Computer Animation

Michael Kazhdan

(601.457/657)

HB 16.5, 16.6
FvDFH 21.1, 21.3, 21.4
Announcements

• I will hold extra office hours:
 ◦ When: 11/13, 2:15-3:15 pm
 ◦ Location: my office
Overview

• Some early animation history
 ○ http://web.inter.nl.net/users/anima/index.htm
 ○ http://www.public.iastate.edu/~rllew/chrnearl.html

• Principles of animation

• Computer animation
Thaumatrope

- Why does animation work?
- Persistence of vision
- 1824 John Ayerton invents the *thaumatrope*
- Or, 1828 Paul Roget invents the *thaumatrope*
Thaumatrope

• Why does animation work?
• Persistence of vision
• 1824 John Ayerton invents the *thaumatrope*
• Or, 1828 Paul Roget invents the *thaumatrope*
Phenakistoscope

- Invented independently by 2 people in 1832
- Disc mounted on spindle
- Viewed through slots with images facing mirror
- Turning disc animates images
Phenakistoscope

- Invented independently by 2 people in 1832
- Disc mounted on spindle
- Viewed through slots with images facing mirror
- Turning disc animates images
Phenakistoscope

- Invented independently by 2 people in 1832
- Disc mounted on spindle
- Viewed through slots with images facing mirror
- Turning disc animates images
Zoetrope (1834)

- Images arranged on paper band inside a drum
- Slits cut in the upper half of the drum
- Opposite side viewed as drum rapidly spun
- Praxinoscope is a variation on this
Zoetrope (1834)

• Images arranged on paper band inside a drum
• Slits cut in the upper half of the drum
• Opposite side viewed as drum rapidly spun
• Praxinoscope is a variation on this
Mutoscope (1895)

- Coin-operated “flip-book” animation
- Picture cards attached to a drum
- Popular at sea-side resorts, etc.
Animation History

• “Humorous Phases of Funny Faces” (1906)
Key Developments

• Plot
• Creation of animation studios
• Inking on cels

“Felix the Cat”
Otto Messmer (1921)

“Steamboat Willie”
Walt Disney (1928)

“Gertie the Dinosaur”
Windsor McCay (1914)
Key Developments

- Max Fleischer invents rotoscoping (1921)
Key Developments

• Max Fleischer invents rotoscoping (1921)
Key Developments

• “Flowers and Trees”, 1932:
 ° Uses color, wins Academy Award

• “Snow White” (aka “Disney’s Folly”), 1937:
 ° $1.4 million to make
 ° 750 artists
 ° Highest grossing ($8 million)
Animation Uses

- Entertainment
- Education
- Propaganda
Overview

• Some early animation history
• Principles of animation
• Computer animation
Principles of Traditional Animation

How do we communicate aspects of the animation that are not strictly visual?

- Rigidity
- Weight
- Mood
- Intent
- Focus
- Etc.
Principles of Traditional Animation

1. Squash and Stretch
- Give a sense of weight and flexibility to drawn objects

The Illusion of Life (http://the12principles.tumblr.com/)
https://en.wikipedia.org/wiki/12_basic_principles_of_animation
Principles of Traditional Animation

2. Anticipation
• Prepare the audience for an action, and make the action appear more realistic

The Illusion of Life (http://the12principles.tumblr.com/)
https://en.wikipedia.org/wiki/12_basic_principles_of_animation
Principles of Traditional Animation

3. Staging
• Direct the audience's attention, and make it clear what is of greatest importance in a scene

The Illusion of Life (http://the12principles.tumblr.com/)
https://en.wikipedia.org/wiki/12_basic_principles_of_animation
Principles of Traditional Animation

4. Straight Ahead Action and Pose-to-Pose Action

○ Drawing a scene frame by frame from beginning to end vs.
○ Drawing a few key frames, and filling in intervals later

The Illusion of Life (http://the12principles.tumblr.com/)
https://en.wikipedia.org/wiki/12_basic_principles_of_animation
5. Follow Through and Overlapping Action

• Render movement more realistically, and help give the impression that characters follow the laws of physics

The Illusion of Life (http://the12principles.tumblr.com/)
https://en.wikipedia.org/wiki/12_basic_principles_of_animation
Principles of Traditional Animation

