

FFTs in Graphics and Vision

Groups and Representations

Outline

Groups

Representations

Schur's Lemma

Correlation

Groups

A group is a set of elements G with a binary operation (often denoted "·") such that for all $f, g, h \in G$, the following properties are satisfied:

• Closure:

$$g \cdot h \in G$$

Associativity:

$$f \cdot (g \cdot h) = (f \cdot g) \cdot h$$

∘ Identity: \exists 1 ∈ G s.t.:

$$1 \cdot g = g \cdot 1 = g$$

• Inverse: $\forall g \in G \exists g^{-1} \in G \text{ s.t.}$: $g \cdot g^{-1} = g^{-1} \cdot g = 1$

If it is also true that $f \cdot g = g \cdot f$ for all $f, g \in G$, the group is called <u>commutative</u>, or <u>abelian</u>.

Groups

Examples

Under what binary operations are the following groups, what is the identity element, and what is the inverse:

- o Integers?
- Positive real-numbers?
- Points in \mathbb{R}^2 modulo $(2\pi, 2\pi)$?
- Vectors in a fixed vector space?
- Invertible linear transformations of a vector space?

Groups

Examples

Are these groups commutative:

- Integers under addition?
- Positive real-numbers under multiplication?
- Points in \mathbb{R}^2 modulo $(2\pi, 2\pi)$ under addition?
- Vectors under addition?
- Linear transformations under composition?

Often, we think of a group as a set of elements that act on some space:

E.g.:

- Invertible linear transformations act on vector spaces
- 2D rotations act on 2D arrays
- 3D rotations act on 3D arrays

A representation is a way of formalizing this...

A <u>representation</u> of a group G on a vector space V, denoted (ρ, V) , is a map ρ that sends every element in G to an invertible linear transformation on V, satisfying:

$$\rho(g \cdot h) = \rho(g) \cdot \rho(h) \quad \forall g, h \in G.$$

Note:

•
$$\rho(1) = 1$$
 since:
 $\rho(g) = \rho(g \cdot 1) = \rho(g) \cdot \rho(1)$
• $(\rho(g))^{-1} = \rho(g^{-1})$ since:
 $\rho(1) = \rho(g \cdot g^{-1}) = \rho(g) \cdot \rho(g^{-1})$

A <u>representation</u> of a group G on a vector space V, denoted (ρ, V) , is a map ρ that sends every element in G to an invertible linear transformation on V, satisfying:

$$\rho(g \cdot h) = \rho(g) \cdot \rho(h) \quad \forall g, h \in G.$$

Analogy:

Linear maps are functions between vector spaces that preserve the vector space structure:

$$L(a \cdot v_1 + b \cdot v_2) = a \cdot L(v_1) + b \cdot L(v_2)$$

A <u>representation</u> of a group G on a vector space V, denoted (ρ, V) , is a map ρ that sends every element in G to an invertible linear transformation on V, satisfying:

$$\rho(g \cdot h) = \rho(g) \cdot \rho(h) \quad \forall g, h \in G.$$

For simplicity, we will write:

Analogy:

$$\rho(g) = \rho_g$$

Linear maps are functions between vector spaces that preserve the vector space structure:

$$L(a \cdot v_1 + b \cdot v_2) = a \cdot L(v_1) + b \cdot L(v_2)$$

If the vector space *V* has a Hermitian inner product, and the representation preserves the inner product:

$$\langle v, w \rangle = \langle \rho_g v, \rho_g w \rangle \quad \forall g \in G; v, w \in V$$

the representation is called <u>unitary</u>.

Note:

For nice (e.g. finite, compact) we can always define a Hermitian inner product such that the representation is unitary.

Examples

- \circ G is the group of invertible $n \times n$ matrices
- V is the space of n-dimensional arrays with the standard inner-product
- $\circ \rho$ is the map:

$$\rho_M(v) = Mv$$

Representation?

Examples

- \circ G is the group of invertible $n \times n$ matrices
- V is the space of n-dimensional arrays with the standard inner-product
- $\circ \rho$ is the map:

$$\rho_M(v) = v$$

Representation?

Examples

- G is the group of unitary transformations on V
- V is a complex Hermitian inner product space
- $\circ \rho$ is the map:

$$\rho_U(v) = Uv$$

Representation?

Examples

- G is the group of 2D/3D rotations
- V is the space of functions on a circle/sphere with the standard inner-product
- \circ ρ is the map:

$$[\rho_R(f)](p) = f(Rp) \ \forall R \in G$$

Representation?

Examples

- G is the group of 2D/3D rotations
- V is the space of functions on a circle/sphere with the standard inner-product
- \circ ρ is the map:

$$[\rho_R(f)](p) = f(R^{-1}p) \quad \forall R \in G$$

Representation?

Examples

- \circ *G* Is the group \mathbb{R}^2 modulo $(2\pi, 2\pi)$
- V is the space of continuous, periodic functions in the plane, with the standard Hermitian inner-product
- \circ ρ is the map:

$$[\rho_{a,b}(f)](x,y) = f(x-a,y-b)$$

Representation?

Big Picture

Our goal is to try to better understand how a group acts on a vector space:

- How translational shifts act on periodic functions,
- How rotations act on functions on a sphere/circle
- Etc.

To do this we would like to simplify the "action" of the group into bite-size chunks.

