Convex Hulls (2D)

O’Rourke, Chapter 3

[Preparata and Hong, 1977]
Outline

• Incremental Algorithm
• Divide-and-Conquer
Incremental Algorithm

Approach:

Grow the hull by iteratively adding points:

- If the point is in the hull, do nothing.
- Otherwise, grow the hull.
Incremental Algorithm

Note:

If a point is outside the hull, we can label the hull edges as left/right relative to the new point.
Incremental Algorithm

Note:
If a point is outside the hull, we can label the hull edges as left/right relative to the new point.
Incremental Algorithm

Note:

If a point is outside the hull, we can label the hull edges as left/right relative to the new point.
Incremental Algorithm

Note:

If a point is outside the hull, we can label the hull edges as left/right relative to the new point.
Incremental Algorithm

Note:

If a point is outside the hull, we can label the hull edges as left/right relative to the new point.
Incremental Algorithm

Note:

If a point is outside the hull, we can label the hull edges as left/right relative to the new point.
Incremental Algorithm

Note:

If a point is outside the hull, we can label the hull edges as left/right relative to the new point.
Incremental Algorithm

Note:

If a point is outside the hull, we can label the hull edges as left/right relative to the new point.
Incremental Algorithm

Note:

If a point is outside the hull, we can label the hull edges as left/right relative to the new point.
Incremental Algorithm

Note:

If a point is outside the hull, we can label the hull edges as left/right relative to the new point. ⇒ We get two vertex chains.
Incremental Algorithm

Note:

If a point is outside the hull, we can label the hull edges as left/right relative to the new point.
⇒ We get two vertex chains.
⇒ We get two transition vertices.
Incremental Algorithm

Naïve:

To add to a point to the hull, mark each edge, indicating if the points is to the left or right:

- If it is left of all edges, it is interior.
Incremental Algorithm

Naïve:

To add to a point to the hull, mark each edge, indicating if the points is to the left or right:

- If it is left of all edges, it is interior.
- Otherwise, there are two transition vertices.
 » Connect the new point to those vertices.

Complexity: $O(n^2)$
Incremental Algorithm

Edelsbrunner (1987):

Sort the points lexicographically and then grow the hull by iteratively adding points.
Incremental Algorithm

Edelsbrunner (1987):

Sort the points lexicographically and then grow the hull by iteratively adding points.

Note:

Since the points are sorted, each new point considered must be outside the current hull.
Incremental Algorithm

Edelsbrunner (1987):

Sort the points lexicographically and then grow the hull by iteratively adding points.

Note:

Since the points are sorted, each new point considered must see the previously added point.
Incremental Algorithm

Edelsbrunner (1987):

Sort the points lexicographically and then grow the hull by iteratively adding points.

Note:

The edge between the new point and the previous one is between the transition vertices.
Incremental Algorithm

Edelsbrunner (1987):

Sort the points lexicographically and then grow the hull by iteratively adding points.

Note:

The edge between the new point and the previous one is between the transition vertices.
Incremental Algorithm

Edelsbrunner (1987):

Sort the points lexicographically and then grow the hull by iteratively adding points.

Note:

The edge between the new point and the previous one is between the transition vertices.
Incremental Algorithm

Edelsbrunner (1987):

Sort the points lexicographically and then grow the hull by iteratively adding points.

Note:

The edge between the new point and the previous one is between the transition vertices.
Incremental Algorithm

Edelsbrunner (1987):

Sort the points lexicographically and then grow the hull by iteratively adding points.

Note:

The edge between the new point and the previous one is between the transition vertices.
Incremental Algorithm

Edelsbrunner (1987):

Sort the points lexicographically and then grow the hull by iteratively adding points.

Note:

The edge between the new point and the previous one is between the transition vertices.
Incremental Algorithm

Edelsbrunner (1987):

Sort the points lexicographically and then grow the hull by iteratively adding points.

Note:

The edge between the new point and the previous one is between the transition vertices.
Convex Hull (2D)

IncrementalAlgorithm(\(P \))

- SortLexicographically(\(P \))
- \(H \leftarrow \{p_0, p_1, p_2\} \)
- for \(i \in [3, n] \):
 - \((h_j, h_k) \leftarrow \text{TransitionVertices}(H, p_i)\)
 - \(\text{Replace}(H, \{h_j, ..., h_k\}, \{h_j, p_i, h_k\})\)
Convex Hull (2D)

IncrementalAlgorithm(\(P \))

- SortLexicographically(\(P \))
- \(H \leftarrow \{p_0, p_1, p_2\} \)
- for \(i \in [3, n) \):

 » \((h_j, h_k) \leftarrow \text{TransitionVertices}(H, p_i) \)

 » Replace(\(H \), \(\{h_j, \ldots, h_k\} \), \(\{h_j, p_i, h_k\} \))
Convex Hull (2D)

