

O'Rourke, Chapter 3

[Preparata and Hong, 1977]

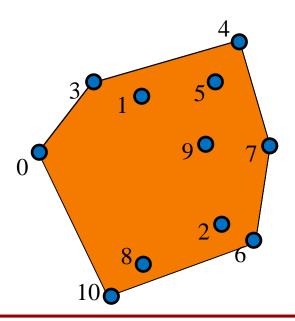
Outline

- Incremental Algorithm
- Divide-and-Conquer

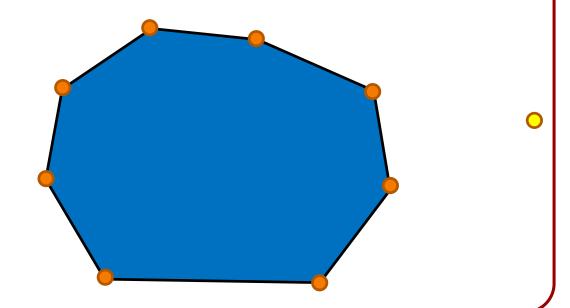
Approach:

Grow the hull by iteratively adding points:

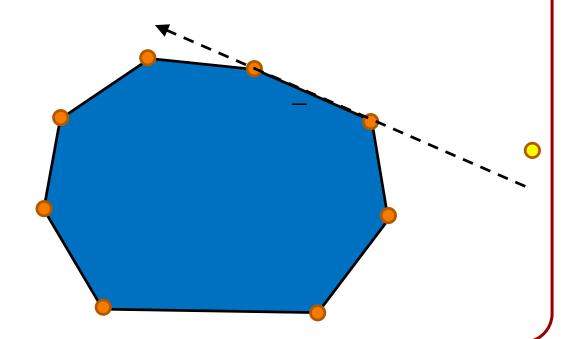
- If the point is in the hull, do nothing.
- Otherwise, grow the hull.



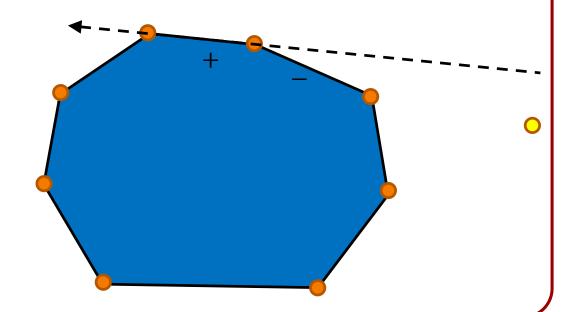
Note:



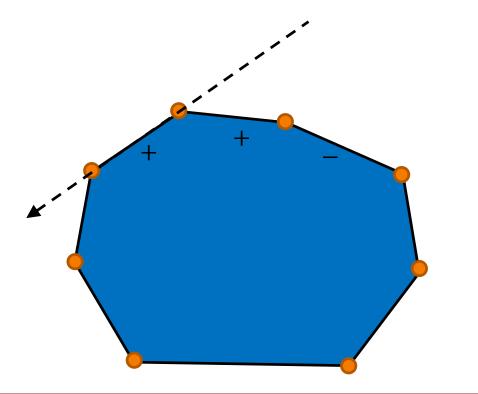
Note:



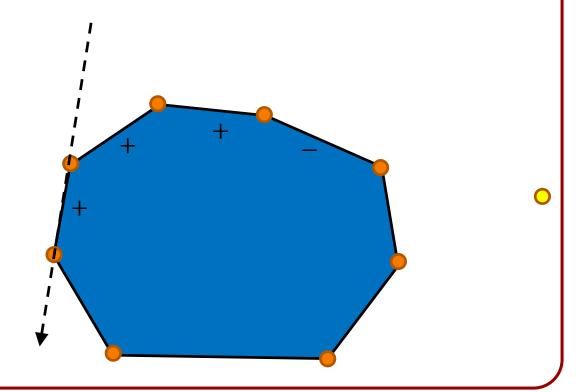
Note:



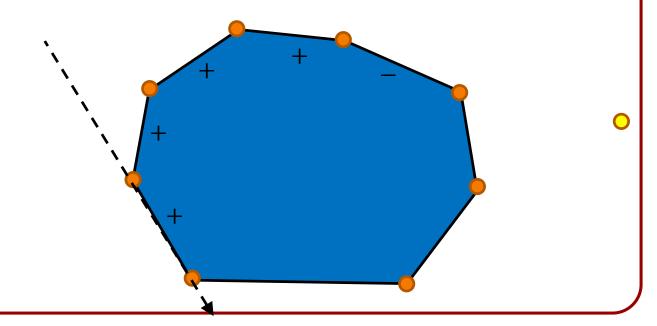
Note:



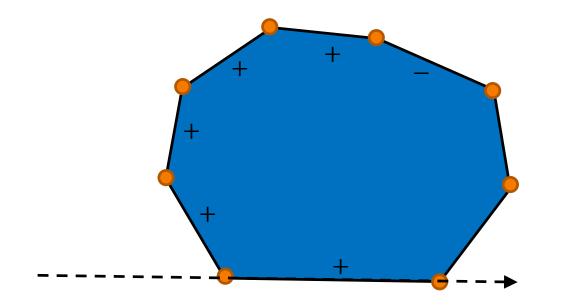
Note:



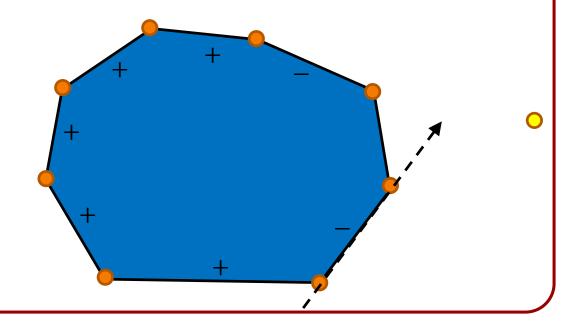
Note:



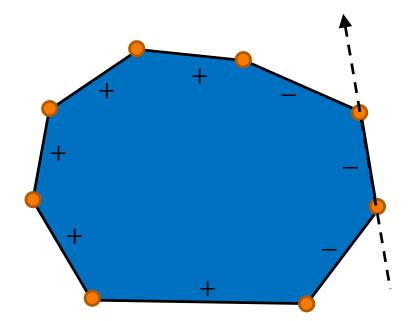
Note:



Note:



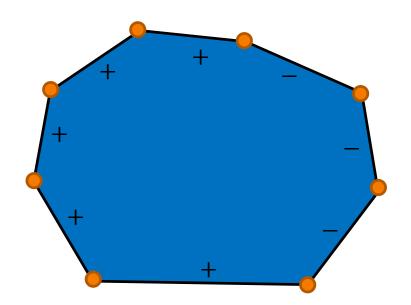
Note:



Note:

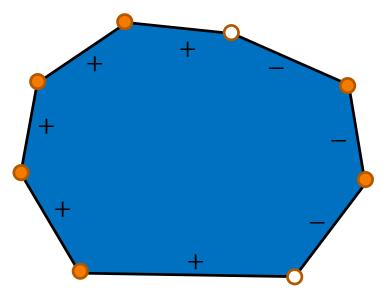
If a point is outside the hull, we can label the hull edges as left/right relative to the new point.

⇒ We get two vertex chains.



Note:

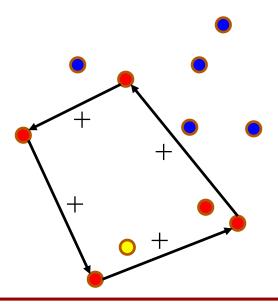
- ⇒ We get two vertex chains.
- ⇒ We get two transition vertices.



Naïve:

To add to a point to the hull, mark each edge, indicating if the points is to the left or right:

If it is left of all edges, it is interior.



Naïve:

To add to a point to the hull, mark each edge, indicating if the points is to the left or right:

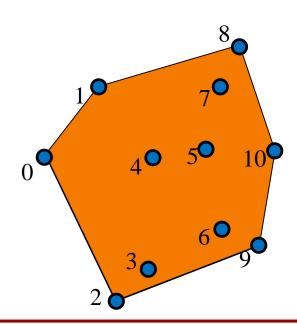
- If it is left of all edges, it is interior.
- Otherwise, there are two transition vertices.
 - »Connect the new point to those vertices.

