FFTs in Graphics and Vision

Moving Dot Products
Outline

Review

Moving Dot Products:
- One-Dimensional (Continuous)
- One-Dimensional (Discrete)
- Higher-Dimensional
- Computational Complexity
A representation of a group G on a vector space V, denoted (ρ, V), is a map ρ that sends every element in G to an invertible linear transformation on V, satisfying:

$$\rho(g \cdot h) = \rho(g) \cdot \rho(h) \quad \forall g, h \in G.$$
Sub-Representation

Given a representation \((\rho, V)\) of a group \(G\), if there exists a subspace \(W \subset V\) such that the representation fixes \(W\):

\[
\rho_g(w) \in W \quad \forall g \in G; \ w \in W
\]
then we say that \(W\) is a sub-representation of \(V\).
Irreducible Representations

Given a representation \((\rho, V)\) of a group \(G\), the representation is said to be irreducible if the only subspaces of \(V\) that are sub-representations are:

\[W = V \quad \text{and} \quad W = \emptyset \]
Schur’s Lemma (Corollary)

If ρ, V is an irreducible, (unitary), representation of a commutative group G, then V must be one-dimensional.
Why do we care?

In signal/image/voxel processing, we are often interested in applying a filter to some initial data.

E.g. Smoothing:
Why do we care?

In signal/image/voxel processing, we are often interested in applying a filter to some initial data.

E.g. Smoothing:
Why do we care?

In signal/image/voxel processing, we are often interested in applying a filter to some initial data.

E.g. Smoothing:
Why do we care?

In signal/image/voxel processing, we are often interested in applying a filter to some initial data.

E.g. Smoothing:
Why do we care?

In signal/image/voxel processing, we are often interested in applying a filter to some initial data.

E.g. Smoothing:
Why do we care?

In signal/image/voxel processing, we are often interested in applying a filter to some initial data.

E.g. Smoothing:
Why do we care?

In signal/image/voxel processing, we are often interested in applying a filter to some initial data.

E.g. Smoothing:
Why do we care?

In signal/image/voxel processing, we are often interested in applying a filter to some initial data.

E.g. Smoothing:
Smoothing

What we are really doing is computing a moving inner product:

$$\langle g(\theta), h(\theta) \rangle$$
Smoothing

What we are really doing is computing a moving inner product:

\[
\alpha_1 g(\theta) h(\theta) - \alpha_1 \langle g(\theta), h(\theta - \alpha_1) \rangle
\]
Smoothing

What we are really doing is computing a moving inner product:

\[\langle g(\theta), h(\theta - \alpha_2) \rangle \]
Smoothing

What we are really doing is computing a moving inner product:

\[
\langle g(\theta), h(\theta - \alpha_3) \rangle
\]
Smoothing

We can write out the operation of smoothing a signal \(g \) by a filter \(h \) as:

\[
(g \ast h)(\alpha) = \langle g, \rho_\alpha(h) \rangle
\]

where \(\rho_\alpha \) is the linear transformation that translates a periodic function by \(\alpha \).
Moving Dot Products

We can think of this as a representation:

- V is the space of periodic functions on the line
- G is the group of real numbers in $[0, 2\pi)$
- ρ_α is the representation translating a function by α.
Moving Dot Products

We can think of this as a representation:
- V is the space of periodic functions on the line
- G is the group of real numbers in $[0,2\pi)$
- ρ_α is the representation translating a function by α.

This is a representation of a commutative group…
Smoothing

⇒ There exist orthogonal one-dimensional (complex) subspaces \(V_1, \ldots, V_n \subset V \) that are the irreducible representations of \(V \).

Setting \(\phi_i \in V_i \) to be a unit-vector, we know that the group acts on \(\phi_i \) by scalar multiplication:

\[
\rho_\alpha(\phi_i) = \lambda_i(\alpha) \cdot \phi_i
\]

Note: Since the \(V_i \) are orthogonal, the basis \(\{ \phi_1, \cdots \phi_n \} \) is orthonormal.
Smoothing

