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Abstract

In recent years, many shape representations and geomet-
ric algorithms have been proposed for matching 3D shapes.
Usually, each algorithm is tested on a different (small)
database of 3D models, and thus no direct comparison is
available for competing methods.

In this paper, we describe the Princeton Shape Bench-
mark (PSB), a publicly available database of polygonal
models collected from the World Wide Web and a suite of
tools for comparing shape matching and classification al-
gorithms. One feature of the benchmark is that it provides
multiple semantic labels for each 3D model. For instance, it
includes one classification of the 3D models based on func-
tion, another that considers function and form, and others
based on how the object was constructed (e.g., man-made
versus natural objects).

We find that experiments with these classifications can
expose different properties of shape-based retrieval algo-
rithms. For example, out of 12 shape descriptors tested,
Extended Gaussian Images [13] performed best for distin-
guishing man-made from natural objects, while they per-
formed among the worst for distinguishing specific object
types. Based on experiments with several different shape
descriptors, we conclude that no single descriptor is best
for all classifications, and thus the main contribution of this
paper is to provide a framework to determine the conditions
under which each descriptor performs best.

Keywords: shape retrieval, geometric matching, shape
database, benchmarks.

1 Introduction

Shape-based matching and retrieval from databases of
3D polygonal models is a fundamental problem in com-
puter vision, mechanical CAD, archeology, molecular bi-
ology, paleontology, medicine, computer graphics, and sev-
eral other fields [3, 25].

Despite decades of research on 3D shape representations
and matching algorithms [20, 33], there still are no stan-
dard ways of comparing the results achieved with different
methods. Usually, computed match results are evaluated

according to how well they correlate with human-generated
classifications. However, it seems that each research group
has its own database of 3D models, own classifications, own
suites of tests, and own metrics of success. Moreover, few
publications contain results of tests comparing several ap-
proaches on the same data [4, 10, 19, 36].

In this paper, we describe the Princeton Shape Bench-
mark (PSB), a publicly-available database of 3D models,
software tools, and a standardized set of experiments for
comparing 3D shape matching algorithms. The database
contains 1,814 polygonal models collected from the World
Wide Web and classified by humans according to function
and form. It includes a set of hierarchical classifications,
separate training and test sets, annotations for each model,
and a suite of software tools for generation, analysis, and
visualization of shape matching results.

An interesting feature of the benchmark is that it pro-
vides mechanisms to define multiple classifications and
query sets that can be used to differentiate properties of
shape matching algorithms. Our base classification com-
bines both semantics and shape hierarchically. For instance,
a model representing a table may be part of the “round ta-
ble with a single leg” class, as well as the coarser “round
table,” “table,” “furniture,” and “man-made” classes. The
benchmark also includes several query sets intended to dif-
ferentiate how matching algorithms work on models with
specific properties (e.g., high depth complexity). By evalu-
ating retrieval results with these different classifications and
queries, it is possible to expose the differences between dif-
ferent shape matching algorithms. So, rather than simply
saying “method X is better than method Y on average,” we
can now say “method X is better for this type of object, and
method Y is better for that type of object, etc.”

The main contribution of this paper is the proposed
framework for comparison of shape matching algorithms.
We demonstrate its use by exploring the differences be-
tween twelve shape descriptors, including D2 shape dis-
tributions [23], Extended Gaussian Images [13, 15], Shape
Histograms [1], Spherical Extent Functions [27, 35], Gaus-
sian Euclidean Distance Transforms [16], Spherical Har-
monic Descriptors [16], and Light Field Descriptors [4].

In short, we find that no single shape descriptor performs
best for all classifications, and no single classification pro-
vides the best evaluation of all shape descriptors. From this
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result, we conclude that it is only possible to understand the
differences between shape descriptors by looking at the re-
sults of several experiments aimed at testing specific proper-
ties. The Princeton Shape Benchmark provides a standard-
ized framework for this type of experimentation.

2 Related Work

The benefits of benchmarks have been well-
demonstrated in many fields. For example, in computer
architecture, the SPEC benchmarks [28] have been used
successfully to compare processor performance. In text
document retrieval, the Smart Collection [26] and TREC
database [31] provide standard benchmarks. In com-
puter vision, benchmarks are available for handwriting
recognition (e.g., [18]), face recognition (e.g., [5]), and
several other image analysis tasks [6]. There are even
benchmark databases for specific types of 3D data – e.g.,
computer-aided design parts [9] and protein structures [2].

Unfortunately, no standard benchmarks are available for
matching of 3D polygonal models representing a wide va-
riety of objects. Instead, several research groups have inde-
pendently gathered databases of 3D models, generated dif-
ferent classifications, run different sets of tests, employed
different metrics to quantify performance, and compared
different shape descriptors.

Table 1 shows statistics for several 3D model databases
currently in use for shape matching experiments. For each
database, the table shows the total number of 3D models in
the database, the number of classes, the number of models
that have been classified, and the percentage of classified
models in the largest class. Also, estimates of what percent-
age of classified models belong to different object types (ve-
hicle, household, animal, plant, architecture) appear in Ta-
ble 2. The bottom row of each table shows statistics for the
Princeton Shape Benchmark for comparison. From these
statistics, we make several observations.

Num Num Num Largest
Database Models Classes Classified Class
Osada [23] 133 25 133 20%
MPEG-7 [38] 1,300 15 227 15%
Hilaga [12] 230 32 230 15%
Technion [19] 1,068 17 258 10%
Zaharia [39] 1,300 23 362 14%
CCCC [35] 1,841 54 416 13%
Utrecht [30] 684 6 512 47%
Taiwan [4] 1,833 47 549 12%
Viewpoint [10] 1,890 85 1,280 12%
PSB [this paper] 6,670 161 1,814 6%

Table 1. Summary of previous 3D model databases.

First, most previous databases contain a small number of
classified models. For example, the Osada database [23],
which has been used in experiments by several research
groups (e.g., [30]), contains only 133 models. Some of
them appear in classes with only 2 other models, which
makes it difficult to acquire statistically significant results

in classification experiments. In other cases, the total num-
ber of 3D models in the database is quite large (> 1800),
but only a small fraction of them are included in the clas-
sification. For instance, the MPEG-7 database [38] con-
tains 1,300 VRML models in all. But, only 227 (18%) of
them are included in labeled classes, while the vast ma-
jority of models are lumped into a “miscellaneous” class
that provides only “background noise” during shape match-
ing experiments. To our knowledge, the only set of more
than 1000 classified 3D polygonal models used for shape
matching experiments is the Viewpoint database [34], as de-
scribed in [10]. However, it is not available to the general
public, and it is expensive to purchase, which makes its use
as a standard benchmark problematic.

Second, most 3D model databases contain a limited
range of object types and/or are dominated by a small set
of object classes (see Table 2). For example, the View-
point database [10] contains only household objects, and
the Utrecht database [30] contains mainly vehicles among
its classified models. Even databases that have a wide va-
riety of objects often contain a few classes with a dispro-
portionately large number of models. For example, the
MPEG-7 database contains 50 (22%) models representing
letters of the alphabet among its 227 classified objects, and
the Osada database contains 27 (20%) airplanes out of 133
objects. Of course, these large classes significantly bias
(micro-)averaged retrieval results.