Unless otherwise stated we will always be assuming that our representations are unitary

Given a representation (ρ, V) of a group G, if there exists a subspace $W \subset V$ such that the representation fixes W:

 $\rho_g(w) \in W \quad \forall g \in G \text{ and } w \in W$ then we say that W is a <u>sub-representation</u> of V.

Maschke's Theorem:

If W is a sub-representation of V, then the perpendicular space W^{\perp} will also be a sub-representation of V.

 W^{\perp} is defined by the property that every vector in W^{\perp} is perpendicular to every vector in W: $\langle w, w' \rangle = 0 \quad \forall w \in W \text{ and } w' \in W^{\perp}$

<u>Claim</u>: W^{\perp} will also be a sub-representation of V.

Proof: (By contradiction)

We would like to show that the representation ρ sends W^{\perp} back into itself...

<u>Claim</u>: W^{\perp} will also be a sub-representation of V.

Proof: (By contradiction)

We would like to show that the representation ρ sends W^{\perp} back into itself... Assume not.

There exist
$$w' \in W^{\perp}$$
, $w \in W$, and $g \in G$ s.t.: $\langle w, \rho_g(w') \rangle \neq 0$

Since ρ is unitary, this implies that:

$$\langle \rho_{g^{-1}}(w), \rho_{g^{-1}}(\rho_{g}(w')) \rangle \neq 0$$

$$\updownarrow$$

$$\langle \rho_{g^{-1}}(w), w' \rangle \neq 0$$

Claim: W^{\perp} will also be a sub-representation of V.

Proof: (By contradiction)

We would like to show that the representation ρ sends W^{\perp} back into itself... Assume not.

There exist $w' \in W^{\perp}$, $w \in W$, and $g \in G$ s.t.:

But this would contradict the Since ρ assumption that the representation ρ maps W back into itself!

$$\updownarrow \\ \langle \rho_{q^{-1}}(w), w' \rangle \neq 0$$

Example:

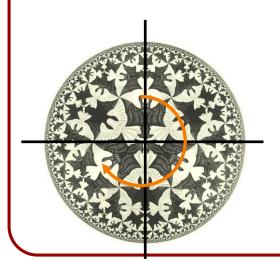
1. Consider the group of 2D rotations, acting on vectors in 3D by rotating around the *y*-axis. What are two sub-representations?

Example:

- 1. Consider the group of 2D rotations, acting on vectors in 3D by rotating around the *y*-axis. What are two sub-representations?
 - a) The *y*-axis: The group acts on this sub-space trivially, mapping every vector to itself
 - b) The *xz*-plane: The group acts as a 2D rotation on this 2D space.

Example:

2. Consider the group of 2D rotations, acting on functions on the unit disk.
What are two sub-representations?



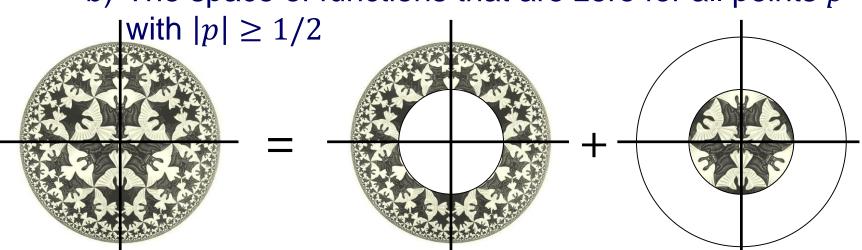
Example:

2. Consider the group of 2D rotations, acting on functions on the unit disk.

What are two sub-representations?

a) The space of functions that are zero for all points p with |p| < 1/2

b) The space of functions that are zero for all points p



Irreducible Representations

Given a representation (ρ, V) of a group G, the representation is said to be <u>irreducible</u> if the only subspaces of V that are sub-representations are:

$$W = V$$
 and $W = \emptyset$

We had talked about linear transformations as maps between vector spaces, that preserve the underlying vector space structure:

$$L(a \cdot v_1 + b \cdot v_2) = a \cdot L(v_1) + b \cdot L(v_2)$$

We had talked about a representation as a map from a group into the group of invertible linear transforms that preserves the group structure:

$$\rho(g \cdot h) = \rho(g) \cdot \rho(h)$$

It doesn't matter if we perform the vector-space/group operations before or after we apply the map.

Given a representation (ρ, V) a group G, what does it mean for a map $\Phi: V \to V$ to preserve the representation structure?

- Since Φ is a map between vector spaces, it should preserve the vector space structure:
 - $\Rightarrow \Phi$ is a linear transformation.
- Φ should also preserve the group action structure: $\Phi(\rho_g(v)) = \rho_g(\Phi(v))$

Such a map is called *G*-linear.

Claim:

If $\Phi: V \to V$ is G-linear, then both the kernel and the image of Φ are sub-representations.

Claim:

If $\Phi: V \to V$ is G-linear, then both the kernel and the image of Φ are sub-representations.

Proof:

If $v \in \text{Kernel}(\Phi)$ then, for $g \in G$ we have: $0 = \Phi(v) = \rho_g(\Phi(v))$ $= \Phi\left(\rho_g(v)\right)$ \updownarrow $\rho_g(v) \in \text{Kernel}(\Phi)$

Claim:

If $\Phi: V \to V$ is G-linear, then both the kernel and the image of Φ are sub-representations.

