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Abstract 

The Fourier volume rendering technique operates 
in the frequency domain and creates line integral 
projections of a 3D scalar field. These projections 
can be efficiently generated in )logO( 2 NN time 
by utilizing the Fourier Slice-Projection theorem. 
However, until now, the mathematical difficulty of 
the Fast Fourier Transform prevented acceleration 
by graphics hardware and therefore limited a wider 
use of this visualization technique in state-of-the-
art applications. In this paper we describe how to 
utilize current commodity graphics hardware to 
perform Fourier volume rendering directly on the 
GPU. We present a novel implementation of the 
Fast Fourier Transform: This Split-Stream-FFT 
maps the recursive structure of the FFT to the 
GPU in an efficient way. Additionally, high-
quality resampling within the frequency domain is 
discussed. Our implementation visualizes large 
volumetric data set in interactive frame rates on a 
mid-range computer system. 

1 Introduction 

Most volume rendering techniques fall into one of 
two classes: 
 

• In the screen-space approach, a ray is cast 
for each pixel on the screen, with uniform 
sampling and composition of the volumetric 
data along the ray, e.g. Raycasting [1] and 
Shear-Warp [2]. 

 

• In the object-space approach, the volume is 
traversed either back-to-front or front-to-
back, blending each scalar into the projection 
plane, e.g. 3D texture mapping [3] and 
Splatting [4]. 

 

It can be seen, that both approaches operate in the 
spatial domain and somehow have complexity 

)O( 3N for a volume of size 3N , as each voxel 
needs to be visited. 
Instead of working in the spatial domain, Fourier 
Volume Rendering (FVR) is based on the 
frequency spectrum of the 3D scalar field by 
utilizing the Fourier Slice-Projection theorem. 
This theorem allows us to compute integrals over 
volumes by extracting slices from the frequency 
domain representation. 
In detail, FVR generates line integral projections 
of a set of  3N scalars – using the inverse 2D Fast 
Fourier Transform (FFT) – with complexity 

)logO( 2 NN . The application of the Fourier 
Projection-Slice theorem to image synthesis has 
been independently proposed by Dunne et al. [5] 
and Malzbender [6]. An application to MR 
angiography is described by Napel et al. [7]. 
Solutions for depth cueing and illumination where 
proposed by Totsuka et al. [8] and Levoy [9]. 
Additionally, frequency domain based algorithms, 
using the wavelet transform were presented by 
Westenberg et al. [10] and Gross et al. [11]. 
However, even the most recent implementations of 
FVR are realized on the CPU only. In contrast, 
most spatial domain volume rendering algorithms 
make use of current graphics hardware features, 
such as programmability. This leads to faster 
implementations, even for a worse computational 
complexity. The mathematical structure of FVR – 
especially the use of the FFT – has prevented its 
adaptation to modern graphics hardware. 
Such hardware, also known as the Graphics 
Processing Unit (GPU), nowadays implements a 
stream architecture, which uses a kernel to operate 
on one or multiple input streams to produce one or 
multiple output streams [12]. Using this paradigm, 
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it became popular to use the GPU for problems it 
was not designed for, e.g. to compute Voronoi 
diagrams [13], generate interactive caustics [14], 
or simulate crystal growth [15]. 
The mathematical obstacle of FVR is the inverse 
FFT that transforms scalar values from the 
frequency spectrum to the spatial domain. The 
adaptation of the recursive structure of the FFT to 
the GPU is likely to be the major difficulty of the 
full FVR pipeline. Moreland et al. proposed a FFT 
implementation [16], however, the algorithm does 
not make efficient use of the graphics hardware 
and a special texture format is used, which might 
be useful for image processing but is not 
applicable for the FVR approach.  
In this paper we describe how to take advantage of 
the features of commodity graphics hardware to 
realize FVR. As a major part, this includes a novel 
implementation of the FFT on the GPU: The Split-
Stream-FFT was designed to efficiently map the 
recursive structure of the FFT to the stream 
architecture of a GPU. This leads to superior speed 
performance for DSP applications in general, and 
to the FVR in special. In addition, we deal with 
resampling in the frequency domain, which is 
essential to accomplish proper image quality. 

