Convex Hulls (2D)

O’Rourke, Chapter 3
[Preparata and Hong, 1977]
Outline

• Incremental Algorithm
• Divide-and-Conquer
Incremental Algorithm

Approach:

Grow the hull by iteratively adding points:

- If the point is in the hull, do nothing.
- Otherwise, grow the hull.
Incremental Algorithm

Approach:

Grow the hull by iteratively adding points:

- If the point is in the hull, do nothing.
- Otherwise, grow the hull.
Incremental Algorithm

Approach:

Grow the hull by iteratively adding points:

- If the point is in the hull, do nothing.
- Otherwise, grow the hull.
Incremental Algorithm

Approach:

Grow the hull by iteratively adding points:

- If the point is in the hull, do nothing.
- Otherwise, grow the hull.
Incremental Algorithm

Approach:

Grow the hull by iteratively adding points:

- If the point is in the hull, do nothing.
- Otherwise, grow the hull.
Incremental Algorithm

Approach:

Grow the hull by iteratively adding points:

- If the point is in the hull, do nothing.
- Otherwise, grow the hull.
Incremental Algorithm

Approach:

Grow the hull by iteratively adding points:

- If the point is in the hull, do nothing.
- Otherwise, grow the hull.
Incremental Algorithm

Approach:

Grow the hull by iteratively adding points:

- If the point is in the hull, do nothing.
- Otherwise, grow the hull.
Incremental Algorithm

Note:
If a point is outside the hull, we can label the hull edges as left/right relative to the new point.
Incremental Algorithm

Note:

If a point is outside the hull, we can label the hull edges as left/right relative to the new point.
Incremental Algorithm

Note:

If a point is outside the hull, we can label the hull edges as left/right relative to the new point.
Incremental Algorithm

Note:

If a point is outside the hull, we can label the hull edges as left/right relative to the new point.
Incremental Algorithm

Note:

If a point is outside the hull, we can label the hull edges as left/right relative to the new point.
Incremental Algorithm

Note:

If a point is outside the hull, we can label the hull edges as left/right relative to the new point.
Incremental Algorithm

Note:

If a point is outside the hull, we can label the hull edges as left/right relative to the new point.
Incremental Algorithm

Note:

If a point is outside the hull, we can label the hull edges as left/right relative to the new point.
Incremental Algorithm

Note:

If a point is outside the hull, we can label the hull edges as left/right relative to the new point.
Incremental Algorithm

Note:

If a point is outside the hull, we can label the hull edges as left/right relative to the new point. ⇒ We get two vertex chains.
Incremental Algorithm

Note:

If a point is outside the hull, we can label the hull edges as left/right relative to the new point.
⇒ We get two vertex chains.
⇒ We get two transition vertices.
Incremental Algorithm

Naïve:

To add to a point to the hull, mark each edge, indicating if the point is to the left or right:

- If it is left of all edges, it is interior.
Incremental Algorithm

Naïve:

To add to a point to the hull, mark each edge, indicating if the points is to the left or right:

- If it is left of all edges, it is interior.
- Otherwise, there are two transition vertices. »Connect the new point to those vertices.

Complexity: $O(n^2)$
Incremental Algorithm

Edelsbrunner (1987):

Sort the points lexicographically and then grow the hull by iteratively adding points.
Incremental Algorithm

Edelsbrunner (1987):

Sort the points lexicographically and then grow the hull by iteratively adding points.

Note:

Since the points are sorted, each new point considered must be outside the current hull.
Incremental Algorithm

Edelsbrunner (1987):

Sort the points lexicographically and then grow the hull by iteratively adding points.

Note:

Since the points are sorted, each new point considered must see the previously added point.
Incremental Algorithm

Edelsbrunner (1987):

Sort the points lexicographically and then grow the hull by iteratively adding points.

Note:

The edge between the new point and the previous one is between the transition vertices.
Incremental Algorithm

Edelsbrunner (1987):

Sort the points lexicographically and then grow the hull by iteratively adding points.

Note:

The edge between the new point and the previous one is between the transition vertices.
Incremental Algorithm

Edelsbrunner (1987):

Sort the points lexicographically and then grow the hull by iteratively adding points.

