming only pits
- 3 Boolean choices \Rightarrow 8 possible models
Possible Wumpus Models
Valid Wumpus Models

\[KB = \text{wumpus-world rules + observations} \]
Entailment

\(KB = \text{wumpus-world rules + observations} \)

\(\alpha_1 = "[1,2] \text{ is safe}" , \ KB \vDash \alpha_1 , \text{proved by model checking} \)
$KB = \text{wumpus-world rules + observations}$
$KB = \text{wumpus-world rules + observations}$

$\alpha_2 = "[2,2] \text{ is safe", } KB \not\models \alpha_2$
Inference

- $KB \vdash_i \alpha = \text{sentence } \alpha \text{ can be derived from } KB \text{ by procedure } i$

- Consequences of KB are a haystack; α is a needle. Entailment = needle in haystack; inference = finding it

- **Soundness:** i is sound if
 whenever $KB \vdash_i \alpha$, it is also true that $KB \models \alpha$

- **Completeness:** i is complete if
 whenever $KB \models \alpha$, it is also true that $KB \vdash_i \alpha$

- Preview: we will define a logic (first-order logic) which is expressive enough to say almost anything of interest, and for which there exists a sound and complete inference procedure.

- That is, the procedure will answer any question whose answer follows from what is known by the KB.
propositional logic
Propositional Logic: Syntax

- Propositional logic is the simplest logic—illustrates basic ideas

- The proposition symbols P_1, P_2 etc are sentences

- If P is a sentence, $\neg P$ is a sentence (negation)

- If P_1 and P_2 are sentences, $P_1 \land P_2$ is a sentence (conjunction)

- If P_1 and P_2 are sentences, $P_1 \lor P_2$ is a sentence (disjunction)

- If P_1 and P_2 are sentences, $P_1 \implies P_2$ is a sentence (implication)

- If P_1 and P_2 are sentences, $P_1 \iff P_2$ is a sentence (biconditional)
Propositional Logic: Semantics

- Each model specifies true/false for each proposition symbol

 E.g. \(P_{1,2} \quad P_{2,2} \quad P_{3,1} \)

 \(\begin{array}{c}
 true \\
 true \\
 false
 \end{array} \)

 (with these symbols, 8 possible models, can be enumerated automatically)

- Rules for evaluating truth with respect to a model \(m \):

 \[\neg P \quad \text{is true iff} \quad P \quad \text{is false} \]
 \[P_1 \land P_2 \quad \text{is true iff} \quad P_1 \quad \text{is true} \quad \text{and} \quad P_2 \quad \text{is true} \]
 \[P_1 \lor P_2 \quad \text{is true iff} \quad P_1 \quad \text{is true} \quad \text{or} \quad P_2 \quad \text{is true} \]
 \[P_1 \rightarrow P_2 \quad \text{is true iff} \quad P_1 \quad \text{is false} \quad \text{or} \quad P_2 \quad \text{is true} \]
 \[\text{i.e., is false iff} \quad P_1 \quad \text{is true} \quad \text{and} \quad P_2 \quad \text{is false} \]
 \[P_1 \iff P_2 \quad \text{is true iff} \quad P_1 \quad \text{is true} \quad \text{and} \quad P_2 \quad \text{is false} \]

- Simple recursive process evaluates an arbitrary sentence, e.g.,

 \[\neg P_{1,2} \land (P_{2,2} \lor P_{3,1}) = true \land (false \lor true) = true \land true = true \]
Truth Tables for Connectives

<table>
<thead>
<tr>
<th>P</th>
<th>Q</th>
<th>$\neg P$</th>
<th>$P \land Q$</th>
<th>$P \lor Q$</th>
<th>$P \Rightarrow Q$</th>
<th>$P \Leftrightarrow Q$</th>
</tr>
</thead>
<tbody>
<tr>
<td>false</td>
<td>false</td>
<td>true</td>
<td>false</td>
<td>false</td>
<td>true</td>
<td>true</td>
</tr>
<tr>
<td>false</td>
<td>true</td>
<td>true</td>
<td>false</td>
<td>true</td>
<td>true</td>
<td>false</td>
</tr>
<tr>
<td>true</td>
<td>false</td>
<td>false</td>
<td>false</td>
<td>true</td>
<td>false</td>
<td>false</td>
</tr>
<tr>
<td>true</td>
<td>true</td>
<td>false</td>
<td>true</td>
<td>true</td>
<td>true</td>
<td>true</td>
</tr>
</tbody>
</table>
Wumpus World Sentences

- Let $P_{i,j}$ be true if there is a pit in $[i, j]$
 - observation $R_1 : \neg P_{1,1}$

- Let $B_{i,j}$ be true if there is a breeze in $[i, j]$.

