
VMV 2004 Stanford, USA, November 16-18, 2004

Fourier Volume Rendering on the GPU
Using a Split-Stream-FFT

Thomas Jansen, Bartosz von Rymon-Lipinski, Nils Hanssen, Erwin Keeve

Research center caesar
Surgical Systems Lab

Ludwig-Erhard-Allee 2, 53175 Bonn, Germany
Email: {jansen, Lipinski, hanssen, keeve}@caesar.de

Abstract

The Fourier volume rendering technique operates
in the frequency domain and creates line integral
projections of a 3D scalar field. These projections
can be efficiently generated in)logO(2 NN time
by utilizing the Fourier Slice-Projection theorem.
However, until now, the mathematical difficulty of
the Fast Fourier Transform prevented acceleration
by graphics hardware and therefore limited a wider
use of this visualization technique in state-of-the-
art applications. In this paper we describe how to
utilize current commodity graphics hardware to
perform Fourier volume rendering directly on the
GPU. We present a novel implementation of the
Fast Fourier Transform: This Split-Stream-FFT
maps the recursive structure of the FFT to the
GPU in an efficient way. Additionally, high-
quality resampling within the frequency domain is
discussed. Our implementation visualizes large
volumetric data set in interactive frame rates on a
mid-range computer system.

1 Introduction

Most volume rendering techniques fall into one of
two classes:

• In the screen-space approach, a ray is cast
for each pixel on the screen, with uniform
sampling and composition of the volumetric
data along the ray, e.g. Raycasting [1] and
Shear-Warp [2].

• In the object-space approach, the volume is
traversed either back-to-front or front-to-
back, blending each scalar into the projection
plane, e.g. 3D texture mapping [3] and
Splatting [4].

It can be seen, that both approaches operate in the
spatial domain and somehow have complexity

)O(3N for a volume of size 3N , as each voxel
needs to be visited.
Instead of working in the spatial domain, Fourier
Volume Rendering (FVR) is based on the
frequency spectrum of the 3D scalar field by
utilizing the Fourier Slice-Projection theorem.
This theorem allows us to compute integrals over
volumes by extracting slices from the frequency
domain representation.
In detail, FVR generates line integral projections
of a set of 3N scalars – using the inverse 2D Fast
Fourier Transform (FFT) – with complexity

)logO(2 NN . The application of the Fourier
Projection-Slice theorem to image synthesis has
been independently proposed by Dunne et al. [5]
and Malzbender [6]. An application to MR
angiography is described by Napel et al. [7].
Solutions for depth cueing and illumination where
proposed by Totsuka et al. [8] and Levoy [9].
Additionally, frequency domain based algorithms,
using the wavelet transform were presented by
Westenberg et al. [10] and Gross et al. [11].
However, even the most recent implementations of
FVR are realized on the CPU only. In contrast,
most spatial domain volume rendering algorithms
make use of current graphics hardware features,
such as programmability. This leads to faster
implementations, even for a worse computational
complexity. The mathematical structure of FVR –
especially the use of the FFT – has prevented its
adaptation to modern graphics hardware.
Such hardware, also known as the Graphics
Processing Unit (GPU), nowadays implements a
stream architecture, which uses a kernel to operate
on one or multiple input streams to produce one or
multiple output streams [12]. Using this paradigm,

666

it became popular to use the GPU for problems it
was not designed for, e.g. to compute Voronoi
diagrams [13], generate interactive caustics [14],
or simulate crystal growth [15].
The mathematical obstacle of FVR is the inverse
FFT that transforms scalar values from the
frequency spectrum to the spatial domain. The
adaptation of the recursive structure of the FFT to
the GPU is likely to be the major difficulty of the
full FVR pipeline. Moreland et al. proposed a FFT
implementation [16], however, the algorithm does
not make efficient use of the graphics hardware
and a special texture format is used, which might
be useful for image processing but is not
applicable for the FVR approach.
In this paper we describe how to take advantage of
the features of commodity graphics hardware to
realize FVR. As a major part, this includes a novel
implementation of the FFT on the GPU: The Split-
Stream-FFT was designed to efficiently map the
recursive structure of the FFT to the stream
architecture of a GPU. This leads to superior speed
performance for DSP applications in general, and
to the FVR in special. In addition, we deal with
resampling in the frequency domain, which is
essential to accomplish proper image quality.

