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Abstract. Geometry processing applications frequently rely on octree structures, since they provide simple
and efficient hierarchies for discrete data. However, octrees do not guarantee direct continuous interpolation of
this data inside its nodes. This motivates the use of the octree’s dual structure, which is one of the simplest
continuous hierarchical structures. With the emergence of pointerless representations, with their ability to reduce
memory footprint and adapt to parallel architectures, the generation of duals of pointerless octrees becomes a
natural challenge. This work proposes strategies for dual generation of static or dynamic pointerless octrees.
Experimentally, those methods enjoy the memory reduction of pointerless representations and speed up the
execution by several factors compared to the usual recursive generation.
Keywords: Octree. Dual. Hash Table.

1 Introduction
Hierarchical structures are widely used to store dis-

crete geometrical data. In particular, regular hierarchies like
octrees [13] are fundamental ingredients in several geometry
processing applications. However, octrees are discontinuous
structures, in the sense that information in a refined node may
not be directly accessible to a neighbor node. Defining data
interpolation inside each node is thus not always continuous.
This discontinuity makes the use of octree very delicate for
certain applications [20, 17], such as adaptive extraction of
isosurface [11]. A simple solution that preserves the simpli-
city and regularity of octrees but remains continuous is the
octree dual, which is already widely used [7, 15, 12, 16].
This work introduces fast algorithms for the generation of
dual octrees.

The regularity of the octree, subdividing in the middle
independently of the data, reduces the adaptability of the
structure, but it provides several advantages in terms of ease
of use and performance. Classical representations of octrees
use pointers, which leads to large memory footprint and ran-
dom memory access during traversal. This is particularly in-
efficient, but can be avoided if using pointerless represent-
ations [4, 13]. Such representations associate to each node
of the octree a unique key [10, 19], and the traversal opera-
tions resume to key manipulations that can be performed in
local memory [14, 5, 2]. This work proposes to generate the
dual of an octree using such key manipulations, enjoying the
reduced memory footprint of pointerless representations and
improving the execution time by several factors.
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Related works. Dual octrees have been first used in geo-
metry processing for isosurface extraction [7, 15, 12, 11].
Since it is a continuous structure, usual trilinear interpol-
ation [15], higher order interpolation [7] or finite element
method [16] fit nicely, while preserving the adaptability of
the octree [12]. All those works use a recursive generation
of the dual, which is recalled in Section 3. Recently, León
et al. [9] proposed a data structure, which preprocesses the
octree for dual generation, storing an extra marker per leaf
(see Section 3). This allows enumerating the interior vertices
and generating the dual from those. Our proposal also builds
the dual cells from the octree vertices, but reduces the exe-
cution time using key manipulations and is also able to avoid
preprocessing and extra memory usage.

Pointerless representations of octrees [4] have become
popular for sparing memory [3] and for their ability to work
on parallel [21] and GPU architectures [1]. The use of Mor-
ton codes [10, 19] for indexing the octree (see Section 2) is
widely used, since they allow for efficient manipulation as
dilated integers [14, 18] and optimized search [5, 2].

Contributions. This paper introduces algorithms to effi-
ciently generate dual of pointerless octrees. Our method en-
joys the possibility offered by such representations to access
the octree nodes directly, instead of following the subdivi-
sion hierarchy. More precisely, we propose two strategies
(see Section 4). The first one stores the interior vertices of
the octree during preprocessing and then generates the dual
volumes from those vertices. This is efficient for static octree
since it factors the vertex generation, but require an extra
memory to store the vertices. The second strategy decides
during the octree leaves’ traversal which vertices to process.
This removes the preprocessing and avoids storing the ver-
tices and fits nicely for dynamically adapted octrees. We also
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propose simple key manipulations on dilated integers [18] to
efficiently represent the vertices of the octree, and an optim-
ized search to retrieve the dual volumes from those vertices.
Those methods accelerate the dual generation by an average
factor above 3, as shown in the experiments of Section 5.

For the sake of clarity, the figures of this work represent
quadtrees, while the text and the algorithms refer to the 3D
case. All the results naturally generalize to any dimension.
The notation abc means the cyclic repetition abcabcabc . . . .

