
Pyramid-Based Texture Analysis/Synthesis

David J. Heeger�

Stanford University
James R. Bergeny

SRI David Sarnoff Research Center

Abstract

This paper describes a method for synthesizing images that match
the texture appearanceof a given digitized sample. This synthesis is
completely automatic and requires only the “target” texture as input.
It allows generation of as much texture as desired so that any object
can be covered. It can be used to produce solid textures for creat-
ing textured 3-d objects without the distortions inherent in texture
mapping. It can also be used to synthesize texture mixtures, images
that look a bit like each of several digitized samples. The approach
is based on a model of human texture perception, and has potential
to be a practically useful tool for graphics applications.

1 Introduction

Computer renderings of objects with surface texture are more inter-
esting and realistic than those without texture. Texture mapping [15]
is a technique for adding the appearance of surface detail by wrap-
ping or projecting a digitized texture image onto a surface. Digitized
textures can be obtained from a variety of sources, e.g., cropped
from a photoCD image, but the resulting texture chip may not have
the desired size or shape. To cover a large object you may need to
repeat the texture; this can lead to unacceptableartifacts either in the
form of visible seams, visible repetition, or both.

Texture mapping suffers from an additional fundamental prob-
lem: often there is no natural map from the (planar) texture image
to the geometry/topology of the surface, so the texture may be dis-
torted unnaturally when mapped. There are some partial solutions
to this distortion problem [15] but there is no universal solution for
mapping an image onto an arbitrarily shaped surface.

An alternative to texture mapping is to create (paint) textures by
hand directly onto the 3-d surface model [14], but this process is
both very labor intensive and requires considerable artistic skill.

Another alternative is to use computer-synthesized textures so
that as much texture can be generated as needed. Furthermore, some
of the synthesis techniques produce textures that tile seamlessly.

Using synthetic textures, the distortion problem has been solved
in two different ways. First, some techniques work by synthesizing
texture directly on the object surface (e.g., [31]). The second solu-
tion is to use solid textures [19, 23, 24]. A solid texture is a 3-d ar-
ray of color values. A point on the surface of an object is colored by
the value of the solid texture at the corresponding 3-d point. Solid
texturing can be a very natural solution to the distortion problem:

�Department of Psychology, Stanford University, Stanford, CA 94305.
heeger@white.stanford.edu http://white.stanford.edu

ySRI David Sarnoff Research Center, Princeton, NJ 08544.
jrb@sarnoff.com

there is no distortion because there is no mapping. However, exist-
ing techniques for synthesizing solid textures can be quite cumber-
some. One must learn how to tweak the parameters or procedures
of the texture synthesizer to get a desired effect.

This paper presents a technique for synthesizing an image (or
solid texture) that matches the appearanceof a given texture sample.
The key advantage of this technique is that it works entirely from the
example texture, requiring no additional information or adjustment.
The technique starts with a digitized image and analyzes it to com-
pute a number of texture parameter values. Those parameter val-
ues are then used to synthesize a new image (of any size) that looks
(in its color and texture properties) like the original. The analysis
phase is inherently two-dimensional since the input digitized images
are 2-d. The synthesis phase, however, may be either two- or three-
dimensional. For the 3-d case, the output is a solid texture such that
planar slices through the solid look like the original scanned image.
In either case, the (2-d or 3-d) texture is synthesized so that it tiles
seamlessly.

2 Texture Models

Textures have often been classified into two categories, determinis-
tic textures and stochastic textures. A deterministic texture is char-
acterized by a set of primitives and a placement rule (e.g., a tile
floor). A stochastic texture, on the other hand, does not have easily
identifiable primitives (e.g., granite, bark, sand). Many real-world
textures have some mixture of these two characteristics (e.g. woven
fabric, woodgrain, plowed fields).

Much of the previous work on texture analysis and synthesis
can be classified according to what type of texture model was
used. Some of the successful texture models include reaction-
diffusion [31, 34], frequency domain [17], fractal [9, 18], and sta-
tistical/random field [1, 6, 8, 10, 12, 13, 21, 26] models. Some (e.g.,
[10]) have used hybrid models that include a deterministic (or pe-
riodic) component and a stochastic component. In spite of all this
work, scanned images and hand-drawn textures are still the princi-
ple source of texture maps in computer graphics.

