Polygon Triangulation

O’Rourke, Chapter 1
Announcements

• Assignment 1 has been posted
Outline

• Polygon Area
• Implementation
Notation

Given a vector \(\vec{v} \in \mathbb{R}^2 \), we set \(\vec{v} \perp \) to be the clockwise rotation of \(\vec{v} \) by 90° degrees.

If \(\vec{v} = (x, y) \) then we have:
\[
\vec{v} \perp = (y, -x)
\]
Triangle Area

Given a triangle \(T = \{ p_1, p_2, p_3 \} \), the area of the triangle is half the base times the height:

\[
2 \cdot |T| = \| p_2 - p_1 \| \cdot \left| \left\langle p_3 - p_2, \frac{(p_1 - p_2)\perp}{\| (p_1 - p_2)\perp \|} \right\rangle \right|
\]

\[
= \left| \left\langle p_3 - p_2, (p_1 - p_2)\perp \right\rangle \right|
\]

If we drop the absolute value, we get the signed area:

\[
2 \cdot |T| = \left\langle p_3 - p_2, (p_1 - p_2)\perp \right\rangle
\]

This is positive if the vertices are in CCW order.
Triangle Area

Given a triangle $T = \{p_1, p_2, p_3\}$, the area of the triangle is half the base times the height:

$$2 \cdot |T| = \langle p_3 - p_2, (p_1 - p_2)\perp \rangle$$

Unless otherwise noted, we will use $| \cdot |$ to denote the signed area.

If we drop the absolute value, we get the signed area:

$$2 \cdot |T| = \langle p_3 - p_2, (p_1 - p_2)\perp \rangle$$

This is positive if the vertices are in CCW order.
Triangle Area

\[2 \cdot |T| = \langle p_3 - p_2, (p_1 - p_2)^\perp \rangle \]

Setting \(p_i = (x_i, y_i) \), this gives:

\[2 \cdot |T| = \langle (x_3 - x_2, y_3 - y_2), (y_1 - y_2, x_2 - x_1) \rangle \]

\[= \sum_{i=1}^{3} (x_{i+1} + x_i) \cdot (y_{i+1} - y_i) \]
Triangle Area

\[2 \cdot |T| = \sum_{i=1}^{3} (x_{i+1} + x_i) \cdot (y_{i+1} - y_i) \]

Note:

If \(p_1 \) is at the origin, then the area becomes:

\[2 \cdot |T| = (x_3 + x_2) \cdot (y_3 - y_2) \]
Polygon Area (Take 1)

Triangulate the polygon and compute the sum of the triangle areas.

☒ Solving a harder problem than is required.
☒ Restricted to “simple” polygons.
☒ Doesn’t extend to higher dimensions.
Polygon Area (Take 2)

Divergence Theorem:

Let V be a region in space with boundary ∂V, and let \vec{F} be a vector field on V, then:

$$\int_V \text{div}(\vec{F}) = \int_{\partial V} \langle \vec{F}, \vec{N} \rangle$$

with \vec{N} the normal on the boundary.
Polygon Area (Take 2)

Divergence Theorem:
\[\int_{V} \text{div}(\vec{F}) = \int_{\partial V} \langle \vec{F}, \vec{N} \rangle \]

Taking \(\vec{F}(x, y) = (x, y) \), gives:
\[2 \int_{V} 1 = \int_{(x,y) \in \partial V} \langle (x, y), \vec{N} \rangle \]

\[2 \cdot |V| = \int_{\partial V} \langle p, \vec{N} \rangle \, dp \]
Polygon Area (Take 2)

\[2 \cdot |V| = \int_{\partial V} \langle p, \vec{N} \rangle dp \]

For a polygon \(P = \{p_1, ..., p_n\} \), we have:

\[2 \cdot |P| = \sum_{i=1}^{n} \int_{0}^{1} \langle (1 - t) \cdot p_i + t \cdot p_{i+1}, \vec{n}_i \rangle \cdot \|p_{i+1} - p_i\| \cdot dt \]

\[= \sum_{i=1}^{n} \frac{1}{2} \cdot \langle p_i + p_{i+1}, \vec{n}_i \rangle \cdot \|p_{i+1} - p_i\| \]
Polygon Area (Take 2)

\[2 \cdot |P| = \sum_{i=1}^{n} \frac{1}{2} \cdot \langle p_i + p_{i+1}, \vec{n}_i \rangle \cdot \|p_{i+1} - p_i\| \]

