Image Processing, Warping, and Compositing

Michael Kazhdan

(601.457/657)

HB Ch. 4.8
FvDFH Ch. 14.10
Outline

• Image Processing
 • Image Warping
 • Image Compositing
Image Processing

• What about the case when the modification that we would like to make to a pixel depends on the pixels around it?
 ○ Blurring
 ○ Edge Detection
 ○ Etc.
Multi-Pixel Operations

Stationary/Local Filtering

• In the simplest case, we define a *mask* of weights telling us how values at adjacent pixels should be combined to generate the new value.
Blurring

- To blur across pixels, define a mask:
 - Whose values are non-negative
 - Whose value is larger near the center of the mask
 - Whose entries sum to one.

Original Blur

\[
\begin{bmatrix}
\frac{1}{16} & \frac{2}{16} & \frac{1}{16} \\
\frac{2}{16} & \frac{4}{16} & \frac{2}{16} \\
\frac{1}{16} & \frac{2}{16} & \frac{1}{16}
\end{bmatrix}
\]

Original ➔ Blur
Blurring

Pixel(x,y): red = 36
green = 36
blue = 0

Filter =
\[
\begin{bmatrix}
\frac{1}{16} & \frac{2}{16} & \frac{1}{16} \\
\frac{2}{16} & \frac{4}{16} & \frac{2}{16} \\
\frac{1}{16} & \frac{2}{16} & \frac{1}{16}
\end{bmatrix}
\]
Blurring

Original Image
![Original Image](image)

Pixel Values

Pixel(x,y):
- red = 36
- green = 36
- blue = 0

Filter

The filter used for blurring is:

\[
\begin{bmatrix}
\frac{1}{16} & \frac{2}{16} & \frac{1}{16} \\
\frac{2}{16} & \frac{4}{16} & \frac{2}{16} \\
\frac{1}{16} & \frac{2}{16} & \frac{1}{16}
\end{bmatrix}
\]

Pixel(x,y).red and its red neighbors

<table>
<thead>
<tr>
<th></th>
<th>X - 1</th>
<th>X</th>
<th>X + 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Y - 1</td>
<td>36</td>
<td>109</td>
<td>146</td>
</tr>
<tr>
<td>Y</td>
<td>32</td>
<td>36</td>
<td>109</td>
</tr>
<tr>
<td>Y + 1</td>
<td>32</td>
<td>36</td>
<td>73</td>
</tr>
</tbody>
</table>
Blurring

\[
\begin{array}{ccc}
X-1 & X & X+1 \\
Y-1 & 36 & 109 & 146 \\
Y & 32 & 36 & 109 \\
Y+1 & 32 & 36 & 73 \\
\end{array}
\]

Pixel\((x, y)\).red and its red neighbors

\[
\text{Filter} = \begin{bmatrix}
\frac{1}{16} & \frac{2}{16} & \frac{1}{16} \\
\frac{2}{16} & \frac{4}{16} & \frac{2}{16} \\
\frac{1}{16} & \frac{2}{16} & \frac{1}{16}
\end{bmatrix}
\]

\[
\text{New value for Pixel}(x,y).\text{red} = \\
(36 \times \frac{1}{16}) + (109 \times \frac{2}{16}) + (146 \times \frac{1}{16}) \\
(32 \times \frac{2}{16}) + (36 \times \frac{4}{16}) + (109 \times \frac{2}{16}) \\
(32 \times \frac{1}{16}) + (36 \times \frac{2}{16}) + (73 \times \frac{1}{16})
\]
Blurring

New value for Pixel(x,y).red = 62.69

<table>
<thead>
<tr>
<th>Y-1</th>
<th>36</th>
<th>109</th>
<th>146</th>
</tr>
</thead>
<tbody>
<tr>
<td>Y-1</td>
<td>32</td>
<td>36</td>
<td>109</td>
</tr>
<tr>
<td>Y</td>
<td>32</td>
<td>36</td>
<td>109</td>
</tr>
<tr>
<td>Y+1</td>
<td>32</td>
<td>36</td>
<td>73</td>
</tr>
</tbody>
</table>

Pixel(x,y).red and its red neighbors

\[
\text{Filter} = \begin{bmatrix}
\frac{1}{16} & \frac{2}{16} & \frac{1}{16} \\
\frac{2}{16} & \frac{4}{16} & \frac{2}{16} \\
\frac{1}{16} & \frac{2}{16} & \frac{1}{16}
\end{bmatrix}
\]