This paper focuses on the synthesis of stochastic textures. Our
approach is motivated by research on human texture perception.
Current theories of texture discrimination are based on the fact that
two textures are often difficult to discriminate when they produce
a similar distribution of responses in a bank of (orientation and
spatial-frequency selective) linear filters [2, 3, 7, 16, 20, 32]. The
method described here, therefore, synthesizes textures by match-
ing distributions (or histograms) of filter outputs. This approach de-
pends on the principle (not entirely correct as we shall see) that all
of the spatial information characterizing a texture image can be cap-
tured in the first order statistics of an appropriately chosen set of lin-
ear filter outputs. Nevertheless, this model (though incomplete) cap-
tures an interesting set of texture properties.



Computational efficiency is one of the advantages of this
approach compared with many of the previous texture analy-
sis/synthesis systems. The algorithm involves a sequence of simple
image processing operations: convolution, subsampling, upsam-
pling, histograming, and nonlinear transformations using small
lookup tables. These operations are fast, simple to implement, and
amenable to special purpose hardware implementations (e.g., using
DSP chips).

3 Pyramid Texture Matching

The pyramid-based texture analysis/synthesis technique starts with
an input (digitized) texture image and a noise image (typically uni-
form white noise). The algorithm modifies the noise to make it look
like the input texture (figures 2, 3, 4). It does this by making use
of an invertible image representation known as an image pyramid,
along with a function, match-histogram, that matches the his-
tograms of two images. We will present examplesusing two types of
pyramids: the Laplacian pyramid (a radially symmetric transform)
and the steerable pyramid (an oriented transform).

3.1 Image Pyramids

A linear image transform represents an image as a weighted sum of
basis functions. That is, the image, I(x;y), is represented as a sum
over an indexed collection of functions, gi(x; y):

I(x; y) =
X

i

yigi(x; y);

where yi are the transform coefficients. These coefficients are com-
puted from the signal by projecting onto a set of projection func-
tions, hi(x;y):

yi =
X

x;y

hi(x; y)I(x; y):

For example, the basis functions of the Fourier transform are sinu-
soids and cosinusoids of various spatial frequencies. The projection
functions of the Fourier transform are also (co-)sinusoids.

In many image processing applications, an image is decomposed
into a set of subbands, and the information withing each subband is
processed more or less independently of that in the other subbands.
The subbands are computed by convolving the image with a bank
of linear filters. Each of the projection functions is a translated (or
shifted) copy of one of the convolution kernels (see [28] for an in-
troduction to subband transforms and image pyramids).

An image pyramid is a particular type of subband transform.
The defining characteristic of an image pyramid is that the ba-
sis/projection functions are translated and dilated copies of one an-
other (translated and dilated by a factor or 2j for some integer j).
The subbands are computed by convolving and subsampling. For
each successive value of j, the subsampling factor is increased by a
factor of 2. This yields a set of subband images of different sizes
(hence the name image pyramid) that correspond to different fre-
quency bands.

In an independent context, mathematicians developed a form of
continuous function representation called wavelets (see [30] for an
introduction to wavelets), that are very closely related to image
pyramids. Both wavelets and pyramids can be implemented in an
efficient recursive manner, as described next.

Laplacian Pyramid. The Laplacian pyramid [4, 5, 22] is com-
puted using two basic operations: reduce and expand. The
reduce operation applies a low-pass filter and then subsamples by
a factor of two in each dimension. The expand operation upsam-
ples by a factor of two (padding with zeros in between pixels) and

then applies the same low-pass filter. A commonly used low-pass
filter kernel (applied separably to the rows and columns of an im-
age) is: 1

16
(1; 4; 6; 4; 1).

One complete level of the pyramid consists of two images, l0 (a
low-pass image), and b0 (a high-pass image), that are computed as
follows:

l0 = Reduce(im)
b0 = im - Expand(l0),

where im is the original input image. Note that the original image
can be trivially reconstructed from l0 and b0:

reconstructed-im = b0 + Expand(l0).

The next level of the pyramid is constructed by applying the same
set of operations to the l0 image, yielding two new images, l1 and b1 .
The full pyramid is constructed (via the make-pyramid function)
by successivelysplitting the low-pass image li into two new images,
li+1 (a new low-pass image) and bi+1 (a new band-pass image).