2 Octrees and their Representations
An octree [13] is a hierarchical data structure based on

recursive decomposition of an initial cube in 3D, where
each node of the hierarchy represents a part of the ini-
tial cube as follows. The root node of an octree represents
the whole cube. Each node may be subdivided, generating
eight children, each of which represents one octant (see Fig-
ure 1). Usually, a piece of data is associated only to the un–
subdivided nodes, called leaves. The depth of a node n is the
number of divisions between the root and n.
Classical octree structures. The two most common repres-
entations of octrees use pointers to represent the subdivisions
hierarchy. The first one relies on an exhaustive tree repres-
entation (see Figure 2(top)): each node has eight pointers,
one for each of its children, and a reference to the associ-
ated data. The second one, called sibling/child representa-
tion, stores for each node a pointer to its first child and to the
next child of its parent, and a reference to the data.

Besides, some implementations add pointers to the parent
to accelerate bottom-up traversals. Observe that the second
option uses a fourth of the memory (2 pointers per node,
instead of 8), but requires in average 4.5 more pointer de-
referencing to access a given node.
Hashed octree. Another type of octree representation,
more compact, replaces pointers by index manipulation. The
nodes are then stored in a hash table, which allows direct ac-
cess to any node (see Figure 2(bottom)). This representation
assigns to each node a key, which is used to identify it and
to compute its address in the hash table. This key may rep-
resent the position of the node in the subdivision hierarchy
or the geometry of the associated cube. In efficient schemes,
the key cumulates both significations (see Figure 3). This al-
lows at the same time to identify the children of a node by
the octant orientation for traversal algorithms, and to access
a node directly from its position, for search procedures [2].
Morton codes. There are several efficient definitions of
such keys [19], the most usual being Morton codes [10].
The Morton key kn of a node n can be generated either
recursively from the octree hierarchy or from the geometry
of the associated cube.

Following the first approach, the key of the root is 1, and
the key of a child of n is the concatenation of kn with the 3
bits coding the octant of the child (see Figure 3). The depth
of n is then l = b 13 log2 (kn)c and the key of the parent of n
is obtained by removing the 3 last bits of kn: kn � 3.
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Figure 1: Quadtree with the Morton keys of each node.

111
00

111
01

111
10

111 
11

101 110

1

111

100 
1100

100 
1101

100 
1110

100  
1111

100
00

100
01

100
10

100

100
11

100
11

011

1

100
01

001

100
00

000

100
10

010

111
00

100 
1100

100

100

111
01

101

100 
1101

101

111
10

110

100 
1110

110

111 
11

111

100  
1111

111

Figure 2: Two representations for the quadtree of Figure 1, using
pointers (top) and hash table (bottom). The hash table uses the three
last bits of the key: k & 0̄111.
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Figure 3: Suffixes to append to the Morton code x of a node to
obtain the codes of its children, in 2d (left) and 3d (right).
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The key kn can also be generated from the depth l of n
and the position (x, y, z) of its center: assuming that the root
is the unit cube [0, 1]3, the side of the cube associated to n
is 2−l and the key kn is computed by interleaving the bits
of x, y and z: if x = 0.x1x2 . . . xM , y = 0.y1y2 . . . yM and
z = 0.z1z2 . . . zM , then kn = 1z1y1x1z2y2x2 . . . zlylxl (see
Figures 1 and 4). This interleaving can be accelerated using
dilated integer operations [14, 18].

y = 0.y1y2 . . . yl . . . yMx = 0.x1x2 . . . xl . . . xM

center(n) = (x, y) ∈ [0, 1]2

kl(n) = 0̄ 1 y1x1 y2x2 . . . ylxl

Figure 4: Bit interleaving for the Morton key of n at depth l.