Filter = \(\begin{bmatrix}
\frac{1}{16} & \frac{2}{16} & \frac{1}{16} \\
\frac{2}{16} & \frac{4}{16} & \frac{2}{16} \\
\frac{1}{16} & \frac{2}{16} & \frac{1}{16}
\end{bmatrix} \)
Blurring

Original

Blur

New value for Pixel(x,y).red = 63

\[
\begin{bmatrix}
\frac{1}{16} & \frac{2}{16} & \frac{1}{16} \\
\frac{2}{16} & \frac{4}{16} & \frac{2}{16} \\
\frac{1}{16} & \frac{2}{16} & \frac{1}{16}
\end{bmatrix}
\]
Blurring

- Repeat for each pixel and each color channel.
- Keep source and destination separate to avoid “drift”.
- For boundary pixels, not all neighbors are used.
 » Need to normalize the mask so that the sum of the values is correct.
Blurring

- In general, the mask can have arbitrary size:
 - We can express a smaller mask as a bigger one by padding with zeros.

\[
\begin{bmatrix}
1 & 2 & 1 \\
2 & 4 & 2 \\
1 & 2 & 1
\end{bmatrix} / 16
\]

Original Narrow Blur

\[
\begin{bmatrix}
0 & 0 & 0 & 0 & 0 \\
0 & 1 & 2 & 1 & 0 \\
0 & 2 & 4 & 2 & 0 \\
0 & 1 & 2 & 1 & 0 \\
0 & 0 & 0 & 0 & 0
\end{bmatrix} / 16
\]
Blurring

• In general, the mask can have arbitrary size:
 ◦ We can have more non-zero entries to give rise to a wider blur.

\[
\begin{bmatrix}
0 & 0 & 0 & 0 & 0 \\
0 & 1 & 2 & 1 & 0 \\
0 & 2 & 4 & 2 & 0 \\
0 & 1 & 2 & 1 & 0 \\
0 & 0 & 0 & 0 & 0 \\
\end{bmatrix}
/16
\]

\[
\begin{bmatrix}
0 & 1 & 2 & 1 & 0 \\
1 & 2 & 4 & 2 & 1 \\
2 & 4 & 8 & 4 & 2 \\
1 & 2 & 4 & 2 & 1 \\
0 & 1 & 2 & 1 & 0 \\
\end{bmatrix}
/48
\]

Original Narrow Blur Wide Blur
Blurring

- A general way for defining the entries of an $n \times n$ mask is to use the values of a Gaussian:

$$\text{GaussianMask}[i][j] = e^{-\frac{(i-\sigma)^2 + (j-\sigma)^2}{4\sigma^2}}$$

$i, j \in [0, 2\sigma + 1]$

- σ is the mask radius (for $n = 2\sigma + 1$)
- i is the horizontal position in the mask
- j is the vertical position in the mask
- Don’t forget to normalize!
Edge Detection

- An edge is a point in the image where the image is “far” from constant.
Edge Detection

• To find the (upper) edges, define a mask:
 ◦ whose value is largest at the center pixel, and
 ◦ whose entries sum to zero.

• (Upper) edge pixels are those whose value is larger than the average of its neighbors.

Original

Detected Edges

Filter = \[
\begin{bmatrix}
-1 & -1 & -1 \\
-1 & 8 & -1 \\
-1 & -1 & -1
\end{bmatrix}
\]
Edge Detection

Pixel(x,y): red = 36
 green = 36
 blue = 0

Original

Filter = \frac{1}{8} \begin{bmatrix} -1 & -1 & -1 \\ -1 & 8 & -1 \\ -1 & -1 & -1 \end{bmatrix}
Edge Detection

Pixel(x,y): red = 36
 green = 36
 blue = 0

X - 1 X X + 1
Y - 1 36 109 146
 Y 32 36 109
Y + 1 32 36 73

Pixel(x,y).red and its red neighbors

Filter = \frac{1}{8} \begin{bmatrix} -1 & -1 & -1 \\ -1 & 8 & -1 \\ -1 & -1 & -1 \end{bmatrix}
Edge Detection

New value for Pixel(x,y).red =

\[
\begin{align*}
(36 \times -1/8) &+ (109 \times -1/8) + (146 \times -1/8) \\
(32 \times -1/8) &+ (36 \times 1) + (109 \times -1/8) \\
(32 \times -1/8) &+ (36 \times -1/8) + (73 \times -1/8)
\end{align*}
\]

