Decision Theory

Philipp Koehn

9 April 2019
Outline

- Rational preferences
- Utilities
- Multiattribute utilities
- Decision networks
- Value of information
- Sequential decision problems
- Value iteration
- Policy iteration
preferences
Preferences

- An agent chooses among prizes (A, B, etc.)

- Notation:

 - $A > B$ A preferred to B

 - $A \sim B$ indifference between A and B

 - $A \succeq B$ B not preferred to A

- Lottery $L = [p, A; (1 - p), B]$, i.e., situations with uncertain prizes
Rational Preferences

- Idea: preferences of a rational agent must obey constraints

- Rational preferences \(\implies \) behavior describable as maximization of expected utility

- Constraints:
 - Orderability
 \[
 (A > B) \lor (B > A) \lor (A \sim B)
 \]
 - Transitivity
 \[
 (A > B) \land (B > C) \implies (A > C)
 \]
 - Continuity
 \[
 A > B > C \implies \exists p \ [p, A; 1 - p, C] \sim B
 \]
 - Substitutability
 \[
 A \sim B \implies [p, A; 1 - p, C] \sim [p, B; 1 - p, C]
 \]
 - Monotonicity
 \[
 A > B \implies (p \geq q \iff [p, A; 1 - p, B] \succ [q, A; 1 - q, B])
 \]
Rational Preferences

- Violating the constraints leads to self-evident irrationality

- For example: an agent with intransitive preferences can be induced to give away all its money

- If $B > C$, then an agent who has C would pay (say) 1 cent to get B

- If $A > B$, then an agent who has B would pay (say) 1 cent to get A

- If $C > A$, then an agent who has A would pay (say) 1 cent to get C
Maximizing Expected Utility

• **Theorem** (Ramsey, 1931; von Neumann and Morgenstern, 1944):

 Given preferences satisfying the constraints there exists a real-valued function U such that

 $U(A) \geq U(B) \iff A \succeq B$

 $U([p_1, S_1; \ldots; p_n, S_n]) = \sum_i p_i U(S_i)$

• **MEU principle:**
 Choose the action that maximizes expected utility

• Note: an agent can be entirely rational (consistent with MEU) without ever representing or manipulating utilities and probabilities

• E.g., a lookup table for perfect tic-tactoe
utilities
Utilities

• Utilities map states to real numbers. Which numbers?

• Standard approach to assessment of human utilities
 – compare a given state A to a standard lottery L_p that has
 * “best possible prize” u_\top with probability p
 * “worst possible catastrophe” u_\bot with probability $(1 - p)$
 – adjust lottery probability p until $A \sim L_p$
Utility Scales

- **Normalized utilities**: $u_T = 1.0, u_\perp = 0.0$

- **Micromorts**: one-millionth chance of death
 useful for Russian roulette, paying to reduce product risks, etc.

- **QALYs**: quality-adjusted life years
 useful for medical decisions involving substantial risk

- **Note**: behavior is **invariant** w.r.t. linear transformation

 \[U'(x) = k_1 U(x) + k_2 \quad \text{where} \quad k_1 > 0 \]

- **With deterministic prizes only** (no lottery choices), only
 ordinal utility can be determined, i.e., total order on prizes
Money

- Money does **not** behave as a utility function.
- Given a lottery L with expected monetary value $EMV(L)$, usually $U(L) < U(EMV(L))$, i.e., people are risk-averse.
- Utility curve: for what probability p am I indifferent between a prize x and a lottery $[p, M; (1 - p), 0]$ for large M?
- Typical empirical data, extrapolated with risk-prone behavior:

![Utility Curve Diagram]
decision networks
Decision Networks

- Add action nodes and utility nodes to belief networks to enable rational decision making

- Algorithm:
 - For each value of action node
 - compute expected value of utility node given action, evidence
 - Return MEU action
Multiattribute Utility

- How can we handle utility functions of many variables $X_1 \ldots X_n$? E.g., what is $U(Deaths, Noise, Cost)$?

- How can complex utility functions be assessed from preference behaviour?

- Idea 1: identify conditions under which decisions can be made without complete identification of $U(x_1, \ldots, x_n)$

- Idea 2: identify various types of independence in preferences and derive consequent canonical forms for $U(x_1, \ldots, x_n)$
Strict Dominance

- Typically define attributes such that U is monotonic in each.

