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Abstract

With recent improvements in methods for the acquisition and ren-
dering of 3D models, the need for retrieval of models has gained
prominence in the graphics and vision communities. A variety of
methods have been proposed that enable the efficient querying of
model repositories for a desired 3D shape. Many of these methods
use a 3D model as a query and attempt to retrieve models from the
database that have a similar shape.

In this paper we consider the implications of anisotropy on the
shape matching paradigm. In particular, we propose a novel method
for matching 3D models that factors the shape matching equation as
the disjoint outer product of anisotropy and geometric comparisons.
We provide a general method for computing the factored similarity
metric and show how this approach can be applied to improve the
matching performance of many existing shape matching methods.

CR Categories: I.5.3 [Computing Methodologies]: Pattern
Recognition—Similarity Measures; I.5.4 [Computing Methodolo-
gies]: Applications—Computer Vision

Keywords: shape matching, anisotropy

1 Introduction

With recent improvements in methods for the acquisition and ren-
dering of 3D models, the need for effective retrieval of models has
gained prominence in the graphics and vision communities. The
ability to retrieve existing models facilitates the tasks of profession-
als in fields ranging from entertainment to scientific research, by
allowing them to obtain desired models quickly without requiring
the expenditure of large amounts of time modeling the 3D shape.
To address this need, a variety of retrieval methods have been pro-
posed that enable the efficient querying of model repositories for
a desired 3D shape [Princeton 3D Model Search Engine ; Protein
Data Bank ; CCCC ; ShapeSifter ]. Many of these methods use a
3D model as a query and attempt to retrieve models with matching
shape from the database.

In this paper we consider the implications of anisotropy on shape
matching. In particular, we propose a novel method for matching
3D models that factors the shape matching equation as the disjoint
outer product of anisotropy and geometric comparisons. We pro-
vide a general method for computing the factored similarity metric
and show how this approach can be applied to improve the match-
ing performance of many existing shape matching methods.
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Figure 1: When two models have different anisotropic scales (left), it is harder to es-
tablish correct correspondences between the two. Thus, matching methods that depend
on correspondences for evaluating similarity will be inaccurate in this case. In contrast,
when the models are transformed so that each is isotropic (right), the correspondences
are more accurate and the measure of shape similarity is more discriminating.

The key idea of our approach is based on the observation that much
of the challenge of shape matching is the establishing of correspon-
dences, and that it is easier to establish correspondences between
two models if they are isotropic — having constant variance in each
direction. Figure 1 demonstrates this for models of an armchair and
a sofa. When the models are at their initial anisotropic scales (left),
it is difficult to establish correspondences between similar regions.
Methods such as associating to a point on one model the nearest
point on the other (commonly used in ICP-type approaches [Besl
and McKay 1992]) will map points on the corners of the armchair
to points in the middle of the sofa, points on the bottom of the arm-
rest of the armchair to points on the top of the arm-rest of the sofa,
etc. Thus, many poor correspondences will be established, result-
ing in an inaccurate measure of similarity. If instead both models
are rescaled to be isotropic (right), then the correspondences estab-
lished more accurately reflect corresponding regions in the shape.

While many existing matching methods compare models without
explicitly establishing correspondences, the underlying similarity
metric is often designed to represent the distance between points
on the surfaces of the two models. These observations motivate us
to design a shape matching paradigm that compares two models by
(1) transforming each of them into isotropic models, (2) comparing
the geometric similarity of the isotropic models, and (3) defining
the measure of model similarity as a function of both the similarity
of the isotropic models, and the difference in their initial anisotropic
scales. Figure 2 demonstrates this process for two different models
of a table. Each table is represented by its isotropic version and
its initial anisotropic scale, represented by the covariance ellipsoid
of the original model. The distance between the two tables is then
defined as the outer product of the distance between the isotropic
tables and the distance between the initial anisotropic scales.