Proof:

If
$$w = \Phi(v) \in \operatorname{Image}(\Phi)$$
 then, for $g \in G$ we have:

$$\rho_g(w) = \rho_g(\Phi(v))$$

$$= \Phi\left(\rho_g(v)\right)$$

$$\in \operatorname{Image}(\Phi)$$

Given an irreducible representation (ρ, V) of a group G, if Φ is G-linear than Φ is scalar multiplication:

$$\Phi = \lambda \cdot Id.$$

Proof:

 Since Φ is a linear transformation, it has a (complex) eigenvalue λ.

Proof:

- Since Φ is a linear transformation, it has a (complex) eigenvalue λ.
- 2. Since Φ is G-linear, so is $(\Phi \lambda \cdot \text{Id.})$: $(\Phi \lambda \cdot \text{Id.})(\rho_g(v)) = \Phi(\rho_g(v)) \lambda \cdot \rho_g(v)$ $= \rho_g(\Phi(v)) \rho_g(\lambda \cdot v)$ $= \rho_g((\Phi \lambda \cdot \text{Id.})(v))$

Proof:

3. Since λ is an eigenvalue of Φ , $(\Phi - \lambda \cdot Id.)$ must have a non-trivial kernel $W \subset V$.

Schur's Lemma

- 3. Since λ is an eigenvalue of Φ , $(\Phi \lambda \cdot Id.)$ must have a non-trivial kernel $W \subset V$.
- 4. This implies that the kernel of $(\Phi \lambda \cdot Id.)$ must be a sub-representation of V.

Schur's Lemma

- 3. Since λ is an eigenvalue of Φ , $(\Phi \lambda \cdot Id.)$ must have a non-trivial kernel $W \subset V$.
- 4. This implies that the kernel of $(\Phi \lambda \cdot Id.)$ must be a sub-representation of V.
- 5. Since (ρ, V) is irreducible and the kernel of $(\Phi \lambda \cdot Id.)$ is not empty, W = V.

Schur's Lemma

- 3. Since λ is an eigenvalue of Φ , $(\Phi \lambda \cdot Id.)$ must have a non-trivial kernel $W \subset V$.
- 4. This implies that the kernel of $(\Phi \lambda \cdot Id.)$ must be a sub-representation of V.
- 5. Since (ρ, V) is irreducible and the kernel of $(\Phi \lambda \cdot Id.)$ is not empty, W = V.
- 6. Since the kernel is the entire vector space: $(\Phi \lambda \cdot Id.) = 0 \iff \Phi = \lambda \cdot Id.$

Corollary:

All irreducible representations of commutative groups must be one-dimensional.

Proof:

1. Fix some element $h \in G$.

- 1. Fix some element $h \in G$.
- 2. Since G is commutative, ρ_h must be G-linear:

$$\rho_g(\rho_h(v)) = \rho_{g \cdot h}(v)$$

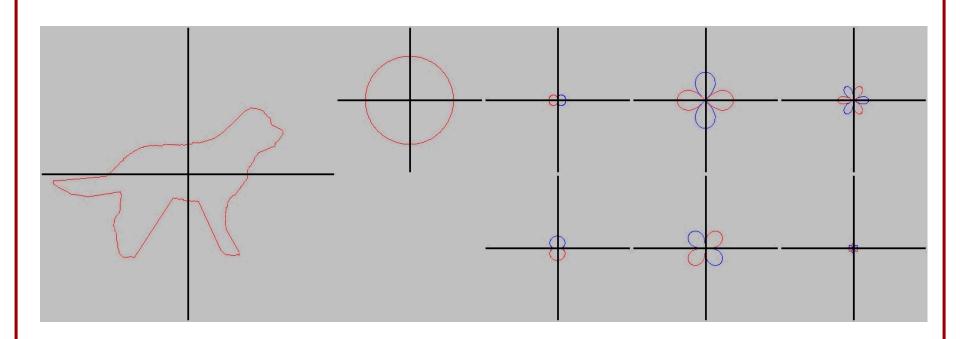
$$= \rho_{h \cdot g}(v)$$

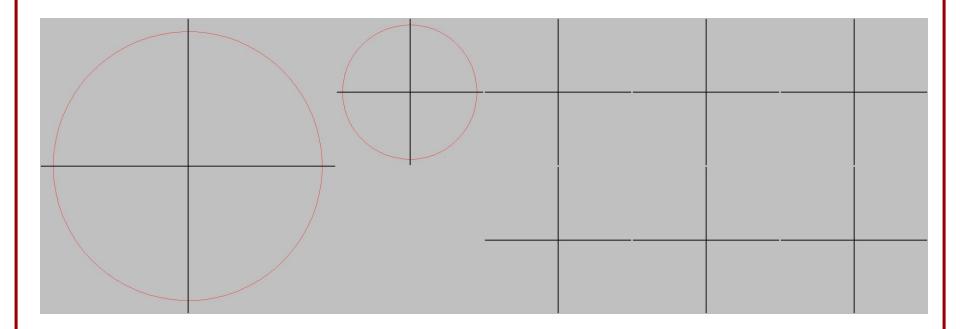
$$= \rho_h(\rho_g(v))$$

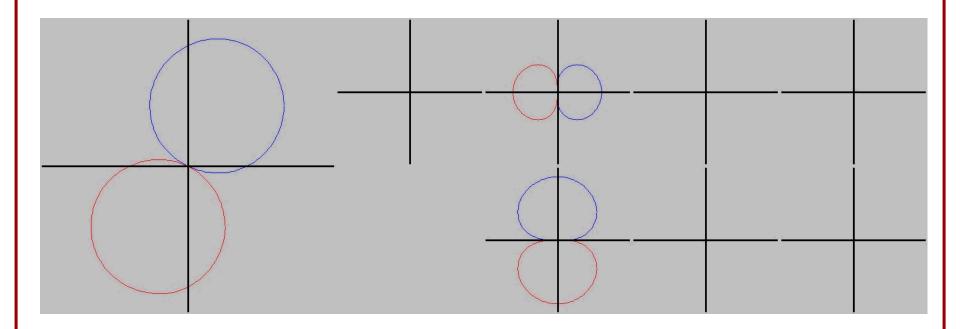
- 1. Fix some element $h \in G$.
- 2. Since G is commutative, ρ_h must be G-linear.
- 3. Since (ρ, V) is irreducible, $\rho_h = \lambda \cdot \text{Id}$.

