3D Polygon Rendering Pipeline

Michael Kazhdan

(601.457/657)

HB Ch. 12
FvDFH Ch. 6, 18.3
3D Polygon Rendering

- Many applications use rendering of 3D polygons with direct illumination
3D Polygon Rendering

• Many applications use rendering of 3D polygons with direct illumination

God of War
(Santa Monica Studio, 2018)
Ray Casting

For each sample:
 1. Construct ray **from the camera into the scene**
 2. Find first surface intersected by ray through pixel
 3. Compute color of sample based on surface radiance
 4. Send 2D pixels into the scene and get color
3D Polygon Rendering

- For each primitive:
 - Send 3D points to the camera and set the pixel color
3D Rendering Pipeline (for direct illumination)

3D Geometric Primitives

- Modeling Transformation
- Viewing Transformation
- Lighting
- Projection Transformation
- Clipping
- Scan Conversion

Image

3D Model

2D Image
3D Rendering Pipeline (for direct illumination)

3D Geometric Primitives

- Modeling Transformation
- Viewing Transformation
- Lighting
- Projection Transformation
- Clipping
- Scan Conversion
- Image

Transform from current (local) coordinate system into 3D world coordinate system
3D Rendering Pipeline (for direct illumination)

3D Geometric Primitives

- Modeling Transformation
- Viewing Transformation
- Lighting
- Projection Transformation
- Clipping
- Scan Conversion

Transform into 3D world coordinate system
Transform into 3D camera coordinate system

Image
3D Rendering Pipeline (for direct illumination)

3D Geometric Primitives

Modeling Transformation

Viewing Transformation

Lighting

Projection Transformation

Clipping

Scan Conversion

Image

Transform into 3D world coordinate system

Transform into 3D camera coordinate system

Illuminate according to lighting and reflectance
3D Rendering Pipeline (for direct illumination)

3D Geometric Primitives

- **Modeling Transformation**
- **Viewing Transformation**
- **Lighting**
- **Projection Transformation**
- **Clipping**
- **Scan Conversion**
- **Image**

- Transform into 3D world coordinate system
- Transform into 3D camera coordinate system
- Illuminate according to lighting and reflectance
- Transform into 2D camera coordinate system
3D Rendering Pipeline (for direct illumination)

3D Geometric Primitives

- **Modeling Transformation**
 - Transform into 3D world coordinate system
- **Viewing Transformation**
 - Transform into 3D camera coordinate system
- **Lighting**
 - Illuminate according to lighting and reflectance
- **Projection Transformation**
 - Transform into 2D camera coordinate system
- **Clipping**
 - Clip (parts of) primitives outside camera’s view
- **Scan Conversion**
- **Image**
3D Rendering Pipeline (for direct illumination)

3D Geometric Primitives

- **Modeling Transformation**
 - Transform into 3D world coordinate system

- **Viewing Transformation**
 - Transform into 3D camera coordinate system

- **Lighting**
 - Illuminate according to lighting and reflectance

- **Projection Transformation**
 - Transform into 2D camera coordinate system

- **Clipping**
 - Clip (parts of) primitives outside camera’s view

- **Scan Conversion**
 - Draw pixels (includes texturing, hidden surface, etc.)
Transformations

3D Geometric Primitives

- **Modeling Transformation**
 - Transform into 3D world coordinate system

- **Viewing Transformation**
 - Transform into 3D camera coordinate system

- **Lighting**
 - Illuminate according to lighting and reflectance

- **Projection Transformation**
 - Transform into 2D camera coordinate system

- **Clipping**
 - Clip primitives outside camera’s view

- **Scan Conversion**
 - Draw pixels (includes texturing, hidden surface, etc.)

- **Image**
Recall: Homogeneous Coordinates

- Add a 4th coordinate to every 3D point
 - \((x, y, z, w)\) represents a point at location \(\left(\frac{x}{w}, \frac{y}{w}, \frac{z}{w}\right)\)
 - \((x, y, z, 0)\) represents a (directed) point at infinity
 - \((0, 0, 0, 0)\) is not allowed
Recall: 3D Transformations

