Polygon Partitioning

O’Rourke, Chapter 2

de Berg, Chapter 3
Announcements

• Assignment 1 posted

• TA office hours:
 ◦ Thursday @ 4PM
 ◦ Malone 239
Monotonicity

A polygonal chain C is \textit{strictly monotone} w.r.t. a line L if every line L' perp. to L meets C at at most one point.
Monotonicity

A polygonal chain C is \textit{strictly monotone w.r.t. a line} L if every line L' perp. to L meets C at at most one point.

It is \textit{monotone w.r.t. a line} L if every line L' perp. to L intersects C in at most one connected component.
Monotonicity

A polygonal P is *monotone w.r.t. a line* L if its boundary can be split into two polygon chains, A and B, such that each chain is monotonic w.r.t. L.
Monotonicity

A polygonal P is *monotone w.r.t. a line* L if its boundary can be split into two polygon chains, A and B, such that each chain is monotonic w.r.t. L.

\iff It is monotone w.r.t. L if the intersection of P with any line L' perp. to L has at most two connected components.
The vertices of a monotone polygon (w.r.t. the vertical axis) can be sorted by y-value in linear time.

- $O(n)$: Compute the highest vertex.
- $O(n)$: Merge the two (sorted) chains.
Interior Cusps

An *interior cusp* of a polygon P (w.r.t. the vertical axis) is a reflex* vertex $v \in P$ whose neighboring vertices are either at or above, or at or below v.

*Recall that reflex vertices have interior angle strictly greater than π.
Claim

If P has no interior cusps (w.r.t. the vertical axis), it is monotone (w.r.t. the vertical axis).

*Note that it can have interior cusps and still be monotone.
Claim

If P has no interior cusps (w.r.t. the vertical axis), it is monotone (w.r.t. the vertical axis).

Note: We cannot change the condition so that interior cusps have to be strictly above
Proof

If it isn’t monotone, there will be a line L' intersecting P in three or more points, p, q, and r. (Assume these are the first three.)

WLOG, assume the polygon interior is to the left of q (and right of p and r):

- If the order of the vertices in the polygon is pqr we hit an interior cusp at the top going from q to r.
Proof

If it isn’t monotone, there will be a line L' intersecting P in three or more points, p, q, and r. (Assume these are the first three.)

WLOG, assume the polygon interior is to the left of q (and right of p and r):

- If the order of the vertices in the polygon is pqr we hit an interior cusp at the top going from q to r.
- Otherwise, we hit an interior cusp at the bottom going from r to q.
Claim

A monotone polygon can be triangulated in linear time.
Outline

Invariant

When triangulating from the top vertex, at any y-value, the un-triangulated vertices above y can be broken up into two chains:

- One contains a single vertex
- The other has only reflex vertices.
Outline

When we hit the next vertex it can be:

- **On the side with one vertex**
 - Connect the vertex to all vertices on the other side and pop off the triangles.

The invariant is preserved!
When you hit the next vertex it can be:

- On the side with reflex vertices
 - Either the new vertex makes the previous one reflex
 - Do nothing

The invariant is preserved!
Outline

When you hit the next vertex it can be:

- On the side with reflex vertices
 - Either the new vertex makes the previous one reflex
 - Do nothing
 - Or it doesn’t
 - Recursively connect and pop

When we can’t connect back anymore, we have a new reflex vertex.

The invariant is preserved!
Trapezoidalization

A horizontal trapezoidalization is obtained by drawing a horizontal line through every vertex of the polygon.*

*Assuming distinct vertices have different y-values.
A horizontal trapezoidalization is obtained by drawing a horizontal line through every vertex of the polygon.

The supporting vertices of a trapezoid are the two vertices of P defining the horizontals of the trapezoid.

Note: Interior (vertical) cusps are vertices that are internal to their horizontals.
Trapezoids \rightarrow Monotone Polygons

Given a trapezoidalization of P, we can obtain a partition into monotone (w.r.t. the vertical axis) polygons:

- For upward cusps, connect the supporting vertices on the trapezoid below the cusp.
- For downward cusps, connect the supporting vertices on the trapezoid above the cusp.
Trapezoids \rightarrow Monotone Polygons

Given a trapezoidalization of P, we can obtain a partition into monotone (w.r.t. the vertical axis) polygons:

- For upward cusps, connect the supporting vertices on the trapezoid below the cusp.
- For downward cusps, connect the supporting vertices on the trapezoid above the cusp.

