Signal Processing
From Images to Surfaces

Misha Kazhdan
Johns Hopkins University
Goal

Extend image-processing techniques to surfaces:

1. Gradient Domain
Goal

Extend image-processing techniques to surfaces:

1. Gradient Domain
2. Shock Filters
Goal

Extend image-processing techniques to surfaces:

1. Gradient Domain
2. Shock Filters
3. Optical Flow

Moving Gradients: A Path Based Method for Plausible Image Interpolation. [Mahajan et al., 2009]
Outline

• Motivation

• **Processing Tools**
 – Screened Poisson Equation
 – Flow Fields/Lines

• Extensions to Signals on Surfaces

• Conclusion
1. **Screened Poisson Equation:**

Given a 2D domain Ω, a function g, and a vector field \vec{v}, solve for the function f minimizing:

$$E(f) = \int_{\Omega} \alpha \| f - g \|^2 + \| \nabla f - \vec{v} \|^2$$

value-fitting

gradient-fitting
Image-Processing Tools

1. Screened Poisson Equation:
Given a 2D domain Ω, a function g, and a vector field \vec{v}, solve for the function f minimizing:

$$E(f) = \int_{\Omega} \alpha \|f - g\|^2 + \|\nabla f - \vec{v}\|^2$$

$$\Downarrow$$

$$(\alpha \cdot 1 - \Delta)f = \alpha \cdot 1 \cdot g - \text{div}(\vec{v})$$
2a. Flow Fields/Lines:

Given a 2D domain Ω and a vector field \vec{v}, aflow-line of \vec{v} is a curve γ_p such that:

$$\gamma_p(0) = p \quad \text{and} \quad \gamma'_p(t) = \vec{v}(\gamma_p(t)).$$
2b. Flow Fields/Lines:

Given a 2D domain Ω and a vector field \vec{v}, the advection of a function f along \vec{v} is the function:

$$[\text{Adv}_{\vec{v}}(f)](p) = f \left(\gamma_p (-1) \right).$$
2c. Flow Fields/Lines:

Given..., for small t we have:

$$\text{Adv}_{t \cdot \mathbf{v}}(f) - f \approx -t \cdot \langle \nabla f, \mathbf{v} \rangle$$

$$\Downarrow$$

$$\frac{\partial f}{\partial t} = -\langle \nabla f, \mathbf{v} \rangle$$
Geometry-Processing Tools

1. Screened Poisson Equation:

\[(\alpha \cdot 1 - \Delta)f = \alpha \cdot 1 \cdot g - \text{div}(\vec{v})\]

On a mesh:
1. Screened Poisson Equation:

\[(\alpha \cdot 1 - \Delta)f = \alpha \cdot 1 \cdot g - \text{div}(\vec{v})\]

On a mesh:

- \(f, g \rightarrow\) maps from vertices to real values
Geometry-Processing Tools

1. Screened Poisson Equation:

$$(\alpha \cdot 1 - \Delta)f = \alpha \cdot 1 \cdot g - \text{div}(\vec{v})$$

On a mesh:

- $f, g \rightarrow$ maps from vertices to real values
- $\vec{v} \rightarrow$ a map from triangles to tangent vectors
1. Screened Poisson Equation:

\[(\alpha \cdot 1 - \Delta_f) f = \alpha \cdot 1 \cdot g - \text{div}(\mathbf{v})\]

On a mesh:

- \(f, g\) → maps from vertices to real values
- \(\mathbf{v}\) → a map from triangles to tangent vectors
- \(\Delta\) → the cotan. Laplacian matrix
Geometry-Processing Tools

1. Screened Poisson Equation:

\[(\alpha \cdot 1 - \Delta) f = \alpha \cdot 1 \cdot g - \text{div}(\hat{v})\]

On a mesh:

- \(f, g \rightarrow\) maps from vertices to real values
- \(\hat{v} \rightarrow\) a map from triangles to tangent vectors
- \(\Delta \rightarrow\) the cotan. Laplacian matrix
- \(1 \rightarrow\) the mass-matrix
Geometry-Processing Tools