2 Methods

Volume visualization can be seen as the inverse
problem of tomographic reconstruction.
Therewith, it might be useful to take a closer look
at it. The objective of tomographic reconstruction
is to compute the scalar field),,(zyxf from a
given set of projections. In contrast, in volume
rendering the distribution is given and we are
asked to compute projections of it.
A common method to achieve tomographic
reconstruction is by using the Fourier Projection-
Slice theorem [6]. This theorem means for the 2D
case, if),(vuF is the frequency distribution of

),(yxf and)(wPθ is the frequency distribution
of)(rpθ , then
 () () ()()θθθ sin,cos wwFwP = . (1)

Intuitively, the slice of the 2D Fourier transform of
an object at some angle θ is the 1D Fourier
transform of a projection of the object at the same
angle θ (see Figure 1).

The Fourier Projection-Slice theorem is still valid
in higher dimensions. Starting with a 3D
continuous distribution),,(zyxf and its
frequency response),,(wvuF , given by

∫ ∫ ∫=
∞

∞−

∞

∞−

∞

∞−

++− dzdydxezyxfwvuF zwyvxui)(2),,(),,(π (2)

a parallel projection of),,(zyxf can be generated
by evaluating),,(wvuF along a plane that is
defined by the orthonormal vectors
 ()zyx sssS ,,= (3)

 ()zyx tttT ,,= (4)

yielding
),,(),(ttssttssttssFtsP zzyyxx +++= . (5)

Taking the inverse 2D Fourier transform leads to

 ∫ ∫
∞
∞−

∞
∞−

+−= dtdsetsPvup vtusi)(2),(),(π . (6)

In summary, FVR computes the function

 ∫
∞
∞−= dtvutfvup),,(),(. (7)

Once the forward 3D transform is generated via a
pre-processing operation, projections for arbitrary
viewing directions can be quickly computed by
working with 2D manifolds in the frequency
domain. This leads to a better computational
complexity and a much better speed performance.
It can be seen that – after the initial pre-processing
step – the remainder of the FVR approach can be
separated into two distinct parts:

Figure 1: The Fourier Projection-Slice theorem
describes the relationship between the Fourier
transform of a projection and the Fourier
transform of the object.

θθ

Spatial domain Frequency domain

f(x,y) F(u,v)

pθ(r) Pθ(w)

projection slice

1D-DFT

2D-DFT

666

• High-quality resampling: The extraction of
a plane in the frequency domain, using high-
quality interpolation.

• FFT: An inverse 2D Fourier transform of the
extracted plane yields the X-ray like
projection of the volume (see Figure 2).

2.1. High-Quality Resampling

Once the volumetric data set is transformed to the
frequency domain (pre-processing), we need to
extract a plane perpendicular to the view vector.
Malzbender has shown that high-quality
resampling is more crucial in frequency space than
in the spatial domain [6]. Linear interpolation
leads to aliasing and ghosting artifacts in FVR.
Generally, there is no direct support in graphics
hardware for better interpolation than linear. There
are extensions for cubic interpolation, which also
might be insufficient or not available at run-time.
As a result, we can not rely on the built-in
interpolation stage, but need to implement our
own interpolation scheme on the GPU.
The implementation of such a scheme is based on
the idea of Hart et al. [17]. They realized spline
interpolation by exploiting muli-texturing and
blending operations. In fact, this leads to the
common Input-Side-scheme: Instead of traversing
through all sample points and gathering the
weighted neighbors, this approach traverses
through all neighbors and distributes their
weighting to the newly generated sample points.
The scheme can be extended to an arbitrary
neighbor extend in higher dimensions and a
custom reconstruction filter. We have chosen the
Lanczos windowed-sinc function as the
reconstruction filter [18], which is given by







≥

<
=

Nx

Nx
Nx

Nx
x

x
xN

,0

,)sin()sin(
)(Lanczos π

π
π
π

(8)

for a neighborhood extend of N .

