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Abstract— Remote tele-manipulation tasks can be both long
and exhausting. The operative workload can however be re-
duced through contextual systems, in which routine or dex-
terous actions are performed automatically. In this paper, we
investigate this idea in tele-surgery by proposing automatic
scissors, namely the possibility for a surgeon to invoke a
third robotic arm to come and automatically cut the thread
that he/she is holding. In particular, we address the problem
of tracking deformable 3-dimensional (3D) curvilinear objects
from stereo images. We propose an approach based on discrete
Markov random field (MRF) optimization to track, in 3D, a
thread modeled by a non-uniform rational B-spline (NURBS).
We evaluate its accuracy off-line on synthetic and real data and
illustrate its use for an automatic scissors command within an
assistance system based on the da Vinci tele-surgical robot.

I. INTRODUCTION

Many dexterous tasks involve the manipulation of de-
formable 3-dimensional (3D) curvilinear objects. Examples
of such objects are sutures in surgery, catheters in interven-
tional radiology and wires in maintenance tasks. Developing
robotic assistance systems for such tasks requires the accu-
rate localization and tracking of the curvilinear structures
present in the scene. Contrary to the tracking of contours,
which has been much addressed in the computer vision com-
munity [1], [2], [3], [4], [5], the tracking of purely curvilinear
structures has received less attention. This is especially the
case for open curves in a 3D setting. Related work in this
area mainly comes from the medical imaging community,
where vessels [6] or catheters [7], [8] need to be localized in
angiographic images. In these cases, the displacements and
deformations are constrained by the human anatomy. The
free manipulation of an object like a thread is, however, less
constrained and larger deformations can occur. Moreover, as
opposed to contours, purely curvilinear objects do not have
any stable side and are usually more flexible.

In this paper, we focus on tracking a thread in a surgical
setting. Thread tracking can potentially be used for robotic
assistance during an operation or for skill evaluation during
the training of an operator. Typical surgical tasks involving
thread manipulation are suturing and knot tying. Even though
efforts towards robotic knot tying exist [9], [10], none of
these approaches tracks the thread. This is indeed a very
difficult problem, since the thread can deform in different
directions with high speed and also undergo multiple oc-
clusions. Our objective in this work is to track a thread
to develop a simpler assistance primitive, namely automatic
scissors during tele-operation. Supposing that the thread is
held between two instruments, by recovering the deformation

Fig. 1. System setup showing the four robotic arms of a da Vinci tele-
surgical robot. Three arms hold instruments and the fourth arm (center)
holds a stereo endoscopic camera.

of the thread while the instruments are moved, a third robotic
instrument equipped with scissors can automatically come
and cut it. Such a command could for instance be triggered
by voice command.

Our approach is inspired by the recent method proposed
in [8], which uses discrete optimization to track in 2-
dimensional (2D) fluoroscopic images a catheter modeled
by a B-spline. We are interested in a few properties of
this method, namely that it is derivative-free, less sensitive
to initialization and has a large capture range compared to
gradient-based approaches.

We extend the method to 3D tracking from stereo and
compare two discrete approximations of the energy for this
problem. A stereo projection cost is used as external energy
to recover the depth and the 3D curve is modeled with
a non-uniform rational B-spline (NURBS). The projective
invariance property of NURBS allows us to compute the
2D projected curves from the 3D curve (and vice-versa)
by considering solely the control points. Also, tracking the
extremities of the curve accurately proves to be challenging
under a stereo system with small baseline, even though a
length constancy assumption is used. For this reason, we
introduce information about the positions of the instruments
holding the thread in the energy function.

The tracking is first evaluated off-line with synthetic data
where the ground truth is available and also qualitatively
with real data. In both cases, the thread is undergoing large
deformations. Finally, the approach has been implemented
on a real system based on a non-commercial version of
the da Vinci robot from Intuitive SurgicalTM, in order to
demonstrate an automatic scissors command.
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The remainder of this paper is as follows: section II
describes the thread modeling and tracking, sec. III the
experiments and sec. IV discusses and concludes this work.

