

FFTs in Graphics and Vision

Conclusion

Announcements

Assignment 3 due May 9th.

Key Ideas

Functions Are Vectors

We can think of functions as (complex) vectors in a highdimensional space.

Representations

Translations and rotations of functions can be thought of as linear, norm-preserving, transformations.

Irreducible Representations

To understand how translations and rotations act on functions, we strive to decompose the space of functions into the smallest sub-spaces in which these transformations are contained.

Essential Facts

Schur's Lemma (Corollary)

If the group is commutative, the irreducible representations are all one-dimensional.

Homogenous Polynomials

Homogenous polynomials of fixed degree are subrepresentations.

Self-Adjoint Operators

If a linear operator is self-adjoint (symmetric) there is an orthogonal basis of eigenvectors.

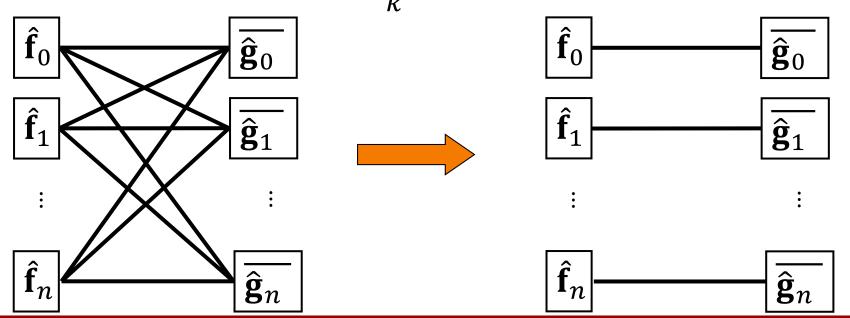
Commuting Self-Adjoint Operators

The spaces of eigenvectors of the operator with the same eigenvalue are sub-representation.

Fast Correlation:

For correlation, we only need to perform crossmultiplication of coefficients in the same frequency:

$$D_{f,g}(\alpha) = \sum_{k} \hat{\mathbf{f}}_k \cdot \overline{\hat{\mathbf{g}}_k} \cdot D_k(\alpha)$$



Fast Correlation:

For correlation, we only need to perform crossmultiplication of coefficients in the same frequency.

This reduces the implementation of correlation to:

- 1. Computing a forward frequency transform
- 2. Doing the intra-frequency cross multiplication
- 3. Computing an inverse frequency transform

Fast Correlation:

For correlation, we only need to perform crossmultiplication of coefficients in the same frequency.

For Translational Correlation:

1. Computing the FFT: $O(N \log N)$

2. Doing the multiplication: O(N)

3. Computing the inverse FFT: $O(N \log N)$

Brute force would have been $O(N^2)$.

Optimal would be O(N).

Fast Correlation:

For correlation, we only need to perform crossmultiplication of coefficients in the same frequency.

For Rotational Correlation:

1. Computing the SHT: $O(N^2 \log^2 N)$

2. Doing the multiplication: $O(N^3)$

3. Computing the inverse WDT: $O(N^3 \log^2 N)$

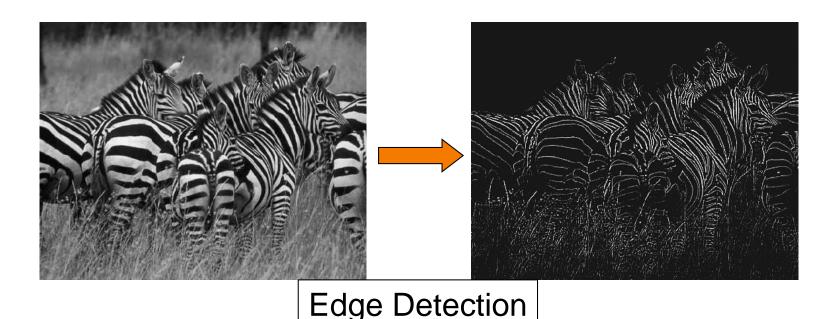
Brute force would have been $O(N^5)$.

Optimal would have been $O(N^3)$.

Fast Correlation (Applications):

For image processing, we have seen applications of correlation in:

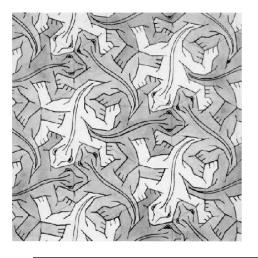
Filtering



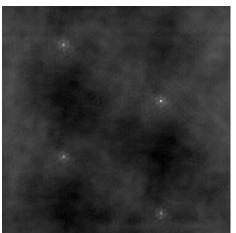
Fast Correlation (Applications):

For image processing, we have seen applications of correlation in:

- Filtering
- Pattern Recognition





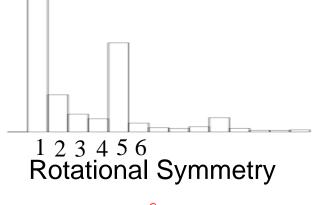


Template Matching

Fast Correlation (Applications):

For image processing, we have seen applications of correlation in:

- Filtering
- Pattern Recognition
- Symmetry Detection



Deflective Super

Reflective Symmetry

Fast Correlation (Applications):

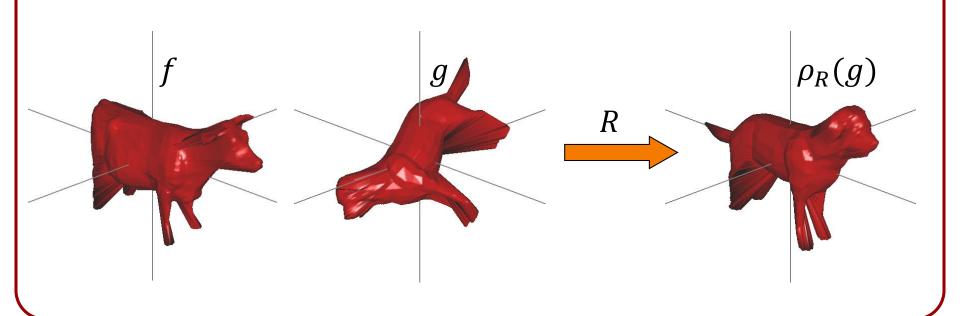
We have even seen some unexpected applications resulting from the fact that the Laplacian is a symmetric operator commuting with translation in:

Solving PDEs

Fast Correlation (Applications):

For the group of rotations in 3D, we have seen applications in:

Shape Alignment



Fast Correlation (Applications):

For the group of rotations in 3D, we have seen applications in:

- Shape Alignment
- Symmetry Detection