V
ehicles

Furniture

A
nim

als

Plants

H
ousehold

B
uildings

Osada [23] 47% 12% 12% 0% 24% 0%
MPEG-7 [38] 12% 0% 14% 13% 0% 7%
Hilaga [12] 12% 0% 23% 2% 12% 0%
Zaharia [39] 35% 0% 7% 7% 11% 0%
CCCC [35] 33% 13% 21% 5% 25% 0%
Utrecht [30] 73% 0% 0% 0% 0% 0%
Taiwan [4] 44% 13% 0% 0% 36% 0%
Viewpoint [10] 0% 42% 1% 0% 50% 0%
PSB [this paper] 26% 11% 16% 8% 22% 6%

Table 2. Types of objects found in previous 3D model
databases (shown as percentages of classified models).

Third, current 3D model classifications have signif-
icantly different granularities. Some databases have
classes with large, diverse sets of objects (e.g., “Kitchen-
ware” [12]), while others have very small and specific
classes (e.g., “motorcycles with 3 wheels” [39]). For ex-
ample, the National Taiwan University database [4] has
a single class containing all types of seats (dining room
chairs, desk chairs, patio chairs, sofas, recliners, benches,
and stools), while the Viewpoint database [10] has a sep-
arate class for each specific type. This difference in clas-
sification granularity can have an impact on retrieval and
classification results, as significant differences between re-
trieval methods may be masked by classifications that are
too coarse or too fine.
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Finally, many 3D databases have classifications that mix
function and form. For example, the MPEG-7 database con-
tains several classes that group objects with similar seman-
tics (e.g., “buildings”), while others group objects based
solely on their shapes (e.g., the “aerodynamic” class con-
tains fish, helicopters, and airplanes). Similarly, the Hilaga
database [12] contains some classes corresponding grossly
to functions (e.g., “Machine”) and others corresponding
directly to shapes (e.g., “Stick”, “Donut”, “Sphere”, and
“Many Holes”). Results achieved over these disparate class
types are averaged together, making it difficult to draw spe-
cific conclusions about why and when a shape matching
method works well.

3 Overview

The Princeton Shape Benchmark provides a repository
of 3D models and software tools for comparing shape
matching algorithms. The motivation is to promote the use
of standardized data sets and evaluation methods for re-
search in matching, classification, clustering, and recogni-
tion of 3D models.

Version 1 of the benchmark contains a database of 1,814
classified 3D models collected from 293 different Web do-
mains. For each 3D model, there is an Object File For-
mat (.off) file with the polygonal surface geometry of the
model, a textual information file containing meta-data for
the model (e.g., the URL from whence it came), and a JPEG
image file containing a thumbnail view of the model. We
expect larger databases to be available in future versions.

In addition to the database of 3D models, the benchmark
provides guidelines regarding its use. For instance, the 3D
models are partitioned equally into training and test sets.
The benchmark requires that algorithms be trained only on
the training set (without influence of the test set); and then,
after all exploration has been completed and all algorithmic
parameters have been frozen, results should be reported for
experiments with the test set.

In order to enable evaluation of shape matching algo-
rithms for retrieval and classification tasks, the benchmark
includes a simple mechanism to specify partitions of the 3D
models into classes. In Version 1, we provide a hierarchi-
cal classification for 1,814 models (907 from the training set
and 907 from the test set). At its finest granularity, this clas-
sification provides a tight grouping of objects based on both
function and form. For example, there is a class for “birds
in a flying pose” in the test database. Yet, it also includes
a hierarchy of classes that reflects primarily the function of
each object and secondarily its form. Continuing with the
example, there are classes for “birds”, “flying creatures,”
and “animals” at coarser levels of the hierarchy. Note that
every level of the hierarchy is useful for a different type of
evaluation.

Since arbitrarily many semantic groupings are plausible
for a given set of 3D models, the benchmark provides a
flexible mechanism for specifying multiple classifications.
It also includes a method for averaging over queries for
models with certain geometric properties (e.g., “roughly

spherical”). The differences in matching results achieved
with respect to these different classifications and queries
yield interesting insights into the properties of the shape re-
trieval algorithms being tested (e.g., algorithm X works bet-
ter on round objects, but worse on elongated ones), and the
combined results of multiple classifications provide a much
more complete view of the differences between competing
algorithms.

To standardize analysis of shape matching experiment
results, the benchmark includes free source code for evalu-
ation and visualization of 3D model matching scores. For
instance, there are programs for: (1) generating precision-
recall plots, (2) computing several retrieval statistics (e.g.,
nearest neighbor, 1st and 2nd tier, discounted cumulative
gain, etc.), (3) producing color-coded similarity matrices,
and (4) constructing web pages with thumbnails of the best
ranked matches for a given query model. These programs
provide a standard toolbox with which researchers can com-
pare results of independently run tests in a consistent man-
ner.

In summary, the benchmark provides a flexible frame-
work for comparing shape matching algorithms. The re-
mainder of the paper describes many of the design deci-
sions and issues that were addressed during its construc-
tion. Specifically, detailed descriptions of how our database
was acquired, classifications were constructed, and models
were annotated appear in Sections 4-6. Section 7 describes
our software tools for evaluating matching results, and Sec-
tion 8 presents experimental results obtained during tests
with several different shape descriptors, classifications, and
databases. Finally, Section 9 summarizes our findings and
proposes topics for future research.

4 Acquisition

The 3D models in the PSB were acquired from the World
Wide Web by three automated crawls over a two year pe-
riod. This section describes how they were found, processed
to remove duplicates, converted to a common file format,
and organized to form a database.

The first crawl was performed in October 2001 and tar-
geted VRML files only. It began with the results of search
engine queries for web pages linking to files with exten-
sion “.wrl” and “.wrz” and then crawled outward from those
pages in a breadth-first fashion. The crawl ran for 48 hours
and downloaded 22,243 VRML files from 2,185 different
Web sites [21].

The second crawl was executed in August 2002 and tar-
geted VRML, 3D Studio, Autocad, Wavefront, and Light-
wave objects, both in plain links as well as in compressed
archive files (“.tar” and “.zip”). Unlike VRML, the other
formats were not designed to be used on the web and of-
ten are contained within compressed archives, so they typ-
ically cannot be located simply by file name extension. In-
stead, the second crawler searched for them using a focus-
ing method, where web sites were crawled in priority or-
der according to the number of pages already downloaded
from that site containing 3D models. The crawl ran for 2
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days and 16 hours and resulted in 13,217 3D model files
and 5,539 compressed archive files containing 3D models.
After expansion of archive files, there were 20,084 model
files retrieved from 455 different sites [21].

The third crawl was executed in August 2003 and tar-
geted models from known 3D model repositories (e.g.,
3dcafe.com and avalon.viewpoint.com). The crawl ran for
approximately 5 hours and resulted in 1,908 3D models in
a variety of formats, downloaded from 16 different web do-
mains.

These three crawls provided 44,235 model files. 3,763
of the models found in the second crawl were ignored be-
cause they had URLs in common with ones found in the
first crawl. A further 6,863 models were thrown out be-
cause they contained no geometry or could not be parsed
by our conversion software [22]. 15,035 more models were
culled because their shapes were exact-duplicates or near-
duplicates of some other model in the database. For ex-
ample, we found multiple copies of the same model at dif-
ferent URLs (e.g., 483 spheres), multiple levels of detail
for the same object, and different colors/textures for mod-
els with the same geometry. Finally, 11,904 models were
eliminated manually because they came from application
domains outside the scope of our benchmark. Specifically,
we kept only models of “every-day objects,” and threw out
molecular structures, CAD parts, data visualizations, and
abstract geometric shapes. The remaining 3D models form
the database for our shape benchmark. In all, there are 6,670
unique models acquired from 661 distinct Web domains.

All the remaining models were converted to the Object
File Format (.off), a simple-to-parse polygonal format de-
signed by the University of Minnesota Geometry Center.
During the conversion process, all color, texture, and scene
graph information was eliminated, leaving a single indexed
face set comprising a list of vertices (x,y,z) and a list of
polygons (v1, v2,...). We chose to make only these sim-
ple files available in the first version of the benchmark to
focus matching experiments on geometric surface informa-
tion only.