6. Slow In and Out
- Use more drawings near the beginning and end of an action, emphasizing the extreme poses

The Illusion of Life (http://the12principles.tumblr.com/)
https://en.wikipedia.org/wiki/12_basic_principles_of_animation
7. Arcs
• following implied "arcs" for greater realism

The Illusion of Life (http://the12principles.tumblr.com/)
https://en.wikipedia.org/wiki/12_basic_principles_of_animation
8. Secondary Action
• Adding secondary actions to the main action gives a scene more life
Principles of Traditional Animation

9. Timing

• The number of drawings or frames for a given action, which translates to the speed of the action on film

The Illusion of Life (http://the12principles.tumblr.com/)
https://en.wikipedia.org/wiki/12_basic_principles_of_animation
10. Exaggeration

- Remain true to reality, just present it in a wilder, more extreme form

The Illusion of Life (http://the12principles.tumblr.com/)
https://en.wikipedia.org/wiki/12_basic_principles_of_animation
Principles of Traditional Animation

11. Solid Drawing

- Take into account forms in three-dimensional space, or giving them volume and weight

The Illusion of Life (http://the12principles.tumblr.com/)
https://en.wikipedia.org/wiki/12_basic_principles_of_animation
Principles of Traditional Animation

12. Appeal

• The viewer feels the character is real and interesting

The Illusion of Life (http://the12principles.tumblr.com/)
https://en.wikipedia.org/wiki/12_basic_principles_of_animation
Principles of Traditional Animation

How do we communicate aspects of the animation that are not strictly visual?

- Rigidity
- Weight
- Mood
- Intent
- Focus
- Etc.

Luxo Junior
Overview

• Some early animation history
• Principles of animation

• Computer animation
 ◦ Keyframe animation
 ◦ Articulated figures
 ◦ Kinematics and dynamics
Keyframe Animation

- Define character poses at specific time steps called “keyframes”
Keyframe Animation

• Interpolate variables describing keyframes to determine poses for character “in-between”
Articulated Figures

- Character poses described by set of rigid bodies connected by “joints”
Articulated Figures

- Well-suited for humanoid characters

Diagram:
- Root
 - Chest
 - Neck
 - Head
 - LCollar
 - LShld
 - LElbow
 - LWrist
 - RElbow
 - RWrist
 - RCollar
 - RShld
 - RKnee
 - RAnkle
 - LHIp
 - LKnee
 - LANkle
 - RHIp

References:
Rose et al. `96
Example: Walk Cycle

- Articulated figure:

```
Hip
   ├── Upper leg
     │   ├── Knee
     │       ├── Lower leg
     │           └── Ankle
     │               └── Foot
     └── Upper leg (hip rot)
           └── Hip rotate
               └── Lower leg (knee rot)
                               └── Hip rotate + knee rot
                                   └── Foot (ankle rot)
```
Example: Walk Cycle

- Hip joint orientation:
Example: Walk Cycle

• Knee joint orientation:
Example: Walk Cycle

• Ankle joint orientation:
Example: Walk Cycle

http://www.ischool.utexas.edu/~luna73/architecture/
Keyframe Animation

- In-betweening (translation):
 - Cubic spline interpolation – maybe not be good enough
 » May not follow physical laws

Recall: Convex hull containment

Lasseter `87
Keyframe Animation

- In-betweening (translation):
 - Cubic spline interpolation – maybe not be good enough
 » May not follow physical laws

Lasseter `87
Articulated Figures

- In-betweening (rotation)
 - Interpolate angles, not positions, between key-frames

Good arm

Bad arm
Kinematics and Dynamics

• **Kinematics:** *Study of motion w/o regard for the cause*
 - Considers only motion
 - Determined by positions, velocities, accelerations

• **Dynamics:** *Study of the cause of motion*
 - Considers underlying forces
 - Compute motion from initial conditions and physics
Example: 2-Link Structure

- Two links connected by rotational joints

\[X = (x,y) \]

\(l_1 \) \(l_2 \)

(0,0) "End-Effector"
Forward Kinematics

- Animator specifies joint angles: Θ_1 and Θ_2
- Computer finds positions of end-effector: X

$$X = (l_1 \cos \Theta_1 + l_2 \cos(\Theta_1 + \Theta_2), l_1 \sin \Theta_1 + l_2 \sin(\Theta_1 + \Theta_2))$$
Forward Kinematics