Writing the normal as the 90° rotation of the difference (normalized):

\[\vec{n}_i = \frac{(p_{i+1} - p_i)^\perp}{\| (p_{i+1} - p_i)^\perp \|} = \frac{(p_{i+1} - p_i)^\perp}{\| p_{i+1} - p_i \|} \]
Polygon Area (Take 2)

\[2 \cdot |P| = \sum_{i=1}^{n} \frac{1}{2} \cdot \langle p_i + p_{i+1}, \vec{n}_i \rangle \cdot \|p_{i+1} - p_i\| \]

Writing the normal as the 90° rotation of the difference (normalized):

\[\vec{n}_i = \frac{(p_{i+1} - p_i)^\perp}{\| (p_{i+1} - p_i)^\perp \|} = \frac{(p_{i+1} - p_i)^\perp}{\| p_{i+1} - p_i \|} \]

\[2 \cdot |P| = \sum_{i=1}^{n} \frac{1}{2} \cdot \langle (p_{i+1} + p_i), (p_{i+1} - p_i)^\perp \rangle \]
Polygon Area (Take 2)

\[2 \cdot |P| = \sum_{i=1}^{n} \frac{1}{2} \cdot \langle (p_{i+1} + p_i), (p_{i+1} - p_i)\rangle \]

Noting that \((x, y)\)\(\perp = (y, -x)\) and writing \(p_i = (x_i, y_i)\), we get:

\[2 \cdot |P| = \sum_{i=1}^{n} (x_{i+1} + x_i) \cdot (y_{i+1} - y_i) \]
Polygon Area (Take 2)

\[2 \cdot |P| = \sum_{i=1}^{n} \frac{1}{2} \cdot \langle (p_{i+1} + p_i) , (p_{i+1} - p_i)^\perp \rangle \]

Computing the area of a polygon requires two adds and one multiply per vertex.

\[2 \cdot |P| = \sum_{i=1}^{n} (x_{i+1} + x_i) \cdot (y_{i+1} - y_i) \]
Polygon Area (Take 2)

\[2 \cdot |P| = \sum_{i=1}^{n} (x_{i+1} + x_i) \cdot (y_{i+1} - y_i) \]

Q: What’s really going on?

A: For a triangle \(\{p_1, p_2, p_3\} \), if \(p_1 \) is at the origin, the area is:

\[2 \cdot |T| = (x_3 + x_2) \cdot (y_3 - y_2) \]
Polygon Area (Take 2)

\[2 \cdot |P| = \sum_{i=1}^{n} (x_{i+1} + x_i) \cdot (y_{i+1} - y_i) \]

Q: What’s really going on?

A: Sum the areas of the triangles defined by the origin and the polygon edges.
Polygon Area (Take 2)

\[2 \cdot |P| = \sum_{i=1}^{n} (x_{i+1} + x_i) \cdot (y_{i+1} - y_i)\]

Q: What’s really going on?

A: Sum the areas of the triangles defined by the origin and the polygon edges.
Polygon Area (Take 2)

\[2 \cdot |P| = \sum_{i=1}^{n} (x_{i+1} + x_i) \cdot (y_{i+1} - y_i) \]

Q: What’s really going on?

A: Sum the areas of the triangles defined by the origin and the polygon edges.
Polygon Area (Take 2)

\[2 \cdot |P| = \sum_{i=1}^{n} (x_{i+1} + x_i) \cdot (y_{i+1} - y_i) \]

Q: What’s really going on?

A: Sum the areas of the triangles defined by the origin and the polygon edges.
Polygon Area (Take 2)

\[2 \cdot |P| = \sum_{i=1}^{n} (x_{i+1} + x_i) \cdot (y_{i+1} - y_i) \]

Q: What’s really going on?