Morton hashing. The usual hash function for Morton keys
assigns to a node n the b last bits of its key: knmod 2b =
kn & 0̄11 . . . 1. This leads to a hash table of size 2b. Two
nodes would collide (i.e. have the same Morton key) if
they have the same path from their b

3 -ancestry. This scheme
intends to equalize the hash table (see Figure 2), in the sense
that its entries are regularly distributed, especially when the
octree is unbalanced. To obtain good hashing performances,
b must be big enough to avoid hash collisions, which may
require large amount of continuous memory, although the
amount of memory actually used is always less than for
pointer representation.

3 Octree Duals
The definition of the dual of an octree follows the notion

of Poincaré duality for cell complexes [6]. In the 2D case,
the dual can be obtained informally by creating dual vertices
at the center of each leaf of the quadtree, and drawing a dual
edge between vertices of adjacent leaves, i.e. leaves of the
quadtree sharing an edge (see Figure 5).

More formally, the cell complex is associated to the last
level of the octree, where the 3-dimensional cells are the
cubes associated to the leaves of the octree. The cells of di-
mension 2, 1 and 0 are respectively the faces, edges and ver-
tices of those leaf cubes. The dual is the cell complex whose
cells of dimension c are in bijection to cells of dimension
3− c of the octree. In particular, leaf cubes of the octree are
identified to vertices of the dual, and vertices of those cubes
in the interior of the octree are identified to volumes (3-cells)
of the dual.

The adjacency in the dual is defined as follow. If a c-cell
e of the octree has (primal) cells v1 and v2 as faces, then the
dual cells identified with v1 and v2 are adjacent in the dual
complex, sharing the dual cell identified with e. In particular,
the dual vertices identified with adjacent leaves of the octree
are linked by a dual edge.
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Figure 5: Dual of the quadtree of Figure 1, with the leaf vertices
corresponding to dual volumes marked.

Frequently, the volumes associated to vertices on the
boundary of the octree are discarded [12, 16, 9]. The dual
volumes are frequently represented by eight octree leaves
(i.e. dual vertices), although some of those leaves may be
repeated. This redundancy is useful in applications such as
Dual Marching Cubes [15] since it allows handling dual
volumes as combinatorial cubes, although their geometry
may differ.

Recursive generation. The usual computation of dual
octrees requires a recursive implementation [7, 15], return-
ing each dual cell by its dual vertices, or equivalently the
associated octree leaves. The recursion starts with the root
of the octree, which corresponds to a single dual vertex.
A recursive function is implemented for each kind of dual
cell, namely dual vertex / primal cube cubeProc(n0),
dual edge / primal face faceProc(n0, n1), dual face /
primal edge edgeProc(n0, n1, n2, n3) and dual volume
/ primal vertex vertProc(n0, . . . , n7). Those functions
stop when all of their arguments are leaf nodes. They recurse
when some of its arguments are not leaves, and call the func-
tions corresponding to all the dual cells created by subdivid-
ing those nodes. The dual volumes are returned only from
vertProc. In the 2D case, the creation of the quadtree dual
use three functions represented in Figure 7, and their use is
illustrated in Figure 6.

Observe that this algorithm calls one of the recursive
function once for each cell it traverses, i.e. once for all the
cells of all the levels of the octree. Its complexity is therefore
linear. Our proposal is also linear, but its complexity is
proportional only to the number of vertices of the leaves of
the octree, which is around nine times less.
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Figure 6: Illustration of the recursive generation of the dual quadtree (middle bottom), made of four faces (i,j,k,l). The sequence of calls of
the recursive procedures of Figure 7 starts from the root node (middle top).
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Figure 7: Recursive procedures to generate the dual of a quadtree
(image inspired from [7]).

Volume octree. Recently, León et al. [9] proposed to store
extra information within the octree leaves to accelerate the
dual generation. More precisely, they assign each dual cell
to one of its dual vertex, i.e. a leaf node. Each octree node
has eight extra bits to mark if it is responsible for each of the
eight possible primal vertices (see Figure 8). This assignment
is done in a two-passes traversal of the octree. Then, the dual
extraction traverses the octree and for each leaf, processes
the leaf vertices assigned to it by searching for the eight
possible adjacent leaves. It returns the dual cell as the eight
search results (see Figure 9).

