Arrangements

O’Rourke, Chapter 6
Outline

• Voronoi Diagrams
• Arrangements
Voronoi Diagrams

Recall:

We can compute the Delaunay Triangulation by raising the points to a paraboloid and computing the projection of the lower hull.
Voronoi Diagrams

Recall:

We can compute the Delaunay Triangulation by raising the points to a paraboloid and computing the projection of the lower hull.
Voronoi Diagrams

Recall:

We can compute the Delaunay Triangulation by raising the points to a paraboloid and computing the projection of the lower hull.
Voronoi Diagrams

Recall:

We can compute the Delaunay Triangulation by raising the points to a paraboloid and computing the projection of the lower hull.
Voronoi Diagrams

Recall:

We can compute the Delaunay Triangulation by raising the points to a paraboloid and computing the projection of the lower hull.
Voronoi Diagrams

Recall:

Given a point $P(p) = (p, \|p\|^2)$ on the paraboloid, the tangent plane is given by:

$$z_p(r) = 2\langle p, r \rangle - \|p\|^2$$
Voronoi Diagrams

Recall:

Given a point \(P(p) = (p, \|p\|^2) \) on the paraboloid, the tangent plane is given by:

\[
z_p(r) = 2\langle p, r \rangle - \|p\|^2
\]

For any point \(r \) the (vertical) distance between its position on the parabola and its position on the tangent plane at \(p \) is:

\[
P(r) - z_p(r) = \|r\|^2 - (2\langle r, p \rangle - \|p\|^2)
\]
Voronoi Diagrams

Recall:

Given a point \(P(p) = (p, \|p\|^2) \) on the paraboloid, the tangent plane is given by:

\[
z_p(r) = 2\langle p, r \rangle - \|p\|^2
\]

For any point \(r \) the (vertical) distance between its position on the parabola and its position on the tangent plane at \(p \) is:

\[
P(r) - z_p(r) = \|r\|^2 - (2\langle r, p \rangle - \|p\|^2) = \|p - r\|^2
\]
Voronoi Diagrams

Given points \(p \) and \(q \), wherever the tangent plane at \(q \) is higher than the tangent plane at \(p \), we are closer to \(q \) than to \(p \).

\[
z_p(r) \leq z_q(r)
\]

\[
P(r) - z_p(r) \geq P(r) - z_q(r)
\]

\[
\|p - r\|^2 \geq \|q - r\|^2
\]
Voronoi Diagrams

⇒ Given points p and q, wherever the tangent plane at p is higher than the tangent plane at q, we are closer to p than to q.

⇒ We can visualize the Voronoi diagram by drawing the tangent planes at the sites and looking down the z-axis.
Voronoi Diagrams

⇒ Given points p and q, wherever the tangent plane at p is higher than the tangent plane at q, we are closer to p than to q.

⇒ We can visualize the Voronoi diagram by drawing the tangent planes at the sites and looking down the z-axis.
Voronoi Diagrams

⇒ Given points p and q, wherever the tangent plane at p is higher than the tangent plane at q, we are closer to p than to q.

⇒ We can visualize the Voronoi diagram by drawing the tangent planes at the sites and looking down the z-axis.
Outline

- Voronoi Diagrams
- Arrangements
Arrangements

Definition:

An arrangement of lines is a set of lines in the plane, inducing a partition of the domain into (convex) faces, edges, and vertices.
Arrangements

Definition:

An *arrangement of lines* is a set of lines in the plane, inducing a partition of the domain into (convex) faces, edges, and vertices.

An arrangement is *simple* if all pairs of lines intersect, and no three lines intersect at the same point.
Combinatorics

Claim:
A simple arrangement of n lines has

- $\binom{n}{2}$ vertices,
- n^2 edges, and
- $\binom{n}{2} + n + 1$ faces.
Combinatorics

Proof (Vertices):

Since each pair of lines intersects exactly once, the total number of vertices is the number of distinct line pairs, $\binom{n}{2}$.
Combinatorics

Proof (Edges):

Since each line is intersected by $n - 1$ other lines, partitioning the lines into n edges, the total number of edges is n^2.
Combinatorics

Proof (Faces):

Using stereographic mapping, arrangements of lines in the plane can be thought of as polygonizations of the sphere.
Combinatorics

Proof (Faces):
Using stereographic mapping, arrangements of lines in the plane can be thought of as polygonizations of the sphere.

Note:
The stereographic mapping of the lines intersect at the North Pole.
Combinatorics

Proof (Faces):
By Euler’s theorem the number of faces is:

\[F = 2 - (V + 1) + E \]
\[= 2 - \binom{n}{2} - 1 + n^2 \]
\[= \binom{n}{2} + n + 1 \]
Zone Theorem

Definition:

Given an arrangement A and a line L (s.t. $A \cup \{L\}$ is simple) the *zone* of L in A, $Z(L)$, is the set of faces of A intersected by L.

\[A \ (n = 4) \]
Zone Theorem

Definition:

Given an arrangement A and a line L (s.t. $A \cup \{L\}$ is simple) the zone of L in A, $Z(L)$, is the set of faces of A intersected by L.

$A (n = 4)$
Zone Theorem

Notation:

The number of edges in $Z(L)$ is denoted $z(L)$.
The max size of $z(L)$ over all lines is denoted z_n.

$$z(L) = 11 \quad \text{and} \quad A(n = 4)$$
Zone Theorem

Note:

Assuming that no line in A is horizontal, we mark an edge as *left* (resp. *right*) if it bounds a face of $Z(L)$ from the left (resp. right).*

*Note that an edge can be marked both *left* and *right*.

