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Abstract— In the future of surgery, tele-operated robotic
assistants will offer the possibility of performing certain com-
monly occurring tasks autonomously. Using a natural division
of tasks into subtasks, we propose a novel surgical Human-
Machine Collaborative (HMC) system in which portions of
a surgical task are performed autonomously under complete
surgeon’s control, and other portions manually. Our system
automatically identifies the completion of a manual subtask,
seamlessly executes the next automated task, and then returns
control back to the surgeon. Our approach is based on learning
from demonstration. It uses Hidden Markov Models for the
recognition of task completion and temporal curve averaging for
learning the executed motions. We demonstrate our approach
using a da Vinci tele-surgical robot. We show on two illustrative
tasks where such human-machine collaboration is intuitive that
automated control improves the usage of the master manip-
ulator workspace. Because such a system does not limit the
traditional use of the robot, but merely enhances its capabilities
while leaving full control to the surgeon, it provides a safe and
acceptable solution for surgical performance enhancement.

I. INTRODUCTION

The increased use of tele-surgical robots, like the da
Vinci R© surgical system from Intuitive SurgicalTM, provides
new ways to teach, assess and perform surgeries. On the
one hand, large sets of objective performance data can
be collected from the robots [1]. On the other hand, the
technology will permit automation of specific surgical tasks
in the near future [2]. It is however unclear how collected per-
formance data can be used to design efficient human-machine
collaborative systems that can adapt to the operator, to the
surgical environment, and also provide seamless assistance
during the surgery.

In this paper, we contribute to this new research area by
proposing a Human-Machine Collaborative (HMC) system
that learns, from surgical demonstration, how to collab-
oratively assist the surgeon during a tele-operated task.
This is complementary to previous work focusing on pure
automation [3], [4], [2]. Here, the task is broken down into
manual and potentially automatable subtasks. The system
then assists the operator by recognizing, in real-time, the
completion of manual subtasks and automates the remaining
ones. It also provides contextual Augmented Reality (AR)
information in the operator’s view to reduce his/her cognitive
workload. The subtasks to be automated were chosen so as
to permit an optimized usage of the operator workspace.
They involve transport tasks having no interaction with
the environment. During tele-operation, transitions between
manual and automated execution are automatic and seamless.
Moreover, the operator has the possibility of intervening

Fig. 1. Configuration of the da Vinci robot: patient side manipulators plus
endoscopic camera (left) and master manipulators (right).

during the automatic execution to correct the trajectory if
needed.

We validate our approach using a da Vinci surgical robot
[5] used exclusively for research purposes. The robot consists
of two master console manipulators that tele-operate three
patient-side manipulators under stereo endoscopic visualiza-
tion (see Fig. 1). We first record kinematic data from the
robot while an operator performs the task a few times and
annotates segments of the data corresponding to subtasks that
should be automated. We then propose an approach based
on Hidden Markov Models (HMMs) to determine, in real-
time, the completion of the current manual subtask. Once the
transition to automatic execution is activated, the instrument
motion corresponding to the automatic subtask is provided
to the robot. This motion is learned from the demonstration
data using a temporal curve averaging approach based on
Dynamic Time Warping (DTW). Finally, for supervision
purposes, we display an overlay of the planned trajectory
in the stereo view of the operator.

We use two manipulative tasks to demonstrate our ap-
proach: moving three pins to the cardinal locations of a
training pod and performing a running suture on a suturing
pod. Our experiments show that such a Human-Machine
Collaborative framework is intuitive and can highly improve
the usage of the operator’s workspace, by reducing large
movements from the master manipulators and thereby the
need for clutching to readjust the hand positions.

The remainder of this paper is organized as follows.
Related work is presented in Sec. II. The system setup as well
as the task model are introduced in Sec. III. In Sec. IV, we
present task completion recognition models and, in Sec. V,
describe how the executed motions are learned from human
demonstration data. Experiments and results are described in
Sec. VI. Finally, conclusions and perspectives are given in
Sec. VII.
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Fig. 2. Task model: transitions between manual and automatic subtasks.

II. RELATED WORK

The recent introduction of robots into the surgery room has
created the need for new techniques to train and evaluate
surgeons. For this reason, surgical gesture modeling has
attracted significant attention in the last years, and several
methods, usually using Hidden Markov Models or variations
thereof, have been proposed for off-line skill modeling and
classification [6], [1], [7].