• Using homogenous coordinates, we have two types of transformations:
 ○ Affine
 \[
 \begin{bmatrix}
 x' \\
 y' \\
 z' \\
 1
 \end{bmatrix} =
 \begin{bmatrix}
 a & b & c & d \\
 e & f & g & h \\
 i & j & k & l \\
 0 & 0 & 0 & 1
 \end{bmatrix}
 \begin{bmatrix}
 x \\
 y \\
 z \\
 1
 \end{bmatrix}
 \]
 ○ Projective
 \[
 \begin{bmatrix}
 x' \\
 y' \\
 z' \\
 w'
 \end{bmatrix} =
 \begin{bmatrix}
 a & b & c & d \\
 e & f & g & h \\
 i & j & k & l \\
 m & n & o & p
 \end{bmatrix}
 \begin{bmatrix}
 x \\
 y \\
 z \\
 w
 \end{bmatrix}
 \]
Transformations map points from one coordinate system to another.

\[
(x, y, z) \rightarrow \text{3D Object Coordinates} \\
\text{Modeling Transformation} \\
\rightarrow \text{3D World Coordinates} \\
\text{Viewing Transformation} \\
\rightarrow \text{3D Camera Coordinates} \\
\text{Projection Transformation} \\
\rightarrow \text{2D Screen Coordinates} \\
\text{Window-to-Viewport Transformation} \\
\rightarrow (x', y')
\]
Transformations

\[(x, y, z)\]

- 3D Object Coordinates
- Modeling Transformation
- 3D World Coordinates
- Viewing Transformation
- 3D Camera Coordinates
- Projection Transformation
- 2D Screen Coordinates
- Window-to-Viewport Transformation
- 2D Image Coordinates

\[(x', y')\]
Viewing Transformation

- Canonical coordinate system
 - Convention is right-handed (looking down $-z$ axis)
 - Convenient for projection, clipping, etc.
Viewing Transformation

- The transformation, $T_{W \rightarrow C}$, taking us from world coordinates to camera coordinates should map:
 - The right vector to the x-axis: $\begin{pmatrix} R_x, R_y, R_z, 0 \end{pmatrix} \rightarrow (1,0,0,0)$
 - The up vector to the y-axis: $\begin{pmatrix} U_x, U_y, U_z, 0 \end{pmatrix} \rightarrow (0,1,0,0)$
 - The back vector to the z-axis: $\begin{pmatrix} B_x, B_y, B_z, 0 \end{pmatrix} \rightarrow (0,0,1,0)$
 - The eye position to the origin: $\begin{pmatrix} E_x, E_y, E_z, 1 \end{pmatrix} \rightarrow (0,0,0,1)$

How should we define this transformation/matrix?
Viewing Transformation

• Consider the inverse transformation, $T_{C \rightarrow W}$, taking us from camera coordinates to world coordinates:

 \[
 \begin{align*}
 (R_x, R_y, R_z, 0) & \leftarrow (1,0,0,0) \\
 (U_x, U_y, U_z, 0) & \leftarrow (0,1,0,0) \\
 (B_x, B_y, B_z, 0) & \leftarrow (0,0,1,0) \\
 (E_x, E_y, E_z, 1) & \leftarrow (0,0,0,1)
 \end{align*}
 \]

• This is described by the matrix:

 \[
 \begin{pmatrix}
 x^w \\
 y^w \\
 z^w \\
 1
 \end{pmatrix}
 =
 \begin{pmatrix}
 R_x & U_x & B_x & E_x \\
 R_y & U_y & B_y & E_y \\
 R_z & U_z & B_z & E_z \\
 0 & 0 & 0 & 1
 \end{pmatrix}
 \begin{pmatrix}
 x^c \\
 y^c \\
 z^c \\
 1
 \end{pmatrix}
 \]

 \[
 T_{C \rightarrow W}
 \]
Finding the Viewing Transformation

• The camera-to-world matrix:

\[
\begin{pmatrix}
 x^w \\
 y^w \\
 z^w \\
 1
\end{pmatrix} = \begin{pmatrix}
 R_x & U_x & B_x & E_x \\
 R_y & U_y & B_y & E_y \\
 R_z & U_z & B_z & E_z \\
 0 & 0 & 0 & 1
\end{pmatrix}
\begin{pmatrix}
 x^c \\
 y^c \\
 z^c \\
 1
\end{pmatrix}
\]

\[T_{C\rightarrow W}\]

• The world-to-camera matrix is its inverse:

\[
\begin{pmatrix}
 x^c \\
 y^c \\
 z^c \\
 1
\end{pmatrix} = \begin{pmatrix}
 R_x & U_x & B_x & E_x \\
 R_y & U_y & B_y & E_y \\
 R_z & U_z & B_z & E_z \\
 0 & 0 & 0 & 1
\end{pmatrix}^{-1}
\begin{pmatrix}
 x^w \\
 y^w \\
 z^w \\
 1
\end{pmatrix}
\]

\[T_{W\rightarrow C} = T_{C\rightarrow W}^{-1}\]
Transformations

\((x, y, z)\)