- "Pits cause breezes in adjacent squares"
 - rule $R_2 : B_{1,1} \iff (P_{1,2} \lor P_{2,1})$
 - rule $R_3 : B_{2,1} \iff (P_{1,1} \lor P_{2,2} \lor P_{3,1})$
 - observation $R_4 : \neg B_{1,1}$
 - observation $R_5 : B_{2,1}$

- What can we infer about $P_{1,2}, P_{2,1}, P_{2,2}$, etc.?
Truth Tables for Inference

<table>
<thead>
<tr>
<th></th>
<th>$B_{1,1}$</th>
<th>$B_{2,1}$</th>
<th>$P_{1,1}$</th>
<th>$P_{1,2}$</th>
<th>$P_{2,1}$</th>
<th>$P_{2,2}$</th>
<th>$P_{3,1}$</th>
<th>R_1</th>
<th>R_2</th>
<th>R_3</th>
<th>R_4</th>
<th>R_5</th>
<th>KB</th>
</tr>
</thead>
<tbody>
<tr>
<td>$false$</td>
<td>$false$</td>
<td>$false$</td>
<td>$false$</td>
<td>$false$</td>
<td>$false$</td>
<td>$false$</td>
<td>$false$</td>
<td>$true$</td>
<td>$true$</td>
<td>$true$</td>
<td>$true$</td>
<td>$false$</td>
<td>$false$</td>
</tr>
<tr>
<td>$false$:</td>
<td>$true$</td>
<td>$false$</td>
<td>$false$</td>
<td>$false$</td>
<td>$false$</td>
<td>$false$</td>
<td>$false$</td>
<td>$true$</td>
<td>$true$</td>
<td>$true$</td>
<td>$true$</td>
<td>$false$</td>
<td>$false$</td>
</tr>
<tr>
<td>$false$</td>
<td>$true$</td>
<td>$false$</td>
<td>$false$</td>
<td>$false$</td>
<td>$false$</td>
<td>$false$</td>
<td>$false$</td>
<td>$true$</td>
<td>$true$</td>
<td>$true$</td>
<td>$true$</td>
<td>$true$</td>
<td>$true$</td>
</tr>
<tr>
<td>$false$</td>
<td>$true$</td>
<td>$false$</td>
<td>$false$</td>
<td>$false$</td>
<td>$true$</td>
<td>$true$</td>
<td>$false$</td>
<td>$true$</td>
<td>$true$</td>
<td>$true$</td>
<td>$true$</td>
<td>$true$</td>
<td>$true$</td>
</tr>
<tr>
<td>$false$</td>
<td>$true$</td>
<td>$true$</td>
<td>$false$</td>
<td>$true$</td>
<td>$false$</td>
<td>$false$</td>
<td>$true$</td>
<td>$true$</td>
<td>$true$</td>
<td>$true$</td>
<td>$true$</td>
<td>$true$</td>
<td>$true$</td>
</tr>
<tr>
<td>$false$:</td>
<td>$true$</td>
</tr>
<tr>
<td>$false$</td>
<td>$true$</td>
<td>$true$</td>
<td>$true$</td>
<td>$true$</td>
<td>$false$</td>
<td>$true$</td>
<td>$true$</td>
<td>$true$</td>
<td>$true$</td>
<td>$true$</td>
<td>$true$</td>
<td>$true$</td>
<td>$true$</td>
</tr>
<tr>
<td>$false$</td>
<td>$true$</td>
<td>$true$</td>
<td>$true$</td>
<td>$true$</td>
<td>$false$</td>
<td>$true$</td>
<td>$true$</td>
<td>$true$</td>
<td>$true$</td>
<td>$true$</td>
<td>$true$</td>
<td>$true$</td>
<td>$true$</td>
</tr>
<tr>
<td>$false$</td>
<td>$true$</td>
<td>$true$</td>
<td>$true$</td>
<td>$true$</td>
<td>$false$</td>
<td>$true$</td>
<td>$true$</td>
<td>$true$</td>
<td>$true$</td>
<td>$true$</td>
<td>$true$</td>
<td>$true$</td>
<td>$true$</td>
</tr>
<tr>
<td>$false$</td>
<td>$true$</td>
<td>$true$</td>
<td>$true$</td>
<td>$true$</td>
<td>$false$</td>
<td>$true$</td>
<td>$true$</td>
<td>$true$</td>
<td>$true$</td>
<td>$true$</td>
<td>$true$</td>
<td>$true$</td>
<td>$true$</td>
</tr>
<tr>
<td>$false$</td>
<td>$true$</td>
<td>$true$</td>
<td>$true$</td>
<td>$true$</td>
<td>$false$</td>
<td>$true$</td>
<td>$true$</td>
<td>$true$</td>
<td>$true$</td>
<td>$true$</td>
<td>$true$</td>
<td>$true$</td>
<td>$true$</td>
</tr>
<tr>
<td>$false$</td>
<td>$true$</td>
<td>$true$</td>
<td>$true$</td>
<td>$true$</td>
<td>$false$</td>
<td>$true$</td>
<td>$true$</td>
<td>$true$</td>
<td>$true$</td>
<td>$true$</td>
<td>$true$</td>
<td>$true$</td>
<td>$true$</td>
</tr>
<tr>
<td>$true$:</td>
<td>$true$</td>
</tr>
<tr>
<td>$true$</td>
</tr>
</tbody>
</table>