1. Screened Poisson Equation:

\[(\alpha \cdot 1 - \Delta)f = \alpha \cdot 1 \cdot g - \text{div}(\hat{v})\]

On a mesh:

- \(f, g\) → maps from vertices to real values
- \(\hat{v}\) → a map from triangles to tangent vectors
- \(\Delta\) → the cotan. Laplacian matrix
- \(1\) → the mass-matrix
- \(\text{div}\) → \(\nabla^t \cdot \Lambda\):
 - \(\Lambda\): diagonal with triangle areas
 - \(\nabla\): the gradient operator
2. Flow Fields/Lines:

\[\gamma_{p}(0) = p \quad \text{and} \quad \gamma_{p}'(t) = \mathbf{v} \left(\gamma_{p}(t) \right) \]

Iteratively:

- Sample the flow field at \(p \).
- Take a small step in a straight line along the flow direction.
2. Flow Fields/Lines:

\[\gamma_p(0) = p \quad \text{and} \quad \gamma'_p(t) = \vec{v}(\gamma_p(t)) \]

Iteratively:

- Sample the flow field at \(p \).
- Take a small step in a straight line along the flow direction.
2. Flow Fields/Lines:

\[\gamma_p(0) = p \quad \text{and} \quad \gamma_p'(t) = \vec{v} \left(\gamma_p(t) \right) \]

Iteratively:

– Sample the flow field at \(p \).
– Take a small step in a straight line along the flow direction.
2. Flow Fields/Lines:

\[\gamma_p(0) = p \quad \text{and} \quad \gamma'_p(t) = \vec{v}(\gamma_p(t)) \]

Iteratively:

- Sample the flow field at \(p \).
- Take a small step in a straight line along the flow direction.
Outline

• Motivation
• Tools of the Trade
• Extensions to Signals on Surfaces
 – Gradient Domain [Poisson]
 – Shock Filters [Advection]
 – Optical Flow [Poisson + Advection]
• Conclusion
Gradient Domain (Stitching)

Different exposures \implies Seams in the panorama
Gradient Domain (Stitching)

- Copy interior gradients into \tilde{v}
- Set seam-crossing gradients to zero

$$f^{out} = \arg\min_{f:\Omega \to \mathbb{R}} \int \|\nabla f - \tilde{v}\|^2 dp$$

Image(s) courtesy of Uyttendaele
Gradient Domain (Stitching)

- Copy interior gradients into \tilde{v}
- Set seam-crossing gradients to zero

$$f^{out} = \text{argmin} \int \|\nabla f - \tilde{v}\|^2 dp$$

$$f: \Omega \rightarrow \mathbb{R}$$
Gradient Domain (Sharpening)

• Fit input colors: $g = f^{in}$
• Amplify input gradients: $\tilde{v} = \beta \cdot \nabla f^{in}$

$$f^{out} = \arg\min_{f: \Omega \rightarrow \mathbb{R}} \int_{\Omega} \alpha \|f - f^{in}\|^2 + \|\nabla f - \beta \cdot \nabla f^{in}\|^2$$

value-fitting

gradient-fitting

$\beta > 1$

Fourier Analysis of the 2D Screened Poisson Equation for Gradient Domain Problems. [Bhat et al. 2008]
Gradient Domain (Sharpening)

- Fit input colors: \(g = f^{in} \)
- Amplify input gradients: \(\tilde{v} = \beta \cdot \nabla f^{in} \)

\[
f^{out} = \arg\min_{f: \Omega \to \mathbb{R}} \int_{\Omega} \alpha \|f - f^{in}\|^2 + \|\nabla f - \beta \cdot \nabla f^{in}\|^2
\]

\(\beta < 1 \) vs \(\beta > 1 \)
Gradient Domain (Sharpening)