Note:

The edge between the new point and the previous one is between the transition vertices.
Incremental Algorithm

Edelsbrunner (1987):

Sort the points lexicographically and then grow the hull by iteratively adding points.

Note:

The edge between the new point and the previous one is between the transition vertices.
Incremental Algorithm

Edelsbrunner (1987):

Sort the points lexicographically and then grow the hull by iteratively adding points.

Note:

The edge between the new point and the previous one is between the transition vertices.
Incremental Algorithm

Edelsbrunner (1987):

Sort the points lexicographically and then grow the hull by iteratively adding points.

Note:

The edge between the new point and the previous one is between the transition vertices.
Incremental Algorithm

Edelsbrunner (1987):

Sort the points lexicographically and then grow the hull by iteratively adding points.

Note:

The edge between the new point and the previous one is between the transition vertices.
Convex Hull (2D)

IncrementalAlgorithm(\(P\))

- **SortLexicographically(\(P\))**
- \(H \leftarrow \{p_0, p_1, p_2\}\)
- for \(i \in [3, n)\):
 - \((h_j, h_k) \leftarrow \text{TransitionVertices}(H, p_i)\)
 - Replace(\(H, \{h_j, ..., h_k\}, \{h_j, p_i, h_k\}\))
Convex Hull (2D)

IncrementalAlgorithm(P)
- SortLexicographically(P)
- \(H \leftarrow \{p_0, p_1, p_2\} \)
- for \(i \in [3, n) \):
 » \((h_j, h_k) \leftarrow TransitionVertices(H, p_i)\)
 » Replace(H, \{h_j, ..., h_k\}, \{h_j, p_i, h_k\})
Convex Hull (2D)

IncrementalAlgorithm(\(P \))

- SortLexicographically(\(P \))
- \(H \leftarrow \{p_0, p_1, p_2\} \)
- for \(i \in [3, n) \):
 - \((h_j, h_k) \leftarrow \text{TransitionVertices}(H, p_i) \)
 - \text{Replace}(H, \{h_j, \ldots, h_k\}, \{h_j, p_i, h_k\})
Convex Hull (2D)

IncrementalAlgorithm(P)

- $SortLexicographically(P)$
- $H \leftarrow \{p_0, p_1, p_2\}$
- for $i \in [3, n)$:
 - $(h_j, h_k) \leftarrow TransitionVertices(H, p_i)$
 - $Replace(H, \{h_j, ..., h_k\}, \{h_j, p_i, h_k\})$

Note:
Any vertex traversed to find the transition vertices is removed.
Convex Hull (2D)

IncrementalAlgorithm\((P) \)

- SortLexicographically\((P) \)
- \(H \leftarrow \{p_0, p_1, p_2\} \)
- for \(i \in [3, n) \):
 - \((h_j, h_k) \leftarrow \text{TransitionVertices}(H, p_i) \)
 - Replace\((H, \{h_j, ..., h_k\}, \{h_j, p_i, h_k\}) \)

Note:
Any vertex traversed to find the transition vertices is removed.

Complexity: \(O(n \log n) \)
Outline

• Incremental Algorithm
• Divide-and-Conquer
Divide And Conquer

Recursively:

- Split the point-set in two.
Divide And Conquer

Recursively:

- Split the point-set in two.
- Compute the hull of both halves
Divide And Conquer

Recursively:

- Split the point-set in two.
- Compute the hull of both halves
- Merge the hulls
Divide And Conquer

Efficiency:

For this to be fast (log-linear), the splitting and merging have to be fast (linear).
Divide And Conquer (Step 1)

Split the point-set in two:

- Sort the points along an axis and choose the \((n/2)\)-th element.
 - Pre-processing: \(O(n \log n)\)
 - Run-time: \(O(n)\)

- Use fast median.
 - Run-time: \(O(n)\)
Fast Median

Approach:

• To get the median of a set S, break up the set into subsets of size 5.*

• Compute the median of each subset.