- **Strict dominance**: choice B strictly dominates choice A iff
 \[\forall i \ X_i(B) \geq X_i(A) \quad (\text{and hence } U(B) \geq U(A)) \]

- Strict dominance seldom holds in practice.
Stochastic Dominance

• Distribution \(p_1 \) stochastically dominates distribution \(p_2 \) iff
 \[
 \forall t \quad \int_{-\infty}^{t} p_1(x)\,dx \leq \int_{-\infty}^{t} p_2(x)\,dx
 \]

• If \(U \) is monotonic in \(x \), then \(A_1 \) with outcome distribution \(p_1 \) stochastically dominates \(A_2 \) with outcome distribution \(p_2 \):
 \[
 \int_{-\infty}^{\infty} p_1(x)U(x)\,dx \geq \int_{-\infty}^{\infty} p_2(x)U(x)\,dx
 \]
 Multiattribute case: stochastic dominance on all attributes \(\implies \) optimal
Stochastic Dominance

- Stochastic dominance can often be determined without exact distributions using **qualitative** reasoning

- E.g., construction cost increases with distance from city

 \(S_1 \) is closer to the city than \(S_2 \)

 \(\implies S_1 \) stochastically dominates \(S_2 \) on cost

- E.g., injury increases with collision speed

- Can annotate belief networks with stochastic dominance information:

 \(X \xrightarrow{+} Y \) (\(X \) positively influences \(Y \)) means that

 For every value \(z \) of \(Y \)'s other parents \(Z \)

 \(\forall x_1, x_2 \ x_1 \geq x_2 \implies P(Y|x_1, z) \) stochastically dominates \(P(Y|x_2, z) \)
Label the Arcs + or –
Label the Arcs + or −
Label the Arcs + or –
Preference Structure: Deterministic

- \(X_1 \) and \(X_2 \) preferentially independent of \(X_3 \) iff preference between \(\langle x_1, x_2, x_3 \rangle \) and \(\langle x'_1, x'_2, x_3 \rangle \) does not depend on \(x_3 \)

- E.g., \(\langle \text{Noise}, \text{Cost}, \text{Safety} \rangle \):

 \(\langle 20,000 \text{ suffer, } \$4.6 \text{ billion, } 0.06 \text{ deaths/mpm} \rangle \) vs.

 \(\langle 70,000 \text{ suffer, } \$4.2 \text{ billion, } 0.06 \text{ deaths/mpm} \rangle \)

- **Theorem** (Leontief, 1947): if every pair of attributes is P.I. of its complement, then every subset of attributes is P.I of its complement: **mutual P.I.**

- **Theorem** (Debreu, 1960): mutual P.I. \(\iff \exists \) additive value function:

\[
V(S) = \sum_i V_i(X_i(S))
\]

Hence assess \(n \) single-attribute functions; often a good approximation
Preference Structure: Stochastic

- Need to consider preferences over lotteries:
 \(\text{X is utility-independent of Y iff} \)
 preferences over lotteries in \(\text{X} \) do not depend on \(y \)

- Mutual U.I.: each subset is U.I of its complement
 \(\implies \exists \) multiplicative utility function:
 \[U = k_1 U_1 + k_2 U_2 + k_3 U_3 \\
 + k_1 k_2 U_1 U_2 + k_2 k_3 U_2 U_3 + k_3 k_1 U_3 U_1 \\
 + k_1 k_2 k_3 U_1 U_2 U_3 \]

- Routine procedures and software packages for generating preference tests to identify various canonical families of utility functions
value of information
Value of Information

- Idea: compute value of acquiring each possible piece of evidence
 Can be done **directly from decision network**

- Example: buying oil drilling rights
 Two blocks A and B, exactly one has oil, worth k
 Prior probabilities 0.5 each, mutually exclusive
 Current price of each block is $k/2$
 “Consultant” offers accurate survey of A. Fair price?