A: Sum the areas of the triangles defined by the origin and the polygon edges.
Polygon Area (Take 2)

\[2 \cdot |P| = \sum_{i=1}^{n} (x_{i+1} + x_i) \cdot (y_{i+1} - y_i) \]

Q: What’s really going on?

A: Sum the areas of the triangles defined by the origin and the polygon edges.
 Polygon Area (Take 2)

\[2 \cdot |P| = \sum_{i=1}^{n} (x_{i+1} + x_i) \cdot (y_{i+1} - y_i) \]

Q: What’s really going on?

A: Sum the areas of the triangles defined by the origin and the polygon edges.
Polygon Area (Take 2)

\[2 \cdot |P| = \sum_{i=1}^{n} (x_{i+1} + x_i) \cdot (y_{i+1} - y_i) \]

Q: What’s really going on?

A: Sum the areas of the triangles defined by the origin and the polygon edges.
Polygon Area (Take 2)

\[2 \cdot |P| = \sum_{i=1}^{n} (x_{i+1} + x_i) \cdot (y_{i+1} - y_i) \]

Q: What’s really going on?

A: Sum the areas of the triangles defined by the origin and the polygon edges.
Polygon Area (Take 2)

\[2 \cdot |P| = \sum_{i=1}^{n} (x_{i+1} + x_i) \cdot (y_{i+1} - y_i)\]

Q: What’s really going on?

A: Sum the areas of the triangles defined by the origin and the polygon edges.
Polygon Area (Take 2)

$$2 \cdot |P| = \sum_{i=1}^{n} (x_{i+1} + x_i) \cdot (y_{i+1} - y_i)$$

Q: What’s really going on?

A: Sum the areas of the triangles defined by the origin and the polygon edges.
2 \cdot |P| = \sum_{i=1}^{n} (x_{i+1} + x_i) \cdot (y_{i+1} - y_i)

In this “triangulation”, the use of signed area cancels out the unwanted contribution.

A: Sum the areas of the triangles defined by the origin and the polygon edges.
Polygon Area (Take 2)

Note:

The same approach can be used to compute the volume enclosed by a triangle mesh in 3D:

- Pick a base point.
- Create tetrahedra by joining the base point to the triangles of the mesh.
- Sum the signed volumes of the tetrahedra.
Outline

• Polygon Area

• Implementation
// A general structure for points with integer coordinates in arbitrary dimensions

template< unsigned int D >
struct Point
{
 int c[D];
 Point(void){ memset(c, 0, sizeof(int)*D); }
 int &operator[](int idx) { return c[idx]; }
 int operator[](int idx) const { return c[idx]; }
};
Implementation

long long Area2(Point< 2 > p0 , Point< 2 > p1 , Point< 2 > p2);
{
 long long a = 0;
 a += ((long long)(p1[0] + p0[0])) * (p1[1] - p0[1]);
 a += ((long long)(p2[0] + p1[0])) * (p2[1] - p1[1]);
 a += ((long long)(p0[0] + p2[0])) * (p0[1] - p2[1]);
 return a;
}
Implementation

// A circular linked-list structure for representing a vertex
// within a polygon in 2D
struct PVertex
{
 Point< 2 > p;
 PVertex *prev, *next;
 PVertex(Point< 2 > _p);
 PVertex &addBefore(Point< 2 > p);
 unsigned int size(void) const;
 long long area2(void) const;
 static PVertex *Remove(PVertex *v);
};
Implementation

PVertex::PVertex(Point< 2 > _p){ p=_p , prev = next = this; }
Implementation

PVertex& PVertex::addBefore(Point< 2 > p)
{
 PVertex *v = new PVertex(p);
 v->prev = prev, v->next = this;
 prev->next = v;
 prev = v;
 return *v;
};
Implementation

static PVertex *PVertex::Remove(PVertex *v)
{
 PVertex *temp = v->prev;
 v->prev->next = v->next;
 v->next->prev = v->prev;
 delete v;
 return temp==v ? NULL : temp;
}
Implementation

unsigned int PVertex::size(void) const
{
 unsigned int s = 0;
 for(const PVertex *v=this ; ; v=v->next)
 {
 s++;
 if(v->next==this) break;
 }
 return s;
}
Implementation

long long PVertex::area2(void) const
{
 long long a = 0;
 for(const PVertex *v=this ; ; v=v->next)
 {
 a += Area2(Point< 2 >(), v->p , v->next->p);
 if(v->next==this) break;
 }
 return a;
}
Sidedness