+

Complexity: $O(n^2)$

Edelsbrunner (1987):

Sort the points lexicographically and then grow the hull by iteratively adding points.

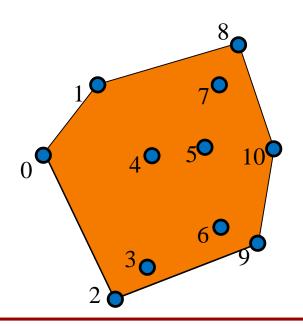


Edelsbrunner (1987):

Sort the points lexicographically and then grow the hull by iteratively adding points.

Note:

Since the points are sorted, each new point considered must be outside the current hull.

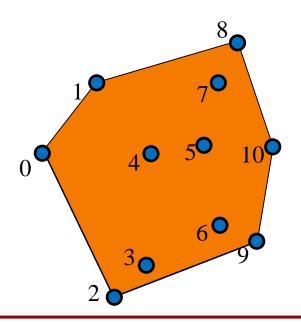


Edelsbrunner (1987):

Sort the points lexicographically and then grow the hull by iteratively adding points.

Note:

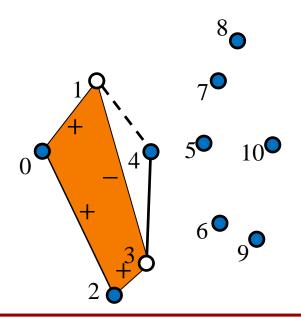
Since the points are sorted, each new point considered must see the previously added point.



Edelsbrunner (1987):

Sort the points lexicographically and then grow the hull by iteratively adding points.

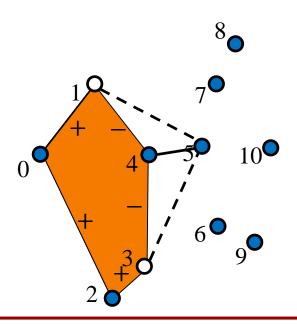
Note:



Edelsbrunner (1987):

Sort the points lexicographically and then grow the hull by iteratively adding points.

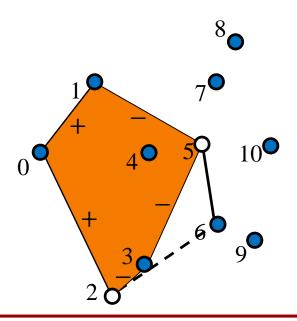
Note:



Edelsbrunner (1987):

Sort the points lexicographically and then grow the hull by iteratively adding points.

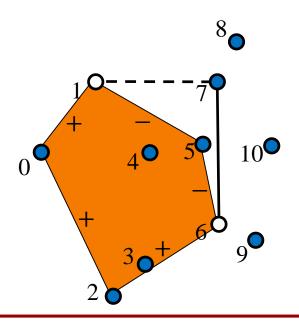
Note:



Edelsbrunner (1987):

Sort the points lexicographically and then grow the hull by iteratively adding points.

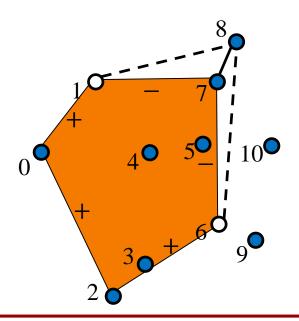
Note:



Edelsbrunner (1987):

Sort the points lexicographically and then grow the hull by iteratively adding points.

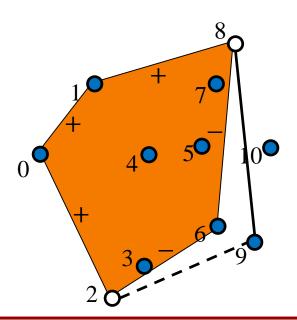
Note:



Edelsbrunner (1987):

Sort the points lexicographically and then grow the hull by iteratively adding points.

