Basic Search

Philipp Koehn

20 February 2020
Outline

• Problem-solving agents

• Problem types

• Problem formulation

• Example problems

• Basic search algorithms
problem-solving agents
Problem Solving Agents

Restricted form of general agent:

```
function SIMPLE-PROBLEM-SOLVING-AGENT( percept ) returns an action
    static: seq, an action sequence, initially empty
            state, some description of the current world state
            goal, a goal, initially null
            problem, a problem formulation

    state ← UPDATE-STATE( state, percept )
    if seq is empty then
        goal ← FORMULATE-GOAL( state )
        problem ← FORMULATE-PROBLEM( state, goal )
        seq ← SEARCH( problem )
        action ← RECOMMENDATION( seq, state )
        seq ← REMAINDER( seq, state )
    return action
```

Note: this is offline problem solving; solution executed “eyes closed.”

Online problem solving involves acting without complete knowledge.
Example: Romania
Example: Romania

- On holiday in Romania; currently in Arad
- Flight leaves tomorrow from Bucharest
- Formulate goal
 - be in Bucharest
- Formulate problem
 - **states**: various cities
 - **actions**: drive between cities
- Find solution
 - sequence of cities, e.g., Arad, Sibiu, Fagaras, Bucharest
problem types
Problem Types

• Deterministic, fully observable \implies single-state problem
 – agent knows exactly which state it will be in
 – solution is a sequence

• Non-observable \implies conformant problem
 – Agent may have no idea where it is
 – solution (if any) is a sequence

• Nondeterministic and/or partially observable \implies contingency problem
 – percepts provide new information about current state
 – solution is a contingent plan or a policy
 – often interleave search, execution

• Unknown state space \implies exploration problem (“online”)
Example: Vacuum World

Single-state, start in #5. Solution? [**Right, Suck**]

Conformant, start in \{1, 2, 3, 4, 5, 6, 7, 8\} e.g., **Right** goes to \{2, 4, 6, 8\}. Solution? [**Right, Suck, Left, Suck**]

Contingency, start in #5
Murphy’s Law: **Suck** can dirty a clean carpet
Local sensing: dirt, location only.
Solution? [**Right, if dirt then Suck**]
problem formulation
A problem is defined by four items:

- **initial state** e.g., “at Arad”
- **successor function** $S(x) =$ set of action–state pairs
e.g., $S(Arad) = \{\langle Arad \rightarrow Zerind, Zerind \rangle, \ldots \}$
- **goal test**, can be
 - **explicit**, e.g., $x =$ “at Bucharest”
 - **implicit**, e.g., $NoDirt(x)$
- **path cost** (additive)
e.g., sum of distances, number of actions executed, etc.
$c(x, a, y)$ is the **step cost**, assumed to be ≥ 0

A solution is a sequence of actions
leading from the initial state to a goal state
Selecting a State Space

- Real world is absurdly complex
 ⇒ state space must be **abstracted** for problem solving

- (Abstract) state = set of real states

- (Abstract) action = complex combination of real actions
 e.g., “Arad → Zerind” represents a complex set of possible routes, detours, rest stops, etc.
 For guaranteed realizability, **any** real state “in Arad” must get to **some** real state “in Zerind”

- (Abstract) solution =
 set of real paths that are solutions in the real world

- Each abstract action should be “easier” than the original problem!
Example: Vacuum World State Space Graph

- **States?**: integer dirt and robot locations (ignore dirt amounts etc.)
- **Actions?**: Left, Right, Suck, NoOp
- **Goal Test?**: no dirt
- **Path Cost?**: 1 per action (0 for NoOp)
Example: The 8-Puzzle

states?: integer locations of tiles (ignore intermediate positions)

actions?: move blank left, right, up, down (ignore unjamming etc.)

goal test?: = goal state (given)

path cost?: 1 per move

[Note: optimal solution of n-Puzzle family is NP-hard]
Example: Robotic Assembly

- **states**: real-valued coordinates of robot joint angles
- **actions**: continuous motions of robot joints
- **goal test**: complete assembly
- **path cost**: time to execute
tree search
Tree Search Algorithms

- Basic idea: offline, simulated exploration of state space by generating successors of already-explored states (a.k.a. *expanding* states)

```plaintext
function TREE-SEARCH(problem, strategy) returns a solution, or failure
    initialize the search tree using the initial state of problem
    loop do
        if there are no candidates for expansion then return failure
        choose a leaf node for expansion according to strategy
        if the node contains a goal state then return the corresponding solution
        else expand the node and add the resulting nodes to the search tree
    end
```
Tree Search Example
Tree Search Example
Tree Search Example
Implementation: States vs. Nodes

- A **state** is a (representation of) a physical configuration
- A **node** is a data structure constituting part of a search tree includes **parent**, **children**, **depth**, **path cost** \(g(x) \)
- States do not have parents, children, depth, or path cost!