The remainder of the paper is structured as follows. Section 2 pro-
vides a general overview of existing shape matching approaches,
highlighting some of the central challenges in this area. Section 3
describes our proposed method, and Section 4 provides empirical
results demonstrating the efficacy of our approach in improving the
matching performance of many existing shape metrics. We con-
clude in Section 5 by summarizing our results.



Figure 2: Our approach is to compare two models by rescaling each model so that
it is isotropic and then defining the distance between two models as the outer product
of the differences between the isotropic models and their initial anisotropic scales.

2 Related Work

Traditional methods for retrieval of models from large repositories
focus on designing a method for defining a measure of similarity
between a query model and every target model in the database. The
models in the database are then sorted by this measure of similarity,
and the nearest models are returned as matches.

In the context of matching 3D shapes, the most common approach
is to establish correspondences between the query model and the
target model, and then to define the measure of similarity in terms
of the distances between corresponding points. Two general classes
of methods have been proposed that compute a measure of shape
similarity by explicitly establishing such correspondences. The first
approach is a local one, seeking to establish correspondences be-
tween pairs of points on the two models, and then defining the mea-
sure of shape similarity as the sum of the squared distances between
pairs of points in correspondence [Besl and McKay 1992]. The sec-
ond method is more general, decomposing a model into constituent
parts, and then representing the model as a graph characterizing the
relationship between the different segments [Siddiqi et al. 1998; Hi-
laga et al. 2001]. Correspondences between two models can then be
established using subgraph isomorphism techniques, which simul-
taneously define the correspondences between the nodes of the two
graph representations, and give the quality of the correspondences.

For both of these approaches, the establishing of correspondences is
a difficult and time consuming task that needs to be performed on a
per-pair-of-models basis. Thus, much of the necessary computation
can only be performed at runtime, once a query is specified. This
makes these methods impractical for the retrieval of models from
large databases, where efficient comparison is essential.

The computational complexity of establishing correspondences be-
tween models has motivated a large body of research in the area of
shape descriptors. The general approach of these methods is to de-
fine a mapping from the space of models into a fixed-dimensional
vector space, and then to define the measure of similarity between
two models as the distance between their corresponding descriptors
[Horn 1984; Kang and Ikeuchi 1991; Ankerst et al. 1999; Osada
et al. 2001; Vranic and Saupe 2001; Funkhouser et al. 2003]. The
mapping is often chosen so that the distance between two descrip-
tors measures the proximity of points on the surfaces of the two
models, so that a correspondence-based measure of similarity can
be obtained without the overhead of explicitly establishing the cor-
respondences. This approach has the advantage of addressing the
matching problem on a per-model basis, allowing for the compu-
tation of descriptors in an offline process. Then, at runtime, the
descriptor of the query is computed and compared against the (pre-

computed) descriptors of all the models in the database, giving rise
to methods that can satisfy the efficiency requirements of interac-
tive search.

For a more general survey of shape descriptors, we refer the readers
to [Alt and Guibas 1996; Loncaric 1998; Pope 1994; Tangelder and
Veltkamp 2004].

A specific challenge that shape descriptor approaches need to ad-
dress is that in the context of 3D shape matching, a model and its
image under a similarity transformation are considered to be the
same. In general, this issue is addressed in one of two manners:
(1) The mapping is chosen to be invariant to similarity transforma-
tion, so that the same shape descriptor is defined for every orien-
tation of a single model. (2) Each model is normalized by placing
it into its own canonical coordinate system, and then the shape de-
scriptor of the alignment-normalized model is computed.

Methods for normalizing a model’s translation and scale are based
on [Horn 1987; Horn et al. 1988]. In this work, the authors de-
scribe a method for solving for the alignment minimizing the sum
of square differences between two ordered point sets. While the so-
lution for the optimal rotation depends on the correspondence be-
tween the two point sets, the optimal translation and scale can be
computed on a per-model basis, with the optimal translation being
the one that transforms a model’s center of mass to the origin, and
the optimal scale giving rise to a model whose mean variance from
the origin is equal to one.