II. METHODS

A. Setup

The scene, containing the thread and the instruments, is
observed with a stereo camera system, as shown in figure
1. The two cameras are assumed to be calibrated. In the
following, we denote their projection matrices by Pi ∈
R3×4, i ∈ {1, 2}. The last row of these matrices is denoted
by P

(3)
i . When the thread is manipulated by the robotic

instruments, we also assume that approximate 3D positions
of each instrument are available in the camera frame at every
time step.

B. Thread modeling

We model the thread in 3D using non-uniform rational
B-splines [11], for their projective invariance property. This
modeling allows us to work conveniently with parameteri-
zations of either the 3D thread or of its 2D projections. A
NURBS curve C(Q,W, u) of degree d is defined as a linear
combination of a set of control points Q = {Qk}k∈{1,K}
with weights W = {wk}:

C(Q,W, u) =
K∑
k=1

Rk,d(u)Qk, u ∈ [0, 1], (1)

where u is the curve parameter and Rk,d are the rational
basis functions [11]:

Rk,d(u) =
Nk,d(u)wk∑K
i=1Ni,d(u)wi

, u ∈ [0, 1]. (2)

The functions Nk,d are the usual spline basis functions. If
C(Q,W, u) represents a 3D curve, with Q a set of 3D
points in homogeneous coordinates expressed as Q3D

k =
[qk 1]T ∈ R4, the projective invariance property of NURBS
is expressed as follows for i ∈ {1, 2}: Pi(C(Q,W, u)) = C(Pi(Q),Vi, u)

vi,k = wk.P
(3)
i

[
qk
1

]
.

(3)

In other words, the projected 2D curves are the curves
defined by the projected control points (see Fig. 2) and the
appropriate weights Vi = {vi,k}. In the following, we name
C3D the 3D curve that models the thread with control point
set Q3D. Its projection on the two images are called C2D

1 and
C2D
2 with control point sets Q2D

1 and Q2D
2 . We also use the

notation C(u), omitting the control points and the weights
for better readability.

C. Tracking approach

Tracking the thread implies recovering, at each time step,
the optimal parameters of the curve C3D so that its projections
{C2D
i } match the thread visible in the stereo input images

I1 and I2. In order to deal with noisy images and to
resolve ambiguities, additional regularization constraints are
also enforced. In curve tracking, the computation of the

Qk

3D 

P1 P2

2D 

Fig. 2. Projection of the 3D NURBS curve on two images from the control
points.

maximum a-posteriori estimate of the parameters based on
the information from the input images is usually reformulated
as an energy minimization problem [8], as done below.

1) Energy: The energy is defined as a sum of an external
energy term, also called data term, driving the curve to its
position observed by the images, and of an internal energy
term providing curve regularization:

E = Eext + λEint. (4)

λ > 0 is a parameter weighting the influence of the two
terms. We define the external energy as a symmetric stereo
projection error:

Eext =
1
2

2∑
i=1

∫ 1

0

Ĩi(Pi(C3D(Q,W, u)))du (5)

=
1
2

2∑
i=1

∫ 1

0

Ĩi(C2D
i (u))du (6)

where {Ĩi} are cost images penalizing projected curve points
if they do not lie on the object. {Ĩi} are obtained from
the input stereo images and defined in section II-E. The
internal energy maintains desired curve properties using
curve derivatives, such as constant length using the initial
curve at time 0 as reference:

Eint =
∫ 1

0

(
1− ‖C

3D’(u)‖
‖C3D’
ref (u)‖

)2

du. (7)

Since the spline modeling already provides curve smooth-
ness, additional smoothness terms are usually not necessary.

2) Parameterization: The energy E needs to be optimized
with respect to the set of control points Q3D containing
3K parameters. Since the NURBS spline representation is
redundant, we fix the weights wk of the 3D curve to 1. But
by updating the weights vi,k of the 2D curves according to
eq. 3, one obtains a convenient parameterization of the 2D
projections.