Our proposal also builds the dual cells from the octree
vertices. However, it optimizes the final search, simplifies
the assignment and is able to avoid the preprocessing and
the extra memory used for it.
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Figure 8: Illustration of the volume quadtree data structure: each
vertex is assigned to an adjacent leaf.

● ●

● ●

● ●

● ●

●

●

● ●

●

Figure 9: Computing the dual volume from a vertex by searching
for leaves at the four (eight for octree) adjacent positions, marked
as an orange dot for two of the vertices. For the upper right vertex,
the four searches returns immediately. For the lower left one, one
search returns immediately, and the three others must look one level
up in the quadtree, two of them eventually leading to the same leaf.
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Algorithm 1: Preprocessing step: vertex generation
in : The octree
out
:

Auxiliary hash table aux with the vertices

1 foreach key k of the octree’s leaves do
// codes for k’s vertices, see Algorithm leaf2vertopt

2 level, v codes[8]← leaf2vert(k) ;
3 for i ∈ [0 · · · 7] do
4 if v codes[i] = ∅ then next vert i ;

// get current vertex/level data of aux
5 v, lv← aux[ v codes[i] ] ;
6 if v = ∅ then aux[ v codes[i] ]← level ;
7 else lv ← min(level, lv) ;

Algorithm 2: Traversal step: dual generation
in : The octree and the auxiliary hash table
out
:

The dual volumes

1 foreach vertex code / level v, lv in aux do
// node keys at level lv, see Algorithm vert2leafopt

2 keys[8]← vert2leaf(v,lv) ;
3 for j ∈ [0 · · · 7] do

// optimized search for leaf: up from level lv
4 while keys[j] 6= ∅ & ¬node exists(keys[j])

do
5 keys[j]�= 3;
6 output keys ;

4 Optimized Dual Generation

The use of keys and hash table to represent octrees al-
lows bypassing the hierarchic traversal. We propose here a
scheme to enjoy this aspect in the dual generation with two
different strategies. The first one uses Morton-like codes to
represent the vertices of the octree, permitting to store all
the octree vertices at preprocessing and efficiently search for
the dual vertices from the Morton-like codes. It suits for ap-
plications where the octree is static, factoring on the prepro-
cessing time. The second strategy avoids the extra storage
of the octree vertices, but with a small execution overhead.
It suits for dynamic octrees. Both strategies support parallel
implementations.

(a) Static strategy

This strategy consists in a preprocessing step, required
only when the octree structure is modified, which generates
a code for each leaf’s vertex; and a dual traversal step which
generates the dual volumes by fast local searches (see Al-
gorithms 1 and 2).

The preprocessing step traverses all the octree leaves
stored in the hash table, and generates Morton-like codes
for all the vertices of those leaves that are in the interior of
the octree. Those codes are stored in an auxiliary hash table
aux, together with the depth of the leaf. When two leaves
share a vertex, the deepest depth is retained. The structure of
those Morton-like codes is described in the next paragraph.
Those codes can be computed efficiently from the Morton
key of the leaf, as described in the subsequent paragraph.
The dual traversal step then reads the auxiliary hash table
and, for each dual vertex / leaf depth pair, searches for the
eight octree leaves associated to that vertex. Since the depth
of the deepest leaf is known, the search can be optimized
further than generic optimized searches [2].

Table 1: Morton codes for the vertices of Figure 5.

a: 10011000̄ e: 10011110̄ i : 11100000̄
b: 10011010̄ f: 10110100̄ j : 11101000̄
c: 10110000̄ g: 11001000̄ k: 11110000̄
d: 10011100̄ h: 11001010̄ l : 11111000̄

Morton-like codes for vertices. The Morton key of an
octree node corresponds to the geometric position of its cen-
ter. The centers of all the possible nodes of depth l form
a regular grid of 2l units per side. The interior vertices of
those nodes actually form a similar grid, obtained from the
previous one by a translation of vector (2−l−1, 2−l−1, 2−l−1)
and removing the vertices on the boundary. Since those
are binary positions, they can be represented directly by
Morton codes, using the geometric key generation (see Al-
gorithm leaf2vert). On the contrary to octree nodes, which
have a depth limiting the key size, the leaves’ vertices
have no specific depth associated to them. Therefore, their
codes must be generated at the maximal depth instead of
b 13 log2 (kn)c. This requires adjusting the hashing of the aux-
iliary hash table, as detailed at the end of this subsection. The
codes for the vertices of Figure 5 are given in Table 1.

