Polygon Triangulation

O’Rourke, Chapter 1
Announcements

- Assignment 1 has been posted
Outline

• Polygon Area

• Implementation
Notation

Given a vector $\vec{v} \in \mathbb{R}^2$, we set $\vec{v} \perp$ to be the clockwise rotation of \vec{v} by 90° degrees.

If $\vec{v} = (x, y)$ then we have:

$$\vec{v} \perp = (y, -x)$$
Triangle Area

Given a triangle $T = \{p_1, p_2, p_3\}$, the area of the triangle is half the base times the height:

$$2 \cdot |T| = \|p_2 - p_1\| \cdot \left| \langle p_3 - p_2, \frac{(p_1 - p_2)\perp}{\| (p_1 - p_2)\perp \|} \rangle \right|$$

$$= \left| \langle p_3 - p_2, (p_1 - p_2)\perp \rangle \right|$$

If we drop the absolute value, we get the signed area:

$$2 \cdot |T| = \langle p_3 - p_2, (p_1 - p_2)\perp \rangle$$

This is positive if the vertices are in CCW order.
Triangle Area

Given a triangle $T = \{p_1, p_2, p_3\}$, the area of the triangle is half the base times the height:

$$2 \cdot |T| = \langle p_3 - p_2, (p_1 - p_2)\perp \rangle$$

Unless otherwise noted, we will use $| \cdot |$ to denote the signed area.

If we drop the absolute value, we get the signed area:

$$2 \cdot |T| = \langle p_3 - p_2, (p_1 - p_2)\perp \rangle$$

This is positive if the vertices are in CCW order.
Triangle Area

\[2 \cdot |T| = \langle p_3 - p_2, (p_1 - p_2)^\perp \rangle \]

Setting \(p_i = (x_i, y_i) \), this gives:

\[2 \cdot |T| = \langle (x_3 - x_2, y_3 - y_2), (y_1 - y_2, x_2 - x_1) \rangle \]

\[= \sum_{i=1}^{3} (x_{i+1} + x_i) \cdot (y_{i+1} - y_i) \]
Triangle Area

\[2 \cdot |T| = \sum_{i=1}^{3} (x_{i+1} + x_i) \cdot (y_{i+1} - y_i) \]

Note:
If \(p_1 \) is at the origin, then the area becomes:
\[2 \cdot |T| = (x_3 + x_2) \cdot (y_3 - y_2) \]
Polygon Area (Take 1)

Triangulate the polygon and compute the sum of the triangle areas.

✗ Solving a harder problem than is required.
✗ Restricted to “simple” polygons.
✗ Doesn’t extend to higher dimensions.
Polygon Area (Take 2)

Divergence Theorem:

Let V be a region in space with boundary ∂V, and let \vec{F} be a vector field on V, then:

$$\int_V \text{div}(\vec{F}) = \int_{\partial V} \langle \vec{F}, \vec{N} \rangle$$

with \vec{N} the normal on the boundary.
Polygon Area (Take 2)

Divergence Theorem:

$$\int_{V} \text{div}(\vec{F}) = \int_{\partial V} \langle \vec{F}, \vec{N} \rangle$$

Taking $\vec{F}(x, y) = (x, y)$, gives:

$$2 \int_{V} 1 = \int_{(x,y) \in \partial V} \langle (x, y), \vec{N} \rangle$$

$$2 \cdot |V| = \int_{\partial V} \langle p, \vec{N} \rangle dp$$
Polygon Area (Take 2)

\[2 \cdot |V| = \int_{\partial V} \langle p, \vec{N} \rangle dp \]

For a polygon \(P = \{p_1, \ldots, p_n\} \), we have:

\[
2 \cdot |P| = \sum_{i=1}^{n} \int_{0}^{1} \langle (1 - t) \cdot p_i + t \cdot p_{i+1}, \vec{n}_i \rangle \cdot \|p_{i+1} - p_i\| \cdot dt
\]

\[
= \sum_{i=1}^{n} \frac{1}{2} \cdot \langle p_i + p_{i+1}, \vec{n}_i \rangle \cdot \|p_{i+1} - p_i\|
\]
Polygon Area (Take 2)

\[2 \cdot |P| = \sum_{i=1}^{n} \frac{1}{2} \cdot \langle p_i + p_{i+1}, \vec{n}_i \rangle \cdot \|p_{i+1} - p_i\| \]