IncrementalAlgorithm (\(P \))

- SortLexicographically (\(P \))
- \(H \leftarrow \{p_0, p_1, p_2\} \)
- for \(i \in [3, n) \):
 - \((h_j, h_k) \leftarrow \text{TransitionVertices}(H, p_i) \)
 - Replace (\(H \), \{h_j, …, h_k\}, \{h_j, p_i, h_k\})

[Diagram of convex hull]

\(p_i \)

\(h_j \)

\(h_k \)
Convex Hull (2D)

IncrementalAlgorithm(\(P \))

- SortLexicographically(\(P \))
- \(H \) ← \{\(p_0, p_1, p_2 \)\}
- for \(i \in [3, n) \):
 » \((h_j, h_k) \leftarrow \text{TransitionVertices}(H, p_i)\)
 » Replace(\(H, \{h_j, ..., h_k\}, \{h_j, p_i, h_k\} \))

Note:
Any vertex traversed to find the transition vertices is removed.

\(O(n \log n) \)
Convex Hull (2D)

Incremental Algorithm(P)

- Sort Lexicographically(P)
- $H \leftarrow \{p_0, p_1, p_2\}$
- for $i \in [3, n)$:
 - $(h_j, h_k) \leftarrow \text{Transition Vertices}(H, p_i)$
 - Replace($H, \{h_j, ..., h_k\}, \{h_j, p_i, h_k\}$)

Note:
Any vertex traversed to find the transition vertices is removed.

Complexity: $O(n \log n)$
Outline

• Incremental Algorithm

• Divide-and-Conquer
Divide And Conquer

Recursively:

- Split the point-set in two.
- Compute the hull of both halves
- Merge the hulls
Divide And Conquer

Efficiency:

For this to be fast (log-linear), the splitting and the merging have to be fast (linear).
Divide And Conquer (Step 1)

Split the point-set in two:

- Sort the points along an axis and choose the \((n/2)\)-th element.
 - Pre-processing: \(O(n \log n)\)
 - Run-time: \(O(n)\)
- Use fast median.
 - Run-time: \(O(n)\)
Fast Median

Approach:

- To get the median of a set S, break up the set into subsets of size 5.*
- Compute the median of each subset.
- Compute the median of the medians. [Recursive]
- Use that to split S in two and find the biased median of the larger half. [Recursive]

*For simplicity, we will assume that $|S|$ is divisible by 5.
Fast Median

FastMedian(\(P = \{ x_0, \ldots, x_{n-1} \} \), \(s = |P|/2 \)):

- if(\(|P| == 1 \)) return \(x_0 \)
- \(Q_i \leftarrow \{ x_{5i+0}, \ldots, x_{5i+4} \} \)
- for \(i \in [0, |P|/5) \):
 - \(q_i \leftarrow \text{SlowMedian}(Q_i) \)
- \(Q \leftarrow \{ q_0, \ldots, q_{|P|/5-1} \} \)
- (\(L, R \)) \leftarrow \text{Split}(P, \text{FastMedian}(Q, |Q|/2))
- if(\(|L| < s \)) return FastMedian(\(R, s - |L| \))
- else return FastMedian(\(L, s \))
Fast Median

$O(n)$ Complexity:

To show that this has linear complexity, we show that every time we recurse on a subset $S' \subset S$, the size of the subset satisfies:

$$|S'| \leq |S| \cdot \varepsilon$$

for some fixed $\varepsilon < 1$.
Fast Median

FastMedian \((P = \{x_0, \ldots, x_{n-1}\}, s = |P|/2)\):

- if \((|P| == 1)\) return \(x_0\)
- \(Q_i \leftarrow \{x_{5i+0}, \ldots, x_{5i+4}\}\)
- \(\text{for } i \in [0, |P|/5]: q_i \leftarrow \text{SlowMedian}(Q_i)\)
- \(Q \leftarrow \{q_0, \ldots, q_{|P|/5-1}\}\)
- \((L, R) \leftarrow \text{Split}(P, \text{FastMedian}(Q, |Q|/2))\)
- if \((|L| < s)\) return \(\text{FastMedian}(R, s - |L|)\)
- else return \(\text{FastMedian}(L, s)\)

Claim:

- The subsets \(L\) and \(R\) defined by:

\[
(L, R) \leftarrow \text{Split}(P, \text{FastMedian}(Q, |Q|/2))
\]

have the property that \(|L|, |R| \leq 4|P|/5\)
Fast Median

Claim:
- The subsets L and R defined by:

 $$(L, R) \leftarrow \text{Split}(P, \text{FastMedian}(Q, |Q|/5))$$

 have the property that $|L|, |R| \leq 4|P|/5$

Proof:
- Set $q = \text{FastMedian}(Q, |Q|/5)$
- For each $q_i \in Q$ with $q_i < q$ (50%)