- Enumerate rows (different assignments to symbols $P_{i,j}$)
- Check if rules are satisfied (R_i)
- Valid model (KB) if all rules satisfied
Inference by Enumeration

• Depth-first enumeration of all models is sound and complete

```plaintext
function TT-ENTAILS?(KB, α) returns true or false
  inputs: KB, the knowledge base, a sentence in propositional logic
           α, the query, a sentence in propositional logic
  symbols ← a list of the proposition symbols in KB and α
  return TT-CHECK-ALL(KB, α, symbols, [ ])

function TT-CHECK-ALL(KB, α, symbols, model) returns true or false
  if EMPTY?(symbols) then
    if PL-TRUE?(KB, model) then return PL-TRUE?(α, model)
    else return true
  else do
    P ← FIRST(symbols); rest ← REST(symbols)
    return TT-CHECK-ALL(KB, α, rest, EXTEND(P, true, model)) and
    TT-CHECK-ALL(KB, α, rest, EXTEND(P, false, model))

• O(2^n) for n symbols; problem is co-NP-complete
```
equivalence, validity, satisfiability
Logical Equivalence

- Two sentences are logically equivalent iff true in same models:
 \[\alpha \equiv \beta \text{ if and only if } \alpha \models \beta \text{ and } \beta \models \alpha \]

<table>
<thead>
<tr>
<th>Expression</th>
<th>Equivalent Expression</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>((\alpha \land \beta))</td>
<td>((\beta \land \alpha)) commutativity of \land</td>
<td></td>
</tr>
<tr>
<td>((\alpha \lor \beta))</td>
<td>((\beta \lor \alpha)) commutativity of \lor</td>
<td></td>
</tr>
<tr>
<td>(((\alpha \land \beta) \land \gamma))</td>
<td>((\alpha \land (\beta \land \gamma))) associativity of \land</td>
<td></td>
</tr>
<tr>
<td>(((\alpha \lor \beta) \lor \gamma))</td>
<td>((\alpha \lor (\beta \lor \gamma))) associativity of \lor</td>
<td></td>
</tr>
<tr>
<td>(\neg(\neg \alpha))</td>
<td>(\alpha) double-negation elimination</td>
<td></td>
</tr>
<tr>
<td>((\alpha \implies \beta))</td>
<td>((\neg \beta \implies \neg \alpha)) contraposition</td>
<td></td>
</tr>
<tr>
<td>((\alpha \implies \beta))</td>
<td>((\neg \alpha \lor \beta)) implication elimination</td>
<td></td>
</tr>
<tr>
<td>((\alpha \iff \beta))</td>
<td>(((\alpha \implies \beta) \land (\beta \implies \alpha))) biconditional elimination</td>
<td></td>
</tr>
<tr>
<td>(\neg(\alpha \land \beta))</td>
<td>((\neg \alpha \lor \neg \beta)) De Morgan</td>
<td></td>
</tr>
<tr>
<td>(\neg(\alpha \lor \beta))</td>
<td>((\neg \alpha \land \neg \beta)) De Morgan</td>
<td></td>
</tr>
<tr>
<td>((\alpha \land (\beta \lor \gamma)))</td>
<td>(((\alpha \land \beta) \lor (\alpha \land \gamma))) distributivity of \land over \lor</td>
<td></td>
</tr>
<tr>
<td>((\alpha \lor (\beta \land \gamma)))</td>
<td>(((\alpha \lor \beta) \land (\alpha \lor \gamma))) distributivity of \lor over \land</td>
<td></td>
</tr>
</tbody>
</table>
Validity and Satisfiability