5 Classification

The PSB benchmark splits the 3D model database into
training and test sets and partitions both test sets into classes
(e.g., telephones, dogs, etc.) that can be used as labels in
shape matching, retrieval, and classification experiments.
In this section, we first explain how the models are parti-
tioned into classes. Then, we discuss how training and test
sets were formed. Finally, we describe the mechanisms pro-
vided for creating alternative classifications.

5.1 Base Classification

We manually partitioned the models of the benchmark
database into a fine-grained set of classes. During this pro-
cess, our goal was to create clusters of objects primarily

based on semantic and functional concepts (e.g., furniture
and table) and secondarily based on shape attributes (e.g.,
round tables). We use the hierarchical nature of this group-
ing strategy to form classifications at multiple granularities.

The steps used to produce our base classification pro-
ceeded as follows. First, we rendered thumbnail images for
all 6,670 3D models and stored them in a single directory of
a file system. Then, two students used Windows Explorer
to create directories representing object classes and to move
the thumbnail image files into the directories to indicate
membership in the class. This process was executed itera-
tively until each class represented an atomic concept (e.g., a
noun in the dictionary) and could not be partitioned further.
Then, where appropriate, a few classes were further par-
titioned based on geometric attributes (e.g., “humans with
arms out” versus “humans with arms down”). No textual
information besides an integer model ID was available to
the students (e.g., file names were hidden). So, we believe
the students were not biased by auxiliary information dur-
ing the formation of classes. The result of this process was
a set of 1,271 classes partitioning the 6,670 models.

Many of the classes contained too few models to be in-
cluded in meaningful experiments. For example, there were
only two drill presses and three fire hydrants. So, we manu-
ally selected 161 classes, each containing at least four mod-
els, to be included in the first version of the benchmark (the
other classes will be included in later versions). We also
eliminated models from the largest classes (e.g., fighter jets
and humans) so that every class contains at most 100 mem-
bers (∼6% of the classified models). The net result is our
base classification, a set of 161 classes containing a total of
1,814 models.

5.2 Training and Test Sets

We then partitioned the models of the base classification
into training and test sets. Our goal was to split the models
as evenly as possible, producing two sets with similar types
of classes, yet without splitting small classes, and without
biasing either set with a large number of models of the same
type. To meet these goals, we applied the following steps.
First, all classes with 20 or more models were split equally
between the training and test sets (models downloaded from
the same domain were evenly distributed). Then, smaller
classes were alternately placed in the training and test sets
in a manner that ensured that both had a balanced number
of classes for every object type (plants, animals, vehicles,
etc.). Finally, we manually swapped a few small classes
so that the training and test sets have an equal number of
models. The final result is two sets of classified 3D models,
one with 907 models partitioned into 90 classes to be used
for training the parameters of shape matching algorithms,
and the other with a different 907 models partitioned into
92 classes to be used for comparison with other algorithms.
Detailed lists of the classes in both sets appear in Table 3.
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Training Test
Class Name # Models Class Name # Models
aircraft/airplane/F117 4 aircraft/airplane/biplane 14
aircraft/airplane/biplane 14 aircraft/airplane/commercial 11
aircraft/airplane/commercial 10 aircraft/airplane/fighter jet 50
aircraft/airplane/fighter jet 50 aircraft/airplane/glider 19
aircraft/airplane/multi fuselage 7 aircraft/airplane/stealth bomber 5
aircraft/balloon vehicle/dirigible 7 aircraft/balloon vehicle/hot air balloon 9
aircraft/helicopter 17 aircraft/helicopter 18
aircraft/spaceship/enterprise like 11 aircraft/spaceship/enterprise like 11
aircraft/spaceship/space shuttle 6 aircraft/spaceship/flying saucer 13
aircraft/spaceship/x wing 5 aircraft/spaceship/satellite 7
animal/arthropod/insect/bee 4 aircraft/spaceship/tie fighter 5
animal/arthropod/spider 11 animal/arthropod/insect/ant 5
animal/biped/human 50 animal/arthropod/insect/butterfly 7
animal/biped/human/arms out 21 animal/biped/human 50
animal/biped/trex 6 animal/biped/human/arms out 20
animal/flying creature/bird/duck 5 animal/biped/human/walking 8
animal/quadruped/apatosaurus 4 animal/flying creature/bird/flying 14
animal/quadruped/feline 6 animal/flying creature/bird/standing 7
animal/quadruped/pig 4 animal/quadruped/dog 7
animal/underwater creature/dolphin 5 animal/quadruped/horse 6
animal/underwater creature/shark 7 animal/quadruped/rabbit 4
blade/butcher knife 4 animal/snake 4
blade/sword 15 animal/underwater creature/fish 17
body part/brain 7 animal/underwater creature/sea turtle 6
body part/face 17 blade/axe 4
body part/head 16 blade/knife 7
body part/skeleton 5 blade/sword 16
body part/torso 4 body part/face 16
bridge 10 body part/hand 17
building/castle 7 body part/head 16
building/dome church 13 body part/skull 6
building/lighthouse 5 book 4
building/roman building 12 building/barn 5
building/tent/multiple peak tent 5 building/church 4
building/two story home 11 building/gazebo 5
chess piece 17 building/one story home 14
chest 7 building/skyscraper 5
city 10 building/tent/one peak tent 4
computer/laptop 4 building/two story home 10
display device/tv 12 chess set 9
door/double doors 10 city 10
fantasy animal/dragon 6 computer/desktop 11
furniture/bed 8 display device/computer monitor 13
furniture/desk/desk with hutch 7 door 18
furniture/seat/chair/dining 11 eyeglasses 7
furniture/seat/chair/stool 7 fireplace 6
furniture/seat/couch 15 furniture/cabinet 9
furniture/shelves 13 furniture/desk/school 4
furniture/table/rectangular 26 furniture/seat/bench 11
furniture/table/round 12 furniture/seat/chair/dining 11
furniture/table and chairs 5 furniture/seat/chair/desk 15
gun/handgun 10 furniture/shelves 13
gun/rifle 19 furniture/table/rectangular 25
hat/helmet 10 furniture/table/round/single leg 6
ice cream 12 geographic map 12
lamp/desk 14 gun/handgun 10
liquid container/bottle 12 hat 6
liquid container/mug 7 hourglass 6
liquid container/tank 5 ladder 4
liquid container/vase 11 lamp/streetlight 8
microchip 7 liquid container/glass with stem 9
microscope 5 liquid container/pail 4
musical instrument/guitar/acoustic 4 liquid container/vase 11
musical instrument/piano 6 mailbox 7
phone handle 4 musical instrument/guitar/electric 13
plant/flower with stem 15 newtonian toy 4
plant/potted plant 25 plant/bush 9
plant/tree 17 plant/flowers 4
plant/tree/barren 11 plant/potted plant 26
plant/tree/palm 10 plant/tree/barren 11
sea vessel/sailboat 5 plant/tree/conical 10
sea vessel/sailboat/sailboat with oars 4 satellite dish 4
sea vessel/ship 10 sea vessel/sailboat/large sail boat 6
shoe 8 sea vessel/ship 11
sign/street sign 12 sea vessel/submarine 9
skateboard 5 sign/billboard 4
snowman 6 sink 4
swingset 4 slot machine 4
tool/screwdriver 5 staircase 7
tool/wrench 4 tool/hammer 4
vehicle/car/antique 5 tool/shovel 6
vehicle/car/sedan 10 umbrella 6
vehicle/car/sports 19 vehicle/car/race 14
vehicle/cycle/bicycle 7 vehicle/car/sedan 10
vehicle/military tank 16 vehicle/covered wagon 5
vehicle/pickup truck 8 vehicle/cycle/motorcycle 6
vehicle/suv 4 vehicle/monster truck 5
vehicle/train 7 vehicle/semi 7
watch 5 vehicle/suv/jeep 5
wheel/tire 4 vehicle/train/train car 5

wheel 4
wheel/gear 9

Total 907 Total 907
Overall Total = 1,814

Table 3. The PSB base classification.