With the development of dexterous robots, different groups
have proposed techniques to automate specific surgical tasks.
An example of a task that has been addressed is knot tying.
In [3], recurrent neural networks are used to learn a loop
trajectory from demonstration. In [2], robot dynamics are
learned to replay the trajectory at an increased speed. The
needle insertion task has also attracted much attention: a
geometric task model is designed in [4] to compute the path-
planning of the needle insertion. In [8], a circular motion is
automated for needle insertion after the surgeon has marked
the insertion point with a laser-pointer. It remains however
open research to design automation methods that either deal
with the environment such as tissues and suture threads or
rely on collaboration with the operator.

A natural way to allow collaboration between a robot and
the operator is to change the interaction mode based on
the current context. This has been demonstrated on a curve
following task in microsurgery by using virtual fixtures to
impose path constraints on the manipulator [9].

Context modeling for real-time recognition of the current
surgical task has been addressed in [10], [11], [12], [13],
[14], typically using automata or Hidden Markov Models.
But, these approaches have not yet been tested for modi-
fying the execution of the operation. In Sec. IV, we use a
recognition approach inspired from [14], but in a simpler
setting as our task model is sequential.

Finally, several assistance extensions have been proposed
for the da Vinci robot. They primarily aim at displaying
registered pre-operative images within the surgeon’s view
[15], [16] or at providing 3D user interactions [17]. Also,
improvements for human-machine interactions with the da
Vinci system, such as camera control while operating the
tools at the same time, has been described in [18].

III. SETUP

A. Task Model

For the purposes of this paper, we consider a task to consist
of an ordered set of subtasks that need to be executed in
a sequential temporal order. To ease the presentation, we
assume that the tasks alternate between a manual and an
automated subtask, starting with a manual subtask. This can

# Name # Name
1 Grab pin1 from East 7 Pin pin2
2* Move pin1 to North 8* Move tool back to East
3 Pin pin1 9 Grab pin3
4* Move tool back to East 10* Move pin3 to South
5 Grab pin2 11 Pin pin3
6* Move pin2 to West 12* Move tool back to East

TABLE I
PIN TASK DESCRIPTION . THE STAR (*) INDICATES THE AUTOMATED

SUBTASKS.

be achieved by aggregating the consecutive subtasks of each
type -manual or automated- as a single atomic subtask.

Let a task T consist of a sequence of subtasks T1, . . . , TN ,
where N = 2n. T2, T4, . . . , TN are assumed to be the
automated subtasks. In this work, such subtasks are the ones
which do not involve interactions with the environment or
fine manipulations, but require larger motions instead.

Fig. 2 briefly illustrates the task model, which can be seen
as an automata in which transitions are either triggered by
the recognition of the manual subtask completion or by the
termination of the automatic subtask.

B. Illustrative Tasks

The two tasks used to demonstrate our approach are
illustrated in Figures 3 and 4. The first task, called pin-task,
requires a single instrument and consists in displacing three
pins to three cardinal locations (Fig. 3(a)). The task consists
of six large transportation motions learned by the system and
of six fine motions executed by the operator, consisting in
grasping and pinning. A summary of the subtasks is shown in
Table I. The motion performed by the instrument is displayed
on Fig. 3(b), in which the transportation and fine motions are
represented with different colors.

The second task, called sut-task, requires two instruments
(referred to by left and right) and consists of performing
a running suture with three needle insertions (Fig. 4(a)). It
consists of five generic motions repeated at three successive
locations. Three fine motions are performed by the surgeon:
grasping needle with right instrument, inserting needle and
grasping needle with left instrument. Two transportation
motions are learned and automated: pulling thread out with
left instrument and handing in the needle back to the right
instrument at the location of the next suture point. All the
subtasks, concatenated into manual/automated subtasks, are
listed in Table II. The motions performed by the two instru-
ments are displayed on Fig. 4(b), in which the transportation
and fine motions are represented with different colors.

C. Robotic environment

In our setup, the pod used to accomplish the task can
be manipulated by two patient side manipulators (PSMs)
having each 7 degrees of freedom (DOFs). Each PSM
controls a surgical instrument. In our case the PSMs have
the same instruments during the task, namely two large
needle drivers. The 7th degree of freedom corresponds to
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(a) Start & end state of the pod. (b) Exemplary trajectory of the instrument. The
red (dark) parts indicate the segments annotated
for automation.

Fig. 3. Pin Task, performed with a single instrument.