2.2. The FFT

Fourier analysis is a family of mathematical
techniques, based on decomposing signals into
sinusoids. The Discrete Fourier Transform (DFT)
is used for discrete signals. Such a signal is
transformed via the DFT from the spatial domain
into the frequency domain. A detailed introduction
to Fourier analysis is presented in [19].
Given a sequence of N samples)(nf , indexed
by 10 −= Nn K , the DFT is defined as

 ∑
−

=

−==
1

0

2)(1),()(
N

n

Nnik
N enf

N
fkFkF π (9)

where 10 −= Nk K . The inverse DFT is given by

 ∑
−

=

+==
1

0

2)(1),()(
N

k

Nnik
N ekF

N
Fnfnf π . (10)

There are several ways to calculate the DFT, such
as solving simultaneous linear equations or the
correlation method. The Fast Fourier Transform
(FFT) is a family of other techniques, which is of
great importance for a wide variety of applications.
The most common FFT technique is the Cooley-
Tukey algorithm [20]. This divide-and-conquer
approach recursively breaks down a DFT of any
composite size 21nnn = into smaller DFTs of
sizes 1n and 2n . The common use is to divide the
transform into two pieces of size 2n at each
recursion level. The division can take place in the
spatial domain (also called time domain) or in the
frequency domain, respectively called decimation-
in-time (DIT) and decimation-in-frequency (DIF).
We have chosen the decimation-in-frequency FFT
approach, which is given by









=
−

=
=

oddfor),
2

1(

evenfor),
2

(
),(

2

2

kfkF

kfkF
fkF

oN

eN
N (11)

where

() ()
() ()() Nni

o

e

eNnfnfnf

Nnfnfnf
π22)(

2)(
−+−=

++=
(12)

Figure 2: Projections generated with our FVR
implementation: (a) Engine and (b) CT-Head.

(a) (b)

666

The constant factor N1 that is part of
equations (9) and (10) is discarded in equation
(11) in favor of a strict recursive structure. This
factor needs to be post-multiplied by),(fkFN at
the end. The inverse FFT can be computed the
same, by changing the twiddle factor from

Nnie π2− to Nnie π2+ . Equations (12) are sometimes
referred to as the FFT butterfly operation and are
graphically shown in Figure 3.

Figure 4 illustrates how the algorithm works by
showing the naive implementation of the DIF-FFT
for 8=N . Because of the recursive approach,

38log = stages are used to compute the FFT, each
stage performing 2438 =⋅ operations. Generally,
the FFT has a complexity of)logO(NN for N
input values. It can be seen, that the resulting
frequency distribution is in wrong order. A bit
reversal (or tangling) operation is used to re-sort
them at the end. This can be done in constant time.
Beside the restrictions of the FVR approach, we
have to take care of additional drawbacks
introduced by the DFT, e.g. under-/oversampling
and aliasing. Details can be found in [19].

3 Implementation

This chapter gives implementation details of the
two parts of FVR, pointed out in section 2. We
assume that the 3D scalar field was transformed to
its frequency representation and transferred to the
memory accessible by the GPU.

3.1 High-Quality Resampling

The scheme described in section 2.1 is extended to
3D resampling and implements a Lanczos
windowed-sinc function for an extend of N . A
naive implementation would lead to ()32NPN =
passes, yielding to 2163 =P for 3Lanczos and

5124 =P for 4Lanczos , respectively.
However, a 3D reconstruction filter can be
executed by subsequently performing three filters
along the major axes. This involves rendering to a
3D render target, which is not possible yet.
Fortunately, current GPUs are able to process at
least 8 objects at once, therefore, we are able to
perform the interpolation for { }3,2∈N with
rendering to 2D render targets only. This is done
as follows (for 3=N):

1. The 3D input texture is used six times, shifted
each time by one voxel along the z-axis. Two
weighting textures (for six weights) are used.
The fragment program sums up the weighted
input voxels and stores the result in 3666 =⋅
intermediate output texture.