5.3 Alternative Classifications

There are many possible classifications for a given set of
3D models. For instance, one person might group models
based primarily on function (e.g., like our base classifica-
tion), while another might group them according to how
the objects are constructed (e.g., man-made versus natu-
ral), where they are used (e.g., office versus home versus
outdoors), or who uses them (e.g., adults versus children).
We believe that the results of shape retrieval experiments
for multiple classifications are interesting, as they provide
information about the circumstances in which each shape
matching algorithm performs well/poorly. The cumulative
results of experiments with multiple classifications can pro-
vide a more complete picture of the differences between
competing shape matching algorithms than does any single
classification alone.

To support multiple classifications, the benchmark in-
cludes a simple language in which researchers can define
new classifications. Briefly, an ASCII file is used to spec-
ify a hierarchy of class names and to indicate which models
belong to each class. We have used this language to cre-
ate three alternatives to the base classification, each repre-
senting a different granularity of grouping. For instance, a
coarse classification merges all types of tables into a single
class, a coarser classification merges all furniture into one
class, and the coarsest partitions objects based only whether
they are man-made or appear naturally in the real world.
We use these alternative classifications to compare shape
matching algorithms in Section 8.

In the future, we expect that other researchers will use
the language to define new classifications that we did not
anticipate, thereby adding to the suite of experiments that
can be used to compare shape matching algorithms.

6 Annotation

The benchmark includes several types of auxiliary infor-
mation for each model in the database. For instance, the
following meta-data is provided to help identify the source
and object type for each model:

• Model URL: the Web address where the model was
found on the Web. The last part of the URL provides
the model’s file name, which may be useful for seman-
tic labeling. More importantly, the URL can be used to
determine the owner of the model for assigning credit
and attribution.

• Referring URL: the address of the Web page contain-
ing a link to the model. The textual anchor and context
on this page may be useful for extracting information
about the model (if the Web page still exists).

• Thumbnail image: an image of the model rendered
with colors and textures as seen from a plausible view-
point. This view of the model with all its surface at-
tributes is useful for seeing what the model looked like
in its original form.
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In addition, the benchmark lists several geometric at-
tributes for each 3D model (e.g., number of polygons, av-
erage dihedral angle, averaged depth complexity over all
views, etc.), which are useful for identifying interesting sub-
sets of the database. While these attributes could be de-
rived from the models, and thus are somewhat redundant,
they provide a standardized set of values that can be used to
avoid the risk that differences in implementations can cause
differences in matching results. For instance, the following
attributes provide useful data for normalizing 3D models for
differences in translation, scale, and orientation:

• Center of mass: the average (x, y, z) coordinates for
all points on the surfaces of all polygons. These values
can be used to normalize the models for translations.

• Scale: the average distance from all points on the
surfaces of all polygons to the center of mass. This
value can be used to normalize the models for isotropic
scales.

• Principal axes: the eigenvectors (and associated
eigenvalues) of the covariance matrix obtained by in-
tegrating the quadratic polynomials xi · xj , with xi ∈
{x, y, z}, over all points on the surfaces of all poly-
gons. These axes can be used to normalize the models
for rotations.

7 Evaluation

The benchmark includes several tools for evaluating
and comparing how well shape matching algorithms work.
These tools assume that every algorithm being evaluated
can compute the “distance” between any pair of 3D models,
producing positive values that are small if the models are
similar and larger for pairs with greater shape differences.
So, for a given shape matching algorithm and database of
3D models, we can compute a distance matrix, where ele-
ment (i, j) represents the computed distance between mod-
els i and j. Similarly, for any given model Q, we can rank
the others from best to worst according to their computed
distances from Q. This ranked list corresponds to the re-
trieval result that would be returned if Q were provided as a
query to a shape-based search engine.

Given a classification and a distance matrix computed
with any shape matching algorithm, a suite of PSB bench-
mark tools produces statistics and visualizations that facil-
itate evaluation of the match results (i.e., how many of the
top ranked models are from the same class as the query).
While none of these statistics are new, we include detailed
descriptions so that the reader can get a feel for the tools
available in the benchmark and can understand the results
presented in Section 8.

• Best matches: a web page for each model displaying
images of its best matches in rank order. The associ-
ated rank and distance value appears below each im-
age, and images of models in the query model’s class
(hits) are highlighted with a thickened frame. This

simple visualization provides a qualitative evaluation
tool emulating the output of many 3D model search
engines (e.g., [4, 8, 10, 17, 24, 29, 35, 37, 40]).

• Precision-recall plot: a plot describing the relation-
ship between precision and recall in a ranked list of
matches. For each query model in class C and any
number K of top matches, “recall” (the horizontal
axis) represents the ratio of models in class C returned
within the top K matches, while “precision” (the ver-
tical axis) indicates the ratio of the top K matches that
are members of class C. A perfect retrieval result pro-
duces a horizontal line across the top of the plot (at
precision = 1.0), indicating that all the models within
the query object’s class are returned as the top ranked
matches. Otherwise, curves that appear shifted up rep-
resent superior retrieval results (see Figure 2).

• Distance image: an image of the distance matrix
where the lightness of each pixel (i, j) is proportional
to the magnitude of the distance between models i and
j [23]. Models are grouped by class along each axis,
and lines are added to separate classes, which makes
it easy to evaluate patterns in the match results qual-
itatively – i.e., the optimal result is a set of darkest,
class-sized blocks of pixels along the diagonal indi-
cating that every model matches the models within its
class better than ones in other classes. Otherwise, the
reasons for poor match results can often be seen in the
image – e.g., off-diagonal blocks of dark pixels indi-
cate that two classes match each other well.

• Tier image: an image visualizing nearest neighbor,
first tier, and second tier matches [23]. Specifically,
for each row representing a query with model j in a
class with |C| members, pixel (i, j) is: (a) black if
model i is model j or its nearest neighbor, (b) red if
model i is among the |C| − 1 top matches (the first
tier), and blue if model i is among the 2 ∗ (|C| − 1)
top matches (the second tier). As with the distance im-
age, models are grouped by class along each axis, and
lines are added to separate classes. This image is often
more useful than the distance image because the best
matches are clearly shown for every model, regardless
of the magnitude of their distance values. The opti-
mal result is a set of black/red, class-sized blocks of
pixels along the diagonal indicating that every model
matches the models within its class better than ones in
other classes. Otherwise, more colored pixels in the
class-sized blocks along the diagonal represents a bet-
ter result (see Figure 1).

In addition to these qualitative visualizations, the bench-
mark includes tools for computing quantitative statistics
for evaluation of match results. Usually, the statistics are
summarized by averaging over all query models (micro-
average), with the query model removed from the matching
results. However, our tools also support output of separate
statistics for each query model, averages for each class, an
average of the averages for each class (macro-average), and
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Figure 1. Tier image visualizing nearest neighbor (black),
first tier (red), and second tier (blue) computed by matching
every model (rows) with every other model (columns) in the
base classification of the test set using the LFD algorithm –
separating lines and labels indicate classes. Note that the
full image is 907x907 “pixels,” and only a small portion is
shown.

averages over any user-supplied list of query models.1 As
will be shown in Section 8.4, this last feature is particularly
useful for studying the quality of matches for models having
specific properties. Specifically, our tools compute:

• Nearest neighbor: the percentage of the closest
matches that belong to the same class as the query.
This statistic provides an indication of how well a near-
est neighbor classifier would perform. Obviously, an
ideal score is 100%, and higher scores represent better
results (see column 5 of Table 4).

