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Abstract

This paper considers survey prediction from social me-
dia. We use topic models to correlate social media mes-
sages with survey outcomes and to provide an inter-
pretable representation of the data. Rather than rely on
fully unsupervised topic models, we use existing aggre-
gated survey data to inform the inferred topics, a class
of topic model supervision referred to as collective su-
pervision. We introduce and explore a variety of topic
model variants and provide an empirical analysis, with
conclusions of the most effective models for this task.

Introduction

Social media has proved invaluable for research in social
and health sciences, including sociolinguistics (Eisenstein,
Smith, and Xing 2011), political science (O’Connor et al.
2010), and public health (Paul and Dredze 2011). A com-
mon theme is the use of topic models (Blei, Ng, and Jordan
2003), which, by identifying major themes in a corpus, sum-
marize the content of large text collections. Topic models
have been applied to characterize tweets (Ramage, Dumais,
and Liebling 2010), blog posts and comments (Yano, Cohen,
and Smith 2009; Paul and Girju 2009), and other short texts
(Phan, Nguyen, and Horiguchi 2008).

One goal of social media analytics is to complement or
replace traditional survey mechanisms (Thacker and Berkel-
man 1988; Krosnick, Judd, and Wittenbrink 2005). Tradi-
tional phone surveys are both slow and expensive to run. For
example, the CDC’s annual Behavioral Risk Factor Surveil-
lance System (BRFSS) is a health-related telephone survey
that collects health data by calling more than 400,000 Amer-
icans. The survey costs millions of dollars to run each year,
so adding new questions or obtaining finer-grained tempo-
ral information can be prohibitive. Expanding this survey
through social media monitoring promises methods that are
both fast and cheap. For example, research has shown that
social media features can complement existing models in
predicting health statistics at the collective, county level
(Culotta 2014). Myslin et al. (2013) have also shown that
Twitter can be used to monitor opinions on tobacco use.

Paul and Dredze (2011) showed initial work on corre-
lating several BRFSS questions with social media topics
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learned by a topic model. However, since topic models are
an unsupervised method for learning text representations,
they may not identify topics that naturally correspond to
those useful in a survey. One solution is to provide super-
vision to the models based on previously conducted, or top-
ically related, surveys. This can include using surveys of ex-
isting US states to train topic models for predicting missing
US states, or using previous surveys on similar issues when
conducting a new survey.

Numerous topic models incorporate supervision, such as
predicting labels for each document, e.g., supervised LDA
(Mcauliffe and Blei 2008); modeling tags associated with
each document, e.g., labeled LDA (Ramage et al. 2009)
or tagl. DA (Zhu, Blei, and Lafferty 2006); placing priors
over topic-word distributions (Jagarlamudi, Daumé III, and
Udupa 2012; Paul and Dredze 2013); or interactive feedback
from the user (Hu et al. 2014). However, none of these mod-
els support the aggregate-level labels provided by surveys.

We present a collective method of supervision for topic
models, where aggregate-level labels are provided for
groups of messages instead of individual messages. We ex-
periment with a variety of modifications to topic models to
support this task. We evaluate our methods on using Twit-
ter to predict three survey questions taken from the annual
BRFSS survey. We show that incorporating aggregate data
leads to more predictive topics.

Collective Supervision

We define collective supervision! as supervision in which

labels are provided for groups or collections of documents,
rather than supervision at the level of individual docu-
ments. Example collections include particular geographic
areas (e.g., U.S. states) or time periods (e.g., weeks). Ex-
amples of collective supervision include the proportion of
smokers or the number of gun owners in each U.S. state.
While our formulation is general, we focus on geographic
areas as collections, taking supervision from U.S. surveys.

Under this framework, a corpus is partitioned into C' col-
lections, where the jth collection is labeled with a value, y;
(e.g., the percentage of smokers in location 7). The mth doc-
ument is associated with a collection index, c¢,,,.

