Deep Learning

Philipp Koehn

11 April 2024

Supervised Learning

- Examples described by attribute values (Boolean, discrete, continuous, etc.)
- E.g., situations where I will/won't wait for a table:

| Example | Attributes | | | | | | | | | | Target |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | Alt | Bar | Fri | Hun | Pat | Price | Rain | Res | Type | Est | WillWait |
| X_{1} | T | F | F | T | Some | $\$ \$ \$$ | F | T | French | $0-10$ | T |
| X_{2} | T | F | F | T | Full | $\$$ | F | F | Thai | $30-60$ | F |
| X_{3} | F | T | F | F | Some | $\$$ | F | F | Burger | $0-10$ | T |
| X_{4} | T | F | T | T | Full | $\$$ | F | F | Thai | $10-30$ | T |
| X_{5} | T | F | T | F | Full | $\$ \$ \$$ | F | T | French | >60 | F |
| X_{6} | F | T | F | T | Some | $\$ \$$ | T | T | Italian | $0-10$ | T |
| X_{7} | F | T | F | F | None | $\$$ | T | F | Burger | $0-10$ | F |
| X_{8} | F | F | F | T | Some | $\$ \$$ | T | T | Thai | $0-10$ | T |
| X_{9} | F | T | T | F | Full | $\$$ | T | F | Burger | >60 | F |
| X_{10} | T | T | T | T | Full | $\$ \$ \$$ | F | T | Italian | $10-30$ | F |
| X_{11} | F | F | F | F | None | $\$$ | F | F | Thai | $0-10$ | F |
| X_{12} | T | T | T | T | Full | $\$$ | F | F | Burger | $30-60$ | T |

- Classification of examples is positive (T) or negative (F)

Naive Bayes Models

- Bayes rule

$$
p(C \mid \mathbf{A})=\frac{1}{Z} p(\mathbf{A} \mid C) p(C)
$$

- Independence assumption

$$
\begin{aligned}
p(\mathbf{A} \mid C) & =p\left(a_{1}, a_{2}, a_{3}, \ldots, a_{n} \mid C\right) \\
& \simeq \prod_{i} p\left(a_{i} \mid C\right)
\end{aligned}
$$

- Weights

$$
p(\mathbf{A} \mid C)=\prod_{i} p\left(a_{i} \mid C\right)^{\lambda_{i}}
$$

Naive Bayes Models

- Linear model

$$
\begin{aligned}
p(\mathbf{A} \mid C) & =\prod_{i} p\left(a_{i} \mid C\right)^{\lambda_{i}} \\
& =\exp \sum_{i} \lambda_{i} \log p\left(a_{i} \mid C\right)
\end{aligned}
$$

- Probability distribution as features

$$
\begin{aligned}
h_{i}(\mathbf{A}, C) & =\log p\left(a_{i} \mid C\right) \\
h_{0}(\mathbf{A}, C) & =\log p(C)
\end{aligned}
$$

- Linear model with features

$$
p(C \mid \mathbf{A}) \propto \sum_{i} \lambda_{i} h_{i}(\mathbf{A}, C)
$$

Linear Model

- Weighted linear combination of feature values h_{j} and weights λ_{j} for example \mathbf{d}_{i}

$$
\operatorname{score}\left(\lambda, \mathbf{d}_{i}\right)=\sum_{j} \lambda_{j} h_{j}\left(\mathbf{d}_{i}\right)
$$

- Such models can be illustrated as a "network"

Limits of Linearity

- We can give each feature a weight
- But not more complex value relationships, e.g,
- there is one one critical range for a value (non-linear impact)
- interactions between multiple features

XOR

- Linear models cannot model XOR

Multiple Layers

- Add an intermediate ("hidden") layer of processing (each arrow is a weight)

- Have we gained anything so far?