$z(L) = 11 \quad A (n = 4)$
Zone Theorem

Note:

Assuming that no line in A is horizontal, we mark an edge as *left* (resp. *right*) if it bounds a face of $Z(L)$ from the left (resp. right).

Note:
The number of edges in the zone is at most the number of edges marked *left* plus the number of edges marked *right*.

*Note that an edge can be marked both *left* and *right*. $z(L) = 11$ $A \ (n = 4)$
Zone Theorem

Theorem:

For an arrangement of \(n \) lines, \(z_n \leq 6n \).

In particular, the number of edges marked left (resp. right) at most \(3n \).

\(z(L) = 11 \quad A(n = 4) \)
Zone Theorem

Proof:

Without loss of generality, assume that the line \(L \) is horizontal.

Proceed by induction.
Zone Theorem

Proof (base case):
Trivially true when $n = 0$.
Zone Theorem

Proof (inductive case):

Remove the right-most line on L.

By induction, the number of left edges crossed is at most $3(n - 1)$.

Need to show that adding the line back generates at most 3 additional left edges.
Zone Theorem

Claim 1:

Adding the right-most line introduces exactly one new left edge.
Zone Theorem

Proof of Claim 1:

It introduces one because this will be a left edge of the right-most face.
Zone Theorem

Proof of Claim 1:

It introduces one because this will be a left edge of the right-most face.

It introduces exactly one because a right-most line cannot contribute more than one left edge.
Zone Theorem

Proof of Claim 1:

It introduces one because this will be a left edge of the right-most face.

It introduces exactly one because a right-most line cannot contribute more than one left edge.

If it is split by a line from the left, only one of the two segments will be in the zone, (the one containing L.)
Proof of Claim 1:

It introduces one because this will be a left edge of the right-most face.

It introduces exactly one because a right-most line cannot contribute more than one left edge.

If it is split by a line from the right, then it wasn’t right-most.
Zone Theorem

Claim 2:

Adding the right-most line splits at most two existing left edges.
Zone Theorem

Proof of Claim 2:
If the right-most line splits a left edge in two, the edge must be on the right-most face.
Zone Theorem

Proof of Claim 2:

If the right-most line splits a left edge in two, the edge must be on the right-most face.

Consider the segment of the right-most line from L to the left edge.
Zone Theorem

Proof of Claim 2:

If the right-most line splits a left edge in two, the edge must be on the right-most face.

Consider the segment of the right-most line from L to the left edge.

If it is not split by another line, the left edge must have been on the right-most face.
Zone Theorem

Proof of Claim 2:

If the right-most line splits a left edge in two, the edge must be on the right-most face.

Consider the segment of the right-most line from L to the left edge.

If it is split by another line, only one of the two sides of the left edge will be in the zone.
Zone Theorem

Proof of Claim 2:

If the right-most line splits a left edge in two, the edge must be on the right-most face.

Since faces are convex, the line splits at most two edges on the right-most face.

These must be left edges because otherwise the line was not right-most.
Zone Theorem

Corollary:

We can construct a (simple) arrangement of n lines in $O(n^2)$ time.
Zone Theorem

Proof:
Iteratively add the k-th line.
Zone Theorem

Proof:

Iteratively add the k-th line.
- Find an intersection with an existing edge.
Zone Theorem

Proof:

Iteratively add the k-th line.

• Find an intersection with an existing edge.
• Cycle around faces to the left
Zone Theorem

Proof:

Iteratively add the k-th line.
- Find an intersection with an existing edge.
- Cycle around faces to the left
Zone Theorem

Proof:

Iteratively add the k-th line.

- Find an intersection with an existing edge.
- Cycle around faces to the left
- Cycle around faces to the right
Zone Theorem

Proof:

Iteratively add the k-th line.
• Find an intersection with an existing edge.
• Cycle around faces to the left
• Cycle around faces to the right
Zone Theorem

Proof:

Iteratively add the k-th line.
- Find an intersection with an existing edge.
- Cycle around faces to the left
- Cycle around faces to the right
Zone Theorem

Proof:

Iteratively add the k-th line.\(\text{ }\)\(\mathcal{O}(n)\) iterations

- Find an intersection with an existing edge.
- Cycle around faces to the left
- Cycle around faces to the right
Zone Theorem

Proof:

Iteratively add the k-th line. $\mathcal{O}(n)$ iterations

- Find an intersection with an existing edge. $\mathcal{O}(k)$
- Cycle around faces to the left
- Cycle around faces to the right
Zone Theorem

Proof:

Iteratively add the k-th line. $O(n)$ iterations

- Find an intersection with an existing edge. $O(k)$
- Cycle around faces to the left $O(k)$
- Cycle around faces to the right $O(k)$
Zone Theorem

Proof:

Iteratively add the k-th line. $O(n)$ iterations

- Find an intersection with an existing edge. $O(k)$
- Cycle around faces to the left $O(k)$
- Cycle around faces to the right

The total complexity is $O(n^2)$.
Zone Theorem

Generalizations:

In d-dimensional space:

- The number of faces of any dimension of an arrangement is $O(n^d)$.
- The number of faces in the zone of a hyper-plane is bounded by $O(n^{d-1})$.
- The arrangement can be computed in $O(n^d)$ time.