The combined effect of the recursive low-pass filtering and
sub/upsampling operations yields a subband transform whose basis
functions are (approximately) Gaussian functions. In other words,
the transform represents an image as a sum of shifted, scaled, and
dilated (approximately) Gaussian functions. The projection func-
tions of this transform are (approximately) Laplacian-of-Gaussian
(mexican-hat) functions, hence the name Laplacian pyramid. Note
that the pyramid is not computed by convolving the image directly
with the projection functions. The recursive application of the
reduce and expand operations yields the same result, but much
more efficiently.

In the end, we get a collection of pyramid subband images con-
sisting of several bandpass images and one leftover lowpass im-
age. These images have different sizes because of the subsam-
pling operations; the smaller images correspond to the lower spa-
tial frequency bands (coarser scales). Note that the original image
can always be recovered from the pyramid representation (via the
collapse-pyramid function) by inverting the sequence of op-
erations, as exemplified above.

Steerable Pyramid. Textures that have oriented or elongated
structures are not captured by the Laplacian pyramid analysis be-
cause its basis functions are (approximately) radially symmetric.

To synthesize anisotropic textures, we adopt the steerable pyra-
mid transform [25, 29]. Like the Laplacian pyramid, this transform
decomposesthe image into several spatial frequency bands. In addi-
tion, it further divides each frequency band into a set of orientation
bands.

The steerable pyramid was used to create all of the images in this
paper. The Laplacian pyramid was used (in addition to the steerable
pyramid, see Section 4) for synthesizing the solid textures shown in
figure 5.

Figure 1(a) shows the analysis/synthesis representation of the
steerable pyramid transform. The left-hand side of the diagram is
the analysis part (make-pyramid) and the right hand side is the
synthesis part (collapse-pyramid). The circles in between
represent the decomposed subband images. The transform begins
with a high-pass/low-pass split using a low-pass filter with a radially
symmetric frequency response; the high-pass band corresponds to
the four corners of the spatial frequency domain. Each successive
level of the pyramid is constructed from the previous level’s low-
pass band by a applying a bank of band-pass filters and a low-pass
filter.

The orientation decomposition at each level of the pyramid is
“steerable” [11], that is, the response of a filter tuned to any orienta-
tion can be obtained through a linear combination of the responses



H0

L 0 B0

B1

B2

B3

H0

L 0B0

B1

B2

B3

L 1 2 L 12

a

cb

d

etc.

Figure 1: (a) System diagram for the first level of the steerable pyra-
mid. Boxes represent filtering and subsampling operations: H0 is a
high-pass filter, L0 and Li are low-pass filters, and Bi are oriented
bandpass filters. Circles in the middle represent the decomposed
subbands. Successive levels of the pyramid are computed by apply-
ing the Bi and L1 filtering and subsampling operations recursively
(represented by “etc.” at the bottom). (b) Several basis/projection
functions of the steerable pyramid. Note that these are not the Bi

filters, although the Bi filters do look similar to the top row of ba-
sis/projection functions. (c) Input image. (d) Steerable pyramid
subband images for this input image.

of the four basis filters computed at the same location. The steerabil-
ity property is important because it implies that the pyramid repre-
sentation is locally rotation-invariant.

The steerable pyramid, unlike most discrete wavelet transforms
used in image compression algorithms, is non-orthogonal and over-
complete; the number of pixels in the pyramid is much greater than
the number of pixels in the input image (note that only the low-pass
band is subsampled). This is done to minimize the amount of alias-
ing within each subband. Avoiding aliasing is critical because the
pyramid-based texture analysis/synthesisalgorithm treats each sub-
band independently.

The steerable pyramid is self-inverting; the filters on the synthe-
sis side of the system diagram are the same as those on the analysis
side of the diagram. This allows the reconstruction (synthesis side)
to be efficiently computed despite the non-orthogonality.

Although the steerable pyramid filter kernels are nonseparable,
any nonseparable filter can be approximated (often quite well) by a
sum of several separable filter kernels [25]. Using these separable
filter approximations would further increase the computational effi-
ciency.

A C code implementation of the steerable pyramid is available at
http://www.cis.upenn.edu/˜eero/home.html.