Methods for addressing rotational similarity have either taken the
normalization approach, aligning a model so that its principal axes
transform to the x-, y-, and z-axes, or have obtained rotation invari-
ant representations by discarding spherical phase and obtaining a
collection of amplitudes that are independent of a model’s align-
ment [Burel and Henocq 1995; Kazhdan et al. 2003].

3 Methodology

In order to separate anisotropy from the shape matching equation,
we propose a method for matching two 3D models that first re-
moves the anisotropy from each of the models, compares the ge-
ometry of the isotropic models, and then expresses the measure of
similarity of the two models as a function of both geometric and
anisotropic similarity. This approach is motivated by earlier work
in the area of isotropic scale normalization, which we review in the
next subsection. We then show how these results can be general-
ized to anisotropic scale and describe a method for removing the
anisotropy from model. We conclude by describing a method for
comparing two models, providing a family of shape metrics param-
eterized by the importance assigned to anisotropy.

3.1 Isotropic Scale

In [Horn et al. 1988; Horn 1987], the authors address the issue of
solving for the optimal scale that minimizes the sum of square dis-
tances between two ordered points sets. They pose the problem
as follows: Given two ordered point sets, P = {p1, . . . , pn} and
Q = {q1, . . . ,qn}, find the value of α that minimizes the sum of
squared distances:
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This formulation of the optimal scale problem has the property that
the measure of similarity at the optimal scale is independent of the



order of P and Q, and is minimized when

α = 4

√
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Thus, if each of the point sets is independently scaled so that its
mean variance is equal to 1, then the optimal scale value for aligning
the two normalized point sets is α = 1 and the point sets are in fact
optimally pairwise scale-aligned.

The implication of this result for shape matching is that scale nor-
malization can be done on a per-model basis, independent of cor-
respondence. As with using the center of mass for translation nor-
malization, this method is only provably correct when models are
compared by summing distances between corresponding points. In
practice however, many existing shape descriptors implicitly define
shape similarity in terms of the distance between surfaces and we
find that translating models so that their center of mass is at the
origin and scaling them so that their mean variance is equal to one
provides a robust method for translation and scale normalization.

3.2 Anisotropic Scale

We now show how the results for optimal scale can be generalized
to solve for the optimal anisotropic scale. Given two point sets
P = {p1, . . . , pn}, with pi = (pi

x, pi
y, pi

z), and Q = {q1, . . . ,qn}, with
qi = (qi

x,q
i
y,q

i
z), the sum of squared differences between the two

point sets is given by the equation:
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It follows from the work described above that if we search for the
optimal anisotropic scale in any single direction v, then this occurs
when the point sets P and Q are normalized so that their variance
in the direction v is equal to 1. Consider, for example, the case of
solving for the optimal anisotropic scale in the x direction. In this
case, we would like to solve for the value of α that minimizes
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As in the case of the isotropic scale, the value of α that minimizes
the error is:

α = 4

√

∑(qi
x)

2

∑(pi
x)

2

and the models are optimally scale-aligned in the x direction if the
variance of each model, in the x-direction, is equal to 1.

More generally, if both point sets satisfy the property that the
variance in any direction is equal to 1, then it follows that any
anisotropic scaling of one of the two points sets will only increase
the sum of squared differences, and the models are in fact optimally
anisotropically aligned.