(a) Start & end state of the pod. (b) Exemplary trajectory of the two instruments.
They normally intersect, but have been isolated
for better visualization. The red (dark) parts
indicate the segments annotated for automation.

Fig. 4. Suturing Task, performed with two instruments.

# Name
1 Grasp needle (RT) from pod,

move to 1st suture point (RT),
Insert needle (RT), grasp it (LT)

2* Pull thread out (LT), move back to 2nd suture point (LT)
3 Grasp needle (RT) from (LT),

Insert needle (RT), grasp it (LT)
4* Pull thread out (LT), move back to 3rd suture point (LT)
5 Grasp needle (RT) from (LT)

Insert needle (RT), grasp it (LT)
6* Pull thread out (LT), move back to pod end point (LT)

TABLE II
SUTURING TASK DESCRIPTION. (*) INDICATES AUTOMATED SUBTASKS.

(RT) STANDS FOR ”RIGHT TOOL” AND (LT) FOR ”LEFT TOOL”.

the opening of the instrument grasper. We also assume for
simplification that the left (resp. right) master manipulator
controls the left (resp. right) PSM, even though more general
tele-operation configurations are possible using the da Vinci
robot [5]. During tele-operation, the instruments and the pod
are observed by a stereo endoscopic camera, which can be
moved using a specific 6 DOF manipulator.

Four main coordinate systems (or frames) are of im-
portance in this setup (see Fig. 5). The task coordinate
system Ctask is specific to the task and independent of the
robot initial kinematics. The camera coordinate system Ccam
indicates the position of the stereo endoscopic camera and

Ccam

Cworld

Ctask

Cinst

[Tin , R
in ]

[T ca
, R ca]

[T
ta , R

ta ]

Fig. 5. Coordinate systems illustration.

the instrument coordinate systems Cjinst indicates the position
of instrument j, with j ∈ {0, 1} denoting the left or right
instrument. Finally, the origin of the world, for instance
representing the base of the robot, is denoted by Cworld.

We denote by [T,R] ∈ R3 × SO3 3D transformations
composed of a translation T and a rotation R. In the
following, we assume that we know the transformations
[T inj

t , R
inj

t ] from Ccam to Cjinst and [T ca
t , R

ca
t ] from Cworld

to Ccam at each time t. They are collected using the da
Vinci research interface [19]. Additionally, we need the
transformation [T ta

t , R
ta
t ] from Ccam to Ctask. We obtain this

transformation by placing the training pod at a reference
world position before starting the task and by using [T ca

t , R
ca
t ]

to track the camera motion. For such short tasks, we assume
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the pod to remain at its initial reference position. For longer
tasks, where the pod could get displaced, the corresponding
transformation could be provided by visual pod tracking. We
also collect the linear/angular velocities of the two patient
side manipulators in Cartesian space, the state of the graspers
and for workspace analysis the Cartesian positions of the two
master manipulators. We collect this data at a frequency of
40 Hz.

Finally, the stereo endoscopic camera has been calibrated.
This permits us to overlay 3D augmented reality information
such as trajectories within the stereo view of the surgeon.

D. Demonstration data

An operator is asked to demonstrate each task M times,
yielding a series of M recordings of the task {rk}1≤k≤M .
Each recording corresponds to a multi-dimensional time-
series rk = {rk1 , . . . , rk|rk|} of length |rk| taking its values
rkt = (r̂kt , ṙ

k
t ) in R26 = R14×R12 for 1 ≤ t ≤ |rk|. The pro-

jection r̂kt contains the six-dimensional Cartesian velocities
as well as the gripper state for the two instruments. This data
will be used by the recognition system. The projection ṙkt
contains the six-dimensional Cartesian positions of the two
instruments that will be used for learning control trajectories.
Positions are expressed in the task coordinate system to be
independent of the robot initial kinematics.

For each rk, the parts of the task that should be automated
are labeled by the operator. This decomposes rk into N
data segments {r(k,1), r(k,2), . . . , r(k,N)} corresponding to
the subtasks T1, . . . , TN . The next sections explain how
• to train a recognition model Hi determining the com-

pletion of manual subtask T2i+1, 1 ≤ i ≤ n. To
do so, we use an HMM built from the training data
{r̂(k,2i+1), r̂(k,2i+2)}1≤k≤M .