- The **EXPAND** function creates new nodes, filling in the various fields and using the **SUCCESSORFn** of the problem to create the corresponding states.
Implementation: General Tree Search

function TREE-SEARCH(problem, fringe) returns a solution, or failure

fringe ← INSERT(Make-Node(INITIAL-STATE[problem]), fringe)

loop do
 if fringe is empty then return failure
 node ← REMOVE-FRONT(fringe)
 if GOAL-TEST(problem, STATE(node)) then return node
 fringe ← INSERTALL(EXPAND(node, problem), fringe)

end loop

function EXPAND(node, problem) returns a set of nodes

successors ← the empty set

for each action, result in SUCCESSOR-FN(problem, STATE[node]) do
 s ← a new NODE
 PARENT-NODE[s] ← node; ACTION[s] ← action; STATE[s] ← result
 PATH-COST[s] ← PATH-COST[node] + STEP-COST(STATE[node], action, result)
 DEPTH[s] ← DEPTH[node] + 1
 add s to successors

return successors
Search Strategies

• A strategy is defined by picking the **order of node expansion**

• Strategies are evaluated along the following dimensions

 – **completeness**—does it always find a solution if one exists?
 – **time complexity**—number of nodes generated/expanded
 – **space complexity**—maximum number of nodes in memory
 – **optimality**—does it always find a least-cost solution?

• Time and space complexity are measured in terms of

 – b — maximum branching factor of the search tree
 – d — depth of the least-cost solution
 – m — maximum depth of the state space (may be ∞)
Uninformed Search Strategies

Uninformed strategies use only the information available in the problem definition

- Breadth-first search
- Uniform-cost search
- Depth-first search
- Depth-limited search
- Iterative deepening search
breadth-first search
Breadth-First Search

- Expand shallowest unexpanded node

- **Implementation:**

 fringe is a FIFO queue, i.e., new successors go at end
Breadth-First Search

- Expand shallowest unexpanded node

- **Implementation**:

 fringe is a FIFO queue, i.e., new successors go at end
Breadth-First Search

- Expand shallowest unexpanded node

Implementation:

fringe is a FIFO queue, i.e., new successors go at end
Breadth-First Search

- Expand shallowest unexpanded node

- **Implementation**:
 - *fringe* is a FIFO queue, i.e., new successors go at end
Properties of Breadth-First Search

- **Complete?** Yes (if \(b \) is finite)
- **Time?** \(1 + b + b^2 + b^3 + \ldots + b^d + b(b^d - 1) = O(b^{d+1}), \) i.e., exp. in \(d \)
- **Space?** \(O(b^{d+1}) \) (keeps every node in memory)
- **Optimal?** Yes (if cost = 1 per step); not optimal in general
- **Space** is the big problem; can easily generate nodes at 100MB/sec → 24hrs = 8640GB.
uniform cost search
Uniform-Cost Search

- Expand least-cost unexpanded node

- **Implementation:**
 - \textit{fringe} = queue ordered by path cost, lowest first

- Equivalent to breadth-first if step costs all equal

- Properties
 - **Complete?** Yes, if step cost $\geq \epsilon$
 - **Time?** # of nodes with $g \leq \text{cost of optimal solution}$, $O(b^{\lceil C^*/\epsilon \rceil})$
 where C^* is the cost of the optimal solution
 - **Space?** # of nodes with $g \leq \text{cost of optimal solution}$, $O(b^{\lceil C^*/\epsilon \rceil})$
 - **Optimal?** Yes—nodes expanded in increasing order of $g(n)$
depth first search
Depth-First Search

• Expand deepest unexpanded node

• **Implementation:**

 fringe = LIFO queue, i.e., put successors at front

![Depth-First Search Diagram](image)
Depth-First Search

- Expand deepest unexpanded node

Implementation:

fringe = LIFO queue, i.e., put successors at front
Depth-First Search

- Expand deepest unexpanded node

Implementation:

fringe = LIFO queue, i.e., put successors at front
Depth-First Search

- Expand deepest unexpanded node

- **Implementation:**
 \(\text{fringe} = \text{LIFO queue, i.e., put successors at front}\)
Depth-First Search

- Expand deepest unexpanded node

- **Implementation:**
 fringe = LIFO queue, i.e., put successors at front
Depth-First Search

- Expand deepest unexpanded node

- **Implementation:**
 - *fringe* = LIFO queue, i.e., put successors at front
Depth-First Search

- Expand deepest unexpanded node

- **Implementation:**
 fringe = LIFO queue, i.e., put successors at front
Depth-First Search

• Expand deepest unexpanded node

• Implementation:
 \textit{fringe} = LIFO queue, i.e., put successors at front
Depth-First Search

- Expand deepest unexpanded node

Implementation:

fringe = LIFO queue, i.e., put successors at front
Depth-First Search

- Expand deepest unexpanded node

- **Implementation:**

 fringe = LIFO queue, i.e., put successors at front
Depth-First Search

- Expand deepest unexpanded node

- **Implementation:**
 fringe = LIFO queue, i.e., put successors at front
Depth-First Search

• Expand deepest unexpanded node

• **Implementation:**
 fringe = LIFO queue, i.e., put successors at front
Properties of Depth-First Search

• Complete?
 – no: fails in infinite-depth spaces, spaces with loops
 – modify to avoid repeated states along path
 ⇒ complete in finite spaces

• Time? $O(b^m)$
 – terrible if m is much larger than d
 – but if solutions are dense, may be much faster than breadth-first

• Space? $O(bm)$, i.e., linear space!