Figure 3: The FFT butterfly is the most essential
operation of the Fast Fourier Transform.

f(n)

f(n+N/2)

fe(n)

fo(n)e-2πin/N

f(0)

f(1)

f(2)

f(3)

f(4)

f(5)

f(6)

f(7)

fe(0)

fe(1)

fe(2)

fe(3)

fo(0)

fo(1)

fo(2)

fo(3)

fee(0)

foe(0)

foe(1)

foo(0)

foo(1)

fee(1)

feo(1)

feo(0)

feee(0)=F(0)

feeo(0)=F(4)

feoe(0)=F(2)

feoo(0)=F(6)

foee(0)=F(1)

foeo(0)=F(5)

fooe(0)=F(3)

fooo(0)=F(7)

F(0)

F(1)

F(2)

F(3)

F(4)

F(5)

F(6)

F(7)

e-2πi0/8

e-2πi1/8

e-2πi2/8

e-2πi3/8

e-2πi0/4

e-2πi1/4

e-2πi1/4

e-2πi0/4

e-2πi0/2

e-2πi0/2

e-2πi0/2

e-2πi0/2

tangling

Figure 4: A naive implementation of the DIF-FFT for N=8 scalar values. It can be seen that the frequency
distribution needs to be re-sorted (= tangled) at the end, which is a constant time operation.

666

2. Then, we do the same for the y-axis with the
36 previously generated textures, leading to
six new intermediate output textures.

3. At last, these textures are used, each shifted
by one pixel along the x-axis, leading to the
final texture.

In summary, our implementation requires
36+6+1=43 passes to extract a plane in frequency
space for 3Lanczos and 21 passes for 2Lanczos .

3.2 The FFT

The FFT implementation shown in Figure 4 can
not be mapped directly to the GPU. Even if
graphics hardware implements a powerful stream
architecture, it still is focused on graphics.
3.2.1 Restrictions
We have to deal with the following limitations for
each execution of a fragment program:

1. Reading the input stream is optimized for
constant step size (called modulo), therefore,
random access is slow. However, the same
input stream can be used multiple times with
different offsets and modulos.

2. The output stream is filled subsequently
(modulo of 1). Fortunately, the output can
begin at any offset, which allows
concatenation of outputs.

3. Multiple outputs are allowed for each
fragment program (kernel), but only one
pixel (e.g. RGBA value) per output stream.

Additionally, there are guidelines for the
interaction of our FFT fragment programs:

4. The output stream of recursion level n is
used as the input stream of recursion level

1+n . Time-consuming re-ordering of the
stream elements should be avoided.

5. Switching the output stream or the fragment
program is slow and should be minimized.

3.2.2 Adaptation
As the first step to adapt the DIF-FFT (section 2.2)
to the GPU, we take look on restriction 4. Figure 5
presents a reordering of the butterfly operations to
achieve consistency between the output of one
recursion level and the input of the subsequent
level. In addition, the same operation is performed
in each recursion level (only twiddle factors are
changing). Nevertheless, it is easy to see that other
limitations are violated in this configuration.
In the next step, we keep the structure, but reorder
the actual output stream elements from back-to-
front, see Figure 6. As a result, tangling is shifted
to the beginning of the FFT. Most of the
restrictions are fulfilled now, except restriction 3.
Therefore, we split the FFT butterfly into two
separated passes, each calculating one scalar. The
first fragment program is associated to ef , and the
second is related to of , respectively (Figure 7).
All restrictions and limitations are satisfied,
leading to our Split-Stream-FFT implementation.
The name is derived from the splitting of the FFT
butterfly and the stream re-use between the
recursion levels.

Figure 5: Reordering of the FFT butterfly operations to fit restriction 4. The output stream of one
recursion level is the interleaved input stream of the next level. The interleaving can be done for free.

feee(0)=F(0)

feeo(0)=F(4)

feoe(0)=F(2)

feoo(0)=F(6)

foee(0)=F(1)

foeo(0)=F(5)

fooe(0)=F(3)

fooo(0)=F(7)

F(0)

F(1)

F(2)

F(3)

F(4)

F(5)

F(6)

F(7)

e-2πi0/2

e-2πi0/2

e-2πi0/2

e-2πi0/2

tangling

f(0)

f(1)

f(2)

f(3)

f(4)

f(5)

f(6)

f(7)

fe(0)

fo(0)

fe(1)

fo(1)

fe(2)

fo(2)

fe(3)

fo(3)

e-2πi0/8

e-2πi1/8

e-2πi2/8

e-2πi3/8

f(0)

f(4)

f(1)

f(5)

f(2)

f(6)

f(3)

f(7)

fe(0)

fe(2)

fo(0)

fo(2)

fe(1)

fe(3)

fo(1)

fo(3)

e-2πi0/4

e-2πi0/4

e-2πi1/4

e-2πi1/4

fee(0)

feo(0)

foe(0)

foo(0)

fee(1)

feo(1)

foe(1)

foo(1)

fee(0)

fee(1)

feo(0)

feo(1)

foe(0)

foe(1)

foo(0)

foo(1)

input stream interleaving input stream interleaving input stream interleaving

666

3.2.3 Optimization
Many optimizations are known to speed up a FFT
implementation. A technique widely used is
working as follows: The last two recursion levels
can be combined, due to the simplicity of the
twiddle factors used in level () 1log −N