Setting $\phi_i \in V_i$ to be a unit-vector, we know that the group acts on ϕ_i by scalar multiplication:

$$\rho_\alpha(\phi_i) = \lambda_i(\alpha) \cdot \phi_i$$

We can write out the functions $g, h \in V$ as:

$$g(\theta) = \hat{g}_1 \cdot \phi_1(\theta) + \cdots + \hat{g}_n \cdot \phi_n(\theta)$$
$$h(\theta) = \hat{h}_1 \cdot \phi_1(\theta) + \cdots + \hat{h}_n \cdot \phi_n(\theta)$$

with $\hat{g}_i, \hat{h}_i \in \mathbb{C}$.
Smoothing

Then the moving dot-product can be written as:

\[(g \ast h)(\alpha) = \langle g, \rho_\alpha(h) \rangle\]
Smoothing

\[(g \ast h)(\alpha) = \langle g, \rho_\alpha(h) \rangle\]

Expanding in the basis \(\{\phi_1, \ldots, \phi_n\}:

\[(g \ast h)(\alpha) = \sum_{j=1}^{n} \hat{g}_j \phi_j , \rho_\alpha \left(\sum_{k=1}^{n} \hat{h}_k \phi_k \right)\]
Smoothing

\[(g \ast h)(\alpha) = \left(\sum_{j=1}^{n} \hat{g}_j \phi_j, \rho_\alpha \left(\sum_{k=1}^{n} \hat{h}_k \phi_k \right) \right) \]

By linearity of \(\rho_\alpha \):

\[(g \ast h)(\alpha) = \left(\sum_{j=1}^{n} \hat{g}_j \phi_j, \sum_{k=1}^{n} \hat{h}_k \rho_\alpha(\phi_k) \right) \]
Smoothing

\[(g \star h)(\alpha) = \left\langle \sum_{j=1}^{n} \hat{g}_j \phi_j, \sum_{k=1}^{n} \hat{h}_k \rho_\alpha(\phi_k) \right\rangle \]

By linearity of the inner product in the first term:

\[(g \star h)(\alpha) = \sum_{j=1}^{n} \hat{g}_j \left\langle \phi_j, \sum_{k=1}^{n} \hat{h}_k \rho_\alpha(\phi_k) \right\rangle \]
Smoothing

\[(g \ast h)(\alpha) = \sum_{j=1}^{n} \hat{g}_j \left(\phi_j, \sum_{k=1}^{n} \hat{h}_k \rho_{\alpha}(\phi_k) \right)\]

By conjugate-linearity in the second term:

\[(g \ast h)(\alpha) = \sum_{j,k=1}^{n} \hat{g}_j \bar{\hat{h}}_k \langle \phi_j, \rho_{\alpha}(\phi_k) \rangle\]
Smoothing

\[(g \ast h)(\alpha) = \sum_{j,k=1}^{n} \hat{g}_j \hat{h}_k \langle \phi_j, \rho_\alpha(\phi_k) \rangle\]

Because \(\rho_\alpha\) is scalar multiplication in \(V_i\):

\[(g \ast h)(\alpha) = \sum_{j,k=1}^{n} \hat{g}_j \hat{h}_k \langle \phi_j, \lambda_k(\alpha)\phi_k \rangle\]
Smoothing

\[(g \ast h)(\alpha) = \sum_{j,k=1}^{n} \hat{g}_j \tilde{h}_k \langle \phi_j, \lambda_k(\alpha) \phi_k \rangle\]

Again, by conjugate-linearity in the second term:

\[(g \ast h)(\alpha) = \sum_{j,k=1}^{n} \hat{g}_j \tilde{h}_k \overline{\lambda_k(\alpha)} \langle \phi_j, \phi_k \rangle\]
Smoothing

\[(g \ast h)(\alpha) = \sum_{j,k=1}^{n} \hat{g}_j \tilde{h}_k \lambda_k(\alpha) \langle \phi_j, \phi_k \rangle\]

And finally, by the orthonormality of \(\{\phi_1, \cdots, \phi_n\}\):

\[(g \ast h)(\alpha) = \sum_{j=1}^{n} \hat{g}_j \tilde{h}_j \lambda_j(\alpha)\]
Smoothing

\[(g \ast h)(\alpha) = \sum_{j=1}^{n} \hat{g}_j \hat{h}_j \lambda_j(\alpha) \]

This implies that we can compute the moving dot-product by multiplying the coefficients of \(g \) and \(h \).