• to compute a trajectory for subtask T2i, 1 ≤ i ≤ n, that
will be automatically executed by the instrument. To do
so, we use a temporal curve averaging technique based
on DTW, applied on the data {ṙ(k,2i)}1≤k≤M .

IV. RECOGNITION

The objective of the recognition system is to determine the
completion of each manual task and to perform a seamless
transition to automatic control. The operator should naturally
perform a continuous motion as if he would start and perform
the next subtask manually, until automation takes over the
control of the trajectory. To trigger a seamless transition, we
need to determine the instant when the operator has reached a
point where the automatic trajectory can be initiated. This is
done by using a real-time measure of the subtask completion,
computed from a temporal model based on HMMs.

A Hidden Markov Model is defined formally as a quin-
tuplet λ = (S,A,O,B, π) where S is the number of states
x ∈ {1, . . . , S} in the model, A the transition probability
matrix between the states, modeling the topology, and O the
space of observations, in our case R14. B is the observation
model, indicating for any observation o ∈ O and state x the
probability Bx(o) = P (o | x) that o can be observed by x.
π is a probability distribution over the initial states.

To measure the subtask completion, we use an HMM Hi

that is constructed from the concatenation of two HMMs
Hi

0 and Hi
1 modeling respectively the manual subtask

T2i+1 and the subtask to be automated T2i+2. Hi
0 and Hi

1

are built respectively from the data {r̂(k,2i+1)}1≤k≤M and
{r̂(k,2i+2)}1≤k≤M . For our experiments, we use left-right
HMMs and mixture of Gaussians as observation distribu-
tions. We initialize the parameters as in [14]: the number
of states is determined from the length of the training
sequences and the probabilities are initialized from the data
by splitting the data evenly in as many sequences as available
states. Then, expectation-maximization is applied to refine
the parameters. When the two HMMs are concatenated, the
last state of Hi

0 is modified to have a transition to the first
state of Hi

1. The transition probability is chosen so that the
expected time in Hi

0 equals the mean duration of the subtask,
computed from the training data.

For each state x of HMM Hi, we define the binary
indicator function

γ(x) =
{

0 if x ∈ Hi
0

1 if x ∈ Hi
1

(1)

We define the probability θt of having completed the manual
subtask at time t by the probability of having reached a state
of the HMM that corresponds to the task to be automated:

θt =
S∑
x=1

γ(x)P (Xt = x|o1:t) (2)

Here, o1:t indicate the observations up to current time t and
Xt is a random variable denoting the HMM state at time t.
This expression is computed using the forward probabilities
of the HMM [20].

Finally, the decision of task completion is given by av-
eraging over a short temporal interval δ, using a decision
threshold β (0 < β < 1) :

completion⇔ 1
δ

t∑
i=t−δ

θi > β (3)

V. AUTOMATION

A. Control

The robotic arms are controlled using the da Vinci research
interface [19]. For each instrument, we use a control mode
that superimposes a Cartesian motion ∆ = [∆T |∆R] to the
motion caused by the surgeon’s manipulation of the master
manipulator. In our case, the motion ∆ is given in the camera
coordinate system Ccam.

Let {[Tt|Rt]}1≤t≤τ be a learned trajectory, expressed in
the task coordinate system Ctask and computed as explained
in the next section. This trajectory has been normalized by
subtracting its initial position, so that T1 = 0, R1 = Id. For
a given instrument, we execute this relative trajectory at the
position of the tool tip at the instant when the automatic
execution is started, which we denote by T in

1 expressed in
Ctask. Our experiments have shown such execution to be
a natural way to create a seamless transition between the
manual control and the automatic execution. The fact that
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the trajectory is executed relative to the current tool position
when automatic control is initiated leaves the flexibility to
the operator to vary his/her manipulation from the exact
demonstrated task, e.g. by inserting the needle at different
positions.

The superimposed motion is then given for 1 ≤ t ≤ τ by{
∆Tt = Rta

t · (Tt + T in
1 ) + T ta

t

∆Rt = Rta
t ·Rt ·Rin

1
(4)

B. Average Motion Computation

We explain in this section how we learn, for a given
instrument, the motion {[Tt|Rt]}1≤t≤τ to be provided to
the robot. For an automatic subtask T2i, the motion is
computed from the data {ṙ(k,2i)}1≤k≤M , in which we only
use the Cartesian positions and orientations of the considered
instrument. In the following, the rotations are represented by
quaternions and we denote this seven-dimensional position
data by {r̃k}1≤k≤M , dropping the index 2i.