Algorithm leaf2vert: Morton codes for vertices (slow)
in : The Morton key k of the leaf
out
:

The eight codes for its vertices

1 c← key2cube(k) ; // see Figure 4
2 for i ∈ [0 · · · 7] do

// get the vertex coordinates at maximal level
3 vert← cube(c.[xyz]± c.side,MAX LEV EL) ;

// overflow test
4 if vert.[xyz] /∈ [0, 1]3 then output ∅ ;
5 else output cube2key(vert) ;
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Fast code translations. A direct implementation of the
previous key generation requires translating Morton codes to
coordinates, check the validity of those integers and translate
back (see Algorithm leaf2vert). However, one advantage of
Morton codes is that they can be efficiently manipulated
using dilated integers [14]. We therefore adapt usual dilated
integer addition and propose overflow test for converting
between Morton-like codes of vertices and Morton keys
of adjacent leaves avoiding coordinate representations in
Algorithms leaf2vertopt and vert2leafopt. No overflow test is
required for Algorithm vert2leafopt since all the input keys
come from Algorithm leaf2vertopt.

Algorithm leaf2vertopt: Morton codes for vertices
in : The Morton key k of the leaf
out
:

The eight codes for its vertices

1 dilx ← 001001 ; dily ← 010010 ; dilz ← 100100 ;
2 lv ← key2level(k) ; lvk ← 1� 3 · lv ;
3 for i ∈ [0 · · · 7] do

// dilated integer addition k + i
4 vk ← { [ (k | ¬dilx) + (i & dilx) ] & dilx} |

{ [ (k | ¬dily) + (i & dily) ] & dily} |
{ [ (k | ¬dilz) + (i & dilz) ] & dilz} ;

// overflow test (repeat or for [xyz])
5 if (vk ≥ (lvk � 1)) or ¬((vk − lvk) & dil[xyz])

then output ∅ ;
6 else output vk ;

return lv ;

Algorithm vert2leafopt: Leaves’ keys from vertex code
in : The Morton-like code c of a vertex and its level lv
out
:

The eight codes of the adjacent leaves

1 dilx ← 001001 ; dily ← 010010 ; dilz ← 100100 ;
// removes trailing 0’s

2 dc← c� 3 · (MAX LEV EL− lv) ;
3 for i ∈ [0 · · · 7] do

// dilated integer substraction dc− i
4 output { [ (dc & dilx) − (i & dilx) ] & dilx} |

{ [ (dc & dily) − (i & dily) ] & dily} |
{ [ (dc & dilz) − (i & dilz) ] & dilz} ;

Optimized search for dual volume. The auxiliary hash
table stores a code of a vertex v together with the depth l
of the deepest adjacent leaf. Using Algorithm vert2leafopt,
the Morton keys ki of the eight adjacent nodes of depth l are
computed. The dual vertices (i.e. octree leaves) of the dual
volume associated to v is then retrieved performing a search
in the hash octree with those codes (see Figure 9). Observe
that dual vertices may be repeated, which is the desired
representation of dual volumes as combinatorial cubes.

The search in hash octrees from a Morton key ki looks for
leaves at, below and above the depth of ki until the hash table
lookup returns a leaf. However, since we know the depth l of
the deepest adjacent leaf, we do not need to search deeper
than l (see Algorithm 2, lines 4,5).

Moreover, we guarantee that at least one of the hash table
lookup search will return a leaf at the first try, and 2.37
searches at least return immediatly (8 for the central vertex of
the father of a leaf, at least 4 for its 6 faces centers, at least 2
for its 12 edges centers and at least one for its 8 vertices). The
other searches have an (improbable) worst-case complexity
of l, but constant in practice (see Section 5). This leads to a
total complexity of the dual generation of less than 200 bit
operations per leaf and one auxiliary hash table access for
the preprocessing, and less than 100 bit operations per dual
volume plus the search accesses for the traversal.