"We borrow the name for this type of supervision from collec-
tive graphical models (Sheldon and Dietterich 2011).
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Figure 1: Graphical model of (a) the most complex upstream model, with adaptive supervision and structured word distributions, and (b) the
downstream collective SLDA model. Constants determining strength of prior on «, by, by, 1, and w are omitted due to space constraints.

Models

This section presents topic models based on Latent Dirich-
let Allocation (LDA) (Blei, Ng, and Jordan 2003). We fol-
low standard LDA notation in this section. LDA is a fully
unsupervised model, which may have limited utility when
trying to learn topics that are predictive of surveys. This pa-
per will show how to incorporate collective supervision into
topic models. This section presents several models that in-
corporate collective supervision in different ways. We clas-
sify these models as either upstream or downstream, using
the terminology of Mimno and McCallum (2008), referring
to whether the response variables y are generated before or
after the text in the generative stories.

Both types of models contain survey coefficients for each
topic, 1y, indicating whether a topic is positively or nega-
tively correlated with the survey values. In upstream models,
these coefficients inform the priors over topic distributions
in documents, while in downstream models, these are used
to predict the survey values directly.

We emphasize that our focus is not on creating novel topic
models, but on an evaluation of the most effective model
formulation for the proposed task. Therefore, we consider
modifications to different types of existing topic models.

Upstream Models

In upstream topic models, supervision influences the pri-
ors over topic distributions in documents. This is done with
Dirichlet-multinomial regression (DMR) (Mimno and Mc-
Callum 2008), in which the Dirichlet parameters are log-
linear functions of the document labels y and the regres-
sion coefficients 1. Under a DMR topic model (the up-
stream model in our experiments), each document has its
own Dirichlet(6,,) prior, with 6,,,x=exp(bg + ymnk ), Where
Ym 18 the label of the mth document, 7, is the kth topic’s
survey coefficient, and by, is a bias term (intercept). For pos-
itive 7y, the prior for topic k£ in document m will increase as
Ym increases, while negative 7, will decrease the prior.

We straightforwardly adapt this DMR model to the col-
lective setting by replacing document labels with collection
labels: Y, = Y., . In this version, the prior over topics is in-
formed by the collection of the document. Figure 2 provides
the generative story, including variants below.

1. For each document m:
(a) Ye,, 1s the feature value associated with the document’s col-
lection ¢,
am ~ N (Ye,, , 02) (adaptive version)
or
Qm = Ye,, (standard version)

(b)

(©) Omr = exp(br + amni), for each topic k
(d) 0., ~ Dirichlet(6,,)
2. For each topic k:
(a) qgkv = exp(by + wumni), for each word v (words version)
or
&kl, = exp(by) (standard version)
(b) ¢x ~ Dirichlet(¢y,)
3. For each token n in each document m:
(a) Sample topic index zmn ~ Om
(b) Sample word token wmn ~ ¢z,

Figure 2: Generative story for the various upstream models.

Adaptive Supervision A limitation of the basic upstream
model is the assumption that the y values are always avail-
able and accurate. This is often not true; for example, a large
percentage of social media messages cannot be resolved to
specific locations, so their collections are unknown.

We thus experiment with a novel variant of the standard
DMR model that allows the response variables to deviate
from the input values. We replace each document’s super-
vised variable with an auxiliary variable a.,, that is normally
distributed with mean y,,_, as described in step 1b of the
generative story. This encourages the value to be near the
input, while adapting to the data. Models with adaptive vari-
ables are denoted with ada.

Structured Word Distributions We also experiment with
variants in which the collective supervision indirectly influ-
ences each topic’s distribution over words, in addition to
each document’s distribution over topics. For example, we
might a priori believe that topics associated with high gun
ownership are more likely to have words in common.