 » Each $p_i \in P_i$ with $p_i < q_i$ must be in L (40%)
- For each $q_i \in Q$ with $q_i \geq q$ (50%)

 » Each $p_i \in P_i$ with $p_i \geq q_i$ must be in R (40%)

$\Rightarrow L$ and R both contain at least one fifth of the points in P.
Divide And Conquer (Step 2)

Compute the hull of the halves:

- If the subset has less than 6 points, apply the incremental algorithm,
- Otherwise recurse.
Merging the hulls (lower tangent)*:

- Find the edge from A to B connecting the right-most point on A to the left-most point on B.
- Move CW on A and CCW on B, while A and B are not entirely above the edge.

*Assuming general position
Merging the Hulls (lower tangent)

Merge (\(A, B \)):

- \(A \leftarrow \text{SortCWFromRight}(A) \)
- \(B \leftarrow \text{SortCCWFromLeft}(B) \)
- \((i, j) \leftarrow (0,0)\)
- while(true)
 - if (Right(\overrightarrow{a_i b_j}, \overrightarrow{a_{i+1}})): \(i \leftarrow i + 1 \)
 - else if(Right(\overrightarrow{a_i b_j}, \overrightarrow{b_{j+1}})): \(j \leftarrow j + 1 \)
 - else: break
Merging the Hulls (lower tangent)

Merge (A, B):
- $A \leftarrow \text{SortCWFromRight}(A)$
- $B \leftarrow \text{SortCCWFromLeft}(B)$
- $(i, j) \leftarrow (0,0)$
- while(true)
 - if (Right($a_i b_j$, a_{i+1})): $i \leftarrow i + 1$
 - else if(Right($a_i b_j$, b_{j+1})): $j \leftarrow j + 1$
 - else: break
Merging the Hulls (lower tangent)