- 3D Object Coordinates
- Modeling Transformation
- 3D World Coordinates
- Viewing Transformation
- 3D Camera Coordinates
- Projection Transformation
- 2D Screen Coordinates
- Window-to-Viewport Transformation
- 2D Image Coordinates

\((x', y')\)
Projection

• General definition:
 ◦ A linear transformation of points in n-space to m-space ($m < n$)

• In computer graphics:
 ◦ Map 3D camera coordinates to 2D screen coordinates
Taxonomy of Projections

Planar geometric projections

Parallel

Orthographic
 - Top (plan)
 - Front elevation
 - Side elevation

Axonometric
 - Isometric
 - Other

Oblique
 - Cabinet
 - Cavalier

One-point
 - Two-point
 - Three-point

Perspective
 - Other

FvDFH Figure 6.13
Projection

- Two general classes of projections, both of which shoot rays from the scene, through the view plane:
 - Parallel Projection:
 » Rays converge at a point at infinity and are parallel
 - Perspective “Projection”:
 » Rays converge at a finite point, giving rise to perspective distortion
Taxonomy of Projections

Planar geometric projections

Parallel

Orthographic
- Top (plan)
- Front elevation
- Side elevation

Axonometric
- Cabinet

Oblique

One-point
- Two-point

Perspective

Three-point

Other

FvDFH Figure 6.13
Parallel Projection

- Center of projection is at infinity
 - Direction of projection (DoP) same for all points
Parallel Projection

✓ Parallel lines remain parallel
✓ Relative proportions of objects preserved
✗ Angles are not preserved
✗ Less realistic looking
Taxonomy of Projections

Planar geometric projections

Parallel

Orthographic
- Top (plan)
- Front elevation
- Axonometric
 - Side elevation
 - Isometric

Oblique
- Cabinet
- Cavalier

Perspective

One-point
- Two-point

Three-point

Other
- Other
Orthographic Projections

- DoP perpendicular to view plane
Orthographic Projections

• DoP perpendicular to view plane

• Lines perpendicular to the view plane vanish

• Faces parallel to the view plane are un-distorted.
Orthographic Projections

- DoP perpendicular to view plane
 - Maps a point in 3D space to the \((x, y)\)-plane, through the origin, by projecting out the \(z\)-component:
 \((x^c, y^c, z^c) \rightarrow (x^c, y^c, 0)\)
 - In terms of the matrix representation:
 \[
 \begin{bmatrix}
 x^s \\
 y^s \\
 0
 \end{bmatrix} = \begin{bmatrix}
 1 & 0 & 0 \\
 0 & 1 & 0 \\
 0 & 0 & 0
 \end{bmatrix}\begin{bmatrix}
 x^c \\
 y^c \\
 z^c
 \end{bmatrix}
 \]
Orthographic Projections

- DoP perpendicular to view plane
 - Maps a point in 3D space to the \((x, y)\)-plane, through the origin, by projecting out the \(z\)-component:
 \[(x^c, y^c, z^c) \rightarrow (x^c, y^c, 0)\]
 - In terms of the matrix representation:
 \[
 \begin{bmatrix}
 x^s \\
 y^s \\
 0
 \end{bmatrix} = \begin{bmatrix}
 1 & 0 & 0 \\
 0 & 1 & 0 \\
 0 & 0 & 0
 \end{bmatrix} \begin{bmatrix}
 x^c \\
 y^c \\
 z^c
 \end{bmatrix}
 \]
 - Or, in homogenous coordinates:
 \[
 \begin{bmatrix}
 x^s \\
 y^s \\
 0 \\
 1
 \end{bmatrix} = \begin{bmatrix}
 1 & 0 & 0 & 0 \\
 0 & 1 & 0 & 0 \\
 0 & 0 & 0 & 0 \\
 0 & 0 & 0 & 1
 \end{bmatrix} \begin{bmatrix}
 x^c \\
 y^c \\
 z^c \\
 1
 \end{bmatrix}
 \]
Taxonomy of Projections

Planar geometric projections

Parallel
- Orthographic
 - Top (plan)
 - Front elevation
- Axonometric
 - Side elevation
- Isometric
 - Other