• First-tier and Second-tier: the percentage of mod-
els in the query’s class that appear within the top K
matches, where K depends on the size of the query’s
class. Specifically, for a class with |C| members,
K = |C| − 1 for the first tier, and K = 2 ∗ (|C| − 1)
for the second tier. The first tier statistic indicates the
recall for the smallest K that could possibly include
100% of the models in the query class, while the sec-
ond tier is a little less stringent (i.e.,K is twice as big).
These statistics are similar to the “Bulls Eye Percent-
age Score” (K = 2 ∗ |C|), which has been adopted

1For precision-recall plots, the precision for each model (micro) or
class (macro) is averaged using linear interpolation over the recall range
[1/|C|,1], if there are C models in a class.

by the MPEG-7 visual SDs [38]. In all cases, an ideal
matching result gives a score of 100%, and higher val-
ues indicate better matches (see columns 5 and 6 of
Table 4).

• E-Measure: a composite measure of the precision
and recall for a fixed number of retrieved results [32].
The intuition is that a user of a search engine is more
interested in the first page of query results than in later
pages. So, this measure considers only the first 32
retrieved models for every query and calculates the
precision and recall over those results. The E-Measure
is defined as [32, 19]:

E = 2
1
P + 1

R

The E-measure is equivalent to subtracting van Rijs-
bergen’s definition of the E-measure from 1. The max-
imum score is 1.0, and higher values indicate better
results (see column 7 of Table 4).

• Discounted Cumulative Gain (DCG): a statistic that
weights correct results near the front of the list more
than correct results later in the ranked list under the as-
sumption that a user is less likely to consider elements
near the end of the list. Specifically, the ranked list R
is converted to a list G, where element Gi has value 1
if element Ri is in the correct class and value 0 oth-
erwise. Discounted cumulative gain is then defined as
follows [14]:

DCGi =
{
G1, i = 1
DCGi−1 + Gi

lg2(i) , otherwise

}

This result is then divided by the maximum possible
DCG (i.e., that would be achieved if the first C ele-
ments were in the correct class, where C is the size of
the class) to give the final score:

DCG =
DCGk

1 +
∑|C|
j=2

1
lg2(j)

where k is the number of models in the database (see
column 10 of Table 4).

The entire query result list is incorporated in an intu-
itive manner by the discounted cumulative gain [19], so
we typically use it to summarize results when comparing
algorithms. More specifically, we usually look at the “nor-
malized DCG,” which scales the DCG values down by the
average over all algorithms tested and shifts the average to
zero:

NormalizedDCGA = DCGA/AvgDCG− 1

whereDCGA is the DCG value computed for algorithmA,
and AvgDCG is the average DCG value for all algorithms
being compared in the same experiment. Positive/negative
normalized DCG scores represent above/below average per-
formance, and higher numbers are better (see the rightmost
column of Table 4).
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8 Results

In order to investigate the utility of the proposed bench-
mark, we used it to compare 12 shape matching algorithms
recently described in the literature. While the results of
these experiments are interesting in their own right, the fo-
cus of our investigation is whether the database, classifi-
cations, annotations, and evaluation tools provided by the
benchmark are useful for understanding the differences be-
tween the algorithms. Our hypothesis is that we might learn
something about the algorithms that would have been diffi-
cult to discover without the benchmark tools.

8.1 Shape Descriptors

The 12 shape matching algorithms are all similar in that
they proceed in three steps: the first step normalizes the
models for differences in scale and possibly translation and
rotation; the second step generates a shape descriptor for
each model; and the third step computes the distance be-
tween every pair of shape descriptors, using their L2 differ-
ence unless otherwise noted. The differences between the
algorithms lie mainly in the details of their shape descrip-
tors:

• D2 Shape Distribution (D2): a histogram of distances
between pairs of points on the surface [23].
• Extended Gaussian Image (EGI): a spherical func-

tion giving the distribution of surface normals [13].
• Complex Extended Gaussian Image (CEGI): a

complex-valued spherical function giving the distri-
bution of normals and associated normal distances of
points on the surface [15].
• Shape Histogram (SHELLS): a histogram of dis-

tances from the center of mass to points on the sur-
face [1].
• Shape Histogram (SECTORS): a spherical function

giving the distribution of model area as a function of
spherical angle [1].
• Shape Histogram (SECSHEL): a collection of spher-

ical functions that give the distribution of model area
as a function of radius and spherical angle [1].
• Voxel: a binary rasterization of the model boundary

into a voxel grid.
• Spherical Extent Function (EXT): a spherical func-

tion giving the maximal distance from center of mass
as a function of spherical angle [27].
• Radialized Spherical Extent Function (REXT): a

collection of spherical functions giving the maximal
distance from center of mass as a function of spherical
angle and radius [35].
• Gaussian Euclidean Distance Transform (GEDT): a

3D function whose value at each point is given by com-
position of a Gaussian with the Euclidean Distance
Transform of the surface [16].
• Spherical Harmonic Descriptor (SHD): a rotation

invariant representation of the GEDT obtained by com-

puting the restriction of the function to concentric
spheres and storing the norm of each (harmonic) fre-
quency [16].
• Light Field Descriptor (LFD): a representation of a

model as a collection of images rendered from uni-
formly sampled positions on a view sphere. The dis-
tance between two descriptors is defined as the min-
imum L1-difference, taken over all rotations and all
pairings of vertices on two dodecahedra. [4].

All computations were performed on a Windows PC with
a Pentium 4 CPU running at 2.00 GHz and 512 MB of mem-
ory, except the LFD computations, which were executed
on a Windows PC with Pentium 4 CPU running at 2.4GHz
with 256MB RAM and an NVIDIA GeForce 2 MX graph-
ics card.2

8.2 Base Classification Results

In our first experiment, we used each of the 12 shape
matching algorithms to compute the distances between all
pairs of models in the test set and analyzed them with the
benchmark evaluation tools to quantify the matching per-
formance with respect to the base classification (the train-
ing set was not used for training any of the algorithms).
Figure 2 shows a precision-recall plot showing the micro-
averaged retrieval results achieved for this experiment, and
Table 4 shows micro-averaged storage requirements, pro-
cessing times, and retrieval statistics for each algorithm. We
found that the micro and macro-average gave consistent re-
sults, and we decided to present micro-averaged statistics.

Surprisingly, we find that the shape descriptor based on
2D views (LFD) provides the best retrieval precision in this
experiment. Although we might expect shape descriptors
that capture 3D geometric relationships would be more dis-
criminating than ones based solely on 2D projections, the

2Every model was normalized for size by isotropically rescaling it so
that the average distance from points on its surface to the center of mass is
0.5. Then, for all descriptors except D2 and EGI, the model was normal-
ized for translation by moving its center of mass to the origin. Next, for
all descriptors except D2, SHELLS, SHD, and LFD, the model was nor-
malized for rotation by aligning its principal axes to the x-, y-, and z-axes.
The ambiguity between positive and negative axes was resolved by choos-
ing the direction of the axes so that the area of the model on the positive
side of the x-, y-, and z-axes was greater than the area on the negative
side [7].