In order to transform an arbitrary point set into one that has unit
variance in any direction, it suffices to compute its covariance ma-
trix C and then apply the transformation C−1/2 to the point set.
(Since we assume that the points are not all coplanar, the matrix C
is positive definite and hence can be inverted, and has a real square
root.) To see this, note that the covariance matrix of a point set
P = {p1, . . . , pn} can be defined by the equation:

CP =
n

∑
i, j=1

(pi − p j) · (pi − p j)
t ,

Figure 3: Uniform point samples from the surface of an iris model are shown on the
left. The same points after anisotropic rescaling, are shown on the right. Though the
point set on the right has constant variance in every direction, it no longer represents a
uniform sampling from the surface of the anisotropically rescaled iris.

where the double summation is taken in order to account for the
variance with respect to center of mass. If we set Q to be the
transformed point set Q = C−1/2

P
p1, . . . ,C

−1/2
P

pn then the covari-
ance matrix of Q is given by:

CQ =
n
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P

= 1

Thus, the covariance matrix of the transformed point set is equal
to the identity, and the variance in any direction is equal to 1. As
with isotropic rescaling, this approach has the advantage that it can
normalize for anisotropic rescale on a per-model basis, allowing a
model to be transformed in a pre-processing stage, independent of
the model that it will be matched against.

The difficulty with applying this method directly to triangulated
models is illustrated in Figure 3 which shows points uniformly sam-
pled from a model of an iris (left). After an anisotropic transforma-
tion is applied to the point set (right), the positions of the points are
transformed and they no longer represent a uniform sampling of
the surface. Note that points on the stem are tightly clustered, while
points on the petal become more spread out. This property of 3D
meshes results in the undesired property that often the transformed
model is still not isotropic.

In order to address this issue, we propose an iterative approach to
transforming the model. At each step of the iteration, the model is
first translated so that its center of mass is at the origin, the covari-
ance matrix is computed, and finally the model is rescaled by the
inverse square root of the covariance matrix. In our experiments, we
find that this approach converges efficiently to an isotropic model
and, in practice, no more than five iterations of this process are nec-
essary to obtain a nearly isotropic shape. Figure 4 shows a model
of a pen and the transformed model after several steps of the itera-
tion process. The figure also draws the associated covariance ellip-
soids, which converge to a sphere as the model becomes isotropic.
Note that after the first iteration, the transformed model is still not
isotropic, though, as the figure indicates, the iterative process con-
verges quickly to an isotropic model. We provide a proof of the
convergence of this approach in the appendix.



Figure 4: A visualization of a pen model and its covariance ellipsoid is shown on
the left. The transformed model and its associated covariance ellipsoid, after one,
two, and three iterations are shown on the right. Note that though the model is very
anisotropic, after the third iteration of anisotropic rescaling we obtain a model that is
nearly isotropic, with the covariance ellipsoid converging to a sphere.

3.3 Anisotropy Factoring

The method that we propose for anisotropy factoring is a general
one that can be applied to any of the many methods [Horn 1984;
Kang and Ikeuchi 1991; Ankerst et al. 1999; Vranic and Saupe
2001; Osada et al. 2001; Funkhouser et al. 2003] that matches two
models by independently representing each one by a feature vec-
tor, and then defining the measure of model similarity as the L2-
difference between the corresponding feature vectors. In particular,
we anisotropically rescale a model M to obtain an isotropic model
M̃, storing the sorted triplet of eigenvalues λM = (λ M

1 ,λ M
2 ,λ M

3 ) of
the matrix transforming M into M̃. The triplet λM is a rotation in-
variant representation of the anisotropy of M and, for simplicity,
we normalize the triplet so that

∥

∥λM

∥

∥= 1. We compute the feature
vector v

M̃
of the isotropic model and, using the fact that the infor-

mation contained in v
M̃

is orthogonal to the information contained
in λM , we represent the initial model M by the new feature vector
v

M̃
×λM , as shown in Figure 5.

At runtime, when a query model Q is presented to the database, we
compute the anisotropy factorization of Q and define the measure
of similarity between Q and a database model M to be the value:

Dγ (M,Q) = ‖v
M̃
‖2 +‖v

Q̃
‖2 −2〈v

M̃
,v

Q̃
〉〈λM ,λQ〉

γ .