We do this using the structured-prior topic modeling
framework of SPRITE (Paul and Dredze 2015), which ex-
tends DMR to use log-linear priors in various ways. In this



1. For each document m:
(@) Oy = exp(by), for each topic k
(b) Oy, ~ Dirichlet(0,,)
2. For each topic k:
(@) Pro = exp(by)
(b) ¢x ~ Dirichlet(¢y)
3. For each token n in each document m:
(a) Sample topic index zmn ~ Om
(b) Sample word token Wyn ~ @2,
4. For each document collection j:
(a) Let Z;, be the average proportion of topic & in collection j

®) yj ~ N +n"z;,07)

Figure 3: Generative story for the collective SLDA model. sSLDA is
a special case where each document belongs to a unique collection.

model, the topic survey coefficients 7 are used in the priors
over word distributions in addition to topic distributions, as
described in step 2a of the generative story. Words with a
positive value of w,, will have a higher prior in topics with a
positive value of 7. These model variants are denoted with
words in the name.

Downstream Models

Downstream topic models generate the response variables y
after the text, conditioned on the topic values. Supervised
LDA (SLDA) (Mcauliffe and Blei 2008) falls in this cat-
egory. SLDA follows the same generative story as LDA
for generating a corpus, and generates each document’s re-
sponse variable v, as the output of a linear model condi-
tioned on the document’s average topic counts: 4, ~A (1, +
0" Zm,0,), where 7, is a bias term. We experiment with
adapting SLDA to the collective setting by setting y,, =Y.,
pretending that each document has an observed value corre-
sponding to its collection’s value.

We also experiment with a novel collective variant of
SLDA that correctly models the response at the collec-
tion level. Each collection j has a single response vari-
able (rather than one variable per document) that depends
on the average topic counts across the entire collection:
yi~N(my+nTz;, 05), where Z; is the average count of topic
assignments in all jth collection documents. The collective
variant is equivalent to SLDA if each document has a unique
collection index. Figure 3 provides the generative story.

Parameter Estimation

Inference for each model involves alternating between one
iteration of Gibbs sampling (sampling each token’s topic as-
signment) and one iteration of gradient ascent for the param-
eters b, «, w, and n. We include 0-mean Gaussian priors on
all parameters to prevent overfitting. See Paul and Dredze
(2015) for the upstream gradient updates.

The downstream Gibbs samplers augment each token’s
sampling distribution with the likelihood of the response,
N(m+n"%,,,0,), where the counts Z,, include the topic

being considered. The variance 05 controls how strongly the
response likelihood affects the choice of topic.

Dataset | Vocab | State | County BRFSS
Guns 12,358 | 29.7% | 18.6% Owns firearm

Vaccines | 13,451 | 23.6% | 16.2% Had flu shot

Smoking | 13,394 | 19.6% | 12.8% | Current smoker

Table 1: A summary of the three datasets: size of the vocabulary,
proportion of messages tagged at the state and county level, and the
state-level survey question (BRFSS) asked.

Experiments
Data

We evaluate the prediction of three survey questions us-
ing Twitter data. The survey questions are from BRFSS, an
annual phone survey of hundreds of thousands of Amer-
ican adults, chosen for its very large and geographically
widespread sample. We selected the following three ques-
tions: the percentage of respondents in each U.S. state who
(1) have a firearm in their house (data from 2001, when the
question was last asked), (2) have had a flu shot in the past
year (from 2013), and (3) are current smokers (from 2013).
Our goal is to predict state-level results (guns, vaccinations,
smoking) based on topic representations of Twitter data.
We created three Twitter datasets based on keyword filter-
ing with data collected from Dec. 2012 through Jan. 2015 to
match tweets relevant to these three survey questions. We se-
lected 100,000 tweets uniformly at random for each dataset
and geolocated them to state/county using Carmen (Dredze
et al. 2013). Geolocation coverage is shown in Table 1. We
experimented with two sources of collective supervision:

Survey The direct type of collective supervision is to use
the values of the BRFSS survey responses that we are trying
to predict. Each U.S. state is a collection, and each collec-
tion includes tweets resolved to that state. This setting re-
flects predicting the values for some states using data already
available from other states. This setting is especially relevant
for BRFSS, since the survey is run by each state with results
collected and aggregated nationally. Since not all states run
their surveys at the same time, BRFSS routinely has results
available for some states but not yet others.