Convolution/Correlation in the spatial domain is multiplication in the frequency domain!
Smoothing

What is $\lambda_j(\alpha)$?
Smoothing

What is $\lambda_j(\alpha)$?

Since the representation is unitary, $|\lambda_j(\alpha)| = 1$.

\[\exists \tilde{\lambda}_j: [0, 2\pi) \rightarrow \mathbb{R} \quad \text{s. t.} \quad \lambda_j(\alpha) = e^{i\tilde{\lambda}_j(\alpha)}\]
Smoothing

What is \(\lambda_j(\alpha) \)?

\[
\lambda_j(\alpha) = e^{i\tilde{\lambda}_j(\alpha)} \quad \text{for some} \quad \tilde{\lambda}_j: [0,2\pi) \rightarrow \mathbb{R}.
\]

Since it’s a representation:

\[
\begin{align*}
\lambda_j(\alpha + \beta) &= \lambda_j(\alpha) \cdot \lambda_j(\beta) & \forall \alpha, \beta \in [0,2\pi) \\
\tilde{\lambda}_j(\alpha + \beta) &= \tilde{\lambda}_j(\alpha) + \tilde{\lambda}_j(\beta) \\
\exists \kappa_j \in \mathbb{R} & \quad \text{s.t.} \quad \tilde{\lambda}_j(\alpha) = \kappa_j \cdot \alpha
\end{align*}
\]
Smoothing

What is $\lambda_j(\alpha)$?

$$\lambda_j(\alpha) = e^{i\kappa_j \alpha} \text{ for some } \kappa_j \in \mathbb{R}.$$

Since it's a representation:

$$1 = \lambda_j(2\pi) = e^{i\kappa_j 2\pi}$$

$$\kappa_j \in \mathbb{Z}$$
Thus, the correlation of the signals \(g, h : S^1 \to \mathbb{C} \) can be expressed as:

\[
(g \star h)(\alpha) = \sum_{j=1}^{n} \hat{g}_j \hat{h}_j e^{-i\kappa_j \alpha}
\]

where \(\kappa_j \in \mathbb{Z} \).
Outline

Review

Moving Dot Products:
 - One-Dimensional (Continuous)
 - One-Dimensional (Discrete)
 - Higher-Dimensional
 - Computational Complexity
Moving Dot Products (Periodic Functions)

Let’s consider the case of periodic functions in more detail:
Moving Dot Products (Periodic Functions)

Let’s consider the case of periodic functions in more detail:

○ V is the space of periodic functions on the line
○ G is the group of real numbers in $[0, 2\pi)$
○ ρ_α is the representation translating a function by α:
 \[
 (\rho_\alpha(f))(\theta) = f(\theta - \alpha)
 \]

What are the irreducible representations V_k?

What are the corresponding functions $\lambda_k(\alpha)$?
Moving Dot Products (Periodic Functions)

It turns out that the one-dimensional spaces \(V_k \) are the spans of the complex exponentials:

\[
V_k = \text{Span}(e^{ik\theta})
\]
Moving Dot Products (Periodic Functions)

It turns out that the one-dimensional spaces V_k are the spans of the complex exponentials:

$$V_k = \text{Span}(e^{ik\theta})$$

Given any vector $v \in V_k$, applying ρ_α to v, we get:

$$\rho_\alpha(v) = \rho_\alpha(c \cdot e^{ik\theta})$$

$$= c \cdot \rho_\alpha(e^{ik\theta})$$

$$= c \cdot e^{ik(\theta - \alpha)}$$

$$= c \cdot e^{ik\theta} \cdot e^{-ik\alpha}$$

$$= v \cdot e^{-ik\alpha}$$

$$\lambda_k(\alpha) = e^{-ik\alpha}$$
Moving Dot Products (Periodic Functions)

Note

The periodic functions:

\[f_k(\theta) = e^{ik\theta} \]

do not have unit norm!

\[\|f_k\|^2 = \int_0^{2\pi} e^{ik\theta} \cdot \overline{e^{ik\theta}} \, d\theta \]

\[= \int_0^{2\pi} 1 \, d\theta \]

\[= 2\pi \]
Moving Dot Products (Periodic Functions)

Note

The periodic functions:

\[f_k(\theta) = e^{ik\theta} \]

do not have unit norm!