• Fit input colors: \(g = f^{in} \)
• Amplify input gradients: \(\tilde{v} = \beta \cdot \nabla f^{in} \)

\[
f^{out} = \arg\min_{f: \Omega \rightarrow \mathbb{R}} \int_{\Omega} \alpha \| f - f^{in} \|^2 + \| \nabla f - \beta \cdot \nabla f^{in} \|^2
\]

Setting \(f^{in} \) to the positions of the vertices in 3D
Outline

• Motivation

• Tools of the Trade

• **Extensions to Signals on Surfaces**
 – Gradient Domain [Poisson]
 – **Shock Filters** [Advection]
 – Optical Flow [Poisson + Advection]

• Conclusion
Shock Filters

[Osher and Rudin, 1990]:
Progressively sharpen a signal so that:

• Extrema preserved
 – Zero derivative \rightarrow value fixed

• Edges pronounced
 – Concave up \rightarrow value decreases
 – Concave down \rightarrow value increases
Shock Filters

[Osher and Rudin, 1990]:
Progressively sharpen a signal so that:

- Extrema preserved \(\rightarrow \mathcal{F} \) vanishes with the gradient
- Edges pronounced \(\rightarrow \mathcal{G} \) gives the sign w.r.t. the edge

\[
\frac{df}{dt} = \mathcal{F}(f) \cdot \mathcal{G}(f)
\]

\[
\mathcal{F}(f) = \|\nabla f\|^2
\]

\[
\mathcal{G}(f) = -\frac{\partial^2 f}{\partial (\nabla f / \|\nabla f\|)^2} \quad \text{(Second derivative in the gradient direction)}
\]
Shock Filters

Method of Characteristics:

We can re-write the PDE:

\[\frac{df}{dt} = F(f) \cdot G(f) \]
\[= -\langle \nabla f, H_f \cdot \nabla f \rangle \]

This describes the advection of \(f \) along the flow:

\[\mathbf{\hat{v}} = H_f \cdot \nabla f \]

\[F(f) = ||\nabla f||^2 \]
\[G(f) = -\frac{\partial^2 f}{\partial (\nabla f/||\nabla f||)^2} = -\frac{1}{||\nabla f||^2} \langle \nabla f, H_f \cdot \nabla f \rangle \]
Shock Filters

Sharpen f by advecting along the flow:

$$\tilde{v} = \frac{1}{2} \nabla P \quad \text{w/} \quad P = \| \nabla f \|^2$$

ShockAdvect(f, t)

1. $P \leftarrow \| \nabla f \|^2$ \quad // potential
2. $\tilde{v} \leftarrow \frac{1}{2} \nabla P$ \quad // flow field
3. return Advect(f, \tilde{v}, t)
Shock Filters

Sharpen f by advecting along the flow:

$$\hat{v} = \frac{1}{2} \nabla P \quad \text{w/} \quad P = \|\nabla f\|^2$$

Intuitively:

Values are transported along flow lines of the potential’s gradient, moving from the (local) minima to maxima:

- [Minima] Critical points of f
- [Maxima] Edges of f

\Rightarrow “Piecewise constant” image with input extrema advected out to the edges.
Shock Filters

Sharpen f by advecting along the flow:

$$\hat{v} = \frac{1}{2} \nabla P \quad \text{w/} \quad P = \|\nabla f\|^2$$
Shock Filters

Sharpen f by advecting along the flow:

$$\hat{v} = \frac{1}{2} \nabla P \quad w/ \quad P = ||\nabla f||^2$$
Shock Filters

Sharpen f by advecting along the flow:

$$\vec{v} = \frac{1}{2} \nabla P \quad \text{w/} \quad P = \| \nabla f \|^2$$

Setting f to the **normals** of the vertices
Outline

• Motivation
• Tools of the Trade
• Extensions to Signals on Surfaces
 – Gradient Domain [Poisson]
 – Shock Filters [Advection]
 – Optical Flow [Poisson + Advection]
• Conclusion
Optical Flow

Video Textures:
Given a video, generate “a continuous, infinitely varying stream of video images”.