• Joint motions can be specified by spline curves
Example: 2-Link Structure

- What if animator knows position of “end-effector”

\[X = (x, y) \]

\[l_1 \]

\[l_2 \]

(0,0)

\[\Theta_1 \]

\[\Theta_2 \]

“End-Effector”
Inverse Kinematics

- Animator specifies end-effector positions: X
- Computer finds joint angles: Θ_1 and Θ_2:

\[
\begin{align*}
X &= (x, y) \\
\Theta_2 &= \cos^{-1}\left(\frac{x^2 + y^2 - l_1^2 - l_2^2}{2l_1l_2}\right) \\
\Theta_1 &= \frac{-(l_2 \sin(\Theta_2))x + (l_1 + l_2 \cos(\Theta_2))y}{(l_2 \sin(\Theta_2))y + (l_1 + l_2 \cos(\Theta_2))x}
\end{align*}
\]
Inverse Kinematics

• End-effector positions can be specified by splines
Inverse Kinematics

• Problem for more complex structures
 ◦ System of equations is usually under-defined
 ◦ Multiple (or no) solutions

Three unknowns: $\Theta_1, \Theta_2, \Theta_3$
Two equations: x, y
Inverse Kinematics

• Solution for more complex structures:
 ◦ Find best solution (e.g., minimize energy in motion)
 ◦ Non-linear optimization
Summary of Kinematics

• Forward kinematics
 ◦ Specify conditions (joint angles)
 ◦ Compute positions of end-effectors

• Inverse kinematics
 ◦ “Goal-directed” motion
 ◦ Specify goal positions of end effectors
 ◦ Compute conditions required to achieve goals

Inverse kinematics provides easier specification for many animation tasks, but it is computationally more difficult.
Dynamics

• Simulation of physics insures realism of motion

Lasseter `87
Spacetime Constraints

- Animator specifies constraints:
 - What the character's physical structure is
 - e.g., articulated figure
 - What the character has to do
 - e.g., jump from here to there within time t
 - What other physical structures are present
 - e.g., floor to push off and land
 - How the motion should be performed
 - e.g., minimize energy
Spacetime Constraints

- Computer finds the “best” physical motion satisfying the constraints
- Example: particle with jet propulsion
 - \(x(t) \) is position of particle at time \(t \)
 - \(f(t) \) is the directional force of jet propulsion at time \(t \)
 - Particle’s equation of motion is:
 \[
 0 = m(x'' - g) - f
 \]
 - Move from \(a \) to \(b \) within \(t_0 \) to \(t_1 \), minimizing
 \[
 \int_{t_0}^{t_1} |f(t)|^2 dt
 \]
 - Such that:
 \[
 x(t_0) = a, \quad x'(t_0) = 0, \quad x(t_1) = b, \quad \text{and} \quad x'(t_1) = 0
 \]
Spacetime Constraints

Discretize time steps \(\{x_0, \cdots, x_N\} \):

\[
x'_i = \frac{x_i - x_{i-1}}{h}
\]

\[
x''_i = \frac{x_{i+1} - 2x_i + x_{i-1}}{h^2}
\]

\[
f_i = m \left(\frac{x_{i+1} - 2x_i + x_{i-1}}{h^2} - g \right)
\]

Minimize

\[
\int_{t_0}^{t_1} |f(t)|^2 dt \approx h \sum_i |f_i|^2 = hm^2 \sum_i \left\| \frac{x_{i+1} - 2x_i + x_{i-1}}{h^2} - g \right\|^2
\]

subject to \(x_{-1} = x_0 = a \) and \(x_N = x_{N+1} = b \).

Witkin & Kass `88
Spacetime Constraints

For simple scenarios:

- Solve a linear system
 \[Ax = b \]

For complex scenarios:

- Solve using iterative optimization techniques

Witkin & Kass `88
Spacetime Constraints

• Advantages:
 ◦ Free animator from having to specify details of physically realistic motion with spline curves
 ◦ Easy to vary motions due to new parameters and/or new constraints

• Challenges:
 ◦ Specifying constraints and objective functions
 ◦ Avoiding local minima during optimization
Dynamics

- Other physical simulations:
 - Rigid bodies
 - Soft bodies
 - Cloth
 - Liquids
 - Gases
 - etc.

 Hot Gases
 (Foster & Metaxas `97)

 Cloth
 (Baraff & Witkin `98)