Psychophysical and physiological experiments suggest that im-
age information is represented in visual cortex by orientation and
spatial-frequency selective filters. The steerable pyramid captures
some of the oriented structure of images similar to the way this in-
formation is represented in the human visual system. Thus, textures
synthesized with the steerable pyramid look noticeably better than
those synthesized with the Laplacian pyramid or some other non-
oriented representation. Other than the choice of pyramid, the algo-
rithm is exactly the same.

3.2 Histogram Matching

Histogram matching is a generalization of histogram equalization.
The algorithm takes an input image and coerces it via a pair of
lookup tables to have a particular histogram. The two lookup tables
are: (1) the cumulative distribution function (cdf) of one image, and
(2) the inverse cumulative distribution function (inverse cdf) of the
other image. An image’s histogram is computed by choosing a bin-
size (we typically use 256 bins), counting the number of pixels that
fall into each bin, and dividing by the total number of pixels. An
image’s cdf is computed from its histogram simply by accumulat-
ing successive bin counts.

The cdf is a lookup table that maps from the interval [0,256] to
the interval [0,1]. The inverse cdf is a lookup table that maps back
from [0,1] to [0,256]. It is constructed by resampling (with linear
interpolation) the cdf so that its samples are evenly spaced on the
[0,1] interval.

These two lookup tables are used by the match-histogram
function to modify an image (im1) to have the same histogram as
another image (im2):

Match-histogram (im1,im2)
im1-cdf = Make-cdf(im1)
im2-cdf = Make-cdf(im2)
inv-im2-cdf = Make-inverse-lookup-table(im2-cdf)
Loop for each pixel do

im1[pixel] =
Lookup(inv-im2-cdf,

Lookup(im1-cdf,im1[pixel]))

3.3 Texture Matching

The match-texture function modifies an input noise image
so that it looks like an input texture image. First, match the his-
togram of the noise image to the input texture. Second, make pyra-
mids from both the (modified) noise and texture images. Third, loop
through the two pyramid data structures and match the histograms of
each of the corresponding pyramid subbands. Fourth, collapse the
(histogram-matched) noise pyramid to generate a preliminary ver-
sion of the synthetic texture. Matching the histograms of the pyra-
mid subbands modifies the histogram of the collapsed image. In or-
der to get both the pixel and pyramid histograms to match we iter-
ate, rematching the histograms of the images, and then rematching
the histograms of the pyramid subbands.

Match-texture(noise,texture)
Match-Histogram (noise,texture)
analysis-pyr = Make-Pyramid (texture)
Loop for several iterations do

synthesis-pyr = Make-Pyramid (noise)
Loop for a-band in subbands of analysis-pyr

for s-band in subbands of synthesis-pyr
do
Match-Histogram (s-band,a-band)

noise = Collapse-Pyramid (synthesis-pyr)
Match-Histogram (noise,texture)



Whenever an iterative scheme of this sort is used there is a con-
cern about convergence. In the current case we have not formally
investigated the convergence properties of the iteration, but our ex-
perience is that it always converges. However, stopping the algo-
rithm after several (5 or so) iterations is critical. As is the case with
nearly all discrete filters, there are tradeoffs in the design of the
steerable pyramid filters (e.g., filter size versus reconstruction ac-
curacy). Since the filters are not perfect, iterating too many times
introduces artifacts due to reconstruction error.

The core of the algorithm is histogram matching which is a spa-
tially local operation. How does this spatially local operation repro-
duce the spatial characteristics of textures? The primary reason is
that histogram matching is done on a representation that has intrin-
sic spatial structure. A local modification of a value in one of the
pyramid subbands produces a spatially correlated change in the re-
constructed image. In other words, matching the pointwise statistics
of the pyramid representation does match some of the spatial statis-
tics of the reconstructed image. Clearly, only spatial relationships
that are represented by the pyramid basis functions can be captured
in this way so the choice of basis functions is critical. As mentioned
above, the steerable pyramid basis functions are a reasonably good
model of the human visual system’s image representation.

If we had a complete model of human texture perception then
we could presumably synthesize perfect texture matches. By anal-
ogy, our understanding of the wavelength encoding of light in the
retina allows us to match the color appearance of (nearly) any color
image with only three colored lights (e.g., using an RGB monitor).
Lights can be distinguished only if their spectral compositions dif-
fer in such a way as to produce distinct responses in the three pho-
toreceptor classes. Likewise, textures can be distinguished only if
their spatial structures differ in such a way as to produce distinct re-
sponses in the human visual system.