• Compute the median of the medians. [Recursive]

• Use that to split S in two and find the biased median of the larger half. [Recursive]

*For simplicity, we will assume that $|S|$ is divisible by 5.
Fast Median

FastMedian($S = \{x_0, \ldots, x_{n-1}\}$):
- return KthEntry(S, $|S|/2$)

KthEntry($S = \{x_0, \ldots, x_{n-1}\}$, k):
- if($|S| == 1$) return x_0
- $Q_i \leftarrow \{x_{5i+0}, \ldots, x_{5i+4}\}$
- for $i \in [0, |S|/5]$:
 - $q_i \leftarrow \text{SlowMedian}(Q_i)$
- $Q \leftarrow \{q_0, \ldots, q_{|S|/5-1}\}$
- $(L, R) \leftarrow \text{Split}(S, \text{FastMedian}(Q))$
- if($|L| < k$) return KthEntry(R, $k - |L|$)
- else return KthEntry(L, k)
Fast Median

\(\mathcal{O}(n) \) Complexity:

To show that this has linear complexity, we show that every time we recurse on a subset \(S' \subset S \), the size of the subset satisfies:

\[|S'| \leq |S| \cdot \varepsilon \]

for some fixed \(\varepsilon < 1 \).
Fast Median

KthEntry(S = \{x_0, \ldots, x_{n-1}\} , s):

- if(|S| == 1) return \(x_0 \)
- \(Q_i \leftarrow \{x_{5i+0}, \ldots, x_{5i+4}\} \)
- for \(i \in [0, |S|/5) \):
 - \(q_i \leftarrow \text{SlowMedian}(Q_i) \)
- \(Q \leftarrow \{q_0, \ldots, q_{|S|/5-1}\} \)
- \((L, R) \leftarrow \text{Split}(S, \text{FastMedian}(Q))\)
- if(|L| < s) return KthEntry(R, s - |L|)
- else return KthEntry(L, s)

Claim:

- The subsets \(L \) and \(R \) defined by:
 \((L, R) \leftarrow \text{Split}(S, \text{FastMedian}(Q))\)
have the property that \(|L|, |R| \leq 4|S|/5\)
Fast Median

Claim:
- The subsets \(L \) and \(R \) defined by:
 \[(L , R) \leftarrow \text{Split}(S , \text{KthEntry}(Q))\]
 have the property that \(|L|, |R| \leq 4|S|/5\)

Proof:
- Set \(q = \text{FastMedian}(Q) \)
- The subset of \(q_i \in Q \) with \(q_i < q \) makes up 50\% of \(Q \).
 - The subset of \(p \in Q_i \) with \(p < q_i \) makes up 40\% of \(Q_i \).
 - Since the subset \(\{p \in S | p < q_i < q \} \) is in \(L \), the set \(L \) contains at least one fifth of the points in \(S \).
- The subset of \(q_i \in Q \) with \(q_i \geq q \) makes up 50\% of \(Q \)…
Divide And Conquer (Step 2)

Compute the hull of the halves:

- If the subset has less than 6 points, apply the incremental algorithm,
- Otherwise recurse.
Divide And Conquer (Step 3)

Merging the hulls (lower tangent)*:

- Find the edge from A to B connecting the right-most point on A to the left-most point on B.
- Move CW on A and CCW on B, while A and B are not entirely above the edge.

*Assuming general position
Merging the Hulls (lower tangent)

Merge \((A, B)\):

- \(A \leftarrow \text{SortCWFromRight}(A)\)
- \(B \leftarrow \text{SortCCWFromLeft}(B)\)
- \((i, j) \leftarrow (0,0)\)
- \(\text{while}(\text{true})\)
 - \(\text{if} \quad (\text{Right}(\overrightarrow{a_i b_j}, \overrightarrow{a_i+1})): i \leftarrow i + 1\)
 - \(\text{else if} \quad (\text{Right}(\overrightarrow{a_i b_j}, \overrightarrow{b_j+1})): j \leftarrow j + 1\)
 - \(\text{else}: \quad \text{break}\)
Merging the Hulls (lower tangent)

Merge (\(A, B \)):