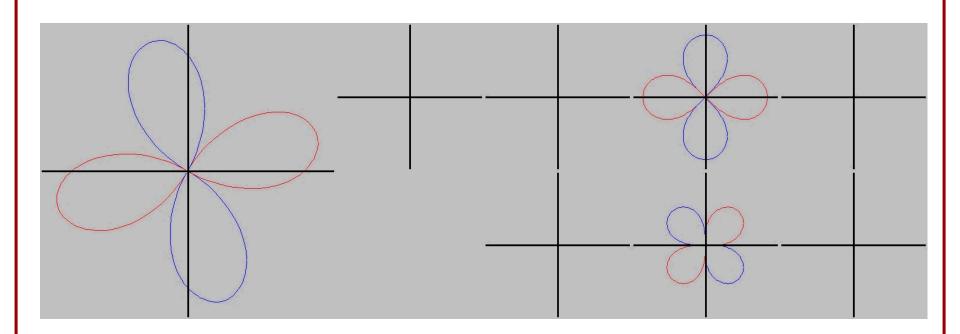
- 1. Fix some element $h \in G$.
- 2. Since G is commutative, ρ_h must be G-linear.
- 3. Since (ρ, V) is irreducible, $\rho_h = \lambda \cdot \text{Id}$.
- 4. Since this is true for any $h \in G$, any subspace $W \subset V$ is a sub-representation.

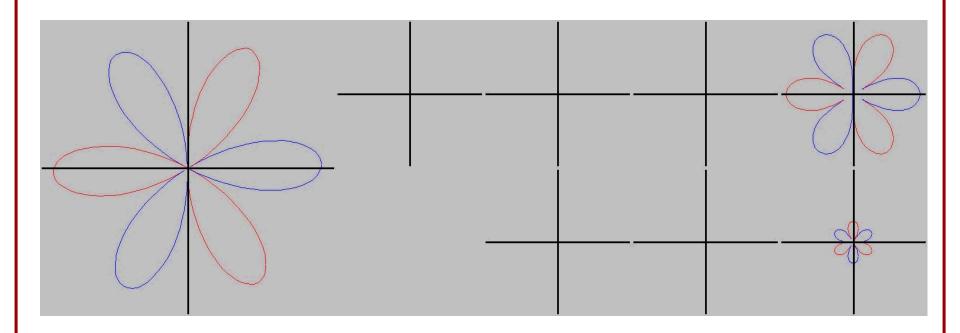
- 1. Fix some element $h \in G$.
- 2. Since G is commutative, ρ_h must be G-linear.
- 3. Since (ρ, V) is irreducible, $\rho_h = \lambda \cdot \text{Id}$.
- 4. Since this is true for any $h \in G$, any subspace $W \subset V$ is a sub-representation.
- 5. Since *V* is irreducible, *V* is one-dimensional.