<table>
<thead>
<tr>
<th>X - 1</th>
<th>X</th>
<th>X + 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Y - 1</td>
<td>36</td>
<td>109</td>
</tr>
<tr>
<td>Y</td>
<td>32</td>
<td>36</td>
</tr>
<tr>
<td>Y + 1</td>
<td>32</td>
<td>36</td>
</tr>
</tbody>
</table>

Pixel(x,y).red and its red neighbors

Filter = \[
\frac{1}{8} \begin{bmatrix}
-1 & -1 & -1 \\
-1 & 8 & -1 \\
-1 & -1 & -1
\end{bmatrix}
\]
Edge Detection

Original

Pixel(x,y).red and its red neighbors

\[
\begin{array}{ccc}
X - 1 & X & X + 1 \\
Y - 1 & 36 & 109 & 146 \\
Y & 32 & 36 & 109 \\
Y + 1 & 32 & 36 & 73 \\
\end{array}
\]

New value for Pixel(x,y).red = -285/8

Filter = \(\frac{1}{8} \begin{bmatrix} -1 & -1 & -1 \\ -1 & 8 & -1 \\ -1 & -1 & -1 \end{bmatrix} \)
Edge Detection

New value for Pixel(x,y).red = -35.625

Original

Detected Edges

Filter = \[
\begin{bmatrix}
-1 & -1 & -1 \\
-1 & 8 & -1 \\
-1 & -1 & -1 \\
\end{bmatrix}
\]

Note: Edge values are not colors, so we have to rescale/remap for visualization.
Outline

• Image Processing
• Image Warping
• Image Compositing
Image Warping

• Move pixels of image
 ◦ Mapping
 ◦ Resampling
Overview

• Mapping
 ◦ Forward
 ◦ Inverse

• Resampling
 ◦ Point sampling
 ◦ Triangle filter
 ◦ Gaussian filter
Mapping

• Define transformation
 ◦ Describe the destination \((x, y) = \Phi(u, v)\) for every location \((u, v)\) in the source
Example Mappings

- Scale by σ:
 - $\Phi(u, v) = (\sigma u, \sigma v)$

Scale $\sigma = 0.8$
Example Mappings

- Rotate by θ degrees:
 - $\Phi(u, v) = (u \cos \theta - v \sin \theta, u \sin \theta + v \cos \theta)$

 Rotate $\theta = 30$
Example Mappings

• Shear in x by σ_x:
 $\Phi(u, v) = (u + \sigma_x \cdot v, v)$

• Shear in y by σ_y:
 $\Phi(u, v) = (u, v + \sigma_y \cdot u)$
Other Mappings

• Any function of u and v:
 ○ $\Phi(u, v) = \cdots$

- Fish-eye
- “Swirl”
- “Rain”
Image Warping Implementation I

- Forward mapping:

```plaintext
for( v=0 ; v<vmax ; v++ )
    for( u=0 ; u<umax ; u++ )
        (x,y) = \Phi(u,v);
        dst(x,y) = src(u,v);
```

![Diagram showing source image and destination image with forward mapping from point (u,v) to point (x,y)]
Forward Mapping

- Iterate over source image
Forward Mapping – BAD!

- Iterate over source image

Multiple source pixels can map to same destination pixel
Forward Mapping – BAD!

- Iterate over source image

- Multiple source pixels can map to same destination pixel

- Some destination pixels may not be covered
Image Warping Implementation II

• Inverse mapping:

\[
\begin{align*}
&\text{for}(\ y=0\ ;\ y<\text{ymax}\ ;\ y++) \\
&\text{for}(\ x=0\ ;\ x<\text{xmax}\ ;\ x++) \\
&(u,v) = \Phi^{-1}(x,y); \\
&\text{dst}(x,y) = \text{src}(u,v);
\end{align*}
\]
Reverse Mapping – GOOD!