Given a line segment, \overrightarrow{pq}, and a point r, we can determine if r is to the left of, on, or to the right of \overrightarrow{pq} by testing the sign of the area of triangle Δpqr.
bool Left(Point<2> p, Point<2> q, Point<2> r)
{ return Area2(p, q, r) > 0; }

bool LeftOn(Point<2> p, Point<2> q, Point<2> r)
{ return Area2(p, q, r) >= 0; }

bool Collinear(Point<2> p, Point<2> q, Point<2> r)
{ return Area2(p, q, r) == 0; }

bool Right(Point<2> p, Point<2> q, Point<2> r)
{ return Area2(p, q, r) < 0; }

bool RightOn(Point<2> p, Point<2> q, Point<2> r)
{ return Area2(p, q, r) <= 0; }
Point on Line Segment

Given a line segment, \overline{pq}, a point r is between p and q if:

- r is on the line between p and q, and
- the x-coordinate of r is between the x-coordinates of p and q
Point on Line Segment

Given a line segment, \overline{pq}, a point r is between p and q if:

- r is on the line between p and q, and
- the x-coordinate of r is between the x-coordinates of p and q (if \overline{pq} is not vertical)
- the y-coordinate of r is between the y-coordinates of p and q (if \overline{pq} is vertical)
Implementation

```cpp
bool Between( Point<2> p , Point<2> q , Point<2> r )
{
    if( !Collinear( p , q , r ) ) return false;
    unsigned int dir = p[0]!=q[0] ? 0 : 1;
            ( q[dir] <= r[dir] && r[dir] <= p[dir] );
}
```
Proper Intersection

Line segments \overline{pq} and \overline{rs}, intersect properly if they intersect in their interior:

- Neither r nor s is on the segment \overline{pq}.
- Neither p nor q is on the segment \overline{rs}.
- p and q are on different sides of \overline{rs}, and r and s are on different sides of \overline{pq}.
Implementation

```cpp
bool IsectProper( Point<2> p, Point<2> q, Point<2> r, Point<2> s )
{
    if( Collinear( p, q, r ) || Collinear( p, q, s ) ) return false;
    if( Collinear( r, s, p ) || Collinear( r, s, q ) ) return false;
    if( Left( p, q, r ) == Left( p, q, s ) ) return false;
    if( Left( r, s, p ) == Left( r, s, q ) ) return false;
    return true;
}
```
Intersection

Line segments \overline{pq} and \overline{rs}, intersect if:

- p is between r and s, or
- q is between r and s, or
- r is between p and q, or
- s is between p and q, or
- they intersect properly.
Implementation

bool Isect(Point<2> p, Point<2> q, Point<2> r, Point<2> s)
{
 return
 IsectProper(p, q, r, s) ||
 Between(p, q, r) || Between(p, q, s) ||
 Between(r, s, p) || Between(r, s, q);
}

✓

✓

✗

✗

✓
Diagonal

Property:

Given a polygon, \(P = \{p_1, \ldots, p_n\} \subset \mathbb{R}^2 \), an edge \(\overline{p_i p_j} \) is a diagonal if:

1. \(\forall p_k \in P \text{ w/ } k, k + 1 \notin \{i, j\}: \overline{p_i p_j} \cap \overline{p_k p_{k+1}} = \emptyset \)
2. \(\overline{p_i p_j} \) is internal to \(P \) around \(p_i \) and \(p_j \)
Edge Intersection

To test the first property:

1. \(\forall p_k \in P \text{ w/ } k, k + 1 \notin \{i, j\}: p_ip_j \cap p_kp_{k+1} = \emptyset \)

we check for the intersection of \(p_ip_j \) with all edges.
Implementation

```cpp
bool DiagonalIsect( const PVertex< 2 > *r , const PVertex< 2 > *s )
{
    for( const PVertex< 2 > *v=r ; v!=s ; v=v->next )
    {
        if( v->prev!=r && v->prev!=s && v!=r && v!=s )
            if( Isect( r->p , s->p , v->prev->p , v->p ) ) return true;
        if( v->next==r ) break;
    }
    return false;
}
```

Complexity: $O(n)$
Cone Interior

Given points p, q, and r, a line segment \overline{qs} is *in the cone of pqr* if \overline{qs} is strictly interior to the region swept out CW from \overrightarrow{qp} to \overrightarrow{qr}.