This decomposes the polygon into sub-polygons without interior cusps. \Rightarrow Each sub-polygon is monotone.
Line/Plane Sweep

Given a polygon P, sweep a horizontal line downwards maintaining a sorted “active edge” list – those edges that are intersected by the current horizontal.

Note:
The list of active edges can only change when the horizontal passes through a vertex.
Algorithm

- **PlaneSweep**($V, E \subseteq V \times V$):
 - SortByLargestToSmallestHeight(V)
 - $A \leftarrow \emptyset$
 - For each $v \in V$
 - $(e_1, e_2) \leftarrow \text{EndPoints}(v)$
 - If(Before(v, e_1): Remove(A, e_1)
 - Else: Insert(A, e_1)
 - If(Before(v, e_2): Remove(A, e_2)
 - Else: Insert(A, e_2)
Algorithm

- **PlaneSweep** \((V, E \subset V \times V) \):
 - SortByLargestToSmallestHeight \((V)\)
 - \(A \leftarrow \emptyset\)
 - For each \(v \in V\)
 - \((e_1, e_2) \leftarrow \text{EndPoints}(v)\)
 - If(Before \((v, e_1)\)) Remove \((A, e_1)\)
 - Else: Insert \((A, e_1)\)
 - If(Before \((v, e_2)\)) Remove \((A, e_2)\)
 - Else: Insert \((A, e_2)\)

\[A = \ldots a_1 - e_1 - e_2 - a_2 \ldots \]

\[A = \ldots a_1 - a_2 \ldots \]
Algorithm

- **PlaneSweep**($V, E \subseteq V \times V$):
 - **SortByLargestToSmallestHeight**(V)
 - $A \leftarrow \emptyset$
 - For each $v \in V$
 - $(e_1, e_2) \leftarrow \text{EndPoints}(v)$
 - If (Before(v, e_1)): Remove(A, e_1)
 - Else: Insert(A, e_1)
 - If (Before(v, e_2)): Remove(A, e_2)
 - Else: Insert(A, e_2)
Algorithm

- **PlaneSweep**($V, E \subset V \times V$):
 - SortByLargestToSmallestHeight(V)
 - $A \leftarrow \emptyset$
 - For each $v \in V$
 - $(e_1, e_2) \leftarrow \text{EndPoints}(v)$
 - If(Before(v, e_1): Remove(A, e_1))
 - Else: Insert(A, e_1)
 - If(Before(v, e_2): Remove(A, e_2))
 - Else: Insert(A, e_2)

\[A = \cdots a_1 - a_2 \]

\[A = \cdots a_1 - e_1 - e_2 - a_2 \]
Algorithm

- PlaneSweep($V, E \subset V \times V$):
 - SortByLargestToSmallestHeight(V) \[O(n \log n) \]
 - $A \leftarrow \emptyset$
 - For each $v \in V$
 - $(e_1, e_2) \leftarrow \text{EndPoints}(v)$
 - If(Before(v, e_1): Remove(A, e_1)
 - Else: Insert(A, e_1)
 - If(Before(v, e_2): Remove(A, e_2)
 - Else: Insert(A, e_2)
 \[O(n) \]
 \[O(\log n) \] w/ balanced tree (e.g. std::map)
A trapezoidal partition can be computed in $O(n \log n)$ time by performing a line-sweep and adding (part of) the horizontal to the left and right neighbors as we hit new vertices.
Constructing a Trapezoidalization

Note:

We had assumed that the vertices have different y-coordinates.

This isn’t actually necessary. It suffices to sort lexicographically. (If two vertices have the same y-coordinates then the one with larger x-coordinate is first.)
Constructing a Trapezoidalization

Note:

We had assumed that the vertices have different \(y \)-coordinates.

Conceptually, this amounts to applying a tiny rotation in the CCW direction.
Triangulation

- **Triangulate**\((P) : \)
 - Construct a trapezoidalization
Triangulation

- **Triangulate**(P):
 - Construct a trapezoidalization
 - Partition into monotone polygons
Triangulation

- **Triangulate**(P):
 - Construct a trapezoidalization
 - Partition into monotone polygons
 - Triangulate the monotone polygons