We need to normalize the functions to make them unit-norm:

\[f_k(\theta) = \sqrt{\frac{1}{2\pi}} e^{ik\theta} \]

\[\lambda_k(\alpha) = e^{ik\alpha} = \sqrt{2\pi} f_k(\theta) \]
Moving Dot Products (Periodic Functions)

Thus, given two periodic functions on the line, \(g(\theta) \) and \(h(\theta) \), we can expand:

\[
g(\theta) = \sum_{k=-\infty}^{\infty} \hat{g}_k \sqrt{\frac{1}{2\pi}} e^{ik\theta} \quad \text{and} \quad h(\theta) = \sum_{k=-\infty}^{\infty} \hat{h}_k \sqrt{\frac{1}{2\pi}} e^{ik\theta}
\]

to get:

\[
(g \star h)(\alpha) = \sum_{k=-\infty}^{\infty} \hat{g}_k \cdot \overline{\hat{h}_k} \cdot \overline{\lambda_k(\alpha)}
\]

\[
= \sum_{k=-\infty}^{\infty} \hat{g}_k \cdot \overline{\hat{h}_k} \cdot e^{ik\alpha}
\]

\[
= \sum_{k=-\infty}^{\infty} \sqrt{2\pi} \cdot \hat{g}_k \cdot \overline{\hat{h}_k} \cdot \sqrt{\frac{1}{2\pi}} e^{ik\alpha}
\]

45
What’s really going on here?

If we express a complex number in terms of radius and angle \((r, \theta)\), then rotation by \(\alpha\) degrees corresponds to the map:

\[
(r, \theta) \rightarrow (r, \theta + \alpha)
\]

\[
\updownarrow
\]

\[
re^{i\theta} \rightarrow re^{i(\theta + \alpha)} = e^{i\alpha} \cdot re^{i\theta}
\]

Rotating in the complex plane is the same thing as multiplying by a complex, unit-norm, number.
Moving Dot Products (Periodic Functions)

What’s really going on here?

Let’s consider the graph of a complex exponential. This is just a helix:

\[f(\theta) = e^{i2\theta} \]
What’s really going on here?

Let’s consider the graph of a complex exponential. This is just a helix.

If we translate the function by α, we get:

$$f(\theta) = e^{i2\theta}$$

$$f(\theta - \alpha) = e^{i2(\theta - \alpha)}$$
What’s really going on here?

Let’s consider the graph of a complex exponential. This is just a helix.

If we translate the function by α, we get:

Translating a periodic helix along its axis is the same thing as rotating the helix around it.

$$f(\theta) = e^{i2\theta}$$

$$f(\theta - \alpha) = e^{i2(\theta - \alpha)}$$
Outline

Review

Moving Dot Products:

- One-Dimensional (Continuous)
- One-Dimensional (Discrete)
- Higher-Dimensional
- Computational Complexity
Moving Dot Products (Periodic Arrays)

In practice, we don’t have infinite precision, and we discretize the function space and the group:

- \(V \) is the space of periodic \(n \)-dimensional arrays
- \(G \) is the group of integers modulo \(n \)
- \(\rho_j \) is the representation shifting the entries in the array by \(j \) positions

What are the irreducible representations \(V_k \)?
What are the corresponding functions \(\lambda_k(\alpha) \)?
Moving Dot Products (Periodic Arrays)

We set V_k to be the (1D) spaces spanned by the discretizations of the complex exponentials:

$$V_k = \text{Span}(v_k)$$

where v_k is defined by regularly sampling the k-th complex exponential:

$$v_k[\cdot] = (e^{ik\theta_0}, \ldots, e^{ik\theta_{n-1}}) \quad \text{with} \quad \theta_j = \frac{2\pi j}{n}$$
Moving Dot Products (Periodic Arrays)

Applying ρ_α to $v_k[\cdot]$, we get:

$$\rho_\alpha(v_k[\cdot]) = (e^{ik\theta_0-\alpha}, \ldots, e^{ik\theta_{n-1-\alpha}})$$

We can write out:

$$\theta_{j-\alpha} = \frac{2\pi(j-\alpha)}{n}$$

$$= \frac{2\pi j}{n} + \frac{-2\pi \alpha}{n}$$

$$= \theta_j + \theta_{-\alpha}$$
Applying ρ_α to $v_k[\cdot]$, we get:

$$\rho_\alpha(v_k[\cdot]) = (e^{ik\theta_0-\alpha}, \ldots, e^{ik\theta_{n-1-\alpha}})$$