Census We also experimented with an alternative, indi-
rect type of collective supervision, in the form of demo-
graphic information from the 2010 U.S. Census. Demo-
graphic variables are correlated with the responses to the
surveys we are trying to predict (Hepburn et al. 2007;
King, Dube, and Tynan 2012; Gust et al. 2008), so we hy-
pothesize that using demographic information may lead to
more predictive and interpretable topic models than no su-
pervision at all. This approach may be advantageous when
domain-specific survey information is not readily available.

From the Census, we used the percentage of white resi-
dents per county, for tweets whose county could be resolved.
Although this feature is not directly related to our dependent
variable, it is sampled at a finer granularity than the state-
level survey feature. Proportion of tweets tagged with this
feature are also included in Table 1. In our experiments we
consider these two types of supervision in isolation to assess
the usefulness of each class of distant supervision.



Features | Model Guns Vaccines Smoking
None LDA 17.44 2313 (£52) | 8.67 2524 (£20) | 4.50 2118 (£5H)
Survey Upstream 1537 1529 (£12) | 6.54 1552 (£11) | 3.41 1375 (%6)
Upstream-words 11.50 1429 (£22) | 6.37 1511 (£57) | 3.41 1374 (£2)
Upstream-ada 11.48 1506 (£67) | 5.82 1493 (£49) | 3.41 1348 (+6)
Upstream-ada-words 1147 1535(%x28) | 7.20 1577 (£15) | 3.40 1375 (£3)
Downstream-SLDA 1152 1561 (£22) | 11.22 1684 (£7) | 3.95 1412 (£3)
Downstream-collective | 12.81 1573 (£20) | 9.17 1684 (£6) | 4.35 1412 (+4)
Census Upstream 11.51 1555 (£27) | 5.15 1575(£90) | 3.42 1377 (£8)
Upstream-words 15.88 1440 (£38) | 6.85 1549 (£57) | 3.41 1376 (£5)
Upstream-ada 11.50 1534 (£48) | 6.49 1509 (£21) | 3.41 1346 (£7)
Upstream-ada-words 11.50 1553 (£20) | 6.35 1584 (+19) | 3.41 1378 (£3)
Downstream-SLDA 11.52 1586 (£20) | 8.83 1688 (£7) | 537 1411 (£3)
Downstream-collective | 15.61 1586 (+44) | 9.15 1681 (£10) | 4.72 1412 (£3)

Table 2: RMSE of the prediction task (left) and average perplexity (right) of topic models over each dataset, &= stddev. Perplexity is averaged
over 5 sampling runs and RMSE is averaged over 5 folds of U.S. states. For comparison, the RMSE on the prediction task using a bag-of-words
model was 11.50, 6.33, and 3.53 on the Guns, Vaccine, and Smoking data, respectively.

Model Class 1 Model Class 2 Prediction (MSE) Perplexity
Downstream Upstream 466 (0.001) 2.54 (0.014) 75 (0.000) 5.59 (0.000)
Census Survey 1516 (0.032) -0.15(0.882) | 1266 (0.003)  1.07 (0.287)
Direct supervision Adaptive supervision 879 (0.791) 0.08 (0.938) 760 (0.345)  -3.48 (0.001)
Upstream with words | Upstream without words | 810 (0.440) -1.62(0.110) | 833 (0.695)  -3.02 (0.004)
Downstream-SLDA Downstream-collective 133 (0.041) 2.21 (0.035) 228 (.923) -.240 (.812)

Table 3: Performance comparison for different model/feature classes. The first set of numbers in each cell is the Wilcoxon signed-rank
statistic and corresponding p-value. The second set is the paired t-test statistic and corresponding p-value. A positive sign of the t-test statistic
indicates that Model Class 1 has higher prediction error or perplexity than Model Class 2.