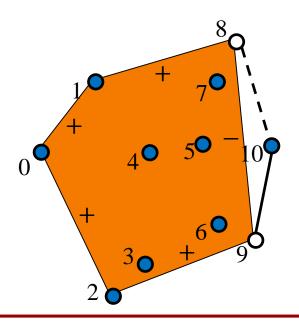
Note:



Edelsbrunner (1987):

Sort the points lexicographically and then grow the hull by iteratively adding points.

Note:

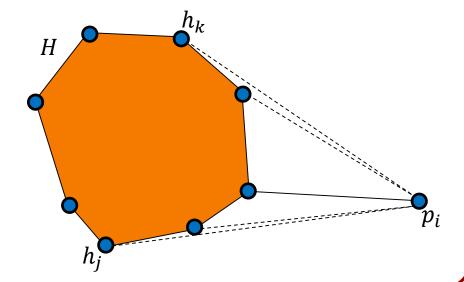


Incremental Algorithm (P)

- \circ SortLexicographically(P)
- $\circ \ H \leftarrow \{p_0, p_1, p_2\}$
- for $i \in [3, n)$:
 - » $(h_j, h_k) \leftarrow \text{TransitionVertices}(H, p_i)$
 - **»** Replace(H, $\{h_j, ..., h_k\}$, $\{h_j, p_i, h_k\}$)

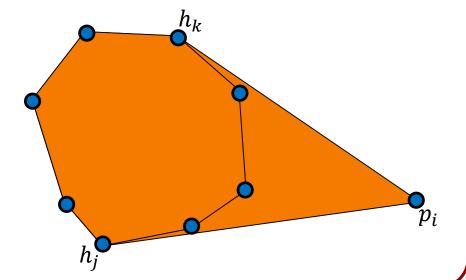
Incremental Algorithm (P)

- \circ SortLexicographically(P)
- $\circ \ H \leftarrow \{p_0, p_1, p_2\}$
- for $i \in [3, n)$:
 - » $(h_j, h_k) \leftarrow \text{TransitionVertices}(H, p_i)$
 - **»** Replace(H, $\{h_{j}, ..., h_{k}\}$, $\{h_{j}, p_{i}, h_{k}\}$)



Incremental Algorithm (P)

- \circ SortLexicographically(P)
- $\circ \ H \leftarrow \{p_0, p_1, p_2\}$
- for $i \in [3, n)$:
 - » $(h_i, h_k) \leftarrow \text{TransitionVertices}(H, p_i)$
 - » Replace(H , $\{h_j, ..., h_k\}$, $\{h_j, p_i, h_k\}$)



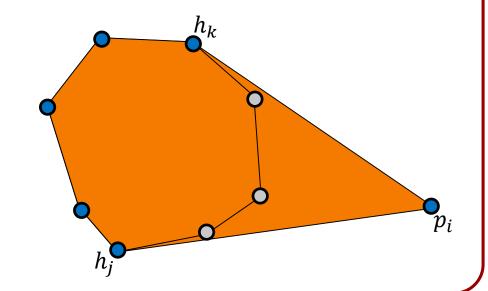
Incremental Algorithm (P)

- SortLexicographically(P) \leftarrow $O(n \log n)$
- $\circ \ H \leftarrow \{p_0, p_1, p_2\}$
- o for $i \in [3, n)$:

 » (h_j, h_k) ← TransitionVertices(H, p_i) ← O(?)» Replace($H, \{h_i, ..., h_k\}, \{h_i, p_i, h_k\}$)

Note:

Any vertex traversed to find the transition vertices is removed.



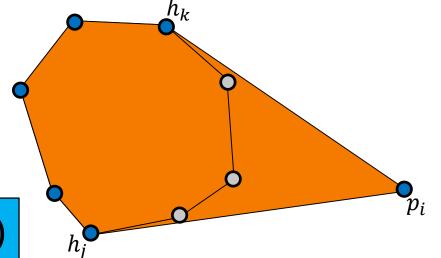
Incremental Algorithm (P)

- \circ SortLexicographically(P) \leftarrow $O(n \log n)$
- $\circ \ H \leftarrow \{p_0, p_1, p_2\}$
- \circ for $i \in [3, n)$:
 - $(h_j, h_k) \leftarrow \text{TransitionVertices}(H, p_i) \leftarrow O(n)$
 - **»** Replace(H, $\{h_j, ..., h_k\}$, $\{h_j, p_i, h_k\}$)

Note:

Any vertex traversed to find the transition vertices is removed.