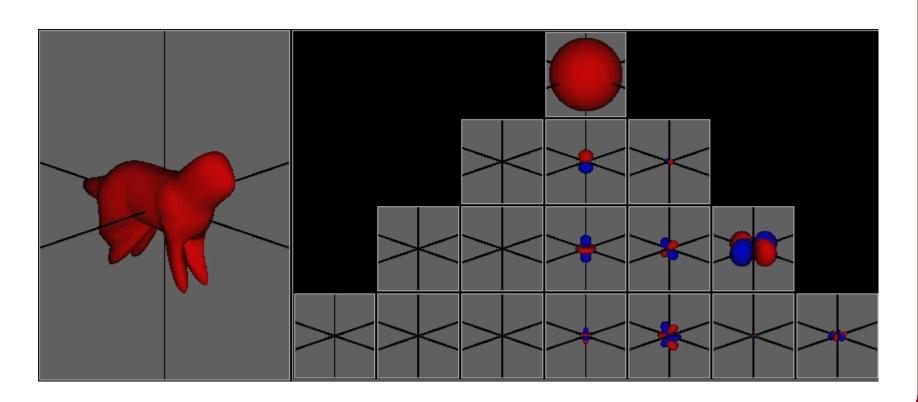


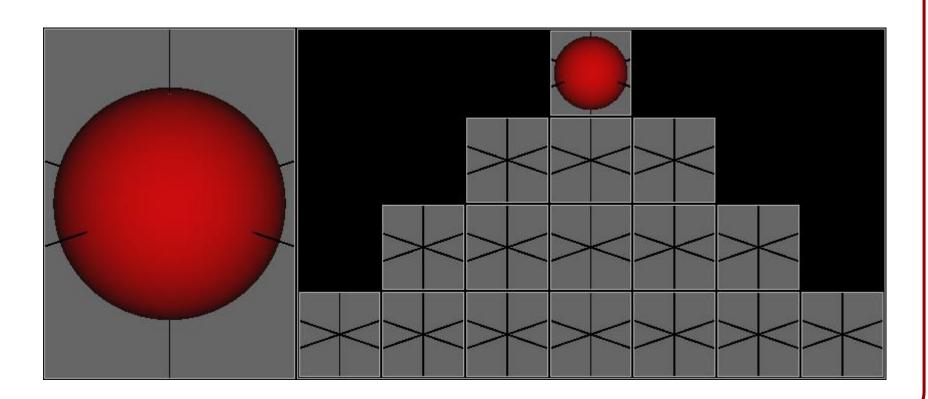


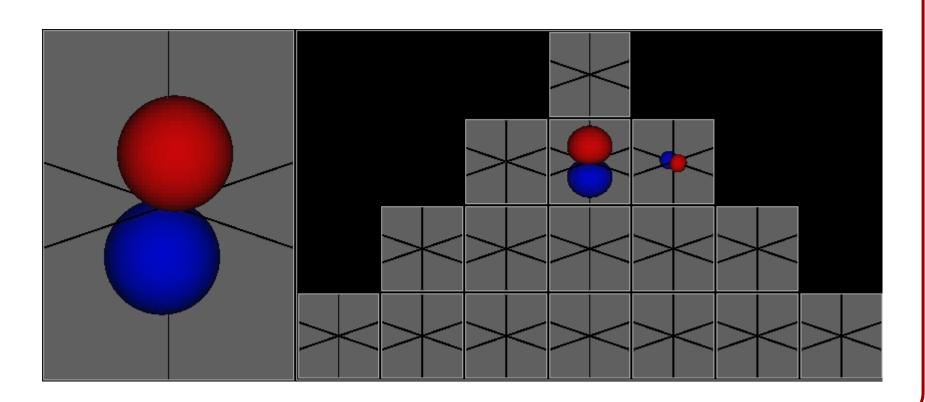


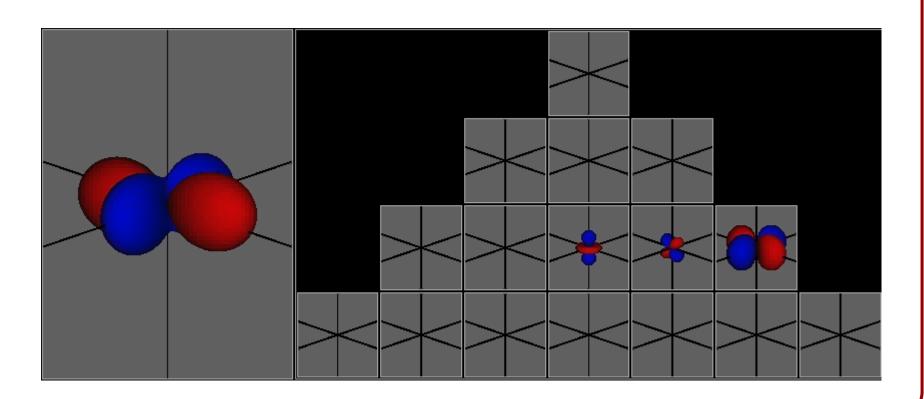


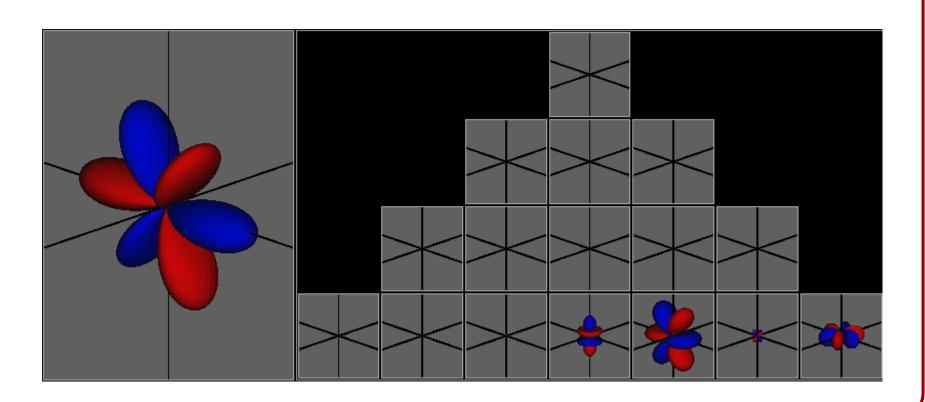




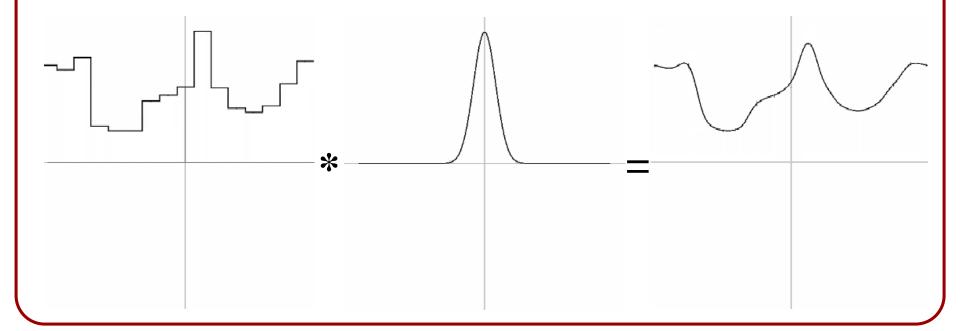




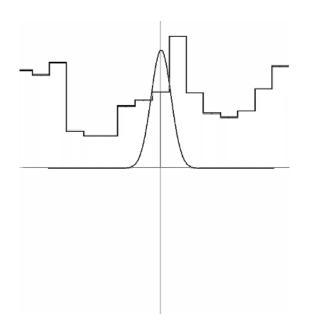


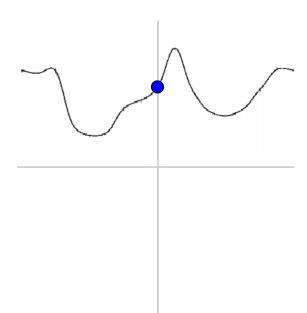


In signal/image/voxel processing, we are often interested in applying a filter to some initial data.

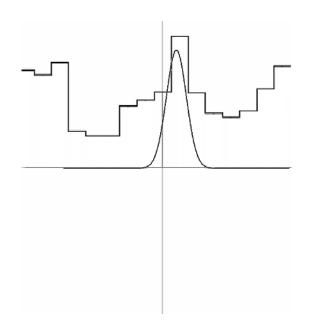


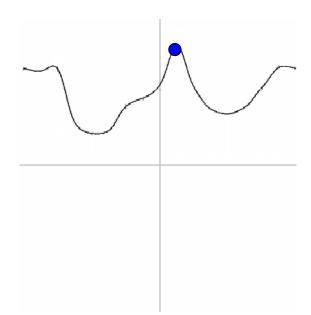
In signal/image/voxel processing, we are often interested in applying a filter to some initial data.



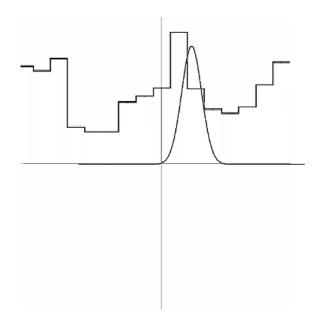


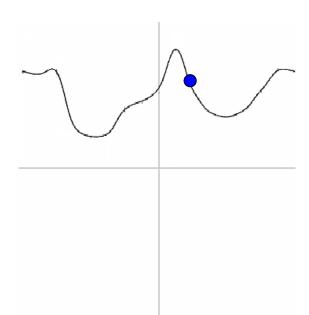
In signal/image/voxel processing, we are often interested in applying a filter to some initial data.