One should note that it is also possible to use a 2D-based
parameterization, as done e.g. in [4] for contours. E would
then have to be optimized over 4K parameters, namely Q2D

1

and Q2D
2 . An additional energy term would be needed to

enforce the stereo constraint. We have implemented this
parameterization and noticed that even though the 2D spline
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(a) NURBS curve with four control
points and corresponding MRF chain
below.

s

(b) Exemplary discrete label
set L. The spheres indicate
the allowed 3D displacements
from the center.

Fig. 3. Modeling of the control point optimization using a discrete MRF
formulation.

tracking may be accurate, additional 3D constraints need to
be added to enforce temporal smoothness over the 3D control
points. In the work below, we therefore focus on the 3D
parameterization only.

D. Discrete optimization

We use a discrete optimization scheme [8] to optimize
the continuous energy presented above. Each control point
is associated with a discrete random variable that describes
its space of allowed 3D local displacements. These dis-
placements are then computed using MRF modeling and
optimization.

1) MRF modeling: Let (G,E) be a graph with a finite
set of nodes G and set of edges E. Let also L be a discrete
set of labels representing the search space. x ∈ L represents
a unique 3D displacement, as illustrated in fig. 3(b). The
nodes G correspond to the control points and the edges
connect pairs of nodes to model their inter-dependencies. If
we assume dependencies only between pairs of neighboring
control points when evaluating the energy, the graph is a
chain, as illustrated in fig. 3(a). With this interpretation,
tracking the curve is formulated as finding a label assignment

G −→ L ,
p ∈ G 7−→ lp

(8)

associating each control point with a 3D displacement, such
that the energy E is minimized. A first order Markov random
field (MRF) [12] solves such labeling tasks by modeling and
approximating the energy as a sum of unary and pairwise
potentials:

Emrf =
∑
p∈G

Vp(lp) + λ1

∑
(p,q)∈E

Vpq(lp, lq). (9)

The unary potentials Vp evaluate the energy for each node
p independently, while the pairwise potentials Vpq evaluate
the energy for pairs of inter-dependent nodes (p, q). In a
spline of degree d, a point of the curve is affected by d +
1 control points. For exact computation of the energy E,
one should therefore consider sets of nodes (cliques) of size
d+ 1. This can be formulated using higher order MRF. The
computational cost of optimization methods for higher order
MRF is however prohibitive for our application. We therefore
approximate the exact energy E of eq. 4 by considering only

unary and pairwise potentials. Our experiments will show
that such approximations yield good results in practice.

2) Energy approximations: We consider two different
approximations of E, both considering interdependencies
between pairs of successive control points, using an MRF
chain as shown in fig. 3(a). The first approximation E

(1)
mrf

models the data term and the length constraint with unary
potentials. A third pairwise term is used for regularization in
addition to the intrinsic spline smoothness, as done in [13].
We found out in our experiments that this term improves
the results when the inter-dependencies are neglected in the
computation of the rest of the energy. The first approximation
is expressed as

E
(1)
mrf =

∑
p∈G

(V (1a)
p (lp) + λ1V

(1b)
p (lp))

+ λ2

∑
(p,q)∈E

V (1c)
pq (lp, lq), (10)

with

V (1a)
p (lp) =

1
2

2∑
i=1

∫ 1

0

αp(u)(Ĩi(C2D
i ({lp}, u)))du (11)

V (1b)
p (lp) =

∫ 1

0

αp(u)
(

1− ‖C
3D’({lp}, u)‖
‖Cref 3D’(u)‖

)2

du (12)

V (1c)
pq (lp, lq) = ‖lp − lq‖. (13)

The notation {lp} indicates that the p-th control point of the
3D curve is modified by the 3D displacement lp. C2D

i ({lp}, u)
is a point of the corresponding projected curve. The variables
αp(u) weight the influence of control point p over the curve
point at position u and are obtained naturally from the basis
functions:

αp(u) = Rp(u). (14)

The second approximation E(2)
mrf models the data term and

the length constraint with pairwise potentials:

E
(2)
mrf =

∑
(p,q)∈E

(V (2a)
pq (lp, lq) + λ1V

(2b)
pq (lp, lq)), (15)

with

V (2a)
pq (lp, lq) =

1
2

2∑
i=1

∫ 1

0

αpq(u)Ĩi(C2D
i ({lp, lq}, u))du

(16)

V (2b)
pq (lp, lq) =

∫ 1

0

αpq(u)
(

1− ‖C
3D’({lp, lq}, u)‖
‖Cref 3D’(u)‖

)2

du.