If γ = 1 then Dγ (M,Q) is the L2-difference between the vectors
v

Q̃
× λQ and v

M̃
× λM . More generally, γ can be treated as a

fixed constant representing the importance of anisotropy informa-
tion in the context of shape matching. Thus, in the case that γ = 0,
anisotropy information plays no role in the matching and the match-
ing method is invariant to anisotropic scale. If additionally the fea-
ture vector is itself rotation invariant [Ankerst et al. 1999; Osada
et al. 2001; Funkhouser et al. 2003], then we obtain a matching
method that is invariant to all affine transformations.

Figure 5: We create a new feature vector for a model by computing the outer product
of the anisotropic scales with the feature vector of the isotropic model.

The advantage of this matching approach is that the shape met-
ric defines similarity as the outer product of the similarity of the
feature vectors and the similarity of the anisotropy vectors. Thus,
the new feature vectors only need to store three additional val-
ues, corresponding to the normalized eigenvalues of the symmet-
ric matrix transforming an anisotropic model into an isotropic one.
This means that neither the storage nor the comparison time of the
anisotropy factorized feature vector is significantly larger than the
corresponding storage and comparison time for the original one.

4 Results

To measure the efficacy of the anisotropic rescaling scale approach
in tasks of shape retrieval, we computed a number of shape de-
scriptors and compared matching results when the descriptor of the
original anisotropic model was used with the results obtained with
anisotropy factoring. The descriptors we used were:

• Shape Histogram (Shells) [Ankerst et al. 1999]: A represen-
tation of a 3D model as a histogram of the distances of surface
points from the center of mass.

• D2 [Osada et al. 2001]: A representation of a 3D model as a
histogram of the distances between pairs of surface points.

• Extended Gaussian Image [Horn 1984]: A representation
of a 3D model as a spherical histogram of the distribution of
normal directions over the surface of a model.

• Shape Histogram (Sectors) [Ankerst et al. 1999]: A repre-
sentation of a 3D model as a spherical function associating to
each direction from the origin the measure of the surface area
in that direction.

• Spherical Extent Function [Vranic and Saupe 2001]: A rep-
resentation of a 3D model as a spherical function associating
to each direction from the origin the distance to the last point
of intersection of the model with the ray.

• Gaussian Euclidean Distance Transform [Funkhouser et al.
2003]: A representation of a 3D model as a voxel grid, where
the value at each point is given by the composition of a Gaus-
sian with the Euclidean Distance Transform of the surface.

The first two shape descriptors are rotation-invariant by design,
while the other four can either be normalized for rotation by align-
ing the model with PCA or can be made rotation-invariant using the
spherical power spectrum [Burel and Henocq 1995; Kazhdan et al.
2003]; we present matching results for both types of approaches.
(Note that since anisotropy factorization makes the covariance ma-
trix of a model a multiple of the identity, PCA alignment needs to
be performed prior to the factorization.)

We evaluated the performance of each method by measuring how
well it classified models within a test database. The database
was provided by the Princeton Shape Benchmark [Princeton Shape
Benchmark ], and consists of 1814 models decomposed into two
groups of roughly 900 models, corresponding to training and test
datasets. Each group is provided with a classification, associating
each of the models to one of roughly 90 distinct classes. Clas-
sification performance was measured using precision/recall plots,
which give the percentage of retrieved information that is relevant
as a function of the percentage of relevant information retrieved.
That is, for each target model in class C and any number K of top
matches, “recall” represents the ratio of models in class C returned
within the top K matches, while “precision” indicates the ratio of
the top K matches that are in class C. Thus, plots that appear shifted
up indicate superior retrieval results.



Figure 6: The improvement in precision of anisotropy factorization for four PCA-aligned and five rotation-invariant representations. The plots indicate that when the importance
of anisotropy differences is amplified (α = 3) retrieval performance is improved, and when anisotropy differences are ignored (α = 0) retrieval performance is hampered.