We can write out:

$$\theta_{j-\alpha} = \theta_j + \theta_-\alpha$$

So that:

$$\rho_\alpha(v_k[\cdot]) = (e^{ik\theta_0} \cdot e^{ik\theta_{-\alpha}}, \ldots, e^{ik\theta_{n-1}} \cdot e^{ik\theta_{-\alpha}})$$

$$= e^{ik\theta_{-\alpha}} \cdot v_k[\cdot]$$

$$\overline{\lambda}_k[\alpha] = e^{ik\theta_\alpha}$$
Moving Dot Products (Periodic Arrays)

Note 1

The periodic arrays:

\[v_k[\cdot] = (e^{ik\theta_0}, \ldots, e^{ik\theta_{n-1}}) \]

do not have unit norm!

\[
\|v_k[\cdot]\|^2 = \sum_{j=0}^{n-1} v_k[j] \cdot v_k[j]
\]

\[
= \sum_{j=0}^{n-1} e^{ik\theta_j} \cdot e^{-ik\theta_j}
\]

\[= n \]
Moving Dot Products (Periodic Arrays)

Note 1

The periodic arrays:

\[v_k[\cdot] = (e^{ik\theta_0}, \ldots, e^{ik\theta_{n-1}}) \]

do not have unit norm!

We need to normalize these functions to make them unit-norm:

\[v_k[\cdot] = \sqrt{\frac{1}{n}} (e^{ik\theta_0}, \ldots, e^{ik\theta_{n-1}}) \]
Moving Dot Products (Periodic Arrays)

Note 1

The periodic arrays:

\[v_k[\cdot] = (e^{ik\theta_0}, \ldots, e^{ik\theta_{n-1}}) \]

do not have unit norm!

\[\lambda_k[\alpha] = \sqrt{n} \cdot v_k[\alpha] \]

We need to normalize these functions to make them unit-norm:

\[v_k[\cdot] = \sqrt{\frac{1}{n}} (e^{ik\theta_0}, \ldots, e^{ik\theta_{n-1}}) \]
Moving Dot Products (Periodic Arrays)

Note 2

The arrays \(v_k[\cdot] \) and \(v_{k+n}[\cdot] \) are the same array:

\[
\sqrt{n} \cdot v_{k+n}[\cdot] = (e^{i(k+n)\theta_0}, \ldots, e^{i(k+n)\theta_{n-1}})
= (e^{ik\theta_0} \cdot e^{i\theta_0}, \ldots, e^{ik\theta_{n-1}} \cdot e^{i\theta_{n-1}})
\]

But \(n\theta_j \) is a multiple of \(2\pi \):

\[
n\theta_j = \frac{n2\pi j}{n} = 2\pi j
\]

\[
e^{i\theta_j} = 1
\]
Moving Dot Products (Periodic Arrays)

Note 2

The arrays $v_k[\cdot]$ and $v_{k+n}[\cdot]$ are the same array:

$$\sqrt{n} \cdot v_{k+n}[\cdot] = \left(e^{i(k+n)\theta_0}, \ldots, e^{i(k+n)\theta_{n-1}} \right)$$

$$= \left(e^{ik\theta_0} \cdot e^{in\theta_0}, \ldots, e^{ik\theta_{n-1}} \cdot e^{in\theta_{n-1}} \right)$$

But $n\theta_j$ is a multiple of 2π so:

$$\sqrt{n} \cdot v_{k+n}[\cdot] = \left(e^{ik\theta_0} \cdot e^{in\theta_0}, \ldots, e^{ik\theta_{n-1}} \cdot e^{in\theta_{n-1}} \right)$$

$$= \left(e^{ik\theta_0}, \ldots, e^{ik\theta_{n-1}} \right)$$

$$= \sqrt{n} \cdot v_k[\cdot]$$
Note 3

The arrays \(\{v_0[\cdot], \ldots, v_{n-1}[\cdot]\} \) are linearly independent.
Moving Dot Products (Periodic Arrays)