- Iterate over destination image
 - Must resample source

Diagram:
- Rotate -30
- Translate

Axes: u, v, x, y
Resampling

- Evaluate source image at $(u, v) = \Phi^{-1}(x, y)$
Overview

• Mapping
 ○ Forward
 ○ Inverse

• Resampling
 ○ Nearest Point Sampling
 ○ Bilinear Sampling
 ○ Gaussian Sampling
Nearest Point Sampling

• Take value at closest pixel:

 \[
 \text{int } iu = \text{floor}(u+0.5); \\
 \text{int } iv = \text{floor}(v+0.5); \\
 \text{dst}(x,y) = \text{src}(iu,iv); \\
 \]
Bilinear Sampling

- Bilinearly interpolate four closest source pixels

\[\text{dst}(x, y) = \text{Weighted average of source at } (u_1, v_1), \ (u_2, v_1), \ (u_1, v_2), \ \text{and} \ (u_2, v_2) \]
Linear Sampling

- Linearly interpolate two closest source pixels
 \[\text{dst}(x) = \text{linear interpolation of } u_1 \text{ and } u_2 \]

\[
\begin{align*}
u_1 &= \text{floor}(u) \\
u_2 &= u_1 + 1 \\
du &= u - u_1 \\
\text{dst}(u) &= \text{src}(u_1) \times (1 - du) + \text{src}(u_2) \times du
\end{align*}
\]
Bilinear Sampling

• Bilinearly interpolate four closest source pixels

 \[a = \text{linear interpolation of } \text{src}(u_1, v_1) \text{ and } \text{src}(u_2, v_1) \]

 \[b = \text{linear interpolation of } \text{src}(u_1, v_2) \text{ and } \text{src}(u_2, v_2) \]

 \[\text{dst}(x, y) = \text{linear interpolation of } a \text{ and } b \]

\[u_1 = \text{floor}(u), \ u_2 = u_1 + 1; \]
\[v_1 = \text{floor}(v), \ v_2 = v_1 + 1; \]
\[du = u - u_1; \]
\[a = \text{src}(u_1, v_1) \times (1 - du) \]
\[+ \ \text{src}(u_2, v_1) \times (du); \]
\[b = \text{src}(u_1, v_2) \times (1 - du) \]
\[+ \ \text{src}(u_2, v_2) \times du; \]
\[dv = v - v_1; \]
\[\text{dst}(x, y) = a \times (1 - dv) + b \times dv; \]
Bilinear Sampling

- Bilinearly interpolate four closest source pixels

\[a = \text{linear interpolation of } \text{src}(u_1, v_1) \text{ and } \text{src}(u_2, v_1) \]
\[b = \text{linear interpolation of } \text{src}(u_1, v_2) \text{ and } \text{src}(u_2, v_2) \]
\[\text{dst}(x, y) = \text{linear interpolation of } a \text{ and } b \]

\[u_1 = \text{floor}(u) , \ u_2 = u_1 + 1; \]
\[v_1 = \text{floor}(v) , \ v_2 = v_1 + 1; \]
\[du = u - u_1; \]
\[dv = v - v_1; \]
\[a = \text{src}(u_1,v_1)*(1-du) \]
\[+ \text{src}(u_2,v_1)*du; \]
\[b = \text{src}(u_1,v_2)*(1-du) \]
\[+ \text{src}(u_2,v_2)*du; \]
\[\text{dst}(x,y) = a*(1-dv) + b*dv; \]

Make sure to test that the pixels \((u_1, v_1), (u_2, v_2), (u_1, v_2), \text{ and } (u_2, v_1)\) are within the image.
Gaussian Sampling

• Compute weighted sum of pixel neighborhood:
 ○ The blending weights are the normalized values of a Gaussian function.
Filtering Methods Comparison

• Trade-offs
 ◦ Jagged edges versus blurring
 ◦ Computation speed
Image Warping Implementation

- Inverse mapping:

\[
\begin{align*}
\text{for (y=0 ; y<\text{ymax} ; y++)} \\
\text{for (x=0 ; x<\text{xmax} ; x++)} \\
(u,v) &= \Phi^{-1}(x,y) ; \\
\text{dst}(x,y) &= \text{resample}_\text{src}(u,v,w) ;
\end{align*}
\]
Image Warping Implementation