3.4 Edge Handling

Proper edge handling in the convolution operations is important.
For the synthesis pyramid, use circular convolution. In other
words, for an image I(x;y) of size NxN, define: I(x;y) �

I(xmodN; ymodN). Given that the synthesis starts with a ran-
dom noise image, circular convolution guarantees that the resulting
synthetic texture will tile seamlessly.

For the analysis pyramid, on the other hand, circular convolution
would typically result in spuriously large filter responses at the im-
age borders. This would, in turn, introduce artifacts in the synthe-
sized texture. A reasonable border handler for the analysis pyramid
is to pad the image with a reflected copy of itself. Reflecting at the
border usually avoids spurious responses (except for obliquely ori-
ented textures).

3.5 Color

The RGB components of a typical texture image are not indepen-
dent of one another. Simply applying the algorithm to R, G, and B
separately would yield color artifacts in the synthesized texture.

Instead, color textures are analyzedby first transforming the RGB
values into a different color space. The basic algorithm is applied
to each transformed color band independently producing three syn-
thetic textures. These three textures are then transformed back into
the RGB color space giving the final synthetic color texture.

The color-space transformation must be chosen to decorrelate the
color bands of the input texture image. This transformation is com-
puted from the input image in two steps. The first step is to sub-
tract the mean color from each pixel. That is, subtract the average
of the red values from the red value at each pixel, and likewise for
the green and blue bands. The resulting color values can be plotted
as points in a three-dimensional color space. The resulting 3-d cloud

of points is typically elongated in some direction, but the elongated
direction is typically not aligned with the axes of the color space.

The second step in the decorrelating color transform rotates the
cloud so that its principle axes align with the axes of the new color
space. The transform can be expressed as a matrix multiplication,
y =Mx, where x is the RGB color (after subtracting the mean) of
a particular pixel, y is the transformed color, andM is a 3x3 matrix.

The decorrelating transformM is computed from the covariance
matrixC using the singular-value-decomposition (SVD). LetD be
a 3xN matrix whose columns are the (mean-subtracted) RGB val-
ues of each pixel. The covariance matrix is: C = DDt, where
Dt means the transpose of D. The SVD algorithm algorithm de-
composes the covariance matrix into the product of three compo-
nents,C = US2Ut. Here,U is an orthonormal matrix and S2 is
a diagonal matrix. These matrices (C,U and S2) are each 3x3, so
the SVD can be computed quickly. The decorrelating transform is:
M = S�1Ut, where S is a diagonal matrix obtained by taking the
square-root of the elements of S2.

After applying this color transform, the covariance of the trans-
formed color values is the identity matrix. Note that the transformed
color values are: MD = S�1UtUSVt = Vt. It follows that the
covariance of the transformed color values is: VtV = I.

The color transform is inverted after synthesizing the three tex-
ture images in the transformed color space. First, multiply the syn-
thetic texture’s color values at each pixel by M�1. This produces
three new images (color bands) transformed back into the (mean
subtracted) RGB color space. Then, add the corresponding mean
values (the means that were subtracted from the original input tex-
ture) to each of these color bands.

4 Solid Textures

Pyramid-based texture analysis/synthesis can also be used to make
isotropic 3-d solid textures. We start with an input image and a
block of 3-d noise. The algorithm coerces the noise so that any slice
through the block looks like the input image.

The solid texture synthesis algorithm is identical to that described
above, except for the choice of pyramid: use a 2-d Laplacian pyra-
mid for analysis and a 3-d Laplacian pyramid for synthesis. As
usual, match the histograms of the corresponding subbands. Note
that since the Laplacian pyramid is constructed using separable con-
volutions, it extends trivially to three-dimensions.