Thus, given two n-dimensional arrays, $g[\cdot]$ and $h[\cdot]$, we can expand:

$$g[\cdot] = \sum_{k=0}^{n-1} \hat{g}_k \cdot v_k[\cdot] \quad \text{and} \quad h[\cdot] = \sum_{k=0}^{n-1} \hat{h}_k \cdot v_k[\cdot]$$

This gives:

$$(g[\cdot] \ast h[\cdot])[\alpha] = \sum_{k=0}^{n-1} \hat{g}_k \cdot \bar{\hat{h}}_k \cdot \bar{\lambda}_k[\alpha]$$

$$= \sqrt{n} \sum_{k=0}^{n-1} \hat{g}_k \cdot \bar{\hat{h}}_k \cdot v_k[\alpha]$$
Outline

Review

Moving Dot Products:
- One-Dimensional (Continuous)
- One-Dimensional (Discrete)
- Higher-Dimensional
- Computational Complexity
Moving Dot Products (Higher Dimensions)

The same kind of method can be used for higher dimensions:

- **Periodic functions in 2D**
 \[f_{lm}(\theta, \phi) = \sqrt{\frac{1}{(2\pi)^2}} e^{il\theta} \cdot e^{im\phi} \]
 \[\lambda_{lm}(\alpha, \beta) = \sqrt{(2\pi)^2} f_{lm}(\alpha, \beta) \]

- **Periodic functions in 3D**
 \[f_{lmn}(\theta, \phi, \psi) = \sqrt{\frac{1}{(2\pi)^3}} e^{il\theta} \cdot e^{im\phi} \cdot e^{in\psi} \]
 \[\lambda_{lmn}(\alpha, \beta, \gamma) = \sqrt{(2\pi)^3} f_{lmn}(\alpha, \beta, \gamma) \]
Outline

Review

Moving Dot Products:
- One-Dimensional (Continuous)
- One-Dimensional (Discrete)
- Higher-Dimensional
- Computational Complexity
Computational Complexity

What do we need to do in order to compute the moving dot-product of two periodic, n-dimensional arrays $g[\cdot]$ and $h[\cdot]$?
Computational Complexity

To compute the moving dot-product of two periodic, n-dimensional arrays $g[\cdot]$ and $h[\cdot]$:

1. We need to express $g[\cdot]$ and $h[\cdot]$ in the basis $v_k[\cdot]$:

$$g[\cdot] = \sum_{k=0}^{n-1} \hat{g}_k \cdot v_k[\cdot] \quad \text{and} \quad h[\cdot] = \sum_{k=0}^{n-1} \hat{h}_k \cdot v_k[\cdot]$$

2. We need to multiply (and scale) the coefficients:

$$(g[\cdot] \ast h[\cdot])[\cdot] = \sqrt{n} \sum_{k=0}^{n-1} \hat{g}_k \cdot \overline{\hat{h}_k} \cdot v_k[\cdot]$$

3. We need to evaluate at every index α:

$$(g[\cdot] \ast h[\cdot])[\alpha] = \sqrt{n} \sum_{k=0}^{n-1} \hat{g}_k \cdot \overline{\hat{h}_k} \cdot v_k[\alpha]$$
Computational Complexity

To compute the moving dot-product of two periodic, n-dimensional arrays $g[\cdot]$ and $h[\cdot]$: The first and third steps are a change of bases. These can be implemented as matrix multiplication and may be quadratic in n.
Computational Complexity

To compute the moving dot-product of two periodic, n-dimensional arrays $g[\cdot]$ and $h[\cdot]$

1. We need to express $g[\cdot]$ and $h[\cdot]$ in the basis $v_k[\cdot]$

\[g[\cdot] = \sum_{k=0}^{n-1} \hat{g}_k \cdot v_k[\cdot] \quad \text{and} \quad h[\cdot] = \sum_{k=0}^{n-1} \hat{h}_k \cdot v_k[\cdot] \]

\[O(N^2) \]

2. We need to multiply (and scale) the coefficients

\[(g[\cdot] \ast h[\cdot])[\cdot] = \sqrt{n} \sum_{k=0}^{n-1} \hat{g}_k \cdot \overline{\hat{h}_k} \cdot v_k[\cdot] \]

\[O(N) \]

3. We need to evaluate at every index α

\[(g[\cdot] \ast h[\cdot])[\alpha] = \sqrt{n} \sum_{k=0}^{n-1} \hat{g}_k \cdot \overline{\hat{h}_k} \cdot v_k[\alpha] \]

\[O(N^2) \]
Computational Complexity

To compute the moving dot-product of two periodic, n-dimensional arrays $g[\cdot]$ and $h[\cdot]$:

The **Fast Fourier Transform** (FFT) is an algorithm for expressing an array represented by samples at $\{\theta_0, \ldots, \theta_{n-1}\}$ as a linear sum of $v_k[\cdot]$.