Experimental Details

We tuned each model for held-out perplexity and evalu-
ated its ability to predict the survey proportion for each
state. Held-out perplexity was computed using the “docu-
ment completion” approach (Wallach et al. 2009); specifi-
cally, every other token was used for training, with perplex-
ity measured on the remaining tokens. We also compared to
an LDA model (no supervision).

For tuning, we held out 10,000 tweets from the guns
dataset and used the best parameters for all datasets. We ran
Spearmint (Snoek, Larochelle, and Adams 2012) for 100 it-
erations to tune the learning parameters, running each sam-
pler for 500 iterations. Spearmint was used to tune the fol-
lowing learning parameters: the initial value for b, and the
variance of the Gaussian regularization on b, 1, w, a, and
y (in the downstream model). Once tuned, all models were
trained for 2000 iterations, using AdaGrad (Duchi, Hazan,
and Singer 2011) with a master step size of 0.02.

We evaluated the utility of topics as features for predicting
the collective survey value for each U.S. state, reflecting how
well topics capture themes relevant to the survey question.
We inferred 0,,, for each tweet and then averaged these topic
vectors over all tweets originating from each state, to con-
struct 50 feature vectors per model. We used these features
in a regularized linear regression model. Average root mean-
squared error (RMSE) was computed using five-fold cross-
validation: 80% of the 50 U.S. states were used to train, 10%
to tune the /5 regularization coefficient, and 10% were used
for evaluation. In each fold, the topic models used supervi-
sion only for tweets from the training set states, while the y

values were set to 0 (a neutral value) for the held-out states.

We swept over the /5 regularization coefficient. For both
perplexity and prediction performance, we sweep over num-
ber of topics in {10, 25,50, 100} and report the best result.
Results are averaged across five sampling runs. For super-
vised models, we use either the survey value or Census de-
mographic value as supervision.

The text was preprocessed by removing stop words and
low-frequency words. We applied z-score normalization to
the BRFSS/Census values within each dataset, so that the
mean value was 0. For tweets whose location could not be
resolved, the value was set to O for the upstream models.
In the downstream models, such tweets are assigned to a
dummy collection whose response likelihood is fixed to 1.

Results

Results are shown in Table 2. The important takeaway is that
topic models with collective supervision are more predictive
than LDA, an unsupervised model. Not only do the super-
vised models substantially reduce prediction error, as might
be expected, but they also have substantially lower perplex-
ity, and thus seem to be learning more meaningful concepts.

The poor performance of LDA may be partially explained
by the fact that Spearmint seems to overfit LDA to the tun-
ing set. Other models attained a tuning set perplexity of be-
tween 1500 to 1600, whereas LDA attained 1200. To inves-
tigate this issue further, we separately ran experiments with
hand-tuned models, which gave us better held-out results for
LDA, though still worse than the supervised topic models
(e.g., RMSE of 16.44 on the guns data). Although Spearmint



Guns Vaccines Smoking
r=-104 r=043 | r=-0.25 r=1.07 r=—0.62 r=1.04
gun guns ebola truth smoking #cigar
mass people trial autism quit #nowsmoking
shootings human vaccines outbreak stop #cigars
call get promising science smokers cigar
laws would experimental know #quitsmoking james
democrats take early connection best new
years one first via new thank
since away results knows help beautiful

Table 4: Sample topics for the Upstream-ada-words model supervised with the survey feature. A topic with a strongly negative as well as a

strongly positive 7 value was chosen for each dataset.

tuning is not perfect, it is fair to all models.

For additional comparison, we experimented with a stan-
dard bag-of-words model, where features were normalized
counts across tweets from each state. This comparison is
done to contextualize the magnitude of differences between
models, even though our primary goal is to compare differ-
ent types of topic models. We found that the bag-of-words
results (provided in the caption of Table 2) are competitive
with the best topic model results. However, topic models are
often used for other advantages, e.g., interpretable models.