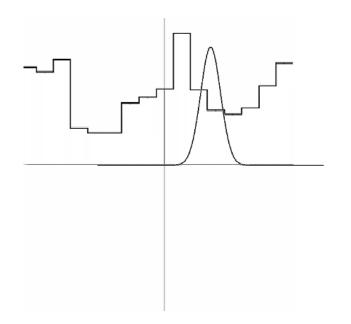


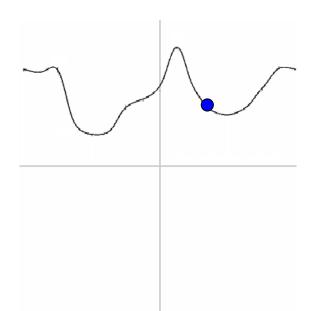
In signal/image/voxel processing, we are often interested in applying a filter to some initial data.



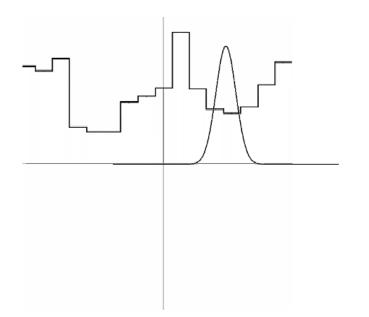


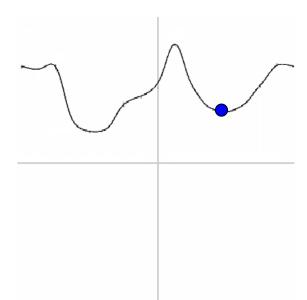
In signal/image/voxel processing, we are often interested in applying a filter to some initial data.



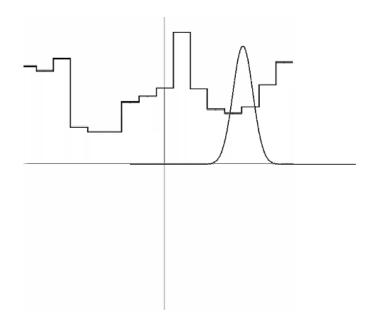


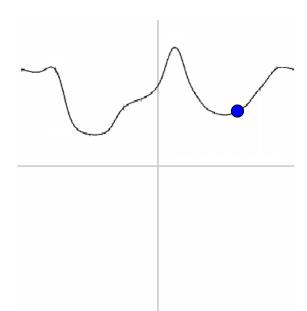
In signal/image/voxel processing, we are often interested in applying a filter to some initial data.



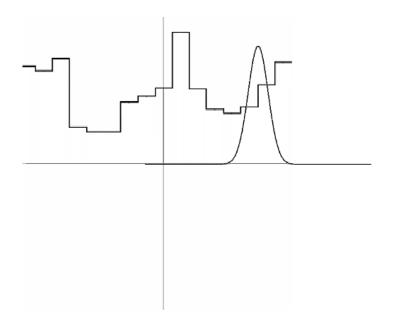


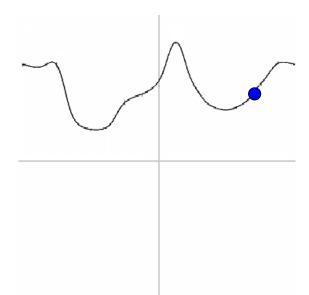
In signal/image/voxel processing, we are often interested in applying a filter to some initial data.

