Last Class

Michael Kazhdan

(601.457/657)
Overview

• Final Exam
• Summary of the Course
• Announcements
Final Exam

Content:

Everything that we have covered since the midterm:

- Subdivision surfaces
- Spline curves/surfaces
- Procedural models
- Solid models
- 3D scanning
- Surface reconstruction
- Animation
- Radiosity
- Image stitching
- Gradient domain image processing
- Shape matching
Final Exam

Format:

• Short answer questions only
• No essays
• No True/False
• No multiple choice
• Think: “second midterm”
Overview

• Final Exam
• Summary of the Course
• Announcements
Syllabus

• Image Processing (2D)
• Rendering (3D)
• Modeling (3D)
• Animation (4D)
Syllabus: Image Processing

• Image Representation
 ○ Sampling
 ○ Reconstruction
 ○ Quantization & Aliasing
Syllabus: Image Processing

- Image Representation
 - Sampling
 - Reconstruction
 - Quantization & Aliasing

Original (8 bits) Quantized (1 bit) Random Dither (1 bit) Ordered Dither (1 bit) Floyd-Steinberg Dither (1 bit)
Syllabus: Image Processing

- Image Representation
 - Sampling
 - Reconstruction
 - Quantization & Aliasing

- Image Processing
 - Filtering
 - Warping
 - Morphing
 - Compositing
Syllabus: Image Processing

• Image Representation
 ○ Sampling
 ○ Reconstruction
 ○ Quantization & Aliasing

• Image Processing
 ○ Filtering
 ○ Warping
 ○ Morphing
 ○ Compositing
Syllabus: Rendering

• Global Illumination
 ◦ Ray tracing
 » Ray casting
 » Illumination equation
 » Modeling transformations
 » Hierarchical scene graphs
 ◦ Radiosity
Syllabus: Rendering

• Global Illumination
 ◦ Ray tracing
 » Ray casting
 » Illumination equation
 » Modeling transformations
 » Hierarchical scene graphs
 ◦ Radiosity
Syllabus: Rendering

- Global Illumination
 - Ray tracing
 - Ray casting
 - Illumination equation
 - Modeling transformations
 - Hierarchical scene graphs
 - Radiosity

- 3D Rendering Pipeline
 - Modeling transformations
 - Viewing transformations
 - Hidden surface removal
 - Illumination, shading & textures
Syllabus: Modeling

• Representations of geometry
 ◦ **Curves (splines)**
 ◦ **Surfaces (meshes, splines, subdivisions)**
 ◦ **Solids (voxels, CSG)**
Syllabus: Modeling

• Representations of geometry
 ◦ Curves (splines)
 ◦ Surfaces (meshes, splines, subdivisions)
 ◦ Solids (voxels, CSG)
Syllabus: Modeling

• Representations of geometry
 ◦ **Curves** (splines)
 ◦ Surfaces (meshes, splines, subdivisions)
 ◦ Solids (voxels, CSG)
Syllabus: Modeling

- Representations of geometry
 - **Curves** (splines)
 - Surfaces (meshes, splines, subdivisions)
 - Solids (voxels, CSG)
Syllabus: Modeling

• Representations of geometry
 - Curves (splines)
 - Surfaces (meshes, splines, subdivisions)
 - Solids (voxels, CSG)
Syllabus: Modeling

- Representations of geometry
 - Curves (splines)
 - Surfaces (meshes, splines, subdivisions)
 - Solids (voxels, CSG)
Syllabus: Modeling

- Representations of geometry
 - Curves (splines)
 - Surfaces (meshes, splines, subdivisions)
 - Solids (voxels, CSG)
Syllabus: Modeling

• Representations of geometry
 ○ Curves (splines)
 ○ Surfaces (meshes, splines, subdivisions)
 ○ Solids (voxels, CSG)
Syllabus: Modeling

- Representations of geometry
 - Curves (splines)
 - Surfaces (meshes, splines, subdivisions)
 - Solids (voxels, CSG)

Iso-Value $= \delta_1$

Iso-Value $= \delta_2$
Syllabus: Animation

- Key framing
 - Kinematics
 - Articulated figures

- Transformation
 - Interpolation/Blending
Syllabus: Animation

- Key framing
 - Kinematics
 - Articulated figures

- Transformation
 - Interpolation/Blending
Syllabus: Animation

- Key framing
 - Kinematics
 - Articulated figures

- Transformation
 - Interpolation/Blending
Syllabus: Animation

- Key framing
 - Kinematics
 - Articulated figures

- Transformation
 - Interpolation/Blending

\[
\exp(I_d, A) = \exp(A) = I_d + A + \frac{1}{2!} A^2 + \frac{1}{3!} A^3 + \ldots + \frac{1}{n!} A^n
\]
What Else Have We Learned?

- CG is hard
 - Lots of programming
 - Lots of math

- Simple things often work quite well!
 - Example: Illumination equation
 - Example: Key-frame interpolation

- Some things which seem simple, aren’t
 - Creating cool models
 - Getting them to behave well

- Still a lot left to do!
Announcements

- Every semester there is a reading seminar in computer graphics
 - Informal
 - Read and discuss one paper a week
 - You are welcome to join