- \(A \leftarrow \text{SortCWFromRight}(A) \)
- \(B \leftarrow \text{SortCCWFromLeft}(B) \)
- \((i, j) \leftarrow (0,0)\)
- while(true)

 » if (Right(\(\overrightarrow{a_i b_j}, a_{i+1} \))) : \(i \leftarrow i + 1 \)

 » else if (Right(\(\overrightarrow{a_i b_j}, b_{j+1} \))) : \(j \leftarrow j + 1 \)

 » else: break
Merging the Hulls (lower tangent)

Merge (A, B):
- $A \leftarrow $ SortCWFromRight(A)
- $B \leftarrow $ SortCCWFromLeft(B)
- $(i, j) \leftarrow (0, 0)$
- while(true)
 - » if (Right($a_i b_j , a_{i+1} $)): $i \leftarrow i + 1$
 - » else if(Right($a_i b_j , b_{j+1} $)): $j \leftarrow j + 1$
 - » else: break
Merging the Hulls (lower tangent)

Merge (A, B):
- \(A \leftarrow \text{SortCWFromRight}(A) \)
- \(B \leftarrow \text{SortCCWFromLeft}(B) \)
- \((i, j) \leftarrow (0,0)\)
- \(\text{while}(\text{true})\)
 - »if \(\text{Right}(\overrightarrow{a_i b_j}, a_{i+1}) \): \(i \leftarrow i + 1\)
 - »else if \(\text{Right}(\overrightarrow{a_i b_j}, b_{j+1}) \): \(j \leftarrow j + 1\)
 - »else: break
Merging the Hulls (lower tangent)

Merge (A, B):

1. $A \leftarrow \text{SortCWFromRight}(A)$
2. $B \leftarrow \text{SortCCWFromLeft}(B)$
3. $(i, j) \leftarrow (0, 0)$
4. while (true)

 » if (Right($\overrightarrow{a_i b_j}, \overrightarrow{a_{i+1}}$)): $i \leftarrow i + 1$

 » else if (Right($\overrightarrow{a_i b_j}, \overrightarrow{b_{j+1}}$)): $j \leftarrow j + 1$

 » else: break

Diagram:

A

B

1 2 3

0 1 2 3
Merging the Hulls (lower tangent)

Merge (A, B):
- \(A \leftarrow \text{SortCWFromRight}(A) \)
- \(B \leftarrow \text{SortCCWFromLeft}(B) \)
- \((i, j) \leftarrow (0, 0) \)
- while (true)
 - if \(\text{Right}(\overrightarrow{a_i b_j}, \overrightarrow{a_{i+1}}) \): \(i \leftarrow i + 1 \)
 - else if \(\text{Right}(\overrightarrow{a_i b_j}, \overrightarrow{b_{j+1}}) \): \(j \leftarrow j + 1 \)
 - else: break
Merging the Hulls (lower tangent)

Merge (A , B):
- \(A \leftarrow \text{SortCWFromRight}(A) \)
- \(B \leftarrow \text{SortCCWFromLeft}(B) \)
- \((i, j) \leftarrow (0,0)\)
- while(true)
 - if \((\text{Right}(\overrightarrow{a_i b_j} , a_{i+1}))\): \(i \leftarrow i + 1\)
 - else if(\((\text{Right}(\overrightarrow{a_i b_j} , b_{j+1}))\): \(j \leftarrow j + 1\)
 - else: break
Merging the Hulls (lower tangent)

\[\text{Merge (} A , B \text{):} \]
\[\quad \circ A \leftarrow \text{SortCWFromRight(} A \text{)} \]
\[\quad \circ B \leftarrow \text{SortCCWFromLeft(} B \text{)} \]
\[\quad \circ (i,j) \leftarrow (0,0) \]
\[\quad \circ \text{while(true)} \]
\[\quad \quad \quad \text{» if (Right(} \overrightarrow{a_i b_j } , a_{i+1} \text{)): } i \leftarrow i + 1 \]
\[\quad \quad \quad \text{» else if(Right(} \overrightarrow{a_i b_j } , b_{j+1} \text{)): } j \leftarrow j + 1 \]
\[\quad \quad \quad \text{» else: break} \]
Merging the Hulls (lower tangent)