- Inverse mapping:

\[
\begin{align*}
&\text{for} (y=0 \; ; \; y<\text{ymax} \; ; \; y++) \\
&\quad \text{for} (x=0 \; ; \; x<\text{xmax} \; ; \; x++) \\
&\quad (u,v) = \Phi^{-1}(x,y); \\
&\quad \text{dst}(x,y) = \text{resample}_\text{src}(u,v,w);
\end{align*}
\]
Example: Scale

\[
\text{Scale}(\text{src}, \text{dst}, \sigma) :
\]
\[
w \approx ? ; \\
\text{for}(\ y=0 \ ; \ y<y_{\text{max}} \ ; \ y++)
\text{for}(\ x=0 \ ; \ x<x_{\text{max}} \ ; \ x++)
\]
\[
(u,v) = (x,y) / \sigma ; \\
\text{dst}(x,y) = \text{resample}_\text{src}(u,v,w) ;
\]

\[
w = \frac{1}{\sigma}
\]
Example: Rotate

Rotate(src, dst, θ):

\[w \approx ?; \]
\[
\text{for}(y=0 ; y < ymax ; y++) \]
\[
\text{for}(x=0 ; x < xmax ; x++) \]
\[
(u, v) = (x \cos(-\theta) - y \sin(-\theta) , x \sin(-\theta) + y \cos(-\theta)); \]
\[
dst(x, y) = \text{resample_src}(u, v, w); \]

\[w = 1 \]

\[x = u \cos \theta - v \sin \theta \]
\[y = u \sin \theta + v \cos \theta \]

\[\theta = 30 \]
Example: Fun

Fun(src, dst, \theta):

w \approx ?;

for(y=0 ; y<ymax ; y++)
 for(x=0 ; x<xmax ; x++)
 (u,v) = fun(x,y);
 dst(x,y) = resample_src(u,v,w);
Sampling Questions

Q: Inverse mapping requires sampling the source image. Which sampling method should we use:

- Nearest Point Sampling?
- Bilinear Sampling?
- Gaussian Sampling?
- Something Else?
Outline

• Image Processing
• Image Warping

• Image Compositing
 ○ Blue-screen mattes
 ○ Alpha channel
Image Compositing

• Separate an image into “elements”
 ◦ Render independently
 ◦ Composite together

• Applications
 ◦ Cel animation
 ◦ Blue-screen matting

Bill makes ends meet by going into film
Blue-Screen Matting

- Composite foreground and background images
 - Create background image
 - Create foreground image with blue background
 - Insert non-blue foreground pixels into background
Blue-Screen Matting

- Composite foreground and background images
 - Create background image
 - Create foreground image with blue background
 - Insert non-blue foreground pixels into background

Problem: lack of partial coverage results in a haloing effect along the boundary!
Alpha Channel

• Encodes pixel coverage information
 ◦ $\alpha = 0$: no coverage (or transparent)
 ◦ $\alpha = 1$: full coverage (or opaque)
 ◦ $0 < \alpha < 1$: partial coverage (or semi-transparent)

• Single Pixel Example: $\alpha = 0.3$

![Partial Coverage](image1.png)
![Semi-Transparent](image2.png)
Compositing with Alpha

Controls the blending of foreground and background pixels when elements are composited.

\[\alpha = 1 \]

0 < \(\alpha \) < 1

\[\alpha = 0 \]
Semi-Transparent Objects

Typically, we represent RGBA colors as not pre-multiplied by the α value.
Semi-Transparent Objects

Typically, we represent RGBA colors as not pre-multiplied by the α value.

Pixel $A = (C_A, \alpha_A)$:
Semi-Transparent Objects

Typically, we represent RGBA colors as not premultiplied by the α value.

Pixel $A = (C_A, \alpha_A)$:

- Opacity of A is α_A
Semi-Transparent Objects

Typically, we represent RGBA colors as not pre-multiplied by the α value.

Pixel $A = (C_A, \alpha_A)$:

- Opacity of A is α_A
- Transparency of A is $1 - \alpha_A$
Semi-Transparent Objects

Typically, we represent RGBA colors as not pre-multiplied by the α value.

Pixel $A = (C_A, \alpha_A)$:

- Opacity of A is α_A
- Transparency of A is $1 - \alpha_A$
- Apparent color of A is $C_A \alpha_A$
Semi-Transparent Objects

Typically, we represent RGBA colors as not pre-multiplied by the \(\alpha \) value.

So given the pixel representation \(A = (C_A, \alpha_A) \) the apparent color is:

\[
\overline{C}_A = C_A \alpha_A
\]
Semi-Transparent Objects

Typically, we represent RGBA colors as not pre-multiplied by the α value.

Conversely, given the opacity, α_A, and the apparent color, \overline{C}_A, then the pixel representation is:

$$A = \left(\frac{\overline{C}_A}{\alpha_A}, \alpha_A \right)$$
Semi-Transparent Objects

Typically, we represent RGBA colors as not pre-multiplied by the α value.