(17)

As above, the notation {lp, lq} indicates that the p-th control
point is modified by the displacement lp and the q-th control
point is modified by displacement lq . C2D

i ({lp, lq}, u) is a
point of the corresponding projected curve and the variables
αpq(u) weight the influence of the two control points over
the curve point at position u. They are defined by the product
model from [8]:

αpq(u) =
Rp(u)Rq(u)∑K−1

k=1 Rk(u)Rk+1(u)
. (18)
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Fig. 4. Outputs of the curvilinear detector used to compute the cost images.

3) Optimization: To solve the aforementioned discrete
MRF formulation, we use the FastPD algorithm [14]. This
is a computationally efficient approach based on linear
programming which has shown good real-time performance
for 2D tracking [8]. In practice, note that E(1)

mrf is faster
to optimize than the more precise energy E

(2)
mrf , since the

pairwise evaluations are less time-consuming. The efficiency
of the optimization is also driven by the sizes of G and
L. Due to the large 3D search space, we use a sparse set
of labels L(r, s) sampling seven 3D directions (top-down,
left-right, front-back and the four main cube diagonals).
L(r, s) depends on two parameters: r, the number of labels in
each oriented direction and s, the 3D distance between two
consecutive labels in the top-down direction. The possible
3D displacements for r = 2 are indicated in fig. 3(b). L(r, s)
contain (14r+ 1) labels that sparsely sample a cube of side
length (2rs) mm.

E. Cost images

The cost images {Ĩi}i∈{1,2} indicate the thread location
with low intensities. We apply on the input images {Ii} a
curvilinear structure detector initially developed for vessel
detection in medical images [15]. These curvilinear struc-
tures are detected by analyzing the Hessian matrix at each
image locations. Outputs of this detector can be seen in fig.
4. Additionally, this detection is thresholded and processed
with a Euclidean distance transform in order to create ridges
with smooth borders along the detected curves.

F. Tracking of curve extremities

When the curve undergoes large movements, inaccuracies
occur especially at the extremities. For instance, the tracked
curve can slide along the real thread if its length was not
properly initialized. This effect can also occur if the cost
images are noisy at the extremities, e.g. due to the presence
of the instruments holding the thread. Noisy areas in the
cost images can also cause small local 3D deformations. The
length constancy then implies that the tracked extremities
do not reach the extremities of the real thread. To address
these ambiguities and limit their effect, when the thread is
held by the instruments or by the tissues, we require the
extremities to remain close to their measured locations. Since
these measures are approximate, we use the following soft
constraint as unary energy term:

Etips = ‖C3D(0)− T0‖ε + ‖C3D(1)− T1‖ε , (19)

where T0 and T1 are the measured extremity locations. ‖x‖ε
is 0 if ‖x‖ ≤ ε and the usual norm ‖x‖ otherwise.

III. EXPERIMENTS

In this section, we test the approach on synthetic and
real data and compare the two energy approximations E(1)

mrf

and E
(2)
mrf defined in section II-D.2. The thread is tele-

manipulated using a da Vinci surgical robot and observed
by a stereo endoscopic camera (Ikegami HD), as shown in
fig. 1. In the following experiments, the curves are cubic
splines with a fixed number of eight control points. In
the energies, we only use a large weight λ for the length
constancy constraint. We assume the splines to be initialized
at the beginning of the tracking, for instance by providing
the extremity locations and running a few iterations of the
optimization on a spline initially defined as a straight line.
In all experiments, we perform two optimization steps with
two label sets L(r, s) and L(r, s2 ) at each image frame, in
order to refine the tracking.