The **Fast Inverse Fourier Transform** (IFFT) is an algorithm for expressing an array represented as a linear sum of $v_k[\cdot]$ by samples at $\{\theta_0, \ldots, \theta_{n-1}\}$.

Both take $O(N \log N)$ time.
Computational Complexity

To compute the moving dot-product of two periodic, \(n \)-dimensional arrays \(g[\cdot] \) and \(h[\cdot] \):

1. We need to express \(g[\cdot] \) and \(h[\cdot] \) in the basis \(v_k[\cdot] \):

\[
g[\cdot] = \sum_{k=0}^{n-1} \hat{g}_k \cdot v_k[\cdot] \quad \text{and} \quad h[\cdot] = \sum_{k=0}^{n-1} \hat{h}_k \cdot v_k[\cdot]
\]

2. We need to multiply (and scale) the coefficients:

\[
(g[\cdot] * h[\cdot])[\cdot] = \sqrt{n} \sum_{k=0}^{n-1} \hat{g}_k \cdot \bar{\hat{h}}_k \cdot v_k[\cdot]
\]

3. We need to evaluate at every index \(\alpha \):

\[
(g[\cdot] * h[\cdot])[\alpha] = \sqrt{n} \sum_{k=0}^{n-1} \hat{g}_k \cdot \bar{\hat{h}}_k \cdot v_k[\alpha]
\]

\(O(N \log N) \)
The Inverse Fourier Transform

The Fourier Transform is a change of basis transformation:

Evaluation Basis

(1,0,⋯,0,0)
(0,1,⋯,0,0)
⋯
(0,0,⋯,1,0)
(0,0,⋯,0,1)

\[\begin{align*}
\text{Complex Exponential Basis} & \quad \rightarrow \\
(e^{i0\theta_0}, e^{i0\theta_1}, \ldots, e^{i0\theta_{n-2}}, e^{i0\theta_{n-1}}) \\
(e^{i1\theta_0}, e^{i1\theta_1}, \ldots, e^{i1\theta_{n-2}}, e^{i1\theta_{n-1}}) \\
\vdots & \\
(e^{i(n-2)\theta_0}, e^{i(n-2)\theta_1}, \ldots, e^{i(n-2)\theta_{n-2}}, e^{i(n-2)\theta_{n-1}}) \\
(e^{i(n-1)\theta_0}, e^{i(n-1)\theta_1}, \ldots, e^{i(n-1)\theta_{n-2}}, e^{i(n-1)\theta_{n-1}})
\end{align*} \]
The Inverse Fourier Transform

Since the Fourier basis is orthonormal, we can get the \(k \)-th Fourier coefficient by taking the dot-product with the \(k \)-th basis function.
The Inverse Fourier Transform

This can be represented by the matrix:

\[F = \frac{1}{\sqrt{n}} \begin{pmatrix}
1 & 1 & \cdots & 1 & 1 \\
1 & e^{-i\theta} & \cdots & e^{-i(n-2)\theta} & e^{-i(n-1)\theta} \\
\vdots & \vdots & \ddots & \vdots & \vdots \\
1 & e^{-i(n-2)\theta} & \cdots & e^{-i(n-2)(n-2)\theta} & e^{-i(n-2)(n-1)\theta} \\
1 & e^{-i(n-1)\theta} & \cdots & e^{-i(n-1)(n-2)\theta} & e^{-i(n-1)(n-1)\theta}
\end{pmatrix} \]