If we place pixel A over pixel B, what is the resulting pixel value?

$$C_{A} = \alpha_{A} C_{A} + (1 - \alpha_{A}) C_{B}$$
Semi-Transparent Objects

Pixel $A = (C_A, \alpha_A)$ over $B = (C_B, \alpha_B)$:
Semi-Transparent Objects

Pixel $A = (C_A, \alpha_A)$ over $B = (C_B, \alpha_B)$:

- Opacity of A in $(A$ over $B)$ is α_A
Semi-Transparent Objects

Pixel $A = (C_A, \alpha_A)$ over $B = (C_B, \alpha_B)$:

- Opacity of A in $(A \text{ over } B)$ is α_A
- Apparent color of A in $(A \text{ over } B)$ is $C_A \alpha_A$

\[1 - \alpha_A \]
\[\alpha_A \]

\[C_A \]

\[A \]

\[A \text{ over } B \]

\[C_B \]

\[\alpha_B \]

\[B \]
Semi-Transparent Objects

Pixel \(A = (C_A, \alpha_A) \) over \(B = (C_B, \alpha_B) \):

- Opacity of \(A \) in \((A \text{ over } B)\) is \(\alpha_A \)
- Apparent color of \(A \) in \((A \text{ over } B)\) is \(C_A \alpha_A \)
- Opacity of \(B \) in \((A \text{ over } B)\) is \((1 - \alpha_A)\alpha_B \)
Semi-Transparent Objects

Pixel $A = (C_A, \alpha_A)$ over $B = (C_B, \alpha_B)$:

- Opacity of A in $(A$ over $B)$ is α_A
- Apparent color of A in $(A$ over $B)$ is $C_A \alpha_A$
- Opacity of B in $(A$ over $B)$ is $(1 - \alpha_A)\alpha_B$
- Apparent color of B in $(A$ over $B)$ is $C_B (1 - \alpha_A)\alpha_B$
Semi-Transparent Objects

Pixel $A = (C_A, \alpha_A)$ over $B = (C_B, \alpha_B)$:

- Opacity of A in $(A$ over $B)$ is α_A
- Apparent color of A in $(A$ over $B)$ is $C_A \alpha_A$
- Opacity of B in $(A$ over $B)$ is $(1 - \alpha_A) \alpha_B$
- Apparent color of B in $(A$ over $B)$ is $C_B (1 - \alpha_A) \alpha_B$
- Opacity of $(A$ over $B)$ is $\alpha_A + (1 - \alpha_A) \alpha_B$
Semi-Transparent Objects

Pixel $A = (C_A, \alpha_A)$ over $B = (C_B, \alpha_B)$:

- Opacity of A in $(A$ over $B)$ is α_A
- Apparent color of A in $(A$ over $B)$ is $C_A \alpha_A$
- Opacity of B in $(A$ over $B)$ is $(1 - \alpha_A)\alpha_B$
- Apparent color of B in $(A$ over $B)$ is $C_B (1 - \alpha_A)\alpha_B$
- Opacity of $(A$ over $B)$ is $\alpha_A + (1 - \alpha_A)\alpha_B$
- Apparent color of $(A$ over $B)$ is $C_A \alpha_A + C_B (1 - \alpha_A)\alpha_B$
Semi-Transparent Objects

Pixel $A = (C_A, \alpha_A)$ over $B = (C_B, \alpha_B)$:

- Opacity of A in $(A$ over $B)$ is α_A
- Apparent color of A in $(A$ over $B)$ is $C_A \alpha_A$
- Opacity of B in $(A$ over $B)$ is $(1 - \alpha_A)\alpha_B$
- Apparent color of B in $(A$ over $B)$ is $C_B (1 - \alpha_A)\alpha_B$
- Opacity of $(A$ over $B)$ is $\alpha_A + (1 - \alpha_A)\alpha_B$
- **Apparent color of $(A$ over $B)$ is** $C_A \alpha_A + C_B (1 - \alpha_A)\alpha_B$

Pixel $(A$ over $B) = \left(\frac{C_A \cdot \alpha_A + C_B (1 - \alpha_A)\alpha_B}{\alpha_A + (1 - \alpha_A)\alpha_B}, \alpha_A + (1 - \alpha_A)\alpha_B \right)$
Image Composition “Goofs”

- Visible hard edges
- Incompatible lighting/shadows
- Incompatible camera focal lengths

[Kee et al., Exposing Photo Manipulation from Shading and Shadows]