)0,1(402 =− ie π and)1,0(412 −=− ie π , (13)

and in level ()Nlog

)0,1(202 =− ie π . (14)

In our implementation, four dedicated fragment
programs are used for the last two recursion levels,
one for each quarter of the output stream. For
small N , we observed a speed-up of about 30%.
The first recursion level is also treated in a special
way. As can be seen in Figure 7, the tangling takes
place at the beginning. Instead of performing an
own bit-reversal pass, the first FFT pass is
adapted. The input streams are mapped to texture

objects, therefore the input range can be specified
via texture coordinates. Instead of supplying the
full input stream at once – as for all other
recursion levels – we feed many small pieces (of
just one value) to the fragment programs of the
first recursion level. The order can be controlled
by the texture coordinates, achieving a bit-reversal
of the input stream. Unfortunately, the cache
mechanism of current graphics hardware is not
well exploited using this method; therefore, the
first recursion level is by far the slowest. This
effect can be reduced for 2D FFT, because
columns and rows of values can be used.
The Fourier Projection-Slice theorem holds for the
Complex-FFT, as well as, for the Real-FFT.
Actually, two Real-FFTs can be implemented via a
single Complex-FFT, which shrinks the input
stream by half and nearly doubling the speed.
Details about the simple transformation between
Real-FFT and Complex-FFT can be found in [19].

Figure 6: The FFT was re-ordered back-to-front. The tangling has moved to the beginning. Unfortunately,
output stream interleaving is not supported by current graphics hardware.

f(0)

f(1)

f(2)

f(3)

f(4)

f(5)

f(6)

f(7)

fe(0)

fo(0)

fe(2)

fo(2)

fe(1)

fo(1)

fe(3)

fo(3)

e-2πi0/8

e-2πi2/8

e-2πi1/8

e-2πi3/8

f(0)

f(4)

f(2)

f(6)

f(1)

f(5)

f(3)

f(7)

fe(0)

fe(2)

fe(1)

fe(3)

fo(0)

fo(2)

fo(1)

fo(3)

e-2πi0/4

e-2πi1/4

e-2πi0/4

e-2πi1/4

fee(0)

feo(0)

fee(1)

feo(1)

foe(0)

foo(0)

foe(1)

foo(1)

fee(0)

fee(1)

foe(0)

foe(1)

feo(0)

feo(1)

foo(0)

foo(1)

tangling output stream interleaving output stream interleaving

feee(0)=F(0)

feeo(0)=F(4)

foee(0)=F(1)

foeo(0)=F(5)

feoe(0)=F(1)

feoo(0)=F(6)

fooe(0)=F(3)

fooo(0)=F(7)

F(0)

F(1)

F(2)

F(3)

F(4)

F(5)

F(6)

F(7)

e-2πi0/2

e-2πi0/2

e-2πi0/2

e-2πi0/2

output stream interleaving

Figure 7: Final implementation of the Split-Stream-FFT. Input streams are interleaved and output streams
are concatenated. It is clearly visible, that the FFT butterfly operation is split into two fragment programs.

foe(1)

foe(0)

fee(1)

fee(0)

foo(1)

foo(0)

feo(1)

feo(0)

1st pass of level 2

2nd pass of level 2

e-2
πi

0/
4

e-2
πi

1/
4

e-2
πi

0/
4

e-2
πi

1/
4

fe(3)fe(1)fe(2)fe(0) fo(3)fo(1)fo(2)fo(0)

tangling

f(0) f(4) f(2) f(6) f(1) f(5) f(3) f(7)

fe(3)

fe(1)

fe(2)

fe(0)

fo(3)

fo(1)

fo(2)

fo(0)