Merge (\(A, B \)):

- \(A \leftarrow \text{SortCWFromRight}(A) \)
- \(B \leftarrow \text{SortCCWFromLeft}(B) \)
- \((i, j) \leftarrow (0, 0)\)
- **while** (true)
 - if (Right(\(\overrightarrow{a_i b_j}, a_{i+1} \))): \(i \leftarrow i + 1 \)
 - else if (Right(\(\overrightarrow{a_i b_j}, b_{j+1} \))): \(j \leftarrow j + 1 \)
 - else: break

![Diagram of hull merging process]
Merging the Hulls (lower tangent)

Merge (A, B):
- \(A \leftarrow \text{SortCWFromRight}(A) \)
- \(B \leftarrow \text{SortCCWFromLeft}(B) \)
- \((i, j) \leftarrow (0,0)\)
- while(true)
 - if \((\text{Right}(a_i b_j , a_{i+1}))\): \(i \leftarrow i + 1\)
 - else if(\((\text{Right}(a_i b_j , b_{j+1}))\): \(j \leftarrow j + 1\)
 - else: break
Merging the Hulls (lower tangent)

Merge \((A, B)\):

- \(A \leftarrow \text{SortCWFromRight}(A)\)
- \(B \leftarrow \text{SortCCWFromLeft}(B)\)
- \((i, j) \leftarrow (0,0)\)
- \(\text{while}(\text{true})\)

 » if \((\text{Right}(\overrightarrow{a_ib_j}, \overrightarrow{a_{i+1}}))\): \(i \leftarrow i + 1\)

 » else if\((\text{Right}(\overrightarrow{a_ib_j}, \overrightarrow{b_{j+1}}))\): \(j \leftarrow j + 1\)

 » else: break

Need to show this terminates:
1. at the lower tangent
2. in linear time.
Merging the Hulls (lower tangent)

Claim:

If edge $a_i b_j$ connects A and B, then:

1. Either $i = 0$ or a_{i-1} is left of $a_i b_j$.
2. Either $j = 0$ or b_{j-1} is left of $a_i b_j$.

First we show that if this is true, then:

- The algorithm must terminate in linear time because:
 - i won’t pass the left-most vertex of A.
 - j won’t pass the right-most vertex of B.
- The algorithm terminates at the lower tangent.
Merging the Hulls (lower tangent)

Claim:

If edge $a_i b_j$ connects A and B, then:

1. Either $i = 0$ or a_{i-1} is left of $a_i b_j$.

Will show that i won’t pass the left-most vertex, a_l.
Merging the Hulls (lower tangent)

Merge (\(A , B \)):
- \(A \leftarrow \text{SortCWFromRight}(A) \)
- \(B \leftarrow \text{SortCCWFromLeft}(B) \)
- \((i, j) \leftarrow (0,0)\)
- while(true)
 - if (Right(\(\overrightarrow{a_i b_j} , a_{i+1} \))) : \(i \leftarrow i + 1 \)
 - else if (Right(\(\overrightarrow{a_i b_j} , b_{j+1} \))) : \(j \leftarrow j + 1 \)
 - else: break
Merging the Hulls (lower tangent)

Claim:
If edge $a_i b_j$ connects A and B, then:

1. Either $i = 0$ or a_{i-1} is left of $a_i b_j$.

Will show that i won’t pass the left-most vertex, a_l.

$\iff \text{Right}(a_l b_j, a_{l+1}) == \text{false}$

Where can a_{l-1} be?
Merging the Hulls (lower tangent)

Claim:
If edge $a_i b_j$ connects A and B, then:

1. Either $i = 0$ or a_{i-1} is left of $a_i b_j$.

Will show that i won’t pass the left-most vertex, a_l.

$\iff \text{Right}(a_l b_j, a_{l+1}) = \text{false}$

Where can a_{l-1} be?

Because a_l is left-most:

$a_{l-1} \in \{p | p^x > a_l^x\}$
Merging the Hulls (lower tangent)

Claim:
If edge a_ib_j connects A and B, then:

1. Either $i = 0$ or a_{i-1} is left of a_ib_j.

Will show that i won’t pass the left-most vertex, a_l.