Merge (A, B):
- $A \leftarrow \text{SortCWFromRight}(A)$
- $B \leftarrow \text{SortCCWFromLeft}(B)$
- $(i, j) \leftarrow (0, 0)$
- while (true)
 - if (Right($a_i b_j$, a_{i+1})): $i \leftarrow i + 1$
 - else if (Right($a_i b_j$, b_{j+1})): $j \leftarrow j + 1$
 - else: break

```
Merging the Hulls (lower tangent)

**Merge (A, B):**

- \( A \leftarrow \text{SortCWFromRight}(A) \)
- \( B \leftarrow \text{SortCCWFromLeft}(B) \)
- \((i, j) \leftarrow (0, 0)\)
- **while** (true)
  - » if (Right(\( a_i b_j , a_{i+1} \))): \( i \leftarrow i + 1 \)
  - » else if (Right(\( a_i b_j , b_{j+1} \))): \( j \leftarrow j + 1 \)
  - » else: break
Merging the Hulls (lower tangent)

**Merge ( \( A, B \) ):**

- \( A \leftarrow \text{SortCWFromRight}( A ) \)
- \( B \leftarrow \text{SortCCWFromLeft}( B ) \)
- \((i, j) \leftarrow (0,0)\)
- **while( true )**
  - » if ( Right( \( a_i b_j, a_{i+1} \) )): \( i \leftarrow i + 1 \)
  - » else if( Right( \( a_i b_j, b_{j+1} \) )): \( j \leftarrow j + 1 \)
  - » else:  break
Merging the Hulls (lower tangent)

\textbf{Merge (} A , B \textbf{):}

- $A \leftarrow \text{SortCWFromRight}( A )$
- $B \leftarrow \text{SortCCWFromLeft}( B )$
- $(i, j) \leftarrow (0,0)$
- \textbf{while( true )}
  - \textbf{if} ( Right( \overrightarrow{a_i b_j , a_{i+1}} )): \quad i \leftarrow i + 1
  - \textbf{else if} ( Right( \overrightarrow{a_i b_j , b_{j+1}} )): \quad j \leftarrow j + 1
  - \textbf{else: break}

Need to show that this terminates at the lower tangent in linear time.
Merging the Hulls (lower tangent)

Claim:
- If edge $a_i b_j$ connects $A$ and $B$, then:
  - Either $i = 0$ or $a_{i-1}$ is left of $a_i b_j$.
  - Either $j = 0$ or $b_{j-1}$ is left of $a_i b_j$.

We show that if this is true, then:
- The algorithm must terminate in linear time because:
  - $i$ won’t pass the left-most vertex of $A$.
  - $j$ won’t pass the right-most vertex of $B$.
- The algorithm terminates at the lower tangent.
Merging the Hulls (lower tangent)

Claim:
- If edge $a_i b_j$ connects $A$ and $B$, then:
  - Either $i = 0$ or $a_{i-1}$ is left of $a_i b_j$.

The algorithm must terminate because:
- $i$ doesn’t pass the left-most vertex of $A$
- $\text{Right}( a_{l} b_j, a_{l+1} ) == \text{false}$

- $a_{l-1} \in \{p | \text{Left}(a_l b_j, p)\}$
- $l \neq 0$
- $a_{l-1} \in \{(x,y) | x > x_l\}$
Merging the Hulls (lower tangent)

Claim:

- If edge $a_ib_j$ connects $A$ and $B$, then:
  - Either $i = 0$ or $a_{i-1}$ is left of $a_ib_j$.

The algorithm must terminate because:

- $i$ doesn’t pass the left-most vertex of $A$
  
  $\text{Right}(a_lb_j, a_{l+1}) = \text{false}$

\[ a_{l+1} \in \{ p | \text{Left}(a_la_{l-1}, p) \} \]

\[ a_{l+1} \in \{ (x, y) | x > x_l \} \]
Merging the Hulls (lower tangent)

Claim:

- If edge $a_i b_j$ connects $A$ and $B$, then:
  - Either $i = 0$ or $a_{i-1}$ is left of $a_i b_j$.
  - Either $j = 0$ or $b_{j-1}$ is left of $a_i b_j$.

When the algorithm terminates the edge $(i, j)$ is a lower tangent.
Merging the Hulls (lower tangent)

Claim:

- If edge $a_i b_j$ connects $A$ and $B$, then:
  - Either $i = 0$ or $a_{i-1}$ is left of $a_i b_j$.
  - Either $j = 0$ or $b_{j-1}$ is left of $a_i b_j$.

When the algorithm terminates the edge $(i, j)$ is a lower tangent.

Case: $i \neq 0$

- $a_{i-1} \in \{ p | \text{Left}(a_i b_j, p) \}$
- $a_{i+1} \in \{ p | \text{Left}(a_i b_j, p) \}$
Merging the Hulls (lower tangent)

Claim:

- If edge $a_i b_j$ connects $A$ and $B$, then:
  - Either $i = 0$ or $a_{i-1}$ is left of $a_i b_j$.
  - Either $j = 0$ or $b_{j-1}$ is left of $a_i b_j$.

When the algorithm terminates the edge $(i, j)$ is a lower tangent.

Case: $i = 0$

$$a_1 \in \{(x, y) | x < x_0\}$$

$$a_1 \in \{p | Left(a_0 b_j, p)\}$$
Merging the Hulls (lower tangent)

Claim:

- If edge $a_i b_j$ connects $A$ and $B$, then:
  - Either $i = 0$ or $a_{i-1}$ is left of $a_i b_j$.
  - Either $j = 0$ or $b_{j-1}$ is left of $a_i b_j$.

When the algorithm terminates the edge $(i, j)$ is a lower tangent.

Case: $i = 0$

$a_{n-1} \in \{(x, y) | x < x_0\}$

$a_{n-1} \in \{p | \text{Left}(a_1 a_0, p)\}$
Merging the Hulls (lower tangent)

- If edge $a_ib_j$ connects $A$ and $B$, then:
  - Either $i = 0$ or $a_{i-1}$ is left of $a_ib_j$.
  - Either $j = 0$ or $b_{j-1}$ is left of $a_ib_j$.

Proof by Induction:

Base case, $(i,j) = (0,0)$, is trivially satisfied.
Merging the Hulls (lower tangent)

- If edge $a_i b_j$ connects $A$ and $B$, then:
  - Either $i = 0$ or $a_{i-1}$ is left of $a_i b_j$.
  - Either $j = 0$ or $b_{j-1}$ is left of $a_i b_j$.

Proof by Induction:

Assume true for $(i, j)$ and assume we transition $(i, j) \rightarrow (i + 1, j)$:

$$\Rightarrow \text{Right}( a_i b_j, a_{i+1} )$$

$$\Rightarrow \text{Left}( a_{i+1} b_j, a_i )$$

$A \quad B$

$a_i$

$b_j$

$a_{i+1}$
Merging the Hulls (lower tangent)

- If edge $a_ib_j$ connects $A$ and $B$, then:
  - Either $i = 0$ or $a_{i-1}$ is left of $a_ib_j$.
  - Either $j = 0$ or $b_{j-1}$ is left of $a_ib_j$.

**Proof by Induction:**

On the other hand:

- $b_{j-1}$ must be left of $b_j$
- $b_{j-1}$ must be left of edge $a_ib_j$

$\Rightarrow b_{j-1}$ must be left of edge $a_{i+1}b_j$
Merging the Hulls (lower tangent)

**Complexity:**

Both split and the merge run in $O(n)$.

$\Rightarrow$ The divide-and-conquer runs in $O(n \log n)$. 