- Solution: compute expected value of information
 \[= \text{expected value of best action given the information}
 \quad \text{minus expected value of best action without information}\]

- Survey may say “oil in A” or “no oil in A”, **prob. 0.5 each** (given!)
 \[= \left[0.5 \times \text{value of “buy A” given “oil in A”} \quad + \right.
 \left.0.5 \times \text{value of “buy B” given “no oil in A”}\right]
 \quad - 0
 \[= (0.5 \times k/2) + (0.5 \times k/2) - 0 = k/2\]

General Formula

- Current evidence E, current best action α
- Possible action outcomes S_i, potential new evidence E_j

$$EU(\alpha|E) = \max_a \sum_i U(S_i) P(S_i|E, a)$$

- Suppose we knew $E_j = e_{jk}$, then we would choose $\alpha_{e_{jk}}$ s.t.

$$EU(\alpha_{e_{jk}}|E, E_j = e_{jk}) = \max_a \sum_i U(S_i) P(S_i|E, a, E_j = e_{jk})$$

- E_j is a random variable whose value is *currently* unknown
- \implies must compute expected gain over all possible values:

$$VPI_E(E_j) = \left(\sum_k P(E_j = e_{jk}|E) EU(\alpha_{e_{jk}}|E, E_j = e_{jk}) \right) - EU(\alpha|E)$$

(VPI = value of perfect information)
Properties of VPI

- **Nonnegative**—in *expectation*, not *post hoc*

\[\forall j, E \ VPI_E(E_j) \geq 0 \]

- **Nonadditive**—consider, e.g., obtaining \(E_j \) twice

\[VPI_E(E_j, E_k) \neq VPI_E(E_j) + VPI_E(E_k) \]

- **Order-independent**

\[VPI_E(E_j, E_k) = VPI_E(E_j) + VPI_{E,E_j}(E_k) = VPI_E(E_k) + VPI_{E,E_k}(E_j) \]

- Note: when more than one piece of evidence can be gathered, maximizing VPI for each to select one is not always optimal

\[\implies \text{evidence-gathering becomes a } \textbf{sequential} \text{ decision problem} \]
sequential decision problems
Sequential Decision Problems

[Diagram showing relationships between search, planning, decision-theoretic planning, Markov decision problems (MDPs), partially observable MDPs (POMDPs), and decision-theoretic planning.]
Example Markov Decision Process

- States $s \in S$, actions $a \in A$

- Model $T(s, a, s') \equiv P(s'|s, a) = $ probability that a in s leads to s'

- Reward function $R(s)$ (or $R(s, a)$, $R(s, a, s')$)

 $R(s) = \begin{cases}
 -0.04 & \text{(small penalty) for nonterminal states} \\
 \pm 1 & \text{for terminal states}
 \end{cases}$
Solving Markov Decision Processes

- In search problems, aim is to find an optimal sequence.
- In MDPs, aim is to find an optimal policy $\pi(s)$, i.e., best action for every possible state s (because can’t predict where one will end up).
- The optimal policy maximizes (say) the expected sum of rewards.
- Optimal policy when state penalty $R(s)$ is -0.04:
Risk and Reward

\[
r = [-\infty : -1.6284]
\]

\[
r = [-0.4278 : -0.0850]
\]

\[
r = [-0.0480 : -0.0274]
\]

\[
r = [-0.0218 : 0.0000]
\]
Utility of State Sequences

- Need to understand preferences between sequences of states

- Typically consider stationary preferences on reward sequences:
 \[[r, r_0, r_1, r_2, \ldots] > [r, r'_0, r'_1, r'_2, \ldots] \iff [r_0, r_1, r_2, \ldots] > [r'_0, r'_1, r'_2, \ldots] \]

- There are two ways to combine rewards over time
 1. *Additive* utility function:
 \[U([s_0, s_1, s_2, \ldots]) = R(s_0) + R(s_1) + R(s_2) + \ldots \]
 2. *Discounted* utility function:
 \[U([s_0, s_1, s_2, \ldots]) = R(s_0) + \gamma R(s_1) + \gamma^2 R(s_2) + \ldots \]
 where \(\gamma \) is the discount factor
Utility of States

- Utility of a state (a.k.a. its value) is defined to be
 \[U(s) = \text{expected (discounted) sum of rewards (until termination)} \]
 \[\text{assuming optimal actions} \]

- Given the utilities of the states, choosing the best action is just MEU:
 maximize the expected utility of the immediate successors
Utilities