Comparing Model Variants We now compare the dif-
ferent variants of the collectively supervised models. We
measured the significance of the differences in performance
of different classes of models according to (i) a Wilcoxon
signed-rank test, and (ii) a paired t-test. Model results were
paired within each dataset, fold (for the prediction task, since
mean squared error varied from fold-to-fold), and model
class or feature set if applicable. For example, to compare
the model variants with adaptive supervision to those with
direct supervision, we paired the results from Upstream
with Upstream-ada, and Upstream-words with Upstream-
ada-words. There was not a one-to-one correspondence be-
tween upstream models and downstream models, so to com-
pare these two classes, we paired each downstream variant
with a randomly selected upstream variant. The test statistics
and p-values are shown in Table 3.

Surprisingly, the upstream models performed better than
downstream in nearly every case, even though the down-
stream models are directly trained to predict the response.
(This was true with multiple SLDA implementations.) The
differences between the two types of models are highly sig-
nificant under all tests and metrics.

Comparing the two downstream models, we find that the
results are mixed, but after pairing the results across folds,
the significance tests indicate that the collective downstream
model has significantly lower prediction error (with p < .05
under both tests) than SLDA, although the perplexity results
are statistically indistinguishable.

Comparing the upstream models, the differences be-
tween variants with direct/adaptive supervision and variants
with/without words are only significant for perplexity and
only under a t-test. Thus, these variants may offer improved
representations of the text, but the differences are minor.

Comparing models trained with Survey versus Census
data, both improve over LDA and obtain similar results, with

the Survey models generally performing better: the predic-
tion and perplexity results are both significantly different,
but only under the Wilcoxon signed-rank test. The strong
results using only Census data suggest that our methods can
still have utility in scenarios when there is limited survey
data available, but for which the survey questions have de-
mographic correlates.

Qualitative Inspection Table 4 displays example topics
learned by the richest model: Upstream-ada-words. For ex-
ample, a topic about the results of the ebola vaccine trials
is negatively correlated with vaccine refusal, while a topic
about the connection between vaccines and autism is pos-
itively correlated with vaccine refusal. We did not observe
noticeable qualitative differences in topics learned by the
different models, with an exception of LDA, where the top-
ics tended to contain more general words and fewer hashtags
than topics learned by the supervised models.

Use Case: Predicting Support for Gun Restrictions

We ran a final experiment to consider the setting of predict-
ing a new survey with limited available data. We chose the
subject of requiring universal background checks for firearm
purchases, a topic of intense interest in the U.S. in 2013 due
to political events. Despite the national interest in this topic,
telephone surveys were only conducted for less than half of
U.S. states. We identified 22 individual state polls in 2013
that determined the proportion of respondents that opposed
universal background checks. 15 of the states were polled
by Public Policy Polling, while the remaining 7 states were
polled by Bellwether Research, Nelson A. Rockefeller Re-
search, DHM Research, Nielsen Brothers, Repass & Part-
ners, or Quinnipiac University. We take this as a real-world
example of our intended setting: a topic of interest where
resources limited the availability of surveys.

We used a topic model trained with data from the uni-
versal background check (UBC) survey question as features
for predicting the state values for the UBC surveys. For this
experiment, we focused on the best-performing topic model
from the previous section: Upstream-ada-words. As in the
previous experiments, we used topic features in a linear re-
gression model, sweeping over ¢, regularization constants
and number of topics, and we report test performance of the
best-performing settings on the tuning set. We evaluated the
model using five-fold cross-validation on the 22 states.

Additionally, we sought to utilize data from a previous,



Features | Model RMSE (2001 Y included) | RMSE (2001 Y omitted)
None No model 7.26 7.59

Bag of words 5.16 7.31

LDA 6.40 7.59
Survey Upstream-ada-words 5.11 5.48

Table 5: RMSE when predicting proportion respondents opposing universal background checks with topic distribution features. We exper-
imented with (left) and without (right) including the 2001 proportion households with a firearm survey data as an additional feature. “No
model” is the regression where we predict using only the 2001 proportion of households with a firearm.