- A sentence is **valid** if it is true in all models,
 e.g., True, $A \lor \neg A$, $A \implies A$, $(A \land (A \implies B)) \implies B$

- Validity is connected to inference via the **Deduction Theorem**:
 $KB \models \alpha$ if and only if $(KB \implies \alpha)$ is valid

- A sentence is **satisfiable** if it is true in some model
 e.g., $A \lor B$, C

- A sentence is **unsatisfiable** if it is true in no models
 e.g., $A \land \neg A$

- Satisfiability is connected to inference via the following:
 $KB \models \alpha$ if and only if $(KB \land \neg \alpha)$ is unsatisfiable
 i.e., prove α by **reductio ad absurdum**
inference
Proof Methods

- Proof methods divide into (roughly) two kinds

- **Application of inference rules**
 - Legitimate (sound) generation of new sentences from old
 - **Proof** = a sequence of inference rule applications
 - Can use inference rules as operators in a standard search alg.
 - Typically require translation of sentences into a normal form

- **Model checking**
 - truth table enumeration (always exponential in n)
 - improved backtracking
 - heuristic search in model space (sound but incomplete)
 - e.g., min-conflicts-like hill-climbing algorithms
Forward and Backward Chaining

- **Horn Form** (restricted)

 \[KB = \text{conjunction of Horn clauses} \]

- Horn clause =

 - proposition symbol; or
 - (conjunction of symbols) \implies symbol

 \[e.g., C \land (B \implies A) \land (C \land D \implies B) \]

- **Modus Ponens** (for Horn Form): complete for Horn KBs

 \[
 \frac{\alpha_1, \ldots, \alpha_n, \alpha_1 \land \cdots \land \alpha_n \implies \beta}{\beta}
 \]

- Can be used with forward chaining or backward chaining

- These algorithms are very natural and run in \textit{linear} time
Example

- Idea: fire any rule whose premises are satisfied in the KB, add its conclusion to the KB, until query is found

$P \implies Q$
$L \land M \implies P$
$B \land L \implies M$
$A \land P \implies L$
$A \land B \implies L$
A
$B
forward chaining
Forward Chaining

- Start with given proposition symbols (atomic sentence)
 e.g., A and B

- Iteratively try to infer truth of additional proposition symbols
 e.g., $A \land B \implies C$, therefore we establish C is true

- Continue until
 - no more inference can be carried out, or
 - goal is reached
Forward Chaining Example

• Given

\[P \implies Q \]
\[L \land M \implies P \]
\[B \land L \implies M \]
\[A \land P \implies L \]
\[A \land B \implies L \]
\[A \]
\[B \]

• Agenda: \(A, B \)

• Annotate horn clauses with number of premises
Forward Chaining Example

- Process agenda item A
- Decrease count for horn clauses in which A is premise
Forward Chaining Example

- Process agenda item B
- Decrease count for horn clauses in which B is premise
- $A \land B \implies L$ has now fulfilled premise
- Add L to agenda
Forward Chaining Example