For each shape descriptor, we compared the precision versus re-
call results obtained using the descriptor applied to the original
model with those obtained with anisotropy factorization. For the
anisotropy factorization we used the metrics Dγ with γ = 0 to
dampen the importance of anisotropy in retrieval and γ = 3 to am-
plify the importance of anisotropy in retrieval. Figure 6 shows the
results for the different PCA-aligned and rotation-invariant repre-
sentations, with precision versus recall plots averaged over the dif-
ferent models in the database. Since we are primarily evaluating the
effect of anisotropy factorization on the matching performance of
a given descriptor, the plots show the improvement in precision of
anisotropy factorization over the results obtained without factoriza-
tion. The results indicate that the anisotropic scale of a model is an
essential classifier of shape and when it is ignored (γ = 0), retrieval
performance deteriorates. On the other hand, the results also indi-
cate that it is easier to match two models when they are anisotropi-
cally aligned, so that methods that compare the two models in their
anisotropy normalized frames and then penalize for differences in
the initial anisotropic scales (γ = 3) give rise to matching results
with improved precision.

Finally, we note that while the results indicate that anisotropy fac-
torization is a technique that works well on average, there are spe-
cific types of models for which this method can fail. In particular,
we have found that when the initial model is very anisotropic (the
difference between the largest and smallest principal eigenvalues is
large) anisotropy factorization does not always work well. We be-
lieve that the reason for this is due the manner in which anisotropic
rescaling acts on a shape. When one of the principal eigenvalues
is markedly smaller than the others, anisotropy normalization will
scale the model disproportionately in one principal direction. As a
result, features that may have been unimportant in the initial model
will play a more dominant role in defining models similarity. As an
example, Figure 7 demonstrates this for a chess set model. When
the model is rescaled to have constant variance in every direction,
the side of the board and the chess pieces become more prominent
features in the model and play a more dominant role in matching.

5 Conclusion

In this paper we have described a method for factoring the shape
matching equation into the product of an anisotropy comparison
and a geometric comparison. This factorization provides a fam-
ily of shape metrics that allows users to specify the importance of
anisotropy within the general context of shape similarity. We have
shown that this method is sufficiently general to be applied to a
wide collection of existing shape matching algorithms, improving

Figure 7: When a model is normalized for anisotropy, parts that may have been
unimportant in the initial model may become more pronounced features of the model,
adversely affecting shape matching.

the matching performance of most without inducing a large over-
head in computation time. Thus, the described factorization is well
suited for many of the nascent applications that strive to provide a
method for efficiently and effectively retrieving models from large
repositories of 3D shapes.
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Appendix

In this appendix, we prove the convergence of the iterative rescaling
algorithm for obtaining an isotropic model from an anisotropic one.
We assume that the model is not coplanar, so that the variance in any
direction is non-zero, and we show that iteratively anisotropically

rescaling the model by the inverse square root of the covariance
matrix is a process that converges to a model with constant variance,
independent of direction. In particular, the steps of each iteration
are:

1. Anisotropically rescale the model by the inverse square root
of the covariance matrix

2. Isotropically rescale the model so that the minimum and max-
imum eigenvalues of the covariance matrix of the new model
are reciprocals,

and we show that iterating these steps forces the minimum and max-
imum eigenvalues of the covariance matrix to converge to 1. To this
end, we use the following equation for the covariance matrix of a
model M:

CM =
∫

M

∫

M
(p−q) · (p−q)td pdq

so that the variance of M in a direction v is given by:

Var(M,v) = vtCMv =
∫

M

∫

M
〈p−q,v〉2d pdq.

We will first show that a model with non-zero variance in any di-
rection can always be rescaled so that the minimum and maximum
eigenvalues are reciprocals. Next, we prove two lemmas describing
the decomposition M into an even partition and the corresponding
decomposition of the variance of M across such a partition. Finally,
we use the lemmas to show that the extremal eigenvalues must con-
verge to 1.