Figure 4: Predictions from the Upstream-ada-words model trained
on the proportion opposed to universal background checks. The
22 blue states hatched with lines were in the model’s training set,
while we have no survey data for the 28 green, dotted states. Darker
colors denote higher opposition to background checks.

topically-related survey: the “Guns” BRFSS survey used
in the previous section, which measured the proportion of
households with a firearm, asked in 2001. While the survey
asks a different question, and is several years out of date,
our hypothesis is that the results from the 2001 survey will
be correlated with the new survey, and thus will be a good
predictor. We experimented with and without including the
values of the 2001 BRFSS survey (which is available for all
50 states) as an additional feature in the regression model.

Table 5 contains the cross-validation test results. We com-
pared the supervised topic model performance to LDA as
well as a bag-of-words model. To put the results in con-
text, we also trained regression models using only the 2001
BRFSS values as features (“No model, 2001 Y included”)
as well as a regression model with no features at all, only an
intercept (“No model, 2001 Y omitted”).

In general, models that use text features outperform the
baseline using only data from the 2001 survey, showing that
text information derived from social media can improve sur-
vey estimation, even when using topically-related historic
data. Moreover, the collectively supervised Upstream-ada-
words model trained on the UBC survey data is signifi-
cantly better than an unsupervised topic model (LDA) with
p = 0.06, under a paired t-test across folds. The difference
between Upstream-ada-words and the bag-of-words model
is not significant (p = 0.16), although the difference is larger
in the setting where the 2001 survey data is omitted. For
the Public Policy Polling surveys used to build the UBC
data, the margin of error ranged from 2.9% (more than 1000

polled) to 4.4% (500 polled). An RMSE of 5.1 is approxi-
mately equivalent to a 10% margin of error at the 95% con-
fidence level, similar to polling roughly 100 people.

We also investigated the utility of using topic models
trained on the topically-related 2001 BRFSS firearm data,
rather than the target 2013 UBC data. The potential advan-
tage is that the 2001 data is available for all 50 states, so
more data is available to train the topic models. However,
training the topic model on this data resulted in worse RM-
SEs: 6.66 and 6.60, compared to 5.11 and 5.48. Thus, in this
case, it was more effective to train the topic models on the
target data, even though less data was available.

Finally, we trained our Upstream-ada-words regression
model (with 2001 BRFSS features) on all 22 states, and used
this model to make predictions of opposition to universal
background checks for the remaining 28 states. The predic-
tions are shown in Figure 4.2

Discussion and Conclusion

We have presented a wide range of topic models to predict
aggregate-level survey scores from messages in social me-
dia, and we have shown how topic models can be used or
modified for this setting. Our results offer guidance for topic
modeling in collective settings:

o Upstream models had substantially better prediction error
and perplexity than downstream models, and these dif-
ferences are highly significant under both types of sig-
nificance tests. We therefore recommend using upstream
topic models for modeling surveys.

e The collective variant of SLDA had lower prediction er-
ror than the standard SLDA model by a statistically sig-
nificant amount, though this varied by dataset, and is still
worse than the upstream models. The perplexity of the
two variants was about the same.

e We found weak evidence that our modifications to the
basic upstream model—using adaptive supervision and
structured word priors—offer some advantages, though
the improvements were not significant in most cases.

In addition to conducting experiments to compare differ-
ent models, we also applied our best-performing model to a
real-world task: predicting public opinion on gun restrictions
(in the form of universal background checks) in U.S. states
where phone surveys have not been asked with this ques-
tion. We thus offer this approach as a general methodology
for using social media to estimate resource-limited surveys.

ZExact values, as well as our datasets can be found at
https://github.com/abenton/collsuptmdata
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