2 Methods 

Volume visualization can be seen as the inverse 
problem of tomographic reconstruction. 
Therewith, it might be useful to take a closer look 
at it. The objective of tomographic reconstruction 
is to compute the scalar field ),,( zyxf from a 
given set of projections. In contrast, in volume 
rendering the distribution is given and we are 
asked to compute projections of it. 
A common method to achieve tomographic 
reconstruction is by using the Fourier Projection-
Slice theorem [6]. This theorem means for the 2D 
case, if ),( vuF is the frequency distribution of 

),( yxf and )(wPθ is the frequency distribution 
of )(rpθ , then 
 ( ) ( ) ( )( )θθθ sin,cos wwFwP = . (1) 

Intuitively, the slice of the 2D Fourier transform of 
an object at some angle θ is the 1D Fourier 
transform of a projection of the object at the same 
angle θ (see Figure 1). 

The Fourier Projection-Slice theorem is still valid 
in higher dimensions. Starting with a 3D 
continuous distribution ),,( zyxf and its 
frequency response ),,( wvuF , given by 

∫ ∫ ∫=
∞

∞−

∞

∞−

∞

∞−

++− dzdydxezyxfwvuF zwyvxui )(2),,(),,( π (2) 

a parallel projection of ),,( zyxf can be generated 
by evaluating ),,( wvuF along a plane that is 
defined by the orthonormal vectors 
 ( )zyx sssS ,,= (3) 

 ( )zyx tttT ,,= (4) 

yielding 
 ),,(),( ttssttssttssFtsP zzyyxx +++= . (5) 

Taking the inverse 2D Fourier transform leads to 

 ∫ ∫
∞
∞−

∞
∞−

+−= dtdsetsPvup vtusi )(2),(),( π . (6) 

In summary, FVR computes the function 

 ∫
∞
∞−= dtvutfvup ),,(),( . (7) 

Once the forward 3D transform is generated via a 
pre-processing operation, projections for arbitrary 
viewing directions can be quickly computed by 
working with 2D manifolds in the frequency 
domain. This leads to a better computational 
complexity and a much better speed performance. 
It can be seen that – after the initial pre-processing 
step – the remainder of the FVR approach can be 
separated into two distinct parts: 
 

Figure 1: The  Fourier Projection-Slice theorem 
describes the relationship between the Fourier 
transform of a projection and the Fourier 
transform of the object. 
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• High-quality resampling: The extraction of 
a plane in the frequency domain, using high-
quality interpolation. 

 

• FFT: An inverse 2D Fourier transform of the 
extracted plane yields the X-ray like 
projection of the volume (see Figure 2). 

2.1. High-Quality Resampling 

Once the volumetric data set is transformed to the 
frequency domain (pre-processing), we need to 
extract a plane perpendicular to the view vector. 
Malzbender has shown that high-quality 
resampling is more crucial in frequency space than 
in the spatial domain [6]. Linear interpolation 
leads to aliasing and ghosting artifacts in FVR. 
Generally, there is no direct support in graphics 
hardware for better interpolation than linear. There 
are extensions for cubic interpolation, which also 
might be insufficient or not available at run-time. 
As a result, we can not rely on the built-in 
interpolation stage, but need to implement our 
own interpolation scheme on the GPU. 
The implementation of such a scheme is based on 
the idea of Hart et al. [17]. They realized spline 
interpolation by exploiting muli-texturing and 
blending operations. In fact, this leads to the 
common Input-Side-scheme: Instead of traversing 
through all sample points and gathering the 
weighted neighbors, this approach traverses 
through all neighbors and distributes their 
weighting to the newly generated sample points. 
The scheme can be extended to an arbitrary 
neighbor extend in higher dimensions and a 
custom reconstruction filter. We have chosen the 
Lanczos windowed-sinc function as the 
reconstruction filter [18], which is given by 
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for a neighborhood extend of N .