Writing the normal as the 90° rotation of the difference (normalized):

\[\vec{n}_i = \frac{(p_{i+1} - p_i)^\perp}{\| (p_{i+1} - p_i)^\perp \|} = \frac{(p_{i+1} - p_i)^\perp}{\| p_{i+1} - p_i \|} \]
Polygon Area (Take 2)

\[2 \cdot |P| = \sum_{i=1}^{n} \frac{1}{2} \cdot \langle p_i + p_{i+1}, \vec{n}_i \rangle \cdot \|p_{i+1} - p_i\| \]

Writing the normal as the 90° rotation of the difference (normalized):

\[
\vec{n}_i = \frac{(p_{i+1} - p_i)^\perp}{\| (p_{i+1} - p_i)^\perp \|} = \frac{(p_{i+1} - p_i)^\perp}{\| p_{i+1} - p_i \|}
\]

\[2 \cdot |P| = \sum_{i=1}^{n} \frac{1}{2} \cdot \langle (p_{i+1}+p_i), (p_{i+1} - p_i)^\perp \rangle \]
Polygon Area (Take 2)

\[2 \cdot |P| = \sum_{i=1}^{n} \frac{1}{2} \cdot \langle (p_{i+1} + p_i), (p_{i+1} - p_i)^\perp \rangle \]

Noting that \((x, y)^\perp = (y, -x)\) and writing \(p_i = (x_i, y_i)\), we get:

\[2 \cdot |P| = \sum_{i=1}^{n} (x_{i+1} + x_i) \cdot (y_{i+1} - y_i) \]
Polygon Area (Take 2)

\[2 \cdot |P| = \sum_{i=1}^{n} \frac{1}{2} \cdot \langle (p_{i+1} + p_i), (p_{i+1} - p_i)^\perp \rangle \]

Computing the area of a polygon requires two adds and one multiply per vertex.

\[2 \cdot |P| = \sum_{i=1}^{n} (x_{i+1} + x_i) \cdot (y_{i+1} - y_i) \]
Polygon Area (Take 2)

\[2 \cdot |P| = \sum_{i=1}^{n} \left(x_{i+1} + x_i \right) \cdot \left(y_{i+1} - y_i \right) \]

Q: What’s really going on?

A: For a triangle \(\{p_1, p_2, p_3\} \), if \(p_1 \) is at the origin, the area is:

\[2 \cdot |T| = \left(x_3 + x_2 \right) \cdot \left(y_3 - y_2 \right) \]
Polygon Area (Take 2)

\[
2 \cdot |P| = \sum_{i=1}^{n} (x_{i+1} + x_i) \cdot (y_{i+1} - y_i)
\]

Q: What’s really going on?

A: Sum the areas of the triangles defined by the origin and the polygon edges.
Polygon Area (Take 2)

\[2 \cdot |P| = \sum_{i=1}^{n} (x_{i+1} + x_i) \cdot (y_{i+1} - y_i) \]

Q: What’s really going on?
A: Sum the areas of the triangles defined by the origin and the polygon edges.
Polygon Area (Take 2)

$$2 \cdot |P| = \sum_{i=1}^{n} (x_{i+1} + x_i) \cdot (y_{i+1} - y_i)$$

Q: What’s really going on?

A: Sum the areas of the triangles defined by the origin and the polygon edges.
Polygon Area (Take 2)

\[2 \cdot |P| = \sum_{i=1}^{n} (x_{i+1} + x_i) \cdot (y_{i+1} - y_i) \]

Q: What’s really going on?

A: Sum the areas of the triangles defined by the origin and the polygon edges.
Polygon Area (Take 2)

\[2 \cdot |P| = \sum_{i=1}^{n} (x_{i+1} + x_i) \cdot (y_{i+1} - y_i) \]

Q: What’s really going on?
A: Sum the areas of the triangles defined by the origin and the polygon edges.
Polygons Area (Take 2)

\[2 \cdot |P| = \sum_{i=1}^{n} (x_{i+1} + x_i) \cdot (y_{i+1} - y_i) \]

Q: What’s really going on?