Isotropic Rescaling: Given a model M and scale factor s, the co-
variance matrix of sM is defined as:

CsM =
∫

sM

∫

sM
(p−q) · (p−q)td pdq = s6CM .

Thus, given a model M whose covariance matrix CM has eigenval-
ues 0 < λ1 ≤ λ2 ≤ λ3, we can rescale the model by (

√

λ1 ·λ3)
−1/6

to obtain a new model whose covariance matrix has as its smallest
and largest eigenvalues the reciprocals

√

λ1/λ3 and
√

λ3/λ1.

Lemma 1: Given a continuous function f defined on M, there exists
an even partition of M into subsets M+ and M− and a value µ such
that |M+|= |M−| and f (p+)≥ µ ≥ f (p−) for all p+ ∈ M+ and all
p− ∈ M−.

Proof: To prove that such a decomposition must exist, we define
the function F(t) that gives the area of the subset of M with value
less than or equal to t:

F(t) =
∣

∣

∣
f−1
(

(−∞, t]
)∣

∣

∣

Then F(t) is a non-decreasing, right-continuous function that starts
at 0 and grows to |M|, and is discontinuous at points t0 such that
| f−1(t0)|> 0. Set Φ to be the closure of the set of values t for which
F(t)≤ |M|/2. Since F(t) is monotonic we know that Φ = (−∞,µ],
for some value µ . Then for all t ≥ µ we have F(t) ≥ |M|/2 and for
all t < µ we have F(t) ≤ |M|/2. If F(µ) = |M/2| we can set M−

equal to the inverse image of f on the range (−∞,µ], and we can
set M+ = M −M−. Otherwise the function F(t) is discontinuous
at µ and we must have

∣

∣ f−1(µ)
∣

∣≥ F(µ)−|M|/2. Thus we can set
M+ to be the union of the inverse image of f on the range (µ,∞)
and any subset of f−1(µ) that has area F(µ)−|M|/2

Lemma 2: Given a partition of M into equal sized subsets M+ and
M−, the variance across M+ and M− is at least as large as half the



variance within M+ and half the variance within M−. That is, if:

I++
M (v) =

∫

M+

∫

M+
〈p−q,v〉2d pdq

I+−
M (v) =

∫

M+

∫

M−
〈p−q,v〉2d pdq

I−−
M (v) =

∫

M−

∫

M−
〈p−q,v〉2d pdq

then we must have:

I++
M (v) ≤ 2I+−

M (v) and I−−
M (v) ≤ 2I+−

M (v).

Proof: We show that I−−
M (v)≤ 2I+−

M (v), by integrating I+−
M (v) over

M− and using the triangle inequality.

2I+−
M (v) = 2

∫

M+

∫

M−
〈p−q,v〉2d pdq

=
1

|M−|

∫

M−

∫

M−

∫

M+

(

〈p−− p+,v〉2+

+ 〈q−− p+,v〉2
)

d p+d p−dq−

By the triangle inequality, we know that:

〈p−− p+,v〉2 + 〈q−− p+,v〉2 ≥ 〈p−−q−,v〉2

so that:

2I+−
M (v) ≥

1
|M−|

∫

M−

∫

M−

∫

M+
〈p−−q−,v〉2d p+d p−dq−

=
|M+|

|M−|

∫

M−

∫

M−
〈p−−q−,v〉2d p−dq−

= I−−
M (v)

as desired. The proof for I++
M (v) ≤ 2I+−

M (v) is analogous.

Anisotropic Rescaling: Given a model M, we set CM to be the
covariance matrix of M, 0 < λ1 ≤ λ2 ≤ λ3 = 1/λ1 to be the eigen-

values of CM , and BM = C−1/2
M

to be the inverse square root of CM .
Applying BM to the model M, we obtain a model whose variance in
direction v is given by:

Var(BM(M),v) =
∫

BM(M)

∫

BM(M)
〈p−q,v〉2d pdq (1)

=
∫

M

∫

M
〈p−q,BM(v)〉2b(p)b(q)d pdq

where b(p) is the differential change of area at the point M and
must satisfy:

√

λ1
√

λ2

≤ b(p) ≤
1

√

λ1 ·λ2

.