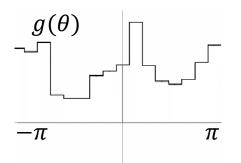


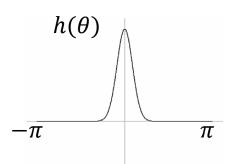


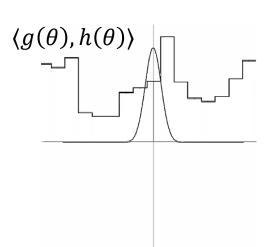
In signal/image/voxel processing, we are often interested in applying a filter to some initial data.

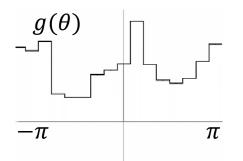


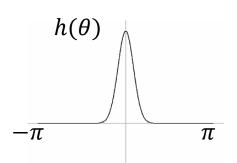


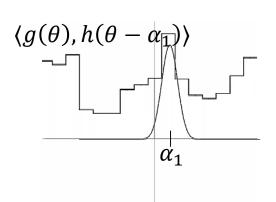


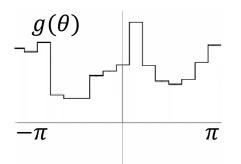


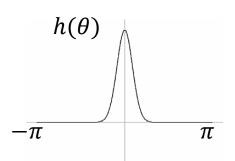


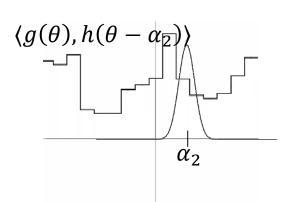


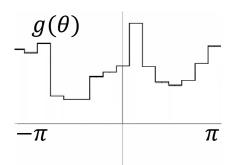


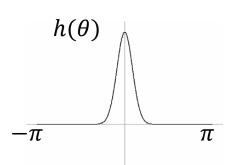


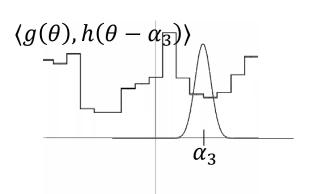








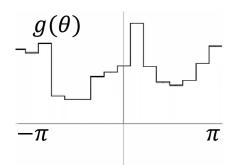


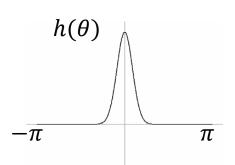


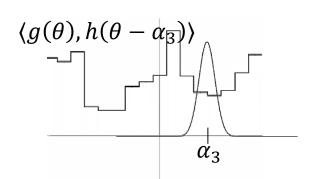
We can write out the operation of smoothing a signal g by a filter h as:

$$(g \star h)(\alpha) = \langle g, \rho_{\alpha}(h) \rangle$$

where ρ_{α} is the linear transformation that translates a periodic function by α .







We can think of this as a representation:

- V is the space of periodic functions on the line
- \circ G is the group of real numbers in $[0,2\pi)$
- \circ ρ_{α} is the representation translating a function by α .

We can think of this as a representation:

- V is the space of periodic functions on the line
- \circ G is the group of real numbers in $[0,2\pi)$
- \circ ρ_{α} is the representation translating a function by α .

This is a representation of a commutative group...

 \Rightarrow There exist orthogonal one-dimensional (complex) subspaces $V_1, \dots, V_n \subset V$ that are the irreducible representations of V.

Setting $\phi_i \in V_i$ to be a unit-vector, we know that the group acts on ϕ_i by scalar multiplication:

$$\rho_{\alpha}(\phi_i) = \lambda_i(\alpha) \cdot \phi_i$$

Note:

Since the V_i are orthogonal, the basis $\{\phi_1, \dots \phi_n\}$ is orthonormal.

Setting $\phi_i \in V_i$ to be a unit-vector, we know that the group acts on ϕ_i by scalar multiplication:

$$\rho_{\alpha}(\phi_i) = \lambda_i(\alpha) \cdot \phi_i$$

We can write out the functions $g, h \in V$ as:

$$g(\theta) = \hat{g}_1 \cdot \phi_1(\theta) + \dots + \hat{g}_n \cdot \phi_n(\theta)$$

$$h(\theta) = \hat{h}_1 \cdot \phi_1(\theta) + \dots + \hat{h}_n \cdot \phi_n(\theta)$$

with \hat{g}_i , $\hat{h}_i \in \mathbb{C}$.