Non-Linearity

- Instead of computing a linear combination

$$
\operatorname{score}\left(\lambda, \mathbf{d}_{i}\right)=\sum_{j} \lambda_{j} h_{j}\left(\mathbf{d}_{i}\right)
$$

- Add a non-linear function

$$
\operatorname{score}\left(\lambda, \mathbf{d}_{i}\right)=f\left(\sum_{j} \lambda_{j} h_{j}\left(\mathbf{d}_{i}\right)\right)
$$

- Popular choices

$$
\operatorname{sigmoid}(x)=\frac{1}{1+e^{-x}}
$$

(sigmoid is also called the "logistic function")

Deep Learning

- More layers = deep learning

example

Simple Neural Network

- One innovation: bias units (no inputs, always value 1)

Sample Input

- Try out two input values
- Hidden unit computation

$$
\begin{aligned}
& \operatorname{sigmoid}(1.0 \times 3.7+0.0 \times 3.7+1 \times-1.5)=\operatorname{sigmoid}(2.2)=\frac{1}{1+e^{-2.2}}=0.90 \\
& \operatorname{sigmoid}(1.0 \times 2.9+0.0 \times 2.9+1 \times-4.5)=\operatorname{sigmoid}(-1.6)=\frac{1}{1+e^{1.6}}=0.17
\end{aligned}
$$

Computed Hidden

- Try out two input values
- Hidden unit computation

$$
\begin{aligned}
& \operatorname{sigmoid}(1.0 \times 3.7+0.0 \times 3.7+1 \times-1.5)=\operatorname{sigmoid}(2.2)=\frac{1}{1+e^{-2.2}}=0.90 \\
& \operatorname{sigmoid}(1.0 \times 2.9+0.0 \times 2.9+1 \times-4.5)=\operatorname{sigmoid}(-1.6)=\frac{1}{1+e^{1.6}}=0.17
\end{aligned}
$$

Compute Output

- Output unit computation

$$
\operatorname{sigmoid}(.90 \times 4.5+.17 \times-5.2+1 \times-2.0)=\operatorname{sigmoid}(1.17)=\frac{1}{1+e^{-1.17}}=0.76
$$

Computed Output

- Output unit computation

$$
\operatorname{sigmoid}(.90 \times 4.5+.17 \times-5.2+1 \times-2.0)=\operatorname{sigmoid}(1.17)=\frac{1}{1+e^{-1.17}}=0.76
$$

"neural" networks

Neuron in the Brain

- The human brain is made up of about 100 billion neurons

- Neurons receive electric signals at the dendrites and send them to the axon

The Brain vs. Artificial Neural Networks

- Similarities
- Neurons, connections between neurons
- Learning = change of connections, not change of neurons
- Massive parallel processing
- But artificial neural networks are much simpler
- computation within neuron vastly simplified

- discrete time steps
- typically some form of supervised learning with massive number of stimuli

back-propagation training

Error

- Computed output: $y=.76$
- Correct output: $t=1.0$
\Rightarrow How do we adjust the weights?

Key Concepts

- Gradient descent
- error is a function of the weights
- we want to reduce the error
- gradient descent: move towards the error minimum
- compute gradient \rightarrow get direction to the error minimum
- adjust weights towards direction of lower error
- Back-propagation
- first adjust last set of weights
- propagate error back to each previous layer
- adjust their weights

Gradient Descent

Gradient Descent

Gradient Descent

- We view the error as a function of the trainable parameters

$$
\operatorname{error}(\lambda)
$$

- We want to optimize error (λ) by moving it towards its optimum

- Why not just set it to its optimum?
- we are updating based on one training example, do not want to overfit to it
- we are also changing all the other parameters, the curve will look different

Derivative of Sigmoid

- Sigmoid

$$
\operatorname{sigmoid}(x)=\frac{1}{1+e^{-x}}
$$

- Reminder: quotient rule

$$
\left(\frac{f(x)}{g(x)}\right)^{\prime}=\frac{g(x) f^{\prime}(x)-f(x) g^{\prime}(x)}{g(x)^{2}}
$$

- Derivative

$$
\begin{aligned}
\frac{d \operatorname{sigmoid}(x)}{d x} & =\frac{d}{d x} \frac{1}{1+e^{-x}} \\
& =\frac{0 \times\left(1-e^{-x}\right)-\left(-e^{-x}\right)}{\left(1+e^{-x}\right)^{2}} \\
& =\frac{1}{1+e^{-x}}\left(\frac{e^{-x}}{1+e^{-x}}\right) \\
& =\frac{1}{1+e^{-x}}\left(1-\frac{1}{1+e^{-x}}\right) \\
& =\operatorname{sigmoid}(x)(1-\operatorname{sigmoid}(x))
\end{aligned}
$$

Final Layer Update

- Linear combination of weights $s=\sum_{k} w_{k} h_{k}$
- Activation function $y=\operatorname{sigmoid}(s)$
- $\operatorname{Error}(\mathrm{L} 2$ norm $) E=\frac{1}{2}(t-y)^{2}$
- Derivative of error with regard to one weight w_{k}

$$
\frac{d E}{d w_{k}}=\frac{d E}{d y} \frac{d y}{d s} \frac{d s}{d w_{k}}
$$

Final Layer Update (1)

- Linear combination of weights $s=\sum_{k} w_{k} h_{k}$
- Activation function $y=\operatorname{sigmoid}(s)$
- $\operatorname{Error}(\mathrm{L} 2$ norm $) E=\frac{1}{2}(t-y)^{2}$
- Derivative of error with regard to one weight w_{k}

$$
\frac{d E}{d w_{k}}=\frac{d E}{d y} \frac{d y}{d s} \frac{d s}{d w_{k}}
$$

- Error E is defined with respect to y

$$
\frac{d E}{d y}=\frac{d}{d y} \frac{1}{2}(t-y)^{2}=-(t-y)
$$

Final Layer Update (2)

- Linear combination of weights $s=\sum_{k} w_{k} h_{k}$
- Activation function $y=\operatorname{sigmoid}(s)$
- $\operatorname{Error}(\mathrm{L} 2$ norm $) E=\frac{1}{2}(t-y)^{2}$
- Derivative of error with regard to one weight w_{k}

$$
\frac{d E}{d w_{k}}=\frac{d E}{d y} \frac{d y}{d s} \frac{d s}{d w_{k}}
$$

- y with respect to x is $\operatorname{sigmoid}(s)$

$$
\frac{d y}{d s}=\frac{d \operatorname{sigmoid}(s)}{d s}=\operatorname{sigmoid}(s)(1-\operatorname{sigmoid}(s))=y(1-y)
$$

Final Layer Update (3)

- Linear combination of weights $s=\sum_{k} w_{k} h_{k}$
- Activation function $y=\operatorname{sigmoid}(s)$
- $\operatorname{Error}(\mathrm{L} 2$ norm $) E=\frac{1}{2}(t-y)^{2}$
- Derivative of error with regard to one weight w_{k}

$$
\frac{d E}{d w_{k}}=\frac{d E}{d y} \frac{d y}{d s} \frac{d s}{d w_{k}}
$$

- x is weighted linear combination of hidden node values h_{k}

$$
\frac{d s}{d w_{k}}=\frac{d}{d w_{k}} \sum_{k} w_{k} h_{k}=h_{k}
$$

Putting it All Together

- Derivative of error with regard to one weight w_{k}

$$
\begin{aligned}
\frac{d E}{d w_{k}} & =\frac{d E}{d y} \frac{d y}{d s} \frac{d s}{d w_{k}} \\
& =-(t-y) \quad y(1-y) \quad h_{k}
\end{aligned}
$$

- error
- derivative of sigmoid: y^{\prime}
- Weight adjustment will be scaled by a fixed learning rate μ

$$
\Delta w_{k}=\mu(t-y) y^{\prime} h_{k}
$$

Hidden Layer Update

- In a hidden layer, we do not have a target output value
- But we can compute how much each node contributed to downstream error
- Definition of error term of each node

$$
\delta_{j}=\left(t_{j}-y_{j}\right) y_{j}^{\prime}
$$

- Back-propagate the error term (why this way? there is math to back it up...)

$$
\delta_{i}=\left(\sum_{j} w_{j \leftarrow i} \delta_{j}\right) y_{i}^{\prime}
$$

- Universal update formula

$$
\Delta w_{j \leftarrow k}=\mu \delta_{j} h_{k}
$$

Our Example

- Computed output: $y=.76$
- Correct output: $t=1.0$
- Final layer weight updates (learning rate $\mu=10$)
$-\delta_{\mathrm{G}}=(t-y) y^{\prime}=(1-.76) 0.181=.0434$
$-\Delta w_{\mathrm{GD}}=\mu \delta_{\mathrm{G}} h_{\mathrm{D}}=10 \times .0434 \times .90=.391$
$-\Delta w_{\mathrm{GE}}=\mu \delta_{\mathrm{G}} h_{\mathrm{E}}=10 \times .0434 \times .17=.074$
$-\Delta w_{\mathrm{GF}}=\mu \delta_{\mathrm{G}} h_{\mathrm{F}}=10 \times .0434 \times 1=.434$

Our Example

- Computed output: $y=.76$
- Correct output: $t=1.0$
- Final layer weight updates (learning rate $\mu=10$)
- $\delta_{\mathrm{G}}=(t-y) y^{\prime}=(1-.76) 0.181=.0434$
$-\Delta w_{\mathrm{GD}}=\mu \delta_{\mathrm{G}} h_{\mathrm{D}}=10 \times .0434 \times .90=.391$
$-\Delta w_{\mathrm{GE}}=\mu \delta_{\mathrm{G}} h_{\mathrm{E}}=10 \times .0434 \times .17=.074$
$-\Delta w_{\mathrm{GF}}=\mu \delta_{\mathrm{G}} h_{\mathrm{F}}=10 \times .0434 \times 1=.434$

Hidden Layer Updates

- Hidden node D
$-\delta_{\mathrm{D}}=\left(\sum_{j} w_{j \leftarrow i} \delta_{j}\right) y_{\mathrm{D}}^{\prime}=w_{\mathrm{GD}} \delta_{\mathrm{G}} y_{\mathrm{D}}^{\prime}=4.5 \times .0434 \times .0898=.0175$
$-\Delta w_{\mathrm{DA}}=\mu \delta_{\mathrm{D}} h_{\mathrm{A}}=10 \times .0175 \times 1.0=.175$
$-\Delta w_{\mathrm{DB}}=\mu \delta_{\mathrm{D}} h_{\mathrm{B}}=10 \times .0175 \times 0.0=0$
$-\Delta w_{\mathrm{DC}}=\mu \delta_{\mathrm{D}} h_{\mathrm{C}}=10 \times .0175 \times 1=.175$
- Hidden node E
$-\delta_{\mathrm{E}}=\left(\sum_{j} w_{j \leftarrow i} \delta_{j}\right) y_{\mathrm{E}}^{\prime}=w_{\mathrm{GE}} \delta_{\mathrm{G}} y_{\mathrm{E}}^{\prime}=-5.2 \times .0434 \times 0.1411=-.0318$
$-\Delta w_{\text {EA }}=\mu \delta_{\text {E }} h_{\text {A }}=10 \times-.0318 \times 1.0=-.318$
- etc.

computation graphs

Vector and Matrix Multiplications

- Forward computation: $\vec{s}=W \vec{h}$
- Activation function: $\vec{y}=\operatorname{sigmoid}(\vec{h})$
- Error term: $\vec{\delta}=(\vec{t}-\vec{y}) \operatorname{sigmoid}^{\prime}(\vec{s})$
- Propagation of error term: $\vec{\delta}_{i}=W \vec{\delta}_{i+1} \cdot \operatorname{sigmoid}^{\prime}(\vec{s})$
- Weight updates: $\Delta W=\mu \vec{\delta} \vec{h}^{T}$

Computation Graph

Simple Neural Network

Computation Graph

Processing Input

Error Function

- For training, we need a measure how well we do
\Rightarrow Cost function
also known as objective function, loss, gain, cost, ...
- For instance L2 norm

$$
\text { error }=\frac{1}{2}(t-y)^{2}
$$

Calculus Refresher: Chain Rule

- Formula for computing derivative of composition of two or more functions
- functions f and g
- composition $f \circ g$ maps x to $f(g(x))$
- Chain rule

$$
(f \circ g)^{\prime}=\left(f^{\prime} \circ g\right) \cdot g^{\prime}
$$

or

$$
F^{\prime}(x)=f^{\prime}(g(x)) g^{\prime}(x)
$$

- Leibniz's notation

$$
\frac{d z}{d x}=\frac{d z}{d y} \cdot \frac{d y}{d x}
$$

if $z=f(y)$ and $y=g(x)$, then

$$
\frac{d z}{d x}=\frac{d z}{d y} \cdot \frac{d y}{d x}=f^{\prime}(y) g^{\prime}(x)=f^{\prime}(g(x)) g^{\prime}(x)
$$

Chain Rule in the Computation Graph

recurse down
the graph

$\underbrace{\underbrace{\text { forward value }}}_{$| valtiply |
| :---: |
| $v^{\prime}(g(x))$ |$\underbrace{g^{\prime}(x)}_{$| apply |
| :---: |
| derivative of |
| function to |$}}$

Derivatives for Each Node

Derivatives for Each Node

Derivatives for Each Node

sum

$$
\frac{d \text { sum }}{d \text { prod }}=\frac{d o}{d i_{1}}=\frac{d}{d i_{1}} i_{1}+i_{2}=1, \frac{d o}{d i_{2}}=1 \text { sum }
$$

$$
\frac{d \text { sigmoid }}{d \text { sum }}=\frac{d o}{d i}=\frac{d}{d i} \sigma(i)=\sigma(i)(1-\sigma(i)) \text { sigmoid }
$$

$$
\frac{d \mathrm{~L} 2}{d \text { sigmoid }}=\frac{d o}{d i}=\frac{d}{d i} \frac{1}{2}(t-i)^{2}=t-i
$$

Derivatives for Each Node

sum
sigmoid

$\frac{d \text { sum }}{d \text { prod }}=\frac{d o}{d i_{1}}=\frac{d}{d i_{1}} i_{1} i_{2}=i_{2}, \frac{d o}{d i_{2}}=i_{1}$ prod

$$
\frac{d \text { sum }}{d \text { prod }}=\frac{d o}{d i_{1}}=\frac{d}{d i_{1}} i_{1}+i_{2}=1, \frac{d o}{d i_{2}}=1 \mathrm{sum}
$$

$\frac{d \text { sigmoid }}{d \text { sum }}=\frac{d o}{d i}=\frac{d}{d i} \sigma(i)=\sigma(i)(1-\sigma(i))$ sigmoid

$$
\frac{d \mathrm{~L} 2}{d \text { sigmoid }}=\frac{d o}{d i}=\frac{d}{d i} \frac{1}{2}(t-i)^{2}=t-i \mathrm{~L} 2
$$

Backward Pass: Derivative Computation

Gradients for Parameter Update

Parameter Update

toolkits

Toolkits

- Machine learning architectures around computations graphs very powerful
- define a computation graph
- provide data and a training strategy (e.g., batching)
- toolkit does the rest
- seamless support of GPUs
- Popular today
- PyTorch
- Huggingface
- Tensorflow

Example: PyTorch

- Installation

```
pip install torch
```

- Usage

```
import torch
```


Some Data Types

- PyTorch data type for parameter vectors, matrices etc., called torch. tensor

```
W = torch.tensor([[3,4],[2,3]], requires_grad=True, dtype=torch.float)
b = torch.tensor([-2,-4], requires_grad=True, dtype=torch.float)
W2 = torch.tensor([5,-5], requires_grad=True, dtype=torch.float)
b2 = torch.tensor([-2], requires_grad=True, dtype=torch.float)
```

- Definition of variables includes
- specification of their basic data type (float)
- indication to compute gradients (requires_grad=True)
- Input and output

```
x = torch.tensor([1,0], dtype=torch.float)
t = torch.tensor([1], dtype=torch.float)
```


Computation Graph

- Computation graph

$$
\begin{aligned}
& \mathrm{s}=\mathrm{W} \cdot \mathrm{mv}(\mathrm{x})+\mathrm{b} \\
& \mathrm{~h}=\text { torch.nn.Sigmoid() }(\mathrm{s}) \\
& \mathrm{z}=\text { torch.dot }(\mathrm{W} 2, \mathrm{~h})+\mathrm{b} 2 \\
& \mathrm{y}=\text { torch.nn.Sigmoid() } \mathrm{z}) \\
& \text { error }=1 / 2 *(\mathrm{t}-\mathrm{z}) * * 2
\end{aligned}
$$

- Note
- PyTorch sigmoid function torch.nn. Sigmoid()
- multiplication between matrix W and vector x is mv
- multiplication between two vectors W 2 and h is torch. dot.

Backward Computation

- Here it is:
error.backward()
- No need to derive gradients - all is done automaticallyl
- We can look up computed gradients

```
>>> W2.grad
tensor([-0.0360, -0.0059])|
```

- Note
- when you run this code multiple times, then gradients accumulate
- reset them with, e.g., W2. grad.data.zero_()

Training Data

- Our training set consists of the four examples of binary XOR operations.

\mathbf{x}	\mathbf{y}	$\mathbf{x} \oplus \mathbf{y}$
0	0	0
0	1	1
1	0	1
1	1	0

- Placed into array

```
training_data =
    [ [ torch.tensor([0.,0.]), torch.tensor([0.]) ],
        [ torch.tensor([1.,0.]), torch.tensor([1.]) ],
        [ torch.tensor([0.,1.]), torch.tensor([1.]) ],
        [ torch.tensor([1.,1.]), torch.tensor([0.]) ] ]
```


Training Loop: Forward

```
mu = 0.1
for epoch in range(1000):
    total_error = 0
    for item in training_data:
        x = item[0]
        t = item[1]
        # forward computation
        s = W.mv(x) + b
        h = torch.nn.Sigmoid()(s)
        z = torch.dot(W2, h) + b2
        y = torch.nn.Sigmoid()(z)
        error = 1/2 * (t - y) ** 2
        total_error = total_error + error
```


Training Loop: Backward and Updates

```
    # backward computation
    error.backward()
    # weight updates
    W.data = W - mu * W.grad.data
    b.data = b - mu * b.grad.data
    W2.data = W2 - mu * W2.grad.data
    b2.data = b2 - mu * b2.grad.data
    W.grad.data.zero_()
    b.grad.data.zero_()
    W2.grad.data.zero_()
    b2.grad.data.zero_()
print("error: ", total_error/4)
```


Batch Training

- We computed gradients for each training example, update model immediately
- More common: process examples in batches, update after batch processed
- Instead

```
error.backward()
```

- Run back-propagation on accumulated error

```
total_error.backward()
```


Training Data Batch

```
x = torch.tensor([ [0.,0.], [1.,0.], [0.,1.], [1.,1.] ])
t = torch.tensor([ 0., 1., 1., 0. ])
```

- Change to computation graph (input now a matrix, output a vector)

$$
\begin{aligned}
& s=x \cdot m m(W)+b \\
& h=\operatorname{torch} \cdot n n \cdot \operatorname{Sigmoid}()(s) \\
& z=h \cdot m v(W 2)+b 2 \\
& y=\operatorname{torch} \cdot n n \cdot \operatorname{Sigmoid}()(z)
\end{aligned}
$$

- Convert error vector into single number

```
error = 1/2 * (t - y) ** 2
mean_error = error.mean()
mean_error.backward()
```


Parameter Updates (Optimizer)

- Our code has explicit parameter update computations

```
# weight updates
W.data = W - mu * W.grad.data
b.data = b - mu * b.grad.data
W2.data = W2 - mu * W2.grad.data
b2.data = b2 - mu * b2.grad.data
```

- But fancier optimizers are typically used (Adam, etc.)
- This requires more complex implementation

torch.nn.Module

- Neural network model is defined as class derived from torch.nn. Module

```
class ExampleNet(torch.nn.Module):
    def __init__(self):
        super(ExampleNet, self).__init__()
        self.layer1 = torch.nn.Linear(2,2)
        self.layer2 = torch.nn.Linear(2,1)
        self.layer1.weight = torch.nn.Parameter(torch.tensor([[3.,2.],[4.,3.]]))
        self.layer1.bias = torch.nn.Parameter(torch.tensor([-2.,-4.]))
        self.layer2.weight = torch.nn.Parameter(torch.tensor([[5.,-5.]]))
        self.layer2.bias = torch.nn.Parameter(torch.tensor([-2.]))
    def forward(self, x):
        s = self.layer1(x)
        h = torch.nn.Sigmoid()(s)
        z = self.layer2(h)
        y = torch.nn.Sigmoid()(z)
        return y
```


Optimizer Definition

- Instantiation of neural network object

```
net = ExampleNet()
```

- Optimizer definition

```
optimizer = torch.optim.SGD(net.parameters(), lr=0.1)
```


Training Loop

```
for iteration in range(1000):
    optimizer.zero_grad()
    out = net.forward( x )
    error = 1/2 * (t - out) ** 2
    mean_error = error.mean()
    print("error: ",mean_error.data)
    mean_error.backward()
    optimizer.step()
```


GPU

- Neural network layers may have, say, 200 nodes
- Computations such as $W \vec{h}$ require $200 \times 200=40,000$ multiplications
- Graphics Processing Units (GPU) are designed for such computations
- image rendering requires such vector and matrix operations
- massively mulit-core but lean processing units
- example: NVIDIA H100 GPU provides 14,592 thread processors
- Extensions to C to support programming of GPUs, such as CUDA