We have obtained better looking results using a combination of
Laplacian and steerable pyramids. On the analysis side, construct a
2-d Laplacian pyramid and a 2-d steerable pyramid. On the synthe-
sis side, construct a 3-d Laplacian pyramid and construct steerable
pyramids from all two-dimensional (x-y, x-z, and y-z) slices of the
solid. Match the histograms of the 3-d (synthesis) Laplacian pyra-
mid to the corresponding histograms of the 2-d (analysis) Lapla-
cian pyramid. Match the histograms of each of the many synthe-
sis steerable pyramids to the corresponding histograms of the analy-
sis steerable pyramid. Collapsing the synthesis pyramids gives four
solids (one from the 3-d Laplacian pyramid and one from each set
of steerable pyramids) that are averaged together. Some examples
are shown in figure 5.

5 Texture Mixtures

Figure 6 shows some texture mixtures that were synthesized by
choosing the color palette (decorrelating color transform) from one
image and the pattern (pyramid subband statistics) from a second
image.



One can imagine a number of other ways to mix/combine textures
to synthesize an image that looks a bit like each of the inputs: ap-
ply match-texture to a second image rather than noise, com-
bine the high frequencies of one texture with the low frequencies of
another, combine two or more textures by averaging their pyramid
histograms, etc.

6 Limitations and Extensions

The approach presented in this paper, like other texture synthesis
techniques, has its limitations. The analysis captures some but not
all of the perceptually relevant structure of natural textures. Hence,
this approach should be considered one of many tools for texturing
objects in computer graphics.

It is critical that the input image be a homogeneous texture. Fig-
ure 7 shows two input textures (cropped from different areas of the
same photoCD image) and two corresponding synthetic textures.
When the input is inhomogeneous (due to an intensity gradient, con-
trast gradient, perspective distortion, etc.) then the synthesized tex-
ture has a blotchy appearance.

The approach also fails on quasi-periodic textures and on ran-
dom mosaic textures (figure 8). Although the results look inter-
esting, they do not particularly resemble the inputs. We have had
some success synthesizing quasi-periodic textures using a hybrid
scheme (e.g., like [10]) that combines a periodic texture model with
the pyramid decomposition. Methods that are specifically designed
to capture long range statistical correlation [26] have also been suc-
cessful with textures of this type. The issue with random mosaic
textures is mainly one of scale. If the repeated micro-patterns are
small enough, then the pyramid analysis/synthesis scheme works
well (e.g., see the ivy example in figure 3).

Figure 9 shows more examples of failures. There are two as-
pects of these images that the pyramid texture model misses. First,
these textures are locally oriented but the dominant orientation is
different in different parts of the image. In a sense, they are inho-
mogeneous with respect to orientation. Second, they contain ex-
tended, fine structure (correlations of high frequency content over
large distances). The pyramid scheme captures correlations of low
frequency content over large distances, but it captures correlations
of high frequency content only over very short distances.

There is no general way to construct an anisotropic solid tex-
ture from a 2-d sample. However, there are several options includ-
ing: (1) constructing a solid texture as the outer product of a 2-
d anisotropic color texture image and a 1-d (monochrome) signal;
(2) composing (adding, multiplying, etc.) several solid textures as
Peachy [23] did; (3) starting with an isotropic solid, and introducing
anisotropy procedurally, like Perlin’s marble [24] and Lewis’ wood-
grain [19]; (4) starting with an isotropic solid, and using a paint pro-
gram to introduce anisotropic “touch-ups”.

Image pyramids and multi-scale image representations of one
sort or another are the most often used data structures for antialiased
texture mapping (e.g., Renderman, Silicon Graphics Iris GL, Gen-
eral Electric and E&S realtime flight simulators, and reference [33]).
Pyramid-based texture synthesis, therefore, can be naturally inte-
grated into an antialiased texture mapping system.

Finally, it may be possible to write an interactive tool for texture
synthesis, with a slider for each parameter in the pyramid represen-
tation. In our current implementation, each subband histogram is
encoded with 256 bins. However the subband histograms of many
“natural” images have a characteristic shape [27], suggesting that a
very small number of parameters may be sufficient.

7 Conclusion

This paper presents a technique for created a two- or three-
dimensional (solid) texture array that looks like a digitized texture
image. The advantage of this approach is its simplicity; you do not
have to be an artist and you do not have to understand a complex
texture synthesis model/procedure. You just crop a textured region
from a digitized image and run a program to produce as much of that
texture as you want.