1st pass of level 1

2nd pass of level 1

e-2
πi

0/
8

e-2
πi

2/
8

e-2
πi

1/
8

e-2
πi

3/
8

f(0)

f(4)

f(2)

f(6)

f(1)

f(5)

f(3)

f(7)

f(0)

f(1)

f(2)

f(3)

f(4)

f(5)

f(6)

f(7)

F(3)

F(2)

F(1)

F(0)

F(7)

F(6)

F(5)

F(4)

1st pass of level 3

2nd pass of level 3

e-2
πi

0/
2

e-2
πi

0/
2

e-2
πi

0/
2

e-2
πi

0/
2

foe(1)foe(0)fee(1)fee(0) foo(1)foo(0)feo(1)feo(0)

666

4 Results and Discussion

In summary, the novelty of our FVR
implementation is the FFT, which actually could
be used stand-alone by other DSP techniques.
Hence, two distinct benchmarks are of interest:

1. The FFT as a stand-alone operation
compared to third-party implementations. As
competitors, we have chosen the latest
version (3.0.1, 2003) of the popular FFTW
software implementation [21] and the GPU-
based adaptation of the FFT approach by
Moreland et al. [16]. Performance was
measured for a 2D forward FFT of a gray
scale image, filtering in frequency space and
the 2D inverse FFT. Results of the
benchmark can be seen in Table 1.

2. The full FVR compared to other volume
rendering techniques. We have chosen a
naive ray-casting algorithm in software, as
well as hardware accelerated 3D texture
mapping. Both competitors use linear
interpolation and utilize a saturated addition
as the compositing operation. Results of the
benchmark are presented in Table 2.

The dominating argument for FVR is its speed.
Most of the other volume rendering techniques
have complexity)(O 3N for a volume of size 3N ,
as each scalar value needs to be evaluated. FVR
generates projection images of such volumes with
complexity)log(O 2 NN (excluding the pre-
processing step). In fact, the extraction of the
projection plane with complexity)(O 2N
computationally dominates the inverse 2D FFT for
practical values of N . The pre-processing step
itself is of complexity)log(O 3 NN .
FVR is limited in additional ways: Because
equation (7) is an order independent linear
projection along the line of projection t ,
occlusion is not available. This limits us to
transparent visualization, and leads to X-ray like
projections of the data set. However, occlusion is
not the only depth information. Totsuka et al.
address illumination and attenuation and show
how this can be implemented directly in
frequency space [8]. Other restrictions exist and
are discussed in further detail in [5] and [6].
Due to its speed, FVR is practical for large data set
visualization. On the other hand, the intermediate
representation in frequency space is memory
consuming. Instead of 8 or 12 bit per scalar, at
least 32 bit for a single-precision floating point
value is indispensable. Current consumer graphics
hardware is equipped with no more than 256
Mbytes that can hold ideally ~400³ scalars.
However, by quantizing the frequency values, a
reduction to 16 bit is possible.

5 Conclusion and Future Work

In this paper, we have presented a novel
implementation of the Fast Fourier Transform on
the GPU. The Split-Stream-FFT efficiently maps
the recursive structure of this fundamental DSP
technique to the stream architecture of modern
graphics hardware. Additionally, the FFT butterfly
operation is split to exploit the rasterization stage
of the GPU. By utilizing our approach, volume
visualization using the FVR technique has become
applicable on commodity graphics hardware.
Resampling within frequency space was discussed.
Our implementation of the FVR method generates
high-quality projections at interactive frame rates.

Table 1: Speed performance (in ms) measured on a
2.6GHz Intel Pentium4 and ATI’s Radeon 9800
GPU. (*) Results from Moreland et al. were taken
from [16] and downscaled to gray-level image.

Image Size FFTW
Moreland

et al. (*)
Split-

Stream
10242 535.8 675.0 60.7
5122 119.9 156.3 14.0
2562 23.7 37.3 3.4
1282 1.2 10.0 1.5

Table 2: Rendering time (in frames per second) for
a 5122 projection of various volumetric data sets.
(*) Rate is extrapolated, due to memory limitations
on the GPU.