2.2. The FFT 

Fourier analysis is a family of mathematical 
techniques, based on decomposing signals into 
sinusoids. The Discrete Fourier Transform (DFT) 
is used for discrete signals. Such a signal is 
transformed via the DFT from the spatial domain 
into the frequency domain. A detailed introduction 
to Fourier analysis is presented in [19]. 
Given a sequence of N samples )(nf , indexed 
by 10 −= Nn K , the DFT is defined as 
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where 10 −= Nk K . The inverse DFT is given by 
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There are several ways to calculate the DFT, such 
as solving simultaneous linear equations or the 
correlation method. The Fast Fourier Transform 
(FFT) is a family of other techniques, which is of 
great importance for a wide variety of applications. 
The most common FFT technique is the Cooley-
Tukey algorithm [20]. This divide-and-conquer 
approach recursively breaks down a DFT of any 
composite size 21nnn = into smaller DFTs of 
sizes 1n and 2n . The common use is to divide the 
transform into two pieces of size 2n at each 
recursion level. The division can take place in the 
spatial domain (also called time domain) or in the 
frequency domain, respectively called decimation-
in-time (DIT) and decimation-in-frequency (DIF). 
We have chosen the decimation-in-frequency FFT 
approach, which is given by 
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Figure 2: Projections generated with our FVR 
implementation: (a) Engine and (b) CT-Head. 

(a) (b)
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The constant factor N1 that is part of 
equations (9) and (10) is discarded in equation 
(11) in favor of a strict recursive structure. This 
factor needs to be post-multiplied by ),( fkFN at 
the end. The inverse FFT can be computed the 
same, by changing the twiddle factor from 

Nnie π2− to Nnie π2+ . Equations (12) are sometimes 
referred to as the FFT butterfly operation and are 
graphically shown in Figure 3. 

Figure 4 illustrates how the algorithm works by 
showing the naive implementation of the DIF-FFT 
for 8=N . Because of the recursive approach, 

38log = stages are used to compute the FFT, each 
stage performing 2438 =⋅ operations. Generally, 
the FFT has a complexity of )logO( NN  for N
input values. It can be seen, that the resulting 
frequency distribution is in wrong order. A bit 
reversal (or tangling) operation is used to re-sort 
them at the end. This can be done in constant time. 
Beside the restrictions of the FVR approach, we 
have to take care of additional drawbacks 
introduced by the DFT, e.g. under-/oversampling 
and aliasing. Details can be found in [19]. 

3 Implementation 

This chapter gives implementation details of the 
two parts of FVR, pointed out in section 2. We 
assume that the 3D scalar field was transformed to 
its frequency representation and transferred to the 
memory accessible by the GPU. 

3.1 High-Quality Resampling 

The scheme described in section 2.1 is extended to 
3D resampling and implements a Lanczos 
windowed-sinc function for an extend of N . A
naive implementation would lead to ( )32NPN =
passes, yielding to 2163 =P for  3Lanczos  and 

5124 =P for 4Lanczos , respectively. 
However, a 3D reconstruction filter can be 
executed by subsequently performing three filters 
along the major axes. This involves rendering to a 
3D render target, which is not possible yet. 
Fortunately, current GPUs are able to process at 
least 8 objects at once, therefore, we are able to 
perform the interpolation for { }3,2∈N with 
rendering to 2D render targets only. This is done 
as follows (for 3=N ): 
 

1. The 3D input texture is used six times, shifted 
each time by one voxel along the z-axis. Two 
weighting textures (for six weights) are used. 
The fragment program sums up the weighted 
input voxels and stores the result in 3666 =⋅
intermediate output texture. 

 

Figure 3: The FFT butterfly is the most essential 
operation of the Fast Fourier Transform. 
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Figure 4: A naive implementation of the DIF-FFT for N=8 scalar values. It can be seen that the frequency 
distribution needs to be re-sorted (= tangled) at the end, which is a constant time operation. 
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2. Then, we do the same for the y-axis with the 
36 previously generated textures, leading to 
six new intermediate output textures. 

 

3. At last, these textures are used, each shifted 
by one pixel along the x-axis, leading to the 
final texture. 

 

In summary, our implementation requires 
36+6+1=43 passes to extract a plane in frequency 
space for 3Lanczos  and 21 passes for 2Lanczos .

3.2 The FFT 

The FFT implementation shown in Figure 4 can 
not be mapped directly to the GPU. Even if 
graphics hardware implements a powerful stream 
architecture, it still is focused on graphics. 
3.2.1 Restrictions 
We have to deal with the following limitations for 
each execution of a fragment program: 
 

1. Reading the input stream is optimized for 
constant step size (called modulo), therefore, 
random access is slow. However, the same 
input stream can be used multiple times with 
different offsets and modulos. 