Every spherical descriptor (EGI, CEGI, Sectors, etc.), was computed on
a 64× 64 spherical grid and then represented by its harmonic coefficients
up to order 16. Similarly, every 3D descriptor (e.g., Voxel and GEDT) was
computed on a 64×64×64 axial grid, translated so that the origin is at the
point (32, 32, 32), scaled by a factor of 32, and then represented by thirty-
two spherical descriptors representing the intersection of the voxel grid
with concentric spherical shells. Values within each shell were scaled by
the square-root of the corresponding area and represented by their spherical
harmonic coefficients up to order 16. Histograms of distances (D2 and
Shells) were stored with 64 bins representing distances in the range [0, 2].
All descriptors, except LFD, were scaled to have L2-norm equal to 1.

The LFD comprises 100 images encoded with 35, 8-bit, coefficients to
describe Zernike moments and 10, 8-bit, coefficients to represent Fourier
descriptors.
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Storage Timing Discrimination
Shape Size Generate Compare Nearest First Second E- Normalized
Descriptor (bytes) Time (s) Time (s) Neighbor Tier Tier Measure DCG DCG
LFD 4,700 3.25 0.001300 65.7% 38.0% 48.7% 28.0% 64.3% 21.3%
REXT 17,416 2.22 0.000229 60.2% 32.7% 43.2% 25.4% 60.1% 13.3%
SHD 2,184 1.69 0.000027 55.6% 30.9% 41.1% 24.1% 58.4% 10.2%
GEDT 32,776 1.69 0.000450 60.3% 31.3% 40.7% 23.7% 58.4% 10.1%
EXT 552 1.17 0.000008 54.9% 28.6% 37.9% 21.9% 56.2% 6.0%
SECSHEL 32,776 1.38 0.000451 54.6% 26.7% 35.0% 20.9% 54.5% 2.8%
VOXEL 32,776 1.34 0.000450 54.0% 26.7% 35.3% 20.7% 54.3% 2.4%
SECTORS 552 0.90 0.000014 50.4% 24.9% 33.4% 19.8% 52.9% -0.3%
CEGI 2,056 0.37 0.000027 42.0% 21.1% 28.7% 17.0% 47.9% -9.6%
EGI 1,032 0.41 0.000014 37.7% 19.7% 27.7% 16.5% 47.2% -10.9%
D2 136 1.12 0.000002 31.1% 15.8% 23.5% 13.9% 43.4% -18.2%
SHELLS 136 0.66 0.000002 22.7% 11.1% 17.3% 10.2% 38.6% -27.3%

Table 4. Comparing 12 shape descriptors using the PSB base classification.

opposite is true. However, this view-based descriptor takes
more time to compare than the other descriptors, since it
requires searching over multiple possible image correspon-
dences. Among the other descriptors, REXT, SHD, GEDT,
and EXT provide the best matching performance. While
REXT provides slightly better discrimination than the oth-
ers, SHD and EXT are smaller and quicker to compare, sug-
gesting they provide more “bang for the buck.” The least
discriminating descriptors are D2 and SHELLS. However,
they are also the smallest and fastest to compare, which may
be useful in certain applications.

Overall, we conclude that there is a quality-cost trade-off
in the choice between shape descriptors, and no one descrip-
tor beats the others in all respects.
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Figure 2. Precision-recall curves computed for 12 shape
descriptors for tests with the PSB base classification.

8.3 Multi-Classification Results

In our second experiment, we investigated the impact of
alternative classifications on the analysis of retrieval results.
Specifically, we created three new classifications represent-
ing increasingly coarser groupings for the 907 models in the
benchmark test set, and then we tested how these different
classifications affect the evaluation of the 12 shape match-
ing algorithms.

The base classification provides the grouping with finest
granularity in this experiment. It contains the 92 classes
listed in Table 3. Most classes contain all the objects with
a particular function (e.g., microscopes). Yet, there are also
cases where objects with the same function are partitioned
into different classes based on their forms (e.g., round tables
versus rectangular tables). In the alternative classifications,
we recursively merge classes to form coarser granularity
groups. Specifically, the “Coarse” classification merges ob-
jects with similar overall function to form 44 classes, the
“Coarser” classification merges groups further to form the
6 classes listed in Table 1, plus a miscellaneous class not
included in averaged retrieval results. Finally, the “Coars-
est” classification merges those classes until just two classes
remain: one with man-made objects and the other with nat-
urally occurring objects.

Table 6 lists the normalized DCG scores achieved by
the 12 shape matching algorithms (rows) when evaluated
with respect to the four different classifications (columns).
From this table, we make two observations. First, as you
might expect, the differences between shape matching al-
gorithms are diminished when evaluated with coarser gran-
ularity classifications - i.e., the normalized DCG scores,
which measure differences from the average, become less
in columns further to the right. Second, we observe that
the relative rankings of algorithms can vary significantly for
different classifications. In particular, the EGI algorithm
performs tenth best with respect to the base classification
(10.9% below the average). However, it performs best of
all for the coarsest classification (3.0% above the average).
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Semantic Procedural Geometric
Shape All Furni- House- Tree & Rotation Stick Complex
Descriptor Models Animal Building ture hold Plant Vehicle Aligned Shape Shape
LFD 21.3% 15.8% 41.6% 35.4% 25.3% 24.4% 17.9% 18.8% 14.8% 28.2%
REXT 13.3% 8.6% 3.9% 11.2% 13.9% 8.8% 16.2% 12.3% 10.0% 15.0%
SHD 10.2% 10.3% -8.3% 10.1% 12.8% 19.7% 7.2% 7.6% 4.9% 8.9%
GEDT 10.1% 9.6% 3.6% 8.1% 10.8% 6.6% 10.6% 13.0% 8.1% 13.5%
EXT 6.0% 6.4% 10.9% 5.3% 8.5% -6.8% 7.7% 5.0% 6.6% 6.1%
SECSHEL 2.8% 0.6% 1.1% -5.6% 7.2% -11.4% 7.1% 5.2% 3.6% 2.2%
VOXEL 2.4% 4.0% 1.1% -1.7% 3.3% -2.5% 5.4% 4.7% 5.3% 0.2%
SECTORS -0.3% -2.2% 1.8% -6.1% 4.0% -21.4% 3.6% 2.0% 4.7% -1.6%
CEGI -9.6% -4.1% -22.6% 1.1% -19.6% 11.2% -13.4% -8.7% -7.9% -12.7%
EGI -10.9% -9.7% -12.2% 0.0% -21.1% 11.8% -12.7% -11.2% -9.8% -9.1%
D2 -18.2% -16.1% -0.3% -26.4% -15.2% -21.5% -21.1% -19.7% -11.5% -19.9%
SHELLS -27.3% -23.1% -20.8% -31.4% -29.9% -19.0% -28.5% -29.1% -28.8% -30.9%

Table 5. Evaluating retrieval performance for 12 shape descriptors on query lists with specific object types and geometric properties
using the PSB base classification. Numbers represent normalized DCG value averaged over models with the property listed in the
column heading.

Apparently, it is very good at determining the difference be-
tween man-made and natural objects, but not that good at
telling apart the differences between specific classes. We
conjecture that man-made objects have a narrower distribu-
tions of normals, making detection easy with EGIs.

These results provide a simple example of the value of
using multiple classifications when evaluating shape match-
ing algorithms. The information available in multiple clas-
sifications is more than in any one classification alone. We
expect that many alternative semantic classifications will be
made for these models in the future, exposing further differ-
ences between algorithms.