Oblique
- Cabinet
 - Cavalier
- Other

Perspective
- One-point
- Two-point
- Three-point
Oblique Projections

• DoP not perpendicular to view plane

\[(x^s, y^s) = L(\cos \phi, \sin \phi)\]

\[(x^c, y^c, 1)\]

\[\phi = 45^\circ\]

\[L = 1\]

Cavalier

(DoP \(\alpha = 45^\circ\))

\[\phi = 45^\circ\]

\[L = 1/2\]

Cabinet

(DoP \(\alpha = 63.4^\circ\))

• \(\phi\) is the angle of the projection of the view plane’s normal

• \(L\) is the scale factor applied to the view plane’s normal

H&B Figure 12.21
Parallel Projection Matrix

• General parallel projection transformation:

\[
\begin{bmatrix}
{x^s} \\
{y^s} \\
0 \\
1
\end{bmatrix}
= \begin{bmatrix}
1 & 0 & L \cos \phi & 0 \\
0 & 1 & L \sin \phi & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1
\end{bmatrix}
\begin{bmatrix}
{x^c} \\
y^c \\
z^c \\
1
\end{bmatrix}
\]

Cavalier (DoP \(\alpha = 45^\circ \))

\[
\phi = 45^\circ \\
L = 1
\]

Cabinet (DoP \(\alpha = 63.4^\circ \))

\[
\phi = 45^\circ \\
L = 1/2
\]
Parallel Projection Matrix

• General parallel projection transformation:

\[
\begin{bmatrix}
 x^s \\
 y^s \\
 0 \\
 1
\end{bmatrix}
= \begin{bmatrix}
 1 & 0 & L \cos \phi & 0 \\
 0 & 1 & L \sin \phi & 0 \\
 0 & 0 & 0 & 0 \\
 0 & 0 & 0 & 1
\end{bmatrix}
\begin{bmatrix}
 x^c \\
 y^c \\
 z^c \\
 1
\end{bmatrix}
\]

Note:
This matrix represents an affine transformation

Cavalier (DoP \(\alpha = 45^\circ\))

Cabinet (DoP \(\alpha = 63.4^\circ\))

H&B Figure 12.21
Parallel Projection View Volume

Parallelepiped View Volume

Back Plane

Front Plane

window

Z_v
Taxonomy of Projections

Planar geometric projections

Parallel

Orthographic
 - Top (plan)
 - Front elevation
 - Side elevation

Axonometric

Oblique
 - Cabinet
 - Cavalier

One-point
 - Two-point
 - Three-point

Perspective

Other

FVFHP Figure 6.10
Perspective “Projection”

• Map points onto “view plane” along “projectors” emanating from “center of projection” (CoP)
Perspective Projection

- How many vanishing points?

Number of vanishing points determined by number of axes parallel to the view plane

Angel Figure 5.10
Perspective Projection

• Not all parallel lines remain parallel!
Perspective Projection

• What are the coordinates of the point resulting from projection of \((x^c, y^c, z^c)\) onto the view plane a unit distance along the \(z\)-axis?
Perspective Projection

- For any point \((x^c, y^c, z^c)\) and any scalar \(\alpha\), the points \((x^c, y^c, z^c)\) and \((\alpha x^c, \alpha y^c, \alpha z^c)\) map to the same location.
Perspective Projection

• For any point \((x^c, y^c, z^c)\) and any scalar \(\alpha\), the points \((x^c, y^c, z^c)\) and \((\alpha x^c, \alpha y^c, \alpha z^c)\) map to the same location.

• Since we want the position on the view plane that intersect the line from \((x^c, y^c, z^c)\) to the origin:

\[
(x^c, y^c, z^c) \rightarrow \left(\frac{x^c}{z^c}, \frac{y^c}{z^c}, 1 \right)
\]
Perspective Projection Matrix

$$(x^c, y^c, z^c) \rightarrow \left(\frac{x^c}{z^c}, \frac{y^c}{z^c}, 1 \right)$$

We can’t represent this with a 3×3 matrix!

With homogenous coordinates, we can write this as:

$$(x^c, y^c, z^c, 1) \rightarrow \left(\frac{x^c}{z^c}, \frac{y^c}{z^c}, 1, 1 \right) \equiv (x^c, y^c, z^c, z^c)$$

In matrix form, this gives:

$$\begin{bmatrix} x^s \\ y^s \\ 1 \\ 1 \end{bmatrix} \equiv \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix} \begin{bmatrix} x^c \\ y^c \\ z^c \\ 1 \end{bmatrix}$$
Perspective Projection Matrix

\((x^c, y^c, z^c) \rightarrow \left(\frac{x^c}{z^c}, \frac{y^c}{z^c}, 1 \right)\)

We can’t represent this with a \(3 \times 3\) matrix!