A: Sum the areas of the triangles defined by the origin and the polygon edges.
Polygon Area (Take 2)

\[2 \cdot |P| = \sum_{i=1}^{n} (x_{i+1} + x_i) \cdot (y_{i+1} - y_i) \]

Q: What’s really going on?

A: Sum the areas of the triangles defined by the origin and the polygon edges.
Polygon Area (Take 2)

\[2 \cdot |P| = \sum_{i=1}^{n} (x_{i+1} + x_i) \cdot (y_{i+1} - y_i) \]

Q: What’s really going on?

A: Sum the areas of the triangles defined by the origin and the polygon edges.
Polygon Area (Take 2)

\[2 \cdot |P| = \sum_{i=1}^{n} (x_{i+1} + x_i) \cdot (y_{i+1} - y_i) \]

Q: What’s really going on?

A: Sum the areas of the triangles defined by the origin and the polygon edges.
Polygon Area (Take 2)

\[2 \cdot |P| = \sum_{i=1}^{n} (x_{i+1} + x_i) \cdot (y_{i+1} - y_i) \]

Q: What’s really going on?

A: Sum the areas of the triangles defined by the origin and the polygon edges.
Polygon Area (Take 2)

\[2 \cdot |P| = \sum_{i=1}^{n} (x_{i+1} + x_i) \cdot (y_{i+1} - y_i) \]

Q: What’s really going on?

A: Sum the areas of the triangles defined by the origin and the polygon edges.
Polygon Area (Take 2)

\[2 \cdot |P| = \sum_{i=1}^{n} (x_{i+1} + x_i) \cdot (y_{i+1} - y_i) \]

In this “triangulation”, the use of signed area cancels out the unwanted contribution.

A: Sum the areas of the triangles defined by the origin and the polygon edges.
Note:

The same approach can be used to compute the volume enclosed by a triangle mesh in 3D:

- Pick a base point.
- Create tetrahedra by joining the base point to the triangles of the mesh.
- Sum the signed volumes of the tetrahedra.
Outline

• Polygon Area

• Implementation
Implementation

// A general structure for points with integer coordinates in
// arbitrary dimensions

template< unsigned int D >
struct Point
{
 int c[D];
 Point(void){ memset(c , 0 , sizeof(int)*D); } // initializing all elements to zero
 int &operator[](int idx) { return c[idx]; } // member function to access element
 int operator[](int idx) const { return c[idx]; } // member function to access element
};
Implementation

long long Area2(Point<2> p0, Point<2> p1, Point<2> p2);
{
 long long a = 0;
 a += ((long long)(p1[0] + p0[0])) * (p1[1] - p0[1]);
 a += ((long long)(p2[0] + p1[0])) * (p2[1] - p1[1]);
 a += ((long long)(p0[0] + p2[0])) * (p0[1] - p2[1]);
 return a;
}
Implementation

// A circular linked-list structure for representing a vertex
// within a polygon in 2D

struct PVertex
{
 Point<2> p;
 PVertex *prev, *next;
 PVertex(Point<2> _p);
 PVertex &addBefore(Point<2> p);
 unsigned int size(void) const;
 long long area2(void) const;
 static PVertex *Remove(PVertex *v);
};
Implementation

PVertex::PVertex(Point< 2 > _p){ p=_p , prev = next = this; }
Implementation

PVertex& PVertex::addBefore(Point< 2 > p)
{
 PVertex *v = new PVertex(p);
 v->prev = prev , v->next = this;
 prev->next = v;
 prev = v;
 return *v;
};
Implementation

 static PVertex *PVertex::Remove(PVertex *v)
 {
 PVertex *temp = v->prev;
 v->prev->next = v->next;
 v->next->prev = v->prev;
 delete v;
 return temp==v ? NULL : temp;
 }
Implementation

```cpp
unsigned int PVertex::size( void ) const
{
    unsigned int s = 0;
    for( const PVertex *v=this ; ; v=v->next )
    {
        s++;
        if( v->next==this ) break;
    }
    return s;
}
```
long long PVertex::area2(void) const
{
 long long a = 0;
 for(const PVertex *v=this ; ; v=v->next)
 {
 a += Area2(Point< 2 >() , v->p , v->next->p);
 if(v->next==this) break;
 }
 return a;
}
Sidedness