Combinatorial cube retrieval. From the outputs of Al-
gorithm 2, the combinatorial cube representing the dual
volume has vertices keys[0] . . . keys[7], where the indexes
written in binary are the unit cubes’ coordinates. The
dual edges are then

[
keys[a] keys[b]

]
when a and b

differ from exactly one bit. Finally, the dual faces are[
keys[a] keys[b] keys[c] keys[d]

]
where a, b, c, d have only

one bit in common. The degenerated edges and faces can be
removed by testing if all their vertices have the same key.

Hash function for the leaf vertices. The auxiliary hash
table access may thus be crucial for good performance of the
preprocessing. As we mentioned earlier, the least significant
bits of Morton keys for octree nodes are good hash functions.
However, since the vertex codes must always be generated
at the maximal depth, most of the vertex codes end with a
sequence of 0. Using the least significant bits for hashing
would induce a huge collision in the auxiliary hash table.
Therefore, we use here bits starting from the median depth
of the octree. This maintains the spirit of Morton hashing by
using the least significant bits, but avoid incorporating the
final sequence of 0 for at least half of the leaf vertices. Since
we know the octree statistics before the preprocessing step,
this is easily implemented.

(b) Dynamic strategy

The above strategy processes each leaf vertex exactly
once, but this requires storing all the vertices, leading to more
memory operations. This extra preprocessing cost is amort-
ized if building several times the dual without modifying the
octree. However, some applications such as view-dependent
isosurface generation constantly adapt the octree before the
dual generation. Moreover, the extra memory cost of the aux-
iliary hash table may be prohibitive for very large data.

We propose here a dynamic dual generation that avoids
the vertex generation as preprocessing (see Algorithm 3 and
Figure 10). Since an interior vertex is always shared by sev-
eral leaves, the main difficulty is to guarantee that each ver-
tex is processed only once. We thus define a one-to-one map-
ping from the vertices to the leaves. This would correspond
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Figure 10: Illustration of the dynamic strategy, processing leaf kn = 11100 of the quadtree of Figure 1, with the notation of Algorithm 3.
(left) The codes of the vertices of kn are computed: lv = 2, v codes = {i, j, k, l} (see Table 1). (center) Processing vertex i: the Morton
keys of the nodes of level lv = 2 adjacent to vertex i are computed: keys = {11100 = kn, 11001, 10110, 10011}. The first key 11100 is kn
itself, and is thus skipped (line 6). The second key 11001 is not a leaf (test of line 8), so vertex i will not be processed from leaf kn: indeed
it has been processed from leaf 1001111. (right) Processing vertex j: the Morton keys of the nodes of level lv = 2 adjacent to vertex j are
computed: keys = {11101, 11100 = kn, 10111, 10110}. The first key has the same level as kn, leading to a tie with kn. Since kn appears
before in the order around j (test of line 9), vertex j will be processed from kn. The second key is skipped since it is kn itself (line 6). The
third and last keys do not correspond to existing nodes (they do not appear in the hashtable of Figure 2), so the algorithm skips those keys
(test of line 7). The two other vertices are similar to j.

to the assignment defined in the volume octree structure of
León et al. [9], with the difference that it is defined here sys-
tematically and online, allowing for a one-pass dual genera-
tion without preprocessing.

The mapping associates a vertex to the deepest adjacent
leaf. More precisely, for each leaf k, the eight codes vi of
its vertices are generated. For each vertex, the eight keys of
the adjacent nodes nj , i.e. neighbors of k in the direction of
vi, are computed. If k is deeper than all the adjacent nodes
nj , then it is associated to vi (lines 7,8 of Algorithm 3). In
case of tie, i.e. if k and nj have same depth, we choose the
first one in Morton order around the vertex. We can observe
from Algorithms leaf2vertopt and vert2leafopt that k is al-
ways generated as the i-th node adjacent to vi, since the first
algorithm adds i while the seconds subtracts i. This observa-
tion leads to a simple test to avoid checking k against itself
(line 6 of Algorithm 3), and to resolve ties (line 9).