With homogenous coordinates, we can write this as:

\((x^c, y^c, z^c, 1) \rightarrow \left(\frac{x^c}{z^c}, \frac{y^c}{z^c}, 1, 1 \right) \equiv (x^c, y^c, z^c, z^c)\)

Note:
This matrix represents a projective transformation

\[
\begin{bmatrix}
 x^s \\
 y^s \\
 1 \\
 1
\end{bmatrix} \equiv \begin{bmatrix}
 1 & 0 & 0 & 0 \\
 0 & 1 & 0 & 0 \\
 0 & 0 & 1 & 0 \\
 0 & 0 & 0 & 1
\end{bmatrix} \begin{bmatrix}
 x^c \\
 y^c \\
 z^c \\
 1
\end{bmatrix}
\]
Perspective Projection View Volume

H&B Figure 12.30
Taxonomy of Projections

Planar geometric projections
- Parallel
 - Orthographic
 - Top (plan)
 - Front elevation
 - Side elevation
 - Axonometric
 - Isometric
 - Other
- Oblique
 - Cabinet
 - Cavalier
- Perspective
 - One-point
 - Two-point
 - Three-point
 - Other
Classical Projections

- Front elevation
- Elevation oblique
- Plan oblique
- Isometric
- One-point perspective
- Three-point perspective

Angel Figure 5.3
Perspective vs. Parallel

• Perspective projection
 ✓ Size varies inversely with distance - looks realistic
 ✓ Angles are preserved on faces parallel to the view plane
 ✗ Distance are not preserved

• Parallel projection
 ✓ Good for exact measurements
 ✓ Parallel lines remain parallel
 ✓ Angles and distance are preserved on faces parallel to the view plane
 ✗ Less realistic looking
Transformations

\((x, y, z)\) → 3D Object Coordinates

Modeling Transformation

3D Object Coordinates → 3D World Coordinates

Viewing Transformation

3D World Coordinates → 3D Camera Coordinates

Projection Transformation

3D Camera Coordinates → 2D Screen Coordinates

Window-to-Viewport Transformation

2D Screen Coordinates → 2D Image Coordinates

\((x', y')\)

\(V = \text{viewport transform}\)

\[
V = \begin{bmatrix}
1 & 0 & v_x^1 \\
0 & 1 & v_y^1 \\
0 & 0 & 1
\end{bmatrix}
\begin{bmatrix}
\frac{v_x^2 - v_x^1}{w_x^2 - w_x^1} & 0 & 0 \\
0 & \frac{v_y^2 - v_y^1}{w_y^2 - w_y^1} & 0 \\
0 & 0 & 1
\end{bmatrix}
\begin{bmatrix}
1 & 0 & -w_x^1 \\
0 & 1 & -w_y^1 \\
0 & 0 & 1
\end{bmatrix}
\]
3D Rendering Pipeline (for direct illumination)

\((x, y, z)\)

3D Object Coordinates

Modeling Transformation

3D World Coordinates

Viewing Transformation

3D Camera Coordinates

Projection Transformation

2D Screen Coordinates

Window-to-Viewport Transformation

2D Image Coordinates

\((x', y')\)

2D Screen
Transformations

3D Geometric Primitives

Modeling Transformation

Viewing Transformation

Lighting

Projection Transformation

Clipping

Scan Conversion

Image

\[I = I_E + \sum_L \left[K_A \cdot I_L^A + \left(K_D \cdot \langle \hat{N}, \hat{L} \rangle + K_S \cdot \langle \hat{V}, \hat{R} \rangle^n \right) \cdot I_L \right] \]

Viewer

\(\vec{L}_1 \)

\(\vec{L}_2 \)

\(\vec{N} \)

\(\vec{V} \)

3D Model

2D Screen
Transformations

3D Geometric Primitives

Modeling Transformation

Viewing Transformation

Lighting

Projection Transformation

Clipping

Scan Conversion

Image

\{
\text{Vertex processing} \\
\text{• Originally, vertex processing was fixed} \\
\text{• On modern cards this can be programmed in the vertex shader}
\}