Where \(\theta \) is the angle:

\[\theta = \frac{2\pi}{n} \]
The Inverse Fourier Transform

\[F = \sqrt{\frac{1}{n}} \begin{pmatrix} 1 & 1 & \ldots & 1 & 1 \\ 1 & e^{-i\theta} & \ldots & e^{-i(n-2)\theta} & e^{-i(n-1)\theta} \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ 1 & e^{-i(n-2)\theta} & \ldots & e^{-i(n-2)(n-2)\theta} & e^{-i(n-2)(n-1)\theta} \\ 1 & e^{-i(n-1)\theta} & \ldots & e^{-i(n-1)(n-2)\theta} & e^{-i(n-1)(n-1)\theta} \end{pmatrix} \]

Since both bases are orthogonal, the matrix is unitary, and the inverse Fourier transform is the transpose conjugate of the forward transform.
The Inverse Fourier Transform

\[F = \sqrt{\frac{1}{n}} \begin{pmatrix} 1 & 1 & \cdots & 1 \\ 1 & e^{-i\theta} & \cdots & e^{-i(n-2)\theta} \\ \vdots & \vdots & \ddots & \vdots \\ 1 & e^{-i(n-2)\theta} & \cdots & e^{-i(n-2)(n-2)\theta} \\ 1 & e^{-i(n-1)\theta} & \cdots & e^{-i(n-1)(n-2)\theta} \end{pmatrix} \begin{pmatrix} 1 \\ e^{-i(n-1)\theta} \\ \vdots \\ e^{-i(n-2)(n-1)\theta} \end{pmatrix} \]

In particular, given the Fourier coefficients:

\((\hat{a}_0, \cdots, \hat{a}_{n-1})\)

The inverse Fourier transform is:

\[F^{-1} \begin{pmatrix} \hat{a}_0 \\ \vdots \\ \hat{a}_{n-1} \end{pmatrix} = \bar{F}^t \begin{pmatrix} \hat{a}_0 \\ \vdots \\ \hat{a}_{n-1} \end{pmatrix} \]
The Inverse Fourier Transform

\[F = \sqrt{\frac{1}{n}} \begin{pmatrix} 1 & 1 & \cdots & 1 \\ 1 & e^{-i\theta} & \cdots & e^{-i(n-2)\theta} \\ \vdots & \vdots & \ddots & \vdots \\ 1 & e^{-i(n-2)\theta} & \cdots & e^{-i(n-2)(n-2)\theta} \end{pmatrix} \begin{pmatrix} 1 \\ e^{-i(n-2)(n-1)\theta} \end{pmatrix} \]

Taking the double conjugate, we get:

\[F^{-1} \begin{pmatrix} \hat{a}_0 \\ \vdots \\ \hat{a}_{n-1} \end{pmatrix} = \overline{F^t} \begin{pmatrix} \hat{a}_0 \\ \vdots \\ \hat{a}_{n-1} \end{pmatrix} = \overline{F^t} \begin{pmatrix} \hat{a}_0 \\ \vdots \\ \hat{a}_{n-1} \end{pmatrix} = F^t \begin{pmatrix} \hat{a}_0 \\ \vdots \\ \hat{a}_{n-1} \end{pmatrix} \]
The Inverse Fourier Transform

\[F = \sqrt{\frac{1}{n}} \begin{pmatrix}
1 & 1 & \cdots & 1 \\
1 & e^{-i\theta} & \cdots & e^{-i(n-2)\theta} \\
\vdots & \vdots & \ddots & \vdots \\
1 & e^{-i(n-2)\theta} & \cdots & e^{-i(n-2)(n-2)\theta} \\
1 & e^{-i(n-1)\theta} & \cdots & e^{-i(n-1)(n-2)\theta} \\
\end{pmatrix} \]

Since \(F = F^t \), this gives:

\[F^{-1} \begin{pmatrix}
\hat{a}_0 \\
\vdots \\
\hat{a}_{n-1}
\end{pmatrix} = F \begin{pmatrix}
\hat{a}_0 \\
\vdots \\
\hat{a}_{n-1}
\end{pmatrix} \]
The Inverse Fourier Transform

\[F^{-1} \left(\begin{array} {c} \hat{a}_0 \\ \vdots \\ \hat{a}_{n-1} \end{array} \right) = F \left(\begin{array} {c} \overline{\hat{a}_0} \\ \vdots \\ \overline{\hat{a}_{n-1}} \end{array} \right) \]

We can compute the inverse transform by:

1. Taking the conjugate of the Fourier coefficients
2. Computing the forward Fourier transform
3. Taking the conjugate of the resultant coefficients.