- Process agenda item L

- Decrease count for horn clauses in which L is premise

- $B \land L \implies M$ has now fulfilled premise

- Add M to agenda
Forward Chaining Example

- Process agenda item M
- Decrease count for horn clauses in which M is premise
- $L \land M \implies P$ has now fulfilled premise
- Add P to agenda
Forward Chaining Example

- Process agenda item P
- Decrease count for horn clauses in which P is premise
- $P \implies Q$ has now fulfilled premise
- Add Q to agenda
- $A \land P \implies L$ has now fulfilled premise
Forward Chaining Example

- Process agenda item P
- Decrease count for horn clauses in which P is premise
- $P \implies Q$ has now fulfilled premise
- Add Q to agenda
- $A \land P \implies L$ has now fulfilled premise
- But L is already inferred
Forward Chaining Example

- Process agenda item Q
- Q is inferred
- Done
Forward Chaining Algorithm

function PL-FC-ENTAILS?(KB, q) **returns** true or false

inputs: KB, the knowledge base, a set of propositional Horn clauses
q, the query, a proposition symbol

local variables: count, a table, indexed by clause, init. number of premises
inferred, a table, indexed by symbol, each entry initially false
agenda, a list of symbols, initially the symbols known in KB

while agenda is not empty do
 p ← POP(agenda)
 unless inferred[p] do
 inferred[p] ← true
 for each Horn clause c in whose premise p appears do
 decrement count[c]
 if count[c] = 0 then do
 if HEAD[c] = q then return true
 PUSH(HEAD[c], agenda)
 return false
backward chaining
Backward Chaining

- Idea: work backwards from the query Q:
 - to prove Q by BC,
 - check if Q is known already, or
 - prove by BC all premises of some rule concluding q

- Avoid loops: check if new subgoal is already on the goal stack

- Avoid repeated work: check if new subgoal
 1. has already been proved true, or
 2. has already failed
Backward Chaining Example

- A and B are known to be true
- Q needs to be proven
Backward Chaining Example

- Current goal: Q
- Q can be inferred by $P \implies Q$
- P needs to be proven
Backward Chaining Example

- Current goal: P

- P can be inferred by $L \land M \implies P$

- L and M need to be proven
Backward Chaining Example

- Current goal: L
- L can be inferred by $A \land P \implies L$
- A is already true
- P is already a goal

\implies repeated subgoal
Backward Chaining Example

- Current goal: L
Backward Chaining Example

- Current goal: \(L \)
- \(L \) can be inferred by \(A \land B \implies L \)
- Both are true
Backward Chaining Example

- Current goal: L
- L can be inferred by $A \land B \implies L$
- Both are true

$\implies L$ is true
Backward Chaining Example

- Current goal: M
Backward Chaining Example

- Current goal: M
- M can be inferred by $B \land L \implies M$
Backward Chaining Example

- Current goal: M
- M can be inferred by $B \land L \implies M$
- Both are true

$\Rightarrow M$ is true
Backward Chaining Example

- Current goal: \(P \)
- \(P \) can be inferred by \(L \land M \implies P \)
- Both are true

\(\implies P \) is true
Backward Chaining Example

- Current goal: Q
- Q can be inferred by $P \implies Q$
- P is true

$\Rightarrow Q$ is true
Forward vs. Backward Chaining

- FC is *data-driven*, cf. automatic, unconscious processing, e.g., object recognition, routine decisions

- May do lots of work that is irrelevant to the goal

- BC is *goal-driven*, appropriate for problem-solving, e.g., Where are my keys? How do I get into a PhD program?

- Complexity of BC can be *much less* than linear in size of KB
resolution
Resolution

- Conjunctive Normal Form (CNF—universal)
 - conjunction of disjunctions of literals
 - E.g., \((A \lor \neg B) \land (B \lor \neg C \lor \neg D)\)

- Resolution inference rule (for CNF): complete for propositional logic
 - \(\ell_1 \lor \cdots \lor \ell_k, \quad m_1 \lor \cdots \lor m_n\)
 - \(\ell_1 \lor \cdots \lor \ell_{i-1} \lor \ell_{i+1} \lor \cdots \lor \ell_k \lor m_1 \lor \cdots \lor m_{j-1} \lor m_{j+1} \lor \cdots \lor m_n\)
 - where \(\ell_i\) and \(m_j\) are complementary literals. E.g.,
 - \(P_{1,3} \lor P_{2,2}, \quad \neg P_{2,2}\)
 - \(\vdash P_{1,3}\)