The resulting association is the one actually illustrated in
Figure 8, although the volume octree structure assignment
may be different. Observe that this strategy does not use
any extra memory, and performs only a few more memory
accesses per leaf than the static approach (tests of lines 7 and
8 of Algorithm 3 can be done with the same access).

Algorithm 3: Dynamic dual generation
in : The octree
out
:

The dual volumes

1 foreach key k of a leaf of the octree do
// get the vertex codes of the leaf

2 lv, v codes[8]← leaf2vert(k) ;
3 for i ∈ [0 · · · 7] do
4 if v codes[i] = ∅ then next vert i;

// get the nodes of level lv adjacent to vertex
v codes[i], i.e. a neighbor node of leaf k

5 keys[8]← vert2leaf(v codes[i],lv) ;
6 for j ∈ [0 · · · 7] \ {i} do

// leaf k is deeper than neighborkeys[j]:
OK, check next neighbor key

7 if ¬node exists(keys[j]) then next key j;

// neighbor is deeper than leaf: skip vertex
since it will be processed by that neighbor

8 if ¬is leaf(keys[j]) then next vertex i;

// neighbor has same level: tie, it will
process the vertex if j < i

9 if j < i then next vertex i;

// the vertex is processed as in Algorithm 2
10 for j ∈ [0 · · · 7] do

// optimized search for leaf: up from level lv
11 while

keys[j] 6= 0 & ¬node exists(keys[j]) do
keys[j]�= 3;

12 output keys ;
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Table 2: Execution time and memory consumption for the dual generation of randomly generated octrees, as average on 200 runs, including
the preprocessing of the static strategy. The gain for each strategy is given for comparable memory consumption.

number of nodes (millions) 0.03 0.07 0.12 0.19 0.65 1.01 3.19 13.04 24.81
number of vertices (millions) 0.05 0.14 0.22 0.33 0.22 1.87 5.69 2.23 3.18

octree maximal level M 8 10 8 8 12 10 10 12 12
subdivision probability p 30% 30% 40% 45% 30% 40% 45% 40% 45%

bits for node hashing 21 21 21 21 21 24 24 24 24
median bits used for vertex hashing 40 34 40 40 34 34 34 34 34

time (ms)

recursive with pointer 82 223 349 528 2 033 2 990 9 151 38 449 70 528
recursive pointerless 35 97 151 227 901 1 278 3 978 17 675 34 093
static 33 73 101 148 166 893 2 737 2 357 3 878
dynamic 32 79 117 176 150 1 012 3 091 1 975 3 341

pointer / static 2.5x 3.1x 3.4x 3.6x 12.2x 3.3x 3.3x 16.3x 18.2x
hash / dynamic 1.1x 1.2x 1.3x 1.3x 6.0x 1.3x 1.3x 8.9x 10.2x

memory (MB)

recursive with pointer 0.64 1.67 2.79 4.31 14.93 23.07 73.09 298.47 567.81
recursive pointerless 0.21 0.56 0.93 1.44 4.98 7.69 24.36 99.49 189.27
static 0.62 1.65 2.61 3.96 6.63 21.95 67.80 116.50 213.50
dynamic 0.21 0.55 0.93 1.43 4.97 7.68 24.36 99.48 189.26

5 Experiments
We experimented on random octrees and octrees adapted

to isosurfaces, on a 3GHz MacPro with 18GB of RAM.
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Figure 11: Execution time, in milliseconds, versus the octree size,
in millions of nodes / logarithmic scale (see Table 2).