 

2. The output stream is filled subsequently 
(modulo of 1). Fortunately, the output can 
begin at any offset, which allows 
concatenation of outputs. 

 

3. Multiple outputs are allowed for each 
fragment program (kernel), but only one 
pixel (e.g. RGBA value) per output stream. 

 

Additionally, there are guidelines for the 
interaction of our FFT fragment programs: 
 

4. The output stream of recursion level n is 
used as the input stream of recursion level 

1+n . Time-consuming re-ordering of the 
stream elements should be avoided. 

 

5. Switching the output stream or the fragment 
program is slow and should be minimized. 

 

3.2.2 Adaptation 
As the first step to adapt the DIF-FFT (section 2.2) 
to the GPU, we take look on restriction 4. Figure 5 
presents a reordering of the butterfly operations to 
achieve consistency between the output of one 
recursion level and the input of the subsequent 
level. In addition, the same operation is performed 
in each recursion level (only twiddle factors are 
changing). Nevertheless, it is easy to see that other 
limitations are violated in this configuration. 
In the next step, we keep the structure, but reorder 
the actual output stream elements from back-to-
front, see Figure 6. As a result, tangling is shifted 
to the beginning of the FFT. Most of the 
restrictions are fulfilled now, except restriction 3. 
Therefore, we split the FFT butterfly into two 
separated passes, each calculating one scalar. The 
first fragment program is associated to ef , and the 
second is related to of , respectively (Figure 7). 
All restrictions and limitations are satisfied, 
leading to our Split-Stream-FFT implementation. 
The name is derived from the splitting of the FFT 
butterfly and the stream re-use between the 
recursion levels. 

Figure 5: Reordering of the FFT butterfly operations to fit restriction 4. The output stream of one 
recursion level is the interleaved input stream of the next level. The interleaving can be done for free. 
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3.2.3 Optimization 
Many optimizations are known to speed up a FFT 
implementation. A technique widely used is 
working as follows: The last two recursion levels 
can be combined, due to the simplicity of the 
twiddle factors used in level ( ) 1log −N

)0,1(402 =− ie π and )1,0(412 −=− ie π , (13) 

and in level ( )Nlog  

)0,1(202 =− ie π . (14) 

In our implementation, four dedicated fragment 
programs are used for the last two recursion levels, 
one for each quarter of the output stream. For 
small N , we observed a speed-up of about 30%. 
The first recursion level is also treated in a special 
way. As can be seen in Figure 7, the tangling takes 
place at the beginning. Instead of performing an 
own bit-reversal pass, the first FFT pass is 
adapted. The input streams are mapped to texture 

objects, therefore the input range can be specified 
via texture coordinates. Instead of supplying the 
full input stream at once – as for all other 
recursion levels – we feed many small pieces (of 
just one value) to the fragment programs of the 
first recursion level. The order can be controlled 
by the texture coordinates, achieving a bit-reversal 
of the input stream. Unfortunately, the cache 
mechanism of current graphics hardware is not 
well exploited using this method; therefore, the 
first recursion level is by far the slowest. This 
effect can be reduced for 2D FFT, because 
columns and rows of values can be used. 
The Fourier Projection-Slice theorem holds for the 
Complex-FFT, as well as, for the Real-FFT. 
Actually, two Real-FFTs can be implemented via a 
single Complex-FFT, which shrinks the input 
stream by half and nearly doubling the speed. 
Details about the simple transformation between 
Real-FFT and Complex-FFT can be found in [19]. 

Figure 6: The FFT was re-ordered back-to-front. The tangling has moved to the beginning. Unfortunately, 
output stream interleaving is not supported by current graphics hardware. 
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Figure 7: Final implementation of the Split-Stream-FFT. Input streams are interleaved and output streams 
are concatenated. It is clearly visible, that the FFT butterfly operation is split into two fragment programs.
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4 Results and Discussion 

In summary, the novelty of our FVR 
implementation is the FFT, which actually could 
be used stand-alone by other DSP techniques. 
Hence, two distinct benchmarks are of interest: 
 

1. The FFT as a stand-alone operation 
compared to third-party implementations. As 
competitors, we have chosen the latest 
version (3.0.1, 2003) of the popular  FFTW 
software implementation [21] and the GPU-
based adaptation of the FFT approach by 
Moreland et al. [16]. Performance was 
measured for a 2D forward FFT of a gray 
scale image, filtering in frequency space and 
the 2D inverse FFT. Results of the 
benchmark can be seen in Table 1. 