A. Synthetic experiments

We apply the algorithm to synthetic images in which the
ground truth position of the thread is known. To generate a
meaningful thread deformation pattern, we first track a thread
undergoing various transformations from a real sequence.
The synthetic data is then obtained by projecting at each time
step this thread pattern on two stereo images containing back-
ground clutter (similar to fig. 5(a)). The original sequence
contains 1000 frames. In order to evaluate the algorithm
when larger deformations between two consecutive time
steps are present, we also generate 4 other sequences with
respective lengths 500, 333, 250 and 200. These sequences
replay the original one with acceleration factors 2-5 by
skipping frames.

We compare the two energy approximations from section
II-D.2 and compute both the 3D and 2D accuracies. The
accuracy is the average curve distance between the computed
curve and the ground truth (gt) template curve:

3D accuracy = ∆(C3D, C3D
gt ) (20)

2D accuracy =
1
2
(
∆(C2D

1 , C2D
1,gt) + ∆(C2D

2 , C2D
2,gt)

)
(21)

with

∆(C, Cgt) =
∫ 1

0

dmin(C(u), Cgt)du , (22)

and dmin is the usual Euclidean distance between a point and
a curve. The thread extremities are assumed to be known
from the ground truth, as we are interested in evaluating
robustness to deformations. For this reason, it is not nec-
essary to use a symmetric curve distance in place of ∆.
Results are shown in table I, which also indicates the 3D and
2D deformations undergone by the thread template. These
deformations are indicated by the average and maximum
displacements of knot points between two consecutive time
steps.

Approximation E
(2)
mrf yields better results as it defines a

better approximation of the global energy. The 2D accuracies
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Accel. Deformations Accuracies
Approx. E

(1)
mrf Approx. E

(2)
mrf

3D (mean) 3D (max) 2D (mean) 2D (max) 3D 2D 3D 2D
1 0.03 0.40 0.76 8.10 0.47 (±0.21) 2.43 (±1.90) 0.42 (±0.19) 1.21 (±1.11)
2 0.05 0.37 1.17 8.39 0.47 (±0.19) 2.55 (±2.23) 0.47 (±0.22) 1.12 (±1.05)
3 0.06 0.40 1.53 10.37 0.45 (±0.20) 2.54 (±2.42) 0.52 (±0.21) 1.16 (±0.98)
4 0.08 0.50 1.87 13.21 0.83 (±0.42) 6.77 (±5.90) 0.52 (±0.19) 1.17 (±0.91)
5 0.09 0.51 2.20 13.80 0.84 (±0.37) 4.50 (±3.40) 0.69 (±0.25) 2.14 (±2.69)

TABLE I
MEAN 3D AND 2D TRACKING ACCURACIES ON SYNTHETIC DATA WITH STANDARD DEVIATIONS. THE 3D VALUES ARE GIVEN IN MM, THE 2D VALUES

IN PIXELS. ACCEL. IS THE FACTOR BY WHICH THE SEQUENCE IS ACCELERATED BY DROPPING FRAMES. THE DEFORMATIONS INDICATE THE MEAN

AND MAXIMUM KNOT DISPLACEMENTS BETWEEN TWO CONSECUTIVE FRAMES IN THE GENERATED SYNTHETIC SEQUENCES.

are especially better. This is mainly due to the fact that small
3D errors can yield large 2D errors, because of the small
baseline (5mm) of the stereo camera and sometimes noisy
images. One also verifies that the errors increase with higher
speed and larger knot displacements. Here, we use a large
label set (s = 16) allowing a maximum displacement of
a projected 2D knot of approximately 14 pixels. One also
notes that the 3D accuracies are similar for both approaches.
This is an interesting result since approximation E

(1)
mrf is

computationally more efficient, as mentioned in sec. II-D.3.
It can then be used in online experiments.