Complexity: $O(n \log n)$



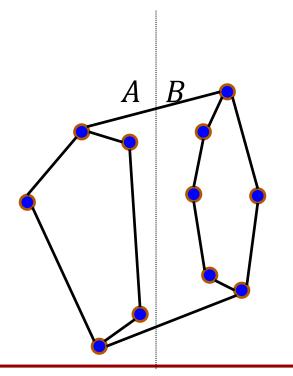
Outline

- Incremental Algorithm
- Divide-and-Conquer

Divide And Conquer

Recursively:

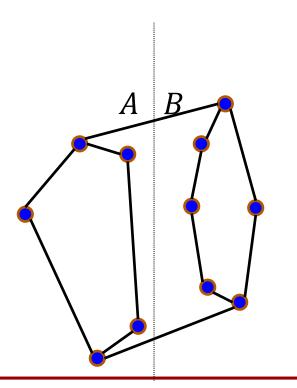
- Split the point-set in two.
- Compute the hull of both halves
- Merge the hulls



Divide And Conquer

Efficiency:

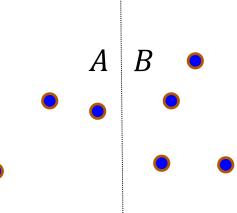
For this to be fast (log-linear), the splitting and the merging have to be fast (linear).



Divide And Conquer (Step 1)

Split the point-set in two:

- Sort the points along an axis and choose the (n/2)-th element.
 - »Pre-processing: $O(n \log n)$
 - »Run-time: O(n)
- Use fast median.
 - »Run-time: O(n)



Fast Median

Approach:

- To get the median of a set S, break up the set into subsets of size 5.*
- Compute the median of each subset.
- Compute the median of the medians.
 [Recursive]
- Use that to split S in two and find the biased median of the larger half.
 [Recursive]

*For simplicity, we will assume that |S| is divisible by 5.


```
FastMedian( P = \{x_0, \dots, x_{n-1}\} , s = |P|/2 ):

o if( |P| ==1 ) return x_0

o Q_i \leftarrow \{x_{5i+0}, \dots, x_{5i+4}\}

o for i \in [0, |P|/5): q_i \leftarrow \text{SlowMedian}(Q_i)

o Q \leftarrow \{q_0, \dots, q_{|P|/5-1}\}

o (L, R) \leftarrow \text{Split}(P, FastMedian(Q, |Q|/2))

o if( |L| < s) return FastMedian(Q, |Q|/2)

o else return FastMedian(Q, |Q|/2)
```


O(n) Complexity:

To show that this has linear complexity, we show that every time we recurse on a subset $S' \subset S$, the size of the subset satisfies:

$$|S'| \leq |S| \cdot \varepsilon$$

for some fixed ε < 1.


```
FastMedian( P = \{x_0, ..., x_{n-1}\} , s = |P|/2 ):

o if( |P| ==1 ) return x_0

o Q_i \leftarrow \{x_{5i+0}, ..., x_{5i+4}\}

o for i \in [0, |P|/5): q_i \leftarrow \text{SlowMedian}(Q_i)

o Q \leftarrow \{q_0, ..., q_{|P|/5-1}\}

o (L, R) \leftarrow \text{Split}(P, FastMedian(Q, |Q|/2))

o if( |L| < s) return FastMedian(Q, |Q|/2)

o else return FastMedian(Q, |Q|/2)
```

<u>Claim</u>:

The subsets L and R defined by:
 (L, R) ← Split(P, FastMedian(Q, |Q|/2))
 have the property that |L|, |R| ≤ 4|P|/5

Claim:

The subsets L and R defined by:
 (L,R) ← Split(P, FastMedian(Q, |Q|/5))
 have the property that |L|, |R| ≤ 4|P|/5

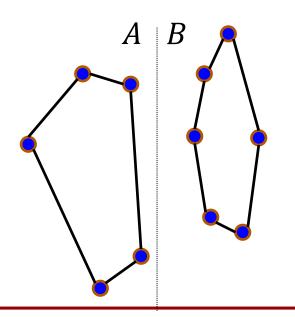
Proof:

- Set $q = \mathsf{FastMedian}(Q, |Q|/5)$
- For each $q_i \in Q$ with $q_i < q$ (50%)
 - » Each $p_i \in P_i$ with $p_i < q_i$ must be in L (40%)
- For each $q_i \in Q$ with $q_i \ge q$ (50%)
 - » Each $p_i \in P_i$ with $p_i \ge q_i$ must be in R (40%)
- \Rightarrow L and R both contain at least one fifth of the points in P.