\Leftarrow Right(a_ib_j, a_{l+1}) = false

Where can a_{l-1} be?

Because a_l is left-most:

$a_{l-1} \in \{p | p^x > a^x_l\}$

Because the claim holds:

$a_{l-1} \in \{p | \text{Left}(a_ib_j, p)\}$

Note that $l \neq 0$ because l indexes the left-most vertex in A while 0 indexes the right-most.
Merging the Hulls (lower tangent)

Claim:
If edge $a_i b_j$ connects A and B, then:
1. Either $i = 0$ or a_{i-1} is left of $a_i b_j$.

Will show that i won’t pass the left-most vertex, a_l.
\Leftrightarrow Right$(a_l b_j, a_{l+1}) == $false

Where can a_{l+1} be?
Claim:

If edge $a_i b_j$ connects A and B, then:

1. Either $i = 0$ or a_{i-1} is left of $a_i b_j$.

Will show that i won’t pass the left-most vertex, a_l.

$\iff \text{Right}(a_l b_j, a_{l+1}) == \text{false}$

Where can a_{l+1} be?

Because a_l is left-most:

$a_{l+1} \in \{p | p^x > a_i^x\}$
Claim:

If edge $a_i b_j$ connects A and B, then:

1. Either $i = 0$ or a_{i-1} is left of $a_i b_j$.

Will show that i won’t pass the left-most vertex, a_l.

\[\iff \ \text{Right}(a_l b_j, a_{l+1}) = \text{false} \]

Where can a_{l+1} be?

Because a_l is left-most:
\[a_{l+1} \in \{p | p^x > a_l^x\} \]

Because a_l is convex:
\[a_{l+1} \in \{p | \text{Left}(a_l a_{l-1}, p)\} \]
Merging the Hulls (lower tangent)

Claim:
If edge a_ib_j connects A and B, then:

1. Either $i = 0$ or a_{i-1} is left of a_ib_j.
2. Either $j = 0$ or b_{j-1} is left of a_ib_j.

Will show that at termination, a_ib_j is a lower tangent.
Merging the Hulls (lower tangent)

Claim:

If edge a_ib_j connects A and B, then:

1. Either $i = 0$ or a_{i-1} is left of a_ib_j.
2. Either $j = 0$ or b_{j-1} is left of a_ib_j.

Will show that at termination, a_ib_j is a lower tangent.

Case $i \neq 0$:

![Diagram showing a_i in A and b_j in B, with a_ib_j connecting them.]
Merging the Hulls (lower tangent)

Claim:
If edge $a_i b_j$ connects A and B, then:
1. Either $i = 0$ or a_{i-1} is left of $a_i b_j$.
2. Either $j = 0$ or b_{j-1} is left of $a_i b_j$.

Will show that at termination, $a_i b_j$ is a lower tangent.

Case $i \neq 0$:
By claim #1:
$a_{i-1} \in \{p|\text{Left}(a_i b_j, p)\}$
Merging the Hulls (lower tangent)

Merge \((A, B)\):
- \(A \leftarrow \text{SortCWFromRight}(A)\)
- \(B \leftarrow \text{SortCCWFromLeft}(B)\)
- \((i, j) \leftarrow (0,0)\)
- while (true)
 - if \((\text{Right}(\overrightarrow{a_i b_j}, \overrightarrow{a_{i+1}}))\): \(i \leftarrow i + 1\)
 - else if \((\text{Right}(\overrightarrow{a_i b_j}, \overrightarrow{b_{j+1}}))\): \(j \leftarrow j + 1\)
 - else: break
Merging the Hulls (lower tangent)

Claim:
If edge $a_i b_j$ connects A and B, then:
1. Either $i = 0$ or a_{i-1} is left of $a_i b_j$.
2. Either $j = 0$ or b_{j-1} is left of $a_i b_j$.

Will show that at termination, $a_i b_j$ is a lower tangent.