- Resolution is sound and complete for propositional logic
Wampus World

- Rules such as: “If breeze, then a pit adjacent.”

\[B_{1,1} \iff (P_{1,2} \lor P_{2,1}) \]
Conversion to CNF

\[B_{1,1} \iff (P_{1,2} \lor P_{2,1}) \]

1. Eliminate \(\iff \), replacing \(\alpha \iff \beta \) with \((\alpha \implies \beta) \land (\beta \implies \alpha) \).

\[(B_{1,1} \implies (P_{1,2} \lor P_{2,1})) \land ((P_{1,2} \lor P_{2,1}) \implies B_{1,1}) \]

2. Eliminate \(\implies \), replacing \(\alpha \implies \beta \) with \(\neg \alpha \lor \beta \).

\[(\neg B_{1,1} \lor P_{1,2} \lor P_{2,1}) \land (\neg (P_{1,2} \lor P_{2,1}) \lor B_{1,1}) \]

3. Move \(\neg \) inwards using de Morgan’s rules and double-negation:

\[(\neg B_{1,1} \lor P_{1,2} \lor P_{2,1}) \land ((\neg P_{1,2} \land \neg P_{2,1}) \lor B_{1,1}) \]

4. Apply distributivity law (\(\lor \) over \(\land \)) and flatten:

\[(\neg B_{1,1} \lor P_{1,2} \lor P_{2,1}) \land (\neg P_{1,2} \lor B_{1,1}) \land (\neg P_{2,1} \lor B_{1,1}) \]
Resolution Example

- \(KB = (B_{1,1} \Leftrightarrow (P_{1,2} \lor P_{2,1})) \)
 reformulated as:
 \((\neg B_{1,1} \lor P_{1,2} \lor P_{2,1}) \land (\neg P_{1,2} \lor B_{1,1}) \land (\neg P_{2,1} \lor B_{1,1})\)

- Observation: \(\neg B_{1,1} \)

- Goal: disprove: \(\alpha = \neg P_{1,2} \)

- Resolution
 \[
 \begin{array}{c}
 \neg P_{1,2} \lor B_{1,1} \\
 \neg B_{1,1} \\
 \hline
 \neg P_{1,2}
 \end{array}
 \]

- Resolution
 \[
 \begin{array}{c}
 \neg P_{1,2} \\
 P_{1,2} \\
 \hline
 \text{false}
 \end{array}
 \]
• In practice: all resolvable pairs of clauses are combined
Resolution Algorithm

- Proof by contradiction, i.e., show $KB \land \neg \alpha$ unsatisfiable

```plaintext
function PL-RESOLUTION(KB, \alpha) returns true or false
    inputs: KB, the knowledge base, a sentence in propositional logic
             \alpha, the query, a sentence in propositional logic
    clauses ← the set of clauses in the CNF representation of $KB \land \neg \alpha$
    new ← { }
    loop do
        for each $C_i, C_j$ in clauses do
            resolvents ← PL-RESOLVE($C_i, C_j$)
            if resolvents contains the empty clause then return true
            new ← new ∪ resolvents
            if new ⊆ clauses then return false
        clauses ← clauses ∪ new
    end
```

• Logical agent for Wumpus world explores actions
 – observe glitter → done
 – unexplored safe spot → plan route to it
 – if Wampus in possible spot → shoot arrow
 – take a risk to go possibly risky spot

• Propositional logic to infer state of the world

• Heuristic search to decide which action to take
Summary

- Logical agents apply inference to a knowledge base to derive new information and make decisions.

- Basic concepts of logic:
 - **syntax**: formal structure of sentences
 - **semantics**: truth of sentences with respect to models
 - **entailment**: necessary truth of one sentence given another
 - **inference**: deriving sentences from other sentences
 - **soundness**: derivations produce only entailed sentences
 - **completeness**: derivations can produce all entailed sentences

- Wumpus world requires the ability to represent partial and negated information, inference to determine state of the world, etc.

- Forward, backward chaining are linear-time, complete for Horn clauses.

- Resolution is complete for propositional logic.