Divide And Conquer (Step 2)

Compute the hull of the halves:

- If the subset has less than 6 points, apply the incremental algorithm,
- Otherwise recurse.



Divide And Conquer (Step 3)

Merging the hulls (lower tangent)*:

- Find the edge from A to B connecting the right-most point on A to the left-most point on B.
- Move CW on A and CCW on B, while A and B are not entirely above the edge.

*Assuming general position


```
Merge (A, B):
  A ← SortCWFromRight(A)
  ∘ B ← SortCCWFromLeft(B)
  \circ (i,j) \leftarrow (0,0)
  o while( true )
     » if (Right(\overrightarrow{a_ib_j}, a_{i+1})): i \leftarrow i+1
     » else if( Right( \overrightarrow{a_i b_j} , b_{j+1} )): j \leftarrow j+1 A \mid B
     » else: break
```



```
Merge ( A , B ):

\circ A \leftarrow SortCWFromRight(A)

\circ B \leftarrow SortCCWFromLeft(B)

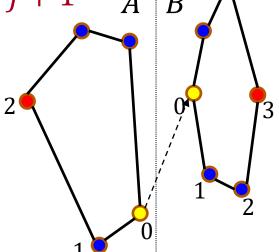
\circ (i,j) \leftarrow (0,0)

\circ while(true)

\Rightarrow if (Right(\overrightarrow{a_ib_j}, a_{i+1})): i \leftarrow i+1

\Rightarrow else if(Right(\overrightarrow{a_ib_j}, b_{j+1})): j \leftarrow j+1 A \mid B
```

» else: break




```
Merge ( A , B ):

\circ A \leftarrow SortCWFromRight(A)

\circ B \leftarrow SortCCWFromLeft(B)

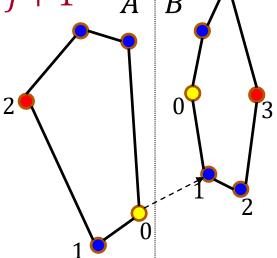
\circ (i,j) \leftarrow (0,0)

\circ while(true)

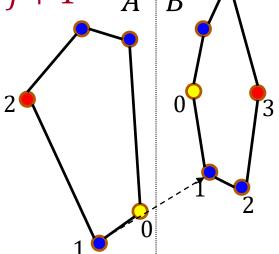
\Rightarrow if (Right(\overrightarrow{a_ib_j}, a_{i+1})): i \leftarrow i+1

\Rightarrow else if(Right(\overrightarrow{a_ib_j}, b_{j+1})): j \leftarrow j+1 A \mid B
```

» else: break




```
Merge (A, B):
  A ← SortCWFromRight(A)
  ∘ B ← SortCCWFromLeft(B)
 \circ (i,j) \leftarrow (0,0)
  o while( true )
     » if (Right(\overline{a_i b_i}, a_{i+1})): i \leftarrow i+1
     » else if( Right( \overrightarrow{a_i b_j} , b_{j+1} )): j \leftarrow j+1 A \mid B
     » else: break
```




```
Merge ( A , B ):

\circ A \leftarrow SortCWFromRight(A)

\circ B \leftarrow SortCCWFromLeft(B)

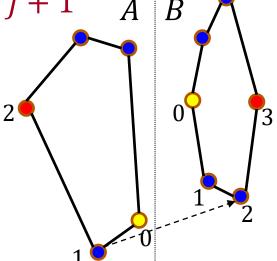
\circ (i,j) \leftarrow (0,0)

\circ while(true)

\Rightarrow if (Right(\overrightarrow{a_ib_j}, a_{i+1})): i \leftarrow i+1

\Rightarrow else if(Right(\overrightarrow{a_ib_j}, b_{j+1})): j \leftarrow j+1 A \mid B
```