Acknowledgements: The teapot images were rendered using
Rayshade. Many of the source texture images were cropped from
photoCDs distributed by Pixar and Corel. Special thanks to Eero
Simoncelli for designing the filters for the steerable pyramid, to
Patrick Teo for writing a solid texturing extension to Rayshade,
to Alex Sherstinsky for suggesting the solid texturing application,
to Marc Levoy for his help and encouragement, and to Charlie
Chubb and Mike Landy for stimulating discussions. Supported by
an NIMH grant (MH50228), an NSF grant (IRI9320017), and an Al-
fred P. Sloan Research Fellowship to DJH.



References

[1] BENNIS, C., AND GAGALOWICZ, A. 2-D Macroscopic Tex-
ture Synthesis. Computer GraphicsForum 8 (1989), 291–300.

[2] BERGEN, J. R. Theories of Visual Texture Perception. In
Spatial Vision, D. Regan, Ed. CRC Press, 1991, pp. 114–133.

[3] BERGEN, J. R., AND ADELSON, E. H. Early Vision and Tex-
ture Perception. Nature 333 (1988), 363–367.

[4] BURT, P. Fast Filter Transforms for Image Processing. Com-
puter Graphics and Image Processing 16 (1981), 20–51.

[5] BURT, P. J., AND ADELSON, E. H. A Multiresolution Spline
with Application to Image Mosaics. ACM Transactions on
Graphics 2 (1983), 217–236.

[6] CHELLAPPA, R., AND KASHYAP, R. L. Texture Synthesis
Using 2-D Noncausal Autoregressive Models. IEEE Transac-
tions on Acoustics, Speech, and Signal Processing 33 (1985),
194–203.

[7] CHUBB, C., AND LANDY, M. S. Orthogonal Distribution
Analysis: A New Approach to the Study of Texture Percep-
tion. In Computational Models of Visual Processing, M. S.
Landy and J. A. Movshon, Eds. MIT Press, Cambridge, MA,
1991, pp. 291–301.

[8] CROSS, G. C., AND JAIN, A. K. Markov Random Field Tex-
ture Models. IEEE Transactions on Pattern Analysis and Ma-
chine Intelligence 5 (1983), 25–39.

[9] FOURNIER, A., FUSSEL, D., AND CARPENTER, L. Com-
puter Rendering of Stochastic Models. Communications of the
ACM 25 (1982), 371–384.

[10] FRANCOS, J. M., MEIRI, A. Z., AND PORAT, B. A Uni-
fied Texture Model Based on a 2D Wold-Like Decomposition.
IEEE Transactions on Signal Processing 41 (1993), 2665–
2678.

[11] FREEMAN, W. T., AND ADELSON, E. H. The Design and
Use of Steerable Filters. IEEE Transactions on Pattern Anal-
ysis and Machine Intelligence 13 (1991), 891–906.

[12] GAGALOWICZ, A. Texture Modelling Applications. The Vi-
sual Computer 3 (1987), 186–200.

[13] GAGALOWICZ, A., AND MA, S. D. Sequential Synthesis of
Natural Textures. Computer Vision, Graphics, and Image Pro-
cessing 30 (1985), 289–315.

[14] HANRAHAN, P., AND HAEBERLI, P. Direct WYSIWYG
Painting and Texturing of 3D Shapes. Proceedings of SIG-
GRAPH 90. In Computer Graphics (1990), vol. 24, ACM
SIGGRAPH, pp. 215–223.

[15] HECKBERT, P. S. Survey of Texture Mapping. IEEE Com-
puter Graphics and Applications 6 (1986), 56–67.

[16] LANDY, M. S., AND BERGEN, J. R. Texture Segregation and
Orientation Gradient. Vision Research 31 (1991), 679–691.

[17] LEWIS, J. P. Texture Synthesis for Digital Painting. Pro-
ceedings of SIGGRAPH 84. In Computer Graphics (1984),
vol. 18, ACM SIGGRAPH, pp. 245–252.

[18] LEWIS, J. P. Generalized Stochastic Subdivision. ACM
Transactions on Graphics 6 (1987), 167–190.

[19] LEWIS, J. P. Algorithms for Solid Noise Synthesis. Pro-
ceedings of SIGGRAPH 89. In Computer Graphics (1989),
vol. 23, ACM SIGGRAPH, pp. 263–270.

[20] MALIK, J., AND PERONA, P. Preattentive Texture Discrimi-
nation with Early Vision Mechanisms. Journal of the Optical
Society of America A 7 (1990), 923–931.

[21] MALZBENDER, T., AND SPACH, S. A Context Sensitive
Texture Nib. In Communicating with Virtual Worlds, N. M.
Thalmann and D. Thalmann, Eds. Springer-Verlag, New York,
1993, pp. 151–163.

[22] OGDEN, J. M., ADELSON, E. H., BERGEN, J. R., AND

BURT, P. J. Pyramid-Based Computer Graphics. RCA En-
gineer 30 (1985), 4–15.

[23] PEACHY, D. R. Solid Texturing of Complex Surfaces. Pro-
ceedings of SIGGRAPH 85. In Computer Graphics (1985),
vol. 19, ACM SIGGRAPH, pp. 279–286.

[24] PERLIN, K. An Image Synthesizer. Proceedings of SIG-
GRAPH 85. In Computer Graphics (1985), vol. 19, ACM
SIGGRAPH, pp. 287–296.

[25] PERONA, P. Deformable Kernels for Early Vision. IEEE
Transactions on Pattern Analysis and Machine Intelligence
(1995). To appear May 1995.

[26] POPAT, K., AND PICARD, R. W. Novel Cluster-Based Prob-
ability Model for Texture Synthesis, Classification, and Com-
pression. In Proceedingsof SPIE Visual Communications and
Image Processing (1993), pp. 756–768.

[27] RUDERMAN, D. L., AND BIALEK, W. Statistics of Natural
Images: Scaling in the Woods. Physical Review Letters 73
(1994), 814–817.

[28] SIMONCELLI, E. P., AND ADELSON, E. H. Subband Trans-
forms. In Subband Image Coding, J. W. Woods, Ed. Kluwer
Academic Publishers, Norwell, MA, 1990.

[29] SIMONCELLI, E. P., FREEMAN, W. T., ADELSON, E. H.,
AND HEEGER, D. J. Shiftable Multi-Scale Transforms.
IEEE Transactions on Information Theory, Special Issue on
Wavelets 38 (1992), 587–607.

[30] STRANG, G. Wavelets and Dilation Equations: A Brief Intro-
duction. SIAM Review 31 (1989), 614–627.

[31] TURK, G. Generating Textures on Arbitrary Surfaces Using
Reaction-Diffusion. Proceedings of SIGGRAPH 91. In Com-
puter Graphics (1991), vol. 25, ACM SIGGRAPH, pp. 289–
298.

[32] TURNER, M. R. Texture Discrimination by Gabor Functions.
Biological Cybernetics 55 (1986), 71–82.

[33] WILLIAMS, L. Pyramidal Parametrics. Proceedings of SIG-
GRAPH 83. In Computer Graphics (1983), vol. 17, ACM
SIGGRAPH, pp. 1–11.

[34] WITKIN, A., AND KASS, M. Reaction-Diffusion Tex-
tures. Proceedings of SIGGRAPH 91. In Computer Graphics
(1991), vol. 25, ACM SIGGRAPH, pp. 299–308.



Figure 2: (Left) Input digitized sample texture: burled mappa wood. (Middle) Input noise. (Right) Output synthetic texture
that matches the appearance of the digitized sample. Note that the synthesized texture is larger than the digitized sample;
our approach allows generation of as much texture as desired. In addition, the synthetic textures tile seamlessly.

Figure 3: In each pair left image is original and right image is synthetic: stucco, iridescent ribbon, green marble, panda fur,
slag stone, �gured yew wood.



Figure 4: In each pair left image is original and right image is synthetic: red gravel, �gured sepele wood, brocolli, bark paper,
denim, pink wall, ivy, grass, sand, surf.



Figure 5: (Top Row) Original digitized sample textures: red granite, berry bush, �gured maple, yellow coral. (Bottom Rows)
Synthetic solid textured teapots.



Figure 6: T exture mixtures syn thesized b y c ho osing the color palette from one image and the pattern from a second image.

Figure 7: (Left pair) Inhomogoneous input texture pro duces blotc h y syn thetic texture. (Righ t pair) Homogenous input.

Figure 8: Examples of failures: w o o d grain and red coral.

Figure 9: More failures: ha y and marble.