Random octrees. We first tested on random octrees, with
different maximal levels M and Bernouilli probabilities p
for a node to be subdivided. We compared the execution
time and memory consumption of our static and dynamic
strategies with the usual recursive implementation on pointer
and pointerless octrees (see Table 2 and Figure 11). The av-
erage gain in memory consumption of the pointerless repres-
entations is a factor 3x, which is preserved in the dynamic
strategy. For the static strategy, the extra memory of the aux-
iliary hashtable reduces this average memory gain to a factor
1.5x. Both the static and dynamic strategies speeds up the
execution by an average factor above 3.3x on the recursive
implementation with hashtable, and above 7.3x over the re-
cursive algorithm with the octree representation with eight
pointers per node. Note that this includes the preprocessing
time for the static strategy, which represents 53% of the total

execution time. This means that, for the second and further
runs on the same octree, the gain of the static strategy is
doubled.

Octrees adapted to isosurface. We compared the gain of
our dynamic dual generation over the recursive generation
on the total time of an isosurface extraction application. We
experimented on Dual Marching Cubes [15] using robust ad-
aptation [12]. We generated results from 24 different impli-
cit functions in the unit cube, refined to maximal depth 9
and with curvature threshold 0.6 (see Table 3 and Figure 12).
Since the timings include the octree adaptation and Marching
Cubes calls on the dual volumes, the total gain is in average
30%, and 64% if we weight by the number of nodes. The two
methods compared use hashtables with the same parameters,
leading to the same memory consumption.
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Figure 12: Total execution time of robust DMC, in seconds, versus
the number of octree nodes, in millions (see Table 3).

Limitation. We can observe on Table 2 that the gain ob-
tained by the proposed algorithms varies brutally when the
number of bits b used for the hashing function is changed to

The corresponding work was published in the proceedings of SGP 2010: Computer Graphics Forum, volume 29, number 5, Blackwell 2009.

http://sgp2010.liris.cnrs.fr/
http://www.eg.org/EG/Publications/CGF
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Table 3: Total execution time for the robust generation of implicit
surfaces using a robust Dual Marching Cubes.

Implicit nodes verts hash dyn gain
function x106 x106 sec sec %

Torus 0.00 1 0.1 0.3 -67
Blob 0.03 4 0.1 0.4 -65
Cross cap 0.05 10 0.2 0.4 -53
Spheres in 1.0 85 1.8 1.8 2
Cylinders 1.3 159 2.5 2.3 6
2 Spheres 2.0 105 2.9 2.6 11
Glob tear 2.9 24 3.8 3.2 17
Weird cube 3.8 3 4.8 4.0 21
Lemniscate 7.8 140 10.4 8.3 25
Clebsch cubic 9.2 225 12.6 10.0 25
Cayley cubic 9.7 119 12.8 10.2 26
Steiner relative 27.1 39 34.9 26.4 33
Mitre 56.0 158 75.7 54.5 39
Bifolia 72.1 310 101.0 70.2 44
Chair 72.5 966 105.0 72.9 44
Gumdrop torus 92.0 1159 136.5 92.0 48
Bretzel 123.4 15 193.5 117.0 65
Klein bottle 147.7 1195 246.3 144.6 70
Smile 147.9 727 243.8 143.3 70
Heart 148.6 998 246.7 144.7 71
2 Torii 148.7 67 243.3 140.7 73
Hunt’s surface 148.8 1128 247.6 144.8 71
Barth sextic 150.2 561 248.8 144.1 73
Spheres dif 152.6 1165 254.2 149.2 70

cope with the size of the data. Actually, the speed of hasht-
able manipulation is a crucial ingredient in pointerless rep-
resentations. In particular, increasing b size may be delicate
in the static strategy, since it would require two large blocks
(of size 2b) of data for the hashtable. A solution to optimize
the hashing is to use perfect hashing techniques, which are
already used for pointerless octrees [8, 1, 3].

6 Conclusions
In this work, we introduced efficient algorithms for

dual generation of pointerless octrees. We proposed two
strategies, one using a preprocessing, which requires an extra
hashtable, doubling the memory, but achieving, after prepro-
cessing, and average speedup of factor 7x compared to point-
erless representation and 15x compared to the usual pointer
representation. The second strategy does not require prepro-
cessing nor extra memory, and achieves an average speedup
of a factor above 3x compared to pointerless representation,
and almost 8x compared to pointer octrees.
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