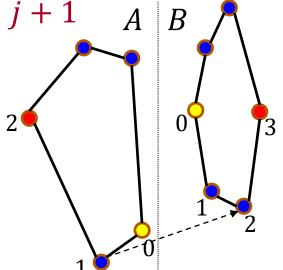
» else: break




```
Merge (A, B):
```

- A ← SortCWFromRight(A)
- ∘ B ← SortCCWFromLeft(B)
- $\circ (i,j) \leftarrow (0,0)$
- o while(true)
 - » if (Right($\overrightarrow{a_ib_j}$, a_{i+1})): $i \leftarrow i+1$
 - » else if(Right($\overrightarrow{a_i b_j}$, b_{j+1})): $j \leftarrow j+1$
 - » else: break

Need to show that this terminates at the lower tangent in linear time.



Claim:

- If edge $\overline{a_i b_i}$ connects A and B, then:
 - » Either i = 0 or a_{i-1} is left of $\overrightarrow{a_i b_j}$.
 - » Either j = 0 or b_{j-1} is left of $\overrightarrow{a_i b_j}$.

We show that if this is true, then:

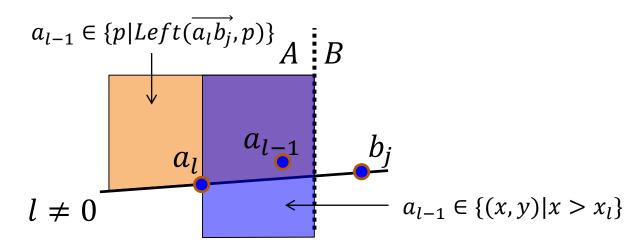
- The algorithm must terminate in linear time because:
 - » i won't pass the left-most vertex of A.
 - » j won't pass the right-most vertex of B.
- The algorithm terminates at the lower tangent.

Claim:

- If edge $\overline{a_i b_j}$ connects A and B, then:
 - » Either i = 0 or a_{i-1} is left of $\overrightarrow{a_i b_j}$.

The algorithm must terminate because:

» i doesn't pass the left-most vertex of ARight($\overrightarrow{a_l b_j}$, a_{l+1})==false

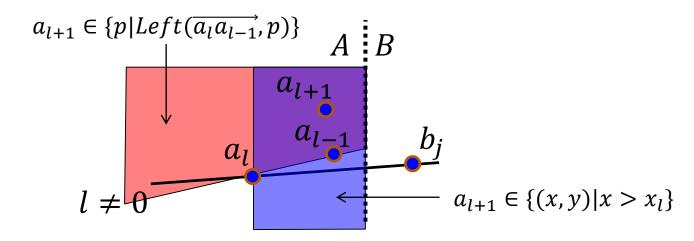


Claim:

- If edge $\overline{a_i b_i}$ connects A and B, then:
 - » Either i = 0 or a_{i-1} is left of $\overrightarrow{a_i b_j}$.

The algorithm must terminate because:

» i doesn't pass the left-most vertex of ARight($\overrightarrow{a_l b_j}$, a_{l+1})==false



Claim:

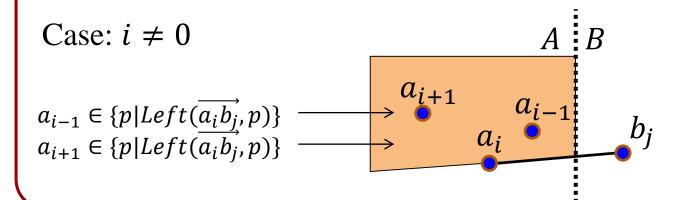
- If edge $\overline{a_i b_i}$ connects A and B, then:
 - » Either i = 0 or a_{i-1} is left of $\overrightarrow{a_i b_i}$.
 - » Either j = 0 or b_{j-1} is left of $\overrightarrow{a_i b_j}$.

When the algorithm terminates the edge (i,j) is a lower tangent.