We learn a meaningful motion from the demonstrated
sequences by using a temporal curve averaging method that
has been first presented in [21] and then applied successfully
on continuous data and also on binary data [22]. The method
consists of an iterative procedure similar to an expecta-
tion minimization algorithm, in which all trajectories are
temporally synchronized to a reference average trajectory
using dynamic time warping [23] before being averaged.
The resulting average is used as reference within the next
iteration. Using this approach, the average has a length τ
equal to the mean length of the input trajectories. Average
trajectories generated by this approach can be seen in Fig. 6.

We briefly summarize the approach below:
• Let r̃ref be a reference sequence. Temporally warp r̃k

to r̃ref using DTW and denote the warping function by
hk(t).

• Compute the average timeline with respect to r̃ref as

h(t) =
1
M

M∑
k=1

hk(t) (5)

• Compute so-called shift functions uk(t) = hk(h−1(t))
that permits to transform r̃k to the average timeline.

• Compute the average

r̃avg =
1
M

M∑
k=1

r̃k(uk(t)) (6)

• Replace r̃ref by r̃avg and iterate until convergence.

As initial reference, we recursively merge the input se-
quences two-by-two, using the same method. We adapted
the approach to the motion data in the following way: first,
we only use 3D position data for the time-warping synchro-
nization, as position is the dominant feature and we notice
that the orientation information does not play a major role for
the synchronization in our case. Second, some of the steps
above require either interpolating between two quaternions or
averaging multiple quaternions. We use respectively SLERP
interpolation [24] and spherical averaging [25]. After having

computed the averaged trajectory in the task coordinate
system, we normalize it by subtracting its initial position.

It has been noticed in the literature that if the data is high
dimensional or contains multiple local variations, the DTW
synchronization can be incorrect. More advanced temporal
synchronization techniques like [26] have been proposed for
such cases and can alternatively be used. This is however
not the case with our data. We show in Fig. 6(a) how the
approach provides a smooth averaged motion from several
demonstrated sequences. Fig. 6(b) highlights the rotational
motion of a learned trajectory.

VI. EXPERIMENTS

We have implemented this HMC approach in a modular
application based on the CISST libraries [27], using a da
Vinci robot. The application contains five interacting threads
with roles: 1) completion recognition, 2) path planning, 3)
robot control, 4) visual overlay and 5) main task control.

For the experiments, the authors of this paper have
performed each task five times to build the task models.
The illustrative video provided with this paper shows the
view of an operator using our Human-Machine Collaborative
system while performing the two illustrative tasks. Within
this view, the label ”manual’ is displayed when the operator
is performing the motion. The computed probability of the
operator having completed the subtask is also provided.
When the control switches to automatic motions, the label
”auto” is displayed, as well as the planned trajectory. The
displayed trajectory does not exactly overlay with the real
position, so as not to interfere with the view of the operator.
It is translated to the top of the view instead. This serves the
purposes of supervision and cognitive workload reduction of
the operator. The video shows seamless transitions between
manual operation and automatic execution. It also shows that
the da Vinci robot can be operated freely, e.g. by rotating its
endoscopic camera. Robustness of the approach to outliers,
such as repetitive unsuccessful trials to insert the needle
or unexpected closing/opening of the gripper, are illustrated
too. We display in Fig. 8 several images taken during the
performance of the tasks with the HMC system.

Additional operators have been asked to use the system
and have found the transitions seamless and intuitive. It
can however happen during the first trial that an operator
who has never performed the specific task beforehand does
not exactly perform the expected motion. In that case, the
completion may be recognized with a short delay, resulting
in a trajectory that is slightly translated from the correct and
expected position. This requires an adjustment of the tool
position in the end. This shows that either a few trials may
be necessary for the user to learn how to perform the task
correctly (in a way that is similar to the demonstrated data),
or that the task models should be built by including data
demonstrated by the current operator and illustrating his/her
style. In our experiments, the HMMs models use a mixture
of two Gaussians and we trigger automatic execution using
β = 0.9. We average θt over 1 second.

* Preprint, to appear in the IEEE proceedings of ICRA 2011 *



(a) Input trajectories (dotted lines) and average trajectory (black continuous
line).

(b) Input trajectories (continuous lines) and average trajectory (black dotted
line). Emphasis on rotational motion, illustrated by displaying one frame axis
over time.

Fig. 6. Examples of average trajectories.