• Optimal? No
iterative deepening
Depth-Limited Search

- Depth-first search with depth limit l, i.e., nodes at depth l have no successors
- **Recursive implementation:**

```plaintext
function DEPTH-LIMITED-SEARCH(problem, limit) returns soln/fail/cutoff

RECURSIVE-DLS(MAKE-NODE(INITIAL-STATE[problem]), problem, limit)

function RECURSIVE-DLS(node, problem, limit) returns soln/fail/cutoff

cutoff-occurred? ← false
if GOAL-TEST(problem, STATE[node]) then return node
else if DEPTH[node] = limit then return cutoff
else for each successor in EXPAND(node, problem) do
    result ← RECURSIVE-DLS(successor, problem, limit)
    if result = cutoff then cutoff-occurred? ← true
    else if result ≠ failure then return result
if cutoff-occurred? then return cutoff else return failure
```

Philipp Koehn

Artificial Intelligence: Basic Search

20 February 2020
Iterative Deepening Search

function ITERATIVE-DEEPENING-SEARCH(*problem*) **returns** a solution

inputs: *problem*, a problem

for depth ← 0 to ∞ do
 result ← DEPTH-LIMITED-SEARCH(*problem*, depth)
 if result ≠ cutoff then return result
end
Iterative Deepening Search $l = 0$
Iterative Deepening Search $l = 1$

Limit = 1

Diagram showing the iterative deepening search process with a limit of 1.
Iterative Deepening Search $l = 2$

Limit = 2

Diagram showing the iterative deepening search process with a limit of 2.
Iterative Deepening Search $l = 3$
Properties of Iterative Deepening Search

- Complete? Yes

- Time? \((d + 1)b^0 + db^1 + (d - 1)b^2 + \ldots + b^d = O(b^d)\)

- Space? \(O(bd)\)

- Optimal? Yes, if step cost = 1
 Can be modified to explore uniform-cost tree

- Numerical comparison for \(b = 10\) and \(d = 5\), solution at far right leaf:

 \[
 N(\text{IDS}) = 50 + 400 + 3,000 + 20,000 + 100,000 = 123,450 \\
 N(\text{BFS}) = 10 + 100 + 1,000 + 10,000 + 100,000 + 999,990 = 1,111,100
 \]

- IDS does better because other nodes at depth \(d\) are not expanded

- BFS can be modified to apply goal test when a node is generated
summary
Summary of Algorithms

<table>
<thead>
<tr>
<th>Criterion</th>
<th>Breadth-First</th>
<th>Uniform-Cost</th>
<th>Depth-First</th>
<th>Depth-Limited</th>
<th>Iterative Deepening</th>
</tr>
</thead>
<tbody>
<tr>
<td>Complete?</td>
<td>Yes*</td>
<td>Yes*</td>
<td>No</td>
<td>Yes, if $l \geq d$</td>
<td>Yes</td>
</tr>
<tr>
<td>Time</td>
<td>b^{d+1}</td>
<td>$b^{\lceil C^*/\epsilon \rceil}$</td>
<td>b^m</td>
<td>b^l</td>
<td>b^d</td>
</tr>
<tr>
<td>Space</td>
<td>b^{d+1}</td>
<td>$b^{\lceil C^*/\epsilon \rceil}$</td>
<td>b^m</td>
<td>b^l</td>
<td>bd</td>
</tr>
<tr>
<td>Optimal?</td>
<td>Yes*</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td>Yes*</td>
</tr>
</tbody>
</table>
Repeated States

Failure to detect repeated states can turn a linear problem into an exponential one.
function \textsc{Graph-Search}(\textit{problem}, \textit{fringe}) \textbf{returns} a solution, or failure

\begin{align*}
\textit{closed} & \leftarrow \text{an empty set} \\
\textit{fringe} & \leftarrow \text{INSERT}(\text{MAKE-NODE}([\text{INITIAL-STATE}[\textit{problem}]], \textit{fringe})) \\
\textbf{loop do} \\
\quad \text{if } \textit{fringe} \text{ is empty then return failure} \\
\quad \text{node} & \leftarrow \text{REMOVE-FRONT}(\textit{fringe}) \\
\quad \text{if } \text{GOAL-TEST}(\textit{problem}, \text{STATE}[\textit{node}]) \text{ then return } \textit{node} \\
\quad \text{if } \text{STATE}[\textit{node}] \text{ is not in } \textit{closed} \text{ then} \\
\quad & \quad \text{add } \text{STATE}[\textit{node}] \text{ to } \textit{closed} \\
\quad & \quad \textit{fringe} \leftarrow \text{INSERTALL}(\text{EXPAND}(\textit{node}, \textit{problem}), \textit{fringe}) \\
\textbf{end}
\end{align*}
Summary

- Problem formulation usually requires abstracting away real-world details to define a state space that can feasibly be explored

- Variety of uninformed search strategies

- Iterative deepening search uses only linear space and not much more time than other uninformed algorithms

- Graph search can be exponentially more efficient than tree search