Using the fact that each summand in Equation 1 is positive, we can
apply the above inequalities to get:

∫

M

∫

M
〈p−q,BM(v)〉2d pdq

λ1
λ2

≤ Var(BM(M),v)

Var(BM(M),v) ≤
∫

M

∫

M
〈p−q,BM(v)〉2d pdq

1
λ1 ·λ2

so that
λ1
λ2

≤ Var(BM(M),v)
1

λ1 ·λ2
.

We observe that when we rescale the model so that minimal and
maximal eigenvalues of the covariance matrix are reciprocals, the
minimal eigenvalue is no smaller than λ1 so that transforming M by
BM cannot make the minimal variance smaller, nor can it make the
maximal variance larger.

To show that the minimal and maximal eigenvalues must actually
converge to 1, we use the lemmas above. To do this, we use the
function b(p) and Lemma 1 to evenly partition M into M+ and M−

and obtain a value µ satisfying:
√

λ1
λ2

≤ b(p−) ≤ µ ≤ b(p+) ≤

√

1
λ1 ·λ2

for all p− ∈ M− and p+ ∈ M+. (Though b(p) is not continuous
on M, it is only discontinuous on a closed subset with 0 area, so
Lemma 1 still holds.) Expressing the variance of BM(M) in the
direction v in terms of this partition we get:

Var(BM(M),v) =
∫

M−

∫

M−
〈p−−q−,BM(v)〉2b(p−)b(q−)d p−dq−

+2
∫

M−

∫

M+
〈p−− p+,BM(v)〉2b(p−)b(q+)d p−d p+

+
∫

M+

∫

M+
〈p+ −q+,BM(v)〉2b(p+)b(q+)d p−d p+

This allows us to bound the minimal variance by:

Var(BM(M),v) ≥

I−−
M (BM(v))

λ1
λ2

+2I+−
M (BM(v))µ

√

λ1
λ2

+ I++
M (BM(v))µ2.

Since I−−
M (BM(v)) + 2I+−

M (BM(v)) + I++
M (BM(v)) = 1, since

√

λ1/λ2 ≤ µ , and since 2I+−
M (BM(v)) ≥ I−−

M (BM(v)), it follows
that the minimum variance is bounded by:

λ1/λ2 + µ
√

λ1/λ2

2
≤ Var(BM(M),v).

In a similar manner we can get an upper bound for the variance:

λ1
λ2

+ µ
√

λ1
λ2

2
≤ Var(BM(M),v) ≤

1
λ1·λ2

+ µ
√

1
λ1·λ2

2

Isotropically rescaling BM(M) to get a model M̃ with minimal and
maximal variances that are reciprocals, we get:

λ1

√

f (µ) ≤ Var(M̃,v) with f (t) =
1+ t

√

λ2/λ1

1+ t
√

λ2 ·λ1

.

In order to find the minimum of the variance, we compute the
derivative:

f ′(t) =

√

λ2/λ1 −
√

λ2 ·λ1

(1+ t
√

λ2 ·λ1)
2

.

Since λ1 ≤ 1, the derivative is never negative, and hence the vari-
ance of M̃ is minimized when µ is as small as can be, which is to
say µ =

√

λ1/λ2. In this case we get:

λ1

√

2
1+λ1

≤ Var(M̃,v) ≤
1
λ1

√

1+λ1
2

.

Thus, the minimal and maximal variances of the model are guar-
anteed to converge to 1, and the iterative method described in Sec-
tion 3 is guaranteed to converge to a model with variance 1 in every
direction.