(a) Pin Task: 3D motion of the master manipulator. Manual performance
(left) versus HMC performance (right) displayed side-to-side using the
same scale.

(b) Suturing Task: 3D motions of the left and right master manipulators.
Manual (left) versus HMC (right) performance displayed side-to-side using
the same scale. The left ellipse always corresponds to the left manipulator.

Fig. 7. Workspace analysis of the master manipulators.

The benefits of the approach for easing tele-operation con-
trol lie in the fact that the motions of the master-manipulators
are greatly reduced. Indeed, the large transportation motions
are executed automatically and do not require any opera-
tor movements. This has two consequences: the need for
clutching to readjust the master manipulators becomes almost
inexistent and master-manipulator collisions are less likely to
occur.

An analysis of the master manipulators workspace is
shown in Fig. 7. It compares the master manipulators motions
when the HMC system is used or not. For the pin task,
Fig. 7(a) shows that the master manipulator workspace is
reduced to a much smaller volume when the HMC system
is used, since the movement to be accomplished is now
restrained to only grasping or pinning down a pin. For
the suturing task, only the left instrument is automated.
Fig. 7(b) shows that the right manipulator uses a similar
workspace when the HMC system is used. The left manip-
ulator, however, uses a much smaller workspace with the
HMC framework, as its role is reduced to two fine motions,
namely grasping and handing in the needle. The compared

standard deviations of the master manipulator positions, in
each direction and averaged over 5 sequences, are given in
Table III.
We observe a similar result for the distances traveled by the
manipulators: the traveled distance is in average reduced by
a factor of 4 during our experiments with the pin task, and by
a factor of 1.3 for the suture task. We are planning a wider
study that should confirm these results on a larger population
of users. The times for the task completion are similar with
and without the use of the HMC approach: in average 48
seconds for the pin task and 64 seconds for the suturing
task. It would be straightforward to reduce the times by
accelerating the automatic transportation motions. We have
not explored this direction yet, for safety concerns.

VII. DISCUSSION AND CONCLUSION

In this paper, we have proposed a novel human-machine
collaborative approach for tele-surgery based on learning
from demonstration. Fine motions are performed by the
operator, while real-time recognition of their termination trig-
gers the automatic execution of previously learned motions
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(a) Pin Task

(b) Suturing Task

Fig. 8. Illustration of the tasks performed with the HMC framework. A complete performance can be seen in the illustrative video.

Pin Task Sut Task
x y z x y z

Manual 55.4 50.4 22.1 17.7 21.4 38.3
HMC 10.6 19.9 23.1 12.1 16.7 23.2

TABLE III
STANDARD DEVIATIONS OF THE MASTER MANIPULATOR POSITIONS (IN

MILLIMETERS), FOR PIN-TASK (RIGHT MASTER MANIPULATOR) AND

SUT-TASK (LEFT MASTER MANIPULATOR). COMPARISON WITH AND

WITHOUT THE USE OF THE HMC SYSTEM.

that do not involve any interaction with the environment.
We have shown, using the da Vinci tele-surgical robot,
that when such motions are large transportation motions,
this form of collaboration improves the usage the master-
manipulators workspace. Moreover, experiments show that
such human-machine collaboration permits seamless and
intuitive switching between manual operation and automatic
execution.

Our approach neither requires a complete description of
the environment nor motion-preprograming: the recognition
system, the executed motion and the ordering of the sub-
tasks are directly inferred from demonstrated sequences in
which the automated parts are labeled. Furthermore, by
displaying the planned 3D trajectory in the field of view
of the operator, he/she can supervise the automated motions.
Since the executed motion is superimposed onto the master-
manipulator movements, he/she can adjust the trajectory
if needed. Finally, the automatic execution can be safely
stopped either by clutching the robot or by asking an assistant
to stop the control.

In the future, we plan to extend our approach to fine
manipulation subtasks, such as needle insertion by taking
advantage of visual information provided by the stereo
endoscope. We will investigate how to incorporate cues from

the environment in the learning framework, like contacts
between tissues and instruments. We would also like to
address longer tasks, in which the succession of the subtasks
may not be sequential but could contain options.

Finally, in addition to learnt task-specific motions, it would
be interesting to enhance the HMC system with the capability
to automate simple generic motion, for instance triggered
by voice command. Generic motions, like the automatic
displacement of the camera to focus on a specific tool, could
also improve the ergonomic usage of a tele-operated robot.
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