- If $\angle pqr$ is a left turn (i.e. q is convex):
 - s must be to the left of both \overrightarrow{pq} and \overrightarrow{qr}.
- Otherwise:
 - s cannot be to the right of or on both \overrightarrow{pq} and \overrightarrow{qr}.
Implementation

```cpp
bool InCone(Point<2> p, Point<2> q, Point<2> r, Point<2> s)
{
    if (Left(p, q, r))
        return (Left(p, q, s) && Left(q, r, s));
    else
        return !(RightOn(p, q, s) && RightOn(q, r, s));
}
```
Implementation

```cpp
bool InCones( const PVertex< 2 >* r , const PVertex< 2 >* s )
{
    return
         InCone( r->prev->p , r->p , r->next->p , s->p ) &&
         InCone( s->prev->p , s->p , s->next->p , q->p );
}
```

Complexity: O(1)
Implementation

```cpp
bool IsDiagonal( const PVertex< 2 >* r, const PVertex< 2 >* s )
{
    return InCones( r, s ) && !DiagonalIsect( r, s );
}
```

Complexity: $O(n)$
Trangulation (Naïve)

Recursively:

1. If the polygon is a triangle, output the triangle.
2. Otherwise
 a. Find diagonal.
 b. Split the polygon in two.
Implementation

void OutputTriangulation(PVertex< 2 > *poly)
{
 if(poly->size()>3)
 {
 PVertex< 2 > *r , *s , *poly1 , *poly2;
 GetDiagonal(poly , r , s)
 SplitOnDiagonal(poly , r , s , poly1 , poly2);
 OutputTriangulation(poly1);
 OutputTriangulation(poly2);
 }
 else Output(poly);
}
Triangulation (Ear Removal)

While there are more than three vertices:

1. Find an ear p_i.
2. Output the triangle $\{p_{i-1}, p_i, p_{i+1}\}$.
3. Remove p_i from the polygon.

Note:
The ear status can only change for the vertices p_{i-1} and p_{i+1}.
Triangulation (Ear Removal)

Initialize the ear status of all vertices.

While there are more than three vertices:

1. Find an ear p_i.
2. Output the triangle $\{p_{i-1}, p_i, p_{i+1}\}$.
3. Remove p_i from the polygon.
4. Update the ear status of p_{i-1} and p_{i+1}.
Implementation

// Assumes member:
//
// bool PVertex< 2 >::isEar

bool InitEars(PVertex< 2 > *poly)
{
 for(PVertex< 2 > *v=poly ; ; v=v->next)
 {
 v->isEar = IsDiagonal(poly , v->prev , v->next);
 if(v->next==poly) break;
 }
}

Complexity: \(O(n^2) \)
Implementation

PVertex< 2 > *ProcessEar(PVertex< 2 > *e)
{
 Output(e->prev , e , e->next);
 e->prev->isEar = IsDiagonal(e->prev->prev , e->next);
 e->next->isEar = IsDiagonal(e->prev , e->next->next);
 return PVertex< 2 >::Remove(e);
}

Complexity: O(n)
Implementation

```c
void OutputTriangulation(PVertex< 2 > *poly )
{
    InitEars( poly );
    unsigned int sz = poly->size();
    while( sz>3 )
    {
        for( PVertex< 2 > *v=poly ; ; v=v->next )
        {
            if( v->isEar ){ poly = ProcessEar( v ) ; sz-- ; break; }
            if( v->next==poly ) break;
        }
    }
}
```

Complexity: \(O(n^2) \)