Case $i \neq 0$:
By claim #1:
$a_{i-1} \in \{p|\text{Left}(a_i b_j, p)\}$
Because we terminated:
$a_{i+1} \in \{p|\text{Left}(a_i b_j, p)\}$
Merging the Hulls (lower tangent)

Claim:
If edge $a_i b_j$ connects A and B, then:
1. Either $i = 0$ or a_{i-1} is left of $a_i b_j$.
2. Either $j = 0$ or b_{j-1} is left of $a_i b_j$.

Will show that at termination, $a_i b_j$ is a lower tangent.

Case $i \neq 0$:
By claim #1:
\[a_{i-1} \in \{ p | \text{Left}(a_i b_j, p) \} \]
Because we terminated:
\[a_{i+1} \in \{ p | \text{Left}(a_i b_j, p) \} \]
\[\Rightarrow a_i b_j \text{ is a lower tangent of } A. \]
Merging the Hulls (lower tangent)

Claim:

If edge a_ib_j connects A and B, then:

1. Either $i = 0$ or a_{i-1} is left of a_ib_j.
2. Either $j = 0$ or b_{j-1} is left of a_ib_j.

Will show that at termination, a_ib_j is a lower tangent.

Case $i = 0$:
Merging the Hulls (lower tangent)

Claim:
If edge $a_i b_j$ connects A and B, then:
1. Either $i = 0$ or a_{i-1} is left of $a_i b_j$.
2. Either $j = 0$ or b_{j-1} is left of $a_i b_j$.

Will show that at termination, $a_i b_j$ is a lower tangent.

Case $i = 0$:
Because a_0 is right-most:
$a_1 \in \{p | p^x < a_0^x\}$
Merging the Hulls (lower tangent)

Claim:
If edge $a_i b_j$ connects A and B, then:

1. Either $i = 0$ or a_{i-1} is left of $a_i b_j$.
2. Either $j = 0$ or b_{j-1} is left of $a_i b_j$.

Will show that at termination, $a_i b_j$ is a lower tangent.

Case $i = 0$:
Because a_0 is right-most:

$a_1 \in \{p \mid p^x < a_0^x\}$

Because we terminated:

$a_1 \in \{p \mid \text{Left}(a_0 b_j, p)\}$
Merging the Hulls (lower tangent)

Claim:
If edge $a_i b_j$ connects A and B, then:
1. Either $i = 0$ or a_{i-1} is left of $a_i b_j$.
2. Either $j = 0$ or b_{j-1} is left of $a_i b_j$.

Will show that at termination, $a_i b_j$ is a lower tangent.

Case $i = 0$:
Because a_0 is right-most:
$a_{n-1} \in \{p|p^x < a_0^x\}$
Merging the Hulls (lower tangent)

Claim:
If edge $a_i b_j$ connects A and B, then:
1. Either $i = 0$ or a_{i-1} is left of $a_i b_j$.
2. Either $j = 0$ or b_{j-1} is left of $a_i b_j$.

Will show that at termination, $a_i b_j$ is a lower tangent.

Case $i = 0$:
Because a_0 is right-most:
$a_{n-1} \in \{ p | p^x < a_0^x \}$
Because A is convex:
$a_{n-1} \in \{ p | \text{Left}(a_1 a_0, p) \}$
Claim:

If edge $a_i b_j$ connects A and B, then:

1. Either $i = 0$ or a_{i-1} is left of $a_i b_j$.
2. Either $j = 0$ or b_{j-1} is left of $a_i b_j$.

Will show that at termination, $a_i b_j$ is a lower tangent.

Case $i = 0$:

Because a_0 is right-most:

$a_{n-1} \in \{p | p_x < a_0^x\}$

Because A is convex:

$a_{n-1} \in \{p | \text{Left}(a_1 a_0, p)\}$

$\Rightarrow a_0 b_j$ is a lower tangent of A.