B. Experiments on real data

In this experiment, we recorded two sequences of 1544
and 561 frames. In the first sequence, two instruments hold
a thread which is deformed by the first instrument and by a
third instrument which grasps it, also causing occlusions. In
the second sequence, a knot has been tied and one instrument
manipulates one side of the thread. These two sequences
are illustrated in figure 5(a). For the first sequence, we
use the constraint of section II-F. In the second sequence,
we use this constraint for one extremity only and keep a
fixed position for the other extremity at the knot location.
We experimented with approximations E(1)

mrf and E(2)
mrf and

different label sets. Like on the synthetic data, E(2)
mrf provides

smoother and better 2D results. In both approaches, the
tracked thread extremities happen to slide of a few pixels
along the thread during large displacements. This effect is
caused by unpenalized small 3D deformations due to noisy
cost images. It is limited by the extremity constraint, but
also reinforced by the limitations of our acquisition system
for this experiment: in addition to the short baseline, images
of reduced sizes are used. The images are down-sampled by a
factor of 3 from an original high definition (HD) resolution
(1920 × 1080). A better tracking of the thread extremities
would reduce this tracking ambiguity. Finally, we also notice
that the tracking is robust to the 3rd instrument occlusions
in the first sequence. Excerpts of the tracking are displayed
in fig. 5 and the complete tracking sequences can be seen in
the illustrative video.

C. Automatic scissors

Supposing that the thread is held between two instruments,
we implement an automatic scissors command for tele-
surgery. This command invokes the 3rd instrument to come
and cut the thread at its detected center. It is implemented in
an assistance system based on a da Vinci robot, which is used
exclusively for research purposes. The exact deformations
of the thread need to be tracked to make sure that the cut
will occur at the right place, since the instrument may move
and change the thread shape before the cut takes place. In
this experiment, we use a label set with s = 4 and the
faster approximation E(1)

mrf . With this parameter, our current
single-threaded implementation runs at 5fps (including image
processing) on an Intel Xeon 2.4GHz core and at 2fps
(including HD frame grabbing and processing of half-size
images) on the demonstration computer connected to the
robot, which runs with a core at 2.0GHz. For this particular
application where the thread undergoes slow deformations,
the thread can be successfully tracked and cut, since the
low framerate is compensated by the larger capture range
provided by the label set. Excerpts of the cutting are shown
in fig. 6 and full sequences are shown in the demonstration
video.

IV. DISCUSSION AND CONCLUSION

To develop robotic assistance systems that require auto-
matic thread manipulation, the exact position of the thread
needs to be known. A thread is however a highly deformable
curvilinear structure, which can undergo large deformations
and displacements. In this paper, we propose an approach
based on discrete optimization for thread tracking from
stereo. We model the 3D thread as well as its 2D projec-
tions with non-uniform rational B-splines. We then embed
the parameter optimization in a discrete Markov random
field optimization framework that provides a large tracking
capture range. Two approximations of the global energy
are compared in synthetic experiments. We also show that
accurate results can be obtained on real data. In particular,
we demonstrate our approach for an automatic scissors
command during tele-surgery. This experiment shows very
promising results, since the thread can be tracked and cut
under a low tracking framerate.
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(a) Reprojected spline C with control points and indication of the center.

(b) Different 3D view of spline C.

Fig. 5. Illustration of the tracking on two sequences. A complete performance can be seen in the illustrative video.

Fig. 6. Example of automatic thread cutting by the 3rd instrument with the automatic scissors command.

In the experiments, we use thin threads of 6-8cm. The use
of longer threads will generate larger deformations, possibly
including loops. In future work, we plan to address these
situations and to perform further experiments on endoscopic
images. We also plan to investigate the use of non-uniform
discrete sets of labels to fasten the optimization and better
discretize the search space. Finally, fine manipulation tasks
are usually constrained by the task objective and the physical
environment. Prior on the deformations could therefore be
learned from several recordings of the same task and be
used to further improve the tracking accuracy and fasten the
optimization.
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