Claim:

- If edge $\overline{a_i b_j}$ connects A and B, then:
 - » Either i = 0 or a_{i-1} is left of $\overrightarrow{a_i b_i}$.
 - » Either j = 0 or b_{j-1} is left of $\overrightarrow{a_i b_j}$.

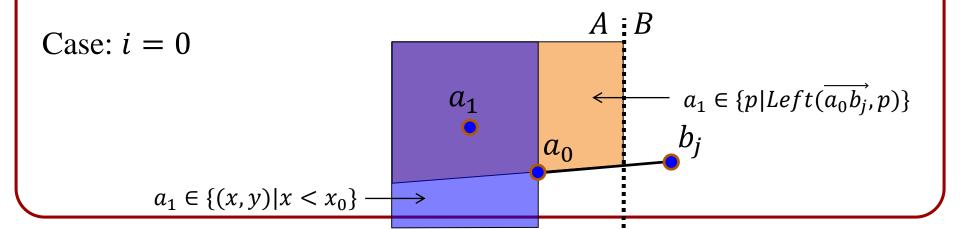
When the algorithm terminates the edge (i,j) is a lower tangent.



Claim:

- If edge $\overline{a_i b_i}$ connects A and B, then:
 - » Either i = 0 or a_{i-1} is left of $\overrightarrow{a_i b_i}$.
 - » Either j = 0 or b_{j-1} is left of $\overrightarrow{a_i b_j}$.

When the algorithm terminates the edge (i,j) is a lower tangent.



Claim:

- If edge $\overline{a_i b_j}$ connects A and B, then:
 - » Either i = 0 or a_{i-1} is left of $\overrightarrow{a_i b_i}$.
 - » Either j = 0 or b_{j-1} is left of $\overrightarrow{a_i b_j}$.

When the algorithm terminates the edge (i,j) is a lower tangent.

Case: i=0 $\begin{array}{c} A:B\\ a_{n-1}\\ a_0\\ a_{n-1}\in\{(x,y)|x< x_0\} \end{array}$ $a_{n-1}\in\{p|Left(\overline{a_1}\overrightarrow{a_0},p)\}$

- If edge $\overline{a_i b_j}$ connects A and B, then:
 - » Either i = 0 or a_{i-1} is left of $\overrightarrow{a_i b_i}$.
 - » Either j = 0 or b_{j-1} is left of $\overrightarrow{a_i b_j}$.

Proof by Induction:

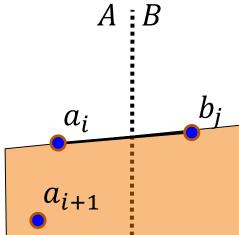
Base case, (i,j) = (0,0), is trivially satisfied.

- If edge $\overline{a_i b_j}$ connects A and B, then:
 - » Either i = 0 or a_{i-1} is left of $\overrightarrow{a_i b_i}$.
 - » Either j = 0 or b_{j-1} is left of $\overrightarrow{a_i b_j}$.

Proof by Induction:

Assume true for (i, j) and assume we transition $(i, j) \rightarrow (i + 1, j)$:

- \Rightarrow Right($\overrightarrow{a_i b_j}$, a_{i+1})
- \Rightarrow Left($\overrightarrow{a_{i+1}b_i}$, a_i)

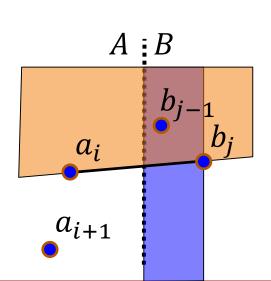


- If edge $\overline{a_i b_j}$ connects A and B, then:
 - » Either i = 0 or a_{i-1} is left of $\overrightarrow{a_i b_i}$.
 - » Either j = 0 or b_{j-1} is left of $\overrightarrow{a_i b_j}$.

Proof by Induction:

On the other hand:

- \circ b_{j-1} must be left of b_j
- \circ b_{j-1} must be left of edge $a_i b_j$
- $\Rightarrow b_{j-1}$ must be left of edge $a_{i+1}b_j$



Complexity:

Both split and the merge run in O(n).

 \Rightarrow The divide-and-conquer runs in $O(n \log n)$.