Data Set
Size

Raycasting
3D Texture
Mapping

FVR
on the GPU

5123 0.3 10.1 14.9 (*)
2563 0.6 24.2 62.5
1283 1.3 54.8 143.7
643 2.7 121.1 164.8

666

The work presented in this paper can be enhanced
in many ways. We plan to implement the work of
Totsuka et al. [8], including other depth cues, e.g.
illumination and attenuation. Most of this can be
done directly in frequency space, which allows
attribute changes (i.e. position of a light source)
without performing the pre-processing step.
Interactive filtering within the frequency domain
might be interesting, as well. This includes
smoothing, sharpening and edge enhancement.
Compression is another interesting topic we are
working on. Compression in the frequency domain
leads to adequate results in quality and
compression ratio. This would yield to faster data
transfer and support of larger volumes. However,
two problems need to be solved: 1) Traditional
GPU data structures (e.g. vertex arrays and
textures) are inadequate to handle compressed
frequency scalars. 2) The extraction stage will
increase in complexity.

References

[1] M. Levoy, “Display of surfaces from volume
data”, IEEE Comp. Graph. & Appl., vol. 8,
no. 5, 1988.

[2] P. Lacroute and M. Levoy, “Fast volume
rendering using a shear-warp factorization of
the viewing transformation”, Proc.
SIGGRAPH ’94, 1994.

[3] B. Cabral, N. Cam and J. Foran, “Accelerated
volume rendering and tomographic
reconstruction using texture mapping
hardware”, Proc. Symposium on Volume
Visualization ’94, 1994.

[4] L. Westover, “Footprint evaluation for
volume rendering”, Proc. SIGGRAPH’ 90,
1990.

[5] S. Dunne, S. Napel and B. Rutt, “Fast
Reprojection of Volume Data”, Proc.
Conference on Visualization in Biochemical
Computing ’90, 1990.

[6] T. Malzbender, “Fourier volume rendering”,
ACM Transactions on Graphics, vol. 12, no.
3, 1993.

[7] S. Napel, S. Dunne and B. Rutt, “Fast
Fourier Projection for MR Angiography”,
Magnetic Resonance in Medicine, Vol. 19,
1991.

[8] T. Totsuka and M. Levoy, “Frequency
domain volume rendering”, Proc.
SIGGRAPH '93, 1993.

[9] M. Levoy, “Volume Rendering using the
Fourier Projection-Slice theorem”, Proc.
Graphics Interface '92, 1992.

[10] M. A. Westenberg and J. B. T. M. Roerdink,
“Frequency Domain Volume Rendering by
the Wavelet X-Ray Transform”, IEEE
Transactions on Image Processing 9(7), 2000.

[11] M. H. Gross, L. Lippert, R. Dittrich and S.
Häring, “Two Methods for Wavelet-Based
Volume Rendering”, Computers & Graphics,
21(2), 1997.

[12] E. Lindholm, M. J. Kilgard and H. Moreton,
“A user-programmable vertex engine”, Proc.
SIGGRAPH ’01, 2001.

[13] K. E. Hoff, T. Culver, J. Keyser, M. Lin and
D. Manocha, “Fast Computation of
Generalized Voronoi Diagrams Using
Graphics Hardware”, Proc. SIGGRAPH ’99,
1999.

[14] C. Trendall and A. J. Steward, “General
Calculations using Graphics Hardware, with
Applications to Interactive Caustics”, Proc.
Eurographics Workshop on Rendering ’00,
2000.

[15] T. Kim and M. C. Lin, “Visual simulation of
ice crystal growth”, Proc. ACM
SIGGRAPH/EG Symposium on Computer
Animation ’03, 2003.

[16] K. Moreland and E. Angel, “The FFT on a
GPU”, Proc. SIGGRAPH/EG Conference on
Graphics Hardware ’03, 2003.

[17] J. C. Hart, “Perlin Noise Pixel Shaders”,
Proc. Eurographics/SIGGRAPH Graphics
Hardware Workshop ’01, 2001.

[18] K. Turkowski, “Filters for Common
Resampling Tasks”, Graphics Gems I, 1990.

[19] E. O. Brigham, “The Fast Fourier Transform
and Its Applications”, Prentice-Hall,
Englewood Cliffs, NJ.

[20] J. W. Cooley and J. W. Tukey, “An algorithm
for the machine calculation of complex
Fourier series”, Math. Comput. 19, 1965.

[21] M. Frigo and S. G. Johnson, “FFTW: An
adaptive software architecture for the FFT”,
In Proc. Acoustics, Speech, and Signal
Processing 3, 1998.