Then the moving dot-product can be written as:

$$(g \star h)(\alpha) = \langle g, \rho_{\alpha}(h) \rangle$$

$$(g \star h)(\alpha) = \langle g, \rho_{\alpha}(h) \rangle$$

Expanding in the basis $\{\phi_1, \dots, \phi_n\}$:

$$(g \star h)(\alpha) = \langle \sum_{j=1}^{n} \hat{g}_{j} \phi_{j}, \rho_{\alpha} \left(\sum_{k=1}^{n} \hat{h}_{k} \phi_{k} \right) \rangle$$

$$(g \star h)(\alpha) = \langle \sum_{j=1}^{n} \hat{g}_{j} \phi_{j}, \rho_{\alpha} \left(\sum_{k=1}^{n} \hat{h}_{k} \phi_{k} \right) \rangle$$

By linearity of ρ_{α} :

$$(g \star h)(\alpha) = \langle \sum_{j=1}^{n} \hat{g}_{j} \phi_{j}, \sum_{k=1}^{n} \hat{h}_{k} \rho_{\alpha}(\phi_{k}) \rangle$$

$$(g \star h)(\alpha) = \langle \sum_{j=1}^{n} \hat{g}_{j} \phi_{j}, \sum_{k=1}^{n} \hat{h}_{k} \rho_{\alpha}(\phi_{k}) \rangle$$

By linearity of the inner product in the first term:

$$(g \star h)(\alpha) = \sum_{j=1}^{n} \hat{g}_{j} \langle \phi_{j}, \sum_{k=1}^{n} \hat{h}_{k} \rho_{\alpha}(\phi_{k}) \rangle$$

$$(g \star h)(\alpha) = \sum_{j=1}^{n} \hat{g}_{j} \langle \phi_{j}, \sum_{j=1}^{n} \hat{h}_{k} \rho_{\alpha}(\phi_{k}) \rangle$$

By conjugate-linearity in the second term:

$$(g \star h)(\alpha) = \sum_{j,k=1} \hat{g}_j \overline{\hat{h}}_k \langle \phi_j, \rho_\alpha(\phi_k) \rangle$$

$$(g \star h)(\alpha) = \sum_{j,k=1}^{n} \hat{g}_{j} \overline{\hat{h}}_{k} \langle \phi_{j}, \rho_{\alpha}(\phi_{k}) \rangle$$

Because ρ_{α} is scalar multiplication in V_i :

$$(g \star h)(\alpha) = \sum_{j,k=1} \hat{g}_j \overline{\hat{h}}_k \langle \phi_j, \lambda_k(\alpha) \phi_k \rangle$$

$$(g \star h)(\alpha) = \sum_{j,k=1}^{n} \hat{g}_{j} \overline{\hat{h}}_{k} \langle \phi_{j}, \lambda_{k}(\alpha) \phi_{k} \rangle$$

Again, by conjugate-linearity in the second term:

$$(g \star h)(\alpha) = \sum_{j,k=1} \hat{g}_j \overline{\hat{h}}_k \overline{\lambda_k(\alpha)} \langle \phi_j, \phi_k \rangle$$

$$(g \star h)(\alpha) = \sum_{j,k=1}^{n} \hat{g}_{j} \overline{\hat{h}}_{k} \overline{\lambda_{k}(\alpha)} \langle \phi_{j}, \phi_{k} \rangle$$

And finally, by the orthonormality of $\{\phi_1, \dots, \phi_n\}$:

$$(g \star h)(\alpha) = \sum_{j=1} \hat{g}_j \overline{\hat{h}}_j \overline{\lambda_j(\alpha)}$$

$$(g \star h)(\alpha) = \sum_{j=1}^{n} \hat{g}_{j} \overline{\hat{h}}_{j} \overline{\lambda_{j}(\alpha)}$$

This implies that we can compute the moving dotproduct by multiplying the coefficients of g and h.

Convolution/Correlation in the spatial domain is multiplication in the frequency domain!

What is $\lambda_j(\alpha)$?

What is $\lambda_j(\alpha)$?

Since the representation is unitary, $|\lambda_j(\alpha)| = 1$.

$$\bigvee$$

$$\exists \tilde{\lambda}_j : [0,2\pi) \to \mathbb{R}$$
 s.t. $\lambda_j(\alpha) = e^{i\tilde{\lambda}_j(\alpha)}$

What is $\lambda_j(\alpha)$?

$$\lambda_j(\alpha) = e^{i\widetilde{\lambda}_j(\alpha)}$$
 for some $\widetilde{\lambda}_j$: $[0,2\pi) \to \mathbb{R}$.

Since it's a representation:

$$\lambda_{j}(\alpha + \beta) = \lambda_{j}(\alpha) \cdot \lambda_{j}(\beta) \quad \forall \alpha, \beta \in [0, 2\pi)$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \qquad \downarrow$$

$$\tilde{\lambda}_{j}(\alpha + \beta) = \tilde{\lambda}_{j}(\alpha) + \tilde{\lambda}_{j}(\beta)$$

$$\downarrow \qquad \qquad \downarrow$$

$$\exists \kappa_{i} \in \mathbb{R} \quad s. t. \quad \tilde{\lambda}_{i}(\alpha) = \kappa_{i} \cdot \alpha$$

What is $\lambda_j(\alpha)$?

$$\lambda_j(\alpha) = e^{i\kappa_j\alpha}$$
 for some $\kappa_j \in \mathbb{R}$.

Since it's a representation:

$$1 = \lambda_{j}(0) = \lambda_{j}(2\pi) = e^{i\kappa_{j}2\pi}$$

$$\downarrow \qquad \qquad \qquad \downarrow$$

$$\kappa_{i} \in \mathbb{Z}$$

Thus, the correlation of the signals $g, h: S^1 \to \mathbb{C}$ can be expressed as:

$$(g \star h)(\alpha) = \sum_{j=1}^{n} \hat{g}_{j} \overline{\hat{h}}_{j} e^{-i\kappa_{j}\alpha}$$

where $\kappa_i \in \mathbb{Z}$.