Given a line segment, \(\overrightarrow{pq} \), and a point \(r \), we can determine if \(r \) is to the left of, on, or to the right of \(\overrightarrow{pq} \) by testing the sign of the area of triangle \(\Delta pqr \).
Implementation

bool Left(Point< 2 > p , Point< 2 > q , Point< 2 > r)
{ return Area2(p , q , r) > 0; }

bool LeftOn(Point< 2 > p , Point< 2 > q , Point< 2 > r)
{ return Area2(p , q , r) >= 0; }

bool Collinear(Point< 2 > p , Point< 2 > q , Point< 2 > r)
{ return Area2(p , q , r) == 0; }

bool Right(Point< 2 > p , Point< 2 > q , Point< 2 > r)
{ return Area2(p , q , r) < 0; }

bool RightOn(Point< 2 > p , Point< 2 > q , Point< 2 > r)
{ return Area2(p , q , r) <= 0; }
Point on Line Segment

Given a line segment, \overline{pq}, a point r is between p and q if:

- r is on the line between p and q, and
- the x-coordinate of r is between the x-coordinates of p and $q
Point on Line Segment

Given a line segment, \(\overline{pq} \), a point \(r \) is between \(p \) and \(q \) if:

- \(r \) is on the line between \(p \) and \(q \), and
- the \(x \)-coordinate of \(r \) is between the \(x \)-coordinates of \(p \) and \(q \) (if \(\overline{pq} \) is not vertical)
- the \(y \)-coordinate of \(r \) is between the \(y \)-coordinates of \(p \) and \(q \) (if \(\overline{pq} \) is vertical)
Implementation

```cpp
bool Between( Point< 2 > p , Point< 2 > q , Point< 2 > r )
{
    if( !Collinear( p , q , r ) ) return false;
    unsigned int dir = p[0]!=q[0] ? 0 : 1;
    return
    ( q[dir] <= r[dir] && r[dir] <= p[dir] );
}
```
Proper Intersection

Line segments \(\overline{pq} \) and \(\overline{rs} \), intersect properly if they intersect in their interior:

- Neither \(r \) nor \(s \) is on the segment \(\overline{pq} \).
- Neither \(p \) nor \(q \) is on the segment \(\overline{rs} \).
- \(p \) and \(q \) are on different sides of \(\overline{rs} \), and \(r \) and \(s \) are on different sides of \(\overline{pq} \).
Implementation

bool IsectProper(Point< 2 > p, Point< 2 > q, Point< 2 > r, Point< 2 > s)
{
 if(Collinear(p, q, r) || Collinear(p, q, s)) return false;
 if(Collinear(r, s, p) || Collinear(r, s, q)) return false;
 if(Left(p, q, r) == Left(p, q, s)) return false;
 if(Left(r, s, p) == Left(r, s, q)) return false;
 return true;
}
Intersection

Line segments \overline{pq} and \overline{rs}, intersect if:

- p is between r and s, or
- q is between r and s, or
- r is between p and q, or
- s is between p and q, or
- they intersect properly.
Implementation

```cpp
bool Isect ( Point< 2 > p , Point< 2 > q , Point< 2 > r , Point< 2 > s )
{
    return
        IsectProper( p , q , r , s ) ||
        Between( p , q , r ) ||
        Between( p , q , s ) ||
        Between( r , s , p ) ||
        Between( r , s , q );
}
```
Diagonal

Property:

Given a polygon, \(P = \{p_1, \ldots, p_n\} \subset \mathbb{R}^2 \), an edge \(\overline{p_i p_j} \) is a diagonal if:

1. \(\forall p_k \in P \text{ w/ } k, k + 1 \notin \{i, j\} : \overline{p_i p_j} \cap \overline{p_k p_{k+1}} = \emptyset \)
2. \(\overline{p_i p_j} \) is internal to \(P \) around \(p_i \) and \(p_j \)
Edge Intersection

To test the first property:

1. \(\forall p_k \in P \text{ w/ } k, k + 1 \notin \{i, j\}: p_ip_j \cap pkp_{k+1} = \emptyset \)

we check for the intersection of \(p_ip_j \) with all edges.
Implementation

```cpp
bool DiagonalIsect( const PVertex< 2 > *r , const PVertex< 2 > *s )
{
    for( const PVertex< 2 > *v=r ; v!=s ; v=v->next )
    {
        if( v->prev!=r && v->prev!=s && v!=r && v!=s )
            if( Isect( r->p , s->p , v->prev->p , v->p ) ) return true;
        if( v->next==r ) break;
    }
    return false;
}
```

Complexity: \(O(n) \)
Cone Interior

Given points p, q, and r, a line segment \overline{qs} is in the cone of pqr if \overline{qs} is strictly interior to the region swept out CW from \overrightarrow{qp} to \overrightarrow{qr}.

- If $\angle pqr$ is a left turn (i.e. q is convex):
 s must be to the left of both \overrightarrow{pq} and \overrightarrow{qr}.

- Otherwise:
 s cannot be to the right of or on both \overrightarrow{pq} and \overrightarrow{qr}.
Implementation

```cpp
bool InCone(Point<2> p, Point<2> q, Point<2> r, Point<2> s)
{
    if(Left(p, q, r))
        return (Left(p, q, s) && Left(q, r, s));
    else
        return !(RightOn(p, q, s) && RightOn(q, r, s));
}
```
Implementation

bool InCones(const PVertex< 2 >* r , const PVertex< 2 >* s)
{
 return
 InCone(r->prev->p , r->p , r->next->p , s->p)
 &&
 InCone(s->prev->p , s->p , s->next->p , r->p);
}

Complexity:
O(1)
Implementation

```cpp
bool IsDiagonal( const PVertex< 2 >* r , const PVertex< 2 >* s )
{
    return InCones( r , s ) && !DiagonalIsect( r , s );
}
```

Complexity: \(O(n)\)
Trangulation (Naïve)

Recursively:

1. If the polygon is a triangle, output the triangle.
2. Otherwise
 a. Find diagonal.
 b. Split the polygon in two.
void OutputTriangulation(PVertex< 2 > *poly)
{
 if(poly->size()>3)
 {
 PVertex< 2 > *r, *s, *poly1, *poly2;
 GetDiagonal(poly, r, s)
 SplitOnDiagonal(poly, r, s, poly1, poly2);
 OutputTriangulation(poly1);
 OutputTriangulation(poly2);
 }
 else Output(poly);
}
Triangulation (Ear Removal)

While there are more than three vertices:

1. Find an ear p_i.
2. Output the triangle $\{p_{i-1}, p_i, p_{i+1}\}$.
3. Remove p_i from the polygon.

Note:
The ear status can only change for the vertices p_{i-1} and p_{i+1}.
Triangulation (Ear Removal)

Initialize the ear status of all vertices.

While there are more than three vertices:

1. Find an ear p_i.
2. Output the triangle \(\{p_{i-1}, p_i, p_{i+1}\} \).
3. Remove p_i from the polygon.
4. Update the ear status of p_{i-1} and p_{i+1}.
Implementation

// Assumes member:
//
// bool PVertex< 2 >::isEar

void InitEars(PVertex< 2 > *poly)
{
 for(PVertex< 2 > *v=poly ; ; v=v->next)
 {
 v->isEar = IsDiagonal(v->prev , v->next);
 if(v->next==poly) break;
 }
}

Complexity:
O(n^2)
Implementation

PVertex< 2 > *ProcessEar(PVertex< 2 > *e)
{
 Output(e->prev , e , e->next);
 e->prev->isEar = IsDiagonal(e->prev->prev , e->next);
 e->next->isEar = IsDiagonal(e->prev , e->next->next);
 return PVertex< 2 >::Remove(e);
}
Implementation

```c
void OutputTriangulation( PVertex< 2 > *poly )
{
    InitEars( poly );
    unsigned int sz = poly->size();
    while( sz>=3 )
        for( PVertex< 2 > *v=poly ; ; v=v->next )
            {
                if( v->isEar ){ poly = ProcessEar( v ) ; sz-- ; break; }  
                if( v->next==poly ) break;
            }
}
```

Complexity: $O(n^2)$