Merging the Hulls (lower tangent)
Merging the Hulls (lower tangent)

Claim:

If edge $a_i b_j$ connects A and B, then:

1. Either $i = 0$ or a_{i-1} is left of $a_i b_j$.
2. Either $j = 0$ or b_{j-1} is left of $a_i b_j$.

Proof by induction, $(i, j) = (0, 0)$:

Both parts of the claim are trivially satisfied.
Merging the Hulls (lower tangent)

Claim:
If edge a_ib_j connects A and B, then:

1. Either $i = 0$ or a_{i-1} is left of a_ib_j.
2. Either $j = 0$ or b_{j-1} is left of a_ib_j.

Proof by induction, $(i,j) \rightarrow (i + 1, j)$:
Merging the Hulls (lower tangent)

Merge (\(A, B \)):

\[A \leftarrow \text{SortCWFromRight}(A) \]
\[B \leftarrow \text{SortCCWFromLeft}(B) \]
\[(i, j) \leftarrow (0,0) \]
\[\text{while(true)} \]
 » if (Right(\(a_i b_j, a_{i+1} \))): \(i \leftarrow i + 1 \)
 » else if (Right(\(a_i b_j, b_{j+1} \))): \(j \leftarrow j + 1 \)
 » else: break

\[A \]
\[B \]
Merging the Hulls (lower tangent)

Claim:
If edge $\overline{a_ib_j}$ connects A and B, then:

1. Either $i = 0$ or a_{i-1} is left of $\overline{a_ib_j}$.
2. Either $j = 0$ or b_{j-1} is left of $\overline{a_ib_j}$.

Proof by induction #1, $(i, j) \rightarrow (i + 1, j)$:
Since we advance on A:

\[
a_{i+1} \in \left\{ p \right| \text{Right} \left(\overline{a_ib_j}, p \right) \right\}
\]

Or, equivalently:

\[
a_i \in \left\{ p \right| \text{Left} \left(\overline{a_{i+1}b_j}, p \right) \right\}
\]

\Rightarrow Claim #1 remains true.
Merging the Hulls (lower tangent)

Claim:
If edge a_ib_j connects A and B, then:
1. Either $i = 0$ or a_{i-1} is left of a_ib_j.
2. Either $j = 0$ or b_{j-1} is left of a_ib_j.

Proof by induction #2, $(i, j) \rightarrow (i + 1, j), j = 0$:
- Claim #2 remains true.
Merging the Hulls (lower tangent)

Claim:
If edge $a_i b_j$ connects A and B, then:
1. Either $i = 0$ or a_{i-1} is left of $a_i b_j$.
2. Either $j = 0$ or b_{j-1} is left of $a_i b_j$.

Proof by induction #2, $(i, j) \rightarrow (i + 1, j), j \neq 0$:
As b_0 is left-most and we terminate before the right-most:

$$b_{j-1} \in \{p \mid p^x < b_j^x\}$$
Merging the Hulls (lower tangent)

Claim:
If edge $\overline{a_i b_j}$ connects A and B, then:
1. Either $i = 0$ or a_{i-1} is left of $\overline{a_i b_j}$.
2. Either $j = 0$ or b_{j-1} is left of $\overline{a_i b_j}$.

Proof by induction #2, $(i, j) \rightarrow (i + 1, j), j \neq 0$:
As b_0 is left-most and we terminate before the right-most:
$b_{j-1} \in \{p | p^x < b_j^x\}$
By the induction hypothesis:
$b_{j-1} \in \{p | \text{Left} (\overline{a_i b_j}, p)\}$
Merging the Hulls (lower tangent)

Claim:
If edge $a_i b_j$ connects A and B, then:

1. Either $i = 0$ or a_{i-1} is left of $a_i b_j$.
2. Either $j = 0$ or b_{j-1} is left of $a_i b_j$.

Proof by induction #2, $(i, j) \rightarrow (i + 1, j), j \neq 0$:
As b_0 is left-most and we terminate before the right-most:

$b_{j-1} \in \{p | p^x < b_j^x\}$

By the induction hypothesis:

$b_{j-1} \in \{p \mid \text{Left } (a_i b_j, p)\}$

$\Rightarrow b_{j-1} \in \{p \mid \text{Left } (a_{i+1} b_j, p)\}$

Claim #2 remains true.
Merging the Hulls (lower tangent)

Complexity:

Both split and the merge run in $O(n)$.

⇒ The divide-and-conquer runs in $O(n \log n)$.