Video Textures. [Schödl, Szeliski, Salesin, and Essa, 2000]
Optical Flow

Extend video textures [Schödl et al., 2000] to 3D:
Optical Flow

Extend video textures [Schödl et al., 2000] to 3D:

– Identify similar windows in the video
– Fit a template to the windows
– Interpolate geometries
– Interpolate textures
Optical Flow

Image Interpolation:

Target
Optical Flow

Image Interpolation (Linear):
 - Linear interpolation causes ghosting.
Optical Flow

Image Interpolation (Advected):
 – Estimate optical flow field.
Optical Flow

Image Interpolation (Advected):

– Estimate optical flow field.
– Advect forward/backward and blend.
Optical Flow

Brightness Constancy [Lucas and Kanade, 1981]:
Solve for \tilde{v} that advects the source/target towards each other by minimizing:

$$E(\tilde{v}) = \text{Adv} - v f_t - \text{Adv} v f_s^2 \approx f_t - f_s + \langle \nabla f_t + f_s, \tilde{v} \rangle^2$$

Estimate \tilde{v} hierarchically (coarse-to-fine):

- Advance the source/target along \tilde{v}
- Solve for the correcting flow
- Add the correcting flow to \tilde{v}
- Advance to the next level of the hierarchy

Smooth signals/vector-fields are implicitly mandated by working in a space that does not have high-frequencies.
Optical Flow

Scale Space Formulation:
Smooth solutions are explicitly encouraged by:

– Smoothing the source and target at each level:

\[
E(\tilde{f}^{s/t}) = \|\tilde{f}^{s/t} - f^{s/t}\|^2 + \frac{\alpha}{4l} \|\nabla\tilde{f}^{s/t}\|^2
\]

– Incorporating a smoothness term in the energy:

\[
E(\tilde{v}) = \|\text{Adv}_{\tilde{v}}(\tilde{f}^{s}) - \text{Adv}_{-\tilde{v}}(\tilde{f}^{t})\|^2 + \frac{\alpha}{4l} \|\nabla\tilde{v}\|^2
\]

Solve two Poisson equations per level."

*In the second, the Laplacian is the vector-field (Hodge) Laplacian.
Optical Flow

Texture Interpolation:

Source Target Synthesized
Optical Flow

Texture Interpolation:

Linear Blend

Optical Flow Blend
Outline

• Motivation
• Tools of the Trade
• Extensions to Signals on Surfaces
• Conclusion
Conclusion

Extend fundamental image-processing operators to the context of surfaces
[Differential Operators / Flows]

Much of the heavy lifting has already been done for us

Well-established image-processing techniques carry over
[Gradient Domain / Shock Filters / Optical Flow]
Conclusion

Working with images makes simple things easier.

Fixed stencil Laplacian / Gradient / Divergence
Parallelization / Out-of-Core Streaming
Fast Fourier Transform
Conclusion

Working with images makes simple things easier.

\[f_{\text{out}} = \arg\min_{f : \Omega \to \mathbb{R}} \nabla f_{\text{in}}^2 + \nabla f - \beta \cdot \nabla f_{\text{in}}^2 \]

\[\beta = 0 \]
\[\alpha = 1 \]

Setting \(\alpha \) be a spatially varying weighting function
Thank You!

Ming Chuang, Fabian Prada, Alvaro Collet, Linjie Luo, Benedict Brown, Szymon Rusinkiewicz, Hugues Hoppe

Estimating the Laplace-Beltrami Operator by Restricting 3D Functions. [Chuang et al., 2009]

Fast Mean-Curvature Flow via Finite Elements Tracking. [Chuang et al., 2011]

Interactive and Anisotropic Geometry Processing Using the Screened Poisson Equation. [Chuang et al., 2011]

Unconditionally Stable Shock Filters for Image and Geometry Processing. [Prada et al., 2015]

Motion Graphs for Unstructured Textured Meshes. [Prada et al., 2016]

http://www.cs.jhu.edu/~misha/Code/PoissonMesh/GeometryEditor/
http://www.cs.jhu.edu/~misha/Code/AdvectionSharpening/