- Problem: infinite lifetimes \implies additive utilities are infinite

- 1) **Finite horizon**: termination at a *fixed time* T
 \implies nonstationary policy: $\pi(s)$ depends on time left

- 2) **Absorbing state(s)**: w/ prob. 1, agent eventually “dies” for any π
 \implies expected utility of every state is finite

- 3) **Discounting**: assuming $\gamma < 1$, $R(s) \leq R_{\text{max}}$,

 \[U([s_0, \ldots s_\infty]) = \sum_{t=0}^{\infty} \gamma^t R(s_t) \leq R_{\text{max}}/(1 - \gamma) \]

 Smaller $\gamma \implies$ shorter horizon

- 4) Maximize **system gain** = average reward per time step
 Theorem: optimal policy has constant gain after initial transient
 E.g., taxi driver’s daily scheme cruising for passengers
Dynamic Programming: Bellman Equation

- Definition of utility of states leads to a simple relationship among utilities of neighboring states:

- **Expected sum of rewards**

 \[\text{= current reward} + \gamma \times \text{expected sum of rewards after taking best action} \]

- Bellman equation (1957):

 \[U(s) = R(s) + \gamma \max_a \sum_{s'} U(s')T(s, a, s') \]

- \(U(1, 1) = -0.04 \)

 \[+ \gamma \max \{0.8U(1, 2) + 0.1U(2, 1) + 0.1U(1, 1), \]

 0.9U(1, 1) + 0.1U(1, 2) \]

 0.9U(1, 1) + 0.1U(2, 1) \]

 0.8U(2, 1) + 0.1U(1, 2) + 0.1U(1, 1) \]

 \[\text{up} \]

 \[\text{left} \]

 \[\text{down} \]

 \[\text{right} \]

- One equation per state = \(n \) nonlinear equations in \(n \) unknowns
inference algorithms
Value Iteration Algorithm

- **Idea**: Start with arbitrary utility values
 Update to make them locally consistent with Bellman eqn.
 Everywhere locally consistent \Rightarrow global optimality

- Repeat for every s simultaneously until “no change”

\[
U(s) \leftarrow R(s) + \gamma \max_a \sum_{s'} U(s') T(s, a, s')
\]

- Example:
 utility estimates
 for selected states
Policy Iteration

- Howard, 1960: search for optimal policy and utility values simultaneously

- Algorithm:
 \[\pi \leftarrow \text{an arbitrary initial policy} \]
 repeat until no change in \(\pi \)
 compute utilities given \(\pi \)
 update \(\pi \) as if utilities were correct (i.e., local MEU)

- To compute utilities given a fixed \(\pi \) (value determination):
 \[U(s) = R(s) + \gamma \sum_{s'} U(s')T(s, \pi(s), s') \quad \text{for all } s \]

- i.e., \(n \) simultaneous linear equations in \(n \) unknowns, solve in \(O(n^3) \)
Modified Policy Iteration

• Policy iteration often converges in few iterations, but each is expensive

• Idea: use a few steps of value iteration (but with π fixed) starting from the value function produced the last time to produce an approximate value determination step.

• Often converges much faster than pure VI or PI

• Leads to much more general algorithms where Bellman value updates and Howard policy updates can be performed locally in any order

• Reinforcement learning algorithms operate by performing such updates based on the observed transitions made in an initially unknown environment
Partial Observability

- POMDP has an observation model $O(s, e)$ defining the probability that the agent obtains evidence e when in state s

- Agent does not know which state it is in
 \implies makes no sense to talk about policy $\pi(s)$!!

- **Theorem** (Astrom, 1965): the optimal policy in a POMDP is a function $\pi(b)$ where b is the belief state (probability distribution over states)

- Can convert a POMDP into an MDP in belief-state space, where $T(b, a, b')$ is the probability that the new belief state is b' given that the current belief state is b and the agent does a.
 I.e., essentially a filtering update step
Partial Observability

- Solutions automatically include information-gathering behavior

- If there are n states, b is an n-dimensional real-valued vector
 \[\Rightarrow \text{solving POMDPs is very (actually, PSPACE-) hard!} \]

- The real world is a POMDP (with initially unknown T and O)