Shape Base Coarse Coarser Coarsest
Descriptor (92) (44) (6) (2)
LFD 21.3% 11.7% 3.2% 0.3%
REXT 13.3% 6.8% 2.0% 0.2%
SHD 10.2% 5.7% 0.9% -0.6%
GEDT 10.1% 4.8% 1.2% -0.3%
EXT 6.0% 2.0% 0.7% -0.6%
SECSHEL 2.8% -0.3% 0.1% -0.4%
VOXEL 2.4% 0.0% -0.1% -0.4%
SECTORS -0.3% -1.4% -0.7% -0.7%
CEGI -9.6% -1.2% 0.6% 2.6%
EGI -10.9% -2.1% 0.2% 3.0%
D2 -18.2% -10.3% -3.4% -1.6%
SHELLS -27.3% -15.7% -4.5% -1.5%

Table 6. Evaluating 12 shape descriptors using classifica-
tions of different granularity. The columns represent dif-
ferent classifications (with the number of classes listed in
parenthesis), and the rows represent different shape descrip-
tors. The numbers show normalized DCG scores averaged
over all models.

8.4 Query List Results

In our third experiment, we studied the properties of the
12 shape matching algorithms further by looking at retrieval
results with respect to the base classification averaged over
sets of models with specific properties. Some of the prop-
erties were semantic (e.g., is a piece of furniture), others
were procedural (e.g., aligned well with other members of
its class), and the rest were geometric (e.g., roughly linear
in shape). Our hope is that we can infer the conditions un-
der which each shape matching algorithm performs best by
comparing the retrieval results of this experiment.

Table 5 lists normalized DCG scores achieved by the
12 shape matching algorithms (rows) with respect to the
base classification when averaged over all models with spe-
cific properties (columns). The first column of numbers
(“All Models”) shows the average for all models, as a ref-
erence for comparison. The next six columns (“Animal”-
“Vehicle”) correspond to averages over the sets of mod-
els of the same object type. The next column (“Rotation
Aligned”) shows the average over all models for which
our normalization steps were successfully able to align the
model consistently with other members of is class. The fol-
lowing column (“Stick Shape”) lists averages over the 200
models whose shape is most stick-like (as determined by
the ratio of the largest and second largest eigenvalues of
the covariance matrix of second order moments). Finally,
the right-most column (“Complex Shape”) shows averages
over the 200 models with the most “complex shapes” (as
estimated by the average pixel depth complexity when the
model is rendered with parallel projection from viewpoints
at the vertices of an icosahedron). These latter properties
are derived directly from the annotations provided with the
benchmark.

With these results, we confirm that shape matching algo-
rithms do not perform equally well on all object types. Al-
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though the ranking of algorithms is fairly consistent, there
is sometimes a big difference in the relative performance
of algorithms when focusing on models with specific prop-
erties. For instance, we note that SECTORS does better
than EGI on household objects (4.0% above average versus
21.1% below average), while the opposite is true for trees
and plants (21.4% below average versus 11.8% above av-
erage). Also, we see that the top ranked algorithms (LFD,
REXT, and SHD) do worse on stick-shaped objects relative
to other algorithms (the normalized DCG scores averaged
for stick shaped objects are worse than the average over
all models by 6.5%, 3.3%, 5.3%, respectively), probably
because the principal axes of sticks align well and/or the
descriptors eliminate high-frequency information. Finally,
we note that queries with “Rotation Aligned” models pro-
duce significantly different retrieval results, indicating that
misalignment of models during normalization significantly
affects the results achieved with some algorithms (GEDT,
SECSHEL, VOXEL, and SECTORS).

8.5 Comparison with Other Databases

In our final experiment, we compared results of the
Princeton Shape Benchmark database versus those achieved
with other databases previously described in the litera-
ture [10, 23, 30, 35, 38]. Our goal in this experiment was to
validate whether our benchmark produces results consistent
with those previously reported.

Table 7 shows the normalized DCG scores computed for
the 12 shape matching algorithms on six different databases.
We see that the results computed with the Osada [23] and
MPEG-7 [38] databases are less consistent with the others.
We conjecture that the reason is that they are relatively small
(133 and 227 models, respectively) and have less variation
of object types. The classified models of the Utrecht [30]
database are mostly airplanes, which probably explains why
the retrieval results showed little variation. Meanwhile, the
relative performance of the algorithms on the other three
databases appear fairly consistent. We expect that the minor
differences between the databases can be explained by the
differences in their object types.

Shape Osada MPEG-7 Utrecht CCCC VP PSB
Descriptor [23] [38] [30] [35] [10] [ours]
LFD 14.9% 5.8% 5.4% 20.3% 17.7% 21.3%
REXT 8.6% 3.6% 2.4% 11.3% 8.5% 13.3%
SHD 12.1% 5.5% 2.3% 12.5% 10.6% 10.2%
GEDT 5.2% 2.5% 4.3% 5.5% 6.3% 10.1%
EXT 2.9% 0.4% 2.4% 5.5% 5.6% 6.0%
SECSHEL -0.7% -0.2% 2.2% -0.8% 0.7% 2.8%
VOXEL 2.2% 1.3% 2.5% -0.5% 0.4% 2.4%
SECTORS -0.8% -2.3% 2.3% -1.9% -1.6% -0.3%
CEGI -13.9% -1.8% -6.9% -4.7% -7.6% -9.6%
EGI -10.7% -1.0% -7.0% -7.3% -9.5% -10.9%
D2 -1.1% -4.3% -3.1% -16.6% -12.8% -18.2%
SHELLS -18.7% -9.6% -6.8% -23.2% -18.2% -27.3%

Table 7. Evaluating shape descriptors using different
databases. Numbers represent normalized DCG averaged
over all models in each database.

9 Conclusion

In summary, this paper describes the Princeton Shape
Benchmark, a publicly available framework for com-
paring shape matching algorithms. The benchmark in-
cludes a database of annotated 3D polygonal models,
multiple classifications, and software tools for evaluat-
ing the results of shape matching experiments. All
data and source code is freely available on the Web
(http://shape.cs.princeton.edu/benchmark).

The main research contribution of this work is the
methodology proposed for comparing shape matching al-
gorithms. In particular, we advocate experimenting with
several different classifications and query lists targeted at
exposing specific differences between shape matching algo-
rithms. Using this methodology, for example, we were able
to discover that EGIs are good at discriminating between
man-made and natural objects, but not that good at making
detailed class distinctions. We also find that the Light Field
Descriptor [4], which is computed from multiple 2D images
of a 3D model, is the most discriminating among the shape
descriptors tested, but at higher storage and computational
cost than many other 3D descriptors. We hope that results
of this type encourage shape matching researchers to use
the benchmark in future experiments, possibly creating new
classifications and query lists of their own. In time, we ex-
pect that a common set of tests will emerge to form a de
facto standard for shape matching experiments.

This paper suggests several avenues for future research.
First, the benchmark should be expanded to support other
shape analysis tasks, such as recognition, registration, and
retrieval. As a first step, we intend to provide annotations
for human-generated alignment transformations to facilitate
evaluation of automatic registration algorithms, and we will
include measures of indexing performance as a metric in
future versions of the benchmark (i.e., for retrieval applica-
tions rather than matching applications). Second, we plan to
investigate multi-classifiers. The results of Section 8.4 sug-
gest that it is possible to build an adaptive multi-classifier
that first checks the geometric properties of a given query
model and then dynamically weights the distances com-
puted by several shape matching algorithms to produce
more discriminating results (e.g., [11]). Finally, as more
and more data gets added to the benchmark, it will become
possible to consider multi-classifiers that take into account
both geometric and non-geometric attributes of 3D models
(e.g., color, texture, scene graph structure, textual annota-
tion, etc.). We believe that the benchmark described in this
paper provides a solid infrastructure to begin research in
these directions.

Acknowledgements

We would like to thank David Bengali, who partitioned
thousands of 3D models into classes. Ming Ouhyoung and
his students provided an implementation of the Light Field
Descriptor. Dejan Vranic provided the CCCC and MPEG-
7 databases; Viewpoint Data Labs donated the Viewpoint

11



database; and Remco Veltkamp and Hans Tangelder pub-
lished the Utrecht database. Finally, the National Science
Foundation provided funding under grants CCR-0093343
and 11S-0121446.

References

[1] M. Ankerst, G. Kastenmüller, H.-P. Kriegel, and T. Seidl.
Nearest neighbor classification in 3D protein databases. In
Proc. ISMB, 1999.

[2] H. Berman, J. Westbrook, Z. Feng, G. Gilliland, T. N. Bhat,
H. Weissig, I. N. Shindyalov, and P. E. Bourne. The protein
data bank. Nucleic Acids Research, (28):235–242, 2000.

[3] P. J. Besl and R. C. Jain. Three-dimensional object recogni-
tion. Computing Surveys, 17(1):75–145, March 1985.

[4] D.-Y. Chen, M. Ouhyoung, X.-P. Tian, and Y.-T. Shen. On vi-
sual similarity based 3D model retrieval. Computer Graphics
Forum, pages 223–232, 2003.

[5] CMU. Pose, illumination, and expression (PIE) database,
2003. http://www.ri.cmu.edu/projects/project 418.html.

[6] P. Courtney and N. Thacker. Peformance characterization in
computer vision, 2003. http://peipa.essex.ac.uk/benchmark.

[7] M. Elad, A. Tal, and S. Ar. Content based retrieval of VRML
objects - an iterative and interactive approach. In 6th Euro-
graphics Workshop on Multimedia 2001, 2001.

[8] T. T. Elvins and R. Jain. Web-based volumetric data retrieval.
In VRML ‘95, pages 7–12, 1995.

[9] C. Foster, E. Hayes, C. Y. Ip, D. McWherter, M. Peabody,
Y. Shapirsteyn, V. Zaychik, and W. C. Regli. National design
repository project: A status report. In Int’l Joint Confs. on
Artificial Intelligence (IJCAI) AAAI/SIGMAN Workshop on
AI in Manufacturing Systems, August 2001.

[10] T. Funkhouser, P. Min, M. Kazhdan, J. Chen, A. Halderman,
D. Dobkin, and D. Jacobs. A search engine for 3D models.
Transactions on Graphics, 22(1):83–105, 2003.

[11] G. Giacinto and F. Roli. Dynamic classifier selection. Lec-
ture Notes in Computer Science, 1857, 2000.

[12] M. Hilaga, Y. Shinagawa, T. Kohmura, and T. L. Kunii.
Topology matching for fully automatic similarity estima-
tion of 3D shapes. In Proceedings of SIGGRAPH 2001,
Computer Graphics Proceedings, Annual Conference Series,
pages 203–212, August 2001.

[13] B. Horn. Extended Gaussian images. Proc. of the IEEE,
72(12):1671–1686, December 1984.

[14] K. Jarvelin and J. Kekalainen. IR evaluation methods for re-
trieving highly relevant documents. In 23rd Annual Interna-
tional ACM SIGIR Conference on Research and Development
in Information Retrieval, 2000.

[15] S. Kang and K. Ikeuchi. Determining 3-D object pose using
the complex extended Gaussian image. In CVPR, pages 580–
585, June 1991.

[16] M. Kazhdan, T. Funkhouser, and S. Rusinkiewicz. Rotation
invariant spherical harmonic representation of 3D shape de-
scriptors. In Symposium on Geometry Processing, June 2003.

[17] I. Kolonias, D. Tzovaras, S. Malasiotis, and M.G.Strintzis.
Fast content-based search of VRML models based on shape
descriptors. IEEE Transactions on Multimedia, 2003. ac-
cepted for publication.

[18] Y. Lecun. The MNIST database of handwritten digits, 2003.
http://yann.lecun.com/exdb/mnist/.

[19] G. Leifman, S. Katz, A. Tal, and R. Meir. Signatures of 3D
models for retrieval. pages 159–163, February 2003.

[20] S. Loncaric. A survey of shape analysis techniques. Pattern
Recognition, 31(8):983–1001, 1998.

[21] P. Min, J. Halderman, M. Kazhdan, and T. Funkhouser. Early
experiences with a 3D model search engine. In Proceeding
of the eighth international conference on 3D web technology,
pages 7–18, 2003.

[22] Okino. Polytrans, 2003. www.okino.com/conv/conv.htm.
[23] R. Osada, T. Funkhouser, B. Chazelle, and D. Dobkin.

Matching 3D models with shape distributions. Shape Model-
ing International, pages 154–166, May 2001.

[24] E. Paquet and M. Rioux. Nefertiti: a query by content soft-
ware for three-dimensional models databases management.
Image and Vision Computing, 17(2):157–166, 1999.

[25] A. R. Pope. Model-based object recognition: A survey of
recent research. Technical Report TR-94-04, University of
British Columbia, January 1994.

[26] G. Salton. The smart document retrieval project. In ACM
SIGIR Conference on Research and development in Informa-
tion Retrieval, pages 356–358, 1991.

[27] D. Saupe and D. V. Vranic. 3D model retrieval with spher-
ical harmonics and moments. In B. Radig and S. Florczyk,
editors, DAGM 2001, pages 392–397, September 2001.

[28] SPEC. Standard performance evaluation corporation, 2003.
www.specbench.org/benchmarks.html.

[29] M. T. Suzuki. A web-based retrieval system for 3D polygo-
nal models. Joint 9th IFSA World Congress and 20th NAFIPS
International Conference (IFSA/NAFIPS2001), pages 2271–
2276, July 2001.

[30] J. Tangelder and R. Veltkamp. Polyhedral model retrieval
using weighted point sets. In Shape Modeling International,
May 2003.

[31] TREC. Text REtrieval Conference data, 2003.
http://trec.nist.gov/data.html.

[32] C. K. van Rijsbergen. Information Retrieval. Butterworths,
1975.

[33] R. C. Veltkamp. Shape matching: Similarity measures and
algorithms. In Shape Modelling International, pages 188–
197, May 2001.

[34] Viewpoint Corporation. http://www.viewpoint.com, 2001.
[35] D. V. Vranic. An improvement of rotation invariant 3D shape

descriptor based on functions on concentric spheres. In IEEE
International Conference on Image Processing (ICIP 2003),
volume 3, pages 757–760, September 2003.

[36] D. V. Vranic and D. Saupe. 3D shape descriptor based on
3D Fourier transform. In K. Fazekas, editor, EURASIP Con-
ference on Digital Signal Processing for Multimedia Com-
munications and Services (ECMCS 2001), pages 271–274,
September 2001.

[37] Y. Yang, J. Yang, H. Yang, and O. Gwun. Indexing VRML
objects with triples. In SPIE Proceedings, volume 4311,
pages 236–243, 2001.

[38] T. Zaharia and F. Preteux. 3D shape-based retrieval within
the MPEG-7 framework. In SPIE Conf. on Nonlinear Im-
age Processing and Pattern Analysis XII, volume 4304, pages
133–145, January 2001.

[39] T. Zaharia and F. Preteux. Shape-based retrieval of 3D mesh
models. In IEEE International Conference on Multimedia
and Expo (ICME ‘2002), August 2002.

[40] C. Zhang and T. Chen. Indexing and retrieval of 3D models
aided by active learning. In ACM Multimedia, 2001.

12