 

2. The full FVR compared to other volume 
rendering techniques. We have chosen a 
naive ray-casting algorithm in software, as 
well as hardware accelerated 3D texture 
mapping. Both competitors use linear 
interpolation and utilize a saturated addition 
as the compositing operation. Results of the 
benchmark are presented in Table 2. 

The dominating argument for FVR is its speed. 
Most of the other volume rendering techniques 
have complexity )(O 3N for a volume of size 3N ,
as each scalar value needs to be evaluated. FVR 
generates projection images of such volumes with 
complexity )log(O 2 NN (excluding the pre-
processing step). In fact, the extraction of the 
projection plane with complexity )(O 2N
computationally dominates the inverse 2D FFT for 
practical values of N . The pre-processing step 
itself is of complexity )log(O 3 NN .
FVR is limited in additional ways: Because 
equation (7) is an order independent linear 
projection along the line of projection t ,
occlusion is not available. This limits us to 
transparent visualization, and leads to X-ray like 
projections of the data set. However, occlusion is 
not the only depth information. Totsuka et al. 
address illumination and attenuation and show 
how this can be implemented directly in  
frequency space [8]. Other restrictions exist and 
are discussed in further detail in [5] and [6]. 
Due to its speed, FVR is practical for large data set 
visualization. On the other hand, the intermediate 
representation in frequency space is memory 
consuming. Instead of 8 or 12 bit per scalar, at 
least 32 bit for a single-precision floating point 
value is indispensable. Current consumer graphics 
hardware is equipped with no more than 256 
Mbytes that can hold ideally ~400³ scalars. 
However, by quantizing the frequency values, a 
reduction to 16 bit is possible. 
 

5 Conclusion and Future Work 

In this paper, we have presented a novel 
implementation of the Fast Fourier Transform on 
the GPU. The Split-Stream-FFT efficiently maps 
the recursive structure of this fundamental DSP 
technique to the stream architecture of modern 
graphics hardware. Additionally, the FFT butterfly 
operation is split to exploit the rasterization stage 
of the GPU. By utilizing our approach, volume 
visualization using the FVR technique has become 
applicable on commodity graphics hardware. 
Resampling within frequency space was discussed. 
Our implementation of the FVR method generates 
high-quality projections at interactive frame rates. 

Table 1: Speed performance (in ms) measured on a 
2.6GHz Intel Pentium4 and ATI’s Radeon 9800 
GPU. (*) Results from Moreland et al. were taken 
from [16] and downscaled to gray-level image. 
 

Image Size FFTW 
Moreland

et al. (*) 
Split-

Stream 
10242 535.8 675.0 60.7 
5122 119.9 156.3 14.0 
2562 23.7 37.3 3.4 
1282 1.2 10.0 1.5 

Table 2: Rendering time (in frames per second) for 
a 5122 projection of various volumetric data sets. 
(*) Rate is extrapolated, due to memory limitations 
on the GPU. 
 

Data Set 
Size 

Raycasting 
3D Texture
Mapping 

FVR 
on the GPU 

5123 0.3 10.1 14.9 (*) 
2563 0.6 24.2 62.5 
1283 1.3 54.8 143.7 
643 2.7 121.1 164.8 
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The work presented in this paper can be enhanced 
in many ways. We plan to implement the work of 
Totsuka et al. [8], including other depth cues, e.g. 
illumination and attenuation. Most of this can be 
done directly in frequency space, which allows 
attribute changes (i.e. position of a light source) 
without performing the pre-processing step. 
Interactive filtering within the frequency domain 
might be interesting, as well. This includes 
smoothing, sharpening and edge enhancement. 
Compression is another interesting topic we are 
working on. Compression in the frequency domain 
leads to adequate results in quality and 
compression ratio. This would yield to faster data 
transfer and support of larger volumes. However, 
two problems need to be solved: 1) Traditional 
GPU data structures (e.g. vertex arrays and 
textures) are inadequate to handle compressed 
frequency scalars. 2